

AngularJS Directives
Cookbook

Extend the capabilities of AngularJS and build dynamic
web applications by creating customized directives with
a collection of more than 30 recipes

Fernando Monteiro

BIRMINGHAM - MUMBAI

AngularJS Directives Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: November 2015

Production reference: 1261115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-589-6

www.packtpub.com

www.packtpub.com

Credits

Author
Fernando Monteiro

Reviewers
Mark Coleman

Patrick Gillespie

Aakash Patel

Adam Štipák

Commissioning Editor
Ashwin Nair

Acquisition Editor
Tushar Gupta

Content Development Editor
Pooja Mhapsekar

Technical Editor
Vivek Arora

Copy Editor
Roshni Banerjee

Project Coordinator
Shipra Chawhan

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Fernando Monteiro is a frontend engineer, speaker, open source contributor, and the
mind behind the Responsive Boilerplate—a CSS library built with Less.js for responsive
layouts. He contributes several articles and materials on design, development, and user
experience on his blog and for the entire web community.

He is passionate about web standards, frontend development, JavaScript, and mobile design,
and he spent the last 13 years creating high-end graphic and web experiences. He has also
authored two books, namely, Instant HTML5 Responsive Table Design How-to and Learning
Single-page Web Application Development, both by Packt Publishing.

Currently, he works full-time with AngularJS as a frontend engineer in one of the most
important genetic analysis companies in Brazil. You can find more about him at
www.newaeonweb.com.br.

I would like to thank everyone who supported me on this journey, my
son, Mateus, for always being by my side; Ellen for all the moments of
encouragement; Henrique; my mother, Paschoalina Patrizzi; and my sister,
Marcia Monteiro.

I would also like to thank all the staff at Packt Publishing, who I was directly
in contact with, for their patience and support.

www.newaeonweb.com.br

About the Reviewers

Mark Coleman is a full stack developer focusing on the latest in web technologies. Mark
enjoys learning about new programming trends. Mark also likes to share his knowledge by
attending local development groups and blogging (kramnameloc.com) about programming
topics. When Mark is not absorbing everything development, he enjoys photography, anything
pertaining to The Simpsons, and is a part-time craft beer/bacon aficionado.

Patrick Gillespie is a senior software engineer at Proteus Technologies. He has both
a bachelor's and a master's degree in computer science. In his spare time, he enjoys
photography, spending time with his family, and working on web projects for his personal
site (patorjk.com).

Aakash Patel is the cofounder of Flytenow, which provides a way to share rides in small
planes. He writes AngularJS and develops web applications.

Adam Štipák is currently a full stack developer. He has more than 9 years of professional
experience with web development. He likes technologies pertaining to web development,
including frontend, backend, and so on. He likes open source in general.

Adam works for diagnose.me as the head of development. He worked at Sygic prior to that as
a backend developer and scrum master.

You can find him at http://newpope.org.

kramnameloc.com
patorjk.com
http://newpope.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

i

Table of Contents
Preface	 iii
Chapter 1: Dealing with Modal and Tabs Directives	 1

Introduction	 1
Using inline HTML templates	 2
Creating a simple modal directive	 4
Loading external templates for best practices	 7
Using the link function	 11
Dealing with tabs without Bootstrap UI directives	 13

Chapter 2: Building a Navbar Custom Directive	 23
Introduction	 23
Building a navbar directive	 24
Directory structure for common components	 29
Directive's controller function	 32
Using the data attribute to HTML5 compile	 35

Chapter 3: Customizing and Using Bootstrap UI Directives	 39
Introduction	 39
Dealing with modal directives	 40
Creating tab directives	 46
The isolate $scope	 52
Building accordion tab directives	 56
Loading dynamic content	 60

Chapter 4: Creating Interactive jQuery UI Directives	 63
Introduction	 63
A simple directive example	 64
Manipulating the DOM with jQuery	 66
The compile and link functions	 68

ii

Table of Contents

Creating the jQuery UI draggable directive	 71
Creating the jQuery UI droppable directive	 73

Chapter 5: Implementing Custom Directives with
Yeoman Generators	 77

Introduction	 77
Creating the baseline app with generator-angm	 78
Generator best practices	 80
How to implement the ngMap directive	 82
Using the Angular-Loading-Bar directive	 85
Implementing the ng-grid directive	 88

Chapter 6: Using Directives to Develop Interface Components	 95
Introduction	 95
Creating an Off Canvas menu	 95
Applying custom CSS	 103
Building a shopping cart	 106

Chapter 7: Building Directives with Dynamic Templates	 117
Introduction	 117
Using dynamic templates on directives	 118
The compile function	 125
Organizing dynamic directives on shared folders	 126
Mixing different content on templates	 128

Chapter 8: Creating Reusable Directives	 137
Introduction	 137
How to scale an AngularJS project to use reusable directives	 138
Building a directive as an interface component	 145
Creating a form directive with custom validation	 157

Chapter 9: Directive Unit Testing with Karma and Jasmine	 165
Introduction	 165
How to test AngularJS apps using Karma and Karma Runner	 166
Writing tests for directives with Jasmine	 173
Testing elements when the scope changes	 180

Index	 185

Preface

iii

Preface
Directives make up an important part of AngularJS development to manipulate the Document
Object Model (DOM), route events to event handler functions, and much more. Through the
use of custom directives, we can build applications with a rich user interface. Although the
built-in directives such as ng-repeat, ng-show, and ng-hide cover many different scenarios,
you will often need to create specific directives for your application. This book will give you an
overview of how to create and customize AngularJS directives, with best practices in mind.

What this book covers
Throughout this book, we'll explore different ways to build AngularJS directives and
understand all the elements that make up a directive.

We will cover fundamental concepts about scope, link, $compile, external templates, reusable
components, and Directives Unit Testing.

Mastering how to create and customize AngularJS directives, by the end of this book you will
be able to work comfortably with modular AngularJS applications using custom directives to
create rich web interface components.

Although some points are advanced, you'll be prepared to understand the core concepts and
how to choose or create the right directive for your project.

Chapter 1, Dealing with Modal and Tabs Directives, presents some alternatives to create
simple interface components such as Modal and tabs using tips and exploring best practices
to cover the most important points of creating and dealing with directives.

Chapter 2, Building a Navbar Custom Directive, focuses on building a custom navbar with
menu links as a directive component. You will learn how to manipulate the DOM to show
and hide user information using these custom directives and how to structure an AngularJS
application to use shared components.

Preface

iv

Chapter 3, Customizing and Using Bootstrap UI Directives, throws light on Bootstrap UI
directives and explains how to extend and customize some components, exploring external
templates and custom CSS customization, showing some component examples in real-case
scenarios.

Chapter 4, Creating Interactive jQuery UI Directives, explains how to use jQuery and the
jQuery UI to build some interface components with a comprehensive approach to how jQuery
manipulates the DOM in AngularJS applications using IDs and selectors.

Chapter 5, Implementing Custom Directives with Yeoman Generators, shows how to use a
Yeoman generator to create custom directives of ongoing projects, how to implement some
useful directives, such as ngMap, and more.

Chapter 6, Using Directives to Develop Interface Components, demonstrates how to build
a micro e-commerce application combining different types of custom directives.

Chapter 7, Building Directives with Dynamic Templates, explains how to build directives to
use and load dynamic templates, provides a comparison of inline templates and external
templates, explains more about the Compile function, and shows how to organize custom
directives on shared folders.

Chapter 8, Creating Reusable Directives, shows how we can organize an AngularJS application
and prepare it to be scalable with the use of shared directives, how to build chart directives,
and explores some points about naming conventions, code organization, and best practices.

Chapter 9, Directive Unit Testing with Karma and Jasmine, covers how to configure and
use Karma and Karma Runner to test custom directives using the Jasmine framework and
explains how to deal with scope change and testing elements.

What you need for this book
All the examples in this book use open source solutions and can be downloaded for free from
the links provided in each chapter.

We use AngularJS and a Yeoman Generator to build all the examples. You can find the link to
each tool in every chapter, mainly in the Getting ready section.

Also, you will need Node.js installed on your machine and tools such as Grunt, Yeoman,
and Bower.

You can find how to install these tools using the following links:

ff Node.js: https://nodejs.org/en/

ff Grunt.js: http://gruntjs.com/

ff Bower: http://bower.io/

ff Yeoman: http://yeoman.io/

Preface

v

You can use the text editor of your choice, but in Chapter 9, Directive Unit Testing with Karma
and Jasmine, we strongly recommend the use of WebStorm. However, the tasks can be
accomplished with a simple editor.

You can download a trial version from WebStorm at https://www.jetbrains.com/
webstorm/.

A modern browser will be very helpful too. We use Chrome, but feel free to use your preferred
one. We recommend the latest versions of Safari, Firefox, Chrome, IE, or Opera.

Also, if you need some help with the markup, you can download the code examples.

Who this book is for
This book is meant for developers with AngularJS experience who want to extend their knowledge
of how to create or customize directives in any type of AngularJS application. Some knowledge of
modern tools such as Yeoman and Bower will be quite useful, but is not mandatory.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/

Preface

vi

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We will use a simple HTML file with AngularJS script in the head tag."

A block of code is set as follows:

<script type="text/ng-template" id="first.html">
 <div class="tab-content" id="1">
 <h1>First Tab</h1>
 <p>Simple tab 1</p>
 </div>
</script>

Any command-line input or output is written as follows:

npm install generator-angm -g

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "When we click on the Add to
Cart button, the directive shows a simple message."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

vii

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

viii

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

1

1
Dealing with Modal and

Tabs Directives

In this chapter, we will cover:

ff Using inline HTML templates

ff Creating a simple modal directive

ff Loading external templates for best practices

ff Using the link function

ff Dealing with tabs without Bootstrap UI directives

Introduction
Directives make up an important part in AngularJS applications with AngularJS. They
manipulate the Document Object Model (DOM), route events to event handler functions,
and much more. Through the use of custom directives, we can build applications with
a rich user interface.

Although the built-in directives such as ng-repeat, ng-show, and ng-hide cover many
different scenarios, you will often need to create application-specific directives. This chapter
will give you an overview on how to create and customize simple AngularJS directives, with the
best practices in mind.

We assume that you already know what directives are, so let's check how to create and
customize some simple directives to manipulate the DOM.

Dealing with Modal and Tabs Directives

2

Using inline HTML templates
The basic form to create an AngularJS directive is very simple and intuitive. Let's take a look at
a basic way to declare a directive using inline HTML:

.directive("directiveName",function () {

 return {
 restrict: 'A',

 controller: function() {
 // Directive Controller
 },

 link: function() {
 // Link function
 },
 template: ''
 }
});

As the name implies, we include the HTML template within the code of the directive through
the template property.

Let's see a practical example to show some text on the screen.

Getting ready
The following example is very simple and easy to understand. Imagine that we have set up
an AngularJS application called app and want to display some simple text in the browser with
the following content: Hello Simple Directive.

For this recipe, we will use a simple HTML file with AngularJS script in the head tag.

Add myFirstDirective as a dependence to the app application:

angular.module('app', ['myFirstDirectives']);

Chapter 1

3

How to do it…
So, we can declare and inject the module that contains our directive into our application.
Following the best practices to include new dependencies on the AngularJS application,
we called the directive as helloSimpleDirective:

angular.module('myFirstDirective')

.directive('helloSimpleDirective', function() {
 return {
 scope: true, // inherits child scope from parent.
 restrict: 'E', // An Element Directive.
 replace: true,
 template: '<h3>Hello Simple Directive</h3>'
 };
});

Note that we have declared here as an element directive.

How it works…
Now, before we look into the code, we need to remember that we have the following four types
of directives and that we can use more than one each time:

ff An HTML element (<directive-type></directive-type>), represented by
the letter E

ff An attribute on an element (<input type="text" directive-type/>),
represented by the letter A

ff As a class (<input type="text" class="directive-type"/>), represented
by the letter C

ff As a comment (<!--directive:directive-type-->), represented by the
letter M

We will see more about this in the later chapters.

In the first line of code, we named the application module as myFirstDirective and
added the directive called helloSimpleDirective as a module. It's very simple to use this
directive too. Just declare it like any other HTML tag (in this case, an element), as shown in
the following code:

<hello-simple-directive></hello-simple-directive>

Dealing with Modal and Tabs Directives

4

In the previous code, our angular.module('app', [myFirstDirective]) function
serves to register the new directive to the AngularJS application. On the directive, the first
string argument is the directive name 'hellosimpledirective' and the second argument
is a function that returns a Directive Definition Object (DDO). Also, if the directive has some
external object/service dependencies such as $http, $resource, and $compile, among
others, they can be injected here.

Note that we have declared the directive as an HTML element, and the sign - has
delimited strings to camelCase, so the name helloSimpleDirective will be converted
to hello-simple-directive to be used as the directive name.

In this basic example, we just print on the screen the h3 HTML tag with the text Hello
Simple Directive.

See also
ff You can read more about directives on the official AngularJS documentation at

https://docs.angularjs.org/guide/directive

Creating a simple modal directive
Modal windows are interface components often used in web applications. Building them is
very simple and is done using libraries such as Dojo or jQuery, but implementing them in
AngularJS applications is not as simple, since the DOM manipulation is restricted to directives.

Next, we will see how to use this component in a very simple way.

Getting ready
Let's start placing the following HTML code in a new blank page. The following code has all the
basic requisites to illustrate the example:

<!DOCTYPE html>
<html>
<head>
<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.3.x/angular
.js"></script>
<title>Modal Window Directive</title>
<style>
 .modal-overlay {
 position:absolute;
 z-index:9999;
 top:0;

https://docs.angularjs.org/guide/directive

Chapter 1

5

 left:0;
 width:100%;
 height:100%;
 background-color:#000;
 opacity: 0.8;
}
.modal-background {
 z-index:10000;
 position: absolute;
 top: 50%;
 left: 50%;
 transform: translate(-50%, -50%);
 background-color: #fff;

}
.modal-content {
 padding:10px;
 text-align: center;
}
.modal-close {
 position: absolute;
 top: 5px;
 right: 5px;
 padding: 5px;
 cursor: pointer;
 display: inline-block;
}
</style>
</head>
<body ng-app='SimpleModal'>
</body>
</html>

For this simple example, we placed the CSS code inside the style tag on the same HTML file;
don't do that in production.

How to do it…
1.	 Now we can create our modal directive with the following code:

// Creating a simple Modal Directive
app = angular.module('SimpleModal', []);

app.directive('modalWindow', function() {
 return {

Dealing with Modal and Tabs Directives

6

 restrict: 'E',
 scope: {
 show: '='
 },
 replace: true, // Replace with template
 transclude: true, // To use custom content
 link: function(scope, element, attrs) {

 scope.windowStyle = {};

 if (attrs.width) {
 scope.windowStyle.width = attrs.width;
 }
 if (attrs.height) {
 scope.windowStyle.height = attrs.height;
 }

 scope.hideModal = function() {
 scope.show = false;
 };
 },
 template: "<div ng-show='show'><div class='modal-
 overlay' ng-click='hideModal()'></div><div
 class='modal-background' ng-style='windowStyle'><div
 class='modal-close' ng-click='hideModal()'>X</div><div
 class='modal-content' ng-transclude></div></div></div>"
 };
});

2.	 Add the controller's code:
app.controller('ModalCtrl', ['$scope',
 function($scope) {
 $scope.modalShown = false;
 $scope.toggleModal = function() {
 $scope.modalShown = !$scope.modalShown;
 };
 }
]);

3.	 Finally, include the directives tags into the body tag of our HTML file:
<div ng-controller='ModalCtrl'>
 <button ng-click='toggleModal()'>Open Modal</button>
 <modal-window show='modalShown' width='400px'
 height='60%'>
 <p>Hello Simple Modal Window<p>
 </modal-window>
</div>

Chapter 1

7

How it works…
The work here is very simple; we just placed an HTML template using the inline template,
as we did in the previous example:

template: "<div ng-show='show'><div class='modal-overlay' ng-
click='hideModal()'></div><div class='modal-background'
ng-style='windowStyle'><div class='modal-close' ng-
click='hideModal()'>X</div><div class='modal-content' ng-transclude></
div></div></div>"

As we build everything from scratch, we need to style the HTML tags with CSS classes for a
better look using the style tag inside the head element. In production applications, you
must have a separated file for CSS styles.

The inline template contains the built-in directives ng-show() and ng-style(), along with
a ng-click() function to hide the modal.

The ng-style() directive is not used often, but we include it in this example just to illustrate
how we can place inline styles inside a directive.

Inline templates are very useful, but not too flexible. On large application managers, different
inline templates can be very painful to use and take a lot of time. Use them with small
templates. In the next recipe, we will see how to use external templates on custom directives.

There's more…
We can also use the ng-transclude in-built directive to remove any content from the DOM
before the modal content inserted.

See also
ff You can read more about the use of ng-transclude from the AngularJS official

documentation at https://docs.angularjs.org/api/ng/directive/
ngTransclude

Loading external templates for best
practices

Thinking in terms of best practices, let's see how to use the same modal directive with an
external template, using the templateUrl property instead of the template property.
Before we go further, let's explore the two ways to use templates.

https://docs.angularjs.org/api/ng/directive/ngTransclude
https://docs.angularjs.org/api/ng/directive/ngTransclude

Dealing with Modal and Tabs Directives

8

Use the script tag of ng-template, as shown in the following example:

<body ng-app='SimpleModal'>
 <script type="text/ng-template" id="modal.html">
 <div ng-show='show'>
 <div class='modal-overlay' ng-click='hideModal()'></div>
 <div class='modal-background' ng-style='windowStyle'>
 <div class='modal-close' ng-click='hideModal()'>X</div>
 <div class='modal-content' ng-transclude></div>
 </div>
 </div>
 </script>
</body>

Alternatively, place the HTML content in a separate file; in this case, the template will be an
external file, not just external from the directive code. The code is as follows:

<body ng-app='SimpleModal'>
 <div ng-controller='ModalCtrl'>
 <button ng-click='toggleModal()'>Open Modal</button>
 <modal-window show='modalShown' width='400px' height='60%'>
 <p>Hello Simple Modal Window with External Template<p>
 </modal-window>
 </div>
</body>

Both ways have the same result, and we will see the difference later. For now, let's focus on
the HTML template.

Getting ready
For this recipe, we will be using the same code base as the previous recipe.

How to do it…
1.	 Let's replace the entire template string with the following code:

// loading external templates
app = angular.module('SimpleModal', []);

app.directive('modalWindow', function() {
 return {
 restrict: 'E',
 scope: {
 show: '='
 },

Chapter 1

9

 replace: true, // Replace with template
 transclude: true, // To use custom content
 link: function(scope, element, attrs) {

 scope.windowStyle = {};

 if (attrs.width) {
 scope.windowStyle.width = attrs.width;
 }
 if (attrs.height) {
 scope.windowStyle.height = attrs.height;
 }

 scope.hideModal = function() {
 scope.show = false;
 };
 },
 templateUrl: "modal.html"
 };
});

2.	 Remember that we keep the same controller code as the previous example. The
templateUrl property points to an external file, so place the following code in
a blank HTML file and save it as modal.html:
<body ng-app='SimpleModal'>
 <div ng-controller='ModalCtrl'>
 <button ng-click='toggleModal()'>Open Modal</button>
 <modal-window show='modalShown' width='400px'
 height='60%'>
 <p>Hello Simple Modal Window with External
 Template<p>
 </modal-window>
 </div>
</body>

How it works…
With the templateUrl property, we can load an external HTML template inside our current
HTML file. It is very useful to use this practice because we can reuse the same template in
different places in the application. We will cover this topic later on in this book.

To load external templates inside your files, you must have a HTTP server.

Dealing with Modal and Tabs Directives

10

There's more…
When we use type=text/ng-template with the script tag, we need to place the modal
content inside our page, and the content will be hidden by the browser. The script tag is
used to tell the browser that there is a code snippet, usually in JavaScript. In this way, the
content of the tag is interpreted differently by the browser. In our case, the type attribute
indicates that we have a template, as we can see in the previous example.

We can use the same example, as shown in the following code:

<!DOCTYPE html>
<html>
<head>
<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.3.x/angular.
js"></script>
<title>Modal Window Directive</title>
<style>
...
</style>
</head>
<body ng-app='SimpleModal'>
 <script type="text/ng-template" id="modal.html">
 <div ng-controller='ModalCtrl'>
 <button ng-click='toggleModal()'>Open Modal</button>
 <modal-window show='modalShown' width='400px' height='60%'>
 <p>Hello Simple Modal Window using ng-template<p>
 </modal-window>
 </div>
 </script>
</body>
</html>

See also
ff We also recommend reading the ng-include documentation. As we are talking

about HTML templates, you can find more information at https://docs.
angularjs.org/api/ng/directive/ngInclude.

https://docs.angularjs.org/api/ng/directive/ngInclude
https://docs.angularjs.org/api/ng/directive/ngInclude

Chapter 1

11

Using the link function
Now let's take a look at the link function property inside the directive. The template
generated by a directive is meaningless unless it is compiled with the appropriate scope.
Thus, by default, a directive does not get a new child scope. Instead, it is related to the parent
scope. This means that if the directive is present within a controller, then it will use this
controller scope instead of creating a new one.

To use this scope, we need to use the link function. We achieve this by using the link
property inside the directive definition. Let's use a basic example to understand this.

Getting ready
Let's place the following code inside a new blank HTML file:

<!DOCTYPE html>
<html ng-app="linkdirectives">

 <head>
 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.4/
angular.js"></script>
 <title>Link Function Directive</title>
 </head>

 <body ng-controller="LinkCtrl">
 <input type="text" ng-model="colorName" placeholder="Insert a
color name"/>
 <link-function></link-function>
 </body>

</html>

Now let's add the directive code.

How to do it…
Here's the directive code, using simple CSS manipulation:

app.directive('linkFunction',function(){
 return{
 restrict: 'AE',
 replace: true,
 template: '<p style="background-color:{{colorName}}">Link
 Function Directive</p>',

Dealing with Modal and Tabs Directives

12

 link: function(scope,element,attribute){
 element.bind('click',function(){
 element.css('background-color','white');
 scope.$apply(function(){
 scope.color="white";
 });
 });
 element.bind('mouseover',function(){
 element.css('cursor','pointer');
 });
 }
 }
});

How it works…
The link function takes three arguments: scope, element, and attribute. For a better
understanding, we use the entire name for the arguments, without any abbreviation. It is also
very common to see elem for element and attrs for attribute.

The element argument is a short version from jQuery Lite that is already included in
AngularJS to manipulate the DOM without the need to use the famous $() from jQuery.

AngularJS has a lightweight version of jQuery, called jQuery Lite.

The scope element is the same from the parent controller, and the link function is used for
attaching event listeners to DOM elements. Always watch the model properties for changes,
and update the DOM with the new information. In this case, we used the $apply() function
to update the binding.

There's more…
The link function contains code used after the compilation process, such as some DOM
manipulation or jQuery use. Also, the controller $scope and scope of the link function
are almost the same thing.

When you use the scope element as the first parameter of the link function inside a
directive, it has the same behavior of the $scope element from a controller. However,
when you declare the scope: {} property with an empty object inside the directive,
you create an isolate scope and both are different. We will see more about isolate scopes
in the next chapter.

Chapter 1

13

The controller $scope are parameters that are sent to the controller and they get there
through Dependency Injection (DI). The scope of the link function are parameters sent to
link and are standard order-based functions.

See also
ff You can read more about the Directive Definition Object, Compile, and Link function

on the official AngularJS API at https://docs.angularjs.org/api/ng/
service/$compile#directive-definition-object

Dealing with tabs without Bootstrap UI
directives

Bootstrap user interface is very popular and is used by many web developers. The AngularJS
community has their own in-built version on top of the Bootstrap JavaScript library, the
AngularJS UI directives. However, using it is not always our first option; often, we need a
simple solution.

In this recipe, we will see how to build component tabs without Angular UI.

Later in the book, we will see in depth how to use and customize Bootstrap UI directives. Now,
we will focus on a simple directive tabs.

In a very basic way, we don't need to use a custom directive to build the tabs. So, let's see two
ways to build a simple tab.

Getting ready
For the first example, we need the following code:

<!DOCTYPE html>
<html ng-app="simpleTab">
<head>
 <script
 src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.4/
 angular.js"></script>
 <title>Simple tab</title>
 <style>
 .tabs-nav {
 padding: 20px 0 0;
 list-style: none;
 }
 .tabs-nav li {
 display: inline;

https://docs.angularjs.org/api/ng/service/$compile#directive-definition-object
https://docs.angularjs.org/api/ng/service/$compile#directive-definition-object

Dealing with Modal and Tabs Directives

14

 margin-right: 20px;
 }
 .tabs-nav a {
 display:inline-block;
 cursor: pointer;
 }
 .tabs-nav .active {
 color: red;
 }
 .tab-content {
 border: 1px solid #ddd;
 padding: 20px;
 }
 </style>
</head>

<div class="tabs-holder" ng-app="simpleTab" ng-init="tab=1">
 <ul class="tabs-nav">
 <a ng-click="tab=1" ng-class="{'active' : tab==1}">First
 tab
 <a ng-click="tab=2" ng-class="{'active' : tab==2}">Second
 tab
 <a ng-click="tab=3" ng-class="{'active' : tab==3}">Third
 tab

 <div class="tabs-container">
 <div class="tab-content" ng-show="tab == 1">
 <h1>First Tab</h1>
 <p>Simple tab 1</p>
 </div>
 <div class="tab-content" ng-show="tab == 2">
 <h1>Second tab</h1>
 <p>Simple tab 2</p>
 </div>

 <div class="tab-content" ng-show="tab == 3">
 <h1>Third Tab</h1>
 <p>Simple tab 3</p>
 </div>
 </div>
</div>
</body>
</html>

Chapter 1

15

For the second example, we need the following code. This time, we're using a controller and
an external template. Place the following HTML code in a blank HTML file:

<!DOCTYPE html>
<html ng-app="simpleTabController">
<head>
 <script
 src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.4/
 angular.js"></script>
 <title>Simple tab with Controller</title>
 <style>
 .tabs-nav {
 padding: 20px 0 0;
 list-style: none;
 }
 .tabs-nav li {
 display: inline;
 margin-right: 20px;
 }
 .tabs-nav a {
 display:inline-block;
 cursor: pointer;
 }
 .tabs-nav .active {
 color: red;
 }
 .tab-content {
 border: 1px solid #ddd;
 padding: 20px;
 }
 </style>
</head>
<body>
<div class="tabs-holder" ng-app="simpleTabController">
<div id="tabs" ng-controller="TabsCtrl">
 <ul class="tabs-nav">
 <li ng-repeat="tab in tabs"
 ng-class="{active:isActiveTab(tab.url)}"
 ng-click="onClickTab(tab)">{{tab.title}}

 <div id="tab-content">
 <div ng-include="currentTab"></div>
 </div>
 <!--Script templates-->

Dealing with Modal and Tabs Directives

16

 <script type="text/ng-template" id="first.html">
 <div class="tab-content" id="1">
 <h1>First Tab</h1>
 <p>Simple tab 1</p>
 </div>
 </script>

 <script type="text/ng-template" id="second.html">
 <div class="tab-content" id="2">
 <h1>Second Tab</h1>
 <p>Simple tab 2</p>
 </div>
 </script>

 <script type="text/ng-template" id="third.html">
 <div class="tab-content" id="3">
 <h1>Third Tab</h1>
 <p>Simple tab 3</p>
 </div>
 </script>
</div>
</div>
</body>
</html>

How to do it…
With the HTML already set up for both examples, let's dive into the controller's code for the
second one. Add the following code to a separate file:

angular.module('simpleTabController', [])

.controller('TabsCtrl', ['$scope', function ($scope) {
 $scope.tabs = [{
 title: 'First tab',
 url: 'first.html'
 }, {
 title: 'Second tab',
 url: 'second.html'
 }, {
 title: 'Third tab',
 url: 'third.html'
}];

Chapter 1

17

 $scope.currentTab = 'first.html';

 $scope.onClickTab = function (tab) {
 $scope.currentTab = tab.url;
 }

 $scope.isActiveTab = function(tabUrl) {
 return tabUrl == $scope.currentTab;
 }
}]);

The result of the tabs example is very similar to the following screenshot:

Simple tab layout example

Note that we keep the layout as simple as possible just for the example code.

For the second example, we keep the same stylesheet and layout. In both the examples,
we include the CSS inside the head element on the HTML page; you must avoid this on
production applications.

Dealing with Modal and Tabs Directives

18

How it works…
The first example is pretty intuitive, and we only use the AngularJS built-in directives, such as
ng-class and ng-show, to simulate the tab functionality.

<ul class="tabs-nav">
 <a ng-click="tab=1" ng-class="{'active' : tab==1}">First
 tab
 <a ng-click="tab=2" ng-class="{'active' : tab==2}">Second
 tab
 <a ng-click="tab=3" ng-class="{'active' : tab==3}">Third
 tab

Internally, the framework recognizes the reverse state of ng-show and hides all the content
of tabs 1 and 2. When we click on one of the other tabs, the state changes to show what has
been clicked on and hides the others.

This is a simple example, but it is not very flexible.

In the second example, we added a controller to deal with the tabs logic, creating a $scope to
hold the tab title and their respective template:

$scope.tabs = [{
 title: 'First tab',
 url: 'first.html'
}, {
 title: 'Second tab',
 url: 'second.html'
}, {
 title: 'Third tab',
 url: 'third.html'
}];

We could easily introduce other elements in this array, such as description, date, and other
elements, since we have loaded them from the controller. Although, it is possible to load the
tabs content dynamically within this own array. We can also load the templates in external
files, as we saw in the beginning of this chapter.

For this, transfer the contents of the script tags (highlighted here) to external files, keeping
the names as first.html, second.html, and third.html:

<script type="text/ng-template" id="first.html">
 <div class="tab-content" id="1">
 <h1>First Tab</h1>
 <p>Simple tab 1</p>
 </div>
</script>

Chapter 1

19

Now just remove the script tags from the original HTML file:

<script type="text/ng-template" id="second.html">
 <div class="tab-content" id="2">
 <h1>Second Tab</h1>
 <p>Simple tab 2</p>
 </div>
</script>

<script type="text/ng-template" id="third.html">
 <div class="tab-content" id="3">
 <h1>Third Tab</h1>
 <p>Simple tab 3</p>
 </div>
</script>

Now we can have tabs with external templates.

These were simple examples for creation of tabs without using custom directives, and instead
using built-in AngularJS directives. We highlighted the DOM manipulation's simplicity by using
controllers rather than customized directives.

There's more…
In addition to the previous examples, we can easily create a directive to use tabs. So, we
address all the possibilities in the creation of this interactive component.

Let's see a directive example:

<!DOCTYPE html>
<html >
<head>
 <script
 src="https://ajax.googleapis.com/ajax/libs/angularjs/1.2.4/
 angular.js"></script>
 <title>Simple tab with Directive</title>
 <style>
 .tabs-nav {
 padding: 20px 0 0;
 list-style: none;
 }
 .tabs-nav li {
 display: inline;
 margin-right: 20px;
 }

Dealing with Modal and Tabs Directives

20

 .tabs-nav a {
 display:inline-block;
 cursor: pointer;
 }
 .tabs-nav .active {
 color: red;
 }
 .tab-content {
 border: 1px solid #ddd;
 padding: 20px;
 }
 </style>
</head>
<body>
 <div ng-app='simpleTabDirective'>
 <ng-tabs>
 <content-tab dat-heading='First tab' dat-tab-active>
 <h1>First Tab</h1>
 <p>Simple tab 1</p>
 </content-tab>
 <content-tab dat-heading='Second tab'>
 <h1>Second Tab</h1>
 <p>Simple tab 2</p>
 </content-tab>
 <content-tab dat-heading='Third tab'>
 <h1>Third Tab</h1>
 <p>Simple tab 3</p>
 </content-tab>
 </ng-tabs>
 </div>
</body>
</html>

Now, the controller turns into a directive:

var app = angular.module("simpleTabDirective", [])

app.directive('ngTabs', function() {
 return {
 scope: true,
 replace: true,
 restrict: 'E',
 transclude: true,
 template: ' \

Chapter 1

21

<div class="tab-content"> \
 <ul class="tabs-nav"> \
 <li ng-repeat="tab in tabs" \
 ng-class="{ active: currentTab == $index }"> \
 <a ng-click="selectTab($index)"> \
 {{tab}} \
 \
 \
 \
 <div ng-transclude></div> \
</div>',
 controller: function($scope) {
 $scope.currentTab = 0;

 $scope.tabs = [];

 $scope.selectTab = function(index) {
 $scope.currentTab = index;
 };

 return $scope;
 }
 }
})

app.directive('contentTab', function() {
 return {
 require: '^ngTabs',
 restrict: 'E',
 transclude: true,
 replace: true,
 scope: true,
 template: '<div class="tab-content" ng-show="showTab()" ng-
 transclude></div>',
 link: function(scope, element, attrs, ngTabs) {
 var tabId = ngTabs.tabs.length;

 scope.showTab = function() {
 return tabId == ngTabs.currentTab;
 };

 ngTabs.tabs.push(attrs.datHeading);
 }
 }
});

Dealing with Modal and Tabs Directives

22

Note that we use the property require to set the dependence of ngTabs. In this way, our tab
consists of two directives, one to create the list where we will have the title of the tabs and the
second to create the contents of each tab itself. The code is as follows:

<ng-tabs>
 <content-tab dat-heading='First tab'>
 </content-tab>
</ng-tabs>

We can also observe that we have used all the features seen earlier in this chapter, such as
ng-click, ng-repeat, and ng-transclude, among others.

See also
ff A great resource that helps us in search of directives, and other related stuff, for

the development of applications with AngularJS is the website Angular Modules
(http://ngmodules.org/tags/directive)

http://ngmodules.org/tags/directive

23

2
Building a Navbar
Custom Directive

In this chapter, we will cover:

ff Building a navbar directive

ff Directory structure for common components

ff Directive's controller function

ff Using the data attribute to HTML5 compile

Introduction
In this chapter, we will see how to build a navbar directive and adapt it to an AngularJS
application. We will also explore some basic functionalities of AngularJS directives. We will
use a Yeoman generator to facilitate our work and illustrate how to organize your directory
structure following the AngularJS best practices from the community.

It is assumed that you have an intermediate knowledge of developing applications using
AngularJS and modern tools such as Yeoman, Bower, and Grunt. However, the following
examples are exemplified didactically.

You can find more information about Yeoman at http://yeoman.io/.

http://yeoman.io/

Building a Navbar Custom Directive

24

Building a navbar directive
One of the interface components most commonly used on websites and web applications
are navigation menus. Although they are very simple, they are also very useful in any type
of application.

Getting ready
Let's build the basis for an AngularJS application. As we mentioned before, we use the
Yeoman generator: generator-angm.

You must have Node.js, Yeoman, Bower, and Grunt already
installed on your machine.

Open your Terminal window and type the following commands in the order they appear:

1.	 To install the generator, use the following command:
npm install generator-angm -g

2.	 To create the application, use the following command:
yo angm

3.	 To create the modules, use the following command:
yo angm:angm-module

4.	 Use the name about for the module name.

Repeat the last step to create the following modules: news, company, and navbar.
We will discuss this in detail later.

5.	 Now, test the boilerplate code. On your Terminal, type the following command:
grunt dev

All the code will be compiled and your default browser will start with the welcome screen.

Remember, you must have administrator privileges to install the
generator globally on your machine.

Chapter 2

25

After all these commands have been executed, we'll have created all the necessary directory
structures for the directive example. At this point, you should have a directory structure similar
to the following screenshot:

Generator-angm with modules created

The generator has created all the necessary code of an AngularJS application, following the
best development practices. However, we will not go into detail about all these files, as it is
beyond the scope of this book.

Let's focus on the navbar folder and start building our navbar directive. The navbar folder
has the following files:

Filename Description
navabar-test.js Unity tests related to the navbar module controller
navbar.html Navbar view for the navbar module
navbarCtrl.js Navbar controller
navbarRoute.js AngularJS Route to Navbar view

Aside from the unit test file and the route file, the additional files are blank and just have the
function declarations.

Building a Navbar Custom Directive

26

How to do it…
1.	 We will replace the file navbarRoute.js with navbarDirective.js. For a

better understanding, we will follow these steps. Place the following code inside
the navbarDirective.js file:
'use strict';

/**
 * @ngdoc function
 * @name app.directive:navbarDirective
 * @description
 * # navbarDirective
 * Directive of the app
 */

angular.module('navbar')
 .directive('simpleNavbar', function () {
 return {
 restrict: 'E',
 templateUrl: 'app/modules/navbar/navbar.html',
 controller: function($scope, $location) {
 $scope.isActive = function(path){
 var currentPath = $location.path().split('/')[1];
 if (currentPath.indexOf('?') !== -1) {
 currentPath = currentPath.split('?')[0];
 }
 return currentPath === path.split('/')[1];
 };
 },
 };
 });

2.	 Place the following HTML code inside the navbar.html file:
<div class="navbar navbar-default">
 <div class="container">
 <ul class="nav navbar-nav">
 <li ng-class="{active:isActive('/')}">Home
 <li ng-class="{active:isActive('#/about')}">About
 <li ng-class="{active:isActive('#/news')}">News

Chapter 2

27

 <li ng-class="{active:isActive('#/company')}">Company

 </div>
</div>

3.	 At this stage, we have almost everything we need to build the directive. The final step
is to add the navbar directive inside the HTML file. Open the index.html file inside
the project root folder and add the following highlighted code to the markup:
<!--Beginning-->
<!-- Insert the Navbar -->
<simple-navbar></simple-navbar>
<section id="wrapper" class="container" scroll-to>
 <div class="view-slide-in" ng-view="main-app"></div>
</section>
<!--End-->

4.	 Now, open your Terminal window and type the following command:

grunt dev

At this point, the code has been compiled and your default browser will have opened on
the welcome screen with the navbar directive on the top of the page, as shown in the
following screenshot:

Generator welcome screen with the navbar directive at the top

Building a Navbar Custom Directive

28

How it works…
As you've probably noticed, there are several ways to create custom directives with AngularJS.
The key point here is to understand all the basic concepts behind directives creation.

The controller only checks the link state and returns a state if it is active with a route using
the $location.path() function. The code is as follows:

$scope.isActive = function(path){
 var currentPath = $location.path().split('/')[1];
 if (currentPath.indexOf('?') !== -1) {
 currentPath = currentPath.split('?')[0];
 }
 return currentPath === path.split('/')[1];
};

The template gets the state from the controller and applies the selected CSS class to the link
using the ng-class built-in directive. The code is as follows:

<li ng-class="{active:isActive('/')}">Home
<li ng-class="{active:isActive('#/about')}">About</
a>
li ng-class="{active:isActive('#/news')}">News</
li>
<li ng-class="{active:isActive('#/company')}"><a href="#!/
company">Company

All this happens inside the directive markup:

<simple-navbar></simple-navbar>

There's more…
An important point to note is that the generator compiles and injects all the code of
controllers, routes, and directives in the index.html file, as we can see
in the following code:

<script src="/app/app.js"></script>
<script src="/app/home/homeRoute.js"></script>
<script src="/app/modules/about/aboutRoute.js"></script>
<script src="/app/modules/company/companyRoute.js"></script>
<script src="/app/modules/news/newsRoute.js"></script>
<script src="/app/home/homeCtrl.js"></script>
<script src="/app/modules/about/aboutCtrl.js"></script>
<script src="/app/modules/company/companyCtrl.js"></script>

Chapter 2

29

<script src="/app/modules/navbar/navbarCtrl.js"></script>
<script src="/app/modules/news/newsCtrl.js"></script>
<script src="/app/modules/navbar/navbarDirective.js"></script>

If you are creating this directive without using a generator, you need to be aware of this step.
Otherwise, your code may return an injection of dependencies error.

You must have also noticed that we do not use any CSS to style our navbar. This is because
the generator includes a copy of the Twitter bootstrap framework and we only use the already
available classes from the framework.

<div class="navbar navbar-default">
 <div class="container">
 ...
 </div>
</div>

See also
You can use any user interface framework with AngularJS. However, you must create its
own directives to use JavaScript behavior and DOM manipulation in AngularJS applications.
Some user interface frameworks, such as Foundation and Bootstrap, have specific directives
to AngularJS.

We will see more on this subject later in this book.

Directory structure for common components
A very useful way to develop applications with AngularJS is to use a code generator, use a
simple Boilerplate, or to create your own generator or guidelines to follow. We have a lot of
good practices spreading on the Internet. However, you should find your own way too.

We often need to write enough code to have a fast start, and putting a simple application in
production requires many lines of code, so using tools like generators can be very productive.
However, let's see some tips on how to organize our code in order to have a highly scalable
application.

Getting ready
Regardless of a code generator or boilerplate, you should choose to organize your content in
a modular way by grouping by features. Grouping files by features facilitates maintenance and
allows you to scale the application more easily.

Building a Navbar Custom Directive

30

We will use the same code base for the previous recipe to explain the benefits of this kind of
organization. The following screenshot shows a directory structure grouped by features:

Modular directory structure

How to do it…
You should group your modules into folders and put all content on that functionality within
these folders.

For example, in the previous screenshot, we have a folder called modules and each feature
has its own folder, such as news, navbar, company, and so on.

Controllers, Routes, Directives, Services, stylesheets, and everything that is related to the
contents of the folder and functionality, should have individual folders.

When we use some kind of generator or boilerplate, we can easily opt for one that lets the
best structured code. In many cases, this becomes unfeasible, for example, in the case of
applications in progress where the code was not properly structured.

Chapter 2

31

Unfortunately, at the beginning of development with AngularJS, it was very common to use
the directories structure grouped by function, that is, all controllers, services, routes and
directives of the application were grouped into folders, each folder for a feature. For example,
a controller's folder would be grouped with all application controllers.

Over time, this has become a problem, especially in teams where all developers need to
maintain the code. The tree files always tend to grow, and the organization by functionality
is much better than by function.

How it works…
As a simple way to structure an application, you can make an analogy with building blocks.

All applications with AngularJS have files and features in common. Some behaviors and
components also tend to be very similar to many types of web applications with login screens,
registration, forms, and much more.

A simple way to solve this is to use the following figure as a guide for implementing a
well-organized structure that is easy to scale:

AngularJS application blueprint

Building a Navbar Custom Directive

32

Also, some IDE tools are very helpful when we need to perform massive code refactoring. For
the directives, it's always a good practice to have an extra folder inside the module folder to
hold all the directives assets and templates. This is shown in the following figure:

Dashboard module detail

In this way, it is very easy to delete and add new modules, using only a single directory from
the entire application and using a config file to add the modules' dependencies. In this case,
we just need to delete the folder's name and remove the module injection on the config file.
Also, we can delete all the references to the module on the application.

There's more…
Avoid using prefixes already used by other AngularJS directives, for example, ng- or ui-. The
first one is dedicated to all the Angular built-in directives and the second one is for Angular UI
Bootstrap directives.

Name your directives in the most intuitive way possible and follow the camelCase naming
convention; keeping short names is better.

See also
ff In Chapter 3, Customizing and Using Bootstrap UI Directives, we will discuss more on

directives naming conventions.

Directive's controller function
In this chapter, we have seen a different way to declare a directive to manipulate the DOM. In
the previous chapter, we explored different ways of working with the directive's properties. In
this example, we will declare an external controller to the directive without writing any code
within the directive.

Chapter 2

33

Getting ready
Using external controllers is very common in applications that have many customized
directives. They help us separate the content in a more practical way, in the same behavior
of the directives template. With separated controllers, we can use many AngularJS resources,
such as services and other features.

This example serves to illustrate the flexibility that directives have.

We will use the same code as the previous example, but this time, we will place the
controller's code in a separate file.

How to do it…
1.	 Replace the controller's code with the following highlighted code:

'use strict';

/**
 * @ngdoc function
 * @name app.directive:navbarDirective
 * @description
 * # navbarDirective
 * Directive of the app
 */

angular.module('navbar')
 .directive('simpleNavbar', function () {
 return {
 restrict: 'E',
 templateUrl: 'app/modules/navbar/navbar.html',
 controller: 'NavbarCtrl',
 };
});

2.	 Create a navbarCtrl.js file and place the following code in it:
'use strict';

/**
 * @ngdoc function
 * @name app.controller:navbarCtrl
 * @description
 * # navbarCtrl
 * Controller of the app

Building a Navbar Custom Directive

34

 */
angular.module('navbar')
.controller('NavbarCtrl', ['$scope', '$location', function
($scope, $location) {
 $scope.isActive = function(path){
 var currentPath = $location.path().split('/')[1];
 if (currentPath.indexOf('?') !== -1) {
 currentPath = currentPath.split('?')[0];
 }
 return currentPath === path.split('/')[1];
 };
}]);

How it works…
We used a different approach on this directive. Note that we declared our controller in a
separate file, called navbarCtrl.js, unlike what we did in the previous example.

Note that some linter tools ask you to name your controller without the
abbreviation Ctrl at the end of the controller's name, so consider using
navbarController.js on production applications.

The operation is very simple: just declare the controller name that will be used. It should be in
the same directory of the directive code.

In our previous example, we can see that the directives should have their own directory in
large AngularJS applications, and that all relevant files for the directive are stored in this
directory.

In our case, the controller has the same name as the directive. It is stored on the same
navbar folder, NavbarDirective.js.

There's more…
An important note is the method used to declare the contents of the controller and directives.
Let's see some key points:

'use strict';

/**
 * @ngdoc function
 * @name app.controller:navbarCtrl
 * @description

Chapter 2

35

 * # navbarCtrl
 * Controller of the app
 */
angular.module('navbar')
.controller('NavbarCtrl', ['$scope', '$location', function
($scope, $location) {
 ...

}]);

We are using an array [] notation to declare the dependencies. Using only functions can
lead to some issues when we try to minify and obfuscate the file. One of the common ways
to see this is like the following example:

function navBarCtrl ($scope, $location) {
...
...
}

This code easily loses its parameters, $scope and $location, when minified because they
are turned into (a,b) by some minify tools.

See also
ff A very good resource to know more about controllers in AngularJS applications is the

official documentation at https://docs.angularjs.org/guide/controller

Using the data attribute to HTML5 compile
The data attribute is an important and powerful feature of HTML5. It helps us to have more
control over the HTML of our application, and this is not different on AngularJS applications.

Imagine that you are working on an AngularJS application and need to validate your
HTML with a validating tool. Many companies require that you ensure your HTML code is
valid, by quality questions or web standards, and others simply use it as a selling point
for future customers.

If you try to validate an AngularJS application, it will have some or many errors related to the
ng- tags. To avoid this, we must use the following solution.

https://docs.angularjs.org/guide/controller

Building a Navbar Custom Directive

36

Getting ready
Let's use the same navbar HTML code from the previous example to show the use of the
data attribute.

How to do it…
1.	 Just apply the data- attribute before all the ng- tags:

<div class="navbar navbar-default">
 <div class="container">	
 <ul class="nav navbar-nav">
 <li data-ng-class="{active:isActive('/')}">Home
 <li data-ng-class="{active:isActive('#/about')}">About
 <li data-ng-class="{active:isActive('#/news')}">News
 <li data-ng-class="{active:isActive('#/company')}">Company

 </div>
</div>

2.	 Apply the data- attribute to the directives name:
<data-simple-navbar></data-simple-navbar>

How it works…
When the browser's engine parses the HTML code, it'll understand the data- tag as the
HTML5 attribute and the validator's engine will pass easily.

Chapter 2

37

There's more…
Almost all updated browsers parsing the data- attribute using the getAttribute and
setAttribute methods.

You can easily manipulate the HTML tags with pure JavaScript, as shown in the following
example:

<div id="band" data-band="Motorhead" data-album="March or
Die"></div>

Use the JavaScript in this way:

var band = document.getElementById("band");
var bestBand = band.getAttribute("data-band");
var bestAlbum = band.getAttribute("data-album");
console.log('The best band and album is', bestBand + bestAlbum);

See also
ff You can find more information about data attributes on HTML5 applications at

http://www.w3.org/html/wg/drafts/html/master/dom.html#custom-
data-attribute

http://www.w3.org/html/wg/drafts/html/master/dom.html#custom-data-attribute
http://www.w3.org/html/wg/drafts/html/master/dom.html#custom-data-attribute

39

3
Customizing and Using

Bootstrap UI Directives

In this chapter, we will cover the following recipes:

ff Dealing with modal directives

ff Creating tab directives

ff The isolate $scope

ff Building the accordion tab directives

ff Loading dynamic content

Introduction
User interface is the most common part of any web application or even a simple website.
Among the most known and used UI frameworks is the Twitter Bootstrap framework. In
addition, the AngularJS ecosystem has its own version of Bootstrap, as the website says.

Statement from the UI-Bootstrap website: Bootstrap components written in
pure AngularJS by the AngularUI Team.

Pure AngularJS means custom directives simulate the JavaScript behavior from the original
Bootstrap framework. The AngularJS team translated all the Bootstrap components into
AngularJS directives and the only dependency is the CSS file, without jQuery.

In this chapter, we will go deeper inside the AngularJS UI directives.

Customizing and Using Bootstrap UI Directives

40

Dealing with modal directives
As we have already noted in the previous chapters, modal components are extremely common
in web applications or even on small websites.

In the upcoming sections, we will show a simple modal solution loading content from a simple
controller using the Bootstrap UI, and also an alternative way to extend it using a custom
external template demonstrating the flexibility of custom directives with the Bootstrap UI.

Getting ready
As a starting point, we will use the generator-angm; the baseline code will be the default
home directory.

At this point, we assume that you have the generator installed on your development
environment and a project already started.

How to do it…
1.	 Place the following highlighted code in the homeCtrl.js file in the home directory:

/**
 * @ngdoc function
 * @name app.controller:HomeCtrl
 * @description
 * # HomeCtrl
 * Controller of the app
 */
angular.module('bootstrap-ui-directives')
// Passing the $modal to controller as dependency
.controller('HomeCtrl', ['$scope', '$modal', function
($scope, $modal) {
 $scope.title = "Hello, Angm-Generator!";

 $scope.open = function () {

 var modalInstance = $modal.open({
 templateUrl: 'myModalContent.html',
 controller: 'ModalCtrl'
 });

 };

}])

Chapter 3

41

2.	 Now, let's add the modal controller. For the example code, we use the same
homeCtrl.js file to hold all the code examples. However, in production applications,
you must, or at least should, have one controller for each goal. Let's go to the second
step and add the ModaCtrl function:
// Passing $modalInstance to controller as dependency
.controller('ModalCtrl', function ($scope, $modalInstance) {

 // Added some content to Modal using $scope
 $scope.content = "ModalCtrl, Yeah!"

 // Add cancel button
 $scope.cancel = function () {
 $modalInstance.dismiss('cancel');
 };
})

3.	 Note that we have appended this controller to the homectrl.js file. Now, let's add
the modal HTML content to the home.html file inside the home directory. Add the
following highlighted code:
<div ng-controller="HomeCtrl">
 <div class="splash" style="width:600px; margin:0 auto;
 text-align:center">
 <h1>{{ title }}</h1>
 <p>This is a template for a simple home screen
 website. Use it as a starting point to create
 something more unique.</p>
 <code>app/home/home.html</code>
 <hr>
 <p><a ng-click="open()" class="btn btn-primary"
 role="button">Open Modal »</p>
 </div>
 <!-- Modal Script -->
 <script type="text/ng-template" id="myModalContent.html">
 <div class="modal-header">
 <button type="button" class="close" data-
 dismiss="modal" aria-hidden="true">×</button>
 <h3 class="modal-title">Hello from Modal!</h3>
 </div>
 <div class="modal-body">
 Modal Content from: {{ content }}
 </div>
 <div class="modal-footer">
 <button class="btn btn-danger" ng-
 click="cancel()">Cancel</button>
 </div>
 </script>
</div>

Customizing and Using Bootstrap UI Directives

42

4.	 Note that we have added a custom template to display the modal called
myModalContent.html. Open your Terminal window inside the application
folder and type:
grunt dev

The result expected when the modal button is clicked is what we have in the following
screenshot:

5.	 We can easily extend this functionality by creating a custom directive and an external
template, as already mentioned earlier. To do this, perform the following steps and
add the following code to your application:
.controller('ModalCustomCtrl', function ($scope) {
 // Set show modal to false/ hide from HTML
 $scope.showModal = false;

 // Toggle function to show and hide modal from HTML
 $scope.toggleModal = function(){
 $scope.showModal = !$scope.showModal;
 };
})
// Modal Directive
.directive('modal', function () {
 return {
 // Add a custom template for modal
 templateUrl: 'app/home/modal-tpl.html',
 restrict: 'E',
 transclude: true,
 replace:true,
 scope:true,

Chapter 3

43

 link: function postLink(scope, element, attrs) {
 scope.title = attrs.title;

 scope.$watch(attrs.visible, function(value){
 if(value == true)
 $(element).modal('show');
 else
 $(element).modal('hide');
 });

 $(element).on('shown.bs.modal', function(){
 scope.$apply(function(){
 scope.$parent[attrs.visible] = true;
 });
 });

 $(element).on('hidden.bs.modal', function(){
 scope.$apply(function(){
 scope.$parent[attrs.visible] = false;
 });
 });
 }
 };
})

6.	 As we are extending a directive, we will use an external template called modal-tpl.
html to demonstrate the flexibility of this directive. Let's add the following
HTML code:
<div class="modal fade">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-
 dismiss="modal" aria-hidden="true">×</button>
 <h4 class="modal-title">{{ title }}</h4>
 </div>
 <div class="modal-body" ng-transclude></div>
 <div class="modal-footer">
 <button class="btn btn-danger" data-
 dismiss="modal">Cancel</button>
 </div>
 </div>
 </div>
</div>

Customizing and Using Bootstrap UI Directives

44

How it works…
It is very simple to use the Angular UI Bootstrap components on Angular applications. Note
that the generator we use already has Bootstrap installed and configured, though it is very
simple to do this.

You can find more about the Angular Bootstrap UI on the official website at
http://angular-ui.github.io/bootstrap/.

In the first example, we pass the $modal attribute as a parameter to the HomeCtrl function
and set up the template and controller to hold the modal content:

.controller('HomeCtrl', ['$scope', '$modal', function ($scope, $modal)
{
 $scope.title = "Hello, Angm-Generator!";

 $scope.open = function () {

 var modalInstance = $modal.open({
 templateUrl: 'myModalContent.html',
 controller: 'ModalCtrl'
 });
 };
}])

The modal controller uses the $modalInstance attribute as a parameter and the $scope
attribute with modal content.

.controller('ModalCtrl', function ($scope, $modalInstance) {

 // Added some content to Modal using $scope
 $scope.content = "ModalCtrl, Yeah!"

 // Add cancel button
 $scope.cancel = function () {
 $modalInstance.dismiss('cancel');
 };
})

In this example, we only use the Bootstrap built-in directive to enable a modal component.
However, we don't have direct contact with the directive's code.

http://angular-ui.github.io/bootstrap/

Chapter 3

45

In the second example, we extended this control and created our own directive called modal
using a custom template:

// Modal Directive
.directive('modal', function () {
 return {
 // Add a custom template for modal
 templateUrl: 'app/home/modal-tpl.html',
 restrict: 'E',
 transclude: true,
 replace:true,
 scope:true,
 link: function postLink(scope, element, attrs) {
 scope.title = attrs.title;

 scope.$watch(attrs.visible, function(value){
 if(value == true)
 $(element).modal('show');
 else
 $(element).modal('hide');
 });

 $(element).on('shown.bs.modal', function(){
 scope.$apply(function(){
 scope.$parent[attrs.visible] = true;
 });
 });

 $(element).on('hidden.bs.modal', function(){
 scope.$apply(function(){
 scope.$parent[attrs.visible] = false;
 });
 });
 }
 };
})

To use it, we only need to declare it in our markup, within the given controller, as shown in the
following example:

<!-- Custom Modal -->
<div ng-controller="ModalCustomCtrl">
 <div style="width:600px; margin:0 auto; text-align:center">
 <button ng-click="toggleModal()" class="btn btn-default">Open
 modal custom Directive</button>

Customizing and Using Bootstrap UI Directives

46

 </div>
 <!-- Modal from Custom Directive-->
 <modal title="Modal Custom Directive" visible="showModal">
 Content Modal from: Custom Directive
 </modal>
</div>

With just a few lines of code, we have a very flexible custom modal directive.

There's more…
The ui-bootstrap-tpls.js file has all the Bootstrap templates inline on the JavaScript file
using the $templateCache function:

angular.module("template/modal/window.html",
[]).run(["$templateCache", function($templateCache) {
 $templateCache.put("template/modal/window.html", "<div
 tabindex=\"-1\" role=\"dialog\" class=\"modal fade\" ng-
 class=\"{in: animate}\" ng-style=\"{'z-index': 1050 + index*10,
 display: 'block'}\" ng-click=\"close($event)\">\n" + " <div
 class=\"modal-dialog\" ng-class=\"{'modal-sm': size == 'sm',
 'modal-lg': size == 'lg'}\"><div class=\"modal-content\" modal-
 transclude></div></div>\n" + "</div>");
}]);

It is also possible to use dynamic content to fill the modal's body content; we
will see an example of this in the next topic.

Creating tab directives
In this recipe, we will see how to use another important interface component, Tabs, using the
$http function to load some content.

Getting ready
To accomplish this task, we will create a controller and use the get method of the $http
function to retrieve the contents of a JSON file, but first, let's create the JSON content.

We are still using the same code base of the previous example.

Chapter 3

47

How to do it…
1.	 Create a new JSON file and name it tab-content.json, and add the

following code:
[
 {
 "title": "Dynamic Title 1",
 "content": "Dynamic content 1"
 },
 {
 "title": "Dynamic Title 2",
 "content": "Dynamic content 2"
 }
]

2.	 A simple array with two properties, save the file in the home directory. Append the
following code in the homeCtrl.js file right after the modal directive:
.controller('BootstrapTabCtrl', function ($scope, $http) {

 // Added some content to Tab / can be from a JSON with
 $http or $resource
 $http.get('app/home/tab-content.json').
 success(function(data) {
 // Get dynamic data from JSON file
 $scope.tabs = data;
 }).
 error(function(status) {
 // if error, show status
 console.log(status);
 });
})

3.	 Now, let's add the HTML code to the home.html file, right after the modal code:
<!-- Bootstrap Tab -->
<div style="width:600px; margin:20px auto;">
 <div ng-controller="BootstrapTabCtrl">
 <tabset>
 <tab ng-repeat="tab in tabs" heading="{{tab.title}}"
 active="tab.active" disabled="tab.disabled">
 {{tab.content}}
 </tab>
 </tabset>
 </div>
</div>

Customizing and Using Bootstrap UI Directives

48

4.	 Following the same format as the previous example, we will now create a custom
directive to extend the UI Bootstrap functionality:
.directive('customTabs', function() {
 return {
 restrict: 'E',
 transclude: true,
 scope: {},
 controller: ["$scope", function($scope) {
 var panes = $scope.panes = [];

 $scope.select = function(pane) {
 angular.forEach(panes, function(pane) {
 pane.selected = false;
 });
 pane.selected = true;
 }

 this.addPane = function(pane) {
 if (panes.length == 0) $scope.select(pane);
 panes.push(pane);
 }

 }],
 // Using inline template
 template:
 '<div class="tabbable">' +
 '<ul class="nav nav-tabs">' +
 '<li ng-repeat="pane in panes" ng-
 class="{active:pane.selected}">'+
 '<a href="" ng-
 click="select(pane)">{{pane.title}}' +
 '' +
 '' +
 '<div class="tab-content" ng-transclude></div>' +
 '</div>',
 replace: true
 };
})
.directive('pane', function() {
 return {
 require: '^customTabs',
 restrict: 'E',
 transclude: true,
 scope: { title: '@' },

Chapter 3

49

 link: function(scope, element, attrs, tabsCtrl) {
 tabsCtrl.addPane(scope);
 },
 // Using inline template
 template:
 '<div class="tab-pane" ng-class="{active: selected}"
 ng-transclude>' +
 '</div>',
 replace: true
 };
})

5.	 Now, we will add the HTML markup to the home.html file:
<!-- Custom Boostrap Tab -->
<div style="width:600px; margin:20px auto;">
 <custom-tabs>
 <pane title="Custom Tab One">
 <div>Tab One Content.</div>
 </pane>
 <pane title="Custom Tab Two">
 <div>Tab Two Content.</div>
 </pane>
 <pane title="Custom Tab Three">
 <div>Tab Three Content.</div>
 </pane>
 </custom-tabs>
</div>

Note that the style tag on the HTML examples is not a good practice, but we
use it just to center the example code on the screen. Please don't do that in
production, keep your CSS files in separated files.

How it works…
In large-scale applications, it is very common to use dynamic content to populate the interface
components. Our first example demonstrates how easy it is to use this type of content, by
implementing a simple Bootstrap tab directive as the following code:

<div ng-controller="BootstrapTabCtrl">
 <tabset>
 <tab ng-repeat="tab in tabs" heading="{{tab.title}}"
 active="tab.active" disabled="tab.disabled">

Customizing and Using Bootstrap UI Directives

50

 {{tab.content}}
 </tab>
 </tabset>
</div>

The $http.get ()method makes a call to an external file, in this case the tab-content.
json file, to load the tab contents of the directive.

$http.get('app/home/tab-content.json').
 success(function(data) {
 // Get dynamic data from JSON file
 $scope.tabs = data;

 }).
 error(function(status) {
 // if error, show status
 console.log(status);
 });

In the second example, we created a directive and used an inline template with the
inline controller.

.directive('customTabs', function() {
 return {
 restrict: 'E',
 transclude: true,
 scope: {},
 controller: ["$scope", function($scope) {
 var panes = $scope.panes = [];

 $scope.select = function(pane) {
 angular.forEach(panes, function(pane) {
 pane.selected = false;
 });
 pane.selected = true;
 }

 this.addPane = function(pane) {
 if (panes.length == 0) $scope.select(pane);
 panes.push(pane);
 }

 }],
 // Using inline template
 template:

Chapter 3

51

 '<div class="tabbable">' +
 '<ul class="nav nav-tabs">' +
 '<li ng-repeat="pane in panes" ng-
 class="{active:pane.selected}">'+
 '{{pane.title}}' +
 '' +
 '' +
 '<div class="tab-content" ng-transclude></div>' +
 '</div>',
 replace: true
 };
})

Note that this directive comprises two parts: the first simulates the links behavior as tabs, and
the second activates the selected panel:

.directive('pane', function() {
 return {
 require: '^customTabs',
 restrict: 'E',
 transclude: true,
 scope: { title: '@' },
 link: function(scope, element, attrs, tabsCtrl) {
 tabsCtrl.addPane(scope);
 },
 // Using inline template
 template:
 '<div class="tab-pane" ng-class="{active: selected}" ng-
 transclude>' +
 '</div>',
 replace: true
 };
})

It is very common for a directive to be composed of one or more parts. A directive, in this
case, depends on the operation of the other. They remain connected using the link property:

link: function(scope, element, attrs, tabsCtrl) {
 tabsCtrl.addPane(scope);
},

Customizing and Using Bootstrap UI Directives

52

There's more…
We can combine both examples to load external content easily using a controller and an
external template in the second example, as performed in the previous examples:

.directive('customTabs', function() {
 return {
 restrict: 'E',
 transclude: true,
 // Declaring scope: {} we using the isolate scope and we can
 use the directive many times in the same page
 scope: {},
 controller: customCtrl.js,
 // Using external template
 template:app/common/tabs-custom-tpl.html,
 replace: true
 };
})

See also
ff You can find more about dynamic content in the last example of this chapter. You can

also check the AngularJS UI Bootstrap documentation at https://github.com/
angular-ui/bootstrap/wiki

The isolate $scope
The isolate scope is a key part in building custom directives; the understanding of this topic is
crucial in understanding how the scope behaves between the controller and the directive.

Remember that scope inherits from the parent scope by default. This means the controller in
our case, so to avoid this default behavior we need to use the isolate scope technique.

It's pretty important to avoid accidentally read or write properties in the parent scope; let's see
an example.

Getting ready
We will use our latest code from the customTabs directive as a starting point to illustrate the
isolate scope.

https://github.com/angular-ui/bootstrap/wiki
https://github.com/angular-ui/bootstrap/wiki

Chapter 3

53

How to do it…
1.	 Let's take a look at the following highlighted code from the customTabs directive;

focus on the scope property:
.directive('pane', function() {
 return {
 require: '^customTabs',
 restrict: 'E',
 transclude: true,
 scope: { title: '@' },
 link: function(scope, element, attrs, tabsCtrl) {
 tabsCtrl.addPane(scope);
 },
 // Using inline template
 template:
 '<div class="tab-pane" ng-class="{active: selected}"
 ng-transclude>' +
 '</div>',
 replace: true
 };
})

How it works…
The preceding block of code has a highlighted line with the following code:

scope: { title: '@'}

The isolate scope does not prototypically inherit from the parent scope (our customTabs
directive has its own scope), but we declared the property as an empty object:

// Declaring scope: {} we use the isolate scope and we can use the
directive many times in the same page
scope: {},

We can interact with the isolate scope in three different ways:

ff Attribute

ff Bindings

ff Expressions

Let's take a look at each of these ways.

Customizing and Using Bootstrap UI Directives

54

Attribute
Use the @ | @attr signal and set one-way data binding from the parent scope to the
isolate scope.

Bindings
Use the = | =attr signal, which works almost exactly like the previous example.

Expressions
Use the & | &attr signal, which serves as a wrapper to whatever we defined in Directive
Definition Object.

There's more…
You can use any combination of the scope on your own directives, like the following example
from Bootstrap's built-in tab directive.

The scope object, in this case, has four properties to handle Select and Deselect, tabs to
show and hide the content, a property active to handle CSS active state, and a heading
property where we can define our own heading for the tabs.

.directive('tab', ['$parse', function($parse) {
 return {
 require: '^tabset',
 restrict: 'EA',
 replace: true,
 templateUrl: 'template/tabs/tab.html',
 transclude: true,
 scope: {
 active: '=?',
 heading: '@',
 onSelect: '&select', //This callback is called in
 contentHeadingTransclude
 //once it inserts the tab's content into the dom
 onDeselect: '&deselect'
 },
 controller: function() {
 //Empty controller so other directives can require being
 'under' a tab
 },
 compile: function(elm, attrs, transclude) {

Chapter 3

55

 return function postLink(scope, elm, attrs, tabsetCtrl) {
 scope.$watch('active', function(active) {
 if (active) {
 tabsetCtrl.select(scope);
 }
 });

 scope.disabled = false;
 if (attrs.disabled) {
 scope.$parent.$watch($parse(attrs.disabled),
 function(value) {
 scope.disabled = !! value;
 });
 }

 scope.select = function() {
 if (!scope.disabled) {
 scope.active = true;
 }
 };

 tabsetCtrl.addTab(scope);
 scope.$on('$destroy', function() {
 tabsetCtrl.removeTab(scope);
 });

 //We need to transclude later, once the content container
 is ready.
 //when this link happens, we're inside a tab heading.
 scope.$transcludeFn = transclude;
 };
 }
 };
}])

See also
ff You can find more about isolate scopes on the $compile API at https://docs.

angularjs.org/api/ng/service/$compile

https://docs.angularjs.org/api/ng/service/$compile
https://docs.angularjs.org/api/ng/service/$compile

Customizing and Using Bootstrap UI Directives

56

Building accordion tab directives
Another way to deal with Bootstrap UI directives is to override the default HTML template. This
can be done in two ways: inside the HTML file or externally.

As you may have observed, Angular Bootstrap has two files: one called ui-bootstrap-
tpls.js and the other just ui-bootstrap.js.

The difference is simple, the tpls suffix at the end of the filename indicates that the file has
all the Bootstrap templates inside, and the others don't.

If you try to use the ui-bootstrap.js file you will receive an error because the compiled
code doesn't find the templates, and you must provide templates for all the widgets.

Perhaps this is not a good idea when you want to override one or two components, so
consider using a custom build. The following technique will be very helpful.

You can create your own custom build for UI bootstrap and pick only
the components you need at http://angular-ui.github.io/
bootstrap/#/getting_started.

Getting ready
We will still use the same code base for this recipe, but this time, we will use a different CSS
file to style the accordion tabs and override the default template using another template in
the same file.

How to do it…
1.	 Let's add the following CSS file; we saved the file in app/assets/ in the root

application folder:
.accordion-panel {
 bottom: 20px;
 background-color: #3193A9;
 border: 1px solid #ccc;
 color: #fff;
 margin: 10px auto;
}
.accordion-body {
 padding: 15px;
 border-top:1px solid #ccc;
 background-color: #fff;

http://angular-ui.github.io/bootstrap/#/getting_started
http://angular-ui.github.io/bootstrap/#/getting_started

Chapter 3

57

 color: #000;
}
.accordion-heading {
 padding: 10px 15px;
 border-bottom: 1px solid transparent;
}
.accordion-heading > .dropdown .dropdown-toggle {
 color: inherit;
}
.accordion-title {
 margin-top: 0;
 margin-bottom: 0;
 font-size: 16px;
 color: inherit;
}
.accordion-title > a {
 color: inherit;
 text-decoration: none;
 cursor: pointer;
 font-weight: 100;
}

2.	 Note that we are using different class names from the original Bootstrap template.
Now, append the following controller to the homeCtrl file, as shown in the
previous examples:
.controller('AccordionCtrl', function ($scope) {

 // Add some content to accordion
 $scope.groups = [
 {
 title: 'Header Content One',
 content: 'Body Content One'
 },
 {
 title: 'Header Content Two',
 content: 'Body Content Two'
 },
 {
 title: 'Header Content Three',
 content: 'Body Content Three'
 }
];

});

Customizing and Using Bootstrap UI Directives

58

3.	 The controller is pretty simple and only has an array with some sample content. Add
the following code to the home.html file, right after the custom tabs:
<!-- Bootstrap Accordion -->
 <div style="width:600px; margin:20px auto;">
 <div ng-controller="AccordionCtrl">
 <accordion close-others="oneAtATime">
 <accordion-group heading="{{group.title}}" ng-
 repeat="group in groups">
 {{group.content}}
 </accordion-group>
 </accordion>
 </div>
 </div>
 <!-- Overhide the default bootstrap template -->
 <script type="text/ng-template"
 id="template/accordion/accordion-group.html">
 <div class="accordion-group">
 <div class="accordion-panel">
 <div class="accordion-heading">
 <h4 class="accordion-title">
 <a class="accordion-toggle" ng-click="isOpen =
 !isOpen" accordion-transclude="heading">
 {{heading}}

 </h4>
 </div>
 <div class="accordion-body" collapse="!isOpen">
 <div class="accordion-inner" ng-transclude></div>
 </div>
 </div>
 </div>
</script>

The result will be similar to the following screenshot:

Chapter 3

59

How it works…
The code inside the AccordionCtrl controller is pretty simple. We have just added some
text to create the headers and content, but we have kept the default HTML markup:

<div ng-controller="AccordionCtrl">
 <accordion close-others="oneAtATime">
 <accordion-group heading="{{group.title}}" ng-repeat="group in
 groups">
 {{group.content}}
 </accordion-group>
 </accordion>
</div>

The magic happens right in the script template, below the accordion tags:

<script type="text/ng-template" id="template/accordion/accordion-
group.html">
 <div class="accordion-group">
 <div class="accordion-panel">
 <div class="accordion-heading">
 <h4 class="accordion-title">
 <a class="accordion-toggle" ng-click="isOpen = !isOpen"
 accordion-transclude="heading">
 {{heading}}

 </h4>
 </div>
 <div class="accordion-body" collapse="!isOpen">
 <div class="accordion-inner" ng-transclude></div>
 </div>
 </div>
 </div>
</script>

The template ID keeps the default Bootstrap path to the inline templates, but the content has
been entirely rewritten using the CSS classes created at the beginning of the recipe.

Customizing and Using Bootstrap UI Directives

60

There's more…
We can create any type of template and still use the default directive markup.

Without our template, the default directive will look like this:

It is always helpful to inspect the code of Bootstrap directives to understand
how things work, as the entire file has comments and examples of using
directives in the markup of HTML.

Loading dynamic content
As we have previously commented, loading dynamic content in web applications is very
common. In this recipe, we will see how to connect to the public GitHub API to show
repositories from a particular user.

Getting ready
We will continue to keep the same base code of the previous examples, including the latter
with our custom accordion.

How to do it…
1.	 Add the following code to the home.html file, right after the last accordion:

<!-- Bootstrap Accordion loading Dynamic Content -->
<div style="width:600px; margin:20px auto;">
 <div ng-controller="AccordionCtrlDynamic">
 <accordion close-others="oneAtATime">
 <accordion-group heading="{{repo.name}} - Stars:
 {{repo.stargazers_count}}" ng-repeat="repo in repos">
 {{repo.description}}

Chapter 3

61

 </accordion-group>
 </accordion>
 </div>
</div>

2.	 Now, append the new controller to the end of the homeCtrl.js file:
.controller('AccordionCtrlDynamic', function ($scope,
$http) {

 // Add some content to accordion
 $http.get('https://api.github.com/users/twbs/repos').
 success(function(data) {
 // Get dynamic data from JSON file
 $scope.repos = data;
 }).
 error(function(status) {
 // if error, show status
 console.log(status);
 });

});

How it works…
Note that we are using the $http.get() method again, because GitHub offers a public API
for the developer and we can access it without any special key or token:

$http.get('https://api.github.com/users/twbs/repos')

The user, in this case, is the Twitter Bootstrap Repository.

As we have kept the same custom directive, our layout remains the same as the previous
example, but here, we have also retrieved the repository name, the amount of stars, and
inside, a description about the repo.

<accordion-group heading="{{repo.name}} - Stars:
{{repo.stargazers_count}}" ng-repeat="repo in repos">
 {{repo.description}}
</accordion-group>

Customizing and Using Bootstrap UI Directives

62

The result is similar to the following screenshot:

There's more…
We can combine different interface components using the directives of this chapter and easily
build a small application showing some GitHub data.

For instance, we can extend the previous example and use an input model to bind the
username and make a dynamic search for users:

<input type="text" ng-model="userName"/>

$http.get('https://api.github.com/users/userName/repos')

63

4
Creating Interactive
jQuery UI Directives

In this chapter, we will cover:

ff A simple directive example

ff Manipulating the DOM with jQuery

ff The compile and link functions

ff Creating the jQuery UI draggable directive

ff Creating the jQuery UI droppable directive

Introduction
Some time ago, jQuery revolutionized web development. It provided a simple way to
manipulate the DOM, created intuitive abstractions for common operations, and created
a single API that could be used across many different web browsers.

However, nowadays some frameworks have a very specific way of manipulating HTML content,
such as AngularJS.

But as we mentioned before, using jQuery in AngularJS applications cannot be that simple.
In this chapter, you will see how to create some directives and use the jQuery interface
components, specifically the jQuery UI.

Creating Interactive jQuery UI Directives

64

A simple directive example
AngularJS has its own version of jQuery, known as jQuery Lite. This version has just over 30
methods, some of them a little limited, as is the case with find(), parent(), and on(),
among others. AngularJS added some extra methods to the jQuery Lite version such as
$destroy(), injector(), and inheritedData(), which is the same as $data().
Along with many others.

Another important thing to note is that the $ dollar sign has no effect here. The AngularJS
equivalent is angular.element, so something like this:

angular.element() === jQuery() === $()

In most cases, it is sufficient to use the built-in version of jQuery on AngularJS; however, if you
require any method that is not listed in the official documentation, you can include the full
version of jQuery in your HTML file, always put before the AngularJS script.

Getting ready
In this chapter, we will also use the generator-angm, as we did in the previous chapter.

This time we will call our application jquerydirectives. We will follow the same pattern as
the previous chapter and add directives and example code that we will use in the next recipes.

How to do it…
1.	 Create a new directory and name it jquery-ui-directives.

2.	 Open your terminal window, go to the project folder and type:
yo angm

3.	 Add the following code to homeCtrl.js and append it to HomeCtrl:
.controller('DateCtrl', function($scope) {
 $scope.date = new Date();
});

4.	 Now let's add the directive code and append it to DateCtrl:
.directive('datepicker', function() {
 return {
 restrict: 'A',
 require : 'ngModel',
 link : function (scope, elem, attrs, ngModelCtrl) {
 elem.datepicker({
 dateFormat:'dd/mm/yy',
 onSelect: function (date) {

Chapter 4

65

 ngModelCtrl.$setViewValue(date);
 scope.$apply();
 }
 });
 }
 }
});

5.	 Finally, we add the following HTML code to the home.html file, then the jQuery UI
script tag at the end of all scripts, and then the CSS link before all CSS:
<link rel="stylesheet"
href="https://code.jquery.com/ui/1.11.4/themes/cupertino/jquery-
ui.css">
<script src="https://code.jquery.com/ui/1.11.4/jquery-
ui.min.js"></script>
<div ng-controller="DateCtrl">
 <h1> Date: {{date | date:"dd/MM/yyyy"}}</h1>
 <input type="text" ng-model="date" datepicker />
</div>

Note that it is very important to add the script and CSS tag before the <!--
injector:xx --> comments tag.

Here is the result using the cupertino theme from jQuery UI:

Creating Interactive jQuery UI Directives

66

How it works…
In the following code snippet, you'll see that we restricted the directive to an attribute
(restrict: 'A'), used the Link() function to manipulate the DOM, and
initiates the datepicker from jQuery UI using the elem parameter. This is similar to
$('#someHTMLelement').datepicker():

link : function (scope, elem, attrs, ngModelCtrl) {
 elem.datepicker({
 dateFormat:'dd/mm/yy',
 onSelect: function (date) {
 ngModelCtrl.$setViewValue(date);
 scope.$apply();
 }
 });
}

We used the scope.$apply() method to update the DOM with the new value.

There's more…
We made use of ngModelCtrl as the fourth parameter for the link(scope, elem,
attrs, ngModelCtrl) function to update the model $scope.date on DateCtrl.

See also
ff You can find more about ngModelCtrl in the official AngularJS documentation

at https://docs.angularjs.org/api/ng/type/ngModel.
NgModelController

Manipulating the DOM with jQuery
Another simple example of manipulating the DOM using jQuery is to build a simple resizable
component, called resizebox here, analogous to the resizable() method from the
jQuery UI. Note that this example only has a demonstrative effect.

https://docs.angularjs.org/api/ng/type/ngModel.NgModelController
https://docs.angularjs.org/api/ng/type/ngModel.NgModelController

Chapter 4

67

Getting ready
We will use the same code as in the previous example, since we already have our AngularJS
application configured and running. Don't forget to keep the CSS and JS links to jQuery UI in
the index.html file:

<link rel="stylesheet"
href="https://code.jquery.com/ui/1.11.4/themes/cupertino/jquery-
ui.css">
<script src="https://code.jquery.com/ui/1.11.4/jquery-
ui.min.js"></script>

How to do it…
1.	 Let's add the directive code right after the datepicker directive in the homeCtrl.js

file. Remember, we're still using the same code example for this chapter:
.directive('resizebox', function () {

 return {
 restrict: 'A',
 scope: {},
 link: function postLink(scope, elem, attrs) {
 elem.resizable();
 }
 };
});

2.	 As we are dealing with a simple DOM manipulation, we don't need a controller for
this example, we just need the HTML code to use the directive. So let's add the HTML
code to the home.html file:
<div resizebox class="box">Content: jQuery Resize</div>

3.	 Before we see the final result, we need to add some CSS styling with a border and
background color. Let's do it:
<style>
.box {
 /*Set min-width to avoid text shrink*/
 min-width: 300px;
 height: 200px;
 border: 1px solid #444;
 color: #000;

Creating Interactive jQuery UI Directives

68

 text-align: center;
 background-color: #ccc;
}
</style>

You can add the CSS in home.html inside the style tags on the first line of the file, just for
this example.

How it works…
The operation is very simple; since we don't need to manipulate any information within our
div resizable, our directive consists of the minimum necessary to boot it.

We made use of the postLink()function to notify the DOM that the element was loaded,
similar to $(document).ready(); from jQuery.

The elem.resizable(); here is similar to $('element').resizable();.

There's more…
The postLink function can be used with the compile function, such as in the
following example:

compile: function compile(tElement, tAttrs, transclude) {
 return {
 pre: function preLink(scope, iElement, iAttrs, controller) {
 ... },
 post: function postLink(scope, iElement, iAttrs, controller) {
 ... }
 }
 // or
 // return function postLink(...) { ... }
},

The compile and link functions
Another point that generates a lot of confusion is the compile and link functions. In
previous chapters, you saw how the link function was utilized; however, we will take a
different, didactic approach in this recipe.

Chapter 4

69

Getting ready
We will continue to use our sample application, and we will add a directive to create a
progress bar component.

How to do it…
1.	 Let's add the following code to the end of the homeCtrl.js file and append it to the

resizebox directive:
.directive('progressbar', function () {

 return {
 restrict: 'A',
 scope: {
 progress: '=progressbar'
 },
 // link: function postLink(scope, elem, attrs) {
 // elem.progressbar({
 //value: scope.progress
 //});
 // },
 compile: function () {
 return function (scope, elem) {
 elem.progressbar({
 value: scope.progress
 });
 };
 }
 };
})

2.	 Right after the directive code, let's add the controller code:
.controller('progressbarCtrl', function ($scope) {
 // Set a value to the progressbar
 $scope.value = 30
});

Creating Interactive jQuery UI Directives

70

The expected result is similar to the following picture: a progress bar partially filled:

Note that we are still using the same jQuery UI theme.

How it works...
Although the preceding example is basic, it is very useful to help you understand the
compile() function. First, let's check what the official documentation says:

Compiler is an Angular service which traverses the DOM looking for attributes. The
compilation process happens in two phases.

Compile: traverse the DOM and collect all of the directives. The result is a linking
function.

Link: combine the directives with a scope and produce a live view. Any changes in
the scope model are reflected in the view, and any user interactions with the view
are reflected in the scope model. This makes the scope model the single source
of truth.

We used the compile function instead of the link() function to accomplish the same goal of
showing the progress bar, as we can see here:

compile: function () {
 return function (scope, elem) {
 elem.progressbar({
 value: scope.progress
 });
 };
}

We can perform the same task using the link() function, but for performance reasons we
used the compile() function. The main difference is:

ff The link() function attaches event listeners to the HTML template, and starts after
the compile() function

ff The compile() function manipulates the DOM of the HTML template and the
directive also has a chance of modifying the DOM node before the use of scope

Chapter 4

71

There's more…
When we create our directives, we can use any combination of functions, such as: link(),
compile(), template(), controller(), and many others, including more than one at a
time. As we commented in previous chapters, customized directives are very flexible.

See also
ff You can find out more about compiler at https://code.angularjs.

org/1.2.26/docs/guide/compiler#compiler

Creating the jQuery UI draggable directive
In the jQuery world, simple interface components such as draggable are easily built, as
jQuery UI provides us with all the necessary plugins to accomplish this task. In an AngularJS
application, easy things must follow some steps, in this case custom directives.

Getting ready
We are still using the same code base as in the previous example.

How to do it…
1.	 Let's append the draggable directive code to the homeCtrl.js file, right after the

progressbar controller:
.directive('draggable', function () {
 return {
 restrict: 'A',
 scope: {},
 link: function (scope, elem, attrs) {
 elem.draggable({
 revert: "invalid",
 });
 }
 };
});

2.	 Now, add the directive HTML code to home.html file, right after the progressbar div:
<div class="drag ui-widget-content" draggable>
 <p>Draggable Content</p>
</div>

https://code.angularjs.org/1.2.26/docs/guide/compiler#compiler
https://code.angularjs.org/1.2.26/docs/guide/compiler#compiler

Creating Interactive jQuery UI Directives

72

How it works…
As you saw in the previous examples, we are manipulating the DOM of our AngularJS
application using the jQuery UI interface components.

You do not have to reinvent the wheel unless you really need to.

This is an effective way to build rich, interactive interfaces using what we already have on
hand, in this case, all the jQuery UI components.

We created the directive as an attribute, and it can be applied to any user interface element:

restrict: 'A',

We used the isolated scope with: scope:{} and the link function to instantiate the element
with the .draggable() jQuery function.

As we are using the jQuery UI scripts, we have all the draggable methods available to us
inside the elem.draggable() function.

On the HTML side, we applied the jQuery UI style using the ui-widget-content class.

There's more…
Also, we can use any jQuery method inside the directive such as destroy, disable,
enable, instance, option, and widget.

See also
ff You can find out more about the methods and events from draggable components at

https://api.jqueryui.com/draggable/

https://api.jqueryui.com/draggable/

Chapter 4

73

Creating the jQuery UI droppable directive
As we saw in the previous example, a draggable component may be more useful using
another component known as a droppable. We'll look at a way to practice combining them.

The final result will be similar to the following images:

Now the draggable and droppable combined:

Creating Interactive jQuery UI Directives

74

Getting ready
We are using the same code base as in the previous example.

How to do it…
1.	 Add the following code to the homeCtrl.js file, right after the draggable directive:

.directive('droppable', function () {
 return {
 restrict: 'A',
 scope: {},
 link: function (scope, elem, attrs) {
 elem.droppable({
 activeClass: "ui-state-default",
 hoverClass: "ui-state-hover",
 drop:function(event,ui) {
 $(this).addClass("ui-state-highlight")
 .find("p")
 .html("Dropped!");
 }
 });
 }
 };
});

2.	 Add the following HTML content to the home.html file, right after the draggable
content:
<div class="drop ui-widget-content" droppable>
 <p>Droppable Container</p>
</div>

How it works…
So, we're still using the attribute directive restrict: 'A', and we can apply it to any
HTML element.

The link() function instantiates the droppable component, as in the previous example
for the draggable component.

In this example, we have a function called drop(). The behavior here is very simple: we just
applied a CSS class to the droppable element when it received a droppable element.

Chapter 4

75

There's more…
Also, we can use any jQuery method inside the directive, such as destroy, disable,
enable, instance, option, and widget.

See also
ff You can find out more about the methods and events of draggable components at

https://api.jqueryui.com/droppable/

https://api.jqueryui.com/droppable/

77

5
Implementing Custom

Directives with Yeoman
Generators

In this chapter, we will cover:

ff Creating the baseline app with generator-angm

ff Generator best practices

ff How to implement the ngMap directive

ff Using the Angular-Loading-Bar directive

ff Implementing the ng-Grid directive

Introduction
Every web application has a similar folder structure and common components. Before
beginning the development itself, we need to think of the whole structure and create a
lot of boilerplate code each time for all the applications.

As I have mentioned in previous chapters, code generators can facilitate our task. In this
chapter, we will see how to make the most of a generator and integrate some directives
in a ready-made structure.

Implementing Custom Directives with Yeoman Generators

78

Creating the baseline app with
generator-angm

We have many options for Yeoman generators; each has its own peculiarities and serves very
well for one or more tasks and types of applications.

In the following example, we will continue using the ANGM generator (the same from the
previous chapters), which while writing this book has received some updates that will
further facilitate the development of modular AngularJS applications.

Getting ready
The first step for the next recipes is to update the generator that we were already using.
To do so, open your terminal window and type the following command:

npm install -g generator-angm

You can get more information and learn more about generator-angm on the
official site: http://newaeonweb.com.br/generator-angm/.

Now, let's start to create the baseline itself.

How to do it…
1.	 On the terminal window, use the following command:

yo angm

2.	 The generator will ask for the application name, so type the following command:
yeomananddirectives

3.	 This is the fun part. The generator will create all necessary directories and files for an
application with AngularJS. Let's check the result on the terminal window and type:
grunt dev

After this command, your default browser will open and you'd be able to see the
generator's welcome screen.

http://newaeonweb.com.br/generator-angm/

Chapter 5

79

How it works…
The two previous commands do all the heavy lifting of creating the necessary baseline for any
web application with AngularJS.

At the final stage of the generator code, we see the following files added to the project:

Generator installed dependencies

This is because the generator already includes all the dependencies necessary for a web
project. We can see that it uses the latest versions of AngularJS and some dependent libraries
as bootstrap.

As you can see in step 3, the generator already included the Grunt.JS task manager.

There's more…
The generator we've used also benefits us in many other ways. It has subgenerators that save
work when it comes to the creation of filters, controllers, routes, and directives.

See also
To facilitate the development, we can use the grunt build command, which prepares our
application to be put into production.

In addition, we can test our application using Karma, a JavaScript test runner. Open the
terminal and type the following command:

npm test

Implementing Custom Directives with Yeoman Generators

80

As part of the generator, all test structures are automatically created. By starting it, we can
write all the necessary tests for our application.

Generator best practices
When we use a tool for the solution of a specific problem, it is very common to worry about the
best practices of the market for utilization of such a tool.

It happens frequently, and AngularJS is no different. Due to the large amount of tools,
generators, and boilerplates, there is a common lookout on what best fits our application.
Depending on the choice, this can become a nightmare in the long run, and your code will
become a mess.

Since the goal of this book is not to discuss the best practices for development with AngularJS,
we will stick to best practices for Directives AngularJS and this particular generator.

Getting ready
We will use the code generated in the previous recipe to identify some relevant points for the
implementation of directives.

How to do it…
1.	 In your favorite editor, open the application we just created in the previous example.

2.	 It is possible to visualize the entire structure of directories and files created by the
generator, as we can see in the following screenshot:

Application directory structure

Chapter 5

81

How it works…
As we mentioned earlier, we are using a generator that organizes our code by feature, that is,
the application will be distributed by modules.

The modules folder stores all the modules of the application; we will see a clearer example of
this in the next recipe.

The other folders are self explanatory, but the main advantage in the utilization of the
generator is that we do not create any folders and files at this first stage.

In addition, we can see that there is a shared folder within the modules folder. This folder
can store all custom directives that we will create in an AngularJS application. Finally, we also
have the home folder, which is a built-in module created by the generator.

The bower_components folder stores all the libraries used by AngularJS and can even store
future installations that are necessary for the project.

Some directives can be installed through Bower, and the generator-angm will add them to the
index.html page by just running the grunt dev command.

There's more…
Let's add a new module to the application to see how the generator works with subgenerators.

On the terminal window, just type the following command:

yo angm:angm-module

Just like the previous recipe, we need to insert a name for the new module: mapping. After
the generator has finished the job, we will have the following files created:

Now, we just need to run the grunt dev command and the module can be accessed through
the URL http://127.0.0.1:8000/#!/mapping.

Implementing Custom Directives with Yeoman Generators

82

How to implement the ngMap directive
In the following recipe, we'll see how to install a directive into an AngularJS application using
the Bower dependency manager. Throughout our book, there are several alternatives to create
and customize directives; we can use third-party directives.

In the next example, we'll use the ng-map directive. As the name says, it is a directive for
creating and manipulating maps.

You can find more information on ng-map at http://ngmap.github.io/.

Getting ready
We will use the same code that we used in the previous example as a starting point. In
addition, it is recommended that you already have Bower installed on your system. If you
don't have or know Bower, don't worry, we will demonstrate how to install it manually.

How to do it…
1.	 At the root project folder, open your terminal window and type:

bower install ngmap --save

2.	 To get the directive to work properly, you need to add the Google Maps script.
In this example, we will use the code directly from the Google CDN through this
link: //maps.google.com/maps/api/js.

3.	 Open the index.html file and add the following script tag right after the
mappingService.js script:
<script src="//maps.google.com/maps/api/js"></script>

4.	 Add the ng-map script right after the Google Maps script:
<script src="src/bower_components/ngmap/build/scripts/ng-map.min.
js"></script>

Don't place any code inside the <!-- injector:js --><!--
endinjector--> tag; when generators run any task, this block
of code is always replaced.

http://ngmap.github.io/
//maps.google.com/maps/api/js

Chapter 5

83

5.	 Open the app.js file and add the following highlighted code to the AngularJS
dependencies:
angular.module('yeomananddirectives', [
 'ngResource',
 'ui.bootstrap',
 'ngCookies',
 'ngAnimate',
 'ngTouch',
 'ngSanitize',
 'ui.router',
 'mapping',
 'ngMap',
])

6.	 At this point, we have our directive maps installed in our application. Now, let's
see the necessary steps to use the directive. Open mapping.html and add the
following code:
<map center="-23.630153, -46.563964" zoom="13">
 <div ng-repeat="pos in positions">
 <marker position="{{pos.lat}},{{pos.lng}}"
 animation="DROP"></marker>
 </div>
</map>

7.	 Open mappingCtrl.js and add the following code:
var positions = [
 { lat: -23.630153, lng: -46.563964 },
 { lat: -23.625828, lng: -46.571946 },
 { lat: -23.634006, lng: -46.576066 },
 { lat: -23.624883 ,lng: -46.564209 }
];
$scope.positions = positions;

8.	 Let's check the final result. Open your terminal window and type the following
command:
grunt dev

Your default browser will open at the application welcome screen. Check the mapping URL
http://127.0.0.1:8000/#!/mapping.

Implementing Custom Directives with Yeoman Generators

84

How it works…
Let's understand what we've done with the previous commands. One of the functionalities of the
generator we are using is to keep all the application code organized. With the bower install
command, the new directive was added as a component in the bower_components folder
within the directory src.

This is a common practice when dealing with bower. You may notice that we have a file called
.bower at the root of our project. This is where we determine the place to install all frontend
components managed by bower. The --save option at the end of the command saves the
module name and the version in the bower.json file.

The next steps are pretty simple. We add the scripts from ngmap to the index.html file,
and add ngMap as a dependency on angular.module('yeomananddirectives',
['ngMap']);.

We then use a very basic combination of features from the ng-map directive,
<map center="-23.630153, -46.563964" zoom="13">, just to center
the map on the screen and set the zoom.

Inside the ng-map directive, we use the ng-repeat to generate some markers with
ng-repeat="pos in positions". Finally, in our controller, we set some coordinate
points, showing the flexibility of ng-map.

There's more…
We can use a service to load the positions and then add to map. Let's see how to do it.

Add the following code to the mappingService.js file inside the mapping module:

var positions = [
 { lat: -23.630153, lng: -46.563964 },
 { lat: -23.625828, lng: -46.571946 },
 { lat: -23.634006, lng: -46.576066 },
 { lat: -23.624883 ,lng: -46.564209 }
];

return {
 all: function() {
 return positions;
 }
}

Chapter 5

85

Now, add the mappingService factory to mappingCtrl as a dependency:

angular.module('mapping')
.controller('MappingCtrl', ['$scope','MappingService', function
($scope, MappingService) {

 // Using a service
 $scope.positions = MappingService.all();

}]);

In this way, we have a greater flexibility to use this directive.

Note that our service in a real application will be an endpoint to a server that
returns the positions stored in a database.

See also
ff You can find more information at https://github.com/allenhwkim/

angularjs-google-maps

Using the Angular-Loading-Bar directive
In interactive applications, it is very common to exchange data with the database using AJAX
and consuming a web service or JSON endpoint.

Often, the request may take a few seconds to return the answer (the response). Then,
we need to warn our user to wait for the request to complete. For this purpose, we use
a directive called angular-loading-bar.

In this recipe, we will see a different way to implement a custom directive. Let's do it manually
using the generators structure.

Getting ready
First of all, we need to download the directive files from the angular-loading-bar directive at
https://github.com/chieffancypants/angular-loading-bar/tree/master/
build.

We will use the loading-bar.min.css and loading-bar.min.js files. Also, we will use
the same code base that we used in the previous chapter.

https://github.com/allenhwkim/angularjs-google-maps
https://github.com/allenhwkim/angularjs-google-maps
https://github.com/chieffancypants/angular-loading-bar/tree/master/build
https://github.com/chieffancypants/angular-loading-bar/tree/master/build

Implementing Custom Directives with Yeoman Generators

86

How to do it…
1.	 Create a new directory inside the shared folder and name it directives: app/

modules/shared/directives/.

2.	 Create a new directory inside the directives folder and name it loading-bar:
app/modules/shared/directives/loading-bar/.

3.	 Now, place the CSS and JS files (loading-bar.min.css and loading-bar.min.
js) inside the loading-bar folder.

4.	 The next step is to add the module loading-bar as a dependency in the app.js
file. Place the following highlighted code:
angular.module('yeomananddirectives', [
 'ngResource',
 'ui.bootstrap',
 'ngCookies',
 'ngAnimate',
 'ngTouch',
 'ngSanitize',
 'ui.router',
 'mapping',
 'ngMap',
 'angular-loading-bar'
])

5.	 Finally, we need to add the CSS and JS file to the index.html file:
<link rel="stylesheet" href="/app/modules/shared/directives/
loading-bar/loading-bar.min.css">
<script src="/app/modules/shared/directives/loading-bar/loading-
bar.min.js"></script>

Step 5 is not required when we use the Grunt task from
generator-angm; the generator has a built-in feature to install
and link files.

6.	 Now, we need to perform just one more step to check the final result. Let's add a
service to load some sample data. Let's add the following content to a new blank
file and save it as locations.json in the assets folder:
[
 { "lat": -23.630153, "lng": -46.563964 },
 { "lat": -23.625828, "lng": -46.571946 },
 { "lat": -23.634006, "lng": -46.576066 },
 { "lat": -23.624883 ,"lng": -46.564209 },

Chapter 5

87

 { "lat": -23.624890 ,"lng": -46.564210 },
 { "lat": -23.634991 ,"lng": -46.574201 },
 { "lat": -23.654589 ,"lng": -46.584222 },
 { "lat": -23.674881 ,"lng": -46.594199 },
 { "lat": -23.694884 ,"lng": -46.554208 }
]

7.	 Now, let's create a new service to get these locations using the $resource
AngularJS feature inside mappingService.js. Add the following lines:
.factory('JsonLocations', ['$resource', function
($resource) {
 return $resource('app/assets/locations.json');
}]);

8.	 Go back to mappingCtrl and replace the following code:
// Using a service
 //$scope.positions = MappingService.all();
 $scope.positions = JsonLocations.query();

9.	 Finally, add the new JsonLocations service to the controller:
.controller('MappingCtrl',
['$scope','MappingService','JsonLocations', function
($scope, MappingService, JsonLocations){}

10.	 Open your terminal window and type the following command:
grunt concurrent

How it works…
The directive we used intercepts the $http requests, and this includes $resource as well. It
shows a loading bar on the screen accompanied by a spinner in the upper-right corner. Then,
throughout the HTTP request, the loading-bar is automatically activated.

In this example, we implemented the directive manually, that is, we did not use the Bower
dependency manager.

A special feature of generator-angm is to propose an optimized directory structure for
AngularJS applications.

The shared folder can store all custom directives that will be used in our project. We can
store all the directives in the same way, each with its own folder.

We open a parenthesis here to a relevant comment that should be in your head right now.

Implementing Custom Directives with Yeoman Generators

88

When we use Bower, its purpose is to facilitate managing dependencies, storing all the code
(packages) in one place. It provides a series of benefits, but at times, we do not want to
update all the project dependencies.

As we know, AngularJS is growing very quickly and if our project has a dozen dependencies,
we need to ensure that every library evolution is compatible with our code.

A safe way to do this is by isolating some components to be shared across the application.
So, we use the shared folder where we can manually take care of the evolution and
compatibility of the used libraries.

This code example used a powerful AngularJS resource know as $resource to load the
content that will be handled by the ngmap directive. Thus, we can see a good example
that is very close to a real AngularJS application.

There's more…
Some steps that we used in this recipe could have been avoided if we used the generator
task, since we do not need to manually enter all the scripts used in our index.html file.

For this, just run the following command:

grunt dev

All dependencies are added to the index.html file. We just need to include the
'angular-loading-bar' directive on app.js and it's done.

Implementing the ng-grid directive
In this recipe, we'll see how to use an extremely useful interface component used in a large
number of web applications. We're talking about ng-grid, a very useful custom directive
to deal with dynamic tabular data.

In this example, we will use an external public API to grab some data.

Getting ready
We're still using the same code base that we used in the previous chapter. Let's add a
new module.

Open your terminal window on the root project folder and type the following command:

yo angm:angm-module

Chapter 5

89

Name the new module as gridexample. When the generator finishes its work, we will have
the following result:

The gridexample module was created, and we can access it with the URL
http://127.0.0.1:8000/#!/gridexample. Now, let's see how to implement ng-grid.

How to do it…
1.	 First of all, let's create a factory to grab our data from a simple API. Add the following

highlighted code to gridexampleService.js:
'use strict';

/**
 * @ngdoc function
 * @name app.service:gridexampleService
 * @description
 * # gridexampleService
 * Service of the app
 */

Implementing Custom Directives with Yeoman Generators

90

angular.module('gridexample')
.factory('GridexampleService', ['$resource', function ($resource)
{
 //return $resource('http://ontariobeerapi.ca:80/beers/');
 return $resource('app/assets/brewer.json');
}]);

2.	 Add the new service to gridexampleCtrl.js:
angular.module('gridexample')
.controller('GridexampleCtrl', ['$scope', 'GridexampleService',
function ($scope, GridexampleService) {
}]);

3.	 Now we have the data to use with our table directive. Let's install the directive itself.
In this example, we just use a CDN and only place the links on the index.html file:
<link rel="stylesheet" href="http://ui-
grid.info/release/ui-grid-unstable.min.css">
<script src="http://ui-grid.info/release/ui-grid-
unstable.min.js"></script>

4.	 Place the following links in the index.html file; CSS goes on top, inside the head
tag, and JS goes after the injector's-js link.

5.	 Add ngGrid to our app.js file:
angular.module('yeomananddirectives', [
 'ngResource',
 'ui.bootstrap',
 'ngCookies',
 'ngAnimate',
 'ngTouch',
 'ngSanitize',
 'ui.router',
 'mapping',
 'login',
 'ui.grid',
 'gridexample',
])

6.	 Let's add the directive to griexample.html:
<div class="container">
 <div ui-grid="gridOptions" style="width:100%;
 height:400px"></div>
</div>

Chapter 5

91

7.	 Finally, let's add the controller's code:
$scope.myData = GridexampleService.query();

$scope.gridOptions = {
 data: 'myData',
 columnDefs: [
 {field: 'name', displayName: 'Name'},
 {field:'type', displayName:'Type'},
 { field: 'category', displayName: 'Category'},
 { field: 'brewer', displayName: 'Brewer'},
 { field: 'country', displayName: 'Country'}

]
};

Note that we make a call to external API here. However, in
development (using localhost) mode, we must enable CORS on the
server, as we do not have access to the server configuration. So,
we are using a static JSON file that simulates the original request to
the API. You can check the code at http://ontariobeerapi.
ca:80/beers/.

8.	 Run the grunt dev command and check your browser at the URL
http://127.0.0.1:8000/#!/gridexample.

How it works…
The steps used here were very similar to the previous recipe, because almost all custom
directives have the same step-by-step installation process.

However, in this example, we just added the external links to the CSS and JS directives files.
On production applications, it is better to have total control over all dependencies, but we can
use a CDN in this short example.

This grid component is very powerful and makes use of various directives. We can combine
a variety of directives, such as ui.grid, ui.grid.pagination, and others, to build the
whole grid.

Another important point is the ui-grid="gridOptions" object configuration. It's possible
to make any setup combination here.

http://ontariobeerapi.ca:80/beers/
http://ontariobeerapi.ca:80/beers/

Implementing Custom Directives with Yeoman Generators

92

There's more…
We can set up a pagination very easily. Just add the following code to gridexampleCtrl.js:

$scope.gridOptions = {
 data: 'myData',
 paginationPageSizes: [25, 50, 75],
 paginationPageSize: 25,
 columnDefs: [
 {field: 'name', displayName: 'Name'},
 {field:'type', displayName:'Type'},
 { field: 'category', displayName: 'Category'},
 { field: 'brewer', displayName: 'Brewer'},
 { field: 'country', displayName: 'Country'}

]
};

Add the ui.grid.pagination module to the app.js file:

angular.module('yeomananddirectives', [
 'ngResource',
 'ui.bootstrap',
 'ngCookies',
 'ngAnimate',
 'ngTouch',
 'ngSanitize',
 'ui.router',
 'mapping',
 'login',
 'ui.grid',
 'ui.grid.pagination',
 'gridexample',
])

Finally, add the ui.grid.pagination attribute to the gridexample.html file:

<div ui-grid="gridOptions" ui-grid-pagination style="width:100%;
height:400px"></div>

Chapter 5

93

The final result will be something like the following screenshot:

See also
ff You can find out more about the ngGrid at http://ui-grid.info/docs/#/api

http://ui-grid.info/docs/#/api

95

6
Using Directives to

Develop Interface
Components

In this chapter, we will cover:

ff Creating an Off Canvas menu

ff Applying custom CSS

ff Building a shopping cart

Introduction
In this chapter, we will explain how to use AngularJS directives as interface components to
build a micro e-commerce application combining different directives, an Off Canvas menu,
customize directives style, and a shopping cart directive.

Creating an Off Canvas menu
Off Canvas menus are very common in web applications. In the age of mobiles, this is a
flexible and useful component.

In the following recipe, we will see how to implement an Off Canvas directive.

You can find more information about the Off Canvas menu at
https://github.com/dbtek/angular-aside.

https://github.com/dbtek/angular-aside

Using Directives to Develop Interface Components

96

Getting ready
Let's create a folder to hold the entire project and name it interface-components. Inside
the folder, open your terminal window and type:

yo angm

With the previous command, the application will be generated with all the baseline code that
we will need to start.

At the time of writing this chapter, the currently stable AngularJS version was v1.4.2. So, the
generator-angm uses this version to create our application.

Now, let's implement the following recipes using the home module that is already installed.

How to do it…
1.	 The first step is to install a new directive. Open your terminal window and type the

following command:
bower install angular-aside --save

Due to some version issues, we need to perform some options before we proceed.
The following screenshot shows the options we need to choose:

Another very important point is the word --save at the end of the command. If we
forget to include this, the next step will fail.

Chapter 6

97

2.	 On the terminal window, type the following command:
grunt injector

The following screenshot shows the result of the previous command:

In this step, skip the manual installation process covered in the previous chapter.

The Gruntfile has the task of taking care of it for us. As you
can see in the previous screenshot, the generator already includes
the CSS and JS files from the Angular-Aside directive to the
index.htm file in the root of the application.

3.	 At this point, we have the directive ready to start, just check the index.html file
to check if everything goes well.
<link rel="stylesheet"
href="/src/bower_components/angular-aside/dist/css/angular-
aside.css">
<script src="/src/bower_components/angular-
aside/dist/js/angular-aside.js"></script>

4.	 Add the ngAside directive to the app.js file, like the following highlighted code:
angular.module('interfacecomponents', [
 'ngResource',
 'ui.bootstrap',
 'ngCookies',
 'ngAnimate',
 'ngTouch',
 'ngSanitize',
 'ui.router',
 'ngAside'
])

Using Directives to Develop Interface Components

98

5.	 Let's replace the original code on home.html inside the home module with the
following code:
<div class="container">
 <div class="row">
 <div class="col-lg-12">
 <div ng-controller="HomeCtrl">
 <div class="text-center">
 <h1>{{ title }}</h1>
 <button class="btn btn-default" ng-
 click="openAside('left')">View Cart</button>
 <hr>
 <div class="row">
 <div class="col-xs-6 col-sm-3">
 <img src="https://placehold.it/262x150"
 alt="image" />
 <h4>My Item #1</h4>
 <p> $10.99</p>
 <div id="item1" name="My Item #1"
 price="10.99" quantity="1" quantity-
 max="5">Add to Cart</div>
 </div>
 <div class="col-xs-6 col-sm-3">
 <img src="https://placehold.it/262x150"
 alt="image" />
 <h4>My Item #2</h4>
 <p> $15.29</p>
 <div id="item2" name="My Item #2"
 price="15.29" quantity="1" quantity-
 max="5">Add to Cart</div>
 </div>
 <div class="col-xs-6 col-sm-3">
 <img src="https://placehold.it/262x150"
 alt="image" />
 <h4>My Item #3</h4>
 <p> $25.75</p>
 <div id="item3" name="My Item #3"
 price="25.75" quantity="3" quantity-
 max="10">Add to Cart</div>
 </div>
 <div class="col-xs-6 col-sm-3">
 <img src="https://placehold.it/262x150"
 alt="image" />
 <h4>My Item #4</h4>
 <p> $29.25</p>

Chapter 6

99

 <div id="item4" name="My Item #4"
 price="29.25" quantity="1" quantity-
 max="10">Add to Cart</div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

6.	 Replace the homeCtrl.js code with the following code:
'use strict';

/**
 * @ngdoc function
 * @name app.controller:HomeCtrl
 * @description
 * # HomeCtrl
 * Controller of the app
 */
angular.module('interfacecomponents')
.controller('HomeCtrl', ['$scope', '$aside', function
($scope, $aside) {
 $scope.title = "Interface Components";

 // Set default state of modal to close
 $scope.asideState = {
 open: false
 };

 // Activate the aside menu using the modal
 $scope.openAside = function(position, backdrop) {
 // Change the default close state
 $scope.asideState = {
 open: true,
 position: position
 };

 function postClose() {
 $scope.asideState.open = false;
 }

Using Directives to Develop Interface Components

100

 var modalInstance = $aside.open({
 templateUrl:
 'app/modules/shared/directives/offcanvas/aside.html',
 placement: position,
 size: 'sm',
 backdrop: backdrop,
 controller: 'AsideCtrl'
 }).result.then(postClose, postClose);
 }

}]);

Now we need to create two files, one to hold the offcanvas HTML template and
another for the aside controller. Let's do it.

7.	 Create a folder called directives inside the shared folder of the modules folder.
Create a folder called offcanvas inside the directives folder. Create a file called
aside.html inside the offcanvas folder and place the following code:
<div class="modal-header">
 <h3 class="modal-title">Shopping Cart</h3>
</div>
<div class="modal-body">
 <div class="alert alert-warning">
 <p>
 Your Cart is Empty
 </p>
 </div>
</div>
<div class="modal-footer">
 <button class="btn btn-primary">Checkout</button>
 <button class="btn btn-warning" ng-
 click="cancel()">Cancel</button>
</div>

8.	 Create a file called asideCtrl.js inside the offcanvas folder and place the
following code in it:
'use strict';

/**
 * @ngdoc function
 * @name app.controller:AsideCtrl
 * @description
 * # AsideCtrl
 * Controller of the app
 */

Chapter 6

101

angular.module('interfacecomponents')
.controller('AsideCtrl', ['$scope', '$modalInstance',
function ($scope, $modalInstance) {

 // Close modal
 $scope.cancel = function () {
 $modalInstance.dismiss('cancel');
 };
}]);

9.	 After all these steps, we have the following layout:

10.	 A pretty simple product layout. The offcanvas menu can be activated by pressing
the View Cart button, as we can see on the following image:

11.	 Just open your terminal window and type grunt dev, and your default browser
will open.

Using Directives to Develop Interface Components

102

How it works…
We used a lot of code to create this layout page, which is similar to an e-commerce page.
We used a combination of various directives, so let's understand what happened.

The installation process is very similar to the one we used in the previous chapters, except
for the first step, where we need to choose some versions from AngularJS and other
dependencies. This is because some versions are not 100 percent compatible with others.

This is common in large-scale applications, where we need to install different directives. As
you know, AngularJS is growing fast and some packages don't stay up-to-date with the latest
AngularJS version, so minor issues may occur.

The ngAside extends the Angular ui boostrap modal component and also depends
on ui.bootstrap.modal. As we have already included ui.bootstrap in our project by
default, this is not a problem.

The ngAside extends the modal with some new attribute position and uses all modal
attributes available, as shown in the following block of code:

$scope.openAside = function(position, backdrop) {

 $scope.asideState = {
 open: true,
 position: position
 };
}

When modal is activated, we pass also the position inside the ng-click modal function:

ng-click="openAside('left')"

In the previous code, we can pass an optional backdrop as a second parameter:

ng-click="openAside('left', true)"

This way, we have a dark background under the aside menu, very similar to modal
components, where we have a dark transparent background.

The home controller receives the $aside instance as a dependency:

.controller('HomeCtrl', ['$scope', '$aside', function ($scope,
$aside) {}

The instantiate method is the same for modal, except we use $aside.open instead of
$modal.open:

var modalInstance = $aside.open({
})

Chapter 6

103

In this example, we have set up an external template and controller for better
customized options:

var modalInstance = $aside.open({
 templateUrl:
 'app/modules/shared/directives/offcanvas/aside.html',
 placement: position,
 size: 'sm',
 backdrop: backdrop,
 controller: 'AsideCtrl'
})

See also
ff You can see more about the ui.bootstrap modal at the official webpage

http://angular-ui.github.io/bootstrap/#/modal

Applying custom CSS
In this recipe, we will see how we can apply some CSS style to directives. In this special case,
we will override the default Bootstrap CSS style, as we are building an e-commerce layout.
Let's see how to customize the Off Canvas menu directive.

Getting ready
We will use the same code base from the previous chapter. So, we just add some CSS styles
to the application.

How to do it…
1.	 Inside the assets/css folder, create a file called style.css. Add the style.css

code to the index.html file after the injector tag:
<!-- injector:css -->
<link rel="stylesheet"
href="/src/bower_components/bootstrap/dist/css/bootstrap.css">
<link rel="stylesheet" href="/src/bower_components/angular-
aside/dist/css/angular-aside.css">
<!-- endinjector -->
<link rel="stylesheet" href="/app/assets/css/style.css">

2.	 Place the following code into the style.css file:
.modal-header {
 min-height: 16.42857143px;
 padding: 15px;

http://angular-ui.github.io/bootstrap/#/modal

Using Directives to Develop Interface Components

104

 border-bottom: 1px solid #B8B6B6;
 background-color: #EAEAEA;
 text-align: center;
}

.modal-body {
 position: relative;
 padding: 15px;
 background-color: #F4F4F4;
 min-height: 400px;
}

.modal-footer {
 padding: 15px;
 text-align: right;
 border-top: 1px solid #B8B6B6;
 background-color: #EAEAEA;

 position: absolute;
 bottom: 0px;
 width: 100%;
 text-align: center;
}

Now, the Off Canvas menu looks like this:

Chapter 6

105

How it works…
The process used to style the aside menu known as Off Canvas is very simple.

We insert the link to the new stylesheet created in step 1, right after the injector tag. This is
shown in the following example:

<!-- injector:css →
<!-- endinjector -->

This is due to the fact that every time we run a task from Grunt.js, everything between the
injector tag is replaced by the dependencies declared in our bower.json file.

We just used three modal classes to apply the style. Also, we used the Bootstrap default class
for alert-warning.

There's more…
We can use custom CSS directly on Bootstrap internals using LESS files. To do that, follow the
steps given earlier.

You can find the Bootstrap modal files at the following path:

Project Folder
|-src/
|--bower_components/
|---bootstrap/
|----less/
|-----modal.less

Here we use the variables of LESS to apply a new style to our modal:

//== Modals
//
//##

//** Padding applied to the modal body
@modal-inner-padding: 15px;

//** Padding applied to the modal title
@modal-title-padding: 15px;
//** Modal title line-height
@modal-title-line-height: @line-height-base;

//** Background color of modal content area

Using Directives to Develop Interface Components

106

@modal-content-bg: #fff;
//** Modal content border color
@modal-content-border-color: rgba(0,0,0,.2);
//** Modal content border color **for IE8**
@modal-content-fallback-border-color: #999;

//** Modal backdrop background color
@modal-backdrop-bg: #000;
//** Modal backdrop opacity
@modal-backdrop-opacity: .5;
//** Modal header border color
@modal-header-border-color: #e5e5e5;
//** Modal footer border color
@modal-footer-border-color: @modal-header-border-color;

@modal-lg: 900px;
@modal-md: 600px;
@modal-sm: 300px;

The previous variables can be found at the root of the Bootstrap folder in a file called
variables.less.

See also
ff You can read more about LESS at the following URL http://lesscss.org/

Building a shopping cart
In the previous chapter, we used an example of e-commerce to illustrate the operation of the
Off Canvas menu, implementing a shopping cart. In this recipe, we will use a custom directive
to add functionality to the Add to Cart and View Cart buttons.

Getting ready
Let's use the same example from the previous chapter, where we finalized with CSS
customization.

http://lesscss.org/

Chapter 6

107

How to do it…
1.	 First off, we need to install the shopping cart directive. As in the previous recipe, we

will install it with Bower. Open your terminal window at the project root and type the
following command:
bower install ngcart --save

If you do not use the Bower dependencies manager, you can
add the directive to the project manually, as previously taught
in earlier chapters.

2.	 Now, open the app folder and edit the app.js file. Add the following highlighted code
after the ngAside dependency:
angular.module('interfacecomponents', [
 'ngResource',
 'ui.bootstrap',
 'ngCookies',
 'ngAnimate',
 'ngTouch',
 'ngSanitize',
 'ui.router',
 'ngAside',
 'ngCart'
])

3.	 Let's create a ngCart controller. Go to modules/shared/directives/ and
create a folder called ngcart. Inside this folder, create a file called ngcartCtrl.js
and add the following code:
'use strict';

/**
 * @ngdoc function
 * @name app.controller:ShopCartCtrl
 * @description
 * # ShopCartCtrl
 * Controller of the app
 */
angular.module('interfacecomponents')
.controller('ShopCartCtrl', ['$scope', 'ngCart', '$http',
function ($scope, ngCart, $http) {

Using Directives to Develop Interface Components

108

 ngCart.setTaxRate(7.5);
 ngCart.setShipping(2.99);

}]);

4.	 With the third step, we finished the installation process and initialization of ngCart.
Let's move on to the next steps. Edit the home.html file, remove the column layout
with products, and place a new div with ShopCartCtrl. This is shown in the
following code:
<div ng-controller="ShopCartCtrl">
 <div class="row text-center">
 <div class="col-xs-6 col-sm-3">
 <img src="https://placehold.it/262x150" alt="image"
 />
 <h4>My Item #1</h4>
 <p> $10.99</p>
 <ngcart-addtocart id="item1" name="My Item #1"
 price="10.99" quantity="1" quantity-max="5">Add to
 Cart</ngcart-addtocart>
 </div>
 <div class="col-xs-6 col-sm-3">
 <img src="https://placehold.it/262x150" alt="image"
 />
 <h4>My Item #2</h4>
 <p> $15.29</p>
 <ngcart-addtocart id="item2" name="My Item #2"
 price="15.29" quantity="1" quantity-max="5">Add to
 Cart</ngcart-addtocart>
 </div>
 <div class="col-xs-6 col-sm-3">
 <img src="https://placehold.it/262x150" alt="image"
 />
 <h4>My Item #3</h4>
 <p> $25.75</p>
 <ngcart-addtocart id="item3" name="My Item #3"
 price="25.75" quantity="3" quantity-max="10">Add to
 Cart</ngcart-addtocart>
 </div>
 <div class="col-xs-6 col-sm-3">
 <img src="https://placehold.it/262x150" alt="image"
 />
 <h4>My Item #4</h4>
 <p> $29.25</p>
 <ngcart-addtocart id="item4" name="My Item #4"
 price="29.25" quantity="1" quantity-max="10">Add to
 Cart</ngcart-addtocart>

Chapter 6

109

 </div>
 </div>
</div>

5.	 Note that we replace the div from the previous example with the ngcart-addtocart
directive on the highlighted code. Add the addtocart template at the end of
home.html file:
<script type="text/ng-template"
id="template/ngCart/addtocart.html">
<div ng-hide="attrs.id">
 <a class="btn btn-lg btn-primary" ng-disabled="true" ng-
 transclude>
</div>
<div ng-show="attrs.id">
 <div>

 <select name="quantity" id="quantity" ng-model="q"
 ng-options=" v for v in qtyOpt"></select>

 <a class="btn btn-sm btn-primary" ng-
 click="ngCart.addItem(id, name, price, q, data)" ng-
 transclude>
 </div>

 <p class="alert alert-info">This item is in your cart. <a
 ng-click="ngCart.removeItemById(id)" style="cursor:
 pointer;">Remove</p>

</div>
</script>

6.	 Go back to your terminal window and type the following command:
grunt dev

At this point, we will have an e-commerce layout with the ngcart directive:

Using Directives to Develop Interface Components

110

7.	 Now we need to add the cart summary using the ngcart-summary directive. Add
the following line after the shopcartctrl div controller:
<div ng-controller="ShopCartCtrl">
<div class="well text-center"><ngcart-summary></ngcart-
summary></div>
...

8.	 Add the cart summary template at the end of home.html file, after the add to
cart template:
<script type="text/ng-template" id="template/ngCart/summary.html">
 {{ ngCart.getTotalItems() }}
 <ng-pluralize count="ngCart.getTotalItems()" when="{1:
 'item', 'other':'items'}"></ng-pluralize>

{{ ngCart.totalCost() | currency }}

</script>

The previous operation will result in the following screenshot:

9.	 Let's edit aside.html to include the cart itself. Inside the modal-body div, replace
div alert with the following code:
<div class="modal-body">
 <ngcart-cart></ngcart-cart>
</div>

10.	 Add the cart template to the end of the aside.html file using the following code:
<script type="text/ng-template" id="template/ngCart/cart.html">
<div class="alert alert-warning" role="alert" ng-
show="ngCart.getTotalItems() === 0">
 Your cart is empty
</div>
<div class="table-responsive col-lg-12" ng-
show="ngCart.getTotalItems() > 0">

Chapter 6

111

 <table class="table table-striped ngCart cart">
 <thead>
 <tr>
 <th></th>
 <th></th>
 <th>Quantity</th>
 <th>Amount</th>
 <th>Total</th>
 </tr>
 </thead>
 <tfoot>
 <tr ng-show="ngCart.getTax()">
 <td></td>
 <td></td>
 <td></td>
 <td>Tax ({{ ngCart.getTaxRate() }}%):</td>
 <td>{{ ngCart.getTax() | currency }}</td>
 </tr>
 <tr ng-show="ngCart.getShipping()">
 <td></td>
 <td></td>
 <td></td>
 <td>Shipping:</td>
 <td>{{ ngCart.getShipping() | currency }}</td>
 </tr>
 <tr>
 <td></td>
 <td></td>
 <td></td>
 <td>Total:</td>
 <td>{{ ngCart.totalCost() | currency }}</td>
 </tr>
 </tfoot>
 <tbody>
 <tr ng-repeat="item in ngCart.getCart().items track
 by $index">
 <td><span ng-
 click="ngCart.removeItemById(item.getId())"
 class="glyphicon glyphicon-remove"></td>

 <td>{{ item.getName() }}</td>
 <td><span class="glyphicon glyphicon-minus" ng-
 class="{'disabled':item.getQuantity()==1}"
 ng-click="item.setQuantity(-1,
 true)">

Using Directives to Develop Interface Components

112

 {{ item.getQuantity() | number }}
 <span class="glyphicon glyphicon-plus" ng-
 click="item.setQuantity(1, true)"></td>
 <td>{{ item.getPrice() | currency}}</td>
 <td>{{ item.getTotal() | currency }}</td>
 </tr>
 </tbody>
 </table>
</div>
</script>

11.	 The last action is to add the checkout functionality. Let's add the template code to the
end of aside.html, right after the cart template:
<script type="text/ng-template"
id="template/ngCart/checkout.html">

 <button class="btn btn-primary" ng-click="checkout()" ng-
 disabled="!ngCart.getTotalItems()" ng-
 transclude>Checkout</button>

</script>

12.	 Replace the checkout bottom inside the modal-footer div on aside.html with
the following code:
<div class="modal-footer">
 <ngcart-checkout service="log">Checkout</ngcart-checkout>
 <button class="btn btn-warning" ng-
 click="cancel()">Cancel</button>
</div>

Now, let's check the final result. Open your terminal window and type the following command:

grunt dev

How it works…
We can see how to convert a static layout using custom directives. You can easily see this with
the substitution of the code that creates the buttons to add the item to the shopping cart:

<div id="item1" name="My Item #1" price="10.99" quantity="1"
quantity-max="5">Add to Cart</div>
<ngcart-addtocart id="item1" name="My Item #1" price="10.99"
quantity="1" quantity-max="5">Add to Cart</ngcart-addtocart>

Chapter 6

113

In this example, we kept fixed products in the HTML code, but in a real
application they would be in a database and would use some Ajax
function to retrieve them.

As we did in the previous recipes, we are using custom templates here:

<script type="text/ng-template"
id="template/ngCart/addtocart.html"></script>
<script type="text/ng-template"
id="template/ngCart/summary.html"></script>
<script type="text/ng-template"
id="template/ngCart/cart.html"></script>
<script type="text/ng-template"
id="template/ngCart/checkout.html"></script>

This flexibility is provided by the ngCart directives. When we click on the Add to Cart button,
the directive shows a simple message. This is shown in the following screenshot:

It's possible to add and remove a product using the directive's add to cart function:

<a class="btn btn-sm btn-primary"
 ng-click="ngCart.addItem(id, name, price, q, data)"
 ng-transclude>

The products are stored using the local storage of your browser, which is the built in store
service feature from directive:

.service('store', ['$window', function ($window) {
return {

 get: function (key) {

 if ($window.localStorage [key]) {

 var cart = angular.fromJson($window.localStorage [key]);

Using Directives to Develop Interface Components

114

 return JSON.parse(cart);

 }

 return false;

 },

 set: function (key, val) {

 if (val === undefined) {

 $window.localStorage .removeItem(key);

 } else {

 $window.localStorage [key] = angular.toJson(val);

 }

 return $window.localStorage [key];

 }

 }

}])

The following screenshot shows the result of clicking on the View Cart button:

Chapter 6

115

The Checkout button can perform three different tasks, including integration with PayPal. For
this recipe, we just use $log.

When we click on the Checkout button, the result for shopping cart can be found at the
console panel of your browser, as we can see in the following screenshot:

Note that the attribute data is empty just because we used a simple example
to illustrate the directive functionality in an e-commerce application. On real
applications, this contains an object with attributes from the item.

There's more…
We can extend the directive and add more properties to our product just by editing the
ngCart directive and by adding as many properties as we need:

.directive('ngcartAddtocart', ['ngCart', function(ngCart){
 return {
 restrict : 'E',
 controller : 'CartController',
 scope: {
 id:'@',
 name:'@',
 quantity:'@',

Using Directives to Develop Interface Components

116

 quantityMax:'@',
 price:'@',
 data:'='
 },
...

Also, it's possible to use a service to load the products list from a JSON file like this:

[
 {
 "id": 01,
 "name": "Item 1",
 "price": 1900,
 "image": :"https://placehold.it/262x150"	
 },
 {
 "id": 02,
 "name": "Item 2",
 "price": 1000,
 "image": :"https://placehold.it/262x150"	
 },
 {
 "id": 03,
 "name": "Item 3",
 "price": 900,
 "image": :"https://placehold.it/262x150"	
 }
]

Then, replace the cart items with the following code:

<div class="col-xs-6 col-sm-3" ng-repeat=" item in products">

 <h4>{{item.name}}</h4>
 <p> ${{item.price}}</p>
 <ngcart-addtocart id="{{item.id}}" name="{{item.name}}"
 price="{{item.price}}" quantity="1" quantity-max="5">Add to
 Cart</ngcart-addtocart>
</div>

117

7
Building Directives with

Dynamic Templates

In this chapter, we will cover:

ff Using dynamic templates on directives

ff The compile function

ff Organizing dynamic directives on shared folders

ff Mixing different content on templates

Introduction
Dealing with dynamic templates on directives is not a common task with AngularJS, because
we can change the style of a view directly with CSS, but often this is a technique that can help
us to implement a different direction, and leave us with different and flexible templates. It is
always very helpful to have different options at hand.

In this chapter, we will see an easy way to implement this technique with AngularJS in two
different stages, the first using an inline template inside the directive using the $compile
function, and another using external templates.

This chapter is somewhat conceptual and may seem to escape the cookbook format, but here
we present some features and techniques that are related to all the recipes in this chapter.

The total content is a powerful way to deal with directives using dynamic templates.

Building Directives with Dynamic Templates

118

Using dynamic templates on directives
In this first example we will create a directive using inline templates rendered by the
JavaScript inside of the directive. Also, in the example we will simulate the $http.get()
method to get the closest example of a real situation.

In addition, we will see an important tip for loading videos from external sources using our
application on a local server.

Getting ready
We are still using the Yeoman generator-angm (version 0.2.6) to build the base line
application. You can get the code in the examples folder at PacktPub, or open your
terminal window and type:

yo angm

Name it dynamic-templates and press Enter, Enter, and Enter..

The generator-angm (version 0.2.6) uses the new stable version
from AngularJS, 1.4.5. For this chapter, it is very important to use
the same version because on the next release, the generator will
have some major changes and will use a different approach to build
AngularJS modular applications.

How to do it…
1.	 Before we start to code, let's add the baseline folders and files. In the modules/

shared/ folder, create a folder called directives, and inside that folder create
a folder called dynamic-template; the full path will be modules/shared/
directives/dynamic-template.

2.	 For the first example, let's create two files. Inside modules/shared/directives/
dynamic-template, create a file and name it dynamic-template-directive.
js. Note that you can use your own name, but to follow the example, we recommend
keeping with the book names. Create a new file in the same folder and name it
content.json.

3.	 Now, let's add the code to both files. Place the following code in dynamic-
template-directive.js:
'use strict';

/**
* @ngdoc function

Chapter 7

119

* @name app.directive:DynamicTemplateDirective
* @description
* # dynamicTemplateDirective
* Directive of the app
*/
angular.module('dynamic-templates')
.directive('contentItem', function ($compile) {

 var imageTpl = '<div class="media"><div class="media-
 left"><img class="media-object
 img-thumbnail" ng-src="{{content.src}}"
 alt="content.title"></div><div class="media-body"><h2
 class="media-heading">{{content.title}}</h2>
 <p>{{content.description}}</p></div></div>';
 var videoTpl = '<div class="entry-
 video"><h2>{{content.title}}</h2><div class="entry-
 vid"><iframe ng-src="{{content.src}}" width="100%"
 height="300" frameborder="0" webkitAllowFullScreen
 mozallowfullscreen allowFullScreen></iframe></div><div
 class="entry-text"><div class="text-
 justify">{{content.description}}</div></div></div>';
 var textTpl = '<div class="panel panel-default"><div
 class="panel-body"><h1>{{content.title}}</h1><p
 class="lead">{{content.src}}</p></div></div>';

 var getTemplate = function(type) {
 var template = '';

 switch(type) {
 case 'image':
 template = imageTpl;
 break;
 case 'video':
 template = videoTpl;
 break;
 case 'text':
 template = textTpl;
 break;
 }

 return template;
 }

 var linkF = function(scope, element, attrs) {
 element.html(getTemplate(scope.content.type)).show();

Building Directives with Dynamic Templates

120

 $compile(element.contents())(scope);
 }

 return {
 restrict: "E",
 link: linkF,
 scope: {
 content:'='
 }
 };
});

4.	 Place the following code on content.json:
[
 {"type" : "image", "title" : "Black Label Society", "src" :
"https://upload.wikimedia.org/wikipedia/en/b/bd/Sonic_Brew_
Original_Cover.jpg", "description": "Lorem ipsum dolor sit amet,
consectetur adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur."},
 {"type" : "video", "title" : "The One Motorcycle Video", "src"
: "http://player.vimeo.com/video/60049452"},
 {"type" : "text", "title" : "Hunter S. Thompson, Hell's
Angels: A Strange and Terrible Saga", "src" : "The Edge... There
is no honest way to explain it because the only people who really
know where it is are the ones who have gone over."},
 {"type" : "image", "title" : "Chrome Division", "src" :
"https://upload.wikimedia.org/wikipedia/en/e/e8/Booze%2C_
Broads_%26_Beelzebub_-_Chrome_Division.jpg", "description":"Lorem
ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi
ut aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat
nulla pariatur."}
]

5.	 The first stage of the first example is almost done, so let's add some code on other
files. Open the home.html file inside the home module at app/modules/home/
and replace the original code with the following lines:
<div class="container">
 <div class="splash text-center">
 <h1>{{ title }}</h1>

Chapter 7

121

 <p>This is a template for a simple home screen website.
 Use it as a starting point to create something more
 unique.</p>
 <code>app/modules/home/home.html</code>
 <hr>
 </div>

 <div class="row">
 <content-item ng-repeat="item in content"
 content="item"></content-item>
 </div>
</div>

We just keep the original markup and add more content, but to avoid mistakes,
replace the entire code.

Note that the home module is part of the building process when
we build any application with generator-angm.

6.	 The next step is to create the controller and grab the content from the content.
json file. Let's replace the original content in homeCtrl.js with the following code:
'use strict';

/**
 * @ngdoc function
 * @name app.controller:HomeCtrl
 * @description
 * # HomeCtrl
 * Controller of the app
 */
angular.module('dynamic-templates')
.controller('HomeCtrl', ['$scope', '$http', function
($scope, $http) {
 $scope.title = "Hello, Angm-Generator!";

 $scope.url = 'app/modules/shared/directives/dynamic-
 template/content.json';

 $scope.content = [];

 $scope.getContentFromFile = function() {
 $http.get($scope.url).then(function(result){

Building Directives with Dynamic Templates

122

 $scope.content = result.data;
 });
 }
 $scope.getContentFromFile();
}]);

The last and most important step is to use the $sceDelegateProvider to ensure
that the URLs required by the template of the directive are safe.

7.	 You can read more about the $sceDelegate in the official AngularJS
documentation at https://docs.angularjs.org/api/ng/
provider/$sceDelegateProvider. Open the app.js file in the
root folder and add the following highlighted code:
'use strict';

/**
 * @ngdoc index
 * @name app
 * @description
 * # app
 *
 * Main module of the application.
 */
angular.module('dynamic-templates', [
 'ngResource',
 'ui.bootstrap',
 'ngCookies',
 'ngAnimate',
 'ngTouch',
 'ngSanitize',
 'ui.router'
])

.config(['$stateProvider', '$urlRouterProvider',
'$locationProvider', '$httpProvider', '$sceDelegateProvider',
function ($stateProvider, $urlRouterProvider, $locationProvider,
$httpProvider, $sceDelegateProvider) {

 // Allow working on localhost or to avoid the video don't
 work properly
 $sceDelegateProvider.resourceUrlWhitelist(['self', '**']);

 $locationProvider.hashPrefix('!');

 // This is required for Browser Sync to work properly

https://docs.angularjs.org/api/ng/provider/$sceDelegateProvider
https://docs.angularjs.org/api/ng/provider/$sceDelegateProvider

Chapter 7

123

 $httpProvider.defaults.headers.common['X-Requested-With']
 = 'XMLHttpRequest';

 $urlRouterProvider
 .otherwise('/');

}])

.run(['$rootScope', function ($rootScope) {

 'use strict';

 console.log('AngularJS run() function...');

}]);

8.	 The last step is to start the application and see the final result in the browser. Open
your terminal window at the root application folder and type the following command:
grunt dev

Right after the welcome message on the home screen we can see the content from
content.json rendered with different templates, one for each type of content.

The following image illustrates the result:

Building Directives with Dynamic Templates

124

How it works…
The directive is pretty simple but powerful. In the first step, we created the templates, but note
that we don't use the built-in templateCache from AngularJS, we just place the templates
inside the variables:

var imageTpl = '…'
var videoTpl = '…'
var textTpl = '…'

The reason is simple. We will call these variables inside the function to choose the right
template based on the type:

var getTemplate = function(type) {
 var template = '';

 switch(type) {
 case 'image':
 template = imageTpl;
 break;
 case 'video':
 template = videoTpl;
 break;
 case 'text':
 template = textTpl;
 break;
 }

 return template;
}

For each type, we return a different template.

Also, we create a linker function and pass the name of the link function to
the directive:

var linkF = function(scope, element, attrs) {…}
return {
 restrict: "E",
 link: linkF,
 scope: {
 content:'='
 }
};

The scope:{ content:'='} will be replaced on the directive markup declaration:

<content-item ng-repeat="item in content"
content="item"></content-item>

Chapter 7

125

Also, on directive declaration, we are using the built-in ng-repeat directive to make a loop
over our data, in this case $scope.content in homeCtrl.js:

$scope.content = [];

$scope.getContentFromFile = function() {
 $http.get($scope.url).then(function(result){
 $scope.content = result.data;
 });
}

$scope.getContentFromFile();

In this recipe, we are using a $http.get() to simulate a RESTful/Ajax request. In our case,
we are reading data from a local file, but in a real application you would read data from
an endpoint on a server. The data we get back will be formatted as JSON and have the
following structure:

{
 "type" : "image",
 "title" : "Black Label Society",
 "src" :"image.jpg",
 "description": "…"
},

There's more…
A real service can have as many properties as you want and we can use the $resource feature
to return our data, as we can see in the later recipe, Mixing different content on templates.

The compile function
In the previous recipes in previous chapters we mentioned the $compile function using the
compile complete recommended syntax, as follows:

compile: function compile(tElement, tAttrs, transclude) {
 return {
 pre: function preLink(scope, iElement, iAttrs, controller) {
 ... },
 post: function postLink(scope, iElement, iAttrs, controller) {
 ... }
}

In this recipe, we will show the alternative method of calling and using the $compile function.

Building Directives with Dynamic Templates

126

Getting ready
The baseline code for this recipe is the same as in the previous chapter.

How to do it…
As we are using the same code base, and we already wrote the code in the previous recipe,
open the dynamic-template-directive.js and take a look at the linkF function:

var linkF = function(scope, element, attrs) {
 element.html(getTemplate(scope.content.type)).show();
 $compile(element.contents())(scope);
}

How it works…
Note that inside the linkF, we used the .html() and .show() methods from jQuery Lite
(built in to AngularJS) to show and compile an element using the $compile function.

In this example, we don't use the replace() and transclude() AngularJS method, which
will be deprecated on the next major (2.0) release from AngularJS.

See also
ff You can find more about AngularJS's upcoming new version 2.0 at the official website:

https://angular.io/docs/js/latest/api/

Organizing dynamic directives on shared
folders

As the title suggests, dynamic directives in shared folders can become a nuisance in
large-scale applications, as they are hard to maintain and hard to scale.

Also, keeping dynamic templates in JS files is not a very flexible way to structure and maintain
the application.

This recipe is connected directly to what comes next, since we use the structure as
an example to show the flexibility that can be achieved by prioritizing performance
and easy maintenance.

https://angular.io/docs/js/latest/api/

Chapter 7

127

Getting ready
The baseline code for this recipe is the same as in the previous chapter.

How to do it…
As we have mentioned in previous chapters, an easy way to group files in an application is
to keep them united by features. Thus, nothing could be easier than keeping all files related
to a directive in the same place.

But what do you do when you need to use the same file or template, since we are talking
about dynamic templates?

A simple and efficient way to do this is to use the directive of ng-include in a custom
directive to determine random templates for each type of content that your application
may have.

Observe the following screenshot. We keep all template files externally directive and name
each according to the content that will render on the screen, shown as follows:

Building Directives with Dynamic Templates

128

How it works…
The content from templates must have the same general notation on each controller function:

<div>
 <iframe width="300" height="300" ng-src="{{item.src}}"
 frameborder="0" allowfullscreen></iframe>
 <h2>{{item.name}}</h2>
</div>

This means that you must use generic names such as item.name, item.title, and
item.description, as these names are very common for these types of applications
and services. This way, we can use any controller.

Mixing different content on templates
Continuing with the previous example of organizing code, we can continue and create as many
templates as necessary for the dynamic directives.

We will see in this example the use of ng-include, a built-in AngularJS directive using
external templates, created in specific files, thus facilitating easy maintenance and scalability.

Also, we will see a different way to load the content using the $resource service in our
controller function.

Getting ready
The baseline code for this recipe is the same as in the previous chapter. We just need to
create additional files.

For the purpose of this book, we will place the new directive in the same file as the previous
one. In a real application, we strongly recommend the use of one file per directive.

How to do it…
1.	 Open the dynamic-template-directive.js and add the following code at the

end of the contentItem directive:
angular.module('dynamic-templates')
.directive('contentItem', function ($compile) {
 ….
}).directive("postItem", function() {
 return {
 template: '<ng-include src="getTemplateUrl()"/>',

Chapter 7

129

 //templateUrl: unfortunately has no access to
 $scope.user.type
 scope: {
 item: '=data'
 },
 restrict: 'E',
 controller: function($scope) {
 //function used on the ng-include to resolve the
 template
 $scope.getTemplateUrl = function() {
 //basic handling. It could be delegated to
 different Services
 if ($scope.item.type == "image")
 return "app/modules/shared/directives/dynamic-
 template/image-tpl.html";
 if ($scope.item.type == "video")
 return "app/modules/shared/directives/dynamic-
 template/video-tpl.html";
 if ($scope.item.type == "text")
 return "app/modules/shared/directives/dynamic-
 template/text-tpl.html";
 }
 }
 };
});

2.	 Let's create the image-tpl.html file in the same folder of dynamic-template-
directive.js and place the following code:
<div class="row">
 <div class="thum">
 <div class="thumbnail">

 <div class="caption">
 <h3>{{item.name}}</h3>
 <p>{{item.description}}</p>
 </div>
 </div>
 </div>
</div>

Building Directives with Dynamic Templates

130

3.	 The markup is pretty simple and we are using the CSS classes from Bootstrap,
as the generator-angm already included the Bootstrap stylesheet. Let's do the
same for the video template, placing the following code in a new file and saving
as video-tpl.html:
<div>
 <iframe width="300" height="300" ng-src="{{item.src}}"
 frameborder="0" allowfullscreen></iframe>
 <h2>{{item.name}}</h2>
</div>

4.	 Now, let's add the last template for this example. Place the following code and save
a new file as text-tpl.html:
<blockquote>
 <p>{{item.src}}.</p>
 <footer>Someone famous in <cite title="Source
 Title">{{item.name}}</cite></footer>
</blockquote>

5.	 The creation process is already done, but we need to do a $resource service
for this example. So, open the homeService.js that was already created by
the generator, and replace it with the following code:
'use strict';

/**
 * @ngdoc function
 * @name app.service:homeService
 * @description
 * # homeService
 * Service of the app
 */
angular.module('dynamic-templates')
.factory('homeService', ['$resource', function ($resource){

 var posts = [
{"type" : "image", "name" : "Black Label Society", "src" :
"https://upload.wikimedia.org/wikipedia/en/b/bd/Sonic_Brew_
Original_Cover.jpg", "description": "Lorem ipsum dolor sit amet,
consectetur adipiscing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehenderit in voluptate
velit esse cillum dolore eu fugiat nulla pariatur."},
{"type" : "video", "name" : "2016 Harley-Davidson
Motorcycles 883", "src" :
"http://www.youtube.com/embed/_dOxZX5gz0U"},

Chapter 7

131

{"type" : "text", "name" : "Some Text Example ", "src":
"Sample Text about crazy Motorcycles goes here."}
];

return {
 all: function () {
 return posts;
 }
}

}]);

Note that we keep the same name for the service as the generator suggested for the
example code.

On a real application, the var post will be a request
from an endpoint API.

6.	 The next step is to inject the service into our controller. Let's add the following
highlighted code to the homeCtrl.js:
'use strict';

/**
 * @ngdoc function
 * @name app.controller:HomeCtrl
 * @description
 * # HomeCtrl
 * Controller of the app
 */
angular.module('dynamic-templates')
.controller('HomeCtrl', ['$scope', 'homeService', '$http',
function ($scope, homeService, $http) {
 $scope.title = "Hello, Angm-Generator!";

 $scope.url = 'app/modules/shared/directives/dynamic-
 template/content.json';

 $scope.content = [];

 $scope.getContentFromFile = function() {
 $http.get($scope.url).then(function(result){
 $scope.content = result.data;

Building Directives with Dynamic Templates

132

 });
 }

 $scope.getContentFromFile();

 $scope.posts = homeService.all();

}]);

7.	 So, the last step is to add the directive markup to the home.html file. Open the
home.html file at app/modules/home and add the following code:
<div class="row">
 <post-item class="col-lg-4" ng-repeat="item in posts"
 data="item"></post-item>
</div>

8.	 Place the previous code right after the following lines of code:
<div class="row">
 <content-item ng-repeat="item in content"
 content="item"></content-item>
</div>

9.	 The final result is almost the same as the previous chapter, but this way we have total
control of the templates in the separated files. Open your terminal window and place
the following command:
grunt dev

Your default browser must be open and you will see a result as shown in the following picture:

Chapter 7

133

How it works…
Unlike the last recipe, we used the built-in template function from AngularJS, but not the
templateUrl. The key point here is the use of ng-include to inject the right template
on the screen:

return {
 template: '<ng-include src="getTemplateUrl()"/>',
 scope: {
 item: '=data'
 },
 restrict: 'E',
}

Also, in this example, we are using a controller function and a getTemplateUrl()
function to determine what the template must be called:

controller: function($scope) {
 //Pass a tpl to ng-include
 $scope.getTemplateUrl = function() {
 //We can place this piece in different services
 if ($scope.item.type == "image")
 return "app/modules/shared/directives/dynamic-
 template/image-tpl.html";
 if ($scope.item.type == "video")
 return "app/modules/shared/directives/dynamic-
 template/video-tpl.html";
 if ($scope.item.type == "text")
 return "app/modules/shared/directives/dynamic-template/text-
 tpl.html";
 }
}

In the previous example, we used a switch() function and just used if(). Of course, we
can make use of the switch function here, but for dialectical purposes, we are keeping it a
simple if statement.

Here we can note the different path for each file template, and this can be very helpful when
we work on large-scale applications and in large teams.

Building Directives with Dynamic Templates

134

The getTemplateurl() function passes to ng-include—the URL that must be rendered
on the screen. As you inspect the code on the browser, you can see the following code:

<ng-include src="app/modules/shared/directives/dynamic-
template/image-tpl.html" class="ng-scope"><div class="row ng-
scope">
 <div class="thumb">
 <div class="thumbnail">
 <img src="https://upload.wikimedia.org/wikipedia
 /en/b/bd/Sonic_Brew_Original_Cover.jpg" alt="Black Label
 Society">
 <div class="caption">
 <h3 class="ng-binding">Black Label Society</h3>
 <p class="ng-binding">In the early 1990s, ...</p>
 </div>
 </div>
 </div>
</div>
</ng-include>

And homeCtrl.js performs a simple get on homeService.js using the $resource
features and the all() function:

$scope.posts = homeService.all();

You must note here the use of http://www.youtube.com/embed/ before the video
ID from YouTube. As we are working with a local server, we need to be careful with some
browser/server polices, and the normal YouTube-embedded code doesn't work.

The homeService.js returns an src: property with the following video code:

http://www.youtube.com/embed/_dOxZX5gz0U

There's more…
Not all web applications have external links to pictures or videos. Often, we need to keep all
content on a single server or even a single enterprise domain.

In this example, we can easily achieve this by simply replacing the video template code to use
the video tag feature of HTML5.

As we can see in the following example, the video-tpl.html file will look like this:

<video controls>
 <source src="app/assets/video/01-final.ogv" type="video/ogg">
 <!--<source src="foo.mp4" type="video/mp4">-->
 Your browser does not support the <code>video</code> element.
</video>

Chapter 7

135

To see this in action, just add the previous code to the video-tpl.html, right after the
iframe tag.

Now add a video folder to the assets folder and add a video file. In our example code,
we already have a file to illustrate the example.

The result will be something like the following image, an HTML5 video player with
some controls:

And the same technique applies to images too. Just change the template and the src to your
own image path.

137

8
Creating Reusable

Directives

In this chapter, we will cover:

ff How to scale an AngularJS project to use reusable directives

ff Building a directive as an interface component

ff Creating a form directive with custom validation

Introduction
How do you scale an AngularJS project to use reusable directives? First of all we need to
understand the significance of scale, and how reusable directives can impact it. Next, we
need to look at some of the directives we've previously created with Bootstrap and see how
we can effectively use them to accomplish our goals.

Yes, we can use an <accordion> directive at various points on the interface, but always
within a specific context.

In the next examples, we will see how to create some directives and use them as interface
components.

Creating Reusable Directives

138

How to scale an AngularJS project to use
reusable directives

An important key is the consistency of your code; there are many ways to do it right.

Another important key is the principle of DRY (Don't Repeat Yourself). DRY code is easier
to work with and will help you build applications that are more maintainable.

Pay close attention to naming conventions, this is another very important point. Using intuitive
and short names makes your code easier to work and makes it easier to keep a pattern.

No pattern is absolutely failsafe or bullet proof, but you must choose which best fits your
application and use it from start to finish.

Large-scale applications often grow at a steady pace from their beginning until you reach an
intermediate state; however, from this stage, things tend to get out of control and grow wildly
if there has been no pattern previously established since the beginning.

Let's see an example of a web interface built only with customized directives, something very
similar to web components and frameworks of Polymer.

You can find more about Polymer at https://www.polymer-project.org/1.0/. Polymer
applied the web components principle, but it is not directly related to AngularJS.

Getting ready
For the next recipe, we are still using the generator-angm. You can get the code in the
examples folder at PacktPub, or open your terminal window and type:

yo angm

Name it interface-components and type enter, enter, enter.

1.	 Let's create some modules. Open your terminal window and type:
yo angm:angm-module

Name it album and type enter.

After the command is executed, the terminal will show the files that were created:

create app/modules/album/albumCtrl.js

create app/modules/album/albumRoute.js

create app/modules/album/album.html

create app/modules/album/albumService.js

https://www.polymer-project.org/1.0/

Chapter 8

139

2.	 Create app/modules/album/album-test.js. Now let's rename all files to:

�� app/modules/album/album.controller.js

�� app/modules/album/album.route.js

�� app/modules/album/album.html

�� app/modules/album/album.service.js

�� app/modules/album/album.spec.js

3.	 At this stage we need to execute the Grunt task to inject all the renamed files to the
index.html of the application. But we still need another change, this time on the
Gruntfile.js file at the application root folder. Replace the names on the injector
task and add the highlighted line:
injector: {
 options: {},
 local_dependencies: {
 files: {
 'index.html': [
 'bower.json',
 'app/app.js',
 'app/**/*.route.js',
 'app/**/*.controller.js',
 'app/**/*.service.js',
 'app/**/*.directive.js'
]
 }
 }
}

4.	 Type grunt dev, your default browser must be opened with the application running.

These steps are the baseline for the directives that will be created, but before we get our
hands dirty, let's see an image of what we will build.

Creating Reusable Directives

140

Of course, we can accomplish this task using the built-in ng-repeat AngularJS directive with
plain HTML markup. But we want to build a reusable component and don't want to repeat
ourselves on each page of the application.

You can keep the default names created using the generator-angm. We
changed them here just to illustrate another name convention.

Let's replace some default code to accomplish the task.

How to do it…
1.	 Let's create a stylesheet at app/assets/css and name it style.css, then place

the following code:
.card {
 position: relative;
 border: 1px solid #CCC;
 border-radius: 6px;
 text-align: center;
 background-color: #D06363;
 color: #fff;
}
.card .album {
 position: relative;
 margin-top: 15px;
}
.card .album img {
 width: 150px;
 height: 150px;
 border-radius: 6%;
 border: 2px solid #fff;

Chapter 8

141

}
.card .content {
	 margin-top: 10px;
	 padding-bottom: 10px;
}

2.	 Now, let's add the stylesheet at the index.html file right after the injector tag:
<link rel="stylesheet" href="/app/assets/css/style.css">

The style is pretty simple and serves just for didactic purposes.

3.	 Inside app/modules/shared/, create a new folder called directives and add a
folder in the directives folder, called album-description.

4.	 On app/modules/shared/directives/album-description, add a new file and
name it album.description.directive.js, and place the following code:
'use strict';

/**
 * @ngdoc function
 * @name app.directive:album-descriptionDirective
 * @description
 * # album-descriptionDirective
 * Directive of the app
 */
angular.module('interface-components')
.directive('albumDescription', [function () {

 return {
 restrict: 'E',
 templateUrl: 'app/modules/shared/directives/album-
 description/album.description.html',
 scope: {
 item: '='
 },
 controller: function ($scope) {
 $scope.opened = false;

 return $scope.toggle = function () {
 return $scope.opened = !$scope.opened;
 };
 }

 }

}]);

Creating Reusable Directives

142

5.	 As we can see in the previous code, the directive uses an external HTML template,
so let's create it. Place the following code in the new file and save it as album.
description.html in the same folder as before:
<div class="card">
 <div class="album">
 <img src="https://placehold.it/150x150" alt="{{
 item.band }} - {{ item.title }}" />
 </div>
 <div class="content">
 <p>{{ item.band }}

 {{ item.title }}</p>
 <button type="button" class="btn btn-default" ng-
 click="toggle()">Details</button>
 </div>
 <div class="description" ng-show="opened">
 <p>{{item.description}}</p>
 </div>
</div>

6.	 The next step is to create some sample content to fill the directive. Open the
album.controller.js at app/modules/album and replace the code
with the following lines:
'use strict';

/**
 * @ngdoc function
 * @name app.controller:albumCtrl
 * @description
 * # albumCtrl
 * Controller of the app
 */
angular.module('album')
.controller('AlbumCtrl', ['$scope', function ($scope) {

 $scope.listAlbums = [
 { band: "Motorhead", title: "March or Die",
 description: "Lorem ipsum dolor sit amet, consectetur
 adipiscing elit, sed do eiusmod tempor incididunt ut
 labore et dolore magna aliqua." },
 { band: "Chrome Division", title: "Infernal Eternal",
 description: "Lorem ipsum dolor sit amet, consectetur
 adipiscing elit, sed do eiusmod tempor incididunt ut
 labore et dolore magna aliqua." },

Chapter 8

143

 { band: "Hellyeah", title: "Blood for Blood",
 description: "Lorem ipsum dolor sit amet, consectetur
 adipiscing elit, sed do eiusmod tempor incididunt ut
 labore et dolore magna aliqua." },
 { band: "Lynyrd Skynyrd", title: "Last of a dying
 breed", description: "Lorem ipsum dolor sit amet,
 consectetur adipiscing elit, sed do eiusmod tempor
 incididunt ut labore et dolore magna aliqua. Ut enim ad
 minim veniam, quis nostrud exercitation ullamco laboris
 nisi ut aliquip ex ea commodo consequat. Duis aute
 irure dolor in reprehenderit in voluptate velit esse
 cillum dolore eu fugiat nulla pariatur. Excepteur sint
 occaecat cupidatat non proident, sunt in culpa qui
 officia deserunt mollit anim id est laborum." }
]

}]);

7.	 For this example, we insert the sample code inside the controller. In a real
application, it is preferable to use a service to load this data. Now we just need to
use the directive inside the album modules previously created in the Getting ready
section. Open the album.html from app/modules/album and replace the code
with the following lines:
<div class="container">
 <h1>Metal Albums</h1>
 <div class="row">
 <div class="col-sm-3" ng-repeat="album in listAlbums">
 <album-description item="album" >
 </album-description>
 </div>
 </div>
</div>

8.	 The last step is to check whether everything has gone to plan. Open your terminal on
the root project folder and type grunt dev, you will see the result from the previous
image right on your browser at the URL http://localhost:8000/#!/album.

Creating Reusable Directives

144

When we click on the Details button, the card opens and shows the album description as the
following screenshot:

How it works…
As already mentioned, it would be very simple to write a markup in HTML and use the
ng-repeat to build this page; however, we would need to repeat the same code on every
page, therefore we would not be following the DRY principle. Instead, the directive makes
the work easier. Let's see some important keys here.

In step 4, note the naming convention: we used album-description with a dash for the
folder name, and album.description.html with a dot for the filename.

Chapter 8

145

Using the templateUrl: 'app/modules/shared/directives/album-description/
album.description.html' makes it very easy to customize and change the card layout,
and we can also add new properties just in one file.

Using the scope attribute, we can isolate the code using the two-way data binding with an
equals sign:

scope: {
 item: '='
}

Also, this way, our directive does not depend strictly on the code generated by the repeater:

<div class="col-sm-3" ng-repeat="album in listAlbums">
 <album-description item="album" >
 </album-description>
</div>

And we can use the directive outside the repeater anywhere on the page. For this, we need
only pass the album's list name for the item owned by the directive:

<album-description item="listAlbums[0]" >
</album-description>

The controller takes care of the button collapse with more details using the built-in
ng-show directive:

controller: function ($scope) {
 $scope.opened = false;

 return $scope.toggle = function () {
 return $scope.opened = !$scope.opened;
 };
}

Building a directive as an interface
component

An important observation when we talk about directives and interface components is to
understand that this is just an analogy between them, since the following doubt may arise:
are not they the same thing? Not exactly.

The component is a code snippet that can be connected to any code block and still behave as
expected. Even in different code blocks.

Creating Reusable Directives

146

A directive often receives or handles data from external sources, so for it to behave the same
way, interacting with different data sources needs some adjustments.

Here, we will see a way to create a directive and encapsulate its contents to get the same
result.

Getting ready
Just as we did in the previous chapters, we will continue using the same application created
in the previous recipe.

In this example we will use an external library that, by itself, is already a component, a very
powerful charts library called d3.js.

Beyond it, we will use another library called c3.js. In an instant, you will understand why this
library helps us. For now, let's see what the official documentation says about C3.

C3 makes it easy to generate D3-based charts by wrapping the code required
to construct the entire chart. We do not need to write any more code D3.
http://c3js.org/.

Yes, we could directly use the library D3; however, with the help of C3.js, we have a powerful
wrapper on our hands.

Let's create a new module in order to use the following directive:

1.	 Add the following links to the index.html file:
<!-- Charts Lib -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/d3/3.5.6/
d3.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/c3/0.4.10/
c3.min.js"></script>
<!-- Charts Lib -->

2.	 The scripts tag goes right at the end of injector:js:
<link rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/libs/c3/0.4.10/c3.m
in.css">

3.	 The stylesheet goes right after the style.css tag. Open your terminal window at the
project root and type the following command:
yo angm:angm-module

http://c3js.org/

Chapter 8

147

4.	 Name it album-sales and type enter. After the command is executed, the terminal
shows the files that were created:
create app/modules/album-sales/album-salesCtrl.js

create app/modules/album-sales/album-salesRoute.js

create app/modules/album-sales/album-sales.html

create app/modules/album-sales/album-salesService.js

create app/modules/album-sales/album-sales-test.js

5.	 Rename the files to the same convention used in the previous recipe:

�� app/modules/album-sales/album.sales.controller.js

�� app/modules/album-sales/album.sales.route.js

�� app/modules/album-sales/album.sales.html

�� app/modules/album-sales/album.sales.service.js

�� app/modules/album-sales/album.sales.spec.js

6.	 Type grunt dev; your default browser must be opened with the application running.

7.	 Check the URL http://127.0.0.1:8000/#!/album-sales, you will see an h1
text with Content from Album-sales Page.

How to do it…
1.	 Inside app/modules/shared/directives, create a new folder called charts.

In app/modules/directives/charts, add a new file, name it charts.
directive.js, and place the following code:
'use strict';

/**
 * @ngdoc function
 * @name app.directive:chartsDirective
 * @description
 * # chartsDirective
 * Directive of the app
 */
angular.module('interface-components')
.directive('charts', [function () {

 return {
 restrict: 'EA',
 template: '<div></div>',
 scope: {
 config: '='

Creating Reusable Directives

148

 },
 link: function (scope, element, attrs) {
 // Default type
 if(!scope.config.type) scope.config.type = 'line';

 //generate c3 chart data
 var chartData = scope.config;
 chartData.bindto = '#' + attrs.id;

 var chart = c3.generate(chartData);

 scope.$on("c3.resize", function(e, data) {
 chart.resize();
 });
 }

 }

}]);

2.	 Open album.sales.html at app/modules/album-sales/album.sales.html
and replace the default code with the following lines:
<div class="container">
 <h1>Albums Sales</h1>

 <div class="row">
 <div class="col-lg-6">
 <div class="panel panel-default panel-hovered">
 <div class="panel-heading">{{splineTitle}}</div>
 <div class="panel-body">
 <div charts id="c3-spline"
 config="splineconfig"></div>
 </div>
 </div>
 </div>
 <div class="col-lg-6">
 <div class="panel panel-default panel-hovered">
 <div class="panel-heading">{{donutTitle}}</div>
 <div class="panel-body">
 <div charts id="c3-donut"
 config="donutconfig"></div>
 </div>
 </div>
 </div>
 </div>
</div>

Chapter 8

149

3.	 We are using the markup from the Twitter Bootstrap framework already included
in our application due the generator, but the directive itself doesn't depend on
Bootstrap. Let's add some content to the charts. Open the album.sales.
controller.js file and replace the default code with the following lines:
'use strict';

/**
 * @ngdoc function
 * @name app.controller:album-salesCtrl
 * @description
 * # album-salesCtrl
 * Controller of the app
 */
angular.module('album-sales')
.controller('Album-salesCtrl', ['$scope', function
($scope){

 $scope.splineTitle = "Spline-bar";
 $scope.splineconfig = {
 data: {
 url: '/app/modules/shared/directives/charts/
 sampleContent.json',
 mimeType: 'json',
 type: "spline",
 types: {
 "Motorhead": "bar"
 }
 },
 color: {
 pattern: ["#3F51B5", "#38B4EE", "#4CAF50", "#E91E63"]
 },

 size: {
 height: 320
 }
 };

 $scope.donutTitle = "Donut";
 $scope.donutconfig = {
 data: {
 columns: [["Motorhead", 48.9], ["Chrome Division",
 17.1], ["Hellyeah", 12.9], ["Lynyrd Skynyrd", 21.1]],
 type: "donut"
 },

Creating Reusable Directives

150

 size: {
 height: 320
 },
 donut: {
 width: 60
 },
 color: {
 pattern: ["#3F51B5", "#4CAF50", "#f44336", "#E91E63",
 "#38B4EE"]
 }
 }
}]);

4.	 Now, the last step is to add the sample content at /app/modules/shared/
directives/charts/. This is used to fill the charts with some data. Create
a new file at /app/modules/shared/directives/charts/, save it as
sampleContent.json, and place the following code:
{
 "Motorhead": [30, 100, 80, 140, 150, 200],
 "Chrome Division": [25, 100, 170, 140, 150, 50]
}

5.	 Open your terminal window at the root project folder and type:
grunt dev

Check the following URL: http://127.0.0.1:8000/#!/album-sales, you will see the
following image on your browser:

Chapter 8

151

With these five steps, we have built a powerful chart directive. Contrary to what is common in
other directives with external JavaScript dependence, our directive is unique. In most cases,
each type of chart is determined by the name of the directive, as with morrisjs and plotjs.

In our case, the type of chart is passed as the parameter to the directive through the
controller that instantiates your copy.

Let's see what happens.

How it works…
The directive has almost 34 lines of code, including comments and line breaks, but the magic
happens right in the scope property with the two-way bindable attribute:

return {
 restrict: 'EA',
 template: '<div></div>',
 scope: {
 config: '='
 },
 link: function (scope, element, attrs) {
 ...
 }

}

The link function is also very simple:

link: function (scope, element, attrs) {
 // Default type
 if(!scope.config.type) scope.config.type = 'line';

 //generate c3 chart data
 var chartData = scope.config;
 chartData.bindto = '#' + attrs.id;

 var chart = c3.generate(chartData);

 scope.$on("c3.resize", function(e, data) {
 chart.resize();
 });
}

In the if statement, we set a default chart type as line. In case we are missing the chart
type at the moment of creation on album.sales.controller.js, we just choose a line
type, which should be bar or other.

Creating Reusable Directives

152

The var chartData will hold all the attributes passed by the config object from
our controller.

The line chartData.bindto = '#' + attrs.id; grabs the ID and
c3.generate(chartData) method to generate the chart with the config object.

In this case, the configuration object came from album.sales.controller.js, where
we define: chart type, chart data, and chart pattern:

$scope.splineconfig = {
 data: {
 url: '/app/modules/shared/directives/charts/
 sampleContent.json',
 mimeType: 'json',
 type: "spline",
 types: {
 "Motorhead": "bar"
 }
 },
 ...

Also, we can pass any configuration that is available and supported by the C3.js library.

The markup for the charts has the attributes config and id:

<div charts id="c3-spline" config="splineconfig"></div>
<div charts id="c3-donut" config="donutconfig"></div>

The spline example uses an external JSON with data loaded by the Ajax built-in function
inside the C3.js:

data: {
 url: '/app/modules/shared/directives/charts/sampleContent.json',
 mimeType: 'json',
...

There's more…
We can create all kinds of charts available in C3.js just by changing the type property directly
within each controller.

Let's see an example of how this can be done.

Open the album.sales.html file and add the following code:

<div class="row">
 <div class="col-lg-6">
 <div class="panel panel-default panel-hovered">

Chapter 8

153

 <div class="panel-heading">{{lineTitle}}</div>
 <div class="panel-body">
 <div charts id="c3-line" config="lineconfig"></div>
 </div>
 </div>
 </div>
 <div class="col-lg-6">
 <div class="panel panel-default panel-hovered">
 <div class="panel-heading">{{pieTitle}}</div>
 <div class="panel-body">
 <div charts id="c3-pie" config="pieconfig"></div>
 </div>
 </div>
 </div>
</div>

<div class="row">
 <div class="col-lg-6">
 <div class="panel panel-default panel-hovered">
 <div class="panel-heading">{{barTitle}}</div>
 <div class="panel-body">
 <div charts id="c3-bar" config="barconfig"></div>
 </div>
 </div>
 </div>
 <div class="col-lg-6">
 <div class="panel panel-default panel-hovered">
 <div class="panel-heading">{{stackedbarTitle}}</div>
 <div class="panel-body">
 <div charts id="c3-stackedbar"
 config="stackedbarconfig"></div>
 </div>
 </div>
 </div>
</div>

Add the following code to album.sales.controller.js:

// Charts// Line Chart
$scope.lineTitle = "Line";
$scope.lineconfig = {
 data: {
 columns: [
 ['Hellyeah', 30, 200, 100, 200, 150, 250],
 ['Lynyrd Skynyrd', 50, 20, 10, 40, 15, 25]

Creating Reusable Directives

154

]
 }
};

// Bar Chart
$scope.barTitle = "Bar";
$scope.barconfig = {
 data: {
 columns: [
 ['Hellyeah', 30, 200, 100, 400, 150, 250],
 ['Lynyrd Skynyrd', 130, 100, 140, 200, 150, 50]
],
 type: 'bar',
 onclick: function (d, element) {
 alert('yeah ' + JSON.stringify(d));

 }
 },
 bar: {
 width: {
 ratio: 0.5 // this makes bar width 50% of length between
 ticks
 }
 // or
 //width: 100 // this makes bar width 100px
 }
};

// Stacked Bar Chart
$scope.stackedbarTitle = "Stacked Bar";
$scope.stackedbarconfig = {
 data: {
 columns: [
 ['Motorhead', -30, 200, 200, 400, -150, 250],
 ['Chrome Division', 130, 100, -100, 200, -150, 50],
 ['Hellyeah', -230, 200, 200, -300, 250, 250]
],
 type: 'bar',
 groups: [
 ['data1', 'data2']
]
 },

Chapter 8

155

 grid: {
 y: {
 lines: [{value:0}]
 }
 }
};

// Pie Chart
$scope.pieTitle = "Pie";
$scope.pieconfig = {
 data: {
 columns: [
 ["Motorhead", 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2,
 0.1, 0.2, 0.2, 0.1, 0.1, 0.2, 0.4, 0.4, 0.3, 0.3, 0.3, 0.2,
 0.4, 0.2, 0.5, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.2, 0.4, 0.1,
 0.2, 0.2, 0.2, 0.2, 0.1, 0.2, 0.2, 0.3, 0.3, 0.2, 0.6, 0.4,
 0.3, 0.2, 0.2, 0.2, 0.2],
 ["Chrome Division", 1.4, 1.5, 1.5, 1.3, 1.5, 1.3, 1.6, 1.0,
 1.3, 1.4, 1.0, 1.5, 1.0, 1.4, 1.3, 1.4, 1.5, 1.0, 1.5, 1.1,
 1.8, 1.3, 1.5, 1.2, 1.3, 1.4, 1.4, 1.7, 1.5, 1.0, 1.1, 1.0,
 1.2, 1.6, 1.5, 1.6, 1.5, 1.3, 1.3, 1.3, 1.2, 1.4, 1.2, 1.0,
 1.3, 1.2, 1.3, 1.3, 1.1, 1.3],
 ["Hellyeah", 2.5, 1.9, 2.1, 1.8, 2.2, 2.1, 1.7, 1.8, 1.8,
 2.5, 2.0, 1.9, 2.1, 2.0, 2.4, 2.3, 1.8, 2.2, 2.3, 1.5, 2.3,
 2.0, 2.0, 1.8, 2.1, 1.8, 1.8, 1.8, 2.1, 1.6, 1.9, 2.0, 2.2,
 1.5, 1.4, 2.3, 2.4, 1.8, 1.8, 2.1, 2.4, 2.3, 1.9, 2.3, 2.5,
 2.3, 1.9, 2.0, 2.3, 1.8],
],
 type: "pie"
 }
};

Now type the grunt dev command at your terminal and check:
http://127.0.0.1:8000/#!/album-sales.

Creating Reusable Directives

156

The result will be similar to the following screenshot:

Chapter 8

157

We have six types of charts using the same directive markup:

<div charts id="c3-spline" config="splineconfig"></div>
<div charts id="c3-donut" config="donutconfig"></div>
<div charts id="c3-line" config="lineconfig"></div>
<div charts id="c3-pie" config="pieconfig"></div>
<div charts id="c3-bar" config="barconfig"></div>
<div charts id="c3-stackedbar" config="stackedbarconfig"></div>

See also
ff You can find all configuration possibilities at the C3.js reference manual at

http://c3js.org/reference.html

Creating a form directive with custom
validation

Continuing within the context of the previous examples, we will now create a custom directive
to validate some form fields. This recipe applies to any type of form field; however, we will use
the <select> tag.

AngularJS offers some very useful resources for form validation with built-in directives. We will
create a component that can be reused elsewhere in our application.

Getting ready
Just as we did in the previous chapters, we will continue using the same application created in
the previous recipe.

In this example, we will use an external library called ngMessages.

For the purpose of this example, we just add the library as a dependency in our index.html,
using a Content Delivery Network (CDN), as we did in the previous recipe.

Add the following link to the index.html file:

<!-- Ng Messages-->
<script
src="https://cdnjs.cloudflare.com/ajax/libs/angular.js/1.4.5/angul
ar-messages.min.js"></script>
<!-- Ng Messages-->

The scripts tag goes right at the end of <!-- Charts Lib -->.

http://c3js.org/reference.html

Creating Reusable Directives

158

Now add the ngMessages at the end of app.js in the app folder as shown in the following
highlighted code:

angular.module('interface-components', [
 'ngResource',
 'ui.bootstrap',
 'ngCookies',
 'ngAnimate',
 'ngTouch',
 'ngSanitize',
 'ui.router',
 'album',
 'album-sales',
 'ngMessages'
])

How to do it...
1.	 Create a new folder on app/modules/shared/directive and name it

album-rating. Create a new file and place the following code. Save the file
as album.rating.directive.js:
'use strict';

/**
 * @ngdoc function
 * @name app.directive:albumRatingDirective
 * @description
 * # albumRatingDirective
 * Directive of the app
 */
angular.module('interface-components')
.directive('albumRating', [function () {

 return {
 restrict: 'E',
 require: '?ngModel',
 templateUrl: 'app/modules/shared/directives/album-
 rating/album.rating.html',
 link: function(scope, element, attrs, ngModel) {
 if (!ngModel) return;

 // Copy from ngModel and place on local scope
 ngModel.$render = function() {
 scope.item = {

Chapter 8

159

 music: ngModel.$viewValue,
 album: ngModel.$viewValue
 };
 };

 // Init score selects
 scope.selects = {

 music: function() {

 // Set score
 var score = 10;

 var musicScore = [];

 // Simple for statement to generate scores
 for (var i = 1; i <= score; i++) {
 var toString = i.toString();
 // Simple number format adding 0 for single
 number
 musicScore.push((toString.length < 2) ? '0' +
 toString : toString);
 }

 return musicScore;
 },
 albums: function() {
 var albumsList = ['March or Die', 'Aces of Spades',
 'Iron Fist'];

 return albumsList;
 }
 };
 // Listen for chnages
 scope.$watch('item', function(item) {
 // Mandatory filds
 if (attrs.required) {

 var albumIsValid = !!item.album;
 var musicIsValid = !!item.music;
 // Validation
 ngModel.$setValidity('required', albumIsValid ||
 musicIsValid ? true : false);
 ngModel.$setValidity('albumRequired',
 albumIsValid ? true : false);

Creating Reusable Directives

160

 ngModel.$setValidity('musicRequired',
 musicIsValid ? true : false);

 // ngModel update
 if (albumIsValid && musicIsValid) {
 ngModel.$setViewValue('Best Album: ' +
 item.album + ' ,Music rating: ' + item.music +
 ' Stars');
 }
 }
 }, true);
 }
 }
}]);

2.	 Create a new file and place the following code, save the file as album.rating.
html:
<div class="row">
 <div class="col-sm-4">
 Best Album
 <select ng-model="item.album" ng-options="i for i in
 selects.albums()" class="form-control">
 <option value="" disabled>----</option>
 </select>
 </div>
 <div class="col-sm-4">
 Music
 <select ng-model="item.music" ng-options="i for i in
 selects.music()" class="form-control">
 <option value="" disabled>--</option>
 </select>
 </div>
</div>

3.	 Let's use the same album.html page and place the following code right after the
album-description tag:

<form name="bandForm" novalidate>
 <album-rating name="album" ng-model="user.choices"
 required></album-rating>
 <hr>
 <alert type="danger" ng-if="bandForm.$invalid">
 <ul ng-messages="bandForm.album.$error" ng-messages-
 multiple>

Chapter 8

161

 <li ng-message="albumRequired">Please Choose an
 Album
 <li ng-message="musicRequired">Please Rating the
 music

 </alert>
</form>
<div ng-hide="bandForm.$invalid" class="well">
 {{ user.choices }}
</div>

4.	 Add the following code to the album.html page, right after the album description
directive:

<form name="bandForm" novalidate>
 <album-rating name="album" ng-model="user.choices"
 required></album-rating>
 <hr>
 <alert type="danger" ng-if="bandForm.$invalid">
 <ul ng-messages="bandForm.album.$error" ng-messages-
 multiple>
 <li ng-message="albumRequired">Please Choose an
 Album
 <li ng-message="musicRequired">Please Rating the
 music

 </alert>
</form>
<div ng-hide="bandForm.$invalid" class="well">
 {{ user.choices }}
 </div>

5.	 Open your terminal window at the root project folder and type:
grunt dev

Creating Reusable Directives

162

Check the URL http://127.0.0.1:8000/#!/album. You will see the following image on
your browser:

When we choose an album and a score, the result will be the same as the following
screenshot:

How it works…
Now, let's understand what happened with the directive. You noticed that this time we did not
use any code in an external controller. This directive was composed using only the property
link() function.

Also, we used the ngModel:

// Copy from ngModel and place on local scope
ngModel.$render = function() {
 scope.item = {
 music: ngModel.$viewValue,
 album: ngModel.$viewValue
 };
};

Chapter 8

163

Let's see what the official documentation says about ngModel: The
ngModel directive binds an input, select, textarea (or custom form control)
to a property on the scope using NgModelController, which is created
and exposed by this directive.

NgModel is responsible for:

ff Binding the view into the model, which other directives, such as
input, textarea, or select, require

ff Providing validation behavior (for example, required, number,
email, url)

ff Keeping the state of the control (valid/invalid, dirty/pristine,
touched/untouched, validation errors)

ff Setting related CSS classes on the element (ng-valid, ng-
invalid, ng-dirty, ng-pristine, ng-touched, ng-
untouched, ng-empty, ng-not-empty), including animations

ff Registering the control with its parent form

This way, we can map the alterations that come into our select tag within the template of
the directive:

<select ng-model="item.album" ng-options="i for i in
selects.albums()" class="form-control">
 <option value="" disabled>----</option>
</select>
<select ng-model="item.music" ng-options="i for i in
selects.music()" class="form-control">
 <option value="" disabled>--</option>
</select>

The ng-repeat runs over the scope.selects function inside the link function, where we
return two functions:

scope.selects = {

 music: function() {
 ...
 },
 albums: function() {
 ...
 }
;

Creating Reusable Directives

164

And for every alteration that the model receives, the watch() function applies validation and
sets the values chosen in the select box:

scope.$watch('item', function(item) {
 // Mandatory fields
 if (attrs.required) {

 var albumIsValid = !!item.album;
 var musicIsValid = !!item.music;

 // Validation
 ngModel.$setValidity('required', albumIsValid || musicIsValid
 ? true : false);
 ngModel.$setValidity('albumRequired', albumIsValid ? true :
 false);
 ngModel.$setValidity('musicRequired', musicIsValid ? true :
 false);

 // ngModel update
 if (albumIsValid && musicIsValid) {
 ngModel.$setViewValue('Best Album: ' + item.album + ' ,Music
 rating: ' + item.music + ' Stars');
 }
 }
}, true);

The album.html file uses the directive and the ngMessages validation to show some
warning before the form can be completed.

In this recipe, we try to show how it is possible to combine some built-in directives
within a custom form component directive using AngularJS resources, in order to
help us complete a task.

See also
ff More information about ngModel can be found at https://docs.angularjs.

org/api/ng/directive/ngModel, and more about ngMessages can be found at
https://docs.angularjs.org/api/ngMessages/directive/ngMessages

https://docs.angularjs.org/api/ng/directive/ngModel
https://docs.angularjs.org/api/ng/directive/ngModel
https://docs.angularjs.org/api/ngMessages/directive/ngMessages

165

9
Directive Unit Testing

with Karma and Jasmine

In this chapter, we will cover:

ff How to test AngularJS apps using Karma and Karma Runner

ff Writing tests for directives with Jasmine

ff Testing elements when the scope changes

Introduction
As we already know, AngularJS is designed to be fully testable. Its engineers built the
framework in such a way that it is possible to test everything: controllers, services, and
of course, custom directives.

In this chapter, we will follow some recipes to make your job easier when it is necessary
to test your own directives.

At first glance, it may seem difficult to test custom directives, but actually there are some
steps we can take to facilitate this.

Some tools help us in this task, among them there is one in particular that makes it
even easier.

It is a very popular IDE among JavaScript developers, known as WebStorm.

Directive Unit Testing with Karma and Jasmine

166

We will show you how to configure the IDE and use the Karma Test Runner, but you can follow
the next examples using the same editor that was used on the previous examples.

You can download the trial version at: https://www.jetbrains.com/
webstorm/.

How to test AngularJS apps using Karma
and Karma Runner

Before we dive deep into custom directives testing, let's see how to configure and use the
WebStorm. But first, let's build the baseline code for the next recipes.

Getting ready
As usual, we are still using the generator-angm to build the baseline code.

1.	 Create a new folder and name it directive-unit-testing. Open your terminal
window and type:
yo angm

2.	 Type directive-unit-testing and press Enter, Enter, Enter. At the end of the
command, we can see all the versions installed; you will note that we are using the
last stable version from AngularJS at the time of writing:

bower install json3#3.3.1

bower install es5-shim#3.1.0

bower install bootstrap#3.3.5

bower install angular-resource#1.4.7

bower install angular-bootstrap#0.11.2

bower install angular-ui-router#0.2.15

bower install jquery#2.1.4

bower install angular#1.4.7

bower install angular-route#1.4.7

bower install angular-cookies#1.4.7

bower install angular-touch#1.4.7

bower install angular-animate#1.4.7

bower install angular-mocks#1.4.7

bower install angular-sanitize#1.4.7

https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/

Chapter 9

167

At this moment, we have the baseline to understand how Karma works. Let's see how to
configure the IDE for tests with Karma Runner.

How to do it…
1.	 Open the WebStorm IDE. On the welcome screen, choose the open folder option and

select the folder you have just created, directive-unit-testing.

2.	 After all project files are indexed by the IDE, we can keep going and set up the Karma
Runner. On the WebStorm menu, click on Run | Edit Configurations and you will see
the following screenshot:

Directive Unit Testing with Karma and Jasmine

168

3.	 You may notice that WebStorm has a range of engines for testing that can be seen
on the previous image. Press the plus sign in the top-left corner and fill in the fields
at the right-hand side, as in the following screenshot:

Note that the path to the application folder must be replaced with your
own path to the directive-unit-testing folder for the Karma
package and Configuration file. Another important point is that we already
have the Karma.conf.js file due to generator-angm.

�� Node Interpreter: You will see the path to your local Node installation
(on Mac OS X this is usr/local/bin/node) in this field.

�� Karma Package: You will see the path to the Karma folder inside the
node_modules folder in the root application folder in this field.

�� Configuration file: You will see the path to the Karma.conf.js file inside
the root application folder in this field. Click on Apply and then on the
OK button. After that, we can see at the top of WebStorm our test runner
configured and ready to use, as seen in the following screenshot:

Chapter 9

169

4.	 Now we just need to press the Play button at the right-hand side of the Karma Test
Runner. On the bottom of the IDE we can see the testing tab running the tests:

The preceding screenshot shows us the tests that were run and to which files the tests refer.
We also have the runtime and the test result: green if passed and red if failed.

How it works…
By default, WebStorm already has the Karma Runner, so we just need to configure it. In fact,
the generator we use already has some preconfigured testing libraries, as we can see in the
package.json file at the application root folder:

 "karma": "~0.12.0",
 "karma-chrome-launcher": "~0.1.2",
 "karma-coverage": "~0.2.0",
 "karma-firefox-launcher": "~0.1.3",
 "karma-jasmine": "~0.2.1",
 "karma-phantomjs-launcher": "~0.1.2"

As we can see in the previous screenshot, you can click on the title of the test on the left pane
and the WebStorm IDE automatically directs you to the file in which the test was written.

This is an extremely important feature when dealing with many test files per module. In
this case, we found the following file at app/modules/home/home-test.js file. Don't
worry about the syntax, in the next recipe we will dive deep into Jasmine and the test syntax
for directives:

'use strict';

(function() {
 describe('homeCtrl', function () {
 var controller = null, $scope = null;

 beforeEach(function () {
 module('directive-unit-testing');

Directive Unit Testing with Karma and Jasmine

170

 });

 beforeEach(inject(function ($controller, $rootScope) {
 $scope = $rootScope.$new();
 controller = $controller('HomeCtrl', {
 $scope: $scope
 });
 }));

 it('Should HomeCtrl must be defined', function () {
 expect(controller).toBeDefined();
 });

 it('Should have title', function() {
 expect($scope.title).toBe('Hello, Angm-Generator!');

 });

 });
})();

One of the most important steps here was done by the generator-angm, the Karma.conf.
js file with the following configuration. The file is fully commented in order to form a better
understanding:

'use strict';

// Karma configuration
module.exports = function(config) {
 config.set({
 // Frameworks to use
 frameworks: ['jasmine'],

 // List of files / patterns to load in the browser
 files: [
 src/bower_components/jquery/dist/jquery.js',
 'src/bower_components/es5-shim/es5-shim.js',
 'src/bower_components/json3/lib/json3.min.js',
 'src/bower_components/bootstrap/dist/js/bootstrap.js',
 'src/bower_components/angular/angular.js',
 'src/bower_components/angular-resource/angular-resource.js',
 'src/bower_components/angular-mocks/angular-mocks.js',
 'src/bower_components/angular-cookies/angular-cookies.js',
 'src/bower_components/angular-sanitize/angular-sanitize.js',
 'src/bower_components/angular-animate/angular-animate.js',
 'src/bower_components/angular-touch/angular-touch.js',

Chapter 9

171

 'src/bower_components/angular-route/angular-route.js',
 'src/bower_components/angular-ui-router/release/angular-ui-
 router.js',
 'src/bower_components/angular-bootstrap/ui-bootstrap-
 tpls.js',
 'app/app.js',
 'app/modules/home/homeCtrl.js',
 'app/modules/home/homeRoute.js',
 'app/modules/home/home-test.js',
 'app/modules/**/*Ctrl.js',
 'app/modules/**/*Route.js',
 'app/modules/**/*Service.js',
 'app/modules/**/*-test.js'
],

 // Test results reporter to use
 // Possible values: 'dots', 'progress', 'junit', 'growl',
 'coverage'
 //reporters: ['progress'],
 reporters: ['progress'],

 // Web server port
 port: 9876,

 // Enable / disable colors in the output (reporters and logs)
 colors: true,

 // Level of logging
 // Possible values: config.LOG_DISABLE || config.LOG_ERROR ||
 config.LOG_WARN || config.LOG_INFO || config.LOG_DEBUG
 logLevel: config.LOG_INFO,

 // Enable / disable watching file and executing tests whenever
 any file changes
 autoWatch: true,

 // Start these browsers, currently available:
 // - Chrome
 // - ChromeCanary
 // - Firefox
 // - Opera
 // - Safari (only Mac)
 // - PhantomJS
 // - IE (only Windows)
 browsers: ['PhantomJS'],

Directive Unit Testing with Karma and Jasmine

172

 // If browser does not capture in given timeout [ms], kill it
 captureTimeout: 60000,

 // Continuous Integration mode
 // If true, it capture browsers, run tests and exit
 singleRun: true
 });
};

Almost all AngularJS generators have the Karma and Karma Runner preconfigured.

If you started your project from scratch, you just need to install Karma and Karma
Runner manually.

There's more…
In the previous example, we used a powerful IDE for developing applications with AngularJS,
however any text editor can be used for this purpose, as well as tests that can be performed
from the command line.

Let's see how to perform the tests using the terminal. Open your terminal window at the root
folder of directive-unit-testing and type:

npm test

You can see the final output on your terminal, as follows:

This is possible because the package.json file has this command preconfigured by the
generator we are using.

Another important point we need to note is that Karma enables us to run tests using the
browser. For this, we must replace the following highlighted line in the browser you want
to use:

// Start these browsers, currently available:
 // - Chrome
 // - ChromeCanary
 // - Firefox
 // - Opera
 // - Safari (only Mac)

Chapter 9

173

 // - PhantomJS
 // - IE (only Windows)
 browsers: ['PhantomJS'],

In this case, we are using PhantomJS, a headless Webkit engine built with JavaScript
and featuring a huge API to support many web standards such as JSON, CSS selectors,
and many more.

Note that you need to have the browser pre-installed on your machine,
moreover you must install the launcher of the chosen browser.

See also
ff You can read more about Karma at: http://karma-runner.github.io/0.13/

intro/how-it-works.html

ff More info about PhantomJS can be found at http://phantomjs.org/

Writing tests for directives with Jasmine
As we commented in the previous chapter, we use the Jasmine framework for writing tests.
Let's take a look at what the official documentation says about Jasmine.

Jasmine is a behavior-driven development framework for testing JavaScript
code. It does not depend on any other JavaScript frameworks. It does not
require the DOM. And it has a clean, obvious syntax so that you can easily
write tests.

Getting ready
For the next recipe we use a code base that was previously created in Chapter 8, Creating
Reusable Directives, which charts the directive with some minor changes.

You can download the code from the Chapter 8 folder directly from the Packt Publishing
website, or by following the steps using this chapter's sample code.

Remember that in our previous example, we focused only on configuring the application
to perform the test with Karma and Karma Runner.

http://karma-runner.github.io/0.13/intro/how-it-works.html
http://karma-runner.github.io/0.13/intro/how-it-works.html
http://phantomjs.org/

Directive Unit Testing with Karma and Jasmine

174

Before we start writing our code, it's important to remember that the directives are used to
manipulate the DOM in AngularJS applications, unlike controllers or services, where directives
manipulate the DOM through the use of HTML templates.

Let's see the necessary steps to get the baseline code for the next recipes:

1.	 Grab the source code from the Chapter 8 folder.

2.	 Open the index.html file at the application root and replace the CDN script links at
the bottom of the file, with the following links:
<!-- Charts Lib -->
<script src="/app/modules/shared/directives/charts/d3.min.js"></
script>
<script src="/app/modules/shared/directives/charts/c3.min.js"></
script>
<!-- Charts Lib -->

3.	 You can grab the content from both files at their URLs. And as you can see, we
created two new files in the /app/modules/shared/directives/charts/
folder, one for d3.min.js and another for c3.min.js.

Step 3 is pretty important because karma.conf.js needs files on your
local machine, not on any CDN, to run the tests properly.

4.	 Now we need to edit the karma.conf.js file. Let's replace the following
highlighted code:

'use strict';

// Karma configuration
module.exports = function(config) {
 config.set({
 // Frameworks to use
 frameworks: ['jasmine'],

 // List of files / patterns to load in the browser
 files: [
 'src/bower_components/jquery/dist/jquery.js',
 'src/bower_components/es5-shim/es5-shim.js',
 'src/bower_components/json3/lib/json3.min.js',
 'src/bower_components/bootstrap/dist/js/
 bootstrap.js',
 'src/bower_components/angular/angular.js',
 'src/bower_components/angular-resource/angular-
 resource.js',

Chapter 9

175

 'src/bower_components/angular-mocks/angular-
 mocks.js',
 'src/bower_components/angular-cookies/angular-
 cookies.js',
 'src/bower_components/angular-sanitize/angular-
 sanitize.js',
 'src/bower_components/angular-animate/angular-
 animate.js',
 'src/bower_components/angular-touch/angular-
 touch.js',
 'src/bower_components/angular-route/angular-
 route.js',
 'src/bower_components/angular-ui-
 router/release/angular-ui-router.js',
 'src/bower_components/angular-bootstrap/ui-bootstrap-
 tpls.js',
 'app/app.js',
 'app/modules/home/home.controller.js',
 'app/modules/home/home.route.js',
 'app/modules/home/home.spec.js',
 'app/modules/**/*.controller.js',
 'app/modules/**/*.route.js',
 'app/modules/**/*.service.js',
 'app/modules/**/*.directive.js',
 'app/modules/**/*.spec.js',

 'app/modules/shared/directives/charts/d3.min.js',
 'app/modules/shared/directives/charts/c3.min.js'
],

 // Test results reporter to use
 // Possible values: 'dots', 'progress', 'junit',
 'growl', 'coverage'
 //reporters: ['progress'],
 reporters: ['progress'],

 // Web server port
 port: 9876,

 // Enable / disable colors in the output (reporters and
 logs)
 colors: true,

Directive Unit Testing with Karma and Jasmine

176

 // Level of logging
 // Possible values: config.LOG_DISABLE ||
 config.LOG_ERROR || config.LOG_WARN || config.LOG_INFO
 || config.LOG_DEBUG
 logLevel: config.LOG_INFO,

 // Enable / disable watching file and executing tests
 whenever any file changes
 autoWatch: true,

 // Start these browsers, currently available:
 // - Chrome
 // - ChromeCanary
 // - Firefox
 // - Opera
 // - Safari (only Mac)
 // - PhantomJS
 // - IE (only Windows)
 browsers: ['PhantomJS'],

 // If browser does not capture in given timeout [ms],
 kill it
 captureTimeout: 60000,

 // Continuous Integration mode
 // If true, it capture browsers, run tests and exit
 singleRun: true
 });
};

The previous change puts all application dependencies within the naming convention that we
adopted previously.

Now we have all the code prepared, let's create our directive test.

How to do it…
1.	 Let's add a new file to the charts directive folder at app/modules/shared/

directives/charts/, and save it as charts.spec.js.

2.	 Place the following code in the charts.spec.js file:
'use strict';

(function() {
 describe('chart directive test', function() {

Chapter 9

177

 //Variables used on tests
 var $scope, elem, iSo;

 //load the app module and all dependencies
 beforeEach(function () {
 module('interface-components');
 });

 beforeEach(inject(function ($rootScope, $compile) {
 $scope = $rootScope.$new();
 //Simulate Data to fill Directive
 $scope.config = {
 data: {
 columns: [["Motorhead", 48.9], ["Chrome
 Division", 16.1], ["Hellyeah", 10.9], ["Lynyrd
 Skynyrd", 17.1]]
 },
 size: {
 height: 320
 },
 donut: {
 width: 60
 },
 color: {
 pattern: ["#3F51B5", "#4CAF50", "#f44336",
 "#E91E63", "#38B4EE"]
 }
 };
 // Emulate the Directive itself
 elem = '<div charts id="c3-donut"
 config="config"></div>';

 //complile element
 elem = $compile(elem)($scope);

 //digest the scope to register the elem
 $scope.$digest();
 iSo = elem.isolateScope();

 }));

 // Create an Object
 it('should using isolate scope', function() {
 expect(iSo).toBeDefined('object');
 });

Directive Unit Testing with Karma and Jasmine

178

 // Create an object
 it('should create a config object with iSo scope',
 function() {
 expect(iSo.config).toBeDefined('object');
 });
 });
})();

3.	 Now that we have just created the test, we need to verify that all assertions will
pass successfully.

Go back to the WebStorm IDE and run the tests by clicking the play button, which is
next to our test runner, as shown in the following screenshot:

Maybe you need to reconfigure the Karma Runner. For this, follow steps 1 to 4 of the
first recipe.

As we saw in the previous recipe, we will see the testing result at the bottom panel on
WebStorm, as in the following screenshot:

In the preceding screenshot, we can see that the tests passed with success.

In the left panel, you can see all the tests that were executed, all with a green icon. On the
right, we have the test name and the running time.

Chapter 9

179

How it works…
The test writing syntax came from the Jasmine framework, determined on the
karma.conf.js file:

config.set({
 // Frameworks to use
 frameworks: ['jasmine'],
...
)}

This line determines which framework will be used, the possible values are:
['jasmine'],['mocha'] or ['qunit']. All are pretty similar, just with different syntax.

So, the describe() function is common between all frameworks, the first parameter is the
test name, and the second is a function:

 describe('chart directive test', function() {…}

To start the tests, we need to load the application, so we are using the: beforeEach()
function:

 beforeEach(function () {
 module('interface-components');
 });

And to create and emulate the data and the directive itself, we are using the beforeEach()
function, this time injecting $rootScope and $compile:

beforeEach(inject(function ($rootScope, $compile) {…}

We need $compile to render the directive. Remember the directive manipulates the DOM
with templates:

// Emulate the Directive itself
 elem = '<div charts id="c3-donut" config="config"></div>';

 //compile element
 elem = $compile(elem)($scope);

 //digest the scope to register the elem
 $scope.$digest();

 iSo = elem.isolateScope();

Directive Unit Testing with Karma and Jasmine

180

And last but not least, there is isolateScope(). As we have seen in the previous chapters,
our directive does not inherit from its parent scope, but rather uses the isolated scope,
meaning it has its own scope:

.directive('charts', [function () {

 return {
 restrict: 'EA',
 template: '<div></div>',
 scope: {
 config: '='
 },
...
}

Three types of local scope properties can be added into the isolated scope: @ (One-way
binding), = (Two-way binding), and & (Expressions). So every time you use a scope property
and assign an object literal, you are using an isolated scope.

There's more…
You can install any Karma plugin using the following command:

npm install karma-<plugin name> --save-dev

For example, to use the Mocha framework instead of Jasmine, you can install karma-mocha
with the previous command.

Testing elements when the scope changes
Another important task is to test the directive when the scope has changed.

Getting ready
We are still using the same code from the previous recipe, we just need to add more assertions.

How to do it…
1.	 Open the charts.spec.js file at app/modules/shared/directives/charts/

and add the following highlighted code:
// Update chart when scope change
 it('should update chart', function() {
 $scope.config.data.columns.pop();
 $scope.$digest();

Chapter 9

181

 expect(iSo.config.data.columns.length).toBe(3);
 });

 //if no type is specified it should be set to line
 it('should have a default line chart type', function() {
 $scope.$digest();
 expect(iSo.config.type).toEqual('line');
 });

2.	 Let's run the tests again. Click on the Play button at the top of WebStorm. Now we
can see two more tests, one for update chart and another for chart type,
as we can see in the following screenshot:

How it works…
Let's see what happens in the previous block of code:

it('should update chart', function() {
 $scope.config.data.columns.pop();
 $scope.$digest();
 expect(iSo.config.data.columns.length).toBe(3);
});

Using the $scope.config.data.columns.pop(), we removed one column from the
chart, and used the $scope.$digest(); to render the chart after the change.

Directive Unit Testing with Karma and Jasmine

182

The same is done on the second block:

it('should have a default line chart type', function() {
 $scope.$digest();
 expect(iSo.config.type).toEqual('line');
});

But this time we just checked that the directive has a default chart type, if the chart config
doesn't have one.

There's more…
WebStorm also offers us the possibility of exporting the test results to an HTML external file
and saving it somewhere in our application:

1.	 Let's see how we can do that. After the tests have finished, click on the export button
on the testing toolbar (the last icon), as shown in the following image:

2.	 Choose the folder you want to save the file to and check the Open exported file
checkbox, as shown in the following screenshot:

Chapter 9

183

3.	 The final result from these steps can be found in the following screenshot:

185

Index
Symbols
$apply() function 12
$http.get() method 118

A
accordion tabs directives 56-60
Angular Bootstrap UI

URL 44
AngularJS

documentation, URL 122
version 2, URL 126

AngularJS apps
testing, with Karma 166-173
testing, with Karma Runner 166-173

angularjs-google-maps
URL 85

AngularJS project
scaling 137
scaling, for using reusable

directives 138-145
AngularJS UI Bootstrap

URL 52
AngularJS UI directives

accordion tabs directives 56
isolated scope 52
modal directives 40
tab directive 46

angular-loading-bar directive
about 85
URL 85

B
baseline app

creating, with generator-angm 78, 79
Bootstrap UI directives

avoiding, in dealing with tabs 13-22
built-in directives

ng-hide 1
ng-repeat 1
ng-show 1

C
C3.js

reference manual, URL 157
compile function

about 125
using 68-70, 126

compiler
about 70
compile phase 70
link phase 70
URL 71

content
mixing, on templates 128-135

Content Delivery Network (CDN) 157
controller function, directive

about 32, 33
URL 35
using 33-35

custom CSS
about 103
applying 103-106

custom validation
used, for creating form directive 157-164

186

D
D3

URL 146
data attribute

about 35
using, for HTML5 compilation 35-37

Dependency Injection (DI) 13
Directive Definition Object (DDO)

about 4
URL 13

directives
building, as interface component 145-151
controller function 32
dynamic templates, using 118-124
example 64-66
testing, on scope change 180-183
test, writing with Jasmine 173-180
URL 4

Document Object Model (DOM)
about 1
manipulating, with jQuery 66-68

Don’t Repeat Yourself (DRY) 138
draggable widget

URL 72
droppable widget

URL 75
dynamic content

loading 60-62
dynamic directives

organizing, on shared folders 126-128
dynamic templates

dealing with 117
using, on directives 118-25

E
external templates

loading, for best practices 7-10

F
files, navbar folder

navabar-test.js 25
navbarCtrl.js 25
navbar.html 25
navbarRoute.js 25

form directive
creating, with custom validation 157-164

G
generator

best practices 80, 81
generator-angm

URL 78
used, for creating baseline app 78, 79

Google CDN
URL 82

grunt dev command
URL 81

Gruntfile 97

H
HTML5 compilation

data attribute, using for 35-37

I
inline HTML templates

about 2
using 2-4

interface component
directive, building as 145-157

isolated scope
about 52-54
attribute 54
bindings 54
expressions 54
URL 55

J
Jasmine

used, for writing tests for directives 173-179
jQuery

used, for manipulating DOM 66-68
jQuery Lite 12, 64
jQuery UI

draggable directive, creating 71, 72
droppable directive, creating 73, 74

187

K
Karma

testing, with AngularJS apps 166-172
URL 173

Karma Runner
testing, with AngularJS apps 166-172

L
LESS

URL 106
link function

about 11, 124
using 11-13, 68-70

M
modal directive

creating 4-7
modal directives

dealing with 40-43
working 44-46

N
navbar directive

building 24-29
ng-grid directive

about 88
implementing 88-93
static JSON file, URL 91
URL 93

ngMap directive
about 82
implementing 82-84

ngModel
about 163
URL 164

ng-style() directive 7
ng-transclude

URL 7

O
Off Canvas menu

about 95-102
URL 95

P
PhantomJS

URL 173
Polymer

URL 138
postLink()function 68

R
reusable directives

used, by scaling AngularJS project 138-145

S
scope.$apply() method 66
shared folders

dynamic directives, organizing 126-128
shopping cart

building 106-116

T
tab directive

about 46
creating 47-49
working 49-52

tabs
dealing, without Bootstrap UI directives 13-22

templates
different content, mixing 128-135

U
ui.bootstrap modal

URL 103
user interface 39

W
WebStorm

about 165
URL 166

Y
Yeoman

URL 23

Thank you for buying

AngularJS Directives Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering AngularJS
Directives
ISBN: 978-1-78398-158-8 Paperback: 210 pages

Develop, maintain, and test production-ready directives
for any AngularJS-based application

1.	 Explore the options available for creating
directives, by reviewing detailed explanations
and real-world examples.

2.	 Dissect the life cycle of a directive and understand
why they are the base of the AngularJS framework.

3.	 Discover how to create structured, maintainable,
and testable directives through a step-by-step,
hands-on approach to AngularJS.

AngularJS Directives
ISBN: 978-1-78328-033-9 Paperback: 110 pages

Learn how to craft dynamic directives to fuel your single
page web applications using AngularJS

1.	 Learn how to build an AngularJS directive.

2.	 Create extendable modules for plug-and-play
usability.

3.	 Build apps that react in real time to changes in
your data model.

Please check www.PacktPub.com for information on our titles

Mastering Web Application
Development with AngularJS
ISBN: 978-1-78216-182-0 Paperback: 372 pages

Build single-page web applications using the power
of AngularJS

1.	 Make the most out of AngularJS by understanding
the AngularJS philosophy and applying it to real-
life development tasks.

2.	 Effectively structure, write, test, and finally deploy
your application.

3.	 Add security and optimization features to your
AngularJS applications.

4.	 Harness the full power of AngularJS by creating
your own directives.

Learning AngularJS
Directives (Video)
ISBN: 978-1-78528-732-9 Duration: 01:00 hours

Get to grips with AngularJS directives to create dynamic
and responsive web applications quickly and easily

1.	 Delve into the various concepts behind creating
functional and interactive directives.

2.	 Create your own customized HTML elements by
using SVG and HTML5 canvas.

3.	 Learn about isolate scope and transclusion and
put these into action when writing code.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Dealing with Modal and Tabs Directives
	Introduction
	Using inline HTML templates
	Creating a simple modal directive
	Loading external templates for best practices
	Using the link function
	Dealing with tabs without Bootstrap UI directives

	Chapter 2: Building a Navbar Custom Directive
	Introduction
	Building a navbar directive
	Directory structure for common components
	Directive's controller function
	Using the data attribute to HTML5 compile

	Chapter 3: Customizing and Using Bootstrap UI Directives
	Introduction
	Dealing with modal directives
	Creating tab directives
	The isolate $scope
	Building accordion tab directives
	Loading dynamic content

	Chapter 4: Creating Interactive jQuery UI Directives
	Introduction
	A simple directive example
	Manipulating the DOM with jQuery
	The compile and link functions
	Creating the jQuery UI draggable directive
	Creating the jQuery UI droppable directive

	Chapter 5: Implementing Custom Directives with Yeoman Generators
	Introduction
	Creating the baseline app with
generator-angm
	Generator best practices
	How to implement the ngMap directive
	Using the Angular-Loading-Bar directive
	Implementing the ng-grid directive

	Chapter 6: Using Directives to Develop Interface Components
	Introduction
	Creating an Off Canvas menu
	Applying custom CSS
	Building a shopping cart

	Chapter 7: Building Directives with Dynamic Templates
	Introduction
	Using dynamic templates on directives
	The compile function
	Organizing dynamic directives on shared folders
	Mixing different content on templates

	Chapter 8: Creating Reusable Directives
	Introduction
	How to scale an AngularJS project to use reusable directives
	Building a directive as an interface component
	Creating a form directive with custom validation

	Chapter 9: Directive Unit Testing with Karma and Jasmine
	Introduction
	How to test AngularJS apps using Karma and Karma Runner
	Writing tests for directives with Jasmine
	Testing elements when the scope changes

	Index

