

Building Secure PHP Apps
is your PHP app truly secure? Let’s
make sure you get home on time
and sleep well at night.

Ben Edmunds

This book is for sale at
http://leanpub.com/buildingsecurephpapps

This version was published on 2014-05-05

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build
traction once you do.

©2013 - 2014 Ben Edmunds

http://leanpub.com/buildingsecurephpapps
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto

Tweet This Book!
Please help Ben Edmunds by spreading the word about this
book on Twitter!

The suggested hashtag for this book is
#buildingsecurephpapps.

Find out what other people are saying about the book by
clicking on this link to search for this hashtag on Twitter:

https://twitter.com/search?q=#buildingsecurephpapps

http://twitter.com
https://twitter.com/search?q=%23buildingsecurephpapps
https://twitter.com/search?q=%23buildingsecurephpapps

Contents

Constructor . 1
Format . 2
Errata . 2
Sample Code . 3
About the Author 4

Chapter 1 - Never Trust Your Users. Sanitize ALL
Input! . 5
SQL Injection . 6
Mass Assignment 10
Typecasting . 13
Sanitizing Output 15

Chapter Two -HTTPS/SSL/BCA/JWH/SHAandOther
Random Letters; Some of Them Actually Matter. . 18
What is HTTPS . 20
Limitations . 22
When to use HTTPS 26
Implementing HTTPS 27
Paths . 33

Chapter 3 - Password Encryption and Storage for
Everyone . 35
The Small Print . 36

CONTENTS

What is a Hash? . 37
Popular Attacks . 37
A Pinch of Salt . 40
Hashing Algorithms 43
Storage . 47
Validation . 48
Putting It All Together 49
Brute Force Protection 58
Upgrading Legacy Systems 60
Resources . 64

Chapter 4 - Authentication, Access Control, and
Safe File Handing 65
Authentication . 67
Access Control . 69
Validating Redirects 72
Obfuscation . 75
Safe File Handing 78

Chapter 5 - Safe Defaults, Cross Site Scripting, and
Other Popular Hacks 82
Never Trust Yourself - Use Safe Defaults 82
Never Trust Dynamic Typing. It’s Not Your Friend. . 83
Cross Site Scripting 86
Attack Entry Points 87
Cross Site Request Forgery 89
Multiple Form Submits 93
Race Conditions . 94
Outdated Libraries / External Programs 95

Destructor . 96
About the Author 97
Security Audit / Consulting 97

Constructor
Several years ago I was writing a web application for a client
in the CodeIgniter PHP framework, shudder, but CodeIgniter
didn’t include any type of authentication system built in. I, of
course, did what any good/lazy developer would do and went
on the hunt for a well made library to supply authentication
capabilities. Tomy chagrin I discovered that thereweren’t any
clean, concise libraries that fit my needs for authentication in
CodeIgniter. Thus began my journey of creating Ion Auth,
a simple authentication library for CodeIgniter, and a career
long crusade for securing web applications as well as helping
other developers do the same.

Here we are years later, a lot of us have moved on to other
frameworks or languages, but I still repeatedly see basic
security being overlooked. So let’s fix that. I want to make
sure that you’ll never have to live the horror of leaking user
passwords, have someone inject malicious SQL into your
database, or the suite of other “hacks” that could have been
easily avoided. Let’s make sure we all get home on time and
sleep well at night.

This book will be a quick read with handbook style references
to specific items you can act on. It is meant to be something
you can read in a couple hours and then reference later as
needed. I’ll also try to make sure we have some fun in the
process.

1

Constructor 2

Format

All code samples in the indented blocks can be assumed to be
in PHP unless otherwise noted.

Lines starting with a dollar sign

$ ls -al

are examples of using the command line as a normal user.

Lines starting with a pound sign

ls -al

are examples of using the command line as the root user.

Server command line examples will assume some type of *nix
(centos, redhat, ubuntu, osx, etc) operating system.

I’m trying to keep the code examples from wrapping where
possible so method arguments will be on their own lines. This
may seem odd but it is much easier to read thanwrapped code
with this book format.

Errata

If you find any errors don’t hesitate to get in touch with me
via email¹.

¹feedback@buildsecurephpapps.com

Constructor 3

Sample Code

All of the examples are in PHP unless otherwise noted. I will
use native PHP code where possible, even if it creates more
boilerplate. If something requires toomuchwork to succinctly
explain in native PHP I will use the Laravel framework since
it has an elegant syntax and should be easy to understand.

Some of the code examples are broken up for explanation. To
view complete code examples you can reference the Github
repository².

Let’s do this.

²https://github.com/benedmunds/Building-Secure-PHP-Apps-Examples

https://github.com/benedmunds/Building-Secure-PHP-Apps-Examples
https://github.com/benedmunds/Building-Secure-PHP-Apps-Examples
https://github.com/benedmunds/Building-Secure-PHP-Apps-Examples

Constructor 4

About the Author

Ben Edmunds³ leads development teams to create cutting-
edge web and mobile applications. He is an active leader,
developer, and speaker in various development communities.
He has been developing software professionally for over 10
years and in that time hasworked on everything from robotics
to government projects.

PHP Town Hall podcast co-host. Portland PHP Usergroup co-
organizer. Open source advocate.

³http://benedmunds.com

http://benedmunds.com
http://benedmunds.com

Chapter 1 - Never Trust
Your Users. Sanitize
ALL Input!
Let’s start with a story. Mike is the system admin for a
small private school in Oklahoma. His main responsibility
is keeping the network and computers working. Recently
he started automating various tasks around the school by
building a web application for internal use. He doesn’t have
any formal training and just started programming about a
year ago, but he feels pretty good about his work. He knows
the basics of PHP and has built a pretty stable customer
relationship manager for the school. There are still a ton of
features to add, but the basics are covered. Mike even received
kudos from the superintendent for streamlining operations
and saving the school money.

Everything was going well for Mike until a particular new
student started. The student’s name is Little Bobby Tables⁴.
One day, Jon from the admin office calledMike to ask why the
system was down. After inspecting, Mike found that the table
containing all the students’ information was missing entirely.
You see, Little Bobby’s full name is actually “Robert’); DROP
TABLE students;–”. There aren’t any backups of the database;
it has been on Mike’s “to do” list for a while, but he hadn’t
gotten around to it yet. Mike is in big trouble.

⁴http://xkcd.com/327/

5

Chapter 1 - Never Trust Your Users. Sanitize ALL Input! 6

SQL Injection

Real World

While it’s unlikely a real child’s name will contain damaging
SQL code, this kind of SQL injection vulnerability happens
in the real world all the time:⁵

• In 2012, LinkedIn leaked over 6 million users’ data due
to an undisclosed SQL injection vulnerability

• In 2012, Yahoo! exposed 450,000 user passwords
• In 2012, 400,000 passwords were compromised from
Nvidia

• In 2012, 150,000 passwords were compromised from
Adobe

• In 2013, eHarmony had roughly 1.5 million user pass-
words exposed

How SQL Injection Works

If you use input directly from your users without modi-
fication, a malicious user can pass unexpected data, and
fundamentally change your SQL queries.

If your code looks something like this:⁶

⁵For most of these precise details were undisclosed, so we can’t be certain these were
due to SQL injection attacks. Chances are the majority were though.

⁶The mysql_* extension and it’s methods are officially deprecated. Please don’t use
them.

Chapter 1 - Never Trust Your Users. Sanitize ALL Input! 7

1 mysql_query('UPDATE users

2 SET first_name="' . $_POST['first_name'] . '"

3 WHERE id=1001');

You would expect the generated SQL to be:

UPDATE users set first_name="Liz" WHERE id=1001;

But if your malicious user types their first name as:

Liz", last_name="Lemon"; --

The generated SQL then becomes:

UPDATE users

SET first_name="Liz", last_name="Lemon"; --"

WHERE id=1001;

Now all of your users are named Liz Lemon, and that’s just
not cool.

How To Guard Against It

The single requirement for guarding against SQL injection is
to sanitize input (also known as escaping). You can escape
each input individually, or use a better method known as
parameter binding. Parameter binding is definitely the way I
recommend, as it offers more security. Using PHP’s PDO class⁷,
your code now becomes:

⁷http://us1.php.net/manual/en/intro.pdo.php

Chapter 1 - Never Trust Your Users. Sanitize ALL Input! 8

1 $db = new PDO(...);

2 $query = $db->prepare('UPDATE users

3 SET first_name = :first_name

4 WHERE id = :id');

5

6 $query->execute([

7 ':id' => 1001,

8 ':first_name' => $_POST['first_name']

9]);

Using bound parameters means that each value will be es-
caped, quoted properly, and only one value is expected. Keep
in mind, bound parameters protect your query, but they
don’t protect the input data after it enters your database.
Remember, any data can be malicious. You will still need to
strip out and/or escape data that will be displayed back to the
user. You can do this when you save the data to the database,
or when you output it, but don’t skip this very important
step. We’ll cover this more in the “Sanitizing Output” section
coming up.

Your code is now a little longer, but it’s safe. You won’t have
to worry about another Little Bobby Tables screwing up your
day. Bound parameters are pretty awesome right? You know
what else is awesome, Funyuns are awesome.

Best Practices and Other Solutions

Stored procedures are another way to protect against SQL
injection. A stored procedure is a function built in your
database. Using a stored procedure means you’re less likely to
be susceptible to SQL injection, since your data isn’t passed

Chapter 1 - Never Trust Your Users. Sanitize ALL Input! 9

directly as SQL. In general, stored procedures are frowned
upon. The main reasons for which include:

1. Stored procedures are difficult to test
2. They move the logic to another system outside of the

application
3. They are difficult to track in your version control

system, since they live in the database and not in your
code

4. Using them can limit the number of people on your
team capable of modifying the logic if needed

Client-side JavaScript is NOT a solution for validating data,
ever. It can be easily modified or avoided by a malicious user
with even amediocre amount of knowledge. Repeat afterme: I
will NEVER rely on JavaScript validation; I will NEVER EVER
rely on JavaScript validation. You can certainly use JavaScript
validation to provide instant feedback and present a better
user experience, but for the love of your favorite deity, check
the input on the back end to make sure everything is legit.

Chapter 1 - Never Trust Your Users. Sanitize ALL Input! 10

Mass Assignment

Mass assignment can be an incredibly useful tool that can
speed up development time, or cause severe damage if used
improperly.

Let’s say you have a Usermodel that you need to update with
several changes. You could update each field individually, or
you could pass all of the changes from a form and update it
in one go.

Your form might look like this:

1 <form action="...">

2 <input name="first_name" />

3 <input name="last_name" />

4 <input name="email" />

5 </form>

Then you have back end PHP code to process and save the
form submission. Using the Laravel framework, that might
look like this:

1 $user = User::find(1);

2 $user->update(Input::all());

Quick and easy right? But what if a malicious user modifies
the form, giving themselves administrator permissions?

Chapter 1 - Never Trust Your Users. Sanitize ALL Input! 11

1 <form action="...">

2 <input type="text" name="first_name" />

3 <input type="text" name="last_name" />

4 <input type="text" name="email" />

5 <input type="hidden" name="permissions" value="{\

6 'admin':'true'}" />

7 </form>

That same code would now change this user’s permissions
erroneously.

This may sound like a dumb problem to solve, but it is one
that a lot of developers and sites have fallen victim to. The
most recent, well-known exploit of this vulnerability was
when a user exposed that Ruby on Rails was susceptible to
this. When Egor Homakov originally reported to the Rails
team that new Rails installs were insecure, his bug report
was rejected. The core team thought it was a minor concern
that would be easier for new developers to leave enabled by
default. To get attention to this issue, Homakov hilariously
“hacked” Rails’ GitHub account (GitHub is built on Rails)
to give himself administrative rights to their repositories.
Needless to say, this proved his point, and now Rails (and
GitHub) are protected from this attack by default.

How do you protect your application against this? The exact
implementation details depend on which framework or code
base you’re using, but you have a few options:

• Turn off mass assignment completely
• Whitelist the fields that are safe to be mass assigned
• Blacklist the fields that are not safe to be mass assigned

Chapter 1 - Never Trust Your Users. Sanitize ALL Input! 12

Depending on your implementation, some of these may be
used simultaneously.

In Laravel you add a $fillable property to your models to
set the whitelist of fields that are mass assignable:

1 class User extends Eloquent {

2

3 protected $table = 'users';

4

5 protected $fillable = ['first_name', 'last_name'\

6 , 'email'];

This would stop the “permissions” column from being mass
assigned. Another way to handle this in Laravel is to set a
blacklist with the $guarded property:

1 class User extends Eloquent {

2

3 protected $table = 'users';

4

5 protected $guarded = ['permissions'];

The choice is up to you, depending on which is easier in your
application.

If you don’t use Laravel, your framework probably has a
similar method of whitelisting/blacklisting mass assignable
fields. If you use a custom framework, get on implementing
whitelists and blacklists!

Chapter 1 - Never Trust Your Users. Sanitize ALL Input! 13

Typecasting

One additional step I like to take, not just for security but also
for data integrity, is to typecast known formats. Since PHP is a
dynamically typed language⁸, a value can be any type: string,
integer, float, etc. By typecasting the value, we can verify that
the data matches what we expect. In the previous example,
if the ID was coming from a variable it would make sense to
typecast it if we knew it should always be an integer, like this:

1 $id = (int) 1001;

2

3 $db = new PDO(...);

4 $query = $db->prepare('UPDATE users

5 SET first_name = :first_name

6 WHERE id = :id');

7

8 $query->execute([

9 ':id' => $id, //we know its an int

10 ':first_name' => $_POST['first_name']

11]);

In this case it wouldn’t matter much since we are defining
the ID ourselves, so we know its an integer. But if the ID
came from a posted form or another source, this would give
us additional peace of mind.

PHP supports a number of types that you can cast to, they are

⁸http://stackoverflow.com/questions/7394711/what-is-dynamic-typing

Chapter 1 - Never Trust Your Users. Sanitize ALL Input! 14

1 $var = (array) $var;

2 $var = (binary) $var;

3 $var = (bool) $var;

4 $var = (boolean) $var;

5 $var = (double) $var;

6 $var = (float) $var;

7 $var = (int) $var;

8 $var = (integer) $var;

9 $var = (object) $var;

10 $var = (real) $var;

11 $var = (string) $var;

This is helpful not only when dealing with your database, but
throughout your application. Just because PHP is dynamically
typed doesn’t mean that you can’t enforce typing in certain
places. Yeah science!

Chapter 1 - Never Trust Your Users. Sanitize ALL Input! 15

Sanitizing Output

Outputting to the Browser

Not only should you take precautions when saving the data
you take in, you should sanitize / escape any user-generated
data that is output back to the browser.

You can modify and escape your data prior to saving to the
database, or in between retrieving it and outputting to the
browser. It usually depends on how your data is edited and
used. For example, if the user is editing the data later, it
usually makes more sense to save it as-is, and sanitize upon
output.

What security benefits come from escaping user-generated
data that you output? Suppose a user submits the following
JavaScript snippet to your application, which saves it for
outputting later:

<script>alert('I am not sanitized!');</script>

If you don’t sanitize this code before you echo it out to the
browser, the malicious JavaScript will run normally, as if you
wrote it yourself. In this case it’s a harmless alert(), but a
hacker won’t be nearly as kind.

Another popular place for this type of exploit is in an image’s
XIFF data. If a user uploads an image and your application
displays the XIFF data, it will need to be sanitized as well.
Anywhere you are displaying data that came into your app
from the outside, you need to sanitize it.

If you’re using a templating library or a framework that
handles templating, escaping may happen automatically, or

Chapter 1 - Never Trust Your Users. Sanitize ALL Input! 16

there is a built-in method for doing so. Make sure to check
the documentation for your library / framework of choice to
determine how this works.

For those of you handling this yourself, PHP provides a couple
of functions that will be your best friends when displaying
data in the browser: htmlentities()⁹ and htmlspecialchars()¹⁰.
Both will escape and manipulate data to make it safer before
rendering.

htmlspecialchars() should be your go-to function in 90% of
cases. It will look for characters with special meaning (e.g., <,
>, &) and encode these characters to HTML entities.

htmlentities() is like htmlspecialchars() on steroids. It
will encode any character into its HTML entity equivalent
if one exists. This may or may not be what you need in
many cases. Make sure to understand what each one of these
functions does exactly, then evaluate which is best for the
type of data you are sending to the browser.

⁹http://us1.php.net/htmlentities
¹⁰http://us1.php.net/htmlspecialchars

Chapter 1 - Never Trust Your Users. Sanitize ALL Input! 17

Echoing to the Command Line

Don’t forget to sanitize the output of any command line script
you are running. The functions for this are escapeshellcmd()¹¹
and escapeshellarg()¹².

They are both pretty self-explanatory. Use escapeshellcmd()
to escape any commands that you are calling. This will pre-
vent arbitrary commands from being executed. escapeshellarg()
is used to wrap arguments to ensure they are escaped cor-
rectly, and don’t open your application up to manipulating
the structure of the commands.

¹¹http://us1.php.net/escapeshellcmd
¹²http://us1.php.net/escapeshellarg

Chapter Two - HTTP-
S/SSL/BCA/JWH/SHA
and Other Random
Letters; Some of Them
Actually Matter.
Once again, it’s time for a little story. In October 2010 Eric
Butler released a Firefox extension named Firesheep to high-
light a huge problem on the web that most people hadn’t been
paying enough attention to. Firesheep allowed any regular ol’
user to watch the non-encrypted traffic on their local network
and then hijack other user’s sessions. Firesheep exploits a
type of man in the middle attack, sidejacking. Sound scary?
It should, because it is. Maybe you’re thinking, well this
is conjecture. Alright fine, facts in. Let’s walk through an
illustration to make the point.

It’s December 2010, Jane is out of town on a work trip for
Achme Inc and is staying at a Hilton Garden Inn, it just so
happens to be the same hotel that John is staying at. John is
in the running for a position that Jane is also trying to get.
Jane recently heard about Firesheep on the news and is in
a mischievous mood. She logs on to the hotel wifi and runs
Firesheep. Luckily for Jane, John is using the wifi and she sees
that he has an unsecured connection to their company web

18

Chapter Two - HTTPS/SSL/BCA/JWH/SHA and Other Random Letters;
Some of Them Actually Matter. 19

email portal. With one click she is now logged in to John’s
email account. Just take a second and think of the trouble
she could cause him, the private things she has access to, the
general control/chaos email can exert in someone’s life.

This type of exploit, session hijacking via unencrypted net-
work traffic (aka sidejacking), has always been possible by
those that knew what they were doing. Now with the release
of Firesheep this is possible by anyone that knows how to
download an extension and click a button.

While you go download Firesheep, (yea thats right, I know
what you’re doing you jerk) you might be thinking that this
is a horrible thing to happen. Quite the opposite actually,
this has spurred web companies to finally get off of their re-
spective laurels and take HTTPS seriously. Gmail, Facebook,
and Twitter now all default to using HTTPS throughout their
entire site. Previously the standard had been to only encrypt
login pages, which secured the user’s login credentials but
left their current session open to hijacking as in our example
above.

Chapter Two - HTTPS/SSL/BCA/JWH/SHA and Other Random Letters;
Some of Them Actually Matter. 20

What is HTTPS

Normal interweb traffic is transferred over HTTP, when you
type “http://www.google.com” into your browser you’re us-
ing HTTP, notice the “http://” at the beginning there. Normal
HTTP traffic uses port 80, HTTPS on the other hand uses port
443. HTTP is not secure in the least, every thing you do is
sent free and clear for anyone listening to see what you’re
doing. HTTPS is “HTTP Secure” or “HTTP on SSL”, acronym
semantics can be argued but they both mean the same thing.
HTTP using SSL to secure it.

I’m only going to cover how HTTPS works at a very high
level since the details won’t matter to most people. If you’re
interested in learning more please do, google.com is a good
place to start ;)

A real life example to explain how SSL works is a diplomatic
bag¹³. The contents are secured and can only be opened on
either end of the transfer by the person with the proper
credentials. The bag is secured by international law, as well
as physical means, just as the SSL encrypted message body is
protected by a strong algorithm and keys.

A certificate authority will sign your website’s certificate
to prove that it is valid. The user’s web browser already
knows the major certificate authorities and will verify the
sites certificate against the root certificate that the certificate
authority provides. The traffic will then be encrypted with
this key on both ends, so the only traffic going across the
network is encrypted traffic. If you’ve ever used SSH with
public keys for authentication you are already familiar with

¹³http://en.wikipedia.org/wiki/Diplomatic_bag

Chapter Two - HTTPS/SSL/BCA/JWH/SHA and Other Random Letters;
Some of Them Actually Matter. 21

the process. You have a public and private key that is used to
verify your identity with a remote server.

This will protect you from man in the middle attacks, includ-
ing the session hijacking we mentioned above if all of your
site is encrypted with HTTPS.

Chapter Two - HTTPS/SSL/BCA/JWH/SHA and Other Random Letters;
Some of Them Actually Matter. 22

Limitations

There are a few limitationswhen usingHTTPS thatmaymake
it infeasible in certain circumstances.

Virtual Hosts

Under normal configurations virtual hosts can not be used
with SSL. This is a problem if you’re using shared hosting or
simply running multiple sites on the same server. The reason
for this is because the server can’t determine the host header
until the connection has been completed, which requires the
SSL authentication. Since certificates can only have one host
this means it will simply not work. The easiest way around
this is to setup multiple IP addresses and use IP based hosts
instead of the name based host resolution you’re probably
used to. I usually recommend setting up a separate server for
secure sites though, if you need HTTPS you are probably at
the point of needing a dedicated server as well.

There are however some hosting providers with shared cer-
tificates that can be used across the sites hosted with them.
This can enable you to quickly and cheaply support HTTPS.
The main issue with this is that the domain would need
to reflect the hosting provider’s domain name. For example
instead of

https://yourApp.com/login

the URL would be something like

Chapter Two - HTTPS/SSL/BCA/JWH/SHA and Other Random Letters;
Some of Them Actually Matter. 23

https://yourHost.com/yourApp/login

This may or may not be a concern depending on your appli-
cation and branding needs.

Speed

HTTPS connections require SSL handshakes to establish the
connection, thus making the overall transfer slower. Once
that initial handshake is performed additional connections
only require the encryption and decryption of the content,
meaning that once the initial connection is complete, sub-
sequent connections aren’t much slower. The performance
impact is incredibly low though, this is not a valid reason
to discredit the use of HTTPS.

Caching

Cheddar. Fat stacks. Dead Presidents. Cash money. Nah, actu-
ally we’re talking about cache. The secret sauce behind your
super quick load times. You have to say it with a british accent.
Modern browsers will cache HTTPS content the same as
HTTP content so there is no disconnect there. To cause older
browser to support caching set the Cache-Control header, for
example

header('Cache-Control: max-age=31536000');

would tell the browser to cache for one year.

The real issue comes with proxy caching. Proxy caching
might come from an ISP or a service meant to speed up

Chapter Two - HTTPS/SSL/BCA/JWH/SHA and Other Random Letters;
Some of Them Actually Matter. 24

connections. This is mostly used in rural parts of the world
that have slow internet connection speeds. Using HTTPS, this
type of caching is impossible since all the traffic the proxy
sees is encrypted. This is not a major issue for most sites but if
you have a large global userbase, or an application that targets
users in remote locations, this should be considered carefully.

Another thing to think about, there is a good chance that there
are parts of your site that should NOT be cached. This means
that you shouldn’t just let the browser cache everything, sit
down and plan out which parts of your application should be
cached and for how long. For example, CSS and JavaScript
should probably be cached for a significant amount of time;
whereas the user’s timeline view should update very often.

Certificate Types

There are two types of SSL certificates.

Domain Validated Certificates do not verify asmuch informa-
tion as their counter parts but they are substantially cheaper.
Usually starting around fifty dollars, they will likely be the
best option for small sites. The main down side from a user
perspective is that there is usually some distinction in the
browser between the two, for example a Domain Validated
Certificate might only show a lock symbol in the address bar
while an Extended Validation Certificate will show the full
green address bar.

Extended Validation Certificates are the gold standard of SSL
certificates. They not only validate that you are the owner of
the domain but also verify the identify and legitimacy of the
domain owner. Since this usually requires a personal effort
on the part of the Certificate Authority these certificates are

Chapter Two - HTTPS/SSL/BCA/JWH/SHA and Other Random Letters;
Some of Them Actually Matter. 25

significantly more expensive. Usually Extended Validation
Certificates start around five hundred dollars. This will be the
certificate of choice for most large and reputable companies.
Browsers will display the full green address bar when an
Extended Validation Certificate is in use, giving users more
peace of mind.

Chapter Two - HTTPS/SSL/BCA/JWH/SHA and Other Random Letters;
Some of Them Actually Matter. 26

When to use HTTPS

The traditional view has been to use HTTPS anywhere cre-
dentials or other sensitive data is passed to the server. For
many years this has meant that login pages and shopping
carts were all that was encrypted. These are still valid and
necessary places to use encryption but will leave the rest of
the user’s session open to man in the middle attacks. Recently
there has been amovement to use HTTPS everywhere.Which
is just a marketed way of stating that every page of your site
would be encrypted on HTTPS. This is a good rule in many
cases, the limitations of HTTPS should be considered though,
don’t just blindly implement HTTPS everywhere without
evaluating the trade-offs. If you determine that the limitations
discussed above are offset by the enhanced security through-
out for your specific application then using HTTPS on each
page is strongly recommended.

Are you thinking that at this point it’d be easier to just forget
about this whole HTTPS thing? Okay. Okay. Let’s just slow
down. Slow down. Regardless of you’re constraints you have
an obligation to your users to implement the best security you
possibly can. If you run a shopping cart or collect credit cards
for instance, HTTP is not even an option. More and more
even for what isn’t considered sensitive data, like a social
media account, it is becoming standard to encrypt. Don’t be
left behind, use HTTPS whenever you can.

Chapter Two - HTTPS/SSL/BCA/JWH/SHA and Other Random Letters;
Some of Them Actually Matter. 27

Implementing HTTPS

What kind of SSL Certificate do I need?

The main question to ask yourself is do you need to secure
subdomains or not. If you need to secure multiple subdo-
mains, eg

api.yourApp.com

docs.yourApp.com

yourMom.yourApp.com

cart.yourApp.com

then you’ll need a Wildcard SSL Certificate. If you don’t need
that capability and only need to secure something like

yourApp.com

then a standard certificate will work just fine. The only
deterrent to getting the Wildcard just in case you need it later
is the cost.

Generating your Server Certificate

In order for the Certificate Authority to sign and generate
your certificate you’ll need to generate keys on your server
and then upload those to the Certificate Authority.

This will require OpenSSL, if you don’t have it on your server
you’ll need to install it. Installing applications across various
server operating systems and distributions are out of the scope

Chapter Two - HTTPS/SSL/BCA/JWH/SHA and Other Random Letters;
Some of Them Actually Matter. 28

of this book, hopefully if your at the point of needing to setup
HTTPS you know your way around your server well. If you
don’t know your server operating system or distribution well
it might be a good idea to hire someone to help you setup SSL
certificates.

First create a directory to store your keys, people have dif-
fering opinions on the best place to store these but for our
examples we’ll stick with

/usr/bin/ssl/

Let’s generate our private RSA key

$ openssl genrsa -out yourApp.key 1024

Then generate the CSR using the RSA key

$ openssl req -new -key yourApp.key -out yourApp.c\

sr

You’ll now be asked several questions with smart defaults,
the main one to pay attention to is “Common Name” which
should match your domain name, eg “yourApp.com”.

Now you have two new files

/usr/bin/ssl/yourApp.key

/usr/bin/ssl/yourApp.csr

Before you do anything else, make a backup copy of the .key
file somewhere. Seriously, make two backup copies. If you
lose the private key you’ll need to buy a new certificate, and
servers crash all the time.

Chapter Two - HTTPS/SSL/BCA/JWH/SHA and Other Random Letters;
Some of Them Actually Matter. 29

Obtaining a SSL Certificate

The first step to getting up and running on HTTPS is to obtain
a certificate. There are cheap/free certificates available from
some certificate authorities but they won’t come pre-installed
on the popular web browsers so that makes them useless for
external facing sites. If you’re running an internal application
then cheap alternatives and self signed certificates are valid
options, for everyone else we’ll need to purchase a certificate.

First off I recommending checking with your DNS provider
to see if they offer any type of discounted or easy to setup
certificates, for example DNSimple is the DNS provider I use
and they offer subscription payments for certificates at a large
discount.

If your DNS providers does not provide certificates Syman-
tec/VeriSign is a well respected certificate authority.

Now go buy one.

You’ll then need to walk through whatever process your
chosen Certificate Authority has in place for setting up your
certificate, usually you’ll just upload your server certificate
(yourApp.csr) and they will email you the signed certificate.

Your certificate authority will provide you with the sign
certificate which we’ll name yourAppSigned.crt. Copy this to
your server, for this example I’ll use the following path

/usr/bin/ssl/yourAppSigned.crt

Chapter Two - HTTPS/SSL/BCA/JWH/SHA and Other Random Letters;
Some of Them Actually Matter. 30

Apache Setup

If you’re using Apache follow these steps, if you’re using a
different web server skip this section and keep reading. Open
your httpd.conf file in your favorite text editor. Note, some
distros may use separate config files for https. For example,
my laptop running OSX uses a httpd-ssl.conf file.

Add a VirtualHost similar to the following, it will likely
closely match your existing VirtualHost for your HTTP site

1 <VirtualHost *:443>

2 DocumentRoot "/path/to/your/app/htdocs"

3 ServerName yourApp.com

4 SSLEngine on

5 SSLCertificateFile /usr/bin/ssl/yourAppSigned.crt

6 SSLCertificateKeyFile /usr/bin/ssl/yourApp.key

7 </VirtualHost>

Restart Apache

$ apachectrl restart

or

$ service apache restart

will usually do the trick.

Try your site out with “https://yourApp.com”, you should be
good to go!

Chapter Two - HTTPS/SSL/BCA/JWH/SHA and Other Random Letters;
Some of Them Actually Matter. 31

Nginx Setup

If you’re using NGINX follow these steps, if you’re using a
different web server you’ll need to research how to set this
up with your server, sorry!

Open your Nginx virtual hosts file in your favorite text editor.
Add a virtual host similar to the following, it should closely
match your existing site setup

1 server {

2

3 listen 443;

4

5 server_name yourApp.com;

6 location / {

7 root /path/to/your/app/htdocs;

8 index index.php;

9 }

10

11 ssl on;

12 ssl_certificate /usr/bin/ssl/yourAppSigned.crt

13 ssl_certificate_key /usr/bin/ssl/yourApp.key

14

15 }

Restart Nginx

$ sudo /etc/init.d/nginx restart

or

Chapter Two - HTTPS/SSL/BCA/JWH/SHA and Other Random Letters;
Some of Them Actually Matter. 32

$ service nginx restart

will usually handle it.

Try your site out with “https://yourApp.com”, it should be
ready!

Additional Resources

For Apache the best source is the docs

http://httpd.apache.org/docs/current/ssl/ssl_howto\

.html

For NGINX the WIKI is a great starting place

http://wiki.nginx.org/HttpSslModule

For anything else just replace “yourWebServerName” in the
text below with the name of the software your using to serve
web pages, then paste the full URL into your web browser

http://lmgtfy.com/?q=yourWebServerName+SSL+certifi\

cate+setup

Chapter Two - HTTPS/SSL/BCA/JWH/SHA and Other Random Letters;
Some of Them Actually Matter. 33

Paths

Base Path

You should ensure that users are on the HTTPS version
of your site whenever it is needed. This can be done in
Apache/Nginx configs using redirects. Another simpler op-
tion is to set the base path of your application to use your
HTTPS URL, eg “https://yourApp.com” and force a redirect
using the base path if a user comes in on HTTP.

A lot of times you will want to allow HTTP on certain pages
and require HTTPS on others, this is where your web server
configs and proper routing in your code come in.

Relative Paths

One more thing to mention that isn’t necessarily security
related but will make your life a lot easier when using both
HTTP and HTTPS on one site. URLs for assets, eg CSS or
JS, can begin with double forward slashes instead of http://
or https:// to reference the current protocol. For example, on
your home page you might have

<link type="text/css" rel="stylesheet" href="//ass\

ets/main.css" />

navigating to https://yourApp.com would cause this to load

https://yourApp.com/assets/main.css

whereas navigating to http://yourApp.com would load

Chapter Two - HTTPS/SSL/BCA/JWH/SHA and Other Random Letters;
Some of Them Actually Matter. 34

http://yourApp.com/assets/main.css

That’s just a little trick to make your life a little easier, because
I care.

Done

You are done, good job. Pat yourself on the back, mix your
favorite drink, and take a well deserved nap.

Chapter 3 - Password
Encryption and Storage
for Everyone
You should know how this works by now. Chris is a junior
developer working for Marvel Comics¹⁴ web team. It’s an
abnormally hot summer in Burbank. He has just been tasked
with building the login functionality for the new web/tablet
comic portal his team is building. His “team” really means
Chris and the other developer. Chris might have forgotten to
wear deodorant today, why is it so hot.

Chris plans out how the login system will work. It’ll have the
normal things you would expect, login/logout/forgot pass-
word/etc… In regards to passwords he’ll need to store the
user’s password, compare it on login, and then email it back to
the user if they forget it. Minutes pass. As he thinks through
each part of the login process he starts to worry about the
security implications of having users’ passwords available to
read by anyone who has, or gains, access to the database.
He knows he should encrypt the passwords but what about
decrypting for login? Or when a user forgets their password?

After researching for an excruciatingly boring 45 minutes
Chris decides that he needs to use PHP’s built in mcrypt_-

encrypt() and mcrypt_decrypt() methods. Chris is pretty
stoked, secure encrypted passwords and all the dirty work on

¹⁴This is fiction built from truth. Please don’t sue me Marvel.

35

Chapter 3 - Password Encryption and Storage for Everyone 36

encrypting and decrypting is done by PHP. He’s going to be
done with this project in half the time quoted.

That my friends (we’re friends right?), is why when you
reset your password on Marvel.com you get your plain-text
password sent to you in an email. AN EMAIL. WITH YOUR
PASSWORD IN IT. This is why you should go change your
Marvel.com password to something you have never used
anywhere else right now. Go ahead, I’ll wait. I’ll just be
sobbing in the corner thinking about all of the people that
will be exploited by this soon enough.

The moral of the story, don’t store passwords. Store one way
hashes of users’ passwords. Now let’s walk through how to
do this right.

The Small Print

I am not a cryptographic expert. This is my personal advice
based on experience. These are opinionated best practices and
are not meant to be used as directions for securely storing
nuclear launch codes. Yourmost important tweets will be kept
safe though.

Chapter 3 - Password Encryption and Storage for Everyone 37

What is a Hash?

First we need to cover the basics. Hashing is not encryption,
passwords should be one way hashed. This means that it is
impossible to decrypt, hence the one way part of that. There
is never a need to display a password back to a user/admin/-
mother/anyone ever. Once a password is entered it becomes
something totally different, a hash that can be recreated only
by the original password being given as input.

Popular Attacks

Before discussing any further let’s delve into the popular
attacks against hashing algorithms.

Lookup Tables

A lookup table is simply a table of hashes where the password
is known. It can be as simple as this

password | hash

pass1 | bidfb2enkjnf

pass2 | psdfnojn3nod

etc...

This is then compared against the passwords hashes in your
database to determine the password that was uses. This attack
is useless if you are using random salts but it’s easier than
robbing a train if the hashes aren’t salted.

Chapter 3 - Password Encryption and Storage for Everyone 38

Rainbow Tables

A rainbow table is technically sophisticated compared to a
lookup table yet very similar. It is basically a less memory in-
tensive way of achieving a lookup table through mathematic
means. You can think of them interchangeably as we mention
them here. Rainbow tables are also thwarted through the use
of random salts so are less relevant with modern hashing
algorithms.

Rainbow Tables are a very complex exploit that is really out
of the scope of this book to explain. If you want to learn
more you can read the original paper published by Martin
Hellman¹⁵ that introduces the concept. The Wikipedia article
on Rainbow Tables¹⁶ is also a good source for an easier to
digest explanation.

¹⁵http://www-ee.stanford.edu/~hellman/publications/36.pdf
¹⁶http://en.wikipedia.org/wiki/Rainbow_table

http://www-ee.stanford.edu/~hellman/publications/36.pdf
http://www-ee.stanford.edu/~hellman/publications/36.pdf
http://en.wikipedia.org/wiki/Rainbow_table
http://en.wikipedia.org/wiki/Rainbow_table
http://www-ee.stanford.edu/~hellman/publications/36.pdf
http://en.wikipedia.org/wiki/Rainbow_table

Chapter 3 - Password Encryption and Storage for Everyone 39

Collision Attacks

A collision attack is the main security flaw found in most
hashing algorithms. There are two types of collision attacks.

A classical collision attack is when two different values gen-
erate the same hash. A simple example is

string1 = 'abc123'

string2 = 'bcd234'

hash(string1) === hash(string2)

A chosen-prefix collision attack is when different prefixes are
used to cause two separate values to generate the same hash.
Here is an example of this

prefix1 = 'zxy'

prefix2 = 'abc'

string1 = 'abc123'

string2 = 'bcd234'

hash(prefix1 + string1) === hash(prefix2 + string2)

Chapter 3 - Password Encryption and Storage for Everyone 40

A Pinch of Salt

That’s not enough though. The next problems to look out for
are lookup tables and rainbow tables exploits. Both of these
exploits basically keep a list of popular passwords and their
resulting hashes. Rainbow Tables are a little more complex
but that’s basically what’s going on. How do we combat this?
Salts. RANDOM SALTS.

A salt is something that is appended to the password hash to
make it unique. Salt is also something that is added to the rim
of a margarita to make it delicious. Ah margaritas. Anyway.
So you take a random string (salt) and combine it with the
plain-text password string to give you a unique value. This
means that even with a lookup table of known password
hashes an attacker can’t match up your user’s password hash
with the DB password hashes since a random salt has been
used. Given two identical passwords the resulting hashes will
be unique. A random salt is one of the most important pieces
of your password security.

Random isn’t always Random

You’re salt needs to be random to be effective. Random !==
random though. You don’t necessarily need truly random
numbers but rand() won’t cut it either.

The problem with using PHP’s built in rand() or mt_rand()
functions is that they are seeded with data that can be ma-
nipulated and determined, they don’t provide enough “ran-
domness”. The main ingredient to producing a truly random
number is to include enough entropy into the source. Entropy
is the amount of truly random information collected by the

Chapter 3 - Password Encryption and Storage for Everyone 41

system that is generating your random number. Most non-
cryptographic random number generators, like rand() and
mt_rand(), use algorithms to produce their numbers without
enough outside sources of data to make them truly unique.
This means that the data rand() produces can be manipulated
and guessed by an attacker. After observing enough of the
output of rand() an attacker an reliably determine the future
output. In fact after returning as little as 624 values from
rand()¹⁷ it is possible to calculate all future values.

You have been warned, you SHOULD NOT use rand() for
your salts. By buying this book you are hereby contractually
obligated to not whine when I personally come beat you in
the face with a 1st generation iPad if you use rand() for your
salts. That thing was solid as a brick.

Calling your server’s /dev/random is your best bet for true
random on most systems. The issue with using this for login
is that it blocks while collecting entropy from the system.
Collecting entropy means that it will collect environmental
data from your system; like various HW data, keyboard typ-
ing, mouse movements, disk access, etc. in order to generate a
buffer of random bits. This means that it can take a long time
to return, especially on servers that aren’t busy. I ran in to this
recently actually, a developer on my team used /dev/random

to generate an activation code. Everything seemed fine, it
passed testing fine. Then after we deployed the project to
it’s own production server, requests ended up taking over 60
seconds. The server wasn’t busy since it was only hosting
this one project, causing /dev/random to block for a good bit
of time while it collected entropy. What was the solution?
/dev/urandom

¹⁷http://eprint.iacr.org/2005/165.pdf

Chapter 3 - Password Encryption and Storage for Everyone 42

/dev/urandom isn’t considered true random but it is crypto-
graphically secure. This means that it might not be a truly
random number but it is regarded as secure enough for use in
salts. /dev/urandom will return a very good pseudo-random
number immediately with no blocking. /dev/urandom uses
the existing entropy pool to generate a pseudo-random num-
ber that is secure enough for the majority of authentication
systems. If you’re writing the login page for nuclear launch
codes it might be best to make the user wait on /dev/random

but for that social picture sharing site /dev/urandom is good
enough.

Chapter 3 - Password Encryption and Storage for Everyone 43

Hashing Algorithms

Let’s discuss the popular hashing algorithms.

MD5

I see the MD5 hashing algorithm used incorrectly more often
than anything else. Usually because it is supported by most
databases by default. MD5 has been mathematically proven
for some time now to be insecure. The issue with MD5 is that
it is trivially easy to produce collisions on modern hardware.

One of the most notable examples, in 2005 researchers were
able to generate collisions inMD5 checksums using a laptop¹⁸.
The significance of that is that it doesn’t take a $200k beast of
a server to break MD5, just any old laptop and that was in
2005. In 2005 people, that was like 100 internet years ago. No
more MD5 for password hashing please. Non-secure hashes
to verify data contents, sure. Just not for secure hashes that
an attacker would be interested in breaking.

MD5 is not completely broken since it is still mostly secure
when used with a proper salt. That doesn’t mean that you
shouldn’t move on to a more future prove solution though.

SHA-1

Ah good old SHA-1, trusty and secure for years. Those are IRL
years too, in internet years that’s decades. In 2005 (2005 was a
bad year for security) researchers from Shandong University
released a research paper¹⁹ proving that SHA-1 collisions

¹⁸http://cryptography.hyperlink.cz/md5/MD5_collisions.pdf
¹⁹http://link.springer.com/chapter/10.1007/11535218_2#page-1

Chapter 3 - Password Encryption and Storage for Everyone 44

could be reliably generated with less than 269 hash operations.
Collisions at around 280 hashing operations are considered
safe cryptographically. FYI 280 is about 1.20892x1024., so “cryp-
tographically secure” means pretty darn secure. Since then
Moore’s law²⁰ has ensured that SHA-1 is even less secure and
should be avoided in any application that needs true security.

As I explained above for MD5, when used with a random salt
SHA1 is still algorithmically secure.

SHA-256 / SHA-512

The SHA-2 standard was introduced as a successor for SHA1
in 2001. It’s accepted was accelerated a bit when SHA-1
was proven to be insecure in 2005. SHA256 and SHA512 are
basically the same; SHA-256 uses 32-bit words, SHA-512 uses
64-bit words. They also have a different number of rounds.
The core algorithm is practically identical though.

SHA-2 is currently considered cryptographically secure with
no known vulnerabilities when used with a sufficient number
of rounds (>64).

It has not seen the same amount of scrutiny as Blowfish
though, the cypher that BCrypt uses internally. The Blowfish
cypher which has been around since 1991 and is still consid-
ered secure, yet using it with a weak key is a knownweakness.
Being based on a cypher gives BCrypt a additional layer of
cost that makes it superior to a standard hashing algorithm,
in other words BCrypt is slower by design. Slow is a good
thing!

Even though I recommend BCrypt, SHA-256 or SHA-512 are
currently valid and secure options for secure hashing when

²⁰http://en.wikipedia.org/wiki/Moore’s_law

Chapter 3 - Password Encryption and Storage for Everyone 45

used as part of a derivation algorithm, like PBKDF2 or the
algorithm implemented with PHP’s crypt() function.

BCrypt

BCrypt is seen by a lot of people as a newcomer and isn’t as
widely known. BCrypt was released in 1999 so it’s not exactly
new here. BCrypt is a key derivation function based on the
Blowfish cypher, it is iterative so it protects against brute
forcing due to the cost associated with generating a hash.

There are currently no published exploits of BCrypt despite
the fact that it has seen considerable attention from crypto-
graphic researchers. It has also been around for a good length
of time so as of this writing (2014), BCrypt is considered
cryptographically secure.

BCrypt does have a limitation of 72 characters for the plain-
text password being encrypted. This is usually taken into
consideration by either stripping the excess characters or by
simply validating 72 as the max length.

BCrypt will be our choice for passwords in the following
examples.

SCrypt

SCrypt is the new kid on the block. Released in 2012, it is
a memory intensive key derivation function. Theoretically
SCrypt is more secure than BCrypt due to the high cost
inherent in the algorithm but since it is so new I don’t
personally recommend it’s use at this time.

New is a bad thing in the cryptographic world, it means that
SCrypt hasn’t received the same level of attacks and scrutiny

Chapter 3 - Password Encryption and Storage for Everyone 46

as older algorithms. There have been a few exploits reported
recently that don’t mean SCrypt isn’t secure, but do take away
from the security advantage it theoretically has over BCrypt.

One big thing that SCrypt has going for it is that a few popular
crypto-currencies are using it for their mining operations,
most notably Litecoin and Dogecoin. This means that it will
likely receive a large amount of attention sooner than its
predecessors.

Chapter 3 - Password Encryption and Storage for Everyone 47

Storage

This section will be short, WAKE UP. In whatever system
you store your passwords hashes, whether it’s in a relational
database, key store, lock box, sock drawer, or file system; use
either an unlimited length text field or I recommend a using a
varchar(255). You’re hashing algorithm will produce a maxi-
mum length string so you don’t have to worry about an attack
overloading your database. Different hashing algorithms will
produce different fixed length strings so you could set your
field length based on your algorithms. I instead prefer to use
a larger than needed field length constraint to handle future
hashing possibilities rather than try to save a few bytes.

Using BCrypt your hash will always have a maximum char-
acter length of 60 characters. So in theory you could get away
with a varchar(60) field in your database but this doesn’t
account for future changes. It’s better to future proof your
passwords now than to try to save a few bytes in your
database. So just leave it as a text field or a varchar(255), you
won’t regret it.

Chapter 3 - Password Encryption and Storage for Everyone 48

Validation

The only validation that’s needed on a password field is
minimum length. You should allow any character, whites-
pace, phrases, etc so your users can construct as complex of
a password as they want. Pass-phrases should be endorsed,
“correct horse battery staple” is a much better password than
“myNewPassword”²¹. Your only worry is that the password
is not complex enough, hence the minimum length. For the
love of all that is good, like cat gifs, don’t do stupid things
like using JavaScript to restrict copy-paste. If the user wants
to use a password management tool do all you can to make
they easy for them. If you do stupid things you’ll make your
users, and the cats very sad. OK, that rant is over now.

The only caveat to this is that with BCrypt only the first 72
characters of the password will be used so technically you
could limit to a maximum of 72 characters and not loose any
data. That does put a limit on your users though and is not
future proof for your next hashing algorithm. If your user has
a 74 character pass-phrase memorized it’s best to let them
use that and only use the first 72 characters than to make
them think up a new pass-phrase. Some sources recommend
hashing the passwords using a standard hashing algorithm
(SHA-256, SHA-512, etc) and then BCrypting the resulting
hash to account for this length issue. That is a perfectly valid
option. I’m not going to recommend it here simply because
with a valid salt plus 72 characters of the password you will
have enough data to keep your hashes secure according to
current research.

²¹http://xkcd.com/936/

Chapter 3 - Password Encryption and Storage for Everyone 49

Putting It All Together

Now that we’ve covered the basics let’s write a little code,
finally.

First I’m going towalk you through the traditional/deprecated
way of doing this and then I’ll walk you through the newer
way that is available with PHP 5.5 and up. The reason for this
is

1. I want you to understand what is going on behind the
scene instead of just seeing wrapper functions

2. There is a decent chance that you’re on an older version
of PHP so I don’t want you to be left behind

The scenario here is that we are registering a new user. We
will need to generate a random salt, generate their password
hash, then store both of these to an imaginary database for
authentication in the future.

< PHP 5.5

If you are using a PHP version less than 5.3.7 you need to up-
grade to at least 5.3.7 to have a decent level of security. There
is really no other sound recommendation I feel comfortable
giving. If you are on an older version there are many bug
fixes that are patched with upgrades. Specifically to our case,
there was a BCrypt vulnerability patched in 5.3.7. We will be
using the $2y$ prefix is our examples, this is the “always to
specification” prefix. Meaning it has been updated with the
vulnerability fix and is the most up to date logic.

Chapter 3 - Password Encryption and Storage for Everyone 50

First off we’re going to generate a unique random salt. There
are a few ways to do this in PHP depending on what exten-
sions are compiled on your system. You can most likely just
do this

1 //generate the binary random salt

2 $saltLength = 22;

3 $binarySalt = mcrypt_create_iv(

4 $saltLength,

5 MCRYPT_DEV_URANDOM

6);

7

8 //convert the binary salt into a safe string

9 $salt = substr(

10 strtr(

11 base64_encode($binarySalt),

12 '+',

13 '.'

14),

15 0,

16 $saltLength

17);

We are calling mcrypt_create_iv() with the MCRYPT_-
DEV_URANDOM flag to tell it to buffer from /dev/urandom.
Wrapping it in bin2hex()makes use get a hexadecimal string
back instead of the straight binary data.

If MCrypt isn’t available on your system you can always fall
back to reading directly from /dev/urandom. Unless your on
Windows, in which case just install Linux before it’s too late.
Go ahead, I’ll wait. You can thank me later; I’ll take check,
cash, or card for the thank you gift.

Chapter 3 - Password Encryption and Storage for Everyone 51

1 //generate the binary random salt

2 $saltLength = 22;

3 $binarySalt = file_get_contents(

4 '/dev/urandom',

5 false,

6 null,

7 0,

8 $saltLength

9);

10

11 //convert the binary salt into a safe string

12 $salt = substr(

13 strtr(

14 base64_encode($binarySalt),

15 '+', '.'

16),

17 0,

18 $saltLength

19);

Now that we have the salt let’s hash the password as well

1 //generate the binary random salt

2 $saltLength = 22;

3 $binarySalt = mcrypt_create_iv(

4 $saltLength,

5 MCRYPT_DEV_URANDOM

6);

7

8 //convert the binary salt into a safe string

9 $salt = substr(

10 strtr(

Chapter 3 - Password Encryption and Storage for Everyone 52

11 base64_encode($binarySalt),

12 '+',

13 '.'

14),

15 0,

16 $saltLength

17);

18

19 //set the cost of the bcrypt hashing

20 //remember to experiment on your server to find th\

21 e right value

22 $cost = 10;

23

24 //now we'll combine the algorithm code ($2y$) with\

25 the cost and our salt

26 $bcryptSalt = '$2y$' . $cost . '$' . $salt;

27

28 //hash it, hash it good

29 $passwordHash = crypt(

30 $_POST['password'],

31 $bcryptSalt

32);

33

34 //verify a secure hash was returned

35 //this could be an error code or insecure hash

36 if (strlen($passwordHash) === 60) {

37

38 //this next part is just for demonstration

39 $db = new ImaginaryDatabase;

40 $db->user()->create(array(

41 'password' => $passwordHash

42));

Chapter 3 - Password Encryption and Storage for Everyone 53

43

44 }

45 else {

46

47 //error handling

48

49 }

So we hashed our password and saved it to the database.
Notice how we didn’t save the salt? That’s because crypt()

will store the selected algorithm, hashed password, and salt
all within the returned hash.

Chapter 3 - Password Encryption and Storage for Everyone 54

Well we have the user signed up now, let’s say they leave our
site (how dare they!) and come back later, they need a way
to login. Login is nice and simple, we just need to check their
plaintext password against the hash stored in our database.

1 //we are going to start with a default state

2 //of failure, always assume failure first

3 $valid = FALSE;

4

5 //grab the hash from our imaginary database

6 $user = $db->user()-where(array(

7 'email' => $_POST['email']

8))->row();

9

10 //now check to see if the login password matches

11 $pass = $_POST['password'];

12 if (crypt($pass, $user->pass) === TRUE) {

13 $valid = TRUE;

14 }

15

16 //other checks, error handling, etc...

17

18 if ($valid === TRUE) {

19 //valid auth stuff

20 }

If you pass a previously generated hash as the second parame-
ter to the crypt() function it will use that algorithm and salt
to generate a new hash that you can then compare against
your previously stored password hash.

Chapter 3 - Password Encryption and Storage for Everyone 55

>= PHP 5.5

New password hashing functions were introduced in PHP
5.5²² to greatly simplify the process of handling passwords.
The purpose of this is to hide a lot of the complexities and
make PHP users secure using the default functions built into
PHP without relying on all developers to know what they are
doing. In otherwords they are trying to stealmy book content,
jerks.

In all seriousness though, use the PHP password functions
when possible. They provide built in, up-to-date hashing with
additional safety checks that we aren’t even covering here,
like protection against Timing Attacks²³.

We’ll walk through the same exact steps here using PHP 5.5
syntax. We’ll be using the password_hash function to gen-
erate our hashed password, this function will automatically
create a random salt so we can skip that step completely. Let’s
just jump straight into it

1 //FYI - the default cost is 10, it can be customiz\

2 ed though

3

4 //hash it, hash it good

5 $passwordHash = password_hash($_POST['password']);

6

7

8 //this next part is just for demonstration

9 $db = new ImaginaryDatabase;

10 $db->user()->create(array(

²²http://www.php.net/manual/en/book.password.php
²³http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.9811

Chapter 3 - Password Encryption and Storage for Everyone 56

11 'password' => $passwordHash

12));

and then to verify the user’s password at login you will do

1 //we are going to start with a default state of fa\

2 ilure

3 //always assume failure first

4 $valid = FALSE;

5

6 //grab the password hash from our imaginary databa\

7 se

8 $user = $db->user()-where([

9 'email' => $_POST['email']

10])->row();

11

12 //now check to see if the login password matches

13 $pass = $_POST['password'];

14 if (password_verify($pass, $user->pass) === TRUE) {

15 $valid = TRUE;

16 }

17

18 //other checks, error handling, etc...

19

20 if ($valid === TRUE) {

21 //valid auth stuff

22 }

As you can see, the new password functions make your life a
lot easier in PHP 5.5. Another advantage to this functionality
being baked into PHP is that you can rely on it remaining up
to date in the future, instead of having to stay up to date on

Chapter 3 - Password Encryption and Storage for Everyone 57

the latest password algorithms yourself. Even though I know
this has been riveting, leave it to the pros like the PHP core
team when you can, that way you have more time to make
cool stuff.

When you implement your authentication scheme make sure
to reference the PHP docs to ensure your code is up to date.
Also, be sure to take advantage of the other password func-
tions available like password_get_info() and password_-

needs_rehash().

Are you on PHP 5.3 still? Missing out on all the fun these users
get using that new fangled 5.5? Not to worry, Anthony Ferrara
has you covered. His password_compat library implements
the new password functions in PHP 5.3.7 and up just for you.
You can download it here on Anthony’s Github²⁴ I HIGHLY
recommend using this when possible instead of writing the
code yourself, this has been tested so you can rely on it.

²⁴https://github.com/ircmaxell/password_compat/

https://github.com/ircmaxell/password_compat/
https://github.com/ircmaxell/password_compat/

Chapter 3 - Password Encryption and Storage for Everyone 58

Brute Force Protection

You can have the best password hashes out there, like totally
secure dude, but that doesn’t do you any good if someone
just hammers away at your login page until they find the
correct password. Brute Forcing is the process of someone
using software to repeatedly try different passwords until
they get in.

Securing yourself from this type of attack is pretty easy, sadly
I see so many sites that are vulnerable to this. So how do
you secure yourself from it? Just make it take longer than is
feasible for someone to find a password this way.

So someone tries to login, fail. They try again, fail. One
more, fail. Now you make them wait 60 seconds before trying
again. Done. That’s really the simplest, yet still super effective
method of preventing brute force attacks. If an attacker can
only try three passwords per minute then it’s going to take
them forever to find the user’s password so they move on.
Your users are safe. You don’t have to limit it at three exactly,
three or five or ten are pretty popular numbers; personally I
wouldn’t go over ten per minute.

Next up you can expand on that a bit. Block based on IP.
Only allow X number of login attempts from a certain IP
across all users instead of just each individual user. Just be
sure to include good error messages and reasonable access
reinstatement times, corporate users often share the same
public IP address so you don’t want to punish thousands of
valid users due to one bad user if you can help it.

Also note, the same logic applies to your API authentication.
Don’t leave an opening to attackers to simply take a different
path to get the same result. If you secure something on

Chapter 3 - Password Encryption and Storage for Everyone 59

the frontend of your application and then expose that same
functionality through an API make sure to secure it just as
well there.

Chapter 3 - Password Encryption and Storage for Everyone 60

Upgrading Legacy Systems

Now to the elephpant in the room. Get it? ElePHPant. Yea, it’s
been a long night, sorry. So how to you upgrade your existing
system that has MD5 passwords with no salt?

I’m going to give you two options.

• Path 1 - As each user logs in we will silently upgrade
their hash to use BCrypt. They won’t even know the
difference. Soon enough you will have a database of
well secured passwords.

• Path 2 - Use BCrypt to hash the existing MD5 hashes
that are in the database. New passwords will be hashed
with MD5 first and then BCrypt.

Upgrade Path 1

Path 1 is the traditional advice for migrating to new authen-
tication schemes and is by far the best option in the majority
of circumstances. To implement this you would do something
similar to this

1 $valid = FALSE;

2

3 //grab the password hash from our imaginary databa\

4 se

5 $user = $db->user()-where([

6 'email' => $_POST['email']

7])->row();

8

9 if ($user->pass_hash_algo === 'bcrypt') {

Chapter 3 - Password Encryption and Storage for Everyone 61

10 //they have previously logged in and

11 //upgraded their hash so they're good

12 //proceed with verifying login as usual

13 }

14 else {

15 //this is modified from our old hash check

16 $oldHash = md5($_POST['password']);

17

18 if ($oldHash === $user->pass) {

19 //generate the new hash with the plaintext

20 //password they just gave us

21 $newHash = password_hash($_POST['password']);

22

23 //save the new hash and flag to our database

24 $user->pass = $newHash;

25 $user->pass_hash_upgraded = 'bcrypt';

26 $user->save();

27

28 $valid = TRUE;

29 }

30

31 //other checks, error handling, etc...

32 }

With this modified login system in place your users will
upgrade to the new hash automatically as they login. This
upgrade path can easily be modified throughout the years as
the recommended hashing algorithms change. In a few years
SCrypt could be the accepted standard and it would be trivial
to upgrade users to that.

Chapter 3 - Password Encryption and Storage for Everyone 62

Upgrade Path 2

Path 2 isn’t as clean of a solution but is immediately secure.
Where Path 1 retains the insecure hashes until each user
logs in next this will secure your data right now so you
don’t have to lose any sleep tonight. With this path you
will immediately re-hash all current password hashes using
BCrypt. Your new hashes are just BCrypt hashes of MD5
hashes of the passwords. This complicates the process since
you will need to use both BCrypt and MD5 basically forever,
this could become cumbersome years from now when you’re
SCrypting BCrypts of SHA1’d MD5 hashes.

This is a two step process, first write a script to do basically
the following and run it against your current database. Please
tell me you’re doing this with a database dump and not on
the prod server. Right? Cause that would make me sad… Also
you should add some type of status to each record while you
do this. Basically just use this as an example, no copy-pasting
mmkay.

1 $users = $db->users()->result();

2

3 foreach ($users as $user) {

4

5 $newHash = password_hash($user->pass);

6

7 $user->pass = $newHash;

8 $user->save();

9

10 }

Now that your database has been updated change your regis-
tration method to do this

Chapter 3 - Password Encryption and Storage for Everyone 63

1 //hash it with MD5 then BCrypt

2 $passHash = password_hash(md5($_POST['password']));

3

4 //this next part is just for demonstration

5 $db = new ImaginaryDatabase;

6 $db->user()->create([

7 'password' => $passHash

8]);

The login method will need to check against an MD5 hashed
password instead of the plaintext as well

1 //grab the hash from our imaginary database

2 $user = $db->user()-where([

3 'email' => $_POST['email']

4])->row();

5

6 //md5 hash the password before we bcrypt it

7 $md5Pass = md5($_POST['password']);

8

9 //now check to see if the login password matches

10 if (password_verify($md5Pass, $user->pass) === TRU\

11 E) {

12 $valid = TRUE;

13 }

14

15 //other checks, error handling, etc...

Chapter 3 - Password Encryption and Storage for Everyone 64

It’s Over. We’re Safe.

That’s all folks. There’s a ton more to cover as always but
this is the need to know info. I’ll probably end up writing
additional chapters or a second volume to cover advanced
topics in more detail. Stay tuned for the next chapter, we’ll
cover restricting URLs, safely handling files, and ensuring
that no one sees data they shouldn’t.

Resources

If all of this talk about cryptography has interested you I
strongly suggest you check out Bruce Schneider’s work. You
should definitely read his book, Applied Cryptography²⁵, it is
the bible of crypto.

I would also like to bring attention to the work that a fellow
member of the PHP community has been doing, Anthony
Ferrara²⁶ championed the password_hash functionality inte-
grated into the PHP core starting with version 5.5. This was a
huge step towards insuring we have secure PHP applications
by default in the future.

²⁵https://www.schneier.com/book-applied.html
²⁶http://blog.ircmaxell.com/

Chapter 4 -
Authentication, Access
Control, and Safe File
Handing
Erica works for a small, local manufacturing company as their
programmer and general IT person. She was recently tasked
with developing software for the office staff, to upgrade them
to the digital age instead of using paper records.

The first step was to have staff members scan documents
when theywere finishedwith them. Instead of filing the paper
forms, they would be stored electronically.

Development of the archiving system proceeded well. The
system consisted of a basic database listing of all the docu-
ments, with various filters such as department, date, tags, etc.
Nothing too complex; Erica wanted to keep it simple.

The documents displayed to users are filtered based on the
user’s department and their position (e.g., user, manager,
director). Everything worked well for several months, then
it happened. There was a breach of a secure document. The
subsequent investigation determined a disgruntled employee
gained access to a file meant only for senior management.
The employee leaked the document to a competitor to secure
a winning bid for a cushy position for themselves at said
company.

65

Chapter 4 - Authentication, Access Control, and Safe File Handing 66

So how did it happen? Erica has been working all weekend
trying to figure it out, when boom, she finds it. It’s so obvious,
but she never thought to secure it.

In Erica’s system, files are uploaded and named after the ID
fields of their respective database records. An uploaded PDF
might be named “13424.pdf”, while the next file, a DOC for
example, would be named “13425.doc”, and so on. Erica had
secured the document listing that each user sees, but had
not considered securing the files themselves when opened or
downloaded by the browser. There was no protection to stop
a user from gaining access to sensitive documents by simply
guessing filenames by incrementing the ID.

The stories are getting a little long, but if you’re committed
enough you can make any story work. I once told a woman I
was Kevin Costner, and it worked because I believed it.

Chapter 4 - Authentication, Access Control, and Safe File Handing 67

Authentication

The first step to properly handling sensitive data is authenti-
cation. You need to ensure that a user is who they say they
are.

Herewewill expand on the code samples from the last chapter
to validate a password, then denote for later use that the user
has a valid login.

1 class UserModel

2 {

3 //... other methods

4

5 function login($user, $password)

6 {

7 if (password_verify($_POST['password'], $user-\

8 >pass) === TRUE) {

9 $valid = TRUE;

10 }

11

12 //other checks, error handling, etc...

13

14 if ($valid === TRUE) {

15 //successfully logged in

16

17 //just example session class

18 //your own code or framework will likely

19 //have it's own session wrapper

20 Session::put('user', $user->id);

21 return TRUE;

22 }

23

Chapter 4 - Authentication, Access Control, and Safe File Handing 68

24 //failed to login

25 Session::put('user', NULL);

26 return FALSE;

27 }

28 }

We’ve saved the user’s successful login. A key point here is
noting their user ID. Just because they’re logged in doesn’t
mean they have access to do anything they want in your
application.

Chapter 4 - Authentication, Access Control, and Safe File Handing 69

Access Control

In addition to determining if the user has a valid login, we
need to determine if they have access to the page/section/fea-
ture they are requesting.

Let’s start with a basic use case. You have two types of users:
“Muggle” and “Admin”. Muggles are your basic users with
very restricted access. Admins are the site administrators
whom have access to do everything. An Admin can edit or
delete users, manage posts, etc. It is very important that a
normal user - a Muggle - cannot perform these actions.

Different frameworks have differing conventions for when
and where to check for proper access. In Laravel, filters are
preferred. Symfony has voters. In most systems you may
simply use the constructors of your controllers. The following
is a hypothetical example; your exact implementation will
vary, and is up to you.

First we’re going to add a method to our UserModel for
querying the current user.

1 class UserModel

2 {

3 //... other methods

4

5 //... login method

6

7 function current()

8 {

9 $user = FALSE;

10

11 if (isset($_SESSION['user']) === TRUE) {

Chapter 4 - Authentication, Access Control, and Safe File Handing 70

12 $user = DB::findById($_SESSION['user']);

13 }

14

15 return $user;

16 }

17

18 //let's imagine there is a method for retrieving

19 //the user's groups.

20 }

Now let’s use these methods to verify that this user has
appropriate access.

1 class AdminController

2 {

3 function __construct()

4 {

5 $userModel = new UserModel;

6 $user = $userModel->current();

7

8 //check to make sure the user is logged in and

9 //is a member of the admin group

10 if ($user === FALSE || in_array('admin', $user\

11 ->groups) === FALSE) {

12

13 //please add a legit error message

14 //with headers and all that fancy stuff

15 die('Not Authorized');

16 }

17 }

18

19 //other admin only methods

20 }

Chapter 4 - Authentication, Access Control, and Safe File Handing 71

You will usually use some type of abstracted access control
layer on top of your regular controllers/routes/etc. This layer
should map your routes to the access level required to view
that route. For example, /admin/*might only be accessible to
users in the “admin” group. POST and PUT requests might only
be accessible to “editors”. DELETE requests only accessible by
“admins”.

The point is, each page should check the user’s access levels
and determine if they are authorized for the requested ac-
tion(s). You don’t want to assume that, if a user can see a form
and POST it to the correct endpoint, the user is authorized to
perform that action. This will help ensure protection against
malicious users, as well as unexpected changes to your data
by users who should not have been able access that data in
the first place.

You never want to breeze through authentication security.
Take it seriously! You will save yourself or other developers
from unnecessary development time and headaches in the
future.

Chapter 4 - Authentication, Access Control, and Safe File Handing 72

Validating Redirects

In the flow of your application, often times you will POST a
form to an endpoint, validate that data, perform some action,
then redirect the user to the next step in the application flow.

If the page you are redirecting to contains sensitive data,
someone can bypass your expected flow by simply sending a
request straight to this final page, bypassing your validation
step.

There are a few ways to handle this. The first way is to simply
not redirect at all. Most of the time when you think you need
a redirect, you could simply call the next method directly. So
instead of:

1 if ($valid === TRUE && $dataSaved === TRUE) {

2 URL::redirect('/blog/1/edit');

3 }

You could call the edit method without a redirect:

1 if ($valid === TRUE && $dataSaved === TRUE) {

2 $this->_edit(1);

3 }

In this example, the _edit() method would be a protected or
private method that can’t be accessed from a URL without
going through the previous step.

If you do in fact need a separate endpoint, which you may if
there are multiple entry points to this destination, then you

Chapter 4 - Authentication, Access Control, and Safe File Handing 73

need to verify that the proper steps have been executed. Pass-
ing any appropriate data along each request in an expiring
session variable (commonly called flash data) is usually the
safest way.

1 if ($valid === TRUE && $dataSaved === TRUE) {

2 Session::flash('blogEditValid', TRUE);

3 URL::redirect('/blog/1/edit');

4 }

Chapter 4 - Authentication, Access Control, and Safe File Handing 74

In your edit endpoint, youwould verify the passed-along data:

1 public function edit($id)

2 {

3 if (Session::get('blogEditValid') !== TRUE) {

4 //again, this should be a proper error

5 //in a real world app

6 die('Not Authorized');

7 }

8 }

Chapter 4 - Authentication, Access Control, and Safe File Handing 75

Obfuscation

Have you heard the term “security through obscurity”? It’s
rarely true, but in some cases it is helpful. Most applications
will use an ID field in each table as a primary key. This ID is
then used throughout the system to access data. It is passed
through URLs, forms, and APIs to denote what piece of data
is needed.

Sometimes, though, you don’t want to expose the user to the
actual row ID. Maybe you are launching a new product and
don’t want the user to know that they are only the 13th user.
Maybe you have public data but don’t want your site to be
easily crawled by scraping bots.

In these cases, you can obfuscate the ID to something that
isn’t incremental (such as 1, 2, 3, …) but can be translated to
your ID field. Rather than doing this:

1 Route::get('/edit/{id}', function($id)

2 {

3 //id = 4321234

4 $post = $db->post()-where([

5 'id' => $id

6])->row();

7 });

You could do:

Chapter 4 - Authentication, Access Control, and Safe File Handing 76

1 Route::get('/edit/{hash}', function($hash)

2 {

3 //hash = BaPjae

4 $id = HashId::decrypt($hash);

5

6 $post = $db->post()-where([

7 'id' => $id

8])->row();

9 });

In this example, the HashId::decrypt() call is simply taking
some preexisting security hash from your server and applying
it against the passed hash to determine the ID. This can also
be called in reverse to generate a hash:

1 $hash = HashId::encrypt(4321234);

2 echo $hash; //outputs BaPjae

It is rather trivial to write these hashing methods your-
self, but I recommend using the tried and true HashIDs²⁷
libraries. These libraries are not only easy to use, but are well
maintained and available acrossmany different programming
languages to ensure interoperability throughout your entire
infrastructure.

There are cases where obfuscation can be argued as needed
or it could even be required in your particular use case.
For example, I’ve seen people use obscurity as an additional
safeguard for HIPAA data. One use case was a specification
that required keeping HIPAA sensitive data in a separate
database, in this case it was a three tier server architecture.

²⁷http://www.hashids.org/php/

http://www.hashids.org/php/
http://www.hashids.org/php/

Chapter 4 - Authentication, Access Control, and Safe File Handing 77

Primary keys used by the web application were stored in
one database (along with non-sensitive data), sensitive data
was stored in another, and an intermediary database stored
the relations. This was designed so that if any one of these
databases were compromised the data obtained would be
anonymous or non-sensitive.

I’m going to reiterate this point because it is extremely
important: in most cases, obscurity doesn’t protect you from
any legitimate attacks. You shouldn’t rely on it for security. It
is simply a means of making things a little harder to find.

Chapter 4 - Authentication, Access Control, and Safe File Handing 78

Safe File Handing

Circling back to our original story: if you have documents
that are served to your users for viewing or downloading, you
can’t simply set access control on the *.pdf files. Why not?
See, I knew you were going to ask that. It helps that I’m the
narrator here.

What you need to do is store the file on your server where it
can’t be accessed from your web server. Here’s one example
of a recommended directory structure:

application/

composer.json

composer.lock

htdocs/

.htaccess

assets/

templates/

index.php

robots.txt

uploads/

workers/

htdocs/ is the location that Apache (or whatever web server
you’re using) would serve for your domain. uploads/ is
where you would store uploaded documents. You can also do
this using your server’s configuration. In Apache you could
return a 404 to any request to the uploads directory if it were
in the htdocs tree.

To implement this in your application you would have an
endpoint for accessing the documents depending on their

Chapter 4 - Authentication, Access Control, and Safe File Handing 79

type. So maybe you need to serve up monthly financial
statements, but only to users in the “accounting” group.

Here we are defining the endpoint to access this. With this
endpoint we will verify the user’s access level, read the file,
and finally output it to the browser with the appropriate
headers.

1 Route::get(

2 '/accounting/statements/{year}/{month}',

3 function($year, $month) {

4

5 //check user access

6 $userModel = new UserModel;

7 $user = $userModel->current();

8

9 //check to make sure the user is logged in

10 //and a member of accounting

11 if ($user === FALSE || in_array('accounting', $us\

12 er->groups) === FALSE) {

13 //please add a legit error message

14 die('Not Authorized');

15 }

16

17 //the user has access, let's read the file

18 $directory = __DIR__ . '../uploads/acct/stmnts/';

19 $filename = (int) substr($year, 0, 4) .

20 (int) substr($month, 0, 2) .

21 '.pdf';

22

23 //error handling for invalid files

24

25 //open the file

Chapter 4 - Authentication, Access Control, and Safe File Handing 80

26 $fileHandle = fopen($directory . $filename, 'r');

27

28 //read the file and close it

29 $fileContents = fread($fileHandle);

30 fclose($fileHandle);

31

32 //send the appropriate headers

33 header('Content-type: application/pdf');

34 header('Content-Disposition: inline; filename="' \

35 . $filename . '"');

36 header('Content-Length: ' . filesize($directory .\

37 $filename));

38 header('Expires: 0');

39 header('Cache-Control: must-revalidate');

40 header('Pragma: public');

41

42 //echo the file contents to the browser

43 echo $fileContents;

44

45 });

This prevents someone that shouldn’t see this file from ac-
cessing it, since it is outside of the web server tree and it is
being checked against the proper access controls.

Chapter 4 - Authentication, Access Control, and Safe File Handing 81

Recap

We’ve covered basic authentication procedures, proper access
control through never trusting without validation, and safe
file handling procedures. I hope you find this helpful while
developing your next awesome idea.

Keep reading, ‘cause we’re not done yet. Remember, we’re
done when I say we’re done!

Chapter 5 - Safe
Defaults, Cross Site
Scripting, and Other
Popular Hacks
No story this time. This chapter is a catch-all for other attacks
you need to protect against, so there isn’t an overarching
narrative. Try to contain your disappointment.

Never Trust Yourself - Use Safe
Defaults

One of the core concepts of a secure system is safe defaults.
Whenever possible (and it’s usually possible), you should
define variables, properties, etc., early with a safe default.

A safe default usually means a NULL, empty, or FALSE state.
When determining logic flow, the default should always be
a failure. For example, in the earlier authentication examples
I check if the password is correct. If it is, we proceed to the
positive application logic. If it fails, the function executes the
default logic for a non-positive result.

Let’s look at a basic example with form validation.

82

Chapter 5 - Safe Defaults, Cross Site Scripting, and Other Popular Hacks83

1 Route::post('/signup', function()

2 {

3 //check for a valid form

4 if (Form::validate('signup') === TRUE) {

5 //process the form

6 }

7

8 //the default logic is failure

9 die('Invalid Form Data');

10 });

Never Trust Dynamic Typing. It’s
Not Your Friend.

Dynamic typing is a feature loved by newer programmers,
since it seems to make development “easier”. Dynamic typing
means you don’t have to be so picky about types; you just
get close enough and it’ll work. The problem with this is it
doesn’t always work the way you’d expect.

Let’s look at a classic example with a native PHP function,
stripos(). The scenario is that you’re trying to figure out if
the letter “i” exists in the phrase “I am the one who knocks”.

Chapter 5 - Safe Defaults, Cross Site Scripting, and Other Popular Hacks84

1 $phrase = 'I am the one who knocks';

2

3 $letterExists = stripos($phrase, 'i');

4

5 if ($letterExists != FALSE) {

6 echo 'we should be here';

7 return TRUE;

8 }

9

10 echo "we shouldn't be here, yet we are";

11 return FALSE;

The stripos() function returns the index of the match in
the haystack string. Since “i” is the first letter of the string,
strpos() is returning 0. Due to dynamic typing, != FALSE

evaluates the same as != 0. Now let’s fix this with an explicit
check using !== instead.

1 $phrase = 'I am the one who knocks';

2

3 $letterExists = stripos($phrase, 'i');

4

5 if ($letterExists !== FALSE) {

6 echo 'we should be here';

7 return TRUE;

8 }

9

10 echo "we shouldn't be here, annnnnnd we aren't";

11 return FALSE;

Another lesser-known advantage to explicit checks is per-
formance. Most of the time an explicit check will be faster,

Chapter 5 - Safe Defaults, Cross Site Scripting, and Other Popular Hacks85

since it doesn’t need typecasting. If you’re ever curious about
performance differences in PHP, I recommend checking out
PHP Bench²⁸.

²⁸http://www.phpbench.com/

http://www.phpbench.com/
http://www.phpbench.com/

Chapter 5 - Safe Defaults, Cross Site Scripting, and Other Popular Hacks86

Cross Site Scripting

Cross Site Scripting (XSS) is the process of injecting malicious
code into the target website. This can be done in several ways,
but the end result is the user’s browser runs unauthorized
code as themselves, within their current session.

Non-Persistent XSS

This is the traditional type of XSS exploit. It involves injecting
data into a site and then guiding users to the malicious
content.

Say a page on your site takes ?page_num=2&per_page=50 as
query string parameters. If you do not escape these parame-
ters, an attacker could change their values to malicious code.
This code could take the user to a delete page, run JavaScript
in their browser, or any number of client side attacks.

After injecting their malicious code, the attacker somehow
gets a user to visit the page. When the user arrives, the
application will verify their valid user session and execute the
malicious code. A user could even end up deleting their own
account!

Persistent XSS

A persistent XSS exploit is an exploit stored permanently on
the server. For example, a social sharing site like Facebook
allows users to save messages and display them to other
users. An attacker could store malicious code in a Facebook
post. If Facebook was not properly escaping this data when
displaying it back to other users, that code would be executed.

Chapter 5 - Safe Defaults, Cross Site Scripting, and Other Popular Hacks87

So anyone that sees the attacker’s status would be running
this malicious code.

Attack Entry Points

I just mentioned a couple examples of XSS exploit entry
points, but those are not the only ones. Basically anywhere
you take input from a user and display it back on a web page
is an opportunity for an attacker to exploit your site.

Be sure to think about all places data enters your system,
not just input fields. For example, maybe you allow users
to upload images and then re-display the image XIFF data.
Maybe you parse uploaded CSV files of various data exports
from external programs. Anywhere that you re-display infor-
mation, it needs to be protected.

How To Protect Yourself

The fix for this is not very difficult. First, never take data
directly from a URL and echo it back to the browser. The
same goes for data from other sources, like your database or
uploaded files. To protect yourself, you simply need to escape
data going into your database and escape data being displayed
back to your users.

We’ve already discussed proper database escaping in Chapter
1, so we’ll focus on displaying data. PHP makes this very sim-
ple with the built-in function htmlentities(). This function
will properly handle the majority of data.

Let’s see what this looks like implemented. Your view file used
to look like this:

Chapter 5 - Safe Defaults, Cross Site Scripting, and Other Popular Hacks88

1 <h1>Title</h1>

2

3 Hello <?=$name?>,

Now with the protection applied, it looks like this:

1 <h1>Title</h1>

2

3 Hello <?=htmlentities($name)?>

If you want to stay DRY²⁹, you would probably abstract this
away into a view helper library. Most frameworks already
include this in their view or template libraries.

²⁹http://en.wikipedia.org/wiki/Don’t_repeat_yourself

Chapter 5 - Safe Defaults, Cross Site Scripting, and Other Popular Hacks89

Cross Site Request Forgery

Cross Site Request Forgery (CSRF) is basically the opposite
of an XSS exploit. Where XSS takes advantage of the user by
means of a trusted web site, CSRF takes advantage of the web
site by means of a trusted user.

An example of this is an attacker sending out fake emails
with a link to delete a blog post, an email, or whatever. The
target user then clicks the link and arrives at a delete page.
Since the user is an administrator with a valid session, your
application goes ahead and deletes the record as requested.
The user had no idea what the link was taking them to and
now their account has been deletedwithout their consent. Not
cool.

This doesn’t have to be a text link either; it is often attached
to an image or a button. This might sound like a small risk
since most critical web site functions are behind forms that
expect POSTed data. But this can just as easily be expanded
upon to use a button or JavaScript to submit hidden forms.

How To Protect Against It

The first step is to ensure no data-altering actions are per-
formed by GET requests. Anything that performs an action
on data should require a POST, PUT, or DELETE request. If
the user clicks a delete button, they should then be taken to a
form used to confirm the action. If data-altering actions need
to be performed over GET (maybe for a RESTful API), you can
require a unique token in the query string. In the following
examples we will be using POST data but the exact same
concepts apply when dealing with GET requests; just set the
token in the query string instead of in the POST parameters.

Chapter 5 - Safe Defaults, Cross Site Scripting, and Other Popular Hacks90

Now that you are submitting forms for your data manipu-
lations, we will need to add CSRF tokens to our forms. Our
CSRF token will be a standard Nonce (Number used Once).
Wewill generate a random token, store it in the user’s session,
then add it as a hidden field to our form. Once the form is
POSTed, we can check the CSRF token against the one in the
session to validate the request.

First, we’ll create a function to generate the token. This will
usually be placed in a universally callable place, maybe as a
route filter, voter, or a helper library.

1 //assuming the rest of the form class here

2

3 static function generateCsrf()

4 {

5 $token = mcrypt_create_iv(

6 16,

7 MCRYPT_DEV_URANDOM

8);

9

10 Session::flash(

11 'csrfToken',

12 $token

13);

14

15 return $token;

16 }

Note that we are using session flash data here. Flash data
will be stored to the session, but can only be accessed on
one request before it is destroyed. This concept is supported

Chapter 5 - Safe Defaults, Cross Site Scripting, and Other Popular Hacks91

in most session wrapping classes. This keeps our token from
being valid on more than one request.

Next we’ll call this within our route closure and pass the token
to the view that is generating the form:

1 Route::get('/signup', function()

2 {

3 $data['token'] = Form::generateCsrf();

4

5 return View::render('signup.form', $data);

6 });

And now for our view, signup/form.php

1 <form method="POST" action="/signup">

2

3 <label>

4 First Name:

5 <input type="text" name="first_name" />

6 </label>

7

8 <label>

9 Last Name:

10 <input type="text" name="last_name" />

11 </label>

12

13 <label>

14 Email:

15 <input type="text" name="email" />

16 </label>

17

18 <input type="hidden" name="token" value="<?=$tok\

Chapter 5 - Safe Defaults, Cross Site Scripting, and Other Popular Hacks92

19 en?>" />

20

21 <input type="submit" name="submit" value="Signup\

22 " />

23

24 </form>

When this form is POSTed we can now validate the token:

1 Route::post('/signup', function()

2 {

3 //this would probably be abstracted away into

4 //a route filter or your form validation

5 if ($_POST['token'] === Session::get('csrfToken'\

6)) {

7 //process the form

8 }

9

10 //like earlier, you should add a

11 //legit error message here

12 die('Invalid Form Data');

13 });

Now that this token checking is in place, if an attacker tricks
a user into submitting a fake form, the request will fail. The
user will not have amatching CSRF token in their session data
for your website.

Chapter 5 - Safe Defaults, Cross Site Scripting, and Other Popular Hacks93

Multiple Form Submits

Another prolific issue in PHP applications is multiple form
submissions. A user submits a form to perform some ac-
tion â€” let’s say transferring 20 Bitcoins from one wallet
to another. The user clicks submit, but they don’t notice a
change immediately, so they click again. Now the user has
inadvertently transferred 40 Bitcoins instead of 20. Luckily
for us, the CSRF token logic we just discussed will handle this
without any extra work. To prevent this in most situations,
we just need to pass a unique token, validate it, then clear it
once processed.

Chapter 5 - Safe Defaults, Cross Site Scripting, and Other Popular Hacks94

Race Conditions

Race conditions are not super common in PHP, but are very
hard to debug once they occur. It is best to handle them before
they happen. A race condition is when multiple things are
happening at once, causing unexpected logic flow. The issue is
when Block B executes before Block A, due to Block A taking
longer to perform.

A basic example is two processes writing to the same file.
Without a transactional locking mechanism in place, data
is susceptible to corruption. If you expect Process A to be
finished writing to a file before Process B starts, data could be
overwritten, written on top of other data, or many other types
of data corruption. With transactional locking in place, you
ensure Process A is finished writing to the file before allowing
Process B to write to the same file.

This example is very process-specific, but the main concept
of preventing race conditions is to make logic transactional
where it should be.

Another example is with database writes. To prevent race
conditions in the database, use transactions to apply certain
database changes only if all statements are successful.

The general concept is that if only one thing is supposed to
happen at a time, you should check to ensure that each step
has finished before proceeding to the next step.

Chapter 5 - Safe Defaults, Cross Site Scripting, and Other Popular Hacks95

Outdated Libraries / External
Programs

Another quick item to bring to your attention is outdated
libraries. The best way to ensure that your code stays safe
is to keep all of your dependencies up to date. No matter how
secure the code you personally write is, all it takes is a single
security vulnerability in any library you use and your site can
be exploited.

Another thing to keep in mind is external programs you use
on your server. For example, PhpMyAdmin has had several
security flaws throughout its lifetime that have left servers
vulnerable. Outdated Wordpress installations are also well
known in development circles as a back door for hackers. Any
program that exposes critical functions on your server is a
possible attack entry point.

Try to keep your external dependencies to a minimum, and
always keep them up to date with their latest security releases.

Destructor
I had a lot of fun during the process of writing this. I also
drank a lot of rum. I truly hope that you learning something
and enjoyed reading this, we need to meet that knowledge to
rum ratio.

Please get in contact³⁰ if you want to learn more about any of
the subjects covered here or just argue over the meaning of
life.

Thanks for reading.

³⁰feedback@buildsecurephpapps.com

96

Destructor 97

About the Author

Ben Edmunds³¹ leads development teams to create cutting-
edge web and mobile applications. He is an active leader,
developer, and speaker in various development communities.
He has been developing software professionally for over 10
years and in that time hasworked on everything from robotics
to government projects.

PHP Town Hall podcast co-host. Portland PHP Usergroup co-
organizer. Open source advocate.

Security Audit / Consulting

Need help applying the items discussed in this book? Or
would you like someone to go behind you to verify that your
web application is secure?

I offer security auditing and consulting on a limited basis each
year. If you’re interested please get in touch, I can be reached
via email at consulting@benedmunds.com³²

³¹http://benedmunds.com
³²mailto:consulting@benedmunds.com

http://benedmunds.com
mailto:consulting@benedmunds.com
http://benedmunds.com
mailto:consulting@benedmunds.com

	Table of Contents
	Constructor
	Format
	Errata
	Sample Code
	About the Author

	Chapter 1 - Never Trust Your Users. Sanitize ALL Input!
	SQL Injection
	Mass Assignment
	Typecasting
	Sanitizing Output

	Chapter Two - HTTPS/SSL/BCA/JWH/SHA and Other Random Letters; Some of Them Actually Matter.
	What is HTTPS
	Limitations
	When to use HTTPS
	Implementing HTTPS
	Paths

	Chapter 3 - Password Encryption and Storage for Everyone
	The Small Print
	What is a Hash?
	Popular Attacks
	A Pinch of Salt
	Hashing Algorithms
	Storage
	Validation
	Putting It All Together
	Brute Force Protection
	Upgrading Legacy Systems
	Resources

	Chapter 4 - Authentication, Access Control, and Safe File Handing
	Authentication
	Access Control
	Validating Redirects
	Obfuscation
	Safe File Handing

	Chapter 5 - Safe Defaults, Cross Site Scripting, and Other Popular Hacks
	Never Trust Yourself - Use Safe Defaults
	Never Trust Dynamic Typing. It's Not Your Friend.
	Cross Site Scripting
	Attack Entry Points
	Cross Site Request Forgery
	Multiple Form Submits
	Race Conditions
	Outdated Libraries / External Programs

	Destructor
	About the Author
	Security Audit / Consulting

