

C#	6.0	Cookbook
Jay	Hilyard	&	Stephen	Teilhet

C#	6.0	Cookbook

by	Jay	Hilyard	and	Stephen	Teilhet

Copyright	©	2015	Jay	Hilyard,	Stephen	Teilhet.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,	Sebastopol,	CA
95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.
Online	editions	are	also	available	for	most	titles	(http://safaribooksonline.com).	For	more
information,	contact	our	corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Editor:	Brian	MacDonald

Production	Editor:	Nicholas	Adams

Copyeditor:	Rachel	Monaghan

Proofreader:	Kim	Cofer

Indexer:	Judith	McConville

Interior	Designer:	David	Futato

Cover	Designer:	Ellie	Volckhausen

Illustrator:	Rebecca	Demarest

January	2004:	First	Edition

January	2006:	Second	Edition

December	2007:	Third	Edition

October	2015:	Fourth	Edition

http://safaribooksonline.com

Revision	History	for	the	Fourth	Edition
2015-09-28:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491921463	for	release	details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	C#	6.0	Cookbook,	the
cover	image,	and	related	trade	dress	are	trademarks	of	O’Reilly	Media,	Inc.

While	the	publisher	and	the	authors	have	used	good	faith	efforts	to	ensure	that	the
information	and	instructions	contained	in	this	work	are	accurate,	the	publisher	and	the
authors	disclaim	all	responsibility	for	errors	or	omissions,	including	without	limitation
responsibility	for	damages	resulting	from	the	use	of	or	reliance	on	this	work.	Use	of	the
information	and	instructions	contained	in	this	work	is	at	your	own	risk.	If	any	code
samples	or	other	technology	this	work	contains	or	describes	is	subject	to	open	source
licenses	or	the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-4919-2146-3

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781491921463

	

To	Seth,	Tom,	Katie,	and	Jenna.

Thank	you	for	your	friendship.

Our	lives	are	richer,	happier,	and	more	filled	with	laughter

for	having	you	in	them.

Jay	Hilyard

To	my	dear	friend,	pastor,	and	teacher,	Damon	Thomas.

You	and	your	family	have	been	such	a	blessing	to	ours.

Stephen	Teilhet

Preface

C#	is	a	language	targeted	at	developers	for	the	Microsoft	.NET	platform.	Microsoft
portrays	C#	as	a	modern	and	innovative	language	for	.NET	development	and	continues	to
deliver	on	that	in	C#	6.0	with	features	that	help	support	dynamic	programming,	parallel
programming,	and	writing	less	code.	C#	still	allows	for	both	declarative	and	functional
styles	of	programming,	and	still	includes	great	object-oriented	features	as	well.	In	short,
C#	allows	you	to	use	the	style	of	programming	that	fits	your	particular	problem.

We	started	writing	this	book	together	based	on	programming	problems	we	ran	into	when
we	were	first	learning	C#,	and	we	have	continued	to	expand	it	based	on	new	challenges
and	capabilities	in	the	language.	In	this	edition,	we	have	reworked	the	approach	of	many
solutions	to	take	advantage	of	the	latest	innovations	in	C#	like	the	new	expression-level
(nameof,	string	interpolation,	null	conditional,	index	initializers),	member	declaration
(auto-property	initializers,	getter-only	auto-properties,	expression-bodied	function
members),	and	statement-level	(exception	filters)	features.	We	have	also	incorporated	new
uses	of	dynamic	programming	(C#	4.0)	and	asynchronous	programming	(C#	5.0)	into	both
existing	and	new	recipes	to	help	you	understand	how	to	use	these	language	features.

We	hope	that	these	additions	will	help	you	get	past	some	of	the	common	(and	not-so-
common)	pitfalls	and	questions	everyone	has	when	learning	C#	for	the	first	time,
exploring	a	new	capacity	of	the	language,	or	working	on	the	slightly	off-the-beaten-path
items	that	come	up	during	a	development	cycle.	There	are	recipes	addressing	things	we
found	missing	from	the	.NET	Framework	Class	Library	(FCL),	even	though	Microsoft	has
provided	tons	of	functionality	to	keep	folks	from	reinventing	the	wheel.	Some	of	these
solutions	you	might	immediately	use,	and	some	may	never	darken	your	door,	but	we	hope
this	book	helps	you	get	the	most	out	of	C#	and	the	.NET	Framework.

The	book	is	laid	out	with	respect	to	the	types	of	problems	you	will	solve	as	you	progress
through	your	life	as	a	C#	programmer.	These	solutions	are	called	recipes;	each	recipe
consists	of	a	single	problem,	its	solution,	a	discussion	of	the	solution	and	other	relevant
related	information,	and	finally,	a	list	of	resources	such	as	where	in	the	FCL	you	can	find
more	information	about	the	classes	used,	other	books	addressing	the	topic,	related	articles,
and	other	recipes.	The	question/answer	format	provides	complete	solutions	to	problems,
making	the	book	easy	to	read	and	use.	Nearly	every	recipe	contains	a	complete,
documented	code	sample,	showing	you	how	to	solve	the	specific	problem,	as	well	as	a
discussion	of	how	the	underlying	technology	works	and	a	list	of	alternatives,	limitations,
and	other	considerations	when	appropriate.

Who	This	Book	Is	For
You	don’t	have	to	be	an	experienced	C#	or	.NET	developer	to	use	this	book	—	it	is
designed	for	users	of	all	levels.	This	book	provides	solutions	to	problems	that	developers
face	every	day	as	well	as	some	that	may	come	along	less	frequently.	The	recipes	are
targeted	at	the	real-world	developer	who	needs	to	solve	problems	now,	not	learn	lots	of
theory	first.	While	reference	or	tutorial	books	can	teach	general	concepts,	they	do	not
generally	provide	the	help	you	need	in	solving	real-world	problems.	We	choose	to	teach
by	example,	the	natural	way	for	most	people	to	learn.

The	majority	of	the	problems	addressed	in	this	book	are	frequently	faced	by	C#
developers,	but	some	of	the	more	advanced	problems	call	for	more	intricate	solutions	that
combine	many	techniques.	Each	recipe	is	designed	to	help	you	quickly	understand	the
problem,	learn	how	to	solve	it,	and	find	out	any	potential	trade-offs	or	ramifications	to
help	you	solve	your	problems	quickly,	efficiently,	and	with	minimal	effort.

To	save	you	even	the	effort	of	typing	in	the	solution,	we	provide	the	sample	code	for	the
book	on	the	O’Reilly	website	to	facilitate	the	“editor	inheritance”	mode	of	development
(copy	and	paste)	as	well	as	to	help	less	experienced	developers	see	good	programming
practice	in	action.	The	sample	code	provides	a	running	test	harness	that	exercises	each	of
the	solutions,	but	the	book	includes	enough	of	the	code	in	each	solution	to	allow	you	to
implement	the	solution	without	the	sample	code.	The	sample	code	is	available	from	the
book’s	product	page	(https://github.com/oreillymedia/c_sharp_6_cookbook).

https://github.com/oreillymedia/c_sharp_6_cookbook

What	You	Need	to	Use	This	Book
To	run	the	samples	in	this	book,	you	need	a	computer	running	Windows	7	or	later.	A	few
of	the	networking	and	XML	solutions	require	Microsoft	Internet	Information	Server	(IIS)
version	7.5	or	later,	and	the	FTP	recipes	in	Chapter	9	require	a	locally	configured	FTP
server.

To	open	and	compile	the	samples	in	this	book,	you	need	Visual	Studio	2015.	If	you	are
proficient	with	the	downloadable	Framework	SDK	and	its	command-line	compilers,	you
should	not	have	any	trouble	following	the	text	of	this	book	and	the	code	samples.

Platform	Notes
The	solutions	in	this	book	were	developed	using	Visual	Studio	2015.	The	differences
between	C#	6.0	and	C#	3.0	are	significant,	and	the	sample	code	has	changed	from	the
third	edition	to	reflect	that.

It	is	worth	mentioning	that	although	C#	is	now	at	version	6.0,	the	.NET	Framework	is
represented	as	version	4.6.	C#	has	continued	to	innovate	with	each	release	of	the	.NET
Framework,	and	now	in	C#	6.0	there	are	many	capacities	in	the	language	to	allow	you	to
program	in	whatever	style	is	best	suited	to	the	task	at	hand.

How	This	Book	Is	Organized
This	book	is	organized	into	13	chapters,	each	of	which	focuses	on	a	particular	topic	in
creating	C#	solutions.	The	following	paragraphs	summarize	each	chapter	to	give	you	an
overview	of	this	book’s	contents:

Chapter	1,	Classes	and	Generics

This	large	chapter	contains	recipes	dealing	with	classes	and	structure	data	types	as
well	as	the	use	of	generics,	which	allows	you	to	have	code	operate	uniformly	on
values	of	different	types.	This	chapter	covers	a	wide	range	of	recipes,	from	closures
to	converting	a	class	to	a	full-blown	command-line	argument-processing	system	to
class	design	topics.	There	are	recipes	to	enhance	your	general	understanding	of
generics	as	well	as	recipes	covering	when	they	are	appropriate	to	use,	what	support	is
provided	in	the	Framework	for	them,	and	how	to	create	custom	implementations	of
collections.

Chapter	2,	Collections,	Enumerators,	and	Iterators

This	chapter	examines	recipes	that	make	use	of	collections,	enumerators,	and
iterators.	The	collection	recipes	make	use	of	—	as	well	as	extend	the	functionality	of
—	the	array	(single,	multi,	and	jagged),	the	List<T>,	and	many	other	collection
classes.	The	generic-based	collections,	and	the	various	ways	to	create	your	own
strongly	typed	collections,	are	also	discussed.	We	explore	creating	custom
enumerators,	show	how	you	can	implement	iterators	for	generic	and	nongeneric	types
and	use	iterators	to	implement	foreach	functionality,	and	cover	custom	iterator
implementations.

Chapter	3,	Data	Types

This	chapter	covers	strings,	numbers,	and	enumerations.	These	recipes	show	how	to
accomplish	things	like	encode/decode	strings,	perform	numeric	conversions,	and	test
strings	to	determine	whether	they	contain	a	numeric	value.	We	also	cover	how	to
display,	convert,	and	test	enumeration	types	and	how	to	use	enumerations	that	consist
of	bit	flags.

Chapter	4,	Language	Integrated	Query	(LINQ)	and	Lambda	Expressions

This	chapter	covers	Language	Integrated	Query	(LINQ)	and	its	usage,	including	an
example	of	parallel	LINQ	(PLINQ).	There	are	recipes	using	many	of	the	standard
query	operators	and	showing	how	to	use	some	of	the	query	operators	that	are	not
keywords	in	the	language,	but	are	still	quite	powerful.	Lambda	expressions	are
explored,	and	recipes	show	their	usage	in	place	of	old-style	delegates.

Chapter	5,	Debugging	and	Exception	Handling

This	chapter	addresses	debugging	and	exception	handling.	We	present	recipes	that
use	data	types	that	fall	under	the	System.Diagnostics	namespace,	like	event	logs,
processes,	performance	counters,	and	custom	debugger	displays	for	your	types.	We
also	focus	on	the	best	ways	to	implement	exception	handling	in	your	application.
Recipes	on	preventing	unhandled	exceptions,	reading	and	displaying	stack	traces,	and
throwing/rethrowing	exceptions	are	also	included.	Finally,	we	provide	recipes
showing	how	to	overcome	some	tricky	situations,	such	as	exceptions	from	late-bound
called	methods	and	asynchronous	exception	handling.

Chapter	6,	Reflection	and	Dynamic	Programming

This	chapter	shows	ways	to	use	the	built-in	assembly	inspection	system	provided	by
the	.NET	Framework	to	determine	what	types,	interfaces,	and	methods	are
implemented	within	an	assembly	and	how	to	access	them	in	a	late-bound	fashion.	It
also	shows	you	how	to	use	dynamic,	ExpandoObject,	and	DynamicObject	to
accomplish	dynamic	programming	in	your	applications.

Chapter	7,	Regular	Expressions

This	chapter	covers	a	useful	set	of	classes	that	are	employed	to	run	regular
expressions	against	strings.	Recipes	enumerate	regular	expression	matches,	break	up
strings	into	tokens,	find/replace	characters,	and	verify	the	syntax	of	a	regular
expression.	We	also	include	a	recipe	that	contains	many	common	regular	expression
patterns.

Chapter	8,	Filesystem	I/O

This	chapter	deals	with	filesystem	interactions	in	three	distinct	ways:	first,	it	looks	at
typical	file	interactions;	second,	it	looks	at	directory-	or	folder-based	interactions;	and
third,	it	deals	with	advanced	filesystem	I/O	topics.

Chapter	9,	Networking	and	Web

This	chapter	explores	the	connectivity	options	provided	by	the	.NET	Framework	and
how	to	programmatically	access	network	resources	and	content	on	the	Web.	We
include	recipes	for	using	TCP/IP	directly,	using	named	pipes	for	communication,
building	your	own	port	scanner,	programmatically	determining	website
configuration,	and	more.

Chapter	10,	XML

If	you	use	.NET,	it	is	likely	that	you	will	be	dealing	with	XML	to	one	degree	or
another.	In	this	chapter,	we	explore	some	of	the	uses	for	XML	and	how	to	program
against	it	using	LINQ	to	XML,	the	XmlReader/XmlWriter,	and	XmlDocument.	We
cover	examples	using	both	XPath	and	XSLT,	and	topics	such	as	validating	XML	and
transforming	XML	to	HTML.

Chapter	11,	Security

There	are	many	ways	to	write	insecure	code	and	only	a	few	ways	to	write	secure
code.	In	this	chapter,	we	explore	areas	such	as	controlling	access	to	types,	encrypting
and	decrypting,	securely	storing	data,	and	using	programmatic	and	declarative
security.

Chapter	12,	Threading,	Synchronization,	and	Concurrency

This	chapter	addresses	the	subject	of	using	multiple	threads	of	execution	in	a	.NET
program	and	issues	such	as	implementing	threading	in	your	application,	protecting
resources	from	and	allowing	safe	concurrent	access,	storing	per-thread	data,	running
tasks	in	order,	and	using	the	synchronization	primitives	in	.NET	to	write	thread-safe
code.

Chapter	13,	Toolbox

This	chapter	has	recipes	for	those	random	sorts	of	operations	that	developers	run	into
over	and	over	again,	such	as	determining	locations	of	system	resources,	sending
email,	and	working	with	services.	It	also	covers	some	less	frequently	accessed	but
helpful	application	pieces,	such	as	queuing	messages,	running	code	in	a	separate
AppDomain,	and	finding	the	versions	of	assemblies	in	the	Global	Assembly	Cache
(GAC).

Certain	recipes	are	related;	in	these	cases,	the	See	Also	section	of	the	recipe	as	well	as
some	text	in	the	Discussion	will	note	the	relationships.

What	Was	Left	Out
This	book	is	not	a	reference	or	a	primer	about	C#.	Some	good	primers	and	reference
books,	all	from	O’Reilly,	are	C#	6.0	in	a	Nutshell	by	Joseph	Albahari	and	Ben	Albahari;
C#	6.0	Pocket	Reference,	also	by	Joseph	Albahari	and	Ben	Albahari;	and	Concurrency	in
C#	Cookbook	by	Stephen	Cleary.	The	MSDN	Library	is	also	invaluable.	It	is	included
with	Visual	Studio	2015	and	available	online	at	http://msdn.microsoft.com.

http://shop.oreilly.com/product/0636920040323.do
http://shop.oreilly.com/product/0636920040675.do
http://shop.oreilly.com/product/0636920030171.do
http://msdn.microsoft.com

Conventions	Used	in	This	Book
This	book	uses	the	following	typographic	conventions:

Italic

Used	for	URLs,	names	of	directories	and	files,	options,	and	occasionally	for
emphasis.

Constant	width

Used	for	program	listings	and	for	code	items	such	as	commands,	options,	switches,
variables,	attributes,	keys,	functions,	types,	classes,	namespaces,	methods,	modules,
properties,	parameters,	values,	objects,	events,	event	handlers,	XML	tags,	HTML
tags,	macros,	the	contents	of	files,	and	the	output	from	commands.

Constant	width	bold

Used	in	program	listings	to	highlight	an	important	part	of	the	code.
Constant	width	italic

Used	to	indicate	replaceable	parts	of	code.
//...

Ellipses	in	C#	code	indicate	text	that	has	been	omitted	for	clarity.
<!--...-->

Ellipses	in	XML	schemas	and	documents’	code	indicate	text	that	has	been	omitted	for
clarity.

NOTE
This	icon	indicates	a	tip,	suggestion,	or	general	note.

WARNING
This	icon	indicates	a	warning	or	caution.

About	the	Code
Nearly	every	recipe	in	this	book	contains	one	or	more	code	samples.	These	samples	are
included	in	a	single	solution	and	are	pieces	of	code	and	whole	projects	that	are
immediately	usable	in	your	application.	Most	of	the	code	samples	are	written	within	a
class	or	structure,	making	it	easier	to	use	within	your	applications.	In	addition	to	this,	any
using	directives	are	included	for	each	recipe	so	that	you	will	not	have	to	search	for	which
ones	to	include	in	your	code.

Complete	error	handling	is	included	only	in	critical	areas,	such	as	input	parameters.	This
allows	you	to	easily	see	what	is	correct	input	and	what	is	not.	Many	recipes	omit	error
handling.	This	makes	the	solution	easier	to	understand	by	focusing	on	the	key	concepts.

Using	Code	Examples
The	sample	code	for	this	book	can	be	found	at
https://github.com/oreillymedia/c_sharp_6_cookbook.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	you	may	use	the	code	in	this
book	in	your	programs	and	documentation.	You	do	not	need	to	contact	us	for	permission
unless	you’re	reproducing	a	significant	portion	of	the	code.	For	example,	writing	a
program	that	uses	several	chunks	of	code	from	this	book	does	not	require	permission.
Selling	or	distributing	a	CD-ROM	of	examples	from	O’Reilly	books	does	require
permission.	Answering	a	question	by	citing	this	book	and	quoting	example	code	does	not
require	permission.	Incorporating	a	significant	amount	of	example	code	from	this	book
into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,
author,	publisher,	and	ISBN.	For	example:	“C#	6.0	Cookbook,	Fourth	Edition,	by	Jay
Hilyard	and	Stephen	Teilhet.	Copyright	2015	Jay	Hilyard	and	Stephen	Teilhet,	978-1-
4919-2146-3.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	preceding	permission,
feel	free	to	contact	us	at	permissions@oreilly.com.

https://github.com/oreillymedia/c_sharp_6_cookbook

Safari®	Books	Online
Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content	in	both
book	and	video	form	from	the	world’s	leading	authors	in	technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business	and	creative
professionals	use	Safari	Books	Online	as	their	primary	resource	for	research,	problem
solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,	government,
education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly	Media,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more
information	about	Safari	Books	Online,	please	visit	us	online.

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/csharp6_cookbook.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/csharp6_cookbook
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
This	book	began	for	us	as	we	started	exploring	C#	and	has	continued	to	evolve	over	the
years	as	we	have	used	the	language	in	many	new	and	exciting	ways.	With	the	introduction
of	C#	6.0	as	well	as	all	of	the	new	features	in	C#	4.0	and	C#	5.0	since	the	book’s	previous
edition,	we	decided	it	was	time	to	reexamine	the	first	three	editions	to	see	how	we	could
improve	the	existing	recipes	and	learn	better	ways	of	accomplishing	programming	tasks
with	C#.	While	we	continue	to	learn	an	incredible	amount	about	C#	and	the	Framework	in
general,	we’ve	worked	hard	in	this	edition	to	bring	you	a	better	understanding	of	how	C#
has	evolved	and	how	it	can	help	you	do	your	job	better.

This	book	would	have	been	impossible	without	the	following	people,	and	we’d	like	to
acknowledge	all	of	their	efforts.

Our	appreciation	goes	out	to	Brian	MacDonald	(our	editor),	Heather	Scherer,	Rachel
Monaghan,	Nick	Adams,	and	Sara	Peyton,	who	kept	us	on	schedule	and	did	a	great	job	in
getting	this	book	finished	and	on	the	shelves.	Thank	you	for	all	of	your	efforts.

We	extend	our	gratitude	and	thanks	to	our	technical	review	team	of	Steve	Munyan,	Lee
Coward,	and	Nick	Pinkham.	We	appreciate	all	the	time	you	all	put	into	helping	us	make
the	book	better	and	your	insightful	commentary.	This	book	would	have	been	impossible	to
do	without	your	valuable	feedback,	and	we	both	thank	you	for	it.

From	Jay	Hilyard
Thanks	to	Steve	Teilhet	for	his	ideas,	sense	of	humor,	and	willingness	to	join	me	yet	again
on	this	journey.	I	always	enjoy	working	with	you,	even	though	most	of	it	was	on	nights
and	weekends	and	mostly	virtual.

Thanks	to	my	wife,	Brooke.	Even	knowing	full	well	that	it	would	mean	time	away	from
our	family,	you	were	still	supportive,	encouraging,	and	helpful.	As	always,	this	was	only
possible	with	your	help.	Thank	you,	and	I	love	you!

Thanks	to	my	sons,	Owen	and	Drew,	who	constantly	amaze	me	with	your	ability	to	make
me	look	at	things	from	a	different	angle	and	who	make	me	proud	with	all	you	have
accomplished.	To	have	both	of	you	interested	in	the	field	I	have	spent	a	lifetime	in	is
gratifying,	and	I	couldn’t	ask	for	better	sons.

Thanks	to	Phil	and	Gail	for	their	support	and	understanding	when	I	had	to	work	on
vacations	and	for	being	there	to	help	in	ways	that	only	grandparents	can,	and	thanks	to	my
Mom	for	our	monthly	dose	of	sanity.

Thanks	to	my	“flock”	of	good	friends:	Seth	and	Katie	Fiermonti,	Tom	Bebbington,	and
Jenna	Roberts.	Friends	make	everything	better,	especially	when	accompanied	by	good
beer.	

Thanks	to	Scott	Cronshaw,	Bill	Bolevic,	Melissa	Jurkoic,	Mike	Kennie,	Alex	Shore,	Dave
Flanders,	Aaron	Reddish,	Rakshit	Jain,	Jason	Phelps,	Josh	Clairmont,	Bob	Blais,	Kim
Serpa,	Stu	Savage,	Gaurang	Patel,	Jesse	Peters,	Ken	Jones,	Mahesh	Unnikrishnan,	T
Antonio,	Mary	Ellen	Sawyer,	Jon	Godbout,	Atul	Kaul,	Mark	Miller,	Rich	Labenski,	Lance
Simpson,	Tim	Beaulieu,	and	Lee	Horgan	for	being	an	awesome	team	of	people	to	work
with.	You	all	work	incredibly	hard	and	I	appreciate	everything	you	do.

Finally,	thanks	again	to	my	family	and	friends	for	asking	about	a	book	they	don’t
understand	and	for	being	excited	for	me.

From	Steve	Teilhet
I’m	proud	to	count	Jay	Hilyard	as	a	good	friend,	excellent	coworker,	and	hardworking
coauthor.	It’s	not	every	day	that	you	find	a	person	who	is	not	only	a	trusted	friend,	but
whom	you	also	work	so	well	with.	Thank	you	for	yet	another	successful	book.

Kandis	Teilhet,	my	wife,	was	there	every	step	of	the	way	to	give	me	the	strength	to
persevere	and	finish	this	work.	Words	cannot	express	my	love	for	you.

Patrick	and	Nicholas	Teilhet,	my	two	sons,	made	the	rough	patches	smooth.	I	couldn’t
wish	for	two	better	sons.	Now	that	you’re	entering	your	next	phase	of	life,	I’m	excited	to
see	what	both	of	you	will	accomplish;	perhaps	you	will	write	a	book	as	well.

Thanks	to	my	mom,	dad,	and	brother,	who	are	always	there	to	listen	and	support	me.

And	last	but	certainly	not	least,	thanks	to	the	IBM	team,	Larry	Rose,	Babita	Sharma,
Jessica	Berliner,	Jeff	Turnham,	John	Peyton,	Kris	Duer,	Robert	Stanzel,	Shu	Wang,
Bingzhou	Zheng,	Dave	Steinberg,	Dave	Stewart,	Jason	Todd,	Alexei	Pivkine,	Joshua
Clark,	William	Frontiero,	Matthew	Murphy,	Omer	Trip,	Marco	Pistoia,	Enrique	Varillas,
Guillermo	Hurtado,	Bao	Lu,	Mary	Santo,	Diane	Redfearn,	Urmi	Chatterjee,	Joshua	Ho,
Kenneth	Cheung,	Andrew	Mak,	Daniel	Nguyen,	Jennifer	Calder,	Tahseen	Shabab,
Srinivas	Sripada,	David	Marshak,	Larry	Gerard,	Douglas	Wilson,	Steve	Hikida,	and	so
many	others.	Your	hard	work	and	brilliance	are	inspiring.

Chapter	1.	Classes	and	Generics

1.0	Introduction
The	recipes	in	this	chapter	cover	the	foundation	of	the	C#	language.	Topics	include	classes
and	structures,	how	they	are	used,	how	they	are	different,	and	when	you	would	use	one
over	the	other.	Building	on	this,	we	will	construct	classes	that	have	inherent	functionality
such	as	being	sortable,	searchable,	disposable,	and	cloneable.	In	addition,	we	will	dive
into	topics	such	as	union	types,	field	initialization,	lambdas,	partial	methods,	single	and
multicast	delegates,	closures,	functors,	and	more.	This	chapter	also	contains	a	recipe	on
parsing	command-line	parameters,	which	is	always	a	favorite.

Before	diving	into	the	recipes,	let’s	review	some	key	information	about	the	object-oriented
capabilities	of	classes,	structures,	and	generics.	Classes	are	much	more	flexible	than
structures.	Like	classes,	structures	can	implement	interfaces,	but	unlike	classes,	they
cannot	inherit	from	a	class	or	a	structure.	This	limitation	precludes	creating	structure
hierarchies,	as	you	can	do	with	classes.	Polymorphism,	as	implemented	through	an
abstract	base	class,	is	also	prohibited	when	you	are	using	a	structure,	since	a	structure
cannot	inherit	from	another	class	with	the	exception	of	boxing	to	Object,	ValueType,	or
Enum.

Structures,	like	any	other	value	type,	implicitly	inherit	from	System.ValueType.	At	first
glance,	a	structure	is	similar	to	a	class,	but	it	is	actually	very	different.	Knowing	when	to
use	a	structure	over	a	class	will	help	you	tremendously	when	you’re	designing	an
application.	Using	a	structure	incorrectly	can	result	in	inefficient	and	hard-to-modify	code.

Structures	have	two	performance	advantages	over	reference	types.	First,	if	a	structure	is
allocated	on	the	stack	(i.e.,	it	is	not	contained	within	a	reference	type),	access	to	the
structure	and	its	data	is	somewhat	faster	than	access	to	a	reference	type	on	the	heap.
Reference-type	objects	must	follow	their	reference	onto	the	heap	in	order	to	get	at	their
data.	However,	this	performance	advantage	pales	in	comparison	to	the	second
performance	advantage	of	structures	—	namely,	that	cleaning	up	the	memory	allocated	to
a	structure	on	the	stack	requires	a	simple	change	of	the	address	to	which	the	stack	pointer
points,	which	is	done	at	the	return	of	a	method	call.	This	call	is	extremely	fast	compared	to
allowing	the	garbage	collector	to	automatically	clean	up	reference	types	for	you	in	the
managed	heap;	however,	the	cost	of	the	garbage	collector	is	deferred	so	that	it’s	not
immediately	noticeable.

The	performance	of	structures	falls	short	in	comparison	to	that	of	classes	when	they	are
passed	by	value	to	other	methods.	Because	they	reside	on	the	stack,	a	structure	and	its	data
have	to	be	copied	to	a	new	local	variable	(the	method’s	parameter	that	is	used	to	receive
the	structure)	when	it	is	passed	by	value	to	a	method.	This	copying	takes	more	time	than
passing	a	method	a	single	reference	to	an	object,	unless	the	structure	is	the	same	size	as	or
smaller	than	the	machine’s	pointer	size;	thus,	a	structure	with	a	size	of	32	bits	is	just	as
cheap	to	pass	as	a	reference	(which	happens	to	be	the	size	of	a	pointer)	on	a	32-bit
machine.	Keep	this	in	mind	when	choosing	between	a	class	and	a	structure.	While
creating,	accessing,	and	destroying	a	class’s	object	may	take	longer,	it	also	might	not

balance	the	performance	hit	when	a	structure	is	passed	by	value	a	large	number	of	times	to
one	or	more	methods.	Keeping	the	size	of	the	structure	small	minimizes	the	performance
hit	of	passing	it	around	by	value.

Use	a	class	if:

Its	identity	is	important.	Structures	get	copied	implicitly	when	being	passed	by	value
into	a	method.

It	will	have	a	large	memory	footprint.

Its	fields	need	initializers.

You	need	to	inherit	from	a	base	class.

You	need	polymorphic	behavior;	that	is,	you	need	to	implement	an	abstract	base	class
from	which	you	will	create	several	similar	classes	that	inherit	from	this	abstract	base
class.	(Note	that	polymorphism	can	be	implemented	via	interfaces	as	well,	but	it	is
usually	not	a	good	idea	to	place	an	interface	on	a	value	type,	since,	if	the	structure	is
converted	to	the	interface	type,	you	will	incur	a	performance	penalty	from	the	boxing
operation.)

Use	a	structure	if:

It	will	act	like	a	primitive	type	(int,	long,	byte,	etc.).

It	must	have	a	small	memory	footprint.

You	are	calling	a	P/Invoke	method	that	requires	a	structure	to	be	passed	in	by	value.
Platform	Invoke,	or	P/Invoke	for	short,	allows	managed	code	to	call	out	to	an
unmanaged	method	exposed	from	within	a	DLL.	Many	times,	an	unmanaged	DLL
method	requires	a	structure	to	be	passed	in	to	it;	using	a	structure	is	an	efficient	method
of	doing	this	and	is	the	only	way	if	the	structure	is	being	passed	by	value.

You	need	to	reduce	the	impact	of	garbage	collection	on	application	performance.

Its	fields	need	to	be	initialized	only	to	their	default	values.	This	value	would	be	zero
for	numeric	types,	false	for	Boolean	types,	and	null	for	reference	types.	Note	that	in
C#	6.0	structs	can	have	a	default	constructor	that	can	be	used	to	initialize	the	struct’s
fields	to	nondefault	values.

You	do	not	need	to	inherit	from	a	base	class	(other	than	ValueType,	from	which	all
structs	inherit).

You	do	not	need	polymorphic	behavior.

Structures	can	also	cause	degradation	in	performance	when	they	are	passed	to	methods
that	require	an	object,	such	as	any	of	the	nongeneric	collection	types	in	the	Framework
Class	Library	(FCL).	Passing	a	structure	(or	any	simple	type,	for	that	matter)	into	a

method	requiring	an	object	causes	the	structure	to	be	boxed.	Boxing	is	wrapping	a	value
type	in	an	object.	This	operation	is	time-consuming	and	may	degrade	performance.

Finally,	adding	generics	to	this	mix	allows	you	to	write	type-safe	and	efficient	collection-
and	pattern-based	code.	Generics	add	quite	a	bit	of	programming	power,	but	with	that
power	comes	the	responsibility	to	use	it	correctly.	If	you	are	considering	converting	your
ArrayList,	Queue,	Stack,	and	Hashtable	objects	to	use	their	generic	counterparts,
consider	reading	Recipes	1.9	and	1.10.	As	you	will	read,	the	conversion	is	not	always
simple	and	easy,	and	there	are	reasons	why	you	might	not	want	to	do	this	conversion	at	all.

1.1	Creating	Union-Type	Structures

Problem
You	need	to	create	a	data	type	that	behaves	like	a	union	type	in	C++.	A	union	type	is
useful	mainly	in	interop	scenarios	in	which	the	unmanaged	code	accepts	and/or	returns	a
union	type;	we	suggest	that	you	do	not	use	it	in	other	situations.

Solution
Use	a	structure	and	mark	it	with	the	StructLayout	attribute	(specifying	the
LayoutKind.Explicit	layout	kind	in	the	constructor).	In	addition,	mark	each	field	in	the
structure	with	the	FieldOffset	attribute.	The	following	structure	defines	a	union	in	which
a	single	signed	numeric	value	can	be	stored:

using	System.Runtime.InteropServices;

[StructLayoutAttribute(LayoutKind.Explicit)]

struct	SignedNumber

{

			[FieldOffsetAttribute(0)]

			public	sbyte	Num1;

			[FieldOffsetAttribute(0)]

			public	short	Num2;

			[FieldOffsetAttribute(0)]

			public	int	Num3;

			[FieldOffsetAttribute(0)]

			public	long	Num4;

			[FieldOffsetAttribute(0)]

			public	float	Num5;

			[FieldOffsetAttribute(0)]

			public	double	Num6;

}

The	next	structure	is	similar	to	the	SignedNumber	structure,	except	that	it	can	contain	a
String	type	in	addition	to	the	signed	numeric	value:

[StructLayoutAttribute(LayoutKind.Explicit)]

struct	SignedNumberWithText

{

			[FieldOffsetAttribute(0)]

			public	sbyte	Num1;

			[FieldOffsetAttribute(0)]

			public	short	Num2;

			[FieldOffsetAttribute(0)]

			public	int	Num3;

			[FieldOffsetAttribute(0)]

			public	long	Num4;

			[FieldOffsetAttribute(0)]

			public	float	Num5;

			[FieldOffsetAttribute(0)]

			public	double	Num6;

			[FieldOffsetAttribute(16)]

			public	string	Text1;

}

Discussion
Unions	are	structures	usually	found	in	C++	code;	however,	there	is	a	way	to	duplicate	that
type	of	structure	using	a	C#	structure	data	type.	A	union	is	a	structure	that	accepts	more
than	one	type	at	a	specific	location	in	memory	for	that	structure.	For	example,	the
SignedNumber	structure	is	a	union-type	structure	built	using	a	C#	structure.	This	structure
accepts	any	type	of	signed	numeric	type	(sbyte,	int,	long,	etc.),	but	it	accepts	this
numeric	type	at	only	one	location,	or	offset,	within	the	structure.

NOTE
Since	StructLayoutAttribute	can	be	applied	to	both	structures	and	classes,	you	can	also	use	a	class	when
creating	a	union	data	type.

Notice	the	FieldOffsetAttribute	has	the	value	0	passed	to	its	constructor.	This	denotes
that	this	field	will	be	offset	by	zero	bytes	from	the	beginning	of	the	structure.	This
attribute	is	used	in	tandem	with	the	StructLayoutAttribute	to	manually	enforce	where
the	fields	in	this	structure	will	start	(that	is,	the	offset	from	the	beginning	of	this	structure
in	memory	where	each	field	will	start).	The	FieldOffsetAttribute	can	be	used	only	with
a	StructLayoutAttribute	set	to	LayoutKind.Explicit.	In	addition,	it	cannot	be	used	on
static	members	within	this	structure.

Unions	can	become	problematic,	since	several	types	are	essentially	laid	on	top	of	one
another.	The	biggest	problem	is	extracting	the	correct	data	type	from	a	union	structure.
Consider	what	happens	if	you	choose	to	store	the	long	numeric	value	long.MaxValue	in
the	SignedNumber	structure.	Later,	you	might	accidentally	attempt	to	extract	a	byte	data
type	value	from	this	same	structure.	In	doing	so,	you	will	get	back	only	the	first	byte	of
the	long	value.

Another	problem	is	starting	fields	at	the	correct	offset.	The	SignedNumberWithText	union
overlays	numerous	signed	numeric	data	types	at	the	zeroth	offset.	The	last	field	in	this
structure	is	laid	out	at	the	16th	byte	offset	from	the	beginning	of	this	structure	in	memory.
If	you	accidentally	overlay	the	string	field	Text1	on	top	of	any	of	the	other	signed	numeric
data	types,	you	will	get	an	exception	at	runtime.	The	basic	rule	is	that	you	are	allowed	to
overlay	a	value	type	on	another	value	type,	but	you	cannot	overlay	a	reference	type	over	a
value	type.	If	the	Text1	field	is	marked	with	the	following	attribute:

[FieldOffsetAttribute(14)]

this	exception	is	thrown	at	runtime	(note	that	the	compiler	does	not	catch	this	problem):

System.TypeLoadException:	Could	not	load	type	'SignedNumberWithText'	from	

assembly	'CSharpRecipes,	Version=1.0.0.0,	Culture=neutral,	

PublicKeyToken=fe85c3941fbcc4c5'	because	it	contains	an	object	field	at	

offset	14	that	is	incorrectly	aligned	or	overlapped	by	a	non-object	field.

It	is	imperative	to	get	the	offsets	correct	when	you’re	using	complex	unions	in	C#.

See	Also
The	“StructLayoutAttribute	Class”	topic	in	the	MSDN	documentation.

1.2	Making	a	Type	Sortable

Problem
You	have	a	data	type	that	will	be	stored	as	an	element	in	a	List<T>	or	a	SortedList<K,V>.
You	would	like	to	use	the	List<T>.Sort	method	or	the	internal	sorting	mechanism	of
SortedList<K,V>	to	allow	custom	sorting	of	your	data	types	in	the	array.	In	addition,	you
may	need	to	use	this	type	in	a	SortedList	collection.

Solution
Example	1-1	demonstrates	how	to	implement	the	IComparable<T>	interface.	The	Square
class	shown	in	Example	1-1	implements	this	interface	in	such	a	way	that	the	List<T>	and
SortedList<K,V>	collections	can	sort	and	search	for	these	Square	objects.

Example	1-1.	Making	a	type	sortable	by	implementing	IComparable<T>
public	class	Square	:	IComparable<Square>

{

				public	Square(){}

				public	Square(int	height,	int	width)

				{

								this.Height	=	height;

								this.Width	=	width;

				}

				public	int	Height	{	get;	set;	}

				public	int	Width	{	get;	set;	}

				public	int	CompareTo(object	obj)

				{

								Square	square	=	obj	as	Square;

								if	(square	!=	null)

												return	CompareTo(square);

								throw

										new	ArgumentException(

														"Both	objects	being	compared	must	be	of	type	Square.");

				}

				public	override	string	ToString()=>

																											($"Height:	{this.Height}					Width:	{this.Width}");

				public	override	bool	Equals(object	obj)

				{

								if	(obj	==	null)

												return	false;

								Square	square	=	obj	as	Square;

								if(square	!=	null)

											return	this.Height	==	square.Height;

								return	false;

				}

				public	override	int	GetHashCode()

				{

								return	this.Height.GetHashCode()	|	this.Width.GetHashCode();

				}

				public	static	bool	operator	==(Square	x,	Square	y)	=>	x.Equals(y);

				public	static	bool	operator	!=(Square	x,	Square	y)	=>	!(x	==	y);

				public	static	bool	operator	<(Square	x,	Square	y)	=>	(x.CompareTo(y)	<	0);

				public	static	bool	operator	>(Square	x,	Square	y)	=>	(x.CompareTo(y)	>	0);

				public	int	CompareTo(Square	other)

				{

								long	area1	=	this.Height	*	this.Width;

								long	area2	=	other.Height	*	other.Width;

								if	(area1	==	area2)

												return	0;

								else	if	(area1	>	area2)

												return	1;

								else	if	(area1	<	area2)

												return	-1;

								else

												return	-1;

				}

}

Discussion
By	implementing	the	IComparable<T>	interface	on	your	class	(or	structure),	you	can	take
advantage	of	the	sorting	routines	of	the	List<T>	and	SortedList<K,V>	classes.	The
algorithms	for	sorting	are	built	into	these	classes;	all	you	have	to	do	is	tell	them	how	to
sort	your	classes	via	the	code	you	implement	in	the	IComparable<T>.CompareTo	method.

When	you	sort	a	list	of	Square	objects	by	calling	the	List<Square>.Sort	method,	the	list
is	sorted	via	the	IComparable<Square>	interface	of	the	Square	objects.	The	Add	method	of
the	SortedList<K,V>	class	uses	this	interface	to	sort	the	objects	as	they	are	being	added	to
the	SortedList<K,V>.

IComparer<T>	is	designed	to	solve	the	problem	of	allowing	objects	to	be	sorted	based	on
different	criteria	in	different	contexts.	This	interface	also	allows	you	to	sort	types	that	you
did	not	write.	If	you	also	wanted	to	sort	the	Square	objects	by	height,	you	could	create	a
new	class	called	CompareHeight,	shown	in	Example	1-2,	which	would	also	implement	the
IComparer<Square>	interface.

Example	1-2.	Making	a	type	sortable	by	implementing	IComparer
public	class	CompareHeight	:	IComparer<Square>

{

				public	int	Compare(object	firstSquare,	object	secondSquare)

				{

								Square	square1	=	firstSquare	as	Square;

								Square	square2	=	secondSquare	as	Square;

								if	(square1	==	null	||	square2	==	null)

												throw	(new	ArgumentException("Both	parameters	must	be	of	type	Square."));

								else

											return	Compare(firstSquare,secondSquare);

				}

				#region	IComparer<Square>	Members

				public	int	Compare(Square	x,	Square	y)

				{

								if	(x.Height	==	y.Height)

												return	0;

								else	if	(x.Height	>	y.Height)

												return	1;

								else	if	(x.Height	<	y.Height)

												return	-1;

								else

												return	-1;

				}

				#endregion

}

This	class	is	then	passed	in	to	the	IComparer	parameter	of	the	Sort	routine.	Now	you	can
specify	different	ways	to	sort	your	Square	objects.	The	comparison	method	implemented
in	the	comparer	must	be	consistent	and	apply	a	total	ordering	so	that	when	the	comparison
function	declares	equality	for	two	items,	it	is	absolutely	true	and	not	a	result	of	one	item
not	being	greater	than	another	or	one	item	not	being	less	than	another.

NOTE
For	best	performance,	keep	the	CompareTo	method	short	and	efficient,	because	it	will	be	called	multiple
times	by	the	Sort	methods.	For	example,	in	sorting	an	array	with	four	items,	the	Compare	method	is	called
10	times.

The	TestSort	method	shown	in	Example	1-3	demonstrates	how	to	use	the	Square	and
CompareHeight	classes	with	the	List<Square>	and	SortedList<int,Square>	instances.

Example	1-3.	TestSort	method
public	static	void	TestSort()

{

				List<Square>	listOfSquares	=	new	List<Square>(){

																																new	Square(1,3),

																																new	Square(4,3),

																																new	Square(2,1),

																																new	Square(6,1)};

				//	Test	a	List<String>

				Console.WriteLine("List<String>");

				Console.WriteLine("Original	list");

				foreach	(Square	square	in	listOfSquares)

				{

								Console.WriteLine(square.ToString());

				}

				Console.WriteLine();

				IComparer<Square>	heightCompare	=	new	CompareHeight();

				listOfSquares.Sort(heightCompare);

				Console.WriteLine("Sorted	list	using	IComparer<Square>=heightCompare");

				foreach	(Square	square	in	listOfSquares)

				{

								Console.WriteLine(square.ToString());

				}

				Console.WriteLine();

				Console.WriteLine("Sorted	list	using	IComparable<Square>");

				listOfSquares.Sort();

				foreach	(Square	square	in	listOfSquares)

				{

								Console.WriteLine(square.ToString());

				}

				//	Test	a	SORTEDLIST

				var	sortedListOfSquares	=	new	SortedList<int,Square>(){

																												{	0,	new	Square(1,3)},

																												{	2,	new	Square(3,3)},

																												{	1,	new	Square(2,1)},

																												{	3,	new	Square(6,1)}};

				Console.WriteLine();

				Console.WriteLine();

				Console.WriteLine("SortedList<Square>");

				foreach	(KeyValuePair<int,Square>	kvp	in	sortedListOfSquares)

				{

								Console.WriteLine	($"{kvp.Key}	:	{kvp.Value}");

				}

}

This	code	displays	the	following	output:

List<String>

Original	list

Height:1	Width:3

Height:4	Width:3

Height:2	Width:1

Height:6	Width:1

Sorted	list	using	IComparer<Square>=heightCompare

Height:1	Width:3

Height:2	Width:1

Height:4	Width:3

Height:6	Width:1

Sorted	list	using	IComparable<Square>

Height:2	Width:1

Height:1	Width:3

Height:6	Width:1

Height:4	Width:3

SortedList<Square>

0	:	Height:1	Width:3

1	:	Height:2	Width:1

2	:	Height:3	Width:3

3	:	Height:6	Width:1

See	Also
Recipe	1.3,	and	the	“IComparable<T>	Interface”	topic	in	the	MSDN	documentation.

1.3	Making	a	Type	Searchable

Problem
You	have	a	data	type	that	will	be	stored	as	elements	in	a	List<T>.	You	would	like	to	use
the	BinarySearch	method	to	allow	for	custom	searching	of	your	data	types	in	the	list.

Solution
Use	the	IComparable<T>	and	IComparer<T>	interfaces.	The	Square	class,	from	Recipe
1.2,	implements	the	IComparable<T>	interface	in	such	a	way	that	the	List<T>	and
SortedList<K,V>	collections	can	sort	and	search	an	array	or	collection	of	Square	objects.

Discussion
By	implementing	the	IComparable<T>	interface	on	your	class	(or	structure),	you	can	take
advantage	of	the	search	routines	of	the	List<T>	and	SortedList<K,V>	classes.	The
algorithms	for	searching	are	built	into	these	classes;	all	you	have	to	do	is	tell	them	how	to
search	your	classes	via	the	code	you	implement	in	the	IComparable<T>.	CompareTo
method.

To	implement	the	CompareTo	method,	see	Recipe	1.2.

The	List<T>	class	provides	a	BinarySearch	method	to	perform	a	search	on	the	elements
in	that	list.	The	elements	are	compared	against	an	object	passed	to	the	BinarySearch
method	in	the	object	parameter.	The	SortedList	class	does	not	have	a	BinarySearch
method;	instead,	it	has	the	ContainsKey	method,	which	performs	a	binary	search	on	the
key	contained	in	the	list.	The	ContainsValue	method	of	the	SortedList	class	performs	a
linear	search	when	searching	for	values.	This	linear	search	uses	the	Equals	method	of	the
elements	in	the	SortedList	collection	to	do	its	work.	The	Compare	and	CompareTo
methods	do	not	have	any	effect	on	the	operation	of	the	linear	search	performed	in	the
SortedList	class,	but	they	do	have	an	effect	on	binary	searches.

NOTE
To	perform	an	accurate	search	using	the	BinarySearch	methods	of	the	List<T>	class,	you	must	first	sort	the
List<T>	using	its	Sort	method.	In	addition,	if	you	pass	an	IComparer<T>	interface	to	the	BinarySearch
method,	you	must	also	pass	the	same	interface	to	the	Sort	method.	Otherwise,	the	BinarySearch	method
might	not	be	able	to	find	the	object	you	are	looking	for.

The	TestSort	method	shown	in	Example	1-4	demonstrates	how	to	use	the	Square	and
CompareHeight	classes	with	the	List<Square>	and	SortedList<int,Square>	collection
instances.

Example	1-4.	Making	a	type	searchable
public	static	void	TestSearch()

{

				List<Square>	listOfSquares	=	new	List<Square>	{new	Square(1,3),

																																																	new	Square(4,3),

																																																	new	Square(2,1),

																																																	new	Square(6,1)};

				IComparer<Square>	heightCompare	=	new	CompareHeight();

				//	Test	a	List<Square>

				Console.WriteLine("List<Square>");

				Console.WriteLine("Original	list");

				foreach	(Square	square	in	listOfSquares)

				{

								Console.WriteLine(square.ToString());

				}

				Console.WriteLine();

				Console.WriteLine("Sorted	list	using	IComparer<Square>=heightCompare");

				listOfSquares.Sort(heightCompare);

				foreach	(Square	square	in	listOfSquares)

				{

								Console.WriteLine(square.ToString());

				}

				Console.WriteLine();

				Console.WriteLine("Search	using	IComparer<Square>=heightCompare");

				int	found	=	listOfSquares.BinarySearch(new	Square(1,3),	heightCompare);

				Console.WriteLine($"Found	(1,3):	{found}");

				Console.WriteLine();

				Console.WriteLine("Sorted	list	using	IComparable<Square>");

				listOfSquares.Sort();

				foreach	(Square	square	in	listOfSquares)

				{

								Console.WriteLine(square.ToString());

				}

				Console.WriteLine();

				Console.WriteLine("Search	using	IComparable<Square>");

				found	=	listOfSquares.BinarySearch(new	Square(6,1));	//	Use	IComparable

				Console.WriteLine($"Found	(6,1):	{found}");

				//	Test	a	SortedList<Square>

				var	sortedListOfSquares	=	new	SortedList<int,Square>(){

																																			{0,	new	Square(1,3)},

																																			{2,	new	Square(4,3)},

																																			{1,	new	Square(2,1)},

																																			{4,	new	Square(6,1)}};

			Console.WriteLine();

			Console.WriteLine("SortedList<Square>");

			foreach	(KeyValuePair<int,Square>	kvp	in	sortedListOfSquares)

			{

							Console.WriteLine	($"{kvp.Key}	:	{kvp.Value}");

			}

			Console.WriteLine();

			bool	foundItem	=	sortedListOfSquares.ContainsKey(2);

			Console.WriteLine($"sortedListOfSquares.ContainsKey(2):	{foundItem}");

			//	Does	not	use	IComparer	or	IComparable

			//—uses	a	linear	search	along	with	the	Equals	method

			//	which	has	not	been	overloaded

			Console.WriteLine();

			Square	value	=	new	Square(6,1);

			foundItem	=	sortedListOfSquares.ContainsValue(value);

			Console.WriteLine("sortedListOfSquares.ContainsValue	"	+

																							$"(new	Square(6,1)):	{foundItem}");

}

This	code	displays	the	following:

List"Square>

Original	list

Height:1	Width:3

Height:4	Width:3

Height:2	Width:1

Height:6	Width:1

Sorted	list	using	IComparer"Square>=heightCompare

Height:1	Width:3

Height:2	Width:1

Height:4	Width:3

Height:6	Width:1

Search	using	IComparer"Square>=heightCompare

Found	(1,3):	0

Sorted	list	using	IComparable"Square>

Height:2	Width:1

Height:1	Width:3

Height:6	Width:1

Height:4	Width:3

Search	using	IComparable"Square>

Found	(6,1):	2

SortedList"Square>

0	:	Height:1	Width:3

1	:	Height:2	Width:1

2	:	Height:4	Width:3

4	:	Height:6	Width:1

sortedListOfSquares.ContainsKey(2):	True

sortedListOfSquares.ContainsValue(new	Square(6,1)):	True

See	Also
Recipe	1.2,	and	the	“IComparable<T>	Interface”	and	“IComparer<T>	Interface”	topics	in
the	MSDN	documentation.

1.4	Returning	Multiple	Items	from	a	Method

Problem
In	many	cases,	a	single	return	value	for	a	method	is	not	enough.	You	need	a	way	to	return
more	than	one	item	from	a	method.

Solution
Use	the	out	keyword	on	parameters	that	will	act	as	return	parameters.	The	following
method	accepts	an	inputShape	parameter	and	calculates	height,	width,	and	depth	from
that	value:

public	void	ReturnDimensions(int	inputShape,

																													out	int	height,

																													out	int	width,

																													out	int	depth)

{

				height	=	0;

				width	=	0;

				depth	=	0;

				//	Calculate	height,	width,	and	depth	from	the	inputShape	value.

}

This	method	would	be	called	in	the	following	manner:

//	Declare	output	parameters.

int	height;

int	width;

int	depth;

//	Call	method	and	return	the	height,	width,	and	depth.

Obj.ReturnDimensions(1,	out	height,	out	width,	out	depth);

Another	method	is	to	return	a	class	or	structure	containing	all	the	return	values.	The
previous	method	has	been	modified	here	to	return	a	structure	instead	of	using	out
arguments:

public	Dimensions	ReturnDimensions(int	inputShape)

{

				//	The	default	ctor	automatically	defaults	this	structure's	members	to	0.

				Dimensions	objDim	=	new	Dimensions();

				//	Calculate	objDim.Height,	objDim.Width,	objDim.Depth

				//				from	the	inputShape	value…

				return	objDim;

}

where	Dimensions	is	defined	as	follows:

public	struct	Dimensions

{

				public	int	Height;

				public	int	Width;

				public	int	Depth;

}

This	method	would	now	be	called	in	this	manner:

//	Call	method	and	return	the	height,	width,	and	depth.

Dimensions	objDim	=	obj.ReturnDimensions(1);

Rather	than	returning	a	user-defined	class	or	structure	from	this	method,	you	can	use	a

Tuple	object	containing	all	the	return	values.	The	previous	method	has	been	modified	here
to	return	a	Tuple:

public	Tuple<int,	int,	int>	ReturnDimensionsAsTuple(int	inputShape)

{

				//	Calculate	objDim.Height,	objDim.Width,	objDim.Depth	from	the	inputShape

				//	value	e.g.	{5,	10,	15}

				//	Create	a	Tuple	with	calculated	values

				var	objDim	=	Tuple.Create<int,	int,	int>(5,	10,	15);

				return	(objDim);

}

This	method	would	now	be	called	in	this	manner:

//	Call	method	and	return	the	height,	width,	and	depth.

Tuple<int,	int,	int>	objDim	=	obj.ReturnDimensions(1);

Discussion
Marking	a	parameter	in	a	method	signature	with	the	out	keyword	indicates	that	this
parameter	will	be	initialized	and	returned	by	this	method.	This	trick	is	useful	when	a
method	is	required	to	return	more	than	one	value.	A	method	can,	at	most,	have	only	one
return	value,	but	through	the	use	of	the	out	keyword,	you	can	mark	several	parameters	as
a	kind	of	return	value.

To	set	up	an	out	parameter,	mark	the	parameter	in	the	method	signature	with	the	out
keyword	as	shown	here:

public	void	ReturnDimensions(int	inputShape,

																													out	int	height,

																													out	int	width,

																													out	int	depth)

{

				...

}

To	call	this	method,	you	must	also	mark	the	calling	method’s	arguments	with	the	out
keyword,	shown	here:

obj.ReturnDimensions(1,	out	height,	out	width,	out	depth);

The	out	arguments	in	this	method	call	do	not	have	to	be	initialized;	they	can	simply	be
declared	and	passed	in	to	the	ReturnDimensions	method.	Regardless	of	whether	they	are
initialized	before	the	method	call,	they	must	be	initialized	before	they	are	used	within	the
ReturnDimensions	method.	Even	if	they	are	not	used	through	every	path	in	the
ReturnDimensions	method,	they	still	must	be	initialized.	That	is	why	this	method	starts
out	with	the	following	three	lines	of	code:

height	=	0;

width	=	0;

depth	=	0;

You	may	be	wondering	why	you	couldn’t	use	a	ref	parameter	instead	of	the	out
parameter,	as	both	allow	a	method	to	change	the	value	of	an	argument	marked	as	such.
The	answer	is	that	an	out	parameter	makes	the	code	somewhat	self-documenting.	You
know	that	when	an	out	parameter	is	encountered,	it	is	acting	as	a	return	value.	In	addition,
an	out	parameter	does	not	require	the	extra	work	to	be	initialized	before	it	is	passed	in	to
the	method,	while	a	ref	parameter	does.

NOTE
An	out	parameter	does	not	have	to	be	marshaled	when	the	method	is	called;	rather,	it	is	marshaled	once
when	the	method	returns	the	data	to	the	caller.	Any	other	type	of	call	(by-value	or	by-reference	using	the
ref	keyword)	requires	that	the	value	be	marshaled	in	both	directions.	Using	the	out	keyword	in	marshaling
scenarios	improves	remoting	performance.

An	out	parameter	is	great	when	there	are	only	a	few	values	that	need	to	be	returned,	but

when	you	start	encountering	4,	5,	6,	or	more	values	that	need	to	be	returned,	it	can	get
unwieldy.	Another	option	for	returning	multiple	values	is	to	create	and	return	a	user-
defined	class/structure	or	to	use	a	Tuple	to	package	up	all	the	values	that	need	to	be
returned	by	a	method.

The	first	option,	using	a	class/structure	to	return	the	values,	is	straightforward.	Just	create
the	type	(in	this	example	it	is	a	structure)	like	so:

public	struct	Dimensions

{

				public	int	Height;

				public	int	Width;

				public	int	Depth;

}

Fill	in	each	field	of	this	structure	with	the	required	data	and	then	return	it	from	the	method
as	shown	in	the	Solution	section.

The	second	option,	using	a	Tuple,	is	an	even	more	elegant	solution	than	using	a	user-
defined	object.	A	Tuple	can	be	created	to	hold	any	number	of	values	of	varying	types.	In
addition,	the	data	you	store	in	the	Tuple	is	immutable;	once	you	add	the	data	to	the	Tuple
through	the	constructor	or	the	static	Create	method,	that	data	cannot	be	changed.

Tuples	can	accept	up	to	and	including	eight	separate	values.	If	you	need	to	return	more
than	eight	values,	you	will	need	to	use	the	special	Tuple	class:

Tuple<T1,	T2,	T3,	T4,	T5,	T6,	T7,	TRest>	Class

When	creating	a	Tuple	with	more	than	eight	values,	you	cannot	use	the	static	Create
method	—	you	must	instead	use	the	constructor	of	the	class.	This	is	how	you	would	create
a	Tuple	of	10	integer	values:

var	values	=	new	Tuple<int,	int,	int,	int,	int,	int,	int,	Tuple<int,	int,	int>>	(

																					1,	2,	3,	4,	5,	6,	7,	new	Tuple<int,	int,	int>	(8,	9,	10));

Of	course,	you	can	continue	to	add	more	Tuples	to	the	end	of	each	embedded	Tuple,
creating	any	size	Tuple	that	you	need.

See	Also
The	“Tuple	Class”	and	“Tuple<T1,	T2,	T3,	T4,	T5,	T6,	T7,	TRest>	Class”	topics	in	the
MSDN	documentation.

1.5	Parsing	Command-Line	Parameters

Problem
You	require	your	applications	to	accept	one	or	more	command-line	parameters	in	a
standard	format	(described	in	the	Discussion	section).	You	need	to	access	and	parse	the
entire	command	line	passed	to	your	application.

Solution
In	Example	1-5,	use	the	following	classes	together	to	help	with	parsing	command-line
parameters:	Argument,	ArgumentDefinition,	and	ArgumentSemanticAnalyzer.

Example	1-5.	Argument	class
using	System;

using	System.Diagnostics;

using	System.Linq;

using	System.Collections.ObjectModel;

public	sealed	class	Argument

{

				public	string	Original	{	get;	}

				public	string	Switch	{	get;	private	set;	}

				public	ReadOnlyCollection<string>	SubArguments	{	get;	}

				private	List<string>	subArguments;

				public	Argument(string	original)

				{

								Original	=	original;

								Switch	=	string.Empty;

								subArguments	=	new	List<string>();

								SubArguments	=	new	ReadOnlyCollection<string>(subArguments);

								Parse();

				}

				private	void	Parse()

				{

								if	(string.IsNullOrEmpty(Original))

								{

												return;

								}

								char[]	switchChars	=	{	'/',	'-'	};

								if	(!switchChars.Contains(Original[0]))

								{

												return;

								}

								string	switchString	=	Original.Substring(1);

								string	subArgsString	=	string.Empty;

								int	colon	=	switchString.IndexOf(':');

								if	(colon	>=	0)

								{

												subArgsString	=	switchString.Substring(colon	+	1);

												switchString	=	switchString.Substring(0,	colon);

								}

								Switch	=	switchString;

								if	(!string.IsNullOrEmpty(subArgsString))

												subArguments.AddRange(subArgsString.Split(';'));

				}

				//	A	set	of	predicates	that	provide	useful	information	about	itself

				//			Implemented	using	lambdas

				public	bool	IsSimple	=>	SubArguments.Count	==	0;

				public	bool	IsSimpleSwitch	=>

																!string.IsNullOrEmpty(Switch)	&&	SubArguments.Count	==	0;

				public	bool	IsCompoundSwitch	=>

																!string.IsNullOrEmpty(Switch)	&&	SubArguments.Count	==	1;

				public	bool	IsComplexSwitch	=>

																!string.IsNullOrEmpty(Switch)	&&	SubArguments.Count	>	0;

}

public	sealed	class	ArgumentDefinition

{

					public	string	ArgumentSwitch	{	get;	}

					public	string	Syntax	{	get;	}

					public	string	Description	{	get;	}

					public	Func<Argument,	bool>	Verifier	{	get;	}

					public	ArgumentDefinition(string	argumentSwitch,

																														string	syntax,

																														string	description,

																														Func<Argument,	bool>	verifier)

				{

								ArgumentSwitch	=	argumentSwitch.ToUpper();

								Syntax	=	syntax;

								Description	=	description;

								Verifier	=	verifier;

				}

				public	bool	Verify(Argument	arg)	=>	Verifier(arg);

}

public	sealed	class	ArgumentSemanticAnalyzer

{

				private	List<ArgumentDefinition>	argumentDefinitions	=

								new	List<ArgumentDefinition>();

				private	Dictionary<string,	Action<Argument>>	argumentActions	=

								new	Dictionary<string,	Action<Argument>>();

				public	ReadOnlyCollection<Argument>	UnrecognizedArguments	{	get;	private	set;	}

				public	ReadOnlyCollection<Argument>	MalformedArguments	{	get;	private	set;	}

				public	ReadOnlyCollection<Argument>	RepeatedArguments	{	get;	private	set;	}

				public	ReadOnlyCollection<ArgumentDefinition>	ArgumentDefinitions	=>

											new	ReadOnlyCollection<ArgumentDefinition>(argumentDefinitions);

				public	IEnumerable<string>	DefinedSwitches	=>

																											from	argumentDefinition	in	argumentDefinitions

																											select	argumentDefinition.ArgumentSwitch;

				public	void	AddArgumentVerifier(ArgumentDefinition	verifier)	=>

								argumentDefinitions.Add(verifier);

				public	void	RemoveArgumentVerifier(ArgumentDefinition	verifier)

				{

								var	verifiersToRemove	=	from	v	in	argumentDefinitions

																																where	v.ArgumentSwitch	==	verifier.ArgumentSwitch

																																select	v;

								foreach	(var	v	in	verifiersToRemove)

												argumentDefinitions.Remove(v);

				}

				public	void	AddArgumentAction(string	argumentSwitch,	Action<Argument>	action)	=>

								argumentActions.Add(argumentSwitch,	action);

				public	void	RemoveArgumentAction(string	argumentSwitch)

				{

								if	(argumentActions.Keys.Contains(argumentSwitch))

												argumentActions.Remove(argumentSwitch);

				}

				public	bool	VerifyArguments(IEnumerable<Argument>	arguments)

				{

							//	no	parameter	to	verify	with,	fail.

							if	(!argumentDefinitions.Any())

												return	false;

								//	Identify	if	any	of	the	arguments	are	not	defined

								this.UnrecognizedArguments	=

																	(from	argument	in	arguments

																			where	!DefinedSwitches.Contains(argument.Switch.ToUpper())

																			select	argument).ToList().AsReadOnly();

								if	(this.UnrecognizedArguments.Any())

												return	false;

								//Check	for	all	the	arguments	where	the	switch	matches	a	known	switch,

								//but	our	well-formedness	predicate	is	false.

								this.MalformedArguments	=	(from	argument	in	arguments

																																				join	argumentDefinition	in	argumentDefinitions

																																				on	argument.Switch.ToUpper()	equals

																																								argumentDefinition.ArgumentSwitch

																																				where	!argumentDefinition.Verify(argument)

																																				select	argument).ToList().AsReadOnly();

								if	(this.MalformedArguments.Any())

												return	false;

								//Sort	the	arguments	into	"groups"	by	their	switch,	count	every	group,

								//and	select	any	groups	that	contain	more	than	one	element,

								//We	then	get	a	read-only	list	of	the	items.

								this.RepeatedArguments	=

																(from	argumentGroup	in

																				from	argument	in	arguments

																				where	!argument.IsSimple

																				group	argument	by	argument.Switch.ToUpper()

																where	argumentGroup.Count()	>	1

																select	argumentGroup).SelectMany(ag	=>	ag).ToList().AsReadOnly();

								if	(this.RepeatedArguments.Any())

								return	false;

								return	true;

				}

				public	void	EvaluateArguments(IEnumerable<Argument>	arguments)

				{

								//Now	we	just	apply	each	action:

								foreach	(Argument	argument	in	arguments)

												argumentActions[argument.Switch.ToUpper()](argument);

				}

				public	string	InvalidArgumentsDisplay()

				{

								StringBuilder	builder	=	new	StringBuilder();

								builder.AppendFormat($"Invalid	arguments:	{Environment.NewLine}");

								//	Add	the	unrecognized	arguments

								FormatInvalidArguments(builder,	this.UnrecognizedArguments,

												"Unrecognized	argument:	{0}{1}");

								//	Add	the	malformed	arguments

								FormatInvalidArguments(builder,	this.MalformedArguments,

												"Malformed	argument:	{0}{1}");

							//	For	the	repeated	arguments,	we	want	to	group	them	for	the	display,

							//	so	group	by	switch	and	then	add	it	to	the	string	being	built.

							var	argumentGroups	=	from	argument	in	this.RepeatedArguments

																												group	argument	by	argument.Switch.ToUpper()	into	ag

																												select	new	{	Switch	=	ag.Key,	Instances	=	ag};

							foreach	(var	argumentGroup	in	argumentGroups)

							{

											builder.AppendFormat($"Repeated	argument:

																																	{argumentGroup.Switch}{Environment.NewLine}");

											FormatInvalidArguments(builder,	argumentGroup.Instances.ToList(),

															"\t{0}{1}");

							}

							return	builder.ToString();

			}

			private	void	FormatInvalidArguments(StringBuilder	builder,

						IEnumerable<Argument>	invalidArguments,	string	errorFormat)

			{

						if	(invalidArguments	!=	null)

						{

										foreach	(Argument	argument	in	invalidArguments)

										{

														builder.AppendFormat(errorFormat,

																		argument.Original,	Environment.NewLine);

										}

						}

			}

}

Here	is	one	example	of	how	to	use	these	classes	to	process	the	command	line	for	an
application:

public	static	void	Main(string[]	argumentStrings)

{

				var	arguments	=	(from	argument	in	argumentStrings

								select	new	Argument(argument)).ToArray();

				Console.Write("Command	line:	");

				foreach	(Argument	a	in	arguments)

				{

								Console.Write($"{a.Original}	");

				}

				Console.WriteLine("");

				ArgumentSemanticAnalyzer	analyzer	=	new	ArgumentSemanticAnalyzer();

				analyzer.AddArgumentVerifier(

								new	ArgumentDefinition("output",

												"/output:[path	to	output]",

												"Specifies	the	location	of	the	output	file.",

												x	=>	x.IsCompoundSwitch));

				analyzer.AddArgumentVerifier(

								new	ArgumentDefinition("trialMode",

												"/trialmode",

												"If	this	is	specified	it	places	the	product	into	trial	mode",

												x	=>	x.IsSimpleSwitch));

				analyzer.AddArgumentVerifier(

								new	ArgumentDefinition("DEBUGOUTPUT",

												"/debugoutput:[value1];[value2];[value3]",

												"A	listing	of	the	files	the	debug	output	"	+

												"information	will	be	written	to",

												x	=>	x.IsComplexSwitch));

				analyzer.AddArgumentVerifier(

								new	ArgumentDefinition("",

												"[literal	value]",

												"A	literal	value",

												x	=>	x.IsSimple));

				if	(!analyzer.VerifyArguments(arguments))

				{

								string	invalidArguments	=	analyzer.InvalidArgumentsDisplay();

								Console.WriteLine(invalidArguments);

								ShowUsage(analyzer);

								return;

				}

				//	Set	up	holders	for	the	command	line	parsing	results

				string	output	=	string.Empty;

				bool	trialmode	=	false;

				IEnumerable<string>	debugOutput	=	null;

				List<string>	literals	=	new	List<string>();

				//For	each	parsed	argument,	we	want	to	apply	an	action,

				//	so	add	them	to	the	analyzer.

				analyzer.AddArgumentAction("OUTPUT",	x	=>	{	output	=	x.SubArguments[0];	});

				analyzer.AddArgumentAction("TRIALMODE",	x	=>	{	trialmode	=	true;	});

				analyzer.AddArgumentAction("DEBUGOUTPUT",	x	=>

																																														{	debugOutput	=	x.SubArguments;

				});

				analyzer.AddArgumentAction("",	x=>{literals.Add(x.Original);});

				//	check	the	arguments	and	run	the	actions

				analyzer.EvaluateArguments(arguments);

				//	display	the	results

				Console.WriteLine("");

				Console.WriteLine($"OUTPUT:	{output}");

				Console.WriteLine($"TRIALMODE:	{trialmode}");

				if	(debugOutput	!=	null)

				{

								foreach	(string	item	in	debugOutput)

								{

													Console.WriteLine($"DEBUGOUTPUT:	{item}");

								}

				}

				foreach	(string	literal	in	literals)

				{

								Console.WriteLine($"LITERAL:	{literal}");

				}

}

public	static	void	ShowUsage(ArgumentSemanticAnalyzer	analyzer)

{

				Console.WriteLine("Program.exe	allows	the	following	arguments:");

				foreach	(ArgumentDefinition	definition	in	analyzer.ArgumentDefinitions)

				{

								Console.WriteLine($"\t{definition.ArgumentSwitch}:

																											({definition.Description}){Environment.NewLine}

																											\tSyntax:	{definition.Syntax}");

				}

}

Discussion
Before	you	can	parse	command-line	parameters,	you	must	decide	upon	a	common	format.
The	format	for	this	recipe	follows	the	command-line	format	for	the	Visual	C#	.NET
language	compiler.	The	format	used	is	defined	as	follows:

All	command-line	arguments	are	separated	by	one	or	more	whitespace	characters.

Each	argument	may	start	with	either	a	-	or	/	character,	but	not	both.	If	it	does	not,	that
argument	is	considered	a	literal,	such	as	a	filename.

Each	argument	that	starts	with	either	the	-	or	/	character	may	be	divided	up	into	a
switch	followed	by	a	colon	followed	by	one	or	more	arguments	separated	with	the	;
character.	The	command-line	parameter	-sw:arg1;arg2;arg3	is	divided	up	into	a
switch	(sw)	and	three	arguments	(arg1,	arg2,	and	arg3).	Note	that	there	should	not	be
any	spaces	in	the	full	argument;	otherwise,	the	runtime	command-line	parser	will	split
up	the	argument	into	two	or	more	arguments.

Strings	delineated	with	double	quotes,	such	as	"c:\test\file.log",	will	have	their
double	quotes	stripped	off.	This	is	a	function	of	the	operating	system	interpreting	the
arguments	passed	in	to	your	application.

Single	quotes	are	not	stripped	off.

To	preserve	double	quotes,	precede	the	double	quote	character	with	the	\	escape
sequence	character.

The	\	character	is	handled	as	an	escape	sequence	character	only	when	followed	by	a
double	quote	—	in	which	case,	only	the	double	quote	is	displayed.

The	^	character	is	handled	by	the	runtime	command-line	parser	as	a	special	character.

Fortunately,	the	runtime	command-line	parser	handles	most	of	this	before	your	application
receives	the	individual	parsed	arguments.

The	runtime	command-line	parser	passes	a	string[]	containing	each	parsed	argument	to
the	entry	point	of	your	application.	The	entry	point	can	take	one	of	the	following	forms:

public	static	void	Main()

public	static	int	Main()

public	static	void	Main(string[]	args)

public	static	int	Main(string[]	args)

The	first	two	accept	no	arguments,	but	the	last	two	accept	the	array	of	parsed	command-
line	arguments.	Note	that	the	static	Environment.CommandLine	property	will	also	return	a
string	containing	the	entire	command	line,	and	the	static
Environment.GetCommandLineArgs	method	will	return	an	array	of	strings	containing	the
parsed	command-line	arguments.

The	three	classes	presented	in	the	Solution	address	the	phases	of	dealing	with	the
command-line	arguments:
Argument

Encapsulates	a	single	command-line	argument	and	is	responsible	for	parsing	the
argument.

ArgumentDefinition

Defines	an	argument	that	will	be	valid	for	the	current	command	line.
ArgumentSemanticAnalyzer

Performs	the	verification	and	retrieval	of	the	arguments	based	on	the
ArgumentDefinitions	that	are	set	up.

Passing	in	the	following	command-line	arguments	to	this	application:

MyApp	c:\input\infile.txt	-output:d:\outfile.txt	-trialmode

results	in	the	following	parsed	switches	and	arguments:

Command	line:	c:\input\infile.txt	-output:d:\outfile.txt	-trialmode

OUTPUT:	d:\outfile.txt

TRIALMODE:	True

LITERAL:	c:\input\infile.txt

If	you	input	command-line	parameters	incorrectly,	such	as	forgetting	to	add	arguments	to
the	-output	switch,	you	get	the	following	output:

Command	line:	c:\input\infile.txt	-output:	-trialmode

Invalid	arguments:

Malformed	argument:	-output

Program.exe	allows	the	following	arguments:

							OUTPUT:	(Specifies	the	location	of	the	output	file.)

							Syntax:	/output:[path	to	output]

							TRIALMODE:	(If	this	is	specified,	it	places	the	product	into	trial	mode)

							Syntax:	/trialmode

							DEBUGOUTPUT:	(A	listing	of	the	files	the	debug	output	information	will	be

																					written	to)

							Syntax:	/debugoutput:[value1];[value2];[value3]

							:	(A	literal	value)

							Syntax:	[literal	value]

There	are	a	few	items	in	the	code	that	are	worth	pointing	out.

Each	Argument	instance	needs	to	be	able	to	determine	certain	things	about	itself;
accordingly,	a	set	of	predicates	that	tell	us	useful	information	about	this	Argument	are
exposed	as	properties	on	the	Argument.	The	ArgumentSemanticAnalyzer	will	use	these
properties	to	determine	the	characteristics	of	the	argument:

public	bool	IsSimple	=>	SubArguments.Count	==	0;

public	bool	IsSimpleSwitch	=>

												!string.IsNullOrEmpty(Switch)	&&	SubArguments.Count	==	0;

public	bool	IsCompoundSwitch	=>

												!string.IsNullOrEmpty(Switch)	&&	SubArguments.Count	==	1;

public	bool	IsComplexSwitch	=>

												!string.IsNullOrEmpty(Switch)	&&	SubArguments.Count	>	0;

NOTE
For	more	information	on	lambda	expressions,	see	the	introduction	to	Chapter	4.	Also	see	Recipe	1.16	for	a
discussion	of	using	lambda	expressions	to	implement	closures.

In	a	number	of	places	in	the	code,	the	ToArray	or	ToList	methods	are	called	on	the	result
of	a	LINQ	query:

var	arguments	=	(from	argument	in	argumentStrings

																	select	new	Argument(argument)).ToArray();

This	is	because	query	results	use	deferred	execution,	which	means	that	not	only	are	the
results	calculated	in	a	lazy	manner,	but	they	are	recalculated	every	time	they	are	accessed.
Using	the	ToArray	or	ToList	methods	forces	the	eager	evaluation	of	the	results	and
generates	a	copy	that	will	not	reevaluate	during	each	usage.	The	query	logic	does	not
know	if	the	collection	being	worked	on	is	changing	or	not,	so	it	has	to	reevaluate	each
time	unless	you	make	a	“point	in	time”	copy	using	these	methods.

To	verify	that	these	arguments	are	correct,	we	must	create	an	ArgumentDefinition	and
associate	it	for	each	acceptable	argument	type	with	the	ArgumentSemanticAnalyzer:

ArgumentSemanticAnalyzer	analyzer	=	new	ArgumentSemanticAnalyzer();

analyzer.AddArgumentVerifier(

								new	ArgumentDefinition("output",

												"/output:[path	to	output]",

												"Specifies	the	location	of	the	output	file.",

												x	=>	x.IsCompoundSwitch));

analyzer.AddArgumentVerifier(

								new	ArgumentDefinition("trialMode",

												"/trialmode",

												"If	this	is	specified	it	places	the	product	into	trial	mode",

												x	=>	x.IsSimpleSwitch));

analyzer.AddArgumentVerifier(

								new	ArgumentDefinition("DEBUGOUTPUT",

												"/debugoutput:[value1];[value2];[value3]",

												"A	listing	of	the	files	the	debug	output	"	+

												"information	will	be	written	to",

												x	=>	x.IsComplexSwitch));

analyzer.AddArgumentVerifier(

								new	ArgumentDefinition("",

												"[literal	value]",

												"A	literal	value",

												x	=>	x.IsSimple));

There	are	four	parts	to	each	ArgumentDefinition:	the	argument	switch,	a	string	showing
the	syntax	of	the	argument,	a	description	of	the	argument,	and	the	verification	predicate	to
verify	the	argument.	This	information	can	be	used	to	verify	the	argument,	as	shown	here:

//Check	for	all	the	arguments	where	the	switch	matches	a	known	switch,

//but	our	well-formedness	predicate	is	false.

this.MalformedArguments	=	(from	argument	in	arguments

																												join	argumentDefinition	in	argumentDefinitions

																														on	argument.Switch.ToUpper()	equals

																																		argumentDefinition.ArgumentSwitch

																														where	!argumentDefinition.Verify(argument)

																														select	argument).ToList().AsReadOnly();

The	ArgumentDefinitions	also	allow	you	to	compose	a	usage	method	for	the	program:

public	static	void	ShowUsage(ArgumentSemanticAnalyzer	analyzer)

{

				Console.WriteLine("Program.exe	allows	the	following	arguments:");

				foreach	(ArgumentDefinition	definition	in	analyzer.ArgumentDefinitions)

				{

								Console.WriteLine("\t{0}:	({1}){2}\tSyntax:	{3}",

												definition.ArgumentSwitch,	definition.Description,

												Environment.NewLine,definition.Syntax);

				}

}

To	get	the	values	of	the	arguments	so	they	can	be	used,	we	need	to	extract	the	information
out	of	the	parsed	arguments.	For	the	Solution	example,	we	would	need	the	following
information:

//	Set	up	holders	for	the	command	line	parsing	results

string	output	=	string.Empty;

bool	trialmode	=	false;

IEnumerable<string>	debugOutput	=	null;

List<string>	literals	=	new	List<string>();

How	are	these	values	filled	in?	Well,	we	need	to	associate	an	action	with	each	Argument	to
determine	how	the	value	should	be	retrieved	from	an	Argument	instance.	The	action	is	a
predicate,	which	makes	this	a	very	powerful	approach,	as	any	predicate	can	be	used	here.
Here	is	where	those	Argument	actions	are	defined	and	associated	with	the
ArgumentSemanticAnalyzer:

//For	each	parsed	argument,	we	want	to	apply	an	action,

//				so	add	them	to	the	analyzer.

analyzer.AddArgumentAction("OUTPUT",	x	=>	{	output	=	x.SubArguments[0];	});

analyzer.AddArgumentAction("TRIALMODE",	x	=>	{	trialmode	=	true;	});

analyzer.AddArgumentAction("DEBUGOUTPUT",	x	=>

																																										{	debugOutput	=	x.SubArguments;});

analyzer.AddArgumentAction("",	x=>{literals.Add(x.Original);});

Now	that	all	of	the	actions	are	set	up,	we	can	retrieve	the	values	by	using	the
EvaluateArguments	method	on	the	ArgumentSemanticAnalyzer:

//	check	the	arguments	and	run	the	actions

analyzer.EvaluateArguments(arguments);

Now	the	arguments	have	been	filled	in	by	the	execution	of	the	actions,	and	the	program
can	run	with	those	values:

//	Run	the	program	passing	in	the	argument	values:

Program	program	=	new	Program(output,	trialmode,	debugOutput,	literals);

program.Run();

The	verification	of	the	arguments	uses	LINQ	to	query	for	unrecognized,	malformed,	or
repeated	arguments,	any	of	which	will	cause	the	parameters	to	be	invalid:

public	bool	VerifyArguments(IEnumerable<Argument>	arguments)

{

				//	no	parameter	to	verify	with,	fail.

				if	(!argumentDefinitions.Any())

								return	false;

				//	Identify	if	any	of	the	arguments	are	not	defined

				this.UnrecognizedArguments	=

																(from	argument	in	arguments

																			where	!DefinedSwitches.Contains(argument.Switch.ToUpper())

																			select	argument).ToList().AsReadOnly();

				if	(this.UnrecognizedArguments.Any())

								return	false;

				//Check	for	all	the	arguments	where	the	switch	matches	a	known	switch,

				//but	our	well-formedness	predicate	is	false.

				this.MalformedArguments	=	(from	argument	in	arguments

																																join	argumentDefinition	in	argumentDefinitions

																																on	argument.Switch.ToUpper()	equals

																																				argumentDefinition.ArgumentSwitch

																																where	!argumentDefinition.Verify(argument)

																																select	argument).ToList().AsReadOnly();

				if	(this.MalformedArguments.Any())

								return	false;

				//Sort	the	arguments	into	"groups"	by	their	switch,	count	every	group,

				//and	select	any	groups	that	contain	more	than	one	element.

				//We	then	get	a	read-only	list	of	the	items.

				this.RepeatedArguments	=

																(from	argumentGroup	in

																				from	argument	in	arguments

																				where	!argument.IsSimple

																				group	argument	by	argument.Switch.ToUpper()

																where	argumentGroup.Count()	>	1

																select	argumentGroup).SelectMany(ag	=>	ag).ToList().AsReadOnly();

				if	(this.RepeatedArguments.Any())

								return	false;

				return	true;

}

Look	at	how	much	easier	it	is	to	understand	each	phase	of	the	verification,	compared	with
how	it	would	be	done	before	LINQ	—	with	multiple	nested	loops,	switches,	IndexOfs,	and
other	mechanisms.	Each	query	concisely	states	in	the	language	of	the	problem	domain
what	task	it	is	attempting	to	perform.

NOTE
LINQ	is	designed	to	help	with	problems	where	data	must	be	sorted,	searched,	grouped,	filtered,	and
projected.	Use	it!

See	Also
The	“Main”	and	“Command-Line	Arguments”	topics	in	the	MSDN	documentation.

1.6	Initializing	a	Constant	Field	at	Runtime

Problem
A	field	marked	as	const	can	be	initialized	only	at	compile	time.	You	need	to	initialize	a
field	to	a	valid	value	at	runtime,	not	at	compile	time.	This	field	must	then	act	as	if	it	were
a	constant	field	for	the	rest	of	the	application’s	life.

Solution
You	have	two	choices	when	declaring	a	constant	value	in	your	code.	You	can	use	a
readonly	field	or	a	const	field.	Each	has	its	own	strengths	and	weaknesses.	However,	if
you	need	to	initialize	a	constant	field	at	runtime,	you	must	use	a	readonly	field:

public	class	Foo

{

				public	readonly	int	bar;

				public	Foo()	{}

				public	Foo(int	constInitValue)

				{

								bar	=	constInitValue;

				}

				//	Rest	of	class…

}

This	is	not	possible	using	a	const	field.	A	const	field	can	be	initialized	only	at	compile
time:

public	class	Foo

{

				public	const	int	bar;					//	This	line	causes	a	compile-time	error.

				public	Foo()	{}

				public	Foo(int	constInitValue)

				{

								bar	=	constInitValue;	//	This	line	also	causes	a	compile-time	error.

				}

				//	Rest	of	class…

}

Discussion
A	readonly	field	allows	initialization	to	take	place	only	in	the	constructor	at	runtime,
whereas	a	const	field	must	be	initialized	at	compile	time.	Therefore,	implementing	a
readonly	field	is	the	only	way	to	allow	a	field	that	must	be	constant	to	be	initialized	at
runtime.

There	are	only	two	ways	to	initialize	a	readonly	field.	The	first	is	by	adding	an	initializer
to	the	field	itself:

public	readonly	int	bar	=	100;

The	second	way	is	to	initialize	the	readonly	field	through	a	constructor.	This	approach	is
demonstrated	by	the	code	in	the	Solution	to	this	recipe.	If	you	look	at	the	following	class:

public	class	Foo

{

				public	readonly	int	x;

				public	const	int	y	=	1;

				public	Foo()	{}

				public	Foo(int	roInitValue)

				{

								x	=	roInitValue;

				}

				//	Rest	of	class…

}

you’ll	see	it	is	compiled	into	the	following	IL	(intermediate	language):

.class	auto	ansi	nested	public	beforefieldinit	Foo

							extends	[mscorlib]System.Object								{

.field	public	static	literal	int32	y	=	int32(0x00000001)	//<<--	const	field

.field	public	initonly	int32	x																									//<<--	readonly	field

.method	public	hidebysig	specialname	rtspecialname

								instance	void		.ctor(int32	roInitValue)	cil	managed

{

		//	Code	size							16	(0x10)

		.maxstack		8

		IL_0000:		ldarg.0

		IL_0001:		call							instance	void	[mscorlib]System.Object::.ctor()

		IL_0006:		nop

		IL_0007:		nop

		IL_0008:		ldarg.0

		IL_0009:		ldarg.1

		IL_000a:		stfld						int32	CSharpRecipes.ClassesAndGenerics/Foo::x

		IL_000f:		ret

}	//	end	of	method	Foo::.ctor

.method	public	hidebysig	specialname	rtspecialname

								instance	void		.ctor()	cil	managed

{

		//	Code	size							9	(0x9)

		.maxstack		8

		IL_0000:		ldarg.0

		IL_0001:		call							instance	void	[mscorlib]System.Object::.ctor()

		IL_0006:		nop

		IL_0007:		nop

		IL_0008:		ret

}	//	end	of	method	Foo::.ctor

}	//	End	of	class	Foo

Notice	that	a	const	field	is	compiled	into	a	static	field,	and	a	readonly	field	is	compiled
into	an	instance	field.	Therefore,	you	need	only	a	class	name	to	access	a	const	field.

NOTE
A	common	argument	against	using	const	fields	is	that	they	do	not	version	as	well	as	readonly	fields.	If	you
rebuild	a	component	that	defines	a	const	field	and	the	value	of	that	const	changes	in	a	later	version,	any
other	components	that	were	built	against	the	old	version	won’t	pick	up	the	new	value.	If	there	is	any	chance
that	a	field	is	going	to	change,	don’t	make	it	a	const	field.

The	following	code	shows	how	to	use	an	instance	readonly	field:

Foo	obj1	=	new	Foo(100);

Console.WriteLine(obj1.bar);

See	Also
The	“const”	and	“readonly”	keywords	in	the	MSDN	documentation.

1.7	Building	Cloneable	Classes

Problem
You	need	a	method	of	performing	a	shallow	cloning	operation,	a	deep	cloning	operation,
or	both	on	a	data	type	that	may	also	reference	other	types,	but	the	ICloneable	interface
should	not	be	used,	as	it	violates	the	.NET	Framework	Design	Guidelines.

Solution
To	resolve	the	issue	with	using	ICloneable,	create	two	other	interfaces	to	establish	a
copying	pattern,	IShallowCopy<T>	and	IDeepCopy<T>:

public	interface	IShallowCopy<T>

{

				T	ShallowCopy();

}

public	interface	IDeepCopy<T>

{

				T	DeepCopy();

}

Shallow	copying	means	that	the	copied	object’s	fields	will	reference	the	same	objects	as
the	original	object.	To	allow	shallow	copying,	implement	the	IShallowCopy<T>	interface
in	the	class:

using	System;

using	System.Collections;

using	System.Collections.Generic;

public	class	ShallowClone	:	IShallowCopy<ShallowClone>

{

				public	int	Data	=	1;

				public	List<string>	ListData	=	new	List<string>();

				public	object	ObjData	=	new	object();

				public	ShallowClone	ShallowCopy()	=>	(ShallowClone)this.MemberwiseClone();

}

Deep	copying,	or	cloning,	means	that	the	copied	object’s	fields	will	reference	new	copies
of	the	original	object’s	fields.	To	allow	deep	copying,	implement	the	IDeepCopy<T>
interface	in	the	class:

using	System;

using	System.Collections;

using	System.Collections.Generic;

using	System.Runtime.Serialization.Formatters.Binary;

using	System.IO;

[Serializable]

public	class	DeepClone	:	IDeepCopy<DeepClone>

{

				public	int	data	=	1;

				public	List<string>	ListData	=	new	List<string>();

				public	object	objData	=	new	object();

				public	DeepClone	DeepCopy()

				{

								BinaryFormatter	BF	=	new	BinaryFormatter();

								MemoryStream	memStream	=	new	MemoryStream();

								BF.Serialize(memStream,	this);

								memStream.Flush();

								memStream.Position	=	0;

								return	(DeepClone)BF.Deserialize(memStream);

				}

}

To	support	both	shallow	and	deep	methods	of	copying,	implement	both	interfaces.	The

code	might	appear	as	follows:

using	System;

using	System.Collections;

using	System.Collections.Generic;

using	System.Runtime.Serialization.Formatters.Binary;

using	System.IO;

[Serializable]

public	class	MultiClone	:	IShallowCopy<MultiClone>,

																										IDeepCopy<MultiClone>

{

				public	int	data	=	1;

				public	List<string>	ListData	=	new	List<string>();

				public	object	objData	=	new	object();

				public	MultiClone	ShallowCopy()	=>	(MultiClone)this.MemberwiseClone();

				public	MultiClone	DeepCopy()

				{

								BinaryFormatter	BF	=	new	BinaryFormatter();

								MemoryStream	memStream	=	new	MemoryStream();

								BF.Serialize(memStream,	this);

								memStream.Flush();

								memStream.Position	=	0;

								return	(MultiClone)BF.Deserialize(memStream);

				}

}

Discussion
The	.NET	Framework	has	an	interface	named	ICloneable,	which	was	originally	designed
as	the	means	through	which	cloning	is	implemented	in	.NET.	The	design	recommendation
is	now	that	this	interface	not	be	used	in	any	public	API,	because	it	lends	itself	to	different
interpretations.	The	interface	looks	like	this:

public	interface	ICloneable

{

				object	Clone();

}

Notice	that	there	is	a	single	method,	Clone,	that	returns	an	object.	Is	the	clone	a	shallow
copy	of	the	object	or	a	deep	copy?	You	can’t	know	from	the	interface,	as	the
implementation	could	go	either	way.	This	is	why	it	should	not	be	used,	and	the
IShallowCopy<T>	and	IDeepCopy<T>	interfaces	are	introduced	here.

Cloning	is	the	ability	to	make	an	exact	copy	(a	clone)	of	an	instance	of	a	type.	Cloning
may	take	one	of	two	forms:	a	shallow	copy	or	a	deep	copy.	Shallow	copying	is	relatively
easy:	it	involves	copying	the	object	on	which	the	ShallowCopy	method	was	called.

The	reference	type	fields	in	the	original	object	are	copied	over,	as	are	the	value	type	fields.
This	means	that	if	the	original	object	contains	a	field	of	type	StreamWriter,	for	instance,
the	cloned	object	will	point	to	this	same	instance	of	the	original	object’s	StreamWriter;	a
new	object	is	not	created.

NOTE
There	is	no	need	to	deal	with	static	fields	when	performing	a	cloning	operation.	There	is	only	one
memory	location	reserved	for	each	static	field	per	class,	per	application	domain.	The	cloned	object	will
have	access	to	the	same	static	fields	as	the	original.

Support	for	shallow	copying	is	implemented	by	the	MemberwiseClone	method	of	the
Object	class,	which	serves	as	the	base	class	for	all	.NET	classes.	So	the	following	code
allows	a	shallow	copy	to	be	created	and	returned	by	the	Clone	method:

public	ShallowClone	ShallowCopy()	=>	(ShallowClone)this.MemberwiseClone();

Making	a	deep	copy	is	the	second	way	of	cloning	an	object.	A	deep	copy	will	make	a	copy
of	the	original	object	just	as	the	shallow	copy	does;	however,	a	deep	copy	will	also	make
separate	copies	of	each	reference	type	field	in	the	original	object.	Therefore,	if	the	original
object	contains	a	StreamWriter	type	field,	the	cloned	object	will	also	contain	a
StreamWriter	type	field,	but	the	cloned	object’s	StreamWriter	field	will	point	to	a	new
StreamWriter	object,	not	that	of	the	original	object.

Support	for	deep	copying	is	not	automatically	provided	by	the	.NET	Framework,	but	the
following	code	illustrates	an	easy	way	of	implementing	a	deep	copy:

BinaryFormatter	BF	=	new	BinaryFormatter();

MemoryStream	memStream	=	new	MemoryStream();

BF.Serialize(memStream,	this);

memStream.Flush();

memStream.Position	=	0;

return	(BF.Deserialize(memStream));

Basically,	the	original	object	is	serialized	out	to	a	memory	stream	via	binary	serialization,
and	then	it	is	deserialized	into	a	new	object,	which	is	returned	to	the	caller.	It	is	important
to	reposition	the	memory	stream	pointer	back	to	the	start	of	the	stream	before	calling	the
Deserialize	method;	otherwise,	an	exception	will	be	thrown	indicating	that	the	serialized
object	contains	no	data.

Performing	a	deep	copy	using	object	serialization	allows	you	to	change	the	underlying
object	without	having	to	modify	the	code	that	performs	the	deep	copy.	If	you	performed
the	deep	copy	by	hand,	you’d	have	to	make	a	new	instance	of	all	the	instance	fields	of	the
original	object	and	copy	them	over	to	the	cloned	object.	This	is	a	tedious	chore	in	and	of
itself.	If	you	make	a	change	to	the	fields	of	the	object	being	cloned,	you	must	also	change
the	deep	copy	code	to	reflect	that	modification.	Using	serialization,	you	rely	on	the
serializer	to	dynamically	find	and	serialize	all	fields	contained	in	the	object.	If	the	object	is
modified,	the	serializer	will	still	make	a	deep	copy	without	any	code	modifications.

One	reason	you	might	want	to	do	a	deep	copy	by	hand	is	that	the	serialization	technique
presented	in	this	recipe	works	properly	only	when	everything	in	your	object	is	serializable.
Of	course,	manual	cloning	doesn’t	always	help	there	either	—	some	objects	are	just
inherently	uncloneable.	Suppose	you	have	a	network	management	application	in	which	an
object	represents	a	particular	printer	on	your	network.	What’s	it	supposed	to	do	when	you
clone	it?	Fax	a	purchase	order	for	a	new	printer?

One	problem	inherent	with	deep	copying	is	performing	a	deep	copy	on	a	nested	data
structure	with	circular	references.	This	recipe	makes	it	possible	to	deal	with	circular
references,	although	it’s	a	tricky	problem.	So,	in	fact,	you	don’t	need	to	avoid	circular
references	if	you	are	using	this	recipe.

See	Also
Framework	Design	Guidelines:	Conventions,	Idioms,	and	Patterns	for	Reusable	.NET
Libraries	by	Krzysztof	Cwalina	and	Brad	Abrams	(Addison-Wesley	Professional),	and	the
“Object.MemberwiseClone	Method”	topic	in	the	MSDN	documentation.

1.8	Ensuring	an	Object’s	Disposal

Problem
You	require	a	way	to	always	have	something	happen	when	an	object’s	work	is	done	or	it
goes	out	of	scope.

Solution
Use	the	using	statement:

using	System;

using	System.IO;

//	...

using(FileStream	FS	=	new	FileStream("Test.txt",	FileMode.Create))

{

				FS.WriteByte((byte)1);

				FS.WriteByte((byte)2);

				FS.WriteByte((byte)3);

				using(StreamWriter	SW	=	new	StreamWriter(FS))

				{

								SW.WriteLine("some	text.");

				}

}

Discussion
The	using	statement	is	very	easy	to	use	and	saves	you	the	hassle	of	writing	extra	code.	If
this	Solution	had	not	used	the	using	statement,	it	would	look	like	this:

FileStream	FS	=	new	FileStream("Test.txt",	FileMode.Create);

try

{

				FS.WriteByte((byte)1);

				FS.WriteByte((byte)2);

				FS.WriteByte((byte)3);

				StreamWriter	SW	=	new	StreamWriter(FS);

				try

				{

							SW.WriteLine("some	text.");

				}

				finally

				{

								if	(SW	!=	null)

								{

												((IDisposable)SW).Dispose();

								}

				}

}

finally

{

			if	(FS	!=	null)

			{

							((IDisposable)FS).Dispose();

			}

}

Several	points	to	note	about	the	using	statement:

There	is	a	using	directive,	such	as:

using	System.IO;

which	should	be	differentiated	from	the	using	statement.	This	is	potentially	confusing
to	developers	first	getting	into	this	language.

The	variable(s)	defined	in	the	using	statement	clause	must	all	be	of	the	same	type,	and
they	must	have	an	initializer.	However,	you	are	allowed	multiple	using	statements	in
front	of	a	single	code	block,	so	this	isn’t	a	significant	restriction.

Any	variables	defined	in	the	using	clause	are	considered	read-only	in	the	body	of	the
using	statement.	This	prevents	a	developer	from	inadvertently	switching	the	variable	to
refer	to	a	different	object	and	causing	problems	when	attempting	to	dispose	of	the
object	that	the	variable	initially	referenced.

The	variable	should	not	be	declared	outside	of	the	using	block	and	then	initialized
inside	of	the	using	clause.

This	last	point	is	described	by	the	following	code:

FileStream	FS;

using(FS	=	new	FileStream("Test.txt",	FileMode.Create))

{

				FS.WriteByte((byte)1);

				FS.WriteByte((byte)2);

				FS.WriteByte((byte)3);

				using(StreamWriter	SW	=	new	StreamWriter(FS))

				{

								SW.WriteLine("some	text.");

				}

}

For	this	example	code,	you	will	not	have	a	problem.	But	consider	that	the	variable	FS	is
usable	outside	of	the	using	block.	Essentially,	you	could	revisit	this	code	and	modify	it	as
follows:

FileStream	FS;

using(FS	=	new	FileStream("Test.txt",	FileMode.Create))

{

				FS.WriteByte((byte)1);

				FS.WriteByte((byte)2);

				FS.WriteByte((byte)3);

				using(StreamWriter	SW	=	new	StreamWriter(FS))

				{

								SW.WriteLine("some	text.");

				}

}

FS.WriteByte((byte)4);

This	code	compiles	but	throws	an	ObjectDisposedException	on	the	last	line	of	this	code
snippet	because	the	Dispose	method	has	already	been	called	on	the	FS	object.	The	object
has	not	yet	been	collected	at	this	point	and	still	remains	in	memory	in	the	disposed	state.

See	Also
The	“Cleaning	Up	Unmanaged	Resources,”	“IDisposable	Interface,”	“Using	foreach	with
Collections,”	and	“Implementing	Finalize	and	Dispose	to	Clean	Up	Unmanaged
Resources”	topics	in	the	MSDN	documentation.

1.9	Deciding	When	and	Where	to	Use	Generics

Problem
You	want	to	use	generic	types	in	a	new	project	or	convert	nongeneric	types	in	an	existing
project	to	their	generic	equivalents.	However,	you	do	not	really	know	why	you	would
want	to	do	this,	and	you	do	not	know	which	nongeneric	types	should	be	converted	to
generic.

Solution
In	deciding	when	and	where	to	use	generic	types,	you	need	to	consider	several	things:

Will	your	type	contain	or	be	operating	on	various	unspecified	data	types	(e.g.,	a
collection	type)?	If	so,	creating	a	generic	type	will	offer	several	benefits	over	creating	a
nongeneric	type.	If	your	type	will	operate	on	only	a	single	specific	type,	then	you	may
not	need	to	create	a	generic	type.

If	your	type	will	be	operating	on	value	types,	so	that	boxing	and	unboxing	operations
will	occur,	you	should	consider	using	generics	to	prevent	the	performance	penalty
incurred	from	boxing	and	unboxing	operations.

The	stronger	type	checking	associated	with	generics	will	aid	in	finding	errors	sooner
(i.e.,	during	compile	time	as	opposed	to	runtime),	thus	shortening	your	bug-fixing
cycle.

Is	your	code	suffering	from	“code	bloat,”	with	you	writing	multiple	classes	to	handle
different	data	types	on	which	they	operate	(e.g.,	a	specialized	ArrayList	that	stores
only	StreamReaders	and	another	that	stores	only	StreamWriters)?	It	is	easier	to	write
the	code	once	and	have	it	just	work	for	each	of	the	data	types	it	operates	on.

Generics	allow	for	greater	clarity	of	code.	By	eliminating	code	bloat	and	forcing
stronger	type	checking	on	your	types,	they	make	your	code	easier	to	read	and
understand.

Discussion
In	most	cases,	your	code	will	benefit	from	using	a	generic	type.	Generics	allow	for	more
efficient	code	reuse,	faster	performance,	stronger	type	checking,	and	easier-to-read	code.

See	Also
The	“Generics	Overview”	and	“Benefits	of	Generics”	topics	in	the	MSDN	documentation.

1.10	Understanding	Generic	Types

Problem
You	need	to	understand	how	the	.NET	types	work	for	generics	and	how	generic	.NET
types	differ	from	regular	.NET	types.

Solution
A	couple	of	quick	experiments	can	show	the	differences	between	regular	.NET	types	and
generic	.NET	types.	Before	we	get	deep	into	the	code,	if	you	are	unfamiliar	with	generics,
jump	to	the	Discussion	section	in	this	recipe	for	a	detailed	explanation	about	generics	and
then	come	back	to	this	section.

Now,	when	a	regular	.NET	type	is	defined,	it	looks	like	the	FixedSizeCollection	type
defined	in	Example	1-6.

Example	1-6.	FixedSizeCollection:	a	regular	.NET	type
public	class	FixedSizeCollection

{

				///	<summary>

				///	Constructor	that	increments	static	counter

				///	and	sets	the	maximum	number	of	items

				///	</summary>

				///	<param	name="maxItems"></param>

				public	FixedSizeCollection(int	maxItems)

				{

									FixedSizeCollection.InstanceCount++;

									this.Items	=	new	object[maxItems];

				}

				///	<summary>

				///	Add	an	item	to	the	class	whose	type

				///	is	unknown	as	only	object	can	hold	any	type

				///	</summary>

				///	<param	name="item">item	to	add</param>

				///	<returns>the	index	of	the	item	added</returns>

				public	int	AddItem(object	item)

				{

								if	(this.ItemCount	<	this.Items.Length)

								{

												this.Items[this.ItemCount]	=	item;

												return	this.ItemCount++;

								}

								else

												throw	new	Exception("Item	queue	is	full");

				}

				///	<summary>

				///	Get	an	item	from	the	class

				///	</summary>

				///	<param	name="index">the	index	of	the	item	to	get</param>

				///	<returns>an	item	of	type	object</returns>

				public	object	GetItem(int	index)

				{

								if	(index	>=	this.Items.Length	&&

												index	>=	0)

												throw	new	ArgumentOutOfRangeException(nameof(index));

								return	this.Items[index];

					}

					#region	Properties

					///	<summary>

					///	Static	instance	counter	hangs	off	of	the	Type	for

					///	StandardClass

					///	</summary>

					public	static	int	InstanceCount	{	get;	set;	}

					///	<summary>

					///	The	count	of	the	items	the	class	holds

					///	</summary>

					public	int	ItemCount	{	get;	private	set;	}

					///	<summary>

					///	The	items	in	the	class

					///	</summary>

					private	object[]	Items	{	get;	set;	}

					#endregion	//	Properties

					///	<summary>

					///	ToString	override	to	provide	class	detail

					///	</summary>

					///	<returns>formatted	string	with	class	details</returns>

					public	override	string	ToString()	=>

																		$"There	are	{FixedSizeCollection.InstanceCount.ToString()}

																		instances	of	{this.GetType().ToString()}	and	this	instance

																		contains	{this.ItemCount}	items…";

}

FixedSizeCollection	has	a	static	integer	property	variable,	InstanceCount,	which	is
incremented	in	the	instance	constructor,	and	a	ToString	override	that	prints	out	how	many
instances	of	FixedSizeCollection	exist	in	this	AppDomain.FixedSizeCollection.
Additionally,	this	collection	class	contains	an	array	of	objects(Items),	the	size	of	which
is	determined	by	the	item	count	passed	in	to	the	constructor.	FixedSizeCollection	also
implements	methods	that	add	and	retrieve	items	(AddItem,	GetItem)	and	a	read-only
property	to	get	the	number	of	items	currently	in	the	array	(ItemCount).

FixedSizeCollection<T>	is	a	generic	.NET	type	with	the	same	static	property
InstanceCount	field,	the	instance	constructor	that	counts	the	number	of	instantiations,	and
the	overridden	ToString	method	to	tell	you	how	many	instances	there	are	of	this	type.
FixedSizeCollection<T>	also	has	an	Items	array	property	and	methods	corresponding	to
those	in	FixedSizeCollection,	as	you	can	see	in	Example	1-7.

Example	1-7.	FixedSizeCollection<T>:	a	generic	.NET	type
///	<summary>

///	A	generic	class	to	show	instance	counting

///	</summary>

///	<typeparam	name="T">the	type	parameter	used	for	the	array	storage</typeparam>

public	class	FixedSizeCollection<T>

{

				///	<summary>

				///	Constructor	that	increments	static	counter	and	sets	up	internal	storage

				///	</summary>

				///	<param	name="items"></param>

				public	FixedSizeCollection(int	items)

				{

								FixedSizeCollection<T>.InstanceCount++;

								this.Items	=	new	T[items];

				}

				///	<summary>

				///	Add	an	item	to	the	class	whose	type

				///	is	determined	by	the	instantiating	type

				///	</summary>

				///	<param	name="item">item	to	add</param>

				///	<returns>the	zero-based	index	of	the	item	added</returns>

				public	int	AddItem(T	item)

				{

								if	(this.ItemCount	<	this.Items.Length)

								{

												this.Items[this.ItemCount]	=	item;

												return	this.ItemCount++;

								}

								else

												throw	new	Exception("Item	queue	is	full");

				}

				///	<summary>

				///	Get	an	item	from	the	class

				///	</summary>

				///	<param	name="index">the	zero-based	index	of	the	item	to	get</param>

				///	<returns>an	item	of	the	instantiating	type</returns>

				public	T	GetItem(int	index)

				{

								if	(index	>=	this.Items.Length	&&

												index	>=	0)

												throw	new	ArgumentOutOfRangeException(nameof(index));

								return	this.Items[index];

				}

				#region	Properties

				///	<summary>

				///	Static	instance	counter	hangs	off	of	the

				///	instantiated	Type	for

				///	GenericClass

				///	</summary>

				public	static	int	InstanceCount	{	get;	set;	}

				///	<summary>

				///	The	count	of	the	items	the	class	holds

				///	</summary>

				public	int	ItemCount	{	get;	private	set;	}

				///	<summary>

				///	The	items	in	the	class

				///	</summary>

				private	T[]	Items	{	get;	set;	}

				#endregion	//	Properties

				///	<summary>

				///	ToString	override	to	provide	class	detail

				///	</summary>

				///	<returns>formatted	string	with	class	details</returns>

				public	override	string	ToString()	=>

																	$"There	are	{FixedSizeCollection<T>.InstanceCount.ToString()}

																	instances	of	{this.GetType().ToString()}	and	this	instance

																	contains	{this.ItemCount}	items…";

}

Things	start	to	differ	a	little	with	FixedSizeCollection<T>	when	you	look	at	the	Items
array	property	implementation.	The	Items	array	is	declared	as:

private	T[]	Items	{	get;	set;	}

instead	of:

private	object[]	Items	{	get;	set;	}

The	Items	array	property	uses	the	type	parameter	of	the	generic	class	(<T>)	to	determine
what	types	of	items	are	allowed.	FixedSizeCollection	uses	object	for	the	Items	array
property	type,	which	allows	any	type	to	be	stored	in	the	array	of	items	(since	all	types	are
convertible	to	object),	while	FixedSizeCollection<T>	provides	type	safety	by	allowing
the	type	parameter	to	dictate	what	types	of	objects	are	permitted.	Notice	also	that	the
properties	have	no	associated	private	backing	field	declared	for	storing	the	array.	This	is
an	example	of	using	the	new	automatically	implemented	properties	feature	that	was
originally	introduced	in	C#	3.0.	Under	the	covers,	the	C#	compiler	is	creating	a	storage
element	of	the	property’s	type,	but	you	don’t	have	to	write	the	code	for	the	property
storage	anymore	if	you	don’t	have	specific	code	that	has	to	execute	when	accessing	the
properties.	To	make	the	property	read-only,	simply	mark	the	set;	declaration	private.

The	next	difference	is	visible	in	the	method	declarations	of	AddItem	and	GetItem.	AddItem
now	takes	a	parameter	of	type	T,	whereas	in	FixedSizeCollection,	it	took	a	parameter	of

type	object.	GetItem	now	returns	a	value	of	type	T,	whereas	in	FixedSizeCollection,	it
returned	a	value	of	type	object.	These	changes	allow	the	methods	in
FixedSizeCollection<T>	to	use	the	instantiated	type	to	store	and	retrieve	the	items	in	the
array,	instead	of	having	to	allow	any	object	to	be	stored	as	in	FixedSizeCollection:

///	<summary>

///	Add	an	item	to	the	class	whose	type

///	is	determined	by	the	instantiating	type

///	</summary>

///	<param	name="item">item	to	add</param>

///	<returns>the	zero-based	index	of	the	item	added</returns>

public	int	AddItem(T	item)

{

				if	(this.ItemCount	<	this.Items.Length)

				{

								this.Items[this.ItemCount]	=	item;

								return	this.ItemCount++;

				}

				else

								throw	new	Exception("Item	queue	is	full");

}

///	<summary>

///	Get	an	item	from	the	class

///	</summary>

///	<param	name="index">the	zero-based	index	of	the	item	to	get</param>

///	<returns>an	item	of	the	instantiating	type</returns>

public	T	GetItem(int	index)

{

				if	(index	>=	this.Items.Length	&&

								index	>=	0)

								throw	new	ArgumentOutOfRangeException("index");

				return	this.Items[index];

}

This	provides	a	few	advantages,	first	and	foremost	of	which	is	the	type	safety	provided	by
FixedSizeCollection<T>	for	items	in	the	array.	It	was	possible	to	write	code	like	this	in
FixedSizeCollection:

//	Regular	class

FixedSizeCollection	C	=	new	FixedSizeCollection(5);

Console.WriteLine(C);

string	s1	=	"s1";

string	s2	=	"s2";

string	s3	=	"s3";

int	i1	=	1;

//	Add	to	the	fixed	size	collection	(as	object).

C.AddItem(s1);

C.AddItem(s2);

C.AddItem(s3);

//	Add	an	int	to	the	string	array,	perfectly	OK.

C.AddItem(i1);

But	FixedSizeCollection<T>	will	give	a	compiler	error	if	you	try	the	same	thing:

//	Generic	class

FixedSizeCollection<string>	gC	=	new	FixedSizeCollection<string>(5);

Console.WriteLine(gC);

string	s1	=	"s1";

string	s2	=	"s2";

string	s3	=	"s3";

int	i1	=	1;

//	Add	to	the	generic	class	(as	string).

gC.AddItem(s1);

gC.AddItem(s2);

gC.AddItem(s3);

//	Try	to	add	an	int	to	the	string	instance,	denied	by	compiler.

//	error	CS1503:	Argument	'1':	cannot	convert	from	'int'	to	'string'

//gC.AddItem(i1);

Having	the	compiler	prevent	this	before	it	can	become	the	source	of	runtime	bugs	is	a	very
good	idea.

It	may	not	be	immediately	noticeable,	but	the	integer	is	actually	boxed	when	it	is	added	to
the	object	array	in	FixedSizeCollection,	as	you	can	see	in	the	IL	for	the	call	to	GetItem
on	FixedSizeCollection:

IL_0177:	ldloc.2

IL_0178:	ldloc.s	i1

IL_017a:	box	[mscorlib]System.Int32

IL_017f:	callvirt	instance	int32

							CSharpRecipes.ClassesAndGenerics/FixedSizeCollection::AddItem(object)

This	boxing	turns	the	int,	which	is	a	value	type,	into	a	reference	type	(object)	for	storage
in	the	array.	This	requires	you	to	do	extra	work	to	store	value	types	in	the	object	array.

You’ll	encounter	another	problem	when	you	go	to	retrieve	an	item	from	the	class	in	the
FixedSizeCollection	implementation.	Take	a	look	at	how
FixedSizeCollection.GetItem	retrieves	an	item:

//	Hold	the	retrieved	string.

string	sHolder;

//	Have	to	cast	or	get	error	CS0266:

//	Cannot	implicitly	convert	type	'object'	to	'string'

sHolder	=	(string)C.GetItem(1);

Since	the	item	returned	by	FixedSizeCollection.GetItem	is	of	type	object,	you	need	to
cast	it	to	a	string	in	order	to	get	what	you	hope	is	a	string	for	index	1.	It	may	not	be	a
string	—	all	you	know	for	sure	is	that	it’s	an	object	—	but	you	have	to	cast	it	to	a	more
specific	type	coming	out	so	you	can	assign	it	properly.

These	issues	are	both	fixed	by	the	FixedSizeCollection<T>	implementation.	Unlike	with
FixedSizeCollection,	no	unboxing	is	required	in	FixedSizeCollection<T>,	since	the
return	type	of	GetItem	is	the	instantiated	type,	and	the	compiler	enforces	this	by	looking	at
the	value	being	returned:

//	Hold	the	retrieved	string.

string	sHolder;

int	iHolder;

//	No	cast	necessary

sHolder	=	gC.GetItem(1);

//	Try	to	get	a	string	into	an	int.

//	error	CS0029:	Cannot	implicitly	convert	type	'string'	to	'int'

//iHolder	=	gC.GetItem(1);

To	see	one	other	difference	between	the	two	types,	instantiate	a	few	instances	of	each	like
so:

//	Regular	class

FixedSizeCollection	A	=	new	FixedSizeCollection(5);

Console.WriteLine(A);

FixedSizeCollection	B	=	new	FixedSizeCollection(5);

Console.WriteLine(B);

FixedSizeCollection	C	=	new	FixedSizeCollection(5);

Console.WriteLine(C);

//	generic	class

FixedSizeCollection<bool>	gA	=	new	FixedSizeCollection<bool>(5);

Console.WriteLine(gA);

FixedSizeCollection<int>	gB	=	new	FixedSizeCollection<int>(5);

Console.WriteLine(gB);

FixedSizeCollection<string>	gC	=	new	FixedSizeCollection<string>(5);

Console.WriteLine(gC);

FixedSizeCollection<string>	gD	=	new	FixedSizeCollection<string>(5);

Console.WriteLine(gD);

The	output	from	the	preceding	code	shows	this:

There	are	1	instances	of	CSharpRecipes.ClassesAndGenerics+FixedSizeCollection

				and	this	instance	contains	0	items…

There	are	2	instances	of	CSharpRecipes.ClassesAndGenerics+FixedSizeCollection

				and	this	instance	contains	0	items…

There	are	3	instances	of	CSharpRecipes.ClassesAndGenerics+FixedSizeCollection

				and	this	instance	contains	0	items…

There	are	1	instances	of	CSharpRecipes.ClassesAndGenerics+FixedSizeCollection'1

				[System.Boolean]	and	this	instance	contains	0	items…

There	are	1	instances	of	CSharpRecipes.ClassesAndGenerics+FixedSizeCollection'1

				[System.Int32]	and	this	instance	contains	0	items…

There	are	1	instances	of	CSharpRecipes.ClassesAndGenerics+FixedSizeCollection'1

				[System.String]	and	this	instance	contains	0	items…

There	are	2	instances	of	CSharpRecipes.ClassesAndGenerics+FixedSizeCollection'1

				[System.String]	and	this	instance	contains	0	items…

Discussion
The	type	parameters	in	generics	allow	you	to	create	type-safe	code	without	knowing	the
final	type	you	will	be	working	with.	In	many	instances,	you	want	the	types	to	have	certain
characteristics,	in	which	case	you	place	constraints	on	the	type	(see	Recipe	1.12).	Methods
can	have	generic	type	parameters	whether	or	not	the	class	itself	does.

Notice	that	while	FixedSizeCollection	has	three	instances,	FixedSizeCollection<T>
has	one	instance	in	which	it	was	declared	with	bool	as	the	type,	one	instance	in	which	int
was	the	type,	and	two	instances	in	which	string	was	the	type.	This	means	that,	while
there	is	one	.NET	Type	object	created	for	each	nongeneric	class,	there	is	one	.NET	Type
object	for	every	constructed	type	of	a	generic	class.

FixedSizeCollection	has	three	instances	in	the	example	code	because
FixedSizeCollection	has	only	one	type	that	is	maintained	by	the	CLR.	With	generics,
one	type	is	maintained	for	each	combination	of	the	class	template	and	the	type	arguments
passed	when	a	type	instance	is	constructed.	In	other	words,	you	get	one	.NET	type	for
FixedSizeCollection<bool>,	one	.NET	type	for	FixedSizeCollection<int>,	and	a	third
.NET	type	for	FixedSizeCollection<string>.

The	static	InstanceCount	property	helps	to	illustrate	this	point,	as	static	properties	of	a
class	are	actually	connected	to	the	type	that	the	CLR	hangs	on	to.	The	CLR	creates	any
given	type	only	once	and	then	maintains	it	until	the	AppDomain	unloads.	This	is	why	the
output	from	the	calls	to	ToString	on	these	objects	shows	that	the	count	is	3	for
FixedSizeCollection	(as	there	is	truly	only	one	of	these)	and	1	or	2	for	the
FixedSizeCollection<T>	types.

See	Also
The	“Generic	Type	Parameters”	and	“Generic	Classes”	topics	in	the	MSDN
documentation.

1.11	Reversing	the	Contents	of	a	Sorted	List

Problem
You	want	to	be	able	to	reverse	the	contents	of	a	sorted	list	of	items	while	maintaining	the
ability	to	access	them	in	both	array	and	list	styles	like	SortedList	and	the	generic
SortedList<T>	classes	provide.	Neither	SortedList	nor	SortedList<T>	provides	a	direct
way	to	accomplish	this	without	reloading	the	list.

Solution
Use	LINQ	to	Objects	to	query	the	SortedList<T>	and	apply	a	descending	order	to	the
information	in	the	list.	After	you	instantiate	a	SortedList<TKey,	TValue>,	the	key	of
which	is	an	int	and	the	value	of	which	is	a	string,	a	series	of	unordered	numbers	and
their	text	representations	are	inserted	into	the	list.	Those	items	are	then	displayed:

SortedList<int,	string>	data	=	new	SortedList<int,	string>()

				{	[2]="two",	[5]="five",	[3]="three",	[1]="one"	};

foreach	(KeyValuePair<int,	string>	kvp	in	data)

{

				Console.WriteLine($"\t	{kvp.Key}\t{kvp.Value}");

}

The	output	for	the	list	is	shown	sorted	in	ascending	order	(the	default):

1				one

2				two

3				three

5				five

Now	you	reverse	the	sort	order	by	creating	a	query	using	LINQ	to	Objects	and	setting	the
orderby	clause	to	descending.	The	results	are	then	displayed	from	the	query	result	set:

//	query	ordering	by	descending

var	query	=	from	d	in	data

												orderby	d.Key	descending

												select	d;

foreach	(KeyValuePair<int,	string>	kvp	in	query)

{

				Console.WriteLine($"\t	{kvp.Key}\t{kvp.Value}");

}

This	time	the	output	is	in	descending	order:

5				five

3				three

2				two

1				one

When	you	add	a	new	item	to	the	list,	it	is	added	in	the	ascending	sort	order,	but	by
querying	again	after	adding	all	of	the	items,	you	keep	the	ordering	of	the	list	intact:

data.Add(4,	"four");

//	requery	ordering	by	descending

query	=	from	d	in	data

								orderby	d.Key	descending

								select	d;

foreach	(KeyValuePair<int,	string>	kvp	in	query)

{

				Console.WriteLine($"\t	{kvp.Key}\t{kvp.Value}");

}

Console.WriteLine("");

//	Just	go	against	the	original	list	for	ascending

foreach	(KeyValuePair<int,	string>	kvp	in	data)

{

				Console.WriteLine($"\t	{kvp.Key}\t{kvp.Value}");

}

You	can	see	the	output	in	both	descending	and	ascending	order	with	the	new	item:

5				five

4				four

3				three

2				two

1				one

1				one

2				two

3				three

4				four

5				five

Discussion
A	SortedList	blends	array	and	list	syntax	to	allow	you	to	access	the	data	in	either	format,
which	can	be	a	handy	thing	to	do.	The	data	is	accessible	as	key/value	pairs	or	directly	by
index	and	will	not	allow	you	to	add	duplicate	keys.	In	addition,	values	that	are	reference
or	nullable	types	can	be	null,	but	keys	cannot.	You	can	iterate	over	the	items	using	a
foreach	loop,	with	KeyValuePair	being	the	type	returned.	While	accessing	elements	of
the	SortedList<T>,	you	may	only	read	from	them.	The	usual	iterator	syntax	prohibits	you
from	updating	or	deleting	elements	of	the	list	while	reading,	as	it	will	invalidate	the
iterator.

The	orderby	clause	in	the	query	orders	the	result	set	of	the	query	either	in	ascending	(the
default)	or	descending	order.	This	sorting	is	accomplished	through	use	of	the	default
comparer	for	the	element	type,	so	you	can	alter	it	by	overriding	the	Equals	method	for
elements	that	are	custom	classes.	You	can	specify	multiple	keys	for	the	orderby	clause,
which	has	the	effect	of	nesting	the	sort	order,	such	as	sorting	by	“last	name”	and	then
“first	name.”

See	Also
The	“SortedList,”	“Generic	KeyValuePair	Structure,”	and	“Generic	SortedList”	topics	in
the	MSDN	documentation.

1.12	Constraining	Type	Arguments

Problem
Your	generic	type	needs	to	be	created	with	a	type	argument	that	must	support	the	members
of	a	particular	interface,	such	as	IDisposable.

Solution
Use	constraints	to	force	the	type	arguments	of	a	generic	type	to	be	of	a	type	that
implements	one	or	more	particular	interfaces:

public	class	DisposableList<T>	:	IList<T>

				where	T	:	class,	IDisposable

{

				private	List<T>	_items	=	new	List<T>();

				//	Private	method	that	will	dispose	of	items	in	the	list

				private	void	Delete(T	item)	=>	item.Dispose();

				//	IList<T>	Members

				public	int	IndexOf(T	item)	=>	_items.IndexOf(item);

				public	void	Insert(int	index,	T	item)	=>	_items.Insert(index,	item);

				public	T	this[int	index]

				{

								get				{return	(_items[index]);}

								set				{_items[index]	=	value;}

				}

				public	void	RemoveAt(int	index)

				{

								Delete(this[index]);

								_items.RemoveAt(index);

				}

				//	ICollection<T>	Members

				public	void	Add(T	item)	=>	_items.Add(item);

				public	bool	Contains(T	item)	=>	_items.Contains(item);

				public	void	CopyTo(T[]	array,	int	arrayIndex)	=>

																					_items.CopyTo(array,	arrayIndex);

				public	int	Count		=>	_items.Count;

				public	bool	IsReadOnly		=>	false;

				//	IEnumerable<T>	Members

				public	IEnumerator<T>	GetEnumerator()=>	_items.GetEnumerator();

				//	IEnumerable	Members

				IEnumerator	IEnumerable.GetEnumerator()=>	_items.GetEnumerator();

				//	Other	members

				public	void	Clear()

				{

								for	(int	index	=	0;	index	<	_items.Count;	index++)

								{

												Delete(_items[index]);

								}

								_items.Clear();

				}

				public	bool	Remove(T	item)

				{

								int	index	=	_items.IndexOf(item);

								if	(index	>=	0)

								{

												Delete(_items[index]);

												_items.RemoveAt(index);

												return	(true);

								}

								else

								{

												return	(false);

								}

				}

}

This	DisposableList	class	allows	only	an	object	that	implements	IDisposable	to	be
passed	in	as	a	type	argument	to	this	class.	The	reason	for	this	is	that	whenever	an	object	is
removed	from	a	DisposableList	object,	the	Dispose	method	is	always	called	on	that
object.	This	allows	you	to	transparently	handle	the	management	of	any	object	stored
within	this	DisposableList	object.

The	following	code	exercises	a	DisposableList	object:

public	static	void	TestDisposableListCls()

{

				DisposableList<StreamReader>	dl	=	new	DisposableList<StreamReader>();

					//	Create	a	few	test	objects.

					StreamReader	tr1	=	new	StreamReader("C:\\Windows\\system.ini");

					StreamReader	tr2	=	new	StreamReader("c:\\Windows\\vmgcoinstall.log");

					StreamReader	tr3	=	new	StreamReader("c:\\Windows\\Starter.xml");

					//	Add	the	test	object	to	the	DisposableList.

					dl.Add(tr1);

					dl.Insert(0,	tr2);

					dl.Add(tr3);

					foreach(StreamReader	sr	in	dl)

					{

									Console.WriteLine($"sr.ReadLine()	==	{sr.ReadLine()}");

					}

					//	Call	Dispose	before	any	of	the	disposable	objects	are

					//	removed	from	the	DisposableList.

					dl.RemoveAt(0);

					dl.Remove(tr1);

					dl.Clear();

}

Discussion
The	where	keyword	is	used	to	constrain	a	type	parameter	to	accept	only	arguments	that
satisfy	the	given	constraint.	For	example,	the	DisposableList	has	the	constraint	that	any
type	argument	T	must	implement	the	IDisposable	interface:

public	class	DisposableList<T>	:	IList<T>

									where	T	:	IDisposable

This	means	that	the	following	code	will	compile	successfully:

DisposableList<StreamReader>	dl	=	new	DisposableList<StreamReader>();

but	the	following	code	will	not:

DisposableList<string>	dl	=	new	DisposableList<string>();

This	is	because	the	string	type	does	not	implement	the	IDisposable	interface,	and	the
StreamReader	type	does.

Other	constraints	on	the	type	argument	are	allowed,	in	addition	to	requiring	one	or	more
specific	interfaces	to	be	implemented.	You	can	force	a	type	argument	to	be	inherited	from
a	specific	base	class,	such	as	the	TextReader	class:

public	class	DisposableList<T>	:	IList<T>

							where	T	:	System.IO.TextReader,	IDisposable

You	can	also	determine	if	the	type	argument	is	narrowed	down	to	only	value	types	or	only
reference	types.	The	following	class	declaration	is	constrained	to	using	only	value	types:

public	class	DisposableList<T>	:	IList<T>

									where	T	:	struct

This	class	declaration	is	constrained	to	only	reference	types:

public	class	DisposableList<T>	:	IList<T>

									where	T	:	class

In	addition,	you	can	also	require	any	type	argument	to	implement	a	public	default
constructor:

public	class	DisposableList<T>	:	IList<T>

							where	T	:	IDisposable,	new()

Using	constraints	allows	you	to	write	generic	types	that	accept	a	narrower	set	of	available
type	arguments.	If	the	IDisposable	constraint	is	omitted	in	the	Solution	for	this	recipe,	a
compile-time	error	will	occur.	This	is	because	not	all	of	the	types	that	can	be	used	as	the
type	argument	for	the	DisposableList	class	will	implement	the	IDisposable	interface.	If

you	skip	this	compile-time	check,	a	DisposableList	object	may	contain	objects	that	do
not	have	a	public	no-argument	Dispose	method.	In	this	case,	a	runtime	exception	will
occur.	Generics	and	constraints	in	particular	force	strict	type	checking	of	the	class-type
arguments	and	allow	you	to	catch	these	problems	at	compile	time	rather	than	at	runtime.

See	Also
The	“where	Keyword”	topic	in	the	MSDN	documentation.

1.13	Initializing	Generic	Variables	to	Their	Default	Values

Problem
You	have	a	generic	class	that	contains	a	variable	of	the	same	type	as	the	type	parameter
defined	by	the	class	itself.	Upon	construction	of	your	generic	object,	you	want	that
variable	to	be	initialized	to	its	default	value.

Solution
Simply	use	the	default	keyword	to	initialize	that	variable	to	its	default	value:

public	class	DefaultValueExample<T>

{

				T	data	=	default(T);

				public	bool	IsDefaultData()

				{

								T	temp	=	default(T);

								if	(temp.Equals(data))

								{

												return	(true);

								}

								else

								{

												return	(false);

								}

				}

				public	void	SetData(T	val)	=>	data	=	value;

}

The	code	to	exercise	this	class	is	shown	here:

public	static	void	ShowSettingFieldsToDefaults()

{

				DefaultValueExample<int>	dv	=	new	DefaultValueExample<int>();

				//	Check	if	the	data	is	set	to	its	default	value;	true	is	returned.

				bool	isDefault	=	dv.IsDefaultData();

				Console.WriteLine($"Initial	data:	{isDefault}");

				//	Set	data.

				dv.SetData(100);

				//	Check	again,	this	time	a	false	is	returned.

				isDefault	=	dv.IsDefaultData();

				Console.WriteLine($"Set	data:	{isDefault}");

}

The	first	call	to	IsDefaultData	returns	true,	while	the	second	returns	false.	The	output
is	shown	here:

Initial	data:	True

Set	data:	False

Discussion
When	initializing	a	variable	of	the	same	type	parameter	as	the	generic	class,	you	cannot
just	set	that	variable	to	null.	What	if	the	type	parameter	is	a	value	type	such	as	an	int	or
char?	This	will	not	work	because	value	types	cannot	be	null.	You	may	be	thinking	that	a
nullable	type	such	as	long?	or	Nullable<long>	can	be	set	to	null	(see	“Using	Nullable
Types	(C#	Programming	Guide)”	in	the	MSDN	documentation	for	more	on	nullable
types).	However,	the	compiler	has	no	way	of	knowing	what	type	argument	the	user	will
use	to	construct	the	type.

The	default	keyword	allows	you	to	tell	the	compiler	that	at	compile	time	the	default
value	of	this	variable	should	be	used.	If	the	type	argument	supplied	is	a	numeric	value
(e.g.,	int,	long,	decimal),	then	the	default	value	is	0.	If	the	type	argument	supplied	is	a
reference	type,	then	the	default	value	is	null.	If	the	type	argument	supplied	is	a	struct,
then	you	determine	the	default	value	by	initializing	each	member	field	to	its	default	value.

See	Also
The	“Using	Nullable	Types	(C#	Programming	Guide)”	and	“default	Keyword	in	Generic
Code”	topics	in	the	MSDN	documentation.

1.14	Adding	Hooks	to	Generated	Entities

Problem
You	have	a	process	to	generate	your	partial	class	business	entity	definitions,	and	you	want
to	add	a	lightweight	notification	mechanism.

Solution
Use	partial	methods	to	add	hooks	in	the	generated	code	for	the	business	entities.

The	process	to	generate	the	entities	may	be	from	UML	(Unified	Modeling	Language),	a
data	set,	or	some	other	object-modeling	facility,	but	when	the	code	is	generated	as	partial
classes,	add	partial	method	hooks	into	the	templates	for	the	properties	that	call	a
ChangingProperty	partial	method,	as	shown	in	the	GeneratedEntity	class:

public	partial	class	GeneratedEntity

{

				public	GeneratedEntity(string	entityName)

				{

								this.EntityName	=	entityName;

				}

				partial	void	ChangingProperty(string	name,	string	originalValue,

																																		stringnewValue);

																																		

				public	string	EntityName	{	get;	}

				private	string	_FirstName;

				public	string	FirstName

				{

								get	{	return	_FirstName;	}

								set

								{

												ChangingProperty("FirstName",_FirstName,value);

												_FirstName	=	value;

								}

				}

				private	string	_State;

				public	string	State

				{

								get	{	return	_State;	}

								set

								{

												ChangingProperty("State",_State,value);

												_State	=	value;

								}

				}

}

The	GeneratedEntity	has	two	properties,	FirstName	and	State.	Notice	each	of	these
properties	has	the	same	boilerplate	code	that	calls	the	ChangingProperty	method	with	the
name	of	the	property,	the	original,	and	the	new	values.	If	the	generated	class	is	used	at	this
point,	the	ChangingProperty	declaration	and	method	will	be	removed	by	the	compiler,	as
there	is	no	implementation	for	ChangingProperty.	If	an	implementation	is	supplied	to
report	on	property	changes	as	shown	here,	then	all	of	the	partial	method	code	for
ChangingProperty	will	be	retained	and	executed:

public	partial	class	GeneratedEntity

{

				partial	void	ChangingProperty(string	name,	string	originalValue,

																																		string	newValue)

				{

								Console.WriteLine($"Changed	property	({name})	for	entity	"	+

																										$"{this.EntityName}	from	"	+

																										$"{originalValue}	to	{newValue}");

				}

}

Discussion
When	using	partial	methods,	be	aware	of	the	following:

You	indicate	a	partial	method	with	the	partial	modifier.

Partial	methods	can	be	declared	only	in	partial	classes.

Partial	methods	might	have	only	a	declaration	and	no	body.

From	a	signature	standpoint,	a	partial	method	can	have	arguments,	require	a	void	return
value,	and	must	not	have	any	access	modifier,	and	partial	implies	that	this	method	is
private	and	can	be	static,	generic,	or	unsafe.

For	generic	partial	methods,	constraints	must	be	repeated	on	the	declaring	and
implementing	versions.

A	partial	method	may	not	implement	an	interface	member	since	interface	members
must	be	public.

None	of	the	virtual,	abstract,	override,	new,	sealed,	or	extern	modifiers	may	be	used.

Arguments	to	a	partial	method	cannot	use	out,	but	they	can	use	ref.

Partial	methods	are	similar	to	conditional	methods,	except	that	the	method	definition	is
always	present	in	conditional	methods,	even	when	the	condition	is	not	met.	Partial
methods	do	not	retain	the	method	definition	if	there	is	no	matching	implementation.	The
code	in	the	Solution	could	be	used	like	this:

public	static	void	TestPartialMethods()

{

				Console.WriteLine("Start	entity	work");

				GeneratedEntity	entity	=	new	GeneratedEntity("FirstEntity");

				entity.FirstName	=	"Bob";

				entity.State	=	"NH";

				GeneratedEntity	secondEntity	=	new	GeneratedEntity("SecondEntity");

				entity.FirstName	=	"Jay";

				secondEntity.FirstName	=	"Steve";

				secondEntity.State	=	"MA";

				entity.FirstName	=	"Barry";

				secondEntity.State	=	"WA";

				secondEntity.FirstName	=	"Matt";

				Console.WriteLine("End	entity	work");

}

to	produce	the	following	output	when	the	ChangingProperty	implementation	is	provided:

Start	entity	work

Changed	property	(FirstName)	for	entity	FirstEntity	from	to	Bob

Changed	property	(State)	for	entity	FirstEntity	from	to	NH

Changed	property	(FirstName)	for	entity	FirstEntity	from	Bob	to	Jay

Changed	property	(FirstName)	for	entity	SecondEntity	from	to	Steve

Changed	property	(State)	for	entity	SecondEntity	from	to	MA

Changed	property	(FirstName)	for	entity	FirstEntity	from	Jay	to	Barry

Changed	property	(State)	for	entity	SecondEntity	from	MA	to	WA

Changed	property	(FirstName)	for	entity	SecondEntity	from	Steve	to	Matt

End	entity	work

or	to	produce	the	following	output	when	the	ChangingProperty	implementation	is	not
provided:

Start	entity	work

End	entity	work

See	Also
The	“Partial	Methods”	and	“partial	(Method)”	topics	in	the	MSDN	documentation.

1.15	Controlling	How	a	Delegate	Fires	Within	a	Multicast
Delegate

Problem
You	have	combined	multiple	delegates	to	create	a	multicast	delegate.	When	this	multicast
delegate	is	invoked,	each	delegate	within	it	is	invoked	in	turn.	You	need	to	exert	more
control	over	the	order	in	which	each	delegate	is	invoked,	firing	only	a	subset	of	delegates,
or	firing	each	delegate	based	on	the	success	or	failure	of	previous	delegates.	Additionally,
you	need	to	be	able	to	handle	the	return	value	of	each	delegate	separately.

Solution
Use	the	GetInvocationList	method	to	obtain	an	array	of	Delegate	objects.	Next,	iterate
over	this	array	using	a	for	(if	enumerating	in	a	nonstandard	order)	or	foreach	(for
enumerating	in	a	standard	order)	loop.	You	can	then	invoke	each	Delegate	object	in	the
array	individually	and,	optionally,	retrieve	each	delegate’s	unique	return	value.

In	C#,	all	delegate	types	support	multicast	—	that	is,	any	delegate	instance	can	invoke
multiple	methods	each	time	the	instance	is	invoked	if	it	has	been	set	up	to	do	so.	In	this
recipe,	we	use	the	term	multicast	to	describe	a	delegate	that	has	been	set	up	to	invoke
multiple	methods.

The	following	method	creates	a	multicast	delegate	called	allInstances	and	then	uses
GetInvocationList	to	allow	each	delegate	to	be	invoked	individually,	in	reverse	order.
The	Func<int>	generic	delegate	is	used	to	create	delegate	instances	that	return	an	int:

public	static	void	InvokeInReverse()

{

				Func<int>	myDelegateInstance1	=	TestInvokeIntReturn.Method1;

				Func<int>	myDelegateInstance2	=	TestInvokeIntReturn.Method2;

				Func<int>	myDelegateInstance3	=	TestInvokeIntReturn.Method3;

				Func<int>	allInstances	=

												myDelegateInstance1	+

												myDelegateInstance2	+

												myDelegateInstance3;

				Console.WriteLine("Fire	delegates	in	reverse");

				Delegate[]	delegateList	=	allInstances.GetInvocationList();

				foreach	(Func<int>	instance	in	delegateList.Reverse())

				{

								instance();

				}

}

Note	that	to	roll	over	the	delegate	list	retrieved	using	GetInvocationList,	we	use	the
IEnumerable<T>	extension	method	Reverse	so	that	we	get	the	items	in	the	opposite	order
of	how	the	enumeration	would	normally	produce	them.

As	the	following	methods	demonstrate	by	firing	every	other	delegate,	you	don’t	have	to
invoke	all	of	the	delegates	in	the	list.	InvokeEveryOtherOperation	uses	an	extension
method	created	here	for	IEnumerable<T>	called	EveryOther	that	will	return	only	every
other	item	from	the	enumeration.

NOTE
If	a	unicast	delegate	was	used	and	you	called	GetInvocationList	on	it,	you	will	receive	a	list	of	one
delegate	instance.

public	static	void	InvokeEveryOtherOperation()

{

				Func<int>	myDelegateInstance1	=	TestInvokeIntReturn.Method1;

				Func<int>	myDelegateInstance2	=	TestInvokeIntReturn.Method2;

				Func<int>	myDelegateInstance3	=	TestInvokeIntReturn.Method3;

				Func<int>	allInstances	=	myDelegateInstance1	+

																													myDelegateInstance2	+

																													myDelegateInstance3;

				Delegate[]	delegateList	=	allInstances.GetInvocationList();

				Console.WriteLine("Invoke	every	other	delegate");

				foreach	(Func<int>	instance	in	delegateList.EveryOther())

				{

								//	invoke	the	delegate

								int	retVal	=	instance();

								Console.WriteLine($"Delegate	returned	{retVal}");

				}

}

static	IEnumerable<T>	EveryOther<T>(this	IEnumerable<T>	enumerable)

{

				bool	retNext	=	true;

				foreach	(T	t	in	enumerable)

				{

								if	(retNext)	yield	return	t;

								retNext	=	!retNext;

				}

}

The	following	class	contains	each	of	the	methods	that	will	be	called	by	the	multicast
delegate	allInstances:

public	class	TestInvokeIntReturn

{

				public	static	int	Method1()

				{

								Console.WriteLine("Invoked	Method1");

								return	1;

				}

				public	static	int	Method2()

				{

								Console.WriteLine("Invoked	Method2");

								return	2;

				}

				public	static	int	Method3()

				{

								Console.WriteLine("Invoked	Method3");

								return	3;

				}

}

You	can	also	specify	whether	to	continue	firing	delegates	in	the	list	based	on	the	return
value	of	the	currently	firing	delegate.	The	following	method	fires	each	delegate,	stopping
only	when	a	delegate	returns	a	false	value:

public	static	void	InvokeWithTest()

{

				Func<bool>	myDelegateInstanceBool1	=	TestInvokeBoolReturn.Method1;

				Func<bool>	myDelegateInstanceBool2	=	TestInvokeBoolReturn.Method2;

				Func<bool>	myDelegateInstanceBool3	=	TestInvokeBoolReturn.Method3;

				Func<bool>	allInstancesBool	=

												myDelegateInstanceBool1	+

												myDelegateInstanceBool2	+

												myDelegateInstanceBool3;

				Console.WriteLine(

								"Invoke	individually	(Call	based	on	previous	return	value):");

				foreach	(Func<bool>	instance	in	allInstancesBool.GetInvocationList())

				{

								if	(!instance())

												break;

				}

}

The	following	class	contains	each	of	the	methods	that	will	be	called	by	the	multicast
delegate	allInstancesBool:

public	class	TestInvokeBoolReturn

{

				public	static	bool	Method1()

				{

								Console.WriteLine("Invoked	Method1");

								return	true;

				}

				public	static	bool	Method2()

				{

								Console.WriteLine("Invoked	Method2");

								return	false;

				}

				public	static	bool	Method3()

				{

								Console.WriteLine("Invoked	Method3");

								return	true;

				}

}

Discussion
A	delegate,	when	called,	will	invoke	all	delegates	stored	within	its	invocation	list.	These
delegates	are	usually	invoked	sequentially	from	the	first	to	the	last	one	added.	Using	the
GetInvocationList	method	of	the	MulticastDelegate	class,	you	can	obtain	each
delegate	in	the	invocation	list	of	a	multicast	delegate.	This	method	accepts	no	parameters
and	returns	an	array	of	Delegate	objects	that	corresponds	to	the	invocation	list	of	the
delegate	on	which	this	method	was	called.	The	returned	Delegate	array	contains	the
delegates	of	the	invocation	list	in	the	order	in	which	they	would	normally	be	called;	that
is,	the	first	element	in	the	Delegate	array	contains	the	Delegate	object	that	is	normally
called	first.

This	application	of	the	GetInvocationList	method	enables	you	to	control	exactly	when
and	how	the	delegates	in	a	multicast	delegate	are	invoked,	and	to	prevent	the	continued
invocation	of	delegates	when	one	delegate	fails.	This	ability	is	important	if	each	delegate
is	manipulating	data,	and	one	of	the	delegates	fails	in	its	duties	but	does	not	throw	an
exception.	If	one	delegate	fails	in	its	duties	and	the	remaining	delegates	rely	on	all
previous	delegates	to	succeed,	you	must	quit	invoking	delegates	at	the	point	of	failure.

This	recipe	handles	a	delegate	failure	more	efficiently	and	also	provides	more	flexibility	in
dealing	with	these	errors.	For	example,	you	can	write	logic	to	specify	which	delegates	are
to	be	invoked,	based	on	the	return	values	of	previously	invoked	delegates.	The	following
method	creates	a	multicast	delegate	called	All	and	then	uses	GetInvocationList	to	fire
each	delegate	individually.	After	firing	each	delegate,	it	captures	the	return	value:

public	static	void	TestIndividualInvokesReturnValue()

{

				Func<int>	myDelegateInstance1	=	TestInvokeIntReturn.Method1;

				Func<int>	myDelegateInstance2	=	TestInvokeIntReturn.Method2;

				Func<int>	myDelegateInstance3	=	TestInvokeIntReturn.Method3;

				Func<int>	allInstances	=

												myDelegateInstance1	+

												myDelegateInstance2	+

												myDelegateInstance3;

				Console.WriteLine("Invoke	individually	(Obtain	each	return	value):");

				foreach	(Func<int>	instance	in	allInstances.GetInvocationList())

				{

								int	retVal	=	instance();

								Console.WriteLine($"\tOutput:	{retVal}");

				}

}

One	quirk	of	a	multicast	delegate	is	that	if	any	or	all	delegates	within	its	invocation	list
return	a	value,	only	the	value	of	the	last	invoked	delegate	is	returned;	all	others	are	lost.
This	loss	can	become	annoying	—	or	worse,	if	your	code	requires	these	return	values.
Consider	a	case	in	which	the	allInstances	delegate	was	invoked	normally,	as	in	the
following	code:

retVal	=	allInstances();

Console.WriteLine(retVal);

The	value	3	would	be	displayed	because	Method3	was	the	last	method	invoked	by	the
allInstances	delegate.	None	of	the	other	return	values	would	be	captured.

By	using	the	GetInvocationList	method	of	the	MulticastDelegate	class,	you	can	get
around	this	limitation.	This	method	returns	an	array	of	Delegate	objects	that	can	each	be
invoked	separately.	Note	that	this	method	does	not	invoke	each	delegate;	it	simply	returns
an	array	of	them	to	the	caller.	By	invoking	each	delegate	separately,	you	can	retrieve	each
return	value	from	each	invoked	delegate.

Note	that	any	out	or	ref	parameters	will	also	be	lost	when	a	multicast	delegate	is	invoked.
This	recipe	allows	you	to	obtain	the	out	and/or	ref	parameters	of	each	invoked	delegate
within	the	multicast	delegate.

However,	you	still	need	to	be	aware	that	any	unhandled	exceptions	emanating	from	one	of
these	invoked	delegates	will	be	bubbled	up	to	the	method
TestIndividualInvokesReturnValue	presented	in	this	recipe.	If	an	exception	does	occur
in	a	delegate	that	is	invoked	from	within	a	multicast	delegate	and	that	exception	is
unhandled,	any	remaining	delegates	are	not	invoked.	This	is	the	expected	behavior	of	a
multicast	delegate.	However,	in	some	circumstances,	you’d	like	to	be	able	to	handle
exceptions	thrown	from	individual	delegates	and	then	determine	at	that	point	whether	to
continue	invoking	the	remaining	delegates.

NOTE
An	unhandled	exception	will	force	the	invocation	of	delegates	to	cease.	Exceptions	should	be	used	only	for
exceptional	circumstances,	not	for	control	flow.

In	the	following	TestIndividualInvokesExceptions	method,	if	an	exception	is	caught	it
is	logged	to	the	event	log	and	displayed,	and	then	the	code	continues	to	invoke	delegates:

public	static	void	TestIndividualInvokesExceptions()

{

				Func<int>	myDelegateInstance1	=	TestInvokeIntReturn.Method1;

				Func<int>	myDelegateInstance2	=	TestInvokeIntReturn.Method2;

				Func<int>	myDelegateInstance3	=	TestInvokeIntReturn.Method3;

				Func<int>	allInstances	=

												myDelegateInstance1	+

												myDelegateInstance2	+

												myDelegateInstance3;

				Console.WriteLine("Invoke	individually	(handle	exceptions):");

				//	Create	an	instance	of	a	wrapper	exception	to	hold	any	exceptions

				//	encountered	during	the	invocations	of	the	delegate	instances

				List<Exception>	invocationExceptions	=	new	List<Exception>();

				foreach	(Func<int>	instance	in	allInstances.GetInvocationList())

				{

								try

								{

												int	retVal	=	instance();

												Console.WriteLine($"\tOutput:	{retVal}");

								}

								catch	(Exception	ex)

								{

												//	Display	and	log	the	exception	and	continue

												Console.WriteLine(ex.ToString());

												EventLog	myLog	=	new	EventLog();

												myLog.Source	=	"MyApplicationSource";

												myLog.WriteEntry(

																$"Failure	invoking	{instance.Method.Name}	with	error	"	+

																$"{ex.ToString()}",

																EventLogEntryType.Error);

												//	add	this	exception	to	the	list

												invocationExceptions.Add(ex);

								}

				}

				//	if	we	caught	any	exceptions	along	the	way,	throw	our

				//	wrapper	exception	with	all	of	them	in	it.

				if	(invocationExceptions.Count	>	0)

				{

								throw	new	MulticastInvocationException(invocationExceptions);

				}

}

The	MulticastInvocationException	class,	used	in	the	previous	code,	can	have	multiple
exceptions	added	to	it.	It	exposes	a	ReadOnlyCollection<Exception>	through	the
InvocationExceptions	property,	as	shown	here:

[Serializable]

public	class	MulticastInvocationException	:	Exception

{

				private	List<Exception>	_invocationExceptions;

				public	MulticastInvocationException()

								:	base()

				{

				}

				public	MulticastInvocationException(

				IEnumerable<Exception>	invocationExceptions)

				{

								_invocationExceptions	=	new	List<Exception>(invocationExceptions);

				}

				public	MulticastInvocationException(string	message)

								:	base(message)

				{

				}

				public	MulticastInvocationException(string	message,	Exception	innerException)

								:base(message,innerException)

				{

				}

				protected	MulticastInvocationException(SerializationInfo	info,

								StreamingContext

															context)	:

								base(info,	context)

				{

								_invocationExceptions	=

												(List<Exception>)info.GetValue("InvocationExceptions",

																typeof(List<Exception>));

				}

				[SecurityPermissionAttribute(SecurityAction.Demand,

								SerializationFormatter	=	true)]

				public	override	void	GetObjectData(

							SerializationInfo	info,	StreamingContext	context)

				{

								info.AddValue("InvocationExceptions",	this.InvocationExceptions);

								base.GetObjectData(info,	context);

				}

				public	ReadOnlyCollection<Exception>	InvocationExceptions	=>

																new	ReadOnlyCollection<Exception>(_invocationExceptions);

}

This	strategy	allows	for	as	fine-grained	handling	of	exceptions	as	you	need.	One	option	is
to	store	all	of	the	exceptions	that	occur	during	delegate	processing,	and	then	wrap	all	of
the	exceptions	encountered	during	processing	in	a	custom	exception.	After	processing
completes,	throw	the	custom	exception.

By	adding	a	finally	block	to	this	try-catch	block,	you	can	be	assured	that	code	within
this	finally	block	is	executed	after	every	delegate	returns.	This	technique	is	useful	if	you
want	to	interleave	code	between	calls	to	delegates,	such	as	code	to	clean	up	objects	that
are	not	needed	or	code	to	verify	that	each	delegate	left	the	data	it	touched	in	a	stable	state.

See	Also
The	“Delegate	Class”	and	“Delegate.GetInvocationList	Method”	topics	in	the	MSDN
documentation.

1.16	Using	Closures	in	C#

Problem
You	want	to	associate	a	small	amount	of	state	with	some	behavior	without	going	to	the
trouble	of	building	a	new	class.

Solution
Use	lambda	expressions	to	implement	closures,	functions	that	capture	the	state	of	the
environment	that	is	in	scope	where	they	are	declared.	Put	more	simply,	closures	are
current	state	plus	some	behavior	that	can	read	and	modify	that	state.	Lambda	expressions
have	the	capacity	to	capture	external	variables	and	extend	their	lifetime,	which	makes
closures	possible	in	C#.

NOTE
For	more	information	on	lambda	expressions,	see	the	introduction	to	Chapter	4.

As	an	example,	you	will	build	a	quick	reporting	system	that	tracks	sales	personnel	and
their	revenue	production	versus	commissions.	The	closure	behavior	is	that	you	can	build
one	bit	of	code	that	does	the	commission	calculations	per	quarter	and	works	on	every
salesperson.

First,	you	have	to	define	your	sales	personnel:

class	SalesPerson

{

				//	CTOR's

				public	SalesPerson()

				{

				}

				public	SalesPerson(string	name,

																								decimal	annualQuota,

																								decimal	commissionRate)

				{

								this.Name	=	name;

								this.AnnualQuota	=	annualQuota;

								this.CommissionRate	=	commissionRate;

				}

				//	Private	Members

				decimal	_commission;

				//	Properties

				public	string	Name	{	get;	set;	}

				public	decimal	AnnualQuota	{	get;	set;	}

				public	decimal	CommissionRate	{	get;	set;	}

				public	decimal	Commission

				{

								get	{	return	_commission;	}

								set

								{

												_commission	=	value;

												this.TotalCommission	+=	_commission;

								}

			}

			public	decimal	TotalCommission	{get;	private	set;	}

}

Sales	personnel	have	a	name,	an	annual	quota,	a	commission	rate	for	sales,	and	some
storage	for	holding	a	quarterly	commission	and	a	total	commission.	Now	that	you	have
something	to	work	with,	let’s	write	a	bit	of	code	to	do	the	work	of	calculating	the
commissions:

delegate	void	CalculateEarnings(SalesPerson	sp);

static	CalculateEarnings	GetEarningsCalculator(decimal	quarterlySales,

																																			decimal	bonusRate)

{

					return	salesPerson	=>

					{

									//	Figure	out	the	salesperson's	quota	for	the	quarter.

									decimal	quarterlyQuota	=	(salesPerson.AnnualQuota	/	4);

									//	Did	he	make	quota	for	the	quarter?

									if	(quarterlySales	<	quarterlyQuota)

									{

													//	Didn't	make	quota,	no	commission

													salesPerson.Commission	=	0;

									}

									//	Check	for	bonus-level	performance	(200%	of	quota).

									else	if	(quarterlySales	>	(quarterlyQuota	*	2.0m))

									{

													decimal	baseCommission	=	quarterlyQuota	*

													salesPerson.CommissionRate;

													salesPerson.Commission	=	(baseCommission	+

																					((quarterlySales	-	quarterlyQuota)	*

																					(salesPerson.CommissionRate	*	(1	+	bonusRate))));

									}

									else	//	Just	regular	commission

									{

													salesPerson.Commission	=

																salesPerson.CommissionRate	*	quarterlySales;

									}

					};

}

You’ve	declared	the	delegate	type	as	CalculateEarnings,	and	it	takes	a	SalesPerson
type.	You	have	a	factory	method	to	construct	an	instance	of	this	delegate	for	you,	called
GetEarningsCalculator,	which	creates	a	lambda	expression	to	calculate	the
SalesPerson’s	commission	and	returns	a	CalculateEarnings	instantiation.

To	get	started,	create	your	array	of	salespeople:

//	set	up	the	salespeople…

SalesPerson[]	salesPeople	=	{

				new	SalesPerson	{	Name="Chas",	AnnualQuota=100000m,	CommissionRate=0.10m	},

				new	SalesPerson	{	Name="Ray",	AnnualQuota=200000m,	CommissionRate=0.025m	},

				new	SalesPerson	{	Name="Biff",	AnnualQuota=50000m,	CommissionRate=0.001m	}};

Then	set	up	the	earnings	calculators	based	on	quarterly	earnings:

public	class	QuarterlyEarning

{

				public	string	Name	{	get;	set;	}

				public	decimal	Earnings	{	get;	set;	}

				public	decimal	Rate	{	get;	set;	}

}

QuarterlyEarning[]	quarterlyEarnings	=

											{	new	QuarterlyEarning(){	Name="Q1",	Earnings	=	65000m,	Rate	=	0.1m	},

													new	QuarterlyEarning(){	Name="Q2",	Earnings	=	20000m,	Rate	=	0.1m	},

													new	QuarterlyEarning(){	Name="Q3",	Earnings	=	37000m,	Rate	=	0.1m	},

													new	QuarterlyEarning(){	Name="Q4",	Earnings	=	110000m,	Rate	=	0.15m}

											};

var	calculators	=	from	e	in	quarterlyEarnings

																		select	new

																		{

																						Calculator	=

																										GetEarningsCalculator(e.Earnings,	e.Rate),

																						QuarterlyEarning	=	e

																		};

Finally,	run	the	numbers	for	each	quarter	for	all	the	salespeople,	and	then	you	can	generate
the	annual	report	from	this	data	by	calling	WriteCommissionReport.	This	will	tell	the
executives	which	sales	personnel	are	worth	keeping:

decimal	annualEarnings	=	0;

foreach	(var	c	in	calculators)

{

				WriteQuarterlyReport(c.QuarterlyEarning.Name,

								c.QuarterlyEarning.Earnings,	c.Calculator,	salesPeople);

				annualEarnings	+=	c.QuarterlyEarning.Earnings;

}

//	Let's	see	who	is	worth	keeping…

WriteCommissionReport(annualEarnings,	salesPeople);

WriteQuarterlyReport	invokes	the	CalculateEarnings	lambda	expression
implementation	(eCalc)	for	every	SalesPerson	and	modifies	the	state	to	assign	quarterly
commission	values	based	on	the	commission	rates	for	each	one:

static	void	WriteQuarterlyReport(string	quarter,

																												decimal	quarterlySales,

																												CalculateEarnings	eCalc,

																												SalesPerson[]	salesPeople)

{

				Console.WriteLine($"{quarter}	Sales	Earnings	on	Quarterly	Sales	of

																								{quarterlySales.ToString("C")}:");

				foreach	(SalesPerson	salesPerson	in	salesPeople)

				{

								//	Calc	commission

								eCalc(salesPerson);

								//	Report

								Console.WriteLine($"\tSales	person	{salesPerson.Name}	"	+

																											"made	a	commission	of	:	"	+

																										$"{salesPerson.Commission.ToString("C")}");

				}

}

WriteCommissionReport	checks	the	revenue	earned	by	the	individual	salesperson	against
his	commission,	and	if	his	commission	is	more	than	20	percent	of	the	revenue	he
generated,	you	recommend	action	be	taken:

static	void	WriteCommissionReport(decimal	annualEarnings,

																																SalesPerson[]	salesPeople)

{

				decimal	revenueProduced	=	((annualEarnings)	/	salesPeople.Length);

				Console.WriteLine("");

				Console.WriteLine($"Annual	Earnings	were	{annualEarnings.ToString("C")}");

				Console.WriteLine("");

				var	whoToCan	=	from	salesPerson	in	salesPeople

																			select	new

																			{

																							//	if	his	commission	is	more	than	20%

																							//	of	what	he	produced,	can	him

																							CanThem	=	(revenueProduced	*	0.2m)	<

																																			salesPerson.TotalCommission,

																							salesPerson.Name,

																							salesPerson.TotalCommission

																			};

				foreach	(var	salesPersonInfo	in	whoToCan)

				{

								Console.WriteLine($"\t\tPaid	{salesPersonInfo.Name}	"	+

																	$"{salesPersonInfo.TotalCommission.ToString("C")}	to	produce"	+

																	$"{revenueProduced.ToString("C")}");

								if	(salesPersonInfo.CanThem)

								{

												Console.WriteLine($"\t\t\tFIRE	{salesPersonInfo.Name}!");

								}

				}

}

The	output	for	your	revenue-	and	commission-tracking	program	is	listed	here	for	your
enjoyment:

Q1	Sales	Earnings	on	Quarterly	Sales	of	$65,000.00:

									SalesPerson	Chas	made	a	commission	of	:	$6,900.00

									SalesPerson	Ray	made	a	commission	of	:	$1,625.00

									SalesPerson	Biff	made	a	commission	of	:	$70.25

Q2	Sales	Earnings	on	Quarterly	Sales	of	$20,000.00:

									SalesPerson	Chas	made	a	commission	of	:	$0.00

									SalesPerson	Ray	made	a	commission	of	:	$0.00

									SalesPerson	Biff	made	a	commission	of	:	$20.00

Q3	Sales	Earnings	on	Quarterly	Sales	of	$37,000.00:

									SalesPerson	Chas	made	a	commission	of	:	$3,700.00

									SalesPerson	Ray	made	a	commission	of	:	$0.00

									SalesPerson	Biff	made	a	commission	of	:	$39.45

Q4	Sales	Earnings	on	Quarterly	Sales	of	$110,000.00:

									SalesPerson	Chas	made	a	commission	of	:	$12,275.00

									SalesPerson	Ray	made	a	commission	of	:	$2,975.00

									SalesPerson	Biff	made	a	commission	of	:	$124.63

Annual	Earnings	were	$232,000.00

				Paid	Chas	$22,875.00	to	produce	$77,333.33

								FIRE	Chas!

				Paid	Ray	$4,600.00	to	produce	$77,333.33

				Paid	Biff	$254.33	to	produce	$77,333.33

Discussion
One	of	the	best	descriptions	of	closures	in	C#	is	to	think	of	an	object	as	a	set	of	methods
associated	with	data	and	to	think	of	a	closure	as	a	set	of	data	associated	with	a	function.	If
you	need	to	have	several	different	operations	on	the	same	data,	an	object	approach	may
make	more	sense.	These	are	two	different	angles	on	the	same	problem,	and	the	type	of
problem	you	are	solving	will	help	you	decide	which	is	the	right	approach.	It	just	depends
on	your	inclination	as	to	which	way	to	go.	There	are	times	when	100%	pure	object-
oriented	programming	can	get	tedious	and	is	unnecessary,	and	closures	are	a	nice	way	to
solve	some	of	those	problems.	The	SalesPerson	commission	example	presented	here	is	a
demonstration	of	what	you	can	do	with	closures.	It	could	have	been	done	without	them,
but	at	the	expense	of	writing	more	class	and	method	code.

Closures	were	defined	earlier,	but	there	is	a	stricter	definition	that	essentially	implies	that
the	behavior	associated	with	the	state	should	not	be	able	to	modify	the	state	in	order	to	be
a	true	closure.	We	tend	to	agree	more	with	the	first	definition,	as	it	expresses	what	a
closure	should	be,	not	how	it	should	be	implemented,	which	seems	too	restrictive.
Whether	you	choose	to	think	of	this	approach	as	a	neat	side	feature	of	lambda	expressions
or	you	feel	it	is	worthy	of	being	called	a	closure,	it	is	another	programming	trick	for	your
toolbox	and	should	not	be	dismissed.

See	Also
Recipe	1.17	and	the	“Lambda	Expressions”	topic	in	the	MSDN	documentation.

1.17	Performing	Multiple	Operations	on	a	List	Using
Functors

Problem
You	want	to	be	able	to	perform	multiple	operations	on	an	entire	collection	of	objects	at
once,	while	keeping	the	operations	functionally	segmented.

Solution
Use	a	functor	(or	function	object)	as	the	vehicle	for	transforming	the	collection.	A	functor
is	any	object	that	can	be	called	as	a	function.	Examples	are	a	delegate,	a	function,	a
function	pointer,	or	even	an	object	that	defines	operator	for	us	C/C++	converts.

Needing	to	perform	multiple	operations	on	a	collection	is	a	reasonably	common	scenario
in	software.	Let’s	say	that	you	have	a	stock	portfolio	with	a	bunch	of	stocks	in	it.	Your
StockPortfolio	class	would	have	a	List	of	Stock	objects	and	would	allow	you	to	add
stocks:

public	class	StockPortfolio	:	IEnumerable<Stock>

{

				List<Stock>	_stocks;

				public	StockPortfolio()

				{

								_stocks	=	new	List<Stock>();

				}

				public	void	Add(string	ticker,	double	gainLoss)

				{

								_stocks.Add(new	Stock()	{Ticker=ticker,	GainLoss=gainLoss});

				}

				public	IEnumerable<Stock>	GetWorstPerformers(int	topNumber)	=>

										_stocks.OrderBy((Stock	stock)	=>	stock.GainLoss).Take(topNumber);

				public	void	SellStocks(IEnumerable<Stock>	stocks)

				{

								foreach(Stock	s	in	stocks)

												_stocks.Remove(s);

				}

				public	void	PrintPortfolio(string	title)

				{

								Console.WriteLine(title);

								_stocks.DisplayStocks();

				}

				#region	IEnumerable<Stock>	Members

				public	IEnumerator<Stock>	GetEnumerator()	=>	_stocks.GetEnumerator();

				#endregion

				#region	IEnumerable	Members

				IEnumerator	IEnumerable.GetEnumerator()	=>	this.GetEnumerator();

				#endregion

}

The	Stock	class	is	rather	simple.	You	just	need	a	ticker	symbol	for	the	stock	and	its
percentage	of	gain	or	loss:

public	class	Stock

{

				public	double	GainLoss	{	get;	set;	}

				public	string	Ticker	{	get;	set;	}

}

To	use	this	StockPortfolio,	you	add	a	few	stocks	to	it	with	gain/loss	percentages	and
print	out	your	starting	portfolio.	Once	you	have	the	portfolio,	you	want	to	get	a	list	of	the
three	worst-performing	stocks,	so	you	can	improve	your	portfolio	by	selling	them	and
print	out	your	portfolio	again:

StockPortfolio	tech	=	new	StockPortfolio()	{

				{"OU81",	-10.5},

				{"C#6VR",	2.0},

				{"PCKD",	12.3},

				{"BTML",	0.5},

				{"NOVB",	-35.2},

				{"MGDCD",	15.7},

				{"GNRCS",	4.0},

				{"FNCTR",	9.16},

				{"LMBDA",	9.12},

				{"PCLS",	6.11}};

tech.PrintPortfolio("Starting	Portfolio");

//	sell	the	worst	3	performers

var	worstPerformers	=	tech.GetWorstPerformers(3);

Console.WriteLine("Selling	the	worst	performers:");

worstPerformers.DisplayStocks();

tech.SellStocks(worstPerformers);

tech.PrintPortfolio("After	Selling	Worst	3	Performers");

So	far,	nothing	terribly	interesting	is	happening.	Let’s	take	a	look	at	how	you	figured	out
what	the	three	worst	performers	were	by	looking	at	the	internals	of	the
GetWorstPerformers	method:

public	IEnumerable<Stock>	GetWorstPerformers(int	topNumber)	=>	_stocks.OrderBy(

																								(Stock	stock)	=>	stock.GainLoss).Take(topNumber);

First	you	make	sure	the	list	is	sorted	with	the	worst-performing	stocks	at	the	front	by
calling	the	OrderBy	extension	method	on	IEnumerable<T>.	The	OrderBy	method	takes	a
lambda	expression	that	provides	the	gain/loss	percentage	for	comparison	for	the	number
of	stocks	indicated	by	topNumber	in	the	Take	extension	method.

GetWorstPerformers	returns	an	IEnumerable<Stock>	full	of	the	three	worst	performers.
Since	they	aren’t	making	any	money,	you	should	cash	in	and	sell	them.	For	your	purposes,
selling	is	simply	removing	them	from	the	list	of	stocks	in	StockPortfolio.	To	accomplish
this,	you	use	yet	another	functor	to	iterate	over	the	list	of	stocks	handed	to	the	SellStocks
function	(the	list	of	worst-performing	ones,	in	your	case),	and	then	remove	that	stock	from
the	internal	list	that	the	StockPortfolio	class	maintains:

public	void	SellStocks(IEnumerable<Stock>	stocks)

{

				foreach(Stock	s	in	stocks)

								_stocks.Remove(s);

}

Discussion
Functors	come	in	a	few	different	flavors:	a	generator	(a	function	with	no	parameters),	a
unary	function	(a	function	with	one	parameter),	and	a	binary	function	(a	function	with	two
parameters).	If	the	functor	happens	to	return	a	Boolean	value,	then	it	gets	an	even	more
special	naming	convention:	a	unary	function	that	returns	a	Boolean	is	called	a	predicate,
and	a	binary	function	with	a	Boolean	return	is	called	a	binary	predicate.	There	are	both
Predicate<T>	and	BinaryPredicate<T>	delegates	defined	in	the	Framework	to	facilitate
these	uses	of	functors.

The	List<T>	and	System.Array	classes	take	predicates	(Predicate<T>,
BinaryPredicate<T>),	actions	(Action<T>),	comparisons	(Comparison<T>),	and
converters	(Converter<T,U>).	This	allows	these	collections	to	be	operated	on	in	a	much
more	general	way	than	was	previously	possible.

Thinking	in	terms	of	functors	can	be	challenging	at	first,	but	once	you	put	a	bit	of	time
into	it,	you	start	to	see	powerful	possibilities	open	up	before	you.	Any	code	you	can	write
once,	debug	once,	and	use	many	times	is	valuable,	and	functors	can	help	you	achieve	that.

The	output	for	the	example	is	listed	here:

Starting	Portfolio

		(OU81)	lost	10.5%

		(C#6VR)	gained	2%

		(PCKD)	gained	12.3%

		(BTML)	gained	0.5%

		(NOVB)	lost	35.2%

		(MGDCD)	gained	15.7%

		(GNRCS)	gained	4%

		(FNCTR)	gained	9.16%

		(LMBDA)	gained	9.12%

		(PCLS)	gained	6.11%

Selling	the	worst	performers:

		(NOVB)	lost	35.2%

		(OU81)	lost	10.5%

		(BTML)	gained	0.5%

After	Selling	Worst	3	Performers

		(C#6VR)	gained	2%

		(PCKD)	gained	12.3%

		(MGDCD)	gained	15.7%

		(GNRCS)	gained	4%

		(FNCTR)	gained	9.16%

		(LMBDA)	gained	9.12%

		(PCLS)	gained	6.11%

See	Also
The	“System.Collections.Generic.List<T>,”	“System.Linq.Enumerable	Class,”	and
“System.Array”	topics	in	the	MSDN	documentation.

1.18	Controlling	Struct	Field	Initialization

Problem
You	need	to	be	able	to	control	the	initialization	of	a	struct	depending	on	whether	you	want
the	struct	to	initialize	all	of	its	internal	fields	to	their	standard	default	values	based	on	their
type	(e.g.,	int	is	initialized	to	0	and	string	is	initialized	to	an	empty	string),	to	a
nonstandard	set	of	default	values,	or	to	a	set	of	predefined	values.

Solution
We	can	use	the	various	constructors	for	a	struct	to	accomplish	our	goals.	To	initialize	all
the	internal	fields	in	a	struct	to	their	standard	default	values	based	on	their	type,	we	simply
use	the	default	initialization	of	structs,	which	will	be	demonstrated	later.	To	initialize	the
struct’s	fields	to	a	set	of	predefined	values,	we	use	an	overloaded	constructor.	Finally,	to
initialize	our	struct	to	a	set	of	nonstandard	default	values,	we	need	to	use	optional
arguments	in	the	struct’s	constructor.	With	optional	arguments,	structs	are	able	to	set	their
internal	fields	based	on	the	default	values	placed	on	the	optional	arguments	in	the
constructor’s	parameter	list.

The	data	structure	in	Example	1-8	uses	an	overloaded	constructor	to	initialize	all	the	fields
of	the	structure.

Example	1-8.	Struct	with	an	overloaded	constructor
public	struct	Data

{

				public	Data(int	intData,	float	floatData,	string	strData,

																char	charData,	bool	boolData)

				{

								IntData	=	intData;

								FloatData	=	floatData;

								StrData	=	strData;

								CharData	=	charData;

								BoolData	=	boolData;

				}

				public	int	IntData	{	get;	}

				public	float	FloatData	{	get;	}

				public	string	StrData	{	get;	}

				public	char	CharData	{	get;	}

				public	bool	BoolData	{	get;	}

				public	override	string	ToString()=>	IntData	+	"	::	"	+	FloatData	+	"	::	"	+

																							StrData	+	"	::	"	+	CharData	+	"	::	"	+	BoolData;

}

This	is	the	typical	way	to	initialize	the	values	of	the	struct’s	fields.	Note	also	that	an
implicit	default	constructor	exists	that	allows	this	struct	to	initialize	its	fields	to	their
default	values.	However,	you	may	want	to	have	each	field	initialized	with	nondefault
values.	The	data	structure	in	Example	1-9	uses	an	overloaded	constructor	with	optional
arguments	to	initialize	all	the	fields	of	the	structure	with	nondefault	values.

Example	1-9.	Struct	with	optional	arguments	in	the	constructor
public	struct	Data

{

				public	Data(int	intData,	float	floatData	=	1.1f,	string	strData	=	"a",

																char	charData	=	'a',	bool	boolData	=	true)	:	this()

				{

								IntData	=	intData;

								FloatData	=	floatData;

								StrData	=	strData;

								CharData	=	charData;

								BoolData	=	boolData;

				}

				public	int	IntData	{	get;	}

				public	float	FloatData	{	get;	}

				public	string	StrData	{	get;	}

				public	char	CharData	{	get;	}

				public	bool	BoolData	{	get;	}

				public	override	string	ToString()=>	IntData	+	"	::	"	+	FloatData	+	"	::	"	+

																							StrData	+	"	::	"	+	CharData	+	"	::	"	+	BoolData;

}

Of	course,	a	new	initialization	method	could	be	introduced	that	makes	this	even	easier.
But	you	need	to	explicitly	call	it,	as	shown	in	Example	1-10.

Example	1-10.	Struct	with	an	explicit	initialization	method
public	struct	Data

{

				public	void	Init()

				{

								IntData	=	2;

								FloatData	=	1.1f;

								StrData	=	"AA";

								CharData	=	'A';

								BoolData	=	true;

				}

				public	int	IntData	{	get;	private	set;	}

				public	float	FloatData	{	get;	private	set;	}

				public	string	StrData	{	get;	private	set;	}

				public	char	CharData	{	get;	private	set;	}

				public	bool	BoolData	{	get;	private	set;	}

				public	override	string	ToString()=>	IntData	+	"	::	"	+	FloatData	+	"	::	"	+

																							StrData	+	"	::	"	+	CharData	+	"	::	"	+	BoolData;

}

Note	that	when	using	an	explicit	initialization	method	such	as	Init,	you’ll	need	to	add	a
private	property	setter	for	each	property	in	order	for	each	field	to	be	initialized.

Discussion
We	can	now	create	instances	of	the	struct	in	Example	1-8	using	different	techniques.	Each
technique	uses	a	different	method	of	initializing	this	struct	object.	The	first	technique	uses
the	default	keyword	to	create	this	struct:

Data	dat	=	default(Data);

The	default	keyword	simply	creates	an	instance	of	this	struct	with	all	of	its	fields
initialized	to	their	default	values.	Essentially	this	causes	all	numeric	types	to	default	to	0,
bool	defaults	to	false,	char	defaults	to	'\0',	and	string	and	other	reference	types
default	to	null.

Now,	this	is	great	if	you	don’t	mind	reference	types	and	char	to	be	set	to	null	values,	but
say	that	you	need	to	set	these	types	to	something	other	than	null	when	the	struct	is
created.	The	second	technique	for	creating	an	instance	of	this	struct	does	just	this;	it	uses	a
default	parameterless	constructor:

Data	dat	=	new	Data();

This	code	causes	the	default	parameterless	constructor	to	be	invoked.	The	caveat	with
using	a	default	parameterless	constructor	on	a	struct	is	that	the	new	keyword	must	be	used
to	create	an	instance	of	this	struct.	If	the	new	keyword	is	not	used,	then	this	default
constructor	will	not	be	invoked.	Therefore,	the	following	code	will	not	call	the	default
parameterless	constructor:

Data[]	dat	=	new	Data[4];

Rather,	the	system-defined	default	values	for	each	of	the	struct’s	fields	will	be	used.

There	are	two	ways	to	get	around	this.	You	could	use	the	overly	lengthy	way	of	creating
an	array	of	Data	structs:

Data[]	dat	=	new	Data[4];

dat[0]	=	new	Data();

dat[1]	=	new	Data();

dat[2]	=	new	Data();

dat[3]	=	new	Data();

or

ArrayList	dat	=	new	ArrayList();

dat.Add(new	Data());

dat.Add(new	Data());

dat.Add(new	Data());

dat.Add(new	Data());

Or	you	could	use	the	more	terse	option,	which	uses	LINQ:

Data[]	dataList	=	new	Data[4];

dataList	=	(from	d	in	dataList

												select	new	Data()).ToArray();

The	LINQ	expression	iterates	over	the	Data	array,	explicitly	invoking	the	default
parameterless	constructor	for	each	Data	type	struct	element.

If	neither	of	the	first	two	options	will	work	for	your	particular	case,	you	could	always
create	an	overloaded	constructor	that	takes	arguments	for	each	field	that	you	want	to
initialize.	This	third	technique	requires	that	the	overloaded	constructor	is	used	to	create	a
new	instance	of	this	struct:

public	Data(int	intData,	float	floatData,	string	strData,

												char	charData,	bool	boolData)

{

				IntData	=	intData;

				FloatData	=	floatData;

				StrData	=	strData;

				CharData	=	charData;

				BoolData	=	boolData;

}

This	constructor	explicitly	initialized	each	field	to	a	user-supplied	value:

Data	dat	=	new	Data(2,	2.2f,	"blank",	'a',	false);

With	C#	6.0	you	not	only	have	the	option	of	initializing	a	struct’s	fields	with	the	system
default	values	or	using	an	overloaded	constructor	to	initialize	its	fields	to	user-defined
values,	but	now	you	have	the	additional	option	of	using	an	overloaded	constructor	with
optional	arguments	to	initialize	the	struct’s	fields	to	nonsystem-default	values.	This	is
shown	in	Example	1-9.	The	constructor	with	optional	arguments	looks	like	this:

public	Data(int	intData,	float	floatData	=	1.1f,	string	strData	=	"a",

												char	charData	=	'a',	bool	boolData	=	true)	:	this()

{

				...

}

The	one	issue	with	using	this	type	of	constructor	is	that	you	must	supply	at	least	one	of	the
parameter	values	to	this	constructor.	If	the	intData	argument	also	had	an	associated
optional	argument:

public	Data(int	intData	=	2,	float	floatData	=	1.1f,	string	strData	=	"a",

												char	charData	=	'a',	bool	boolData	=	true)	:	this()

{

				...

}

then	this	code:

Data	dat	=	new	Data();

would	call	the	default	parameterless	constructor	for	the	struct,	not	the	overloaded

constructor.	This	is	why	at	least	one	of	the	parameters	must	be	passed	into	this
constructor:

Data	dat	=	new	Data(3);

Now	we	call	the	overloaded	constructor,	setting	the	first	parameter,	intData,	to	3	and	the
rest	of	the	parameters	to	their	optional	values.

As	a	final	option,	you	can	add	an	explicit	initialization	method	to	the	struct	to	initialize	the
fields	to	nondefault	values.	This	technique	is	shown	in	Example	1-10.

You	add	the	Init	method	to	the	struct,	and	must	call	it	after	the	struct	is	initialized	either
by	using	the	new	or	default	keyword.	The	Init	method	then	initializes	each	field	to	a
nondefault	value.	The	only	other	code	modification	that	you	need	to	make	to	the	struct’s
properties	is	adding	a	private	setter	method.	This	allows	the	Init	method	to	set	the
internal	fields	without	having	to	expose	them	to	the	outside	world.

See	Also
The	“Struct”	topics	in	the	MSDN	documentation.

1.19	Checking	for	null	in	a	More	Concise	Way

Problem
You	are	constantly	writing	unwieldy	if-then	statements	to	determine	whether	an	object	is
null.	You	need	a	more	concise	and	simpler	way	to	write	this	type	of	code.

Solution
Use	the	new	null-conditional	operator	introduced	in	C#	6.0.	In	the	past	you	would
typically	have	to	check	to	make	sure	an	object	is	not	null	before	using	it	in	the	following
manner:

if	(val	!=	null)

{

				val.Trim().ToUpper();

				...

}

Now	you	can	simply	use	the	null-conditional	operator:

val?.Trim().ToUpper();

This	simplified	syntax	determines	if	val	is	null;	if	so,	the	Trim	and	ToUpper	methods	will
not	be	invoked	and	you	will	not	throw	that	annoying	NullReferenceException.	If	val	is
not	null,	the	Trim	and	ToUpper	methods	will	be	invoked.

This	operator	can	also	be	employed	to	test	each	object	for	null	when	the	dot	operator	is
used	to	chain	a	series	of	object	member	accesses:

Person?.Address?.State?.Trim();

In	this	case,	if	any	of	the	first	three	objects	(Person,	Address,	or	State)	is	null,	the	dot
operator	is	not	invoked	for	that	null	object	and	execution	of	this	expression	ceases.

The	null-conditional	operator	works	not	only	on	regular	objects,	but	also	on	arrays	and
indexes	as	well	as	the	indexed	element	that	is	returned.	For	example,	if	val	is	of	type
string[],	this	code	will	check	to	see	if	the	val	variable	is	null:

val?[0].ToUpper();

whereas	this	code	checks	to	see	if	the	actual	string	element	stored	in	the	zeroth	indexed
position	in	the	val	array	is	null:

val[0]?.ToUpper();

This	code	is	also	valid;	it	determines	if	both	val	and	the	zeroth	indexed	element	are	not
null:

val?[0]?.ToUpper();

Another	area	where	the	null-conditional	operator	shines	is	with	invoking	delegates	and
events.	For	instance,	if	you	have	a	simple	delegate:

public	delegate	bool	Approval();

and	instantiate	it	using	a	lambda	expression,	which	for	simplicity’s	sake	just	returns	true
all	the	time:

Approval	approvalDelegate	=	()	=>	{	return	true;	};

then	later	in	the	code	when	you	want	to	invoke	this	delegate	you	don’t	have	to	write	any
bulky	conditional	code	to	determine	whether	it	is	null;	you	simply	use	the	null-
conditional	operator:

approvalDelegate?.Invoke()

Discussion
Essentially	the	null-conditional	operator	works	similarly	to	the	ternary	operator	(?:).	The
code:

val?.Trim();

is	shorthand	for:

(val	!=	null)	?	(string)val.Trim()	:	null

assuming	val	is	of	type	string.

Let’s	take	a	look	at	what	happens	when	a	value	type	is	returned	such	as	in	the	following
code:

val?.Length;

The	expression	is	modified	to	return	a	nullable	value	type	such	as	int?:

(val	!=	null)	?	(int?)val.Length	:	null

This	means	you	can’t	simply	use	the	null-conditional	operator	and	then	assign	the
returned	value	to	just	any	type	—	it	has	to	be	a	nullable	type.	Therefore,	this	code	will	not
compile:

int	len	=	val?.Length;

but	this	code	will:

int?	len	=	val?.Length;

Notice	that	we	have	to	make	the	return	type	a	nullable	type	only	when	it	is	a	value	type.

Additionally,	you	cannot	attempt	to	use	the	null-conditional	operator	where	a	nonnullable
type	is	expected.	For	example,	the	array	size	expects	an	int	value,	so	you	cannot	compile
this	code:

byte[]	data	=	new	byte[val?.Length];

However,	you	could	use	the	GetValueOrDefault	method	to	convert	the	nullable	type’s
value	into	a	non-nullable-friendly	value:

byte[]	data	=	new	byte[(val?.Length).GetValueOrDefault()];

This	way	if	val	is	really	null,	the	byte	array	will	be	initialized	to	the	default	value	for
integer	types,	which	is	0.	Just	be	aware	that	this	method	will	return	the	default	value	for

that	value	type,	which	is	0	for	numeric	types	and	false	for	bool	types.	Your	code	must
take	this	into	account	so	that	your	application’s	behavior	is	consistent.	In	this	example,	the
byte	array	is	of	size	0	if	the	val	object	is	of	length	0	or	is	null,	so	your	application	logic
must	account	for	that.

You	also	need	to	take	care	when	using	this	operator	in	conditional	statements:

if	(val?.Length	>	0)

				Console.WriteLine("val.length	>	0");

else

				Console.WriteLine("val.length	=	0	or	null");

In	this	conditional	statement,	if	the	val	variable	is	non-null	and	its	length	is	greater	than
0,	the	true	block	of	the	if	statement	is	executed	and	the	text	"val.length	>	0"	is
displayed.	If	val	is	null,	the	false	block	is	displayed	and	the	text	"val.length	=	0	or
null"	is	displayed.	However,	you	don’t	know	which	val	really	is	—	null	or	0?

If	you	need	to	check	for	val	having	a	length	of	0,	you	could	add	an	extra	check	to	the	if-
else	statement	to	take	into	account	all	conditions:

if	(val?.Length	>	0)

				Console.WriteLine("val.Length	>	0");

else	if	(val?.Length	==	0)

				Console.WriteLine("val.Length	=	0");

else

				Console.WriteLine("val.Length	=	null");

The	switch	statement	operates	in	a	similar	manner:

switch	(val?.Length)

{

				case	0:

								Console.WriteLine("val.Length	=	0");

								break;

				case	1:

								Console.WriteLine("val.Length	=	1");

								break;

				default:

								Console.WriteLine("val.Length	>	1	or	val.Length	=	null");

								break;

}

If	val	is	null,	execution	will	fall	through	to	the	default	block.	You	won’t	know	if	the
length	of	val	is	greater	than	1	or	null	unless	you	perform	more	checks.

WARNING
Take	care	when	using	this	operator	in	conditional	statements.	This	can	lead	to	logic	errors	in	your	code	if
you	are	not	careful.

See	Also
The	“Null-Conditional	Operator”	topics	in	the	MSDN	documentation.

Chapter	2.	Collections,	Enumerators,	and
Iterators

2.0	Introduction
Collections	are	groups	of	items;	in	.NET,	collections	contain	objects,	and	each	object
contained	in	a	collection	is	called	an	element.	Some	collections	contain	a	straightforward
list	of	elements,	while	others	(dictionaries)	contain	a	list	of	key/value	pairs.	The	following
collection	types	consist	of	a	straightforward	list	of	elements:

System.Collections.ArrayList

System.Collections.BitArray

System.Collections.Queue

System.Collections.Stack

System.Collections.Generic.LinkedList<T>

System.Collections.Generic.List<T>

System.Collections.Generic.Queue<T>

System.Collections.Generic.Stack<T>

System.Collections.Generic.HashSet<T>

The	next	set	of	collection	types	are	all	dictionaries:

System.Collections.Hashtable

System.Collections.SortedList

System.Collections.Generic.Dictionary<T,U>

System.Collections.Generic.SortedList<T,U>

This	last	collection	type	(HashSet<T>)	can	be	thought	of	as	a	list	of	elements	with	no
duplicates:

System.Collections.Generic.HashSet<T>

These	collection	classes	are	organized	under	the	System.Collections	and	the	System.
Collections.Generic	namespaces.	In	addition	to	these	namespaces,	there	is	a	namespace
called	System.Collections.Specialized,	which	contains	a	few	more	useful	collection
classes.	These	classes	might	not	be	as	well	known	as	the	previous	classes,	so	here	is	a
short	explanation	of	them:
ListDictionary

This	class	operates	similarly	to	the	Hashtable.	However,	this	class	beats	out	the
Hashtable	on	performance	when	it	contains	10	or	fewer	elements.

HybridDictionary

This	class	consists	of	two	internal	collections,	the	ListDictionary	and	the
Hashtable.	Only	one	of	these	classes	is	used	at	any	time.	The	ListDictionary	is
used	while	the	collection	contains	10	or	fewer	elements,	and	then	a	Hashtable	is
used	once	the	collection	grows	beyond	10	elements.	This	switch	is	made
transparently	to	the	developer.	Once	the	Hashtable	is	used,	the	collection	cannot
revert	to	using	the	ListDictionary	even	if	the	elements	number	10	or	fewer.	Also
note	that,	when	you’re	using	strings	as	the	key,	this	class	supports	both	case-sensitive
(with	respect	to	the	invariant	culture)	and	case-insensitive	string	searches	through	a
Boolean	value	you	set	in	the	constructor.

CollectionsUtil

This	class	contains	two	static	methods:	one	to	create	a	case-insensitive	Hashtable
and	another	to	create	a	case-insensitive	SortedList.	When	you	directly	create	a
Hashtable	and	SortedList	object,	you	always	create	a	case-sensitive	Hashtable	or
SortedList,	unless	you	use	one	of	the	constructors	that	takes	an	IComparer	and	pass
CaseInsensitiveComparer.Default	to	it.

NameValueCollection

This	collection	consists	of	key/value	pairs	in	which	both	the	key	and	the	value	are	of
type	String.	The	interesting	thing	about	this	collection	is	that	it	can	store	multiple
string	values	with	a	single	key.	The	multiple	string	values	are	comma-delimited.	The
String.Split	method	is	useful	for	breaking	up	multiple	strings	in	a	value.

StringCollection

This	collection	is	a	simple	list	containing	string	elements.	This	list	accepts	null
elements	as	well	as	duplicate	strings.	This	list	is	case-sensitive.

StringDictionary

This	is	a	Hashtable	that	stores	both	the	key	and	value	as	strings.	Keys	are	converted
to	all-lowercase	letters	before	being	added	to	the	Hashtable,	allowing	for	case-
insensitive	comparisons.	Keys	cannot	be	null,	but	values	may	be	set	to	null.

The	C#	compiler	also	supports	a	fixed-size	array.	You	can	create	arrays	of	any	type	using
the	following	syntax:

int[]	foo	=	new	int[2];

T[]	bar	=	new	T[2];

Here,	foo	is	an	integer	array	containing	exactly	two	elements,	and	bar	is	an	array	of
unknown	type	T.

Arrays	come	in	several	styles	as	well:	single-dimensional,	jagged,	and	even	jagged
multidimensional.	Multidimensional	arrays	are	defined	here:

int[,]	foo	=	new	int[2,3];						//	A	2-dimensional	array

																																//	containing	6	elements

int[,,]	bar	=	new	int[2,3,4];			//	A	3-dimensional	array

																																//	containing	24	elements

A	two-dimensional	array	is	usually	described	as	a	table	with	rows	and	columns.	The	foo
array	would	be	described	as	a	table	of	two	rows,	each	containing	three	columns	of
elements.	A	three-dimensional	array	can	be	described	as	a	cube	with	layers	of	tables.	The
bar	array	could	be	described	as	four	layers	of	two	rows,	each	containing	three	columns	of
elements.

Jagged	arrays	are	arrays	of	arrays.	If	you	picture	a	jagged	array	as	a	one-dimensional	array
with	each	element	in	that	array	containing	another	one-dimensional	array,	it	could	have	a
different	number	of	elements	in	each	row.	A	jagged	array	is	defined	as	follows:

int[][]	baz	=	new	int[2][]	{new	int[2],	new	int[3]};

The	baz	array	consists	of	a	one-dimensional	array	containing	two	elements.	Each	of	these
elements	consists	of	another	array,	the	first	array	having	two	elements	and	the	second
array	having	three.

When	dealing	with	collections,	you	will	likely	need	to	examine	all	of	the	values	in	a
collection	at	some	point.	To	help	you	accomplish	this,	C#	provides	the	iterator	and
enumerator	constructs.	Iterators	allow	for	a	block	of	code	to	yield	an	ordered	sequence	of
values,	while	enumerators	support	the	iteration	over	data	sets	and	can	be	used	to	read	data
in	a	collection	but	not	modify	it.

Iterators	are	a	mechanism	for	producing	data	that	can	be	iterated	over	by	the	foreach	loop
construct.	However,	iterators	are	much	more	flexible	than	this.	You	can	easily	generate	a
sequence	of	data	returned	by	the	enumerator	(known	as	lazy	computation);	it	does	not
have	to	be	hardcoded	up	front	(as	it	does	in	eager	computation).	For	example,	you	could
easily	write	an	enumerator	that	generates	the	Fibonacci	sequence	on	demand.	Another
flexible	feature	of	iterators	is	that	you	do	not	have	to	set	a	limit	on	the	number	of	values
returned	by	the	iterator,	so	in	this	example,	you	could	choose	when	to	stop	producing	the
Fibonacci	sequence.	This	is	an	interesting	distinction	in	the	LINQ	(Language	Integrated
Query)	world.	Iterators	like	the	one	produced	by	the	IEnumerable	version	of	where	are
lazy,	but	grouping	or	sorting	requires	eagerness.

Iterators	allow	you	to	hand	off	the	work	of	writing	this	class	to	the	C#	compiler.	Now,	you
need	to	add	only	an	iterator	to	your	type.	An	iterator	is	a	member	within	your	type	(e.g.,	a
method,	an	operator	overload,	or	the	get	accessor	of	a	property)	that	returns	either	a
System.Collections.IEnumerator,	a	System.Collections.Generic.IEnumerator<T>,	a
System.Collections.IEnumerable,	or	a	System.Collections.Generic.IEnumerable<T>
and	that	contains	at	least	one	yield	statement.	This	allows	you	to	write	types	that	can	be
used	by	foreach	loops.

Iterators	play	an	important	role	in	LINQ,	as	LINQ	to	Objects	is	based	on	being	able	to
work	on	classes	that	implement	IEnumerable<T>.	Iterators	allow	for	the	query	engine	to
iterate	over	collections	while	performing	the	various	query,	projection,	ordering,	and
grouping	operations.	Without	iterator	support,	LINQ	would	be	much	more	cumbersome,
and	the	declarative	style	of	programming	that	it	brings	would	be	clumsy,	if	not	lost
altogether.

2.1	Looking	for	Duplicate	Items	in	a	List<T>

Problem
You	need	to	be	able	to	either	retrieve	or	count	the	number	of	occurrences	of	an	object
contained	in	a	List<T>	that	matches	a	search	criterion.

Solution
Use	the	four	extension	methods	for	List<T>:	GetAll,	BinarySearchGetAll,	CountAll,
and	BinarySearchCountAll.	These	methods	extend	the	List<T>	class	to	return	either
instances	of	a	particular	object	or	the	number	of	times	a	particular	object	appears	in	a
sorted	and	an	unsorted	List<T>,	as	shown	in	Example	2-1.

Example	2-1.	Determining	the	number	of	times	an	item	appears	in	a	List	<T>
static	class	CollectionExtMethods

{

				#region	2.1	Looking	for	Duplicate	Items	in	a	List<T>

				//	The	method	to	retrieve	all	matching	objects	in	a

				//		sorted	or	unsorted	List<T>

				public	static	IEnumerable<T>	GetAll<T>(this	List<T>	myList,	T	searchValue)	=>

								myList.Where(t	=>	t.Equals(searchValue));

				//	The	method	to	retrieve	all	matching	objects	in	a	sorted	ListEx<T>

				public	static	T[]	BinarySearchGetAll<T>(this	List<T>	myList,	T	searchValue)

				{

								List<T>	retObjs	=	new	List<T>();

								//	Search	for	first	item.

								int	center	=	myList.BinarySearch(searchValue);

								if	(center	>	0)

								{

												retObjs.Add(myList[center]);

												int	left	=	center;

												while	(left	>	0	&&	myList[left	-	1].Equals(searchValue))

												{

																left	-=	1;

																retObjs.Add(myList[left]);

												}

												int	right	=	center;

												while	(right	<	(myList.Count	-	1)	&&

																myList[right	+	1].Equals(searchValue))

												{

																right	+=	1;

																retObjs.Add(myList[right]);

												}

								}

								return	(retObjs.ToArray());

				}

				//	Count	the	number	of	times	an	item	appears	in	this

				//			unsorted	or	sorted	List<T>

				public	static	int	CountAll<T>(this	List<T>	myList,	T	searchValue)	=>

								myList.GetAll(searchValue).Count();

				//	Count	the	number	of	times	an	item	appears	in	this	sorted	List<T>

				public	static	int	BinarySearchCountAll<T>(this	List<T>	myList,	T	searchValue)	=>

								BinarySearchGetAll(myList,	searchValue).Count();

				#endregion	//	2.1

}

Discussion
The	GetAll	and	BinarySearchGetAll	methods	return	the	actual	items	found	in	a	List<T>
object.	The	CountAll	and	BinarySearchCountAll	methods	leverage	GetAll	and
BinarySearchGetAll	to	provide	the	count	of	the	items.	The	main	thing	to	keep	in	mind
when	choosing	between	GetAll	and	BinarySearchGetAll	is	whether	you	are	going	to	be
looking	at	a	List<T>	that	is	sorted	or	unsorted.	Choose	the	GetAll	and	CountAll	methods
to	obtain	either	an	array	of	all	found	items	(GetAll)	or	the	number	of	found	items
(CountAll)	from	an	unsorted	List<T>,	and	choose	the	BinarySearchGetAll	and
BinarySearchCountAll	methods	to	work	with	a	sorted	List<T>.	GetAll,	SearchAll,	and
BinarySearchAll	use	the	expression-bodied	member	syntax,	as	they	are	simple	functions.

The	following	code	demonstrates	these	two	new	extension	methods	of	the	List<T>	class:

//	Retrieval

List<int>	listRetrieval	=

				new	List<int>()	{	-1,	-1,	1,	2,	2,	2,	2,	3,	100,	4,	5	};

Console.WriteLine("--GET	All--");

IEnumerable<int>	items	=	listRetrieval.GetAll(2);

foreach	(var	item	in	items)

				Console.WriteLine($"item:	{item}");

Console.WriteLine();

items	=	listRetrieval.GetAll(-2);

foreach	(var	item	in	items)

				Console.WriteLine($"item-2:	{item}");

Console.WriteLine();

items	=	listRetrieval.GetAll(5);

foreach	(var	item	in	items)

				Console.WriteLine($"item5:	{item}");

Console.WriteLine("\r\n--BINARY	SEARCH	GET	ALL--");

listRetrieval.Sort();

int[]	listItems	=	listRetrieval.BinarySearchGetAll(-2);

foreach	(var	item	in	listItems)

				Console.WriteLine($"item-2:	{item}");

Console.WriteLine();

listItems	=	listRetrieval.BinarySearchGetAll(2);

foreach	(var	item	in	listItems)

				Console.WriteLine($"item2:	{item}");

Console.WriteLine();

listItems	=	listRetrieval.BinarySearchGetAll(5);

foreach	(var	item	in	listItems)

				Console.WriteLine($"item5:	{item}");

This	code	outputs	the	following:

--GET	All--

item:	2

item:	2

item:	2

item:	2

item5:	5

--BINARY	SEARCH	GET	ALL--

item2:	2

item2:	2

item2:	2

item2:	2

item5:	5

The	BinarySearchGetAll	method	is	faster	than	the	GetAll	method,	especially	if	the	array
has	already	been	sorted.	If	a	BinarySearch	is	used	on	an	unsorted	List<T>,	the	results
returned	by	the	search	will	be	incorrect,	as	it	has	been	consistently	documented	as	a
requirement	that	List<T>	be	sorted.

The	CountAll	method	accepts	a	search	value	(searchValue)	of	generic	type	T.	CountAll
then	proceeds	to	count	the	number	of	times	the	search	value	appears	in	the	List<T>	class
by	using	the	GetAll	extension	method	to	get	the	items	and	calling	Count	on	the	result.
This	method	may	be	used	when	the	List<T>	is	sorted	or	unsorted.	If	the	List<T>	is	sorted
(you	sort	a	List<T>	by	calling	the	Sort	method),	you	can	use	the	BinarySearchCountAll
method	to	increase	the	efficiency	of	the	search.	You	do	so	by	using	the
BinarySearchGetAll	extension	method	on	the	List<T>	class,	which	is	much	faster	than
iterating	through	the	entire	List<T>.	This	is	especially	true	as	the	List<T>	grows	in	size.

The	following	code	illustrates	these	two	new	methods	of	the	List<T>	class:

List<int>	list	=	new	List<int>()	{-2,-2,-1,-1,1,2,2,2,2,3,100,4,5};

Console.WriteLine("--CONTAINS	TOTAL--");

int	count	=	list.CountAll(2);

Console.WriteLine($"Count2:	{count}");

count	=	list.CountAll(3);

Console.WriteLine($"Count3:	{count}");

count	=	list.CountAll(1);

Console.WriteLine($"Count1:	{count}");

Console.WriteLine("\r\n--BINARY	SEARCH	COUNT	ALL--");

list.Sort();

count	=	list.BinarySearchCountAll(2);

Console.WriteLine($"Count2:	{count}");

count	=	list.BinarySearchCountAll(3);

Console.WriteLine($"Count3:	{count}");

count	=	list.BinarySearchCountAll(1);

Console.WriteLine($"Count1:	{count}");

This	code	outputs	the	following:

--CONTAINS	TOTAL--

Count2:	4

Count3:	1

Count1:	1

--BINARY	SEARCH	COUNT	ALL--

Count2:	4

Count3:	1

Count1:	1

The	CountAll	and	GetAll	methods	use	a	sequential	search	that	is	performed	in	a	for	loop.

A	linear	search	must	be	used	since	the	List<T>	is	not	assumed	to	be	sorted.	The	where
statement	determines	whether	each	element	in	the	List<T>	is	equal	to	the	search	criterion
(searchValue).	The	items	or	count	of	items	are	returned	by	these	methods	to	indicate	the
number	of	items	matching	the	search	criteria	in	the	List<T>.

The	BinarySearchGetAll	method	implements	a	binary	search	to	locate	an	item	matching
the	search	criteria	(searchValue)	in	the	List<T>.	If	one	is	found,	a	while	loop	is	used	to
find	the	very	first	matching	item	in	the	sorted	List<T>,	and	the	position	of	that	element	is
recorded	in	the	left	variable.	A	second	while	loop	is	used	to	find	the	very	last	matching
item,	and	the	position	of	this	element	is	recorded	in	the	right	variable.	The	value	in	the
left	variable	is	subtracted	from	the	value	in	the	right	variable,	and	then	1	is	added	to	this
result	in	order	to	get	the	total	number	of	matches.	BinarySearchCountAll	uses
BinarySearchGetAll	to	get	the	items	and	then	just	calls	Count	on	the	resulting	set.

See	Also
The	“List<T>	Class”	topic	in	the	MSDN	documentation.

2.2	Keeping	Your	List<T>	Sorted

Problem
You	will	be	using	the	BinarySearch	method	of	the	List<T>	to	periodically	search	the
List<T>	for	specific	elements.	The	addition,	modification,	and	removal	of	elements	will
be	interleaved	with	the	searches.	The	BinarySearch	method,	however,	presupposes	a
sorted	array;	if	the	List<T>	is	not	sorted,	the	BinarySearch	method	will	possibly	return
incorrect	results.	You	do	not	want	to	have	to	remember	to	always	call	the	List<T>.Sort
method	before	calling	the	List<T>.BinarySearch	method,	not	to	mention	incurring	all	the
overhead	associated	with	this	call.	You	need	a	way	of	keeping	the	List<T>	sorted	without
always	having	to	call	the	List<T>.Sort	method.

Solution
The	following	SortedList	generic	class	enhances	the	addition	and	modification	of
elements	within	a	List<T>.	These	methods	keep	the	array	sorted	when	items	are	added	to
it	and	modified.	Note	that	a	DeleteSorted	method	is	not	required	because	deleting	an
item	does	not	disturb	the	sorted	order	of	the	remaining	items:

public	class	SortedList<T>	:	List<T>

{

				public	new	void	Add(T	item)

				{

								int	position	=	this.BinarySearch(item);

								if	(position	<	0)

												position	=	~position;

								this.Insert(position,	item);

				}

				public	void	ModifySorted(T	item,	int	index)

				{

								this.RemoveAt(index);

								int	position	=	this.BinarySearch(item);

								if	(position	<	0)

												position	=	~position;

								this.Insert(position,	item);

				}

}

Discussion
Use	the	Add	method	to	add	elements	while	keeping	the	List<T>	sorted.	The	Add	method
accepts	a	generic	type	(T)	to	add	to	the	sorted	list.

Instead	of	using	the	List<T>	indexer	directly	to	modify	elements,	use	the	ModifySorted
method	to	modify	elements	while	keeping	the	List<T>	sorted.	Call	this	method,	passing	in
the	generic	type	T	to	replace	the	existing	object	(item)	and	the	index	of	the	object	to
modify	(index).

The	following	code	demonstrates	the	SortedList<T>	class:

//	Create	a	SortedList	and	populate	it	with

//				randomly	chosen	numbers

SortedList<int>	sortedList	=	new	SortedList<int>();

sortedList.Add(200);

sortedList.Add(20);

sortedList.Add(2);

sortedList.Add(7);

sortedList.Add(10);

sortedList.Add(0);

sortedList.Add(100);

sortedList.Add(-20);

sortedList.Add(56);

sortedList.Add(55);

sortedList.Add(57);

sortedList.Add(200);

sortedList.Add(-2);

sortedList.Add(-20);

sortedList.Add(55);

sortedList.Add(55);

//	Display	it

foreach	(var	i	in	sortedList)

				Console.WriteLine(i);

//	Now	modify	a	value	at	a	particular	index

sortedList.ModifySorted(0,	5);

sortedList.ModifySorted(1,	10);

sortedList.ModifySorted(2,	11);

sortedList.ModifySorted(3,	7);

sortedList.ModifySorted(4,	2);

sortedList.ModifySorted(2,	4);

sortedList.ModifySorted(15,	0);

sortedList.ModifySorted(0,	15);

sortedList.ModifySorted(223,	15);

//	Display	it

Console.WriteLine();

foreach	(var	i	in	sortedList)

				Console.WriteLine(i);

This	method	automatically	places	the	new	item	in	the	List<T>	while	keeping	its	sort
order;	it	does	so	without	your	having	to	explicitly	call	List<T>.Sort.	The	reason	this
works	is	because	the	Add	method	first	calls	the	BinarySearch	method	and	passes	it	the
object	to	be	added	to	the	ArrayList.	The	BinarySearch	method	will	either	return	the
index	where	it	found	an	identical	item	or	a	negative	number	that	you	can	use	to	determine
where	the	item	that	you	are	looking	for	should	be	located.	If	the	BinarySearch	method
returns	a	positive	number,	you	can	use	the	List<T>.Insert	method	to	insert	the	new
element	at	that	location,	keeping	the	sort	order	within	the	List<T>.	If	the	BinarySearch

method	returns	a	negative	number,	you	can	use	the	bitwise	complement	operator	~	to
determine	where	the	item	should	have	been	located,	had	it	existed	in	the	sorted	list.	Using
this	number,	you	can	use	the	List<T>.Insert	method	to	add	the	item	to	the	correct
location	in	the	sorted	list	while	keeping	the	correct	sort	order.

You	can	remove	an	element	from	the	sorted	list	without	disturbing	the	sort	order,	but
modifying	an	element’s	value	in	the	List<T>	most	likely	will	cause	the	sorted	list	to
become	unsorted.	The	ModifySorted	method	alleviates	this	problem.	This	method	works
similarly	to	the	Add	method,	except	that	it	will	initially	remove	the	element	from	the
List<T>	and	then	insert	the	new	element	into	the	correct	location.

See	Also
The	“List<T>	Class”	topic	in	the	MSDN	documentation.

2.3	Sorting	a	Dictionary’s	Keys	and/or	Values

Problem
You	want	to	sort	the	keys	and/or	values	contained	in	a	Dictionary	in	order	to	display	the
entire	Dictionary	to	the	user,	sorted	in	either	ascending	or	descending	order.

Solution
Use	a	LINQ	query	and	the	Keys	and	Values	properties	of	a	Dictionary<T,U>	object	to
obtain	a	sorted	ICollection	of	its	key	and	value	objects.	(See	Chapter	4	for	more	on
LINQ).	The	code	shown	here	displays	the	keys	and	values	of	a	Dictionary<T,U>	sorted	in
ascending	or	descending	order:

//	Define	a	Dictionary<T,U>	object

Dictionary<string,	string>	hash	=	new	Dictionary<string,	string>()

{

				["2"]	=	"two",

				["1"]	=	"one",

				["5"]	=	"five",

				["4"]	=	"four",

				["3"]	=	"three"

};

var	x	=	from	k	in	hash.Keys	orderby	k	ascending	select	k;

foreach	(string	s	in	x)

				Console.WriteLine($"Key:	{s}		Value:	{hash[s]}");

x	=	from	k	in	hash.Keys	orderby	k	descending	select	k;

foreach	(string	s	in	x)

				Console.WriteLine($"Key:	{s}		Value:	{hash[s]}");

The	code	shown	here	displays	the	values	in	a	Dictionary<T,U>	sorted	in	ascending	or
descending	order:

x	=	from	k	in	hash.Values	orderby	k	ascending	select	k;

foreach	(string	s	in	x)

				Console.WriteLine($"Value:	{s}");

Console.WriteLine();

x	=	from	k	in	hash.Values	orderby	k	descending	select	k;

foreach	(string	s	in	x)

				Console.WriteLine($"Value:	{s}");

Discussion
The	Dictionary<T,U>	object	exposes	two	useful	properties	for	obtaining	a	collection	of
its	keys	or	values.	The	Keys	property	returns	an	ICollection	containing	all	the	keys
currently	in	the	Dictionary<T,U>.	The	Values	property	returns	the	same	for	all	values
currently	contained	in	the	Dictionary<T,U>.

The	ICollection	object	returned	from	either	the	Keys	or	Values	property	of	a
Dictionary<T,U>	object	contains	direct	references	to	the	key	and	value	collections	within
the	Dictionary<T,U>.	This	means	that	if	the	keys	and/or	values	change	in	a
Dictionary<T,U>,	the	key	and	value	collections	will	be	altered	accordingly.

Note	that	you	can	also	use	the	SortedDictionary<T,U>	class,	which	will	automatically
keep	the	keys	sorted	for	you.	You	can	use	the	constructor	overload	of
SortedDictionary<T,U>	to	wrap	an	existing	Dictionary<T,U>	as	well.	The	Keys	property
is	in	ascending	order	by	default,	so	if	you	want	descending	instead	you	will	need	to	sort
the	collection	for	descending	order	based	on	Keys:

SortedDictionary<string,	string>	sortedHash	=

				new	SortedDictionary<string,	string>()

{

				["2"]	=	"two",

				["1"]	=	"one",

				["5"]	=	"five",

				["4"]	=	"four",

				["3"]	=	"three"

};

foreach	(string	key	in	sortedHash.Keys)

				Console.WriteLine($"Key:	{key}		Value:	{sortedHash[key]}");

foreach	(string	key	in	sortedHash.OrderByDescending(item	=>

				item.Key).Select(item	=>	item.Key))

				Console.WriteLine($"Key:	{key}		Value:	{sortedHash[key]}");

Why	would	someone	choose	the	LINQ	solution	shown	versus	just	using
SortedDictionary<T,U>?	It	is	actually	faster	to	perform	the	ordering	in	the	LINQ	query,
and	the	code	is	cleaner	than	the	code	using	the	SortedDictionary<T,U>,	so	that	is	the
recommended	approach	for	all	versions	of	.NET	that	support	LINQ	(3.0	and	greater).	If
your	solution	happens	to	be	on	an	older	version	of	.NET,	you	still	can	use
SortedDictionary<T,U>	to	accomplish	the	result.

See	Also
The	“Dictionary<T,U>	Class,”	“SortedDictionary<T,U>	Class,”	and	“List<T>	Class”
topics	in	the	MSDN	documentation.

2.4	Creating	a	Dictionary	with	Min	and	Max	Value
Boundaries

Problem
You	need	to	use	a	generic	Dictionary	object	in	your	project	that	stores	only	numeric	data
in	its	value	(the	key	can	be	of	any	type)	between	a	set,	predefined	maximum	and	minimum
value.

Solution
Create	a	class	with	accessors	and	methods	that	enforce	these	boundaries.	The	class	shown
in	Example	2-2,	MinMaxValueDictionary,	allows	only	types	to	be	stored	that	implement
the	IComparable	interface	and	fall	between	a	maximum	and	minimum	value.

Example	2-2.	Creating	a	dictionary	with	min	and	max	value	boundaries
[Serializable]

public	class	MinMaxValueDictionary<T,	U>

				where	U	:	IComparable<U>

{

				protected	Dictionary<T,	U>	internalDictionary	=	null;

				public	MinMaxValueDictionary(U	minValue,	U	maxValue)

				{

								this.MinValue	=	minValue;

								this.MaxValue	=	maxValue;

								internalDictionary	=	new	Dictionary<T,	U>();

				}

				public	U	MinValue	{	get;	private	set;	}	=	default(U);

				public	U	MaxValue	{	get;	private	set;	}	=	default(U);

				public	int	Count	=>	(internalDictionary.Count);

				public	Dictionary<T,	U>.KeyCollection	Keys	=>	(internalDictionary.Keys);

				public	Dictionary<T,	U>.ValueCollection	Values	=>	(internalDictionary.Values);

				public	U	this[T	key]

				{

								get	{	return	(internalDictionary[key]);	}

								set

								{

												if	(value.CompareTo(MinValue)	>=	0	&&

																value.CompareTo(MaxValue)	<=	0)

																internalDictionary[key]	=	value;

												else

																throw	new	ArgumentOutOfRangeException(nameof(value),	value,

																				$"Value	must	be	within	the	range	{MinValue}	to	{MaxValue}");

								}

				}

				public	void	Add(T	key,	U	value)

				{

								if	(value.CompareTo(MinValue)	>=	0	&&

												value.CompareTo(MaxValue)	<=	0)

												internalDictionary.Add(key,	value);

								else

												throw	new	ArgumentOutOfRangeException(nameof(value),	value,

																$"Value	must	be	within	the	range	{MinValue}	to	{MaxValue}");

				}

				public	bool	ContainsKey(T	key)	=>	(internalDictionary.ContainsKey(key));

				public	bool	ContainsValue(U	value)	=>	(internalDictionary.ContainsValue(value));

				public	override	bool	Equals(object	obj)	=>	(internalDictionary.Equals(obj));

				public	IEnumerator	GetEnumerator()	=>	(internalDictionary.GetEnumerator());

				public	override	int	GetHashCode()	=>	(internalDictionary.GetHashCode());

				public	void	GetObjectData(SerializationInfo	info,	StreamingContext	context)

				{

								internalDictionary.GetObjectData(info,	context);

				}

				public	void	OnDeserialization(object	sender)

				{

								internalDictionary.OnDeserialization(sender);

				}

				public	override	string	ToString()	=>	(internalDictionary.ToString());

				public	bool	TryGetValue(T	key,	out	U	value)	=>

										(internalDictionary.TryGetValue(key,	out	value));

				public	void	Remove(T	key)

				{

								internalDictionary.Remove(key);

				}

				public	void	Clear()

				{

								internalDictionary.Clear();

				}

}

Discussion
The	MinMaxValueDictionary	class	wraps	the	Dictionary<T,U>	class,	so	it	can	restrict	the
range	of	allowed	values.	Defined	here	is	the	overloaded	constructor	for	the
MinMaxValueDictionary	class:

public	MinMaxValueDictionary(U	minValue,	U	maxValue)

This	constructor	allows	the	range	of	values	to	be	set.	Its	parameters	are:
minValue

The	smallest	value	of	type	U	that	can	be	added	as	a	value	in	a	key/value	pair.
maxValue

The	largest	value	of	type	U	that	can	be	added	as	a	value	in	a	key/value	pair.

These	values	are	available	on	the	MinMaxValueDictionary<T,U>	as	the	properties
MinValue	and	MaxValue.

The	overridden	indexer	has	both	get	and	set.	The	get	accessor	returns	the	value	that
matches	the	provided	key.	The	set	accessor	checks	the	value	parameter	to	determine
whether	it	is	within	the	boundaries	of	the	minValue	and	maxValue	fields	before	it	is	set.

The	Add	method	accepts	a	type	U	for	its	value	parameter	and	performs	the	same	tests	as
the	set	accessor	on	the	indexer.	If	the	test	passes,	the	integer	is	added	to	the
MinMaxValueDictionary.

See	Also
The	“Dictionary<T,	U>	Class”	topics	in	the	MSDN	documentation.

2.5	Persisting	a	Collection	Between	Application	Sessions

Problem
You	have	a	collection	such	as	an	ArrayList,	List<T>,	Hashtable,	or	Dictionary<T,U>	in
which	you	are	storing	application	information.	You	can	use	this	information	to	tailor	the
application’s	environment	to	the	last	known	settings	(e.g.,	window	size,	window
placement,	and	currently	displayed	toolbars).	You	can	also	use	it	to	allow	the	user	to	start
the	application	at	the	same	point	where	it	was	last	shut	down.	In	other	words,	if	the	user	is
editing	an	invoice	and	needs	to	shut	down	the	computer	for	the	night,	the	application	will
know	exactly	which	invoice	to	initially	display	when	it	is	started	again.

Solution
Serialize	the	object(s)	to	and	from	a	file:

public	static	void	SerializeToFile<T>(T	obj,	string	dataFile)

{

				using	(FileStream	fileStream	=	File.Create(dataFile))

				{

								BinaryFormatter	binSerializer	=	new	BinaryFormatter();

								binSerializer.Serialize(fileStream,	obj);

				}

}

public	static	T	DeserializeFromFile<T>(string	dataFile)

{

				T	obj	=	default(T);

				using	(FileStream	fileStream	=	File.OpenRead(dataFile))

				{

								BinaryFormatter	binSerializer	=	new	BinaryFormatter();

								obj	=	(T)binSerializer.Deserialize(fileStream);

				}

				return	obj;

}

Discussion
The	dataFile	parameter	accepts	a	string	value	to	use	as	a	filename.	The
SerializeToFile<T>	method	accepts	an	object	and	attempts	to	serialize	it	to	a	file.
Conversely,	the	DeserializeFromFile<T>	method	removes	the	serialized	object	from	the
file	created	in	the	SaveObj<T>	method.

Example	2-3	shows	how	to	use	these	methods	to	serialize	an	ArrayList	object	(note	that
this	will	work	for	any	type	that	is	marked	with	the	SerializableAttribute).

Example	2-3.	Persisting	a	collection	between	application	sessions
ArrayList	HT	=	new	ArrayList()	{"Zero","One","Two"};

foreach	(object	O	in	HT)

				Console.WriteLine(O.ToString());

SerializeToFile<ArrayList>(HT,	"HT.data");

ArrayList	HTNew	=	new	ArrayList();

HTNew	=	DeserializeFromFile<ArrayList>("HT.data");

foreach	(object	O	in	HTNew)

				Console.WriteLine(O.ToString());

If	you	serialize	your	objects	to	disk	at	specific	points	in	your	application,	you	can	then
deserialize	them	and	return	to	a	known	state	—	for	instance,	in	the	event	of	an	unintended
shutdown.

You	could	also	serialize	the	object(s)	to	and	from	a	byte	stream	for	storage	in	isolated
storage	or	remote	storage:

public	static	byte[]	Serialize<T>(T	obj)

{

				using	(MemoryStream	memStream	=	new	MemoryStream())

				{

								BinaryFormatter	binSerializer	=	new	BinaryFormatter();

								binSerializer.Serialize(memStream,	obj);

								return	memStream.ToArray();

				}

}

public	static	T	Deserialize<T>(byte[]	serializedObj)

{

				T	obj	=	default(T);

				using	(MemoryStream	memStream	=	new	MemoryStream(serializedObj))

				{

								BinaryFormatter	binSerializer	=	new	BinaryFormatter();

								obj	=	(T)binSerializer.Deserialize(memStream);

				}

				return	obj;

}

NOTE
If	you	rely	on	serialized	objects	to	store	persistent	information,	you	need	to	figure	out	what	you	are	going	to
do	when	you	deploy	a	new	version	of	the	application.	You	should	plan	ahead	with	either	a	strategy	for
making	sure	the	types	you	serialize	don’t	get	changed	or	a	technique	for	dealing	with	changes.	Otherwise,
you	are	going	to	have	big	problems	when	you	deploy	an	update.	Check	out	the	“Version	Tolerant
Serialization”	article	in	MSDN	for	ideas	and	best	practices	on	handling	this	situation.

See	Also
The	“ArrayList	Class,”	“Hashtable	Class,”	“List<T>	Class,”	“Dictionary<T,U>	Class,”
“File	Class,”	“Version	Tolerant	Serialization,”	and	“BinaryFormatter	Class”	topics	in	the
MSDN	documentation.

2.6	Testing	Every	Element	in	an	Array	or	List<T>

Problem
You	need	an	easy	way	to	test	every	element	in	an	Array	or	List<T>.	The	results	of	this	test
should	indicate	that	the	test	passed	for	all	elements	in	the	collection,	or	it	failed	for	at	least
one	element	in	the	collection.

Solution
Use	the	TrueForAll	method,	as	shown	here:

//	Create	a	List	of	strings

List<string>	strings	=	new	List<string>()	{"one",null,"three","four"};

//	Determine	if	there	are	no	null	values	in	the	List

string	str	=	strings.TrueForAll(delegate(string	val)

{

				if	(val	==	null)

								return	false;

				else

								return	true;

}).ToString();

//	Display	the	results

Console.WriteLine(str);

Discussion
The	addition	of	the	TrueForAll	method	on	the	Array	and	List<T>	classes	allows	you	to
easily	set	up	tests	for	all	elements	in	these	collections.	The	code	in	the	Solution	for	this
recipe	tests	all	elements	to	determine	if	any	are	null.	You	could	just	as	easily	set	up	tests
to	determine,	for	example:

if	any	numeric	elements	are	above	a	specified	maximum	value;

if	any	numeric	elements	are	below	a	specified	minimum	value;

if	any	string	elements	contain	a	specified	set	of	characters;

if	any	data	objects	have	all	of	their	fields	filled	in;	and

any	others	you	may	come	up	with.

The	TrueForAll	method	accepts	a	generic	delegate	Predicate<T>	called	match	and
returns	a	Boolean	value:

public	bool	TrueForAll(Predicate<T>	match)

The	match	parameter	determines	whether	or	not	a	true	or	false	should	be	returned	by	the
TrueForAll	method.

The	TrueForAll	method	basically	consists	of	a	loop	that	iterates	over	each	element	in	the
collection.	Within	this	loop,	a	call	to	the	match	delegate	is	invoked.	If	this	delegate	returns
true,	the	processing	continues	on	to	the	next	element	in	the	collection.	If	this	delegate
returns	false,	processing	stops	and	a	false	is	returned	by	the	TrueForAll	method.	When
the	TrueForAll	method	finishes	iterating	over	all	the	elements	of	the	collection	and	the
match	delegate	has	not	returned	a	false	value	for	any	element,	the	TrueForAll	method
returns	a	true.

There	is	not	a	FalseForAll	method,	but	you	can	reverse	your	logic	and	use	TrueForAll	to
accomplish	the	same	thing:

List<string>	nulls	=	new	List<string>()	{	null,	null,	null,	null	};

//	Determine	if	there	are	all	null	values	in	the	List

string	result	=	nulls.TrueForAll(delegate	(string	val)

{

				if	(val	==	null)

								return	true;

				else

								return	false;

}).ToString();

//	Display	the	results

Console.WriteLine(result);

One	other	consideration	here	is	that	TrueForAll	stops	the	first	time	the	condition	is	not

true.	This	means	that	not	all	nodes	are	checked.	If	you	have	an	array	of,	say,	file	handles
or	resources	that	need	to	be	processed	or	freed,	you	would	need	to	iterate	over	all	of	them
even	if	the	action	performed	during	the	check	fails.	In	this	case	you’d	want	to	note	if	any
of	them	failed,	but	it	would	still	be	important	to	visit	each	Array	or	List<T>	element	and
perform	the	action.

See	Also
The	“Array	Class,”	“List<T>	Class,”	and	“TrueForAll	Method”	topics	in	the	MSDN
documentation.

2.7	Creating	Custom	Enumerators

Problem
You	need	to	add	foreach	support	to	a	class,	but	the	normal	way	of	adding	an	iterator	(i.e.,
implementing	IEnumerable	on	a	type	and	returning	a	reference	to	this	IEnumerable	from
a	member	function)	is	not	flexible	enough.	Instead	of	simply	iterating	from	the	first
element	to	the	last,	you	also	need	to	iterate	from	the	last	to	the	first,	and	you	need	to	be
able	to	step	over,	or	skip,	a	predefined	number	of	elements	on	each	iteration.	You	want	to
make	all	of	these	types	of	iterators	available	to	your	class.

Solution
The	Container<T>	class	shown	in	Example	2-4	acts	as	a	container	for	a	private	List<T>
called	internalList.	Container	is	implemented	so	you	can	use	it	in	a	foreach	loop	to
iterate	through	the	private	internalList.

Example	2-4.	Creating	custom	iterators
public	class	Container<T>	:	IEnumerable<T>

{

				public	Container()	{	}

				private	List<T>	_internalList	=	new	List<T>();

				//	This	iterator	iterates	over	each	element	from	first	to	last

				public	IEnumerator<T>	GetEnumerator()	=>	_internalList.GetEnumerator();

				//	This	iterator	iterates	over	each	element	from	last	to	first

				public	IEnumerable<T>	GetReverseOrderEnumerator()

				{

								foreach	(T	item	in	((IEnumerable<T>)_internalList).Reverse())

												yield	return	item;

				}

				//	This	iterator	iterates	over	each	element	from	first	to	last,	stepping

				//	over	a	predefined	number	of	elements

				public	IEnumerable<T>	GetForwardStepEnumerator(int	step)

				{

								foreach	(T	item	in	_internalList.EveryNthItem(step))

												yield	return	item;

				}

				//	This	iterator	iterates	over	each	element	from	last	to	first,	stepping

				//	over	a	predefined	number	of	elements

				public	IEnumerable<T>	GetReverseStepEnumerator(int	step)

				{

								foreach	(T	item	in	(

												(IEnumerable<T>)_internalList).Reverse().EveryNthItem(step))

												yield	return	item;

				}

				#region	IEnumerable	Members

				IEnumerator	IEnumerable.GetEnumerator()	=>	GetEnumerator();

				#endregion

				public	void	Clear()

				{

								_internalList.Clear();

				}

				public	void	Add(T	item)

				{

								_internalList.Add(item);

				}

				public	void	AddRange(ICollection<T>	collection)

				{

								_internalList.AddRange(collection);

				}

}

Discussion
Iterators	provide	an	easy	method	of	moving	from	item	to	item	within	an	object	using	the
familiar	foreach	loop	construct.	The	object	can	be	an	array,	a	collection,	or	some	other
type	of	container.	This	is	similar	to	using	a	for	loop	to	manually	iterate	over	each	item
contained	in	an	array.	In	fact,	an	iterator	can	be	set	up	to	use	a	for	loop	—	or	any	other
looping	construct,	for	that	matter	—	as	the	mechanism	for	yielding	each	item	in	the	object.
In	fact,	you	do	not	even	have	to	use	a	looping	construct.	The	following	code	is	perfectly
valid:

public	static	IEnumerable<int>	GetValues()

{

				yield	return	10;

				yield	return	20;

				yield	return	30;

				yield	return	100;

}

With	the	foreach	loop,	you	do	not	have	to	worry	about	watching	for	the	end	of	the	list,
since	you	cannot	go	beyond	the	bounds	of	the	list.	The	best	part	about	the	foreach	loop
and	iterators	is	that	you	do	not	have	to	know	how	to	access	the	list	of	elements	within	its
container.	In	fact,	you	do	not	even	have	to	have	access	to	the	list	of	elements,	as	the
iterator	member(s)	implemented	on	the	container	handle	this	for	you.

To	see	what	foreach	is	doing	here,	let’s	look	at	code	to	iterate	over	the	Container	class:

//	Iterate	over	Container	object

foreach	(int	i	in	container)

				Console.WriteLine(i);

foreach	will	take	the	following	actions	while	this	code	executes:

1.	 Get	the	enumerator	from	the	container	using	IEnumerator.GetEnumerator().

2.	 Access	the	IEnumerator.Current	property	for	the	current	object	(int)	and	place	it
into	i.

3.	 Call	IEnumerator.MoveNext().	If	MoveNext	returns	true,	go	back	to	step	2,	or	else
end	the	loop.

The	Container	class	contains	a	private	List	of	items	called	internalList.	There	are	four
iterator	members	within	this	class:

GetEnumerator

GetReverseOrderEnumerator

GetForwardStepEnumerator

GetReverseStepEnumerator

The	GetEnumerator	method	iterates	over	each	element	in	the	internalList	from	the	first
to	the	last	element.	This	iterator,	similar	to	the	others,	uses	a	for	loop	to	yield	each

element	in	the	internalList.

The	GetReverseOrderEnumerator	method	implements	an	iterator	in	its	get	accessor	(set
accessors	cannot	be	iterators).	This	iterator	is	very	similar	in	design	to	the	GetEnumerator
method,	except	that	the	foreach	loop	works	on	the	internalList	in	the	reverse	direction
by	using	the	IEnumerable<T>.Reverse	extension	method.	The	last	two	iterators,
GetForwardStepEnumerator	and	GetReverseStepEnumerator,	are	similar	in	design	to
GetEnumerator	and	GetReverseOrderEnumerator,	respectively.	The	main	difference	is
that	the	foreach	loop	uses	the	EveryNthItem	extension	method	to	skip	over	the	specified
number	of	items	in	the	internalList:

public	static	IEnumerable<T>	EveryNthItem<T>(this	IEnumerable<T>	enumerable,

				int	step)

{

				int	current	=	0;

				foreach	(T	item	in	enumerable)

				{

								++current;

								if	(current	%	step	==	0)

												yield	return	item;

				}

}

Notice	also	that	only	the	GetEnumerator	method	must	return	an	IEnumerator<T>
interface;	the	other	three	iterators	must	return	IEnumerable<T>	interfaces.

To	iterate	over	each	element	in	the	Container	object	from	first	to	last,	use	the	following
code:

Container<int>	container	=	new	Container<int>();

				//...Add	data	to	container	here…

foreach	(int	i	in	container)

				Console.WriteLine(i);

To	iterate	over	each	element	in	the	Container	object	from	last	to	first,	use	the	following
code:

Container<int>	container	=	new	Container<int>();

				//...Add	data	to	container	here…

foreach	(int	i	in	container.GetReverseOrderEnumerator())

				Console.WriteLine(i);

To	iterate	over	each	element	in	the	Container	object	from	first	to	last	while	skipping
every	other	element,	use	the	following	code:

Container<int>	container	=	new	Container<int>();

				//...Add	data	to	container	here…

foreach	(int	i	in	container.GetForwardStepEnumerator(2))

				Console.WriteLine(i);

To	iterate	over	each	element	in	the	Container	object	from	last	to	first	while	skipping	to
every	third	element,	use	the	following	code:

Container<int>	container	=	new	Container<int>();

				//...Add	data	to	container	here…

foreach	(int	i	in	container.GetReverseStepEnumerator(3))

				Console.WriteLine(i);

In	each	of	the	last	two	examples,	the	iterator	method	accepts	an	integer	value,	step,	which
determines	how	many	items	will	be	skipped.

One	last	note	on	yield:	while	it	is	technically	possible	to	use	yield	inside	of	a	lock
statement	(see	the	Discussion	in	Recipe	9.9	for	more	on	lock),	you	should	avoid	doing	so,
as	it	could	cause	deadlocks	in	your	application.	The	code	you	yield	to	could	be	taking	out
locks	itself	and	causing	the	deadlocking.	The	code	inside	the	lock	could	then	resume	on
another	thread	(since	when	you	yield,	it	doesn’t	have	to	resume	on	the	same	thread),	so
you	would	be	unlocking	from	a	different	thread	than	the	one	on	which	you	established	the
lock.

See	Also
The	“Iterators,”	“yield,”	“IEnumerator	Interface,”	“IEnumerable(T)	Interface,”	and
“IEnumerable	Interface”	topics	in	the	MSDN	documentation,	and	Recipe	9.9.

2.8	Dealing	with	finally	Blocks	and	Iterators

Problem
You	have	added	a	try-finally	block	to	your	iterator,	and	you	notice	that	the	finally
block	is	not	being	executed	when	you	think	it	should.

Solution
Wrap	a	try	block	around	the	iteration	code	in	the	GetEnumerator	iterator	with	a	finally
block	following	this	try	block:

public	class	StringSet	:	IEnumerable<string>

{

				private	List<string>	_items	=	new	List<string>();

				public	void	Add(string	value)

				{

								_items.Add(value);

				}

				public	IEnumerator<string>	GetEnumerator()

				{

								try

								{

												for	(int	index	=	0;	index	<	_items.Count;	index++)

												{

																yield	return	(_items[index]);

												}

								}

								//	Cannot	use	catch	blocks	in	an	iterator

								finally

								{

												//	Only	executed	at	end	of	foreach	loop	(including	on	yield	break)

												Console.WriteLine("In	iterator	finally	block");

								}

				}

				#region	IEnumerable	Members

				IEnumerator	IEnumerable.GetEnumerator()	=>	GetEnumerator();

				#endregion

}

The	foreach	code	that	calls	this	iterator	looks	like	this:

//Create	a	StringSet	object	and	fill	it	with	data

StringSet	strSet	=

				new	StringSet()

								{"item1",

												"item2",

												"item3",

												"item4",

												"item5"};

//	Use	the	GetEnumerator	iterator.

foreach	(string	s	in	strSet)

				Console.WriteLine(s);

When	this	code	is	run,	the	following	output	is	displayed:

item1

item2

item3

item4

item5

In	iterator	finally	block

Discussion
You	may	have	thought	that	the	output	would	display	the	"In	iterator	finally	block"
string	after	displaying	each	item	in	the	strSet	object.	However,	this	is	not	the	way	that
finally	blocks	are	handled	in	iterators.	All	finally	blocks	associated	with	try	blocks
that	have	yield	returns	inside	the	iterator	member	body	are	called	only	after	the	iterations
are	complete,	code	execution	leaves	the	foreach	loop	(such	as	when	a	break,	return,	or
throw	statement	is	encountered),	or	when	a	yield	break	statement	is	executed,
effectively	terminating	the	iterator.

To	see	how	iterators	deal	with	catch	and	finally	blocks	(note	that	there	can	be	no	catch
blocks	inside	of	a	try	block	that	contains	a	yield),	consider	the	following	code:

//Create	a	StringSet	object	and	fill	it	with	data

StringSet	strSet	=

				new	StringSet()

								{"item1",

												"item2",

												"item3",

												"item4",

												"item5"};

//	Display	all	data	in	StringSet	object

try

{

				foreach	(string	s	in	strSet)

				{

								try

								{

												Console.WriteLine(s);

												//	Force	an	exception	here

												//throw	new	Exception();

								}

								catch	(Exception)

								{

												Console.WriteLine("In	foreach	catch	block");

								}

								finally

								{

												//	Executed	on	each	iteration

												Console.WriteLine("In	foreach	finally	block");

								}

				}

}

catch	(Exception)

{

				Console.WriteLine("In	outer	catch	block");

}

finally

{

				//	Executed	on	each	iteration

				Console.WriteLine("In	outer	finally	block");

}

Assuming	that	your	original	StringSet.GetEnumerator	method	is	used	(i.e.,	the	one	that
contained	the	try-finally	block),	you	will	see	the	following	behaviors.

If	no	exception	occurs,	you	see	this:

item1

In	foreach	finally	block

item2

In	foreach	finally	block

item3

In	foreach	finally	block

item4

In	foreach	finally	block

item5

In	foreach	finally	block

In	iterator	finally	block

In	outer	finally	block

We	see	that	the	finally	block	that	is	within	the	foreach	loop	is	executed	on	each
iteration.	However,	the	finally	block	within	the	iterator	is	executed	only	after	all
iterations	are	finished.	Also,	notice	that	the	iterator’s	finally	block	is	executed	before	the
finally	block	that	wraps	the	foreach	loop.

If	an	exception	occurs	in	the	iterator	itself,	during	processing	of	the	second	element,	the
following	is	displayed:

item1

In	foreach	finally	block

					(Exception	occurs	here…)

In	iterator	finally	block

In	outer	catch	block

In	outer	finally	block

Notice	that	immediately	after	the	exception	is	thrown,	the	finally	block	within	the
iterator	is	executed.	This	can	be	useful	if	you	need	to	clean	up	only	after	an	exception
occurs.	If	no	exception	happens,	then	the	finally	block	is	not	executed	until	the	iterator
completes.	After	the	iterator’s	finally	block	executes,	the	exception	is	caught	by	the
catch	block	outside	the	foreach	loop.	At	this	point,	the	exception	could	be	handled	or
rethrown.	Once	this	catch	block	is	finished	processing,	the	outer	finally	block	is
executed.

Notice	that	the	catch	block	within	the	foreach	loop	was	never	given	the	opportunity	to
handle	the	exception.	This	is	because	the	corresponding	try	block	does	not	contain	a	call
to	the	iterator.

If	an	exception	occurs	in	the	foreach	loop	during	processing	of	the	second	element,	the
following	is	displayed:

item1

In	foreach	finally	block

					(Exception	occurs	here…)

In	foreach	catch	block

In	foreach	finally	block

In	iterator	finally	block

In	outer	finally	block

Notice	in	this	situation	that	the	catch	and	finally	blocks	within	the	foreach	loop	are
executed	first,	then	the	iterator’s	finally	block.	Lastly,	the	outer	finally	block	is
executed.

Understanding	the	way	catch	and	finally	blocks	operate	inside	iterators	will	help	you
add	them	in	the	correct	location.	If	you	need	a	finally	block	to	execute	once	immediately

after	the	iterations	are	finished,	add	this	finally	block	to	the	iterator	method.	If,	however,
you	want	the	finally	block	to	execute	on	each	iteration,	you	need	to	place	it	within	the
foreach	loop	body.

If	you	need	to	catch	iterator	exceptions	immediately	after	they	occur,	consider	wrapping
the	foreach	loop	in	a	try-catch	block.	Any	try-catch	block	within	the	foreach	loop
body	will	miss	exceptions	thrown	from	the	iterator.

See	Also
The	“try-catch,”	“Iterators,”	“yield,”	“IEnumerator	Interface,”	and	“IEnumerable
Interface”	topics	in	the	MSDN	documentation.

2.9	Implementing	Nested	foreach	Functionality	in	a	Class

Problem
You	need	a	class	that	contains	a	list	of	objects,	with	each	of	these	objects	itself	containing
a	list	of	objects.	You	want	to	use	a	nested	foreach	loop	to	iterate	through	all	objects	in
both	the	outer	and	inner	lists	in	the	following	manner:

foreach	(Group<Item>	subGroup	in	topLevelGroup)

{

				//	do	work	for	groups

				foreach	(Item	item	in	subGroup)

				{

								//	do	work	for	items

				}

}

Solution
Implement	the	IEnumerable<T>	interface	on	the	class.	The	Group	class	shown	in
Example	2-5	contains	a	List<T>	that	can	hold	Group	objects,	and	each	Group	object
contains	a	List<Item>.

Example	2-5.	Implementing	foreach	functionality	in	a	class
public	class	Group<T>	:	IEnumerable<T>

{

				public	Group(string	name)

				{

								this.Name	=	name;

				}

				private	List<T>	_groupList	=	new	List<T>();

				public	string	Name	{	get;	set;	}

				public	int	Count	=>	_groupList.Count;

				public	void	Add(T	group)

				{

								_groupList.Add(group);

				}

				IEnumerator	IEnumerable.GetEnumerator()	=>	GetEnumerator();

				public	IEnumerator<T>	GetEnumerator()	=>	_groupList.GetEnumerator();

}

public	class	Item

{

				public	Item(string	name,	int	location)

				{

								this.Name	=	name;

								this.Location	=	location;

				}

				public	string	Name	{	get;	set;	}

				public	int	Location	{	get;	set;	}

}

Discussion
Building	functionality	into	a	class	to	allow	it	to	be	iterated	over	using	the	foreach	loop	is
much	easier	using	iterators	in	the	C#	language.	In	versions	of	the	.NET	Framework	prior
to	3.0,	you	not	only	had	to	implement	the	IEnumerable	interface	on	the	type	that	you
wanted	to	make	enumerable,	but	you	also	had	to	implement	the	IEnumerator	interface	on
a	nested	class.	You	then	had	to	write	the	MoveNext	and	Reset	methods	and	the	Current
property	by	hand	in	this	nested	class.	Iterators	allow	you	to	hand	off	the	work	of	writing
this	nested	class	to	the	C#	compiler.	If	you	wrote	an	old-style	enumerator	yourself,	it
would	look	like	this:

public	class	GroupEnumerator<T>	:	IEnumerator

{

				public	T[]	_items;

				int	position	=	-1;

				public	GroupEnumerator(T[]	list)

				{

								_items	=	list;

				}

				public	bool	MoveNext()

				{

								position++;

								return	(position	<	_items.Length);

				}

				public	void	Reset()

				{

								position	=	-1;

				}

				public	object	Current

				{

								get

								{

												try

												{

																return	_items[position];

												}

												catch	(IndexOutOfRangeException)

												{

																throw	new	InvalidOperationException();

												}

								}

				}

}

The	IEnumerator.GetEnumerator	method	would	be	modified	on	the	Group<T>	class	to
look	like	this:

IEnumerator	IEnumerable.GetEnumerator()	=>

				new	GroupEnumerator<T>(_groupList.ToArray());

and	the	code	to	walk	over	it	would	look	like	this:

IEnumerator	enumerator	=	((IEnumerable)hierarchy).GetEnumerator();

while	(enumerator.MoveNext())

{

				Console.WriteLine(((Group<Item>)enumerator.Current).Name);

				foreach	(Item	i	in	((Group<Item>)enumerator.Current))

				{

								Console.WriteLine(i.Name);

				}

}

Aren’t	you	glad	you	don’t	have	to	do	that?	Leave	it	to	the	compiler;	it’s	quite	good	at
writing	this	for	you.

Enabling	a	class	to	be	used	by	the	foreach	loop	requires	the	inclusion	of	an	iterator.	An
iterator	can	be	a	method,	an	operator	overload,	or	the	get	accessor	of	a	property	that
returns	either	a	System.Collections.IEnumerator,	a
System.Collections.Generic.IEnumerator<T>,	a	System.Collections.IEnumerable,
or	a	System.Collections.Generic.IEnumerable<T>	and	that	contains	at	least	one	yield
statement.

The	code	for	this	recipe	is	divided	between	two	classes.	The	container	class	is	the	Group
class,	which	contains	a	List	of	Group<Item>	objects.	The	Group	object	also	contains	a
List,	but	this	List	contains	Item	objects.	To	enumerate	the	contained	list,	the	Group	class
implements	the	IEnumerable	interface.	It	therefore	contains	a	GetEnumerator	iterator
method,	which	returns	an	IEnumerator.	The	class	structure	looks	like	this:

Group	(Implements	IEnumerable<T>)

		Group	(Implements	IEnumerable<T>)

					Item

By	examining	the	Group	class,	you	can	see	how	classes	usable	by	a	foreach	loop	are
constructed.	This	class	contains:

A	simple	List<T>,	which	will	be	iterated	over	by	the	class’s	enumerator.

A	property,	Count,	which	returns	the	number	of	elements	in	the	List<T>.

An	iterator	method,	GetEnumerator,	which	is	defined	by	the	IEnumerable<T>
interface.	This	method	yields	a	specific	value	on	each	iteration	of	the	foreach	loop.

A	method,	Add,	which	adds	an	instance	such	as	Subgroup	to	the	List<T>.

A	method,	GetGroup,	which	returns	a	typed	instance	such	as	Subgroup	from	the
List<T>.

To	create	the	Subgroup	class,	you	follow	the	same	pattern	as	with	the	Group	class	—
except	the	Subgroup	class	contains	a	List<Item>.

The	final	class	is	Item.	This	class	is	the	lowest	level	of	this	structure	and	contains	data.	It
has	been	grouped	within	the	Subgroup	objects,	all	of	which	are	contained	in	the	Group
object.	There	is	nothing	out	of	the	ordinary	with	this	class;	it	simply	contains	data	and	the
means	to	set	and	retrieve	this	data.

Using	these	classes	is	quite	simple.	The	following	method	shows	how	to	create	a	Group

object	that	contains	multiple	Subgroup	objects,	which	in	turn	contain	multiple	Item
objects:

public	static	void	CreateNestedObjects()

{

				Group<Group<Item>>	hierarchy	=

								new	Group<Group<Item>>("root")	{

												new	Group<Item>("subgroup1"){

																new	Item("item1",100),

																new	Item("item2",200)},

												new	Group<Item>("subgroup2"){

																new	Item("item3",300),

																new	Item("item4",400)}};

				IEnumerator	enumerator	=	((IEnumerable)hierarchy).GetEnumerator();

				while	(enumerator.MoveNext())

				{

								Console.WriteLine(((Group<Item>)enumerator.Current).Name);

								foreach	(Item	i	in	((Group<Item>)enumerator.Current))

								{

												Console.WriteLine(i.Name);

								}

				}

				//	Read	back	the	data

				DisplayNestedObjects(hierarchy);

}

The	CreateNestedObjects	method	first	creates	a	hierarchy	object	of	the	Group	class	and
then	creates	two	subgroups	within	it	named	subgroup1	and	subgroup2.	Each	of	these
subgroup	objects,	in	turn,	is	filled	with	two	Item	objects	called	item1,	item2,	item3,	and
item4.

The	next	method	shows	how	to	read	all	of	the	Item	objects	contained	within	the	Group
object	that	was	created	in	the	CreateNestedObjects	method:

private	static	void	DisplayNestedObjects(Group<Group<Item>>	topLevelGroup)

{

				Console.WriteLine($"topLevelGroup.Count:	{topLevelGroup.Count}");

				Console.WriteLine($"topLevelGroupName:		{topLevelGroup.Name}");

				//	Outer	foreach	to	iterate	over	all	objects	in	the

				//	topLevelGroup	object

				foreach	(Group<Item>	subGroup	in	topLevelGroup)

				{

								Console.WriteLine($"\tsubGroup.SubGroupName:		{subGroup.Name}");

								Console.WriteLine($"\tsubGroup.Count:	{subGroup.Count}");

								//	Inner	foreach	to	iterate	over	all	Item	objects	in	the

								//	current	SubGroup	object

								foreach	(Item	item	in	subGroup)

								{

												Console.WriteLine($"\t\titem.Name:					{item.Name}");

												Console.WriteLine($"\t\titem.Location:	{item.Location}");

								}

				}

}

This	method	displays	the	following:

topLevelGroup.Count:	2

topLevelGroupName:		root

								subGroup.SubGroupName:		subgroup1

								subGroup.Count:	2

																item.Name:					item1

																item.Location:	100

																item.Name:					item2

																item.Location:	200

								subGroup.SubGroupName:		subgroup2

								subGroup.Count:	2

																item.Name:					item3

																item.Location:	300

																item.Name:					item4

																item.Location:	400

As	you	see	here,	the	outer	foreach	loop	is	used	to	iterate	over	all	Subgroup	objects	that
are	stored	in	the	top-level	Group	object.	The	inner	foreach	loop	is	used	to	iterate	over	all
Item	objects	that	are	stored	in	the	current	Subgroup	object.

See	Also
The	“Iterators,”	“yield,”	“IEnumerator	Interface,”	“IEnumerable(T)	interface,”	and
“IEnumerable	Interface”	topics	in	the	MSDN	documentation.

2.10	Using	a	Thread-Safe	Dictionary	for	Concurrent	Access
Without	Manual	Locking

Problem
You	need	to	make	a	collection	of	key/value	pairs	accessible	from	multiple	threads	for
reading	and	writing	concurrently	without	having	to	manually	use	synchronization
primitives	to	protect	it.

Solution
Use	the	ConcurrentDictionary<TKey,	TValue>	to	contain	the	items	and	access	them	in	a
thread-safe	manner.

As	an	example,	consider	a	simulation	of	fans	entering	a	stadium	or	field	to	watch	their
favorite	sporting	event	(Super	Bowl,	World	Cup,	World	Series,	or	the	ICC	World	Cricket
League	Championship)	and	there	are	only	a	certain	number	of	gates.

First,	we	will	need	some	Fans	and	we	will	keep	track	of	their	Names,	when	they	are
Admitted,	and	what	AdmittanceGateNumber	they	enter	by:

public	class	Fan

{

				public	string	Name	{	get;	set;	}

				public	DateTime	Admitted	{	get;	set;	}

				public	int	AdmittanceGateNumber	{	get;	set;	}

}

//	set	up	a	list	of	fans	attending	the	event

List<Fan>	fansAttending	=	new	List<Fan>();

for	(int	i	=	0;	i	<	100;	i++)

				fansAttending.Add(new	Fan()	{	Name	=	"Fan"	+	i	});

Fan[]	fans	=	fansAttending.ToArray();

Each	gate	can	admit	only	one	person	at	a	time	and	at	crowded	events	such	as	these,	the
gates	are	usually	monitored	by	cameras.	We	will	use	a	static
ConcurrentDictionary<int,Fan>	to	represent	the	stadium	gates	as	well	as	which	Fan	is
currently	at	the	gate,	and	a	static	bool	(monitorGates)	to	indicate	when	the	gates	should
no	longer	be	monitored	(i.e.,	when	all	fans	have	entered	the	event):

private	static	ConcurrentDictionary<int,	Fan>	stadiumGates	=

				new	ConcurrentDictionary<int,	Fan>();

private	static	bool	monitorGates	=	true;

We	will	say	there	are	10	gates	(gateCount)	to	the	event	and	launch	a	Task	for	each	gate
with	the	AdmitFans	method	to	have	each	gate	admit	a	certain	number	of	fans.	We	will	also
launch	a	corresponding	Task	for	each	gate	to	have	the	security	monitors	turned	on	with	the
MonitorGate	method.	Once	all	of	the	fans	have	been	admitted,	we	will	stop	monitoring
the	gates:

int	gateCount	=	10;

Task[]	entryGates	=	new	Task[gateCount];

Task[]	securityMonitors	=	new	Task[gateCount];

for	(int	gateNumber	=	0;	gateNumber	<	gateCount;	gateNumber++)

{

				//FUN	FACT:

				//You	might	think	that	as	gateNumber	changes	in	the	for	loop	that	the	

				//creation	of	the	Task	admitting	the	Fan	would	capture	the	value	(0,1,2,etc.)	

				//at	the	point	in	time	that	the	Task	was	created.	As	it	turns	out,	the	Task	

				//will	use	the	CURRENT	value	in	the	gateNumber	variable	when	it	runs.

				//This	means	that	even	though	you	launched	a	Task	for	gate	0,	it	might	get	a

				//gateNumber	variable	with	9	in	it	as	the	loop	has	progressed	since	the	Task	

				//was	created.

				//To	deal	with	this,	we	assign	the	values	to	a	local	variable	which	fixes	the

				//scope	and	the	value	you	wanted	can	be	captured	by	the	Task	appropriately.

				int	GateNum	=	gateNumber;

				int	GateCount	=	gateCount;

				Action	action	=	delegate	()	{	AdmitFans(fans,	GateNum,	GateCount);	};

				entryGates[gateNumber]	=	Task.Run(action);

}

for	(int	gateNumber	=	0;	gateNumber	<	gateCount;	gateNumber++)

{

				int	GateNum	=	gateNumber;

				Action	action	=	delegate	()	{	MonitorGate(GateNum);	};

				securityMonitors[gateNumber]	=	Task.Run(action);

}

await	Task.WhenAll(entryGates);

//	Shut	down	monitoring

monitorGates	=	false;

AdmitFans	does	the	work	of	admitting	a	section	of	the	fans	by	using	the
ConcurrentDictionary<TKey,	TValue>.AddOrUpdate	method	to	show	that	the	Fan	is	in
the	gate	and	then	uses	the	ConcurrentDictionary<TKey,	TValue>.TryRemove	method	to
show	that	the	Fan	was	admitted	to	the	event:

private	static	void	AdmitFans(Fan[]	fans,	int	gateNumber,	int	gateCount)

{

				Random	rnd	=	new	Random();

				int	fansPerGate	=	fans.Length	/	gateCount;

				int	start	=	gateNumber	*	fansPerGate;

				int	end	=	start	+	fansPerGate	-	1;

				for	(int	f	=	start;	f	<=	end;	f++)

				{

								Console.WriteLine($"Admitting	{fans[f].Name}	through	gate	{gateNumber}");

								var	fanAtGate	=

												stadiumGates.AddOrUpdate(gateNumber,	fans[f],

																(key,	fanInGate)	=>

																{

																				Console.WriteLine($"{fanInGate.Name}	was	replaced	by	"	+

																								$"{fans[f].Name}	in	gate	{gateNumber}");

																				return	fans[f];

																});

								//	Perform	patdown	check	and	check	ticket

								Thread.Sleep(rnd.Next(500,	2000));

								//	Let	them	through	the	gate

								fans[f].Admitted	=	DateTime.Now;

								fans[f].AdmittanceGateNumber	=	gateNumber;

								Fan	fanAdmitted;

								if(stadiumGates.TryRemove(gateNumber,	out	fanAdmitted))

												Console.WriteLine($"{fanAdmitted.Name}	entering	event	from	gate	"	+

																$"{fanAdmitted.AdmittanceGateNumber}	on	"	+

																$"{fanAdmitted.Admitted.ToShortTimeString()}");

								else	//	if	we	couldn't	admit	them,	security	must	have	gotten	them…

												Console.WriteLine($"{fanAdmitted.Name}	held	by	security	"	+

																$"at	gate	{fanAdmitted.AdmittanceGateNumber}");

				}

}

MonitorGate	watches	the	provided	gate	number	(gateNumber)	by	inspecting	the
ConcurrentDictionary<TKey,	TValue>	using	the	TryGetValue	method.	MonitorGate
will	continue	to	monitor	until	the	monitorGates	flag	is	set	to	false	(after	the	AdmitFan
Tasks	have	completed):

private	static	void	MonitorGate(int	gateNumber)

{

				Random	rnd	=	new	Random();

				while	(monitorGates)

				{

								Fan	currentFanInGate;

								if	(stadiumGates.TryGetValue(gateNumber,	out	currentFanInGate))

												Console.WriteLine($"Monitor:	{currentFanInGate.Name}	is	in	Gate	"	+

																$"{gateNumber}");

								else

												Console.WriteLine($"Monitor:	No	fan	is	in	Gate	{gateNumber}");

								//	Wait	and	then	check	gate	again

								Thread.Sleep(rnd.Next(500,	5000));

				}

}

Discussion
ConcurrentDictionary<TKey,	TValue>	is	located	in	the
System.Collections.Concurrent	namespace	and	is	available	from	.NET	4.0	and	up.	It	is
a	collection	that	is	most	useful	in	multiple	read	and	multiple	write	scenarios.	If	you	are
simply	doing	multiple	reads	after	an	initialization,	ImmutableDictionary<TKey,TValue>
would	be	a	better	choice.	Since	the	dictionary	is	immutable	once	loaded,	it	is	a	much
faster	readable	collection.	When	you	manipulate	an	immutable	dictionary	a	whole	new
copy	of	the	original	dictionary	is	made,	which	can	be	very	expensive,	so	keep	this	in	your
back	pocket	for	collections	you	load	up	once	and	read	from	a	lot.

Note	that	the	Immutable	classes	are	not	part	of	the	core	.NET	Framework	libraries;	they
are	in	the	System.Collections.Immutable	assembly	in	the	Microsoft.Bcl.Immutable
NuGet	package,	which	you	would	need	to	include	in	your	application.

There	are	a	number	of	properties	and	methods	on	ConcurrentDictionary<TKey,	TValue>
that	cause	the	entire	collection	to	lock,	as	they	are	operating	on	all	of	the	items	in	the
collection	at	once.	These	properties	give	you	a	“point	in	time”	snapshot	of	the	data:

Count	property

Keys	property

Values	property

ToArray	method

A	“point	in	time”	representation	of	the	data	means	that	you’re	not	necessarily	getting	the
current	data	while	enumerating.	If	you	need	the	absolutely	current	data	from	the
dictionary,	use	the	GetEnumerator	method,	which	provides	an	enumerator	that	rolls	over
the	key/value	pairs	in	the	dictionary.	Since	GetEnumerator	guarantees	that	the	enumerator
is	safe	for	use	even	in	the	face	of	concurrent	updates	and	it	doesn’t	take	any	locks,	you	can
access	the	underlying	data	while	it	is	being	changed.	Note	that	this	means	that	your	results
could	change	during	the	enumeration.	See	the	“IEnumerable<T>.GetEnumerator”	topic	in
MSDN	for	a	more	detailed	description.

LINQ	uses	GetEnumerator	frequently	to	accomplish	its	goals,	so	you	can	avoid	the	lock
penalty	of	using	the	Keys	and	Values	properties	by	instead	using	a	LINQ	Select	to	get	the
items:

var	keys	=	stadiumGates.Select(gate	=>	gate.Key);

var	values	=	stadiumGates.Select(gate	=>	gate.Value);

For	counting,	LINQ	is	optimized	to	use	the	Count	property	on	collections	that	support	the
ICollection	interface,	which	is	not	what	we	want	in	this	case.	This	example	demonstrates
the	logic	of	the	Count	method;	the	Count	property	is	used	if	the	enumerable	supports

ICollection	or	ICollection<T>:

public	static	int	Count<TSource>(this	IEnumerable<TSource>	source)

	{

					if	(source	==	null)

					{

									throw	Error.ArgumentNull("source");

					}

					ICollection<TSource>	tSources	=	source	as	ICollection<TSource>;

					if	(tSources	!=	null)

					{

									return	tSources.Count;

					}

					ICollection	collections	=	source	as	ICollection;

					if	(collections	!=	null)

					{

									return	collections.Count;

					}

					int	num	=	0;

					using	(IEnumerator<TSource>	enumerator	=	source.GetEnumerator())

					{

									while	(enumerator.MoveNext())

									{

													num++;

									}

					}

					return	num;

	}

To	work	around	this,	get	an	enumerable	collection	of	the	items	that	doesn’t	support
ICollection	or	ICollection<T>	and	call	Count()	on	it:

var	count	=	stadiumGates.Select(gate	=>	gate).Count();

The	call	to	Select	returns	a	System.Linq.Enumerable.WhereSelectEnumerableIterator
that	does	not	support	ICollection	or	ICollection<T>	but	does	support	GetEnumerator.

The	main	manipulation	operations	on	ConcurrentDictionary<TKey,	TValue>	are
summed	up	in	Table	2-1.

Table	2-1.	ConcurrentDictionary	manipulation	operations

Method When	to	use
TryAdd Add	new	item	only	if	key	doesn’t	exist.
TryUpdate Update	an	existing	key	with	a	new	value	if	the	current	value	is	available.
Indexing Set	a	key/value	in	the	dictionary	unconditionally	whether	the	key	exists	or	not.
AddOrUpdate Set	a	key/value	in	the	dictionary	with	delegates	to	allow	different	entries	if	the	key	is	being	added	or

updated.
GetOrAdd Get	the	value	for	a	key	or	default	the	value	and	return	it	(lazy	initialization).
TryGetValue Get	the	value	for	the	key	or	return	false.
TryRemove Remove	the	value	for	the	key	or	return	false.

The	beginning	output	from	the	example	code	will	look	similar	to	this:

Admitting	Fan0	through	gate	0

Admitting	Fan10	through	gate	1

Admitting	Fan20	through	gate	2

Admitting	Fan30	through	gate	3

Admitting	Fan40	through	gate	4

Fan0	entering	event	from	gate	0	on	6:00	PM

Admitting	Fan1	through	gate	0

Fan20	entering	event	from	gate	2	on	6:00	PM

Fan10	entering	event	from	gate	1	on	6:00	PM

Admitting	Fan11	through	gate	1

Fan30	entering	event	from	gate	3	on	6:00	PM

Admitting	Fan31	through	gate	3

Admitting	Fan21	through	gate	2

Fan40	entering	event	from	gate	4	on	6:00	PM

Admitting	Fan41	through	gate	4

Admitting	Fan50	through	gate	5

Fan11	entering	event	from	gate	1	on	6:00	PM

Admitting	Fan12	through	gate	1

Fan1	entering	event	from	gate	0	on	6:00	PM

The	output	from	the	monitors	in	the	middle	of	the	example	code	run	will	look	similar	to
this:

...

Admitting	Fan17	through	gate	1

Fan6	entering	event	from	gate	0	on	6:00	PM

Admitting	Fan7	through	gate	0

Fan26	entering	event	from	gate	2	on	6:00	PM

Admitting	Fan27	through	gate	2

Fan36	entering	event	from	gate	3	on	6:00	PM

Admitting	Fan37	through	gate	3

Monitor:	Fan17	is	in	Gate	1

Fan83	entering	event	from	gate	8	on	6:00	PM

Admitting	Fan55	through	gate	5

Fan17	entering	event	from	gate	1	on	6:00	PM

Admitting	Fan18	through	gate	1…

The	output	at	the	end	of	the	example	code	will	look	like	this:

...

Monitor:	Fan97	is	in	Gate	9

Monitor:	No	fan	is	in	Gate	0

Fan77	entering	event	from	gate	7	on	6:00	PM

Admitting	Fan78	through	gate	7

Monitor:	No	fan	is	in	Gate	1

Fan97	entering	event	from	gate	9	on	6:00	PM

Admitting	Fan98	through	gate	9

Monitor:	No	fan	is	in	Gate	2

Monitor:	No	fan	is	in	Gate	3

Monitor:	No	fan	is	in	Gate	4

Monitor:	No	fan	is	in	Gate	5

Monitor:	No	fan	is	in	Gate	6

Monitor:	Fan78	is	in	Gate	7

Monitor:	No	fan	is	in	Gate	8

Fan78	entering	event	from	gate	7	on	6:00	PM

Admitting	Fan79	through	gate	7

Monitor:	Fan98	is	in	Gate	9

Monitor:	No	fan	is	in	Gate	2

Fan98	entering	event	from	gate	9	on	6:00	PM

Admitting	Fan99	through	gate	9

Monitor:	No	fan	is	in	Gate	1

Monitor:	No	fan	is	in	Gate	2

Fan79	entering	event	from	gate	7	on	6:00	PM

Fan99	entering	event	from	gate	9	on	6:00	PM

See	Also
The	“IEnumerable<T>.GetEnumerator”	and	“ConcurrentDictionary<TKey,	TValue>”
topics	in	the	MSDN	documentation.

Chapter	3.	Data	Types

3.0	Introduction
Simple	types	are	value	types	that	are	a	subset	of	the	built-in	types	in	C#,	although,	in	fact,
the	types	are	defined	as	part	of	the	.NET	Framework	Class	Library	(.NET	FCL).	Simple
types	are	made	up	of	several	numeric	types	and	a	bool	type.	Numeric	types	consist	of	a
decimal	type	(decimal),	nine	integral	types	(byte,	char,	int,	long,	sbyte,	short,	uint,
ulong,	and	ushort),	and	two	floating-point	types	(float	and	double).	Table	3-1	lists	the
simple	types	and	their	fully	qualified	names	in	the	.NET	Framework.

Table	3-1.	The	simple	data	types

Fully	qualified
name

Alias Value	range

System.Boolean bool true	or	false
System.Byte byte 0	to	255
System.SByte sbyte -128	to	127
System.Char char 0	to	65535
System.Decimal decimal -79,228,162,514,264,337,593,543,950,335	to

79,228,162,514,264,337,593,543,950,335

System.Double double -1.79769313486232e308	to	1.79769313486232e308
System.Single float -3.40282347E+38	to	3.40282347E+38
System.Int16 short -32768	to	32767
System.Uint16 ushort 0	to	65535
System.Int32 int -2,147,483,648	to	2,147,483,647
System.UInt32 uint 0	to	4,294,967,295
System.Int64 long -9,223,372,036,854,775,808	to	9,223,372,036,854,775,807
System.UInt64 ulong 0	to	18,446,744,073,709,551,615

When	you	are	dealing	with	floating-point	data	types,	precision	can	be	more	important	than
the	range	of	the	data	values.	The	precision	of	the	floating-point	data	types	is	listed	in
Table	3-2.

Table	3-2.	Floating-point
precision

Floating-point	type Precision

System.Single	(float) 7	digits

System.Double	(double) 15–16	digits

System.Decimal	(decimal) 28–29	digits

When	trying	to	decide	between	using	floats	and	decimals,	consider	the	following:

Floats	were	designed	for	scientists	to	represent	inexact	quantities	over	the	entire	range

of	precisions	and	magnitudes	used	in	physics.

Decimals	were	designed	for	use	by	ordinary	humans	who	do	math	in	base10	and	do	not
require	more	than	a	handful	of	digits	past	the	decimal	point,	or	who	are	keeping	track
of	money	in	situations	where	every	penny	counts	(such	as	reconciling	a	checkbook).

The	C#-reserved	words	for	the	various	data	types	are	simply	aliases	for	the	fully	qualified
type	name.	Therefore,	it	does	not	matter	whether	you	use	the	type	name	or	the	reserved
word:	the	C#	compiler	will	generate	identical	code.

Note	that	sbyte,	ushort,	uint,	and	ulong	are	not	compliant	with	the	Common	Language
Specification	(CLS),	and	as	a	result,	they	might	not	be	supported	by	other	.NET
languages.	Enumerations	implicitly	inherit	from	System.Enum,	which	in	turn	inherits	from
System.ValueType.	Enumerations	have	a	single	use:	to	describe	items	of	a	specific	group.
For	example,	red,	blue,	and	yellow	could	be	defined	by	the	enumeration	ShapeColor;
likewise,	square,	circle,	and	triangle	could	be	defined	by	the	enumeration	Shape.	These
enumerations	would	look	like	the	following:

enum	ShapeColor

{

				Red,	Blue,	Yellow

}

enum	Shape

{

				Square	=	2,	Circle	=	4,	Triangle	=	6

}

Each	item	in	the	enumeration	receives	a	numeric	value	regardless	of	whether	you	assign
one	or	not.	Since	the	compiler	automatically	adds	the	numbers	starting	with	zero	and
increments	by	one	for	each	item	in	the	enumeration,	the	ShapeColor	enumeration
previously	defined	would	be	exactly	the	same	if	it	were	defined	in	the	following	manner:

enum	ShapeColor

{

				Red	=	0,Blue	=	1,Yellow	=	2

}

Enumerations	are	good	code-documenting	tools.	For	example,	it	is	more	intuitive	to	write
the	following:

ShapeColor	currentColor	=	ShapeColor.Red;

instead	of	this:

int	currentColor	=	0;

Either	mechanism	will	work,	but	the	first	method	is	easy	to	read	and	understand,
especially	for	a	new	developer	taking	over	someone	else’s	code.	It	also	has	the	benefit	of
being	type-safe	in	C#,	which	the	use	of	raw	ints	does	not	provide.	The	CLR	sees

enumerations	as	members	of	their	underlying	types,	so	it	is	not	type-safe	for	all	languages.

3.1	Encoding	Binary	Data	as	Base64

Problem
You	have	a	byte[]	representing	some	binary	information,	such	as	a	bitmap.	You	need	to
encode	this	data	into	a	string	so	that	it	can	be	sent	over	a	binary-unfriendly	transport,	such
as	email.

Solution
Using	the	static	method	Convert.ToBase64String	on	the	Convert	class,	you	can	encode	a
byte[]	to	its	String	equivalent:

static	class	DataTypeExtMethods

{

				public	static	string	Base64EncodeBytes(this	byte[]	inputBytes)	=>

								(Convert.ToBase64String(inputBytes));

}

Discussion
Converting	a	string	into	its	base64	representation	has	several	uses.	It	allows	binary	data	to
be	embedded	in	nonbinary	files	such	as	XML	and	email	messages.	Base64-encoded	data
can	also	be	transmitted	via	HTTP,	GET,	and	POST	requests	in	a	more	compact	format
than	hex	encoding.	It	is	important	to	understand	that	data	that	is	converted	to	base64
format	is	only	obfuscated,	not	encrypted.	To	securely	move	data	from	one	place	to
another,	you	should	use	the	cryptography	algorithms	available	in	the	FCL.	For	an	example
of	using	the	FCL	cryptography	classes,	see	Recipe	11.4.

The	Convert	class	makes	encoding	between	a	byte[]	and	a	String	a	simple	matter.	The
parameters	for	this	method	are	quite	flexible,	enabling	you	to	start	and	stop	the	conversion
at	any	point	in	the	input	byte	array.

To	encode	a	bitmap	file	into	a	string	that	can	be	sent	to	some	destination,	you	can	use	the
EncodeBitmapToString	method:

public	static	string	EncodeBitmapToString(string	bitmapFilePath)

{

				byte[]	image	=	null;

				FileStream	fstrm	=

								new	FileStream(bitmapFilePath,

																								FileMode.Open,	FileAccess.Read);

				using	(BinaryReader	reader	=	new	BinaryReader(fstrm))

				{

								image	=	new	byte[reader.BaseStream.Length];

								for	(int	i	=	0;	i	<	reader.BaseStream.Length;	i++)

												image[i]	=	reader.ReadByte();

				}

				return	image.Base64EncodeBytes();

}

WARNING
The	MIME	standard	requires	that	each	line	of	the	base64-encoded	string	be	76	characters	long.	To	send	the
bmpAsString	string	as	an	embedded	MIME	attachment	in	an	email	message,	you	must	insert	a	CRLF	on
each	76-character	boundary.

The	code	to	turn	a	base64-encoded	string	into	a	MIME-ready	string	is	shown	in	the
following	MakeBase64EncodedStringForMime	method:

public	static	string	MakeBase64EncodedStringForMime(string	base64Encoded)

{

				StringBuilder	originalStr	=	new	StringBuilder(base64Encoded);

				StringBuilder	newStr	=	new	StringBuilder();

				const	int	mimeBoundary	=	76;

				int	cntr	=	1;

				while	((cntr	*	mimeBoundary)	<	(originalStr.Length	-	1))

				{

								newStr.AppendLine(originalStr.ToString(((cntr	-	1)	*	mimeBoundary),

												mimeBoundary));

								cntr++;

				}

				if	(((cntr	-	1)	*	mimeBoundary)	<	(originalStr.Length	-	1))

				{

								newStr.AppendLine(originalStr.ToString(((cntr	-	1)	*	mimeBoundary),

												((originalStr.Length)	-	((cntr	-	1)	*	mimeBoundary))));

				}

				return	newStr.ToString();

}

To	decode	an	encoded	string	to	a	byte[],	see	Recipe	3.2.

See	Also
Recipe	3.2,	and	the	“Convert.ToBase64CharArray	Method”	topic	in	the	MSDN
documentation.

3.2	Decoding	a	Base64-Encoded	Binary

Problem
You	have	a	String	that	contains	information	such	as	a	bitmap	encoded	as	base64.	You
need	to	decode	this	data	(which	may	have	been	embedded	in	an	email	message)	from	a
String	into	a	byte[]	so	that	you	can	access	the	original	binary.

Solution
Using	the	static	method	Convert.FromBase64String	on	the	Convert	class,	you	can
decode	an	encoded	String	to	its	equivalent	byte[]	as	follows:

static	class	DataTypeExtMethods

{

				public	static	byte[]	Base64DecodeString(this	string	inputStr)

				{

								byte[]	decodedByteArray	=

																	Convert.FromBase64String(inputStr);

								return	(decodedByteArray);

				}

}

Discussion
The	static	FromBase64String	method	on	the	Convert	class	makes	decoding	a	base64-
encoded	string	a	simple	matter.	This	method	returns	a	byte[]	that	contains	the	decoded
elements	of	the	String.

If	you	receive	a	file	via	email,	such	as	an	image	file	(.bmp)	that	has	been	converted	to	a
string,	you	can	convert	it	back	into	its	original	bitmap	file	using	something	like	the
following:

//	Use	the	encoding	method	from	3.1	to	get	the	encoded	byte	array

string	bmpAsString	=	EncodeBitmapToString(@"CSCBCover.bmp");

//Get	a	temp	file	name	and	path	to	write	to

string	bmpFile	=	Path.GetTempFileName()	+	".bmp";

//	decode	the	image	with	the	extension	method

byte[]	imageBytes	=	bmpAsString.Base64DecodeString();

FileStream	fstrm	=	new	FileStream(bmpFile,

																				FileMode.CreateNew,	FileAccess.Write);

using	(BinaryWriter	writer	=	new	BinaryWriter(fstrm))

{

				writer.Write(imageBytes);

}

In	this	code,	the	bmpAsString	variable	was	obtained	from	the	code	in	the	Discussion
section	of	Recipe	3.3.	The	imageBytes	byte[]	is	the	bmpAsString	String	converted
back	to	a	byte[],	which	can	then	be	written	back	to	disk.

To	encode	a	byte[]	to	a	String,	see	Recipe	3.1.

See	Also
Recipe	3.1,	and	the	“Convert.FromBase64CharArray	Method”	topic	in	the	MSDN
documentation.

3.3	Converting	a	String	Returned	as	a	Byte[]	Back	into	a
String

Problem
Many	methods	in	the	FCL	return	a	byte[]	because	they	are	providing	a	byte	stream
service,	but	some	applications	need	to	pass	strings	over	these	byte	stream	services.	Some
of	these	methods	include:

System.Diagnostics.EventLogEntry.Data

System.IO.BinaryReader.Read

System.IO.BinaryReader.ReadBytes

System.IO.FileStream.Read

System.IO.FileStream.BeginRead

System.IO.MemoryStream	//	Constructor

System.IO.MemoryStream.Read

System.IO.MemoryStream.BeginRead

System.Net.Sockets.Socket.Receive

System.Net.Sockets.Socket.ReceiveFrom

System.Net.Sockets.Socket.BeginReceive

System.Net.Sockets.Socket.BeginReceiveFrom

System.Net.Sockets.NetworkStream.Read

System.Net.Sockets.NetworkStream.BeginRead

System.Security.Cryptography.CryptoStream.Read

System.Security.Cryptography.CryptoStream.BeginRead

In	many	cases,	this	byte[]	might	contain	ASCII-	or	Unicode-encoded	characters.	You
need	a	way	to	recombine	this	byte[]	to	obtain	the	original	string.

Solution
To	convert	a	byte	array	of	ASCII	values	to	a	complete	string,	use	the	GetString	method
on	the	ASCII	Encoding	class:

byte[]	asciiCharacterArray	=	{128,	83,	111,	117,	114,	99,	101,

																												32,	83,	116,	114,	105,	110,	103,	128};

string	asciiCharacters	=	Encoding.ASCII.GetString(asciiCharacterArray);

To	convert	a	byte	array	of	Unicode	values	to	a	complete	string,	use	the	GetString
method	on	the	Unicode	Encoding	class:

byte[]	unicodeCharacterArray	=	{128,	0,	83,	0,	111,	0,	117,	0,	114,	0,	99,	0,

																												101,	0,	32,	0,	83,	0,	116,	0,	114,	0,	105,	0,	110,

																								0,	103,	0,	128,	0};

string	unicodeCharacters	=	Encoding.Unicode.GetString(unicodeCharacterArray);

Discussion
The	GetString	method	of	the	Encoding	class	(returned	by	the	ASCII	property)	converts	7-
bit	ASCII	characters	contained	in	a	byte	array	to	a	string.	Any	value	larger	than	127
(0x7F)	will	be	ANDed	with	the	value	127	(0x7F),	and	the	resulting	character	value	will	be
displayed	in	the	string.	For	example,	if	the	byte[]	contains	the	value	200	(0xC8),	this
value	will	be	converted	to	72	(0x48),	and	the	character	equivalent	of	72	(0x48),	H,	will	be
displayed.	The	Encoding	class	can	be	found	in	the	System.Text	namespace.	The
GetString	method	is	overloaded	to	accept	additional	arguments	as	well.	The	overloaded
versions	of	the	method	convert	all	or	part	of	a	string	to	ASCII	and	then	store	the	result	in	a
specified	range	inside	a	byte[].

The	GetString	method	returns	a	string	containing	the	converted	byte[]	of	ASCII
characters.

The	GetString	method	of	the	Encoding	class	(returned	by	the	Unicode	property)	converts
Unicode	characters	into	16-bit	Unicode	values.	The	Encoding	class	can	be	found	in	the
System.Text	namespace.	The	GetString	method	returns	a	string	containing	the
converted	byte[]	of	Unicode	characters.

See	Also
The	“ASCIIEncoding	Class”	and	“UnicodeEncoding	Class”	topics	in	the	MSDN
documentation.

3.4	Passing	a	String	to	a	Method	That	Accepts	Only	a	Byte[]

Problem
Many	methods	in	the	FCL	accept	a	byte[]	consisting	of	characters	instead	of	a	string.
Some	of	these	methods	include:

System.Diagnostics.EventLog.WriteEntry

System.IO.BinaryWriter.Write

System.IO.FileStream.Write

System.IO.FileStream.BeginWrite

System.IO.MemoryStream.Write

System.IO.MemoryStream.BeginWrite

System.Net.Sockets.Socket.Send

System.Net.Sockets.Socket.SendTo

System.Net.Sockets.Socket.BeginSend

System.Net.Sockets.Socket.BeginSendTo

System.Net.Sockets.NetworkStream.Write

System.Net.Sockets.NetworkStream.BeginWrite

System.Security.Cryptography.CryptoStream.Write

System.Security.Cryptography.CryptoStream.BeginWrite

In	many	cases,	you	might	have	a	string	that	you	need	to	pass	into	one	of	these	methods
or	some	other	method	that	accepts	only	a	byte[].	You	need	a	way	to	break	up	this	string
into	a	byte[].

Solution
To	convert	a	string	to	a	byte[]	of	ASCII	values,	use	the	GetBytes	method	on	the	ASCII
Encoding	class:

byte[]	asciiCharacterArray	=	{128,	83,	111,	117,	114,	99,	101,

																												32,	83,	116,	114,	105,	110,	103,	128};

string	asciiCharacters	=	Encoding.ASCII.GetString(asciiCharacterArray);

byte[]	asciiBytes	=	Encoding.ASCII.GetBytes(asciiCharacters);

To	convert	a	string	to	a	byte[]	of	Unicode	values,	use	the	GetBytes	method	on	the
Unicode	Encoding	class:

byte[]	unicodeCharacterArray	=	{128,	0,	83,	0,	111,	0,	117,	0,	114,	0,	99,	0,

																												101,	0,	32,	0,	83,	0,	116,	0,	114,	0,	105,	0,	110,

																												0,	103,	0,	128,	0};

string	unicodeCharacters	=	Encoding.Unicode.GetString(unicodeCharacterArray);

byte[]	unicodeBytes	=	Encoding.Unicode.GetBytes(unicodeCharacters);

Discussion
The	GetBytes	method	of	the	Encoding	class	(returned	by	the	ASCII	property)	converts
ASCII	characters	—	contained	in	either	a	char[]	or	a	string	—	into	a	byte[]	of	7-bit
ASCII	values.	Any	value	larger	than	127	(0x7F)	is	converted	to	the	?	character.	The
Encoding	class	can	be	found	in	the	System.Text	namespace.	The	GetBytes	method	is
overloaded	to	accept	additional	arguments	as	well.	The	overloaded	versions	of	the	method
convert	all	or	part	of	a	string	to	ASCII	and	then	store	the	result	in	a	specified	range	inside
a	byte[],	which	is	returned	to	the	caller.

The	GetBytes	method	of	the	Encoding	class	(returned	by	the	Unicode	property)	converts
Unicode	characters	into	16-bit	Unicode	values.	The	Encoding	class	can	be	found	in	the
System.Text	namespace.	The	GetBytes	method	returns	a	byte[],	each	element	of	which
contains	the	Unicode	value	of	a	single	character	of	the	string.

A	single	Unicode	character	in	the	source	string	or	in	the	source	char[]	corresponds	to
two	elements	of	the	byte[].	For	example,	the	following	byte[]	contains	the	ASCII	value
of	the	letter	S:

byte[]	sourceArray	=	{83};

However,	for	a	byte[]	to	contain	a	Unicode	representation	of	the	letter	S,	it	must	contain
two	elements.	For	example:

byte[]	sourceArray2	=	{83,	0};

The	Intel	architecture	uses	a	little-endian	encoding,	which	means	that	the	first	element	is
the	least	significant	byte,	and	the	second	element	is	the	most	significant	byte.	Other
architectures	may	use	big-endian	encoding,	which	is	the	opposite	of	little-endian
encoding.	The	UnicodeEncoding	class	supports	both	big-endian	and	little-endian
encodings.	Using	the	UnicodeEncoding	instance	constructor,	you	can	construct	an
instance	that	uses	either	big-endian	or	little-endian	ordering.	You	do	so	by	using	one	of	the
two	following	constructors:

public	UnicodeEncoding	(bool	bigEndian,	bool	byteOrderMark);

public	UnicodeEncoding	(bool	bigEndian,	bool	byteOrderMark,

																								bool	throwOnInvalidBytes);

The	first	parameter,	bigEndian,	accepts	a	Boolean	argument.	Set	this	argument	to	true	to
use	big-endian	or	false	to	use	little-endian.

In	addition,	you	have	the	option	to	indicate	whether	a	byte	order	mark	preamble	should	be
generated	so	that	readers	of	the	file	will	know	which	endianness	is	in	use.

See	Also
The	“ASCIIEncoding	Class”	and	“UnicodeEncoding	Class”	topics	in	the	MSDN
documentation.

3.5	Determining	Whether	a	String	Is	a	Valid	Number

Problem
You	have	a	string	that	possibly	contains	a	numeric	value.	You	need	to	know	whether	this
string	contains	a	valid	number.

Solution
Use	the	static	TryParse	method	of	any	of	the	numeric	types.	For	example,	to	determine
whether	a	string	contains	a	double,	use	the	following	method:

string	str	=	"12.5";

double	result	=	0;

if(double.TryParse(str,

								System.Globalization.NumberStyles.Float,

								System.Globalization.NumberFormatInfo.CurrentInfo,

								out	result))

{

						//	Is	a	double!

}

Discussion
This	recipe	shows	how	to	determine	whether	a	string	contains	only	a	numeric	value.	The
TryParse	method	returns	true	if	the	string	contains	a	valid	number	without	the	exception
that	you	will	get	if	you	use	the	Parse	method.

See	Also
The	“Parse”	and	“TryParse”	topics	in	the	MSDN	documentation.

3.6	Rounding	a	Floating-Point	Value

Problem
You	need	to	round	a	number	to	a	whole	number	or	to	a	specific	number	of	decimal	places.

Solution
To	round	any	number	to	its	nearest	whole	number,	use	the	overloaded	static	Math.Round
method,	which	takes	only	a	single	argument:

int	i	=	(int)Math.Round(2.5555);	//	i	==	3

If	you	need	to	round	a	floating-point	value	to	a	specific	number	of	decimal	places,	use	the
overloaded	static	Math.Round	method,	which	takes	two	arguments:

double	dbl	=	Math.Round(2.5555,	2);	//	dbl	==	2.56

Discussion
The	Round	method	is	easy	to	use;	however,	you	need	to	be	aware	of	how	the	rounding
operation	works.	The	Round	method	follows	IEEE	Standard	754,	section	4.	This	means
that	if	the	number	being	rounded	is	halfway	between	two	numbers,	the	Round	operation
will	always	round	to	the	even	number.	This	example	illustrates	the	standard:

double	dbl1	=	Math.Round(1.5);	//	dbl1	==	2

double	dbl2	=	Math.Round(2.5);	//	dbl2	==	2

Notice	that	1.5	is	rounded	up	to	the	nearest	even	whole	number	(2)	and	2.5	is	rounded
down	to	the	nearest	even	whole	number	(also	2).	Keep	this	in	mind	when	using	the	Round
method.

NOTE
This	method	is	known	as	Banker’s	Rounding;	it	was	invented	because	it	introduces	less	bias	when	you’re
rounding	large	sets	of	numbers	that	include	halves,	as	sets	containing	currencies	often	do.

See	Also
The	“Math	Class”	topic	in	the	MSDN	documentation.

3.7	Choosing	a	Rounding	Algorithm

Problem
The	Math.Round	method	will	round	the	value	1.5	to	2;	however,	it	will	also	round	the
value	2.5	to	2.	You	might	prefer	to	round	to	the	greater	number	(e.g.,	round	2.5	to	3
instead	of	2).	Conversely,	you	might	prefer	to	round	to	the	lesser	number	(e.g.,	round	1.5
to	1).

Solution
Use	the	static	Math.Floor	method	to	always	round	up	when	a	value	is	halfway	between
two	whole	numbers:

public	static	double	RoundUp(double	valueToRound)	=>

				Math.Floor(valueToRound	+	0.5);

Use	the	following	technique	to	always	round	down	when	a	value	is	halfway	between	two
whole	numbers:

public	static	double	RoundDown(double	valueToRound)

{

				double	floorValue	=	Math.Floor(valueToRound);

				if	((valueToRound	-	floorValue)	>	.5)

								return	(floorValue	+	1);

				else

								return	(floorValue);

}

Discussion
The	static	Math.Round	method	rounds	to	the	nearest	even	number.	However,	there	are
times	that	you	do	not	want	to	round	a	number	in	this	manner.	The	static	Math.Floor
method	can	be	used	to	allow	for	different	manners	of	rounding.

NOTE
The	methods	used	to	round	numbers	in	this	recipe	do	not	round	to	a	specific	number	of	decimal	points;
rather,	they	round	to	the	nearest	whole	number.

See	Also
The	“Math	Class”	topic	in	the	MSDN	documentation.

3.8	Safely	Performing	a	Narrowing	Numeric	Cast

Problem
You	need	to	cast	a	value	from	a	larger	value	to	a	smaller	one,	while	gracefully	handling
conditions	that	result	in	a	loss	of	information.	For	example,	casting	a	long	to	an	int
results	in	a	loss	of	information	only	if	the	long	data	type	is	greater	than	int.MaxSize.

Solution
The	simplest	way	to	handle	this	scenario	is	to	use	the	checked	keyword.	The	following
extension	method	accepts	two	long	data	types	and	attempts	to	add	them	together.	The
result	is	stuffed	into	an	int	data	type.	If	an	overflow	condition	exists,	the
OverflowException	is	thrown:

public	static	class	DataTypeExtMethods

{

				public	static	int	AddNarrowingChecked(this	long	lhs,	long	rhs)	=>

								checked((int)(lhs	+	rhs));

}

//	Code	that	uses	the	extension	method

long	lhs	=	34000;

long	rhs	=	long.MaxValue;

try

{

				int	result	=	lhs.AddNarrowingChecked(rhs);

}

catch(OverflowException)

{

				//	could	not	be	added

}

This	is	the	simplest	method.	However,	if	you	do	not	want	the	overhead	of	throwing	an
exception	and	having	to	wrap	a	lot	of	code	in	try-catch	blocks	to	handle	the	overflow
condition,	you	can	use	the	MaxValue	and	MinValue	fields	of	each	type.	You	can	perform	a
check	using	these	fields	prior	to	the	conversion	to	ensure	that	no	information	is	lost.	If	the
cast	will	cause	an	information	loss,	the	code	can	inform	the	application	beforehand.	You
can	use	the	following	conditional	statement	to	determine	whether	sourceValue	can	be	cast
to	a	short	without	losing	any	information:

//	Our	two	variables	are	declared	and	initialized.

int	sourceValue	=	34000;

short	destinationValue	=	0;

//	Determine	if	sourceValue	will	lose	information	in	a	cast	to	a	short.

if	(sourceValue	<=	short.MaxValue	&&	sourceValue	>=	short.MinValue)

				destinationValue	=	(short)sourceValue;

else

{

				//	Inform	the	application	that	a	loss	of	information	will	occur.

}

Discussion
A	narrowing	conversion	occurs	when	a	larger	type	is	cast	down	to	a	smaller	type.	For
instance,	consider	casting	a	value	of	type	Int32	to	a	value	of	type	Int16.	If	the	Int32
value	is	less	than	or	equal	to	the	Int16.MaxValue	field	and	the	Int32	value	is	greater	than
or	equal	to	the	Int16.MinValue	field,	the	cast	will	occur	without	error	or	loss	of
information.	Loss	of	information	occurs	when	the	Int32	value	is	greater	than	the
Int16.MaxValue	field	or	the	Int32	value	is	less	than	the	Int16.MinValue	field.	In	either
case,	the	most	significant	bits	of	the	Int32	value	are	truncated	and	discarded,	changing	the
value	after	the	cast.

If	a	loss	of	information	occurs	in	an	unchecked	context,	it	will	occur	silently	without	the
application	noticing.	This	problem	can	cause	some	very	insidious	bugs	that	are	hard	to
track	down.	To	prevent	this,	check	the	value	to	be	converted	to	determine	whether	it	is
within	the	lower	and	upper	bounds	of	the	type	that	it	will	be	cast	to.	If	the	value	is	outside
these	bounds,	then	code	can	be	written	to	handle	this	situation.	This	code	could	prevent
the	cast	from	occurring	and/or	inform	the	application	of	the	casting	problem.	This	solution
can	help	prevent	hard-to-find	arithmetic	bugs	from	creeping	into	your	applications.

Both	techniques	shown	in	the	Solution	section	are	valid.	However,	the	technique	you	use
will	depend	on	whether	you	expect	to	hit	the	overflow	case	on	a	regular	basis	or	only
occasionally.	If	you	expect	to	hit	the	overflow	case	quite	often,	you	might	want	to	choose
the	second	technique	of	manually	testing	the	numeric	value.	Otherwise,	it	might	be	easier
to	use	the	checked	keyword,	as	in	the	first	technique.

NOTE
In	C#,	code	can	run	in	either	a	checked	or	unchecked	context;	by	default,	the	code	runs	in	an	unchecked
context.	In	a	checked	context,	any	arithmetic	and	conversions	involving	integral	types	are	examined	to
determine	whether	an	overflow	condition	exists.	If	so,	an	OverflowException	is	thrown.	In	an	unchecked
context,	no	OverflowException	will	be	thrown	when	an	overflow	condition	exists.

You	can	set	up	a	checked	context	by	using	the	/checked{+}	compiler	switch	to	set	the	Check	for	Arithmetic
Overflow/Underflow	project	property	to	true,	or	by	using	the	checked	keyword.	You	can	set	up	an
unchecked	context	by	using	the	/checked-	compiler	switch	to	set	the	Check	for	Arithmetic
Overflow/Underflow	project	property	to	false,	or	by	using	the	unchecked	keyword.

You	should	be	aware	of	the	following	when	performing	a	conversion:

Casting	from	a	float,	double,	or	decimal	type	to	an	integral	type	results	in	the
truncation	of	the	fractional	portion	of	this	number.	Furthermore,	if	the	integral	portion
of	the	number	exceeds	MaxValue	for	the	target	type,	the	result	will	be	undefined	unless
the	conversion	is	done	in	a	checked	context,	in	which	case	it	will	trigger	an
OverflowException.

Casting	from	a	float	or	double	to	a	decimal	results	in	the	float	or	double	being
rounded	to	28	decimal	places.

Casting	from	a	double	to	a	float	results	in	the	double	being	rounded	to	the	nearest

float	value.

Casting	from	a	decimal	to	a	float	or	double	results	in	the	decimal	being	rounded	to
the	resulting	type	(float	or	double).

Casting	from	an	int,	uint,	or	long	to	a	float	could	result	in	the	loss	of	precision,	but
never	magnitude.

Casting	from	a	long	to	a	double	could	result	in	the	loss	of	precision,	but	never
magnitude.

See	Also
The	“Checked	Keyword”	and	“Checked	and	Unchecked”	topics	in	the	MSDN
documentation.

3.9	Testing	for	a	Valid	Enumeration	Value

Problem
When	you	pass	a	numeric	value	to	a	method	that	accepts	an	enumeration	type,	it	is
possible	to	pass	a	value	that	does	not	exist	in	the	enumeration.	You	want	to	perform	a	test
before	using	this	numeric	value	to	determine	if	it	is	indeed	one	of	the	ones	defined	in	this
enumeration	type.

Solution
To	prevent	this	problem,	test	for	the	specific	enumeration	values	that	you	allow	for	the
enumeration-type	parameter	using	a	switch	statement	to	list	the	values.

Using	the	following	Language	enumeration:

public	enum	Language

{

				Other	=	0,	CSharp	=	1,	VBNET	=	2,	VB6	=	3,

				All	=	(Other	|	CSharp	|	VBNET	|	VB6)

}

Suppose	you	have	a	method	that	accepts	the	Language	enumeration,	such	as	the	following
method:

public	void	HandleEnum(Language	language)

{

				//	Use	language	here…

}

You	need	a	method	to	define	the	enumeration	values	you	can	accept	in	HandleEnum.	The
CheckLanguageEnumValue	method	shown	here	does	that:

public	static	bool	CheckLanguageEnumValue(Language	language)

{

				switch	(language)

				{

								//	all	valid	types	for	the	enum	listed	here

								//	this	means	only	the	ones	we	specify	are	valid

								//	not	any	enum	value	for	this	enum

								case	Language.CSharp:

								case	Language.Other:

								case	Language.VB6:

								case	Language.VBNET:

												break;

								default:

												Debug.Assert(false,	

																$"{language}	is	not	a	valid	enumeration	value	to	pass.");

												return	false;

				}

				return	true;

}

Discussion
Although	the	Enum	class	contains	the	static	IsDefined	method,	it	should	not	be	used.
IsDefined	uses	reflection	internally,	which	incurs	a	performance	penalty.	Also,	versioning
of	the	enumeration	is	not	handled	well.	Consider	the	scenario	in	which	you	add	the	value
ManagedCPlusPlus	to	the	Languages	enum	in	the	next	version	of	your	software.	If
IsDefined	is	used	to	check	the	argument	here,	it	will	allow	MgdCpp	as	a	valid	value,	since
it	is	defined	in	the	enumeration,	even	though	the	code	for	which	you	are	validating	the
parameter	is	not	designed	to	handle	it.	By	being	specific	with	the	switch	statement	shown
in	CheckLanguageEnumValue,	you	reject	the	MgdCpp	value,	and	the	code	does	not	try	to	run
in	an	invalid	context.	This	is,	after	all,	what	you	were	after	in	the	first	place.

The	enumeration	check	should	always	be	used	whenever	the	method	is	visible	to	external
objects.	An	external	object	can	invoke	methods	with	public	visibility,	so	any	enumerated
value	passed	in	to	this	method	should	be	screened	before	it	is	actually	used.

Methods	with	private	visibility	may	not	need	this	extra	level	of	protection.	Use	your	own
judgment	on	whether	to	use	the	CheckLanguageEnumValue	method	to	evaluate
enumeration	values	passed	in	to	private	methods.

The	HandleEnum	method	can	be	called	in	several	different	ways,	two	of	which	are	shown
here:

HandleEnum(Language.CSharp);

HandleEnum((Language)1);	//	1	is	CSharp

Either	of	these	method	calls	is	valid.	Unfortunately,	the	following	method	calls	are	also
valid:

HandleEnum((Language)100);

int	someVar	=	42;

HandleEnum((Language)someVar);

These	method	calls	will	also	compile	without	errors,	but	odd	behavior	will	result	if	the
code	in	HandleEnum	tries	to	use	the	value	passed	in	to	it	(in	this	case,	the	value	100).	In
many	cases,	an	exception	will	not	even	be	thrown;	HandleEnum	just	receives	the	value	100
as	an	argument,	as	if	it	were	a	legitimate	value	of	the	Language	enumeration.

The	CheckLanguageEnumValue	method	prevents	this	from	happening	by	screening	the
argument	for	valid	Language	enumeration	values.	The	following	code	shows	the	modified
body	of	the	HandleEnum	method:

public	static	void	HandleEnum(Language	language)

{

				if	(CheckLanguageEnumValue(language))

				{

								//	Use	language	here

								Console.WriteLine($"{language}	is	an	OK	enum	value");

				}

				else

				{

								//	Deal	with	the	invalid	enum	value	here

								Console.WriteLine($"{language}	is	not	an	OK	enum	value");

				}

}

See	Also
To	test	for	a	valid	enumeration	within	an	enumeration	marked	with	the	Flags	attribute,	see
Recipe	3.10.

3.10	Using	Enumerated	Members	in	a	Bit	Mask

Problem
You	need	an	enumeration	of	values	to	act	as	bit	flags	that	can	be	ORed	together	to	create	a
combination	of	values	(flags)	in	the	enumeration.

Solution
Mark	the	enumeration	with	the	Flags	attribute:

[Flags]

public	enum	RecycleItems

{

				None									=	0x00,

				Glass								=	0x01,

				AluminumCans	=	0x02,

				MixedPaper			=	0x04,

				Newspaper				=	0x08

}

Combining	elements	of	this	enumeration	is	a	simple	matter	of	using	the	bitwise	OR
operator	(|).	For	example:

RecycleItems	items	=	RecycleItems.Glass	|	RecycleItems.Newspaper;

Discussion
Adding	the	Flags	attribute	to	an	enumeration	marks	this	enumeration	as	individual	bit
flags	that	can	be	ORed	together.	Using	an	enumeration	of	flags	is	no	different	than	using	a
regular	enumeration	type.	Note	that	failing	to	mark	an	enumeration	with	the	Flags
attribute	will	not	generate	an	exception	or	a	compile-time	error,	even	if	the	enumeration
values	are	used	as	bit	flags.

The	addition	of	the	Flags	attribute	provides	you	with	two	benefits.	First,	if	the	Flags
attribute	is	placed	on	an	enumeration,	the	ToString	and	ToString("G")	methods	return	a
string	consisting	of	the	name	of	the	constant(s)	separated	by	commas.	Otherwise,	these
two	methods	return	the	numeric	representation	of	the	enumeration	value.	Note	that	the
ToString("F")	method	returns	a	string	consisting	of	the	name	of	the	constant(s)	separated
by	commas,	regardless	of	whether	this	enumeration	is	marked	with	the	Flags	attribute.
The	second	benefit	is	that	when	you	examine	the	code	and	encounter	an	enumeration,	you
can	better	determine	the	developer’s	intention	for	this	enumeration.	If	the	developer
explicitly	defined	it	as	containing	bit	flags	(with	the	Flags	attribute),	you	can	use	it	as
such.

An	enumeration	tagged	with	the	Flags	attribute	can	be	viewed	as	a	single	value	or	as	one
or	more	values	combined	into	a	single	enumeration	value.	If	you	need	to	accept	multiple
languages	at	a	single	time,	you	can	write	the	following	code:

RecycleItems	items	=	RecycleItems.Glass	|	RecycleItems.Newspaper;

The	variable	items	is	now	equal	to	the	bit	values	of	the	two	enumeration	values	ORed
together.	These	values	ORed	together	will	equal	3,	as	shown	here:

RecycleItems.Glass									0001

RecycleItems.AluminumCans		0010

ORed	bit	values												0011

The	enumeration	values	were	converted	to	binary	and	ORed	together	to	get	the	binary
value	0011,	or	3	in	base10.	The	compiler	views	this	value	both	as	two	individual
enumeration	values	(RecycleItems.Glass	and	RecycleItems.AluminumCans)	ORed
together	or	as	a	single	value	(3).

To	determine	if	a	single	flag	has	been	turned	on	in	an	enumeration	variable,	use	the
bitwise	AND	(&)	operator,	as	follows:

RecycleItems	items	=	RecycleItems.Glass	|	RecycleItems.Newspaper;

if((items	&	RecycleItems.Glass)	==	RecycleItems.Glass)

				Console.WriteLine("The	enum	contains	the	C#	enumeration	value");

else

				Console.WriteLine("The	enum	does	NOT	contain	the	C#	value");

This	code	will	display	the	text	The	enum	contains	the	C#	enumeration	value.	The

ANDing	of	these	two	values	will	produce	0	if	the	variable	items	does	not	contain	the
value	RecycleItems.Glass,	or	produce	RecycleItems.Glass	if	items	contains	this
enumeration	value.	Basically,	ANDing	these	two	values	looks	like	this	in	binary:

RecycleItems.Glass	|	RecycleItems.AluminumCans	0011

RecycleItems.Glass																													0001

ANDed	bit	values																															0001

We	will	deal	with	this	in	more	detail	in	Recipe	3.11.

In	some	cases,	the	enumeration	can	grow	quite	large.	You	can	add	many	other	recyclable
items	to	this	enumeration,	as	shown	here:

[Flags]

public	enum	RecycleItems

{

				None									=	0x00,

				Glass								=	0x01,

				AluminumCans	=	0x02,

				MixedPaper			=	0x04,

				Newspaper				=	0x08,

				TinCans						=	0x10,

				Cardboard				=	0x20,

				ClearPlastic	=	0x40,

}

If	you	needed	a	RecycleItems	enumeration	value	to	represent	all	recyclable	items,	you
would	have	to	OR	together	each	value	of	this	enumeration:

RecycleItems	items	=	RecycleItems.Glass	|	RecycleItems.AluminumCans	|

																					RecycleItems.MixedPaper;

Instead	of	doing	this,	you	can	simply	add	a	new	value	to	this	enumeration	that	includes	all
recyclable	items:

[Flags]

public	enum	RecycleItems

{

				None												=	0x00,

				Glass											=	0x01,

				AluminumCans				=	0x02,

				MixedPaper						=	0x04,

				Newspaper							=	0x08,

				TinCans									=	0x10,

				Cardboard							=	0x20,

				ClearPlastic				=	0x40,

				All	=	(None	|	Glass	|	AluminumCans	|	MixedPaper	|	Newspaper	|	TinCans	|

											Cardboard	|	ClearPlastic)

}

Now	there	is	a	single	enumeration	value,	All,	that	encompasses	every	value	of	this
enumeration.	Notice	that	there	are	two	methods	of	creating	the	All	enumeration	value.
The	second	method	is	much	easier	to	read.	Regardless	of	which	method	you	use,	if
individual	language	elements	of	the	enumeration	are	added	or	deleted,	you	will	have	to
modify	the	All	value	accordingly.

NOTE
You	should	provide	a	None	value	for	all	enums	even	where	“none	of	the	above”	does	not	make	sense,
because	it	is	always	legal	to	assign	literal	0	to	an	enum,	and	because	enum	variables,	which	begin	their	lives
assigned	to	their	default	values,	start	as	0.

Similarly,	you	can	also	add	values	to	capture	specific	subsets	of	enumeration	values	as
follows:

[Flags]

enum	Language

{

				CSharp	=	0x0001,	VBNET	=	0x0002,	VB6	=	0x0004,	Cpp	=	0x0008,

				CobolNET	=	0x000F,	FortranNET	=	0x0010,	JSharp	=	0x0020,

				MSIL	=	0x0080,

				All	=	(CSharp	|	VBNET	|	VB6	|	Cpp	|	FortranNET	|	JSharp	|	MSIL),

				VBOnly	=	(VBNET	|	VB6),

				NonVB	=	(CSharp	|	Cpp	|	FortranNET	|	JSharp	|	MSIL)

}

Now	you	have	two	extra	members	in	the	enumerations	—	one	that	encompasses	VB-only
languages	(Languages.VBNET	and	Languages.VB6)	and	one	that	encompasses	non-VB
languages.

3.11	Determining	Whether	One	or	More	Enumeration	Flags
Are	Set

Problem
You	need	to	determine	if	a	variable	of	an	enumeration	type,	consisting	of	bit	flags,
contains	one	or	more	specific	flags.	For	example,	given	the	following	enumeration
Language:

[Flags]

enum	Language

{

				CSharp	=	0x0001,	VBNET	=	0x0002,	VB6	=	0x0004,	Cpp	=	0x0008

}

determine,	using	Boolean	logic,	if	the	variable	lang	in	the	following	line	of	code	contains
a	language	such	as	Language.CSharp	and/or	Language.Cpp:

Language	lang	=	Language.CSharp	|	Language.VBNET;

Solution
To	determine	if	a	variable	contains	a	single	bit	flag	that	is	set,	use	the	following
conditional:

if((lang	&	Language.CSharp)	==	Language.CSharp)

{

				//	Lang	contains	at	least	Language.CSharp.

}

To	determine	if	a	variable	exclusively	contains	a	single	bit	flag	that	is	set,	use	the
following	conditional:

if(lang	==	Language.CSharp)

{

				//	lang	contains	only	the	Language.CSharp

}

To	determine	if	a	variable	contains	a	set	of	bit	flags	that	are	all	set,	use	the	following
conditional:

if((lang	&	(Language.CSharp	|	Language.VBNET))	==

		(Language.CSharp	|	Language.VBNET))

{

					//	lang	contains	at	least	Language.CSharp	and	Language.VBNET.

}

To	determine	if	a	variable	exclusively	contains	a	set	of	bit	flags	that	are	all	set,	use	the
following	conditional:

if((lang	|	(Language.CSharp	|	Language.VBNET))	==

		(Language.CSharp	|	Language.VBNET))

{

					//	lang	contains	only	the	Language.CSharp	and	Language.VBNET.

}

Discussion
When	enumerations	are	used	as	bit	flags	and	are	marked	with	the	Flags	attribute,	they
usually	will	require	some	kind	of	conditional	testing	to	be	performed.	This	testing
necessitates	the	use	of	the	bitwise	AND	(&)	and	OR	(|)	operators.

To	test	for	a	variable	having	a	specific	bit	flag	set,	use	the	following	conditional	statement:

if((lang	&	Language.CSharp)	==	Language.CSharp)

where	lang	is	of	the	Language	enumeration	type.

The	&	operator	is	used	with	a	bit	mask	to	determine	if	a	bit	is	set	to	1.	The	result	of
ANDing	two	bits	is	1	only	when	both	bits	are	1;	otherwise,	the	result	is	0.	You	can	use	this
operation	to	determine	if	a	specific	bit	flag	is	set	to	1	in	the	number	containing	the
individual	bit	flags.	If	you	AND	the	variable	lang	with	the	specific	bit	flag	you	are	testing
for	(in	this	case,	Language.CSharp),	you	can	extract	that	single	specific	bit	flag.	The
expression	(lang	&	Language.CSharp)	is	solved	in	the	following	manner	if	lang	is	equal
to	Language.CSharp:

Language.CSharp		0001

lang													0001

ANDed	bit	values	0001

If	lang	is	equal	to	another	value,	such	as	Language.VBNET,	the	expression	is	solved	as
follows:

Language.CSharp		0001

lang													0010

ANDed	bit	values	0000

Notice	that	ANDing	the	bits	together	returns	the	value	Language.CSharp	in	the	first
expression	and	0x0000	in	the	second	expression.	Comparing	this	result	to	the	value	you
are	looking	for	(Language.CSharp)	tells	you	whether	that	specific	bit	was	turned	on.

This	method	is	great	for	checking	specific	bits,	but	what	if	you	want	to	know	whether	only
one	specific	bit	is	turned	on	(and	all	other	bits	turned	off)	or	off	(and	all	other	bits	turned
on)?	To	test	if	only	the	Language.CSharp	bit	is	turned	on	in	the	variable	lang,	you	can	use
the	following	conditional	statement:

if(lang	==	Language.CSharp)

If	the	variable	lang	contained	only	the	value	Language.CSharp,	the	expression	using	the
OR	operator	would	look	like	this:

lang	=	Language.CSharp;

if	((lang	!=	0)	&&(Language.CSharp	==	(lang	|	Language.CSharp)))

{

				//	CSharp	is	found	using	OR	logic

}

Language.CSharp	0001

lang	0001

ORed	bit	values	0001

Now,	add	a	language	value	or	two	to	the	variable	lang	and	perform	the	same	operation	on
lang:

lang	=	Language.CSharp	|	Language.VB6	|	Language.Cpp;

if	((lang	!=	0)	&&(Language.CSharp	==	(lang	|	Language.CSharp)))

{

				//	CSharp	is	found	using	OR	logic

}

Language.CSharp	0001

lang	1101

ORed	bit	values	1101

The	first	expression	results	in	the	same	value	as	the	one	you	are	testing	against.	The
second	expression	results	in	a	much	larger	value	than	Language.CSharp.	This	indicates
that	the	variable	lang	in	the	first	expression	contains	only	the	value	Language.CSharp,
whereas	the	second	expression	contains	other	languages	besides	Language.CSharp	(and
may	not	contain	Language.CSharp	at	all).

Using	the	OR	version	of	this	formula,	you	can	test	multiple	bits	to	determine	if	they	are	on
and	all	other	bits	are	off,	as	shown	in	the	following	conditional	statement:

if((lang	!=	0)	&&	((lang	|	(Language.CSharp	|	Language.VBNET))	==

			(Language.CSharp	|	Language.VBNET)))

Notice	that	to	test	for	more	than	one	language,	you	simply	OR	the	language	values
together.	By	switching	the	first	|	operator	to	an	&	operator,	you	can	determine	if	at	least
these	bits	are	turned	on,	as	shown	in	the	following	conditional	statement:

if((lang	!=	0)	&&	((lang	&	(Language.CSharp	|	Language.VBNET))	==

			(Language.CSharp	|	Language.VBNET)))

When	testing	for	multiple	enumeration	values,	you	may	find	it	beneficial	to	add	a	value	to
your	enumeration,	which	ORs	together	all	the	values	you	want	to	test	for.	If	you	wanted	to
test	for	all	languages	except	Language.CSharp,	your	conditional	statement(s)	would	grow
quite	large	and	unwieldy.	To	fix	this,	you	add	a	value	to	the	Language	enumeration	that
ORs	together	all	languages	except	Language.CSharp.	The	new	enumeration	looks	like
this:

[Flags]

enum	Language

{

				CSharp	=	0x0001,	VBNET	=	0x0002,	VB6	=	0x0004,	Cpp	=	0x0008,

				AllLanguagesExceptCSharp	=	VBNET	|	VB6	|	Cpp

}

and	your	conditional	statement	might	look	similar	to	the	following:

if((lang	!=	0)	&&	(lang	|	Language.AllLanguagesExceptCSharp)	==

				Language.	AllLanguagesExceptCSharp)

This	is	quite	a	bit	smaller,	easier	to	manage,	and	easier	to	read.

NOTE
Use	the	AND	operator	when	testing	if	one	or	more	bits	are	set	to	1.	Use	the	OR	operator	when	testing	if	one
or	more	bits	are	set	to	0.

Chapter	4.	Language	Integrated	Query
(LINQ)	and	Lambda	Expressions

4.0	Introduction
Language	Integrated	Query	(LINQ)	is	a	great	way	to	access	data	from	many	different
sources.	LINQ	provides	a	single	querying	model	that	can	operate	against	different	data
domains	individually	or	all	together	in	a	single	query.	LINQ	brings	the	ability	to	query
data	to	.NET	languages,	and	some	of	the	languages	have	provided	extensions	to	make	its
use	even	more	intuitive.	One	of	these	languages	is	C#;	there	are	a	number	of	extensions	to
the	language	in	C#	that	help	to	facilitate	querying	in	a	rich	and	intuitive	manner.

Traditional	object-oriented	programming	is	based	on	an	imperative	style	wherein
developers	describe	in	detail	not	only	what	they	want	to	happen,	but	also	exactly	how	it
should	be	performed	through	code.	LINQ	helps	to	take	coding	down	a	more	declarative
path	that	facilitates	describing	what	the	developer	wants	to	do	instead	of	detailing	how	to
accomplish	the	goal.	LINQ	also	enables	a	more	functional	style	of	programming.	These
changes	can	dramatically	shorten	the	amount	of	code	it	takes	to	perform	some	tasks.	That
said,	object-oriented	programming	is	still	very	much	alive	and	well	in	C#	and	.NET,	but
for	the	first	time	the	language	is	offering	you	the	chance	to	choose	the	style	of
programming	based	on	your	needs.	Note,	however,	that	LINQ	will	not	fit	into	every
scenario	and	is	not	a	replacement	for	good	design	or	practice.	You	can	write	bad	code
using	LINQ	just	as	you	can	write	bad	object-oriented	or	procedural	code.	The	trick,	as	it
always	has	been,	is	to	figure	out	when	it	is	appropriate	to	use	which	technique.

The	initial	version	of	LINQ	encompasses	a	number	of	data	domains:

LINQ	to	Objects

LINQ	to	XML

LINQ	to	ADO.NET

LINQ	to	SQL

LINQ	to	DataSet

LINQ	to	Entities

As	you	begin	your	examination	of	LINQ,	it	is	easy	to	think	of	it	as	a	new	object	relational
mapping	layer,	or	some	neat	new	widget	on	IEnumerable<T>,	or	a	new	XML	API,	or	even
just	an	excuse	to	not	write	SQL	directly	anymore.	You	can	use	it	as	any	of	these	things,
but	we	would	encourage	you	to	instead	think	of	LINQ	as	how	your	program	asks	for,
calculates,	or	transforms	sets	of	data	from	both	single	and	disparate	sources.	It	takes	a	bit
of	time	and	playing	with	LINQ	for	its	functionality	to	click,	but	once	it	does,	you	will	be
surprised	at	what	you	can	do	with	it.	This	chapter	begins	to	show	some	of	what	is	possible
with	LINQ	and	will	hopefully	get	you	thinking	of	which	of	your	scenarios	are	applicable
to	this	new	capability	in	C#.

To	write	the	LINQ	query	expressions	to	specify	criteria	and	select	data,	we	use	lambda

expressions.	They	are	a	convenient	way	to	represent	the	delegate	passed	to	LINQ	queries
like	System.Func<T,	TResult>	when	the	Enumerable.Where	method	is	called	as	part	of
narrowing	down	a	result	set.	Lambda	expressions	are	functions	with	a	different	syntax	that
enables	them	to	be	used	in	an	expression	context	instead	of	the	usual	object-oriented
method	of	being	a	member	of	a	class.	This	means	that	with	a	single	syntax,	we	can	express
a	method	definition,	declaration,	and	the	invocation	of	delegate	to	execute	it,	just	as
anonymous	methods	can,	but	with	a	more	terse	syntax.	A	projection	is	a	lambda
expression	that	translates	one	type	into	another.

A	lambda	expression	looks	like	this:

j	=>	j	*	42

This	means	“using	j	as	the	parameter	to	the	function,	j	goes	to	the	result	of	j	*	42.”	The
=>	can	be	read	as	“goes	to”	for	both	this	and	a	projection	declared	like	so:

j	=>	new	{	Number	=	j*42	};

If	you	think	about	it,	in	C#	1.0	you	could	do	the	same	thing:

public	delegate	int	IncreaseByANumber(int	j);

public	delegate	int	MultipleIncreaseByANumber(int	j,	int	k,	int	l);

static	public	int	MultiplyByANumber(int	j)

{

				return	j	*	42;

}

public	static	void	ExecuteCSharp1_0()

{

				IncreaseByANumber	increase	=

							new	IncreaseByANumber(

											DelegatesEventsLambdaExpressions.MultiplyByANumber);

				Console.WriteLine(increase(10));

}

In	C#	2.0	with	anonymous	methods,	the	C#	1.0	syntax	could	be	reduced	to	the	following
example,	as	it	is	no	longer	necessary	to	provide	the	name	for	the	delegate	since	all	we
want	is	the	result	of	the	operation:

public	delegate	int	IncreaseByANumber(int	j);

public	static	void	ExecuteCSharp2_0()

{

				IncreaseByANumber	increase	=

							new	IncreaseByANumber(

								delegate(int	j)

								{

												return	j	*	42;

								});

				Console.WriteLine(increase(10));

}

This	brings	us	back	to	C#	today	and	lambda	expressions,	where	we	can	now	just	write:

public	static	void	ExecuteCSharp6_0()

{

				//	declare	the	lambda	expression

				IncreaseByANumber	increase	=	j	=>	j	*	42;

				//	invoke	the	method	and	print	420	to	the	console

				Console.WriteLine(increase(10));

				MultipleIncreaseByANumber	multiple	=	(j,	k,	l)	=>	((j	*	42)	/	k)	%	l;

				Console.WriteLine(multiple(10,	11,	12));

}

Type	inference	helps	the	compiler	to	infer	the	type	of	j	from	the	declaration	of	the
IncreaseByANumber	delegate	type.	If	there	were	multiple	arguments,	then	the	lambda
expression	could	look	like	this:

MultipleIncreaseByANumber	multiple	=	(j,	k,	l)	=>	((j	*	42)	/	k)	%	l;

Console.WriteLine(multiple(10,	11,	12));

This	chapter’s	recipes	make	use	of	delegates,	events,	and	lambda	expressions.	Among
other	topics,	these	recipes	cover:

Handling	each	method	invoked	in	a	multicast	delegate	separately

Synchronous	delegate	invocation	versus	asynchronous	delegate	invocation

Enhancing	an	existing	class	with	events

Various	uses	of	lambda	expressions,	closures,	and	functors

If	you	are	not	familiar	with	delegates,	events,	or	lambda	expressions,	you	should	read	the
MSDN	documentation	on	these	topics.	There	are	also	good	tutorials	and	example	code
showing	you	how	to	set	them	up	and	use	them	in	a	basic	fashion.

4.1	Querying	a	Message	Queue

Problem
You	want	to	be	able	to	query	for	messages	with	specific	criteria	from	an	existing	message
queue.

Solution
Use	the	EnumerableMessageQueue	class	to	write	a	LINQ	query	to	retrieve	messages	using
the	System.Messaging.MessageQueue	type:

string	queuePath	=	@".\private$\LINQMQ";

EnumerableMessageQueue	messageQueue	=	null;

if	(!EnumerableMessageQueue.Exists(queuePath))

				messageQueue	=	EnumerableMessageQueue.Create(queuePath);

else

				messageQueue	=	new	EnumerableMessageQueue(queuePath);

using	(messageQueue)

{

				BinaryMessageFormatter	messageFormatter	=	new	BinaryMessageFormatter();

				//	Query	the	message	queue	for	specific	messages	with	the	following	criteria:

				//	1)	the	label	must	be	less	than	5

				//	2)	the	name	of	the	type	in	the	message	body	must	contain	'CSharpRecipes.D'

				//	3)	the	results	should	be	in	descending	order	by	type	name	(from	the	body)

				var	query	=	from	Message	msg	in	messageQueue

								//	The	first	assignment	to	msg.Formatter	is	so	that	we	can	touch	the

								//	Message	object.	It	assigns	the	BinaryMessageFormatter	to	each	message

								//	instance	so	that	it	can	be	read	to	determine	if	it	matches	the	

								//	criteria.	This	is	done	and	then	checks	that	the	formatter	was	

								//	correctly	assigned	by	performing	an	equality	check	which	satisfies	the		

								//	where	clause's	need	for	a	Boolean	result	while	still	executing	the		

								//	assignment	of	the	formatter.

				where	((msg.Formatter	=	messageFormatter)	==	messageFormatter)	&&

																				int.Parse(msg.Label)	<	5	&&

																				msg.Body.ToString().Contains("CSharpRecipes.D")

																orderby	msg.Body.ToString()	descending

																select	msg;

				//	check	our	results	for	messages	with	a	label	>	5	and	containing

				//	a	'D'	in	the	name

				foreach	(var	msg	in	query)

								Console.WriteLine($"Label:	{msg.Label}"	+

												$"	Body:	{msg.Body}");

}

The	query	retrieves	the	data	from	the	MessageQueue	by	selecting	the	messages	where	the
Label	is	a	number	greater	than	5	and	the	message	body	contains	the	text
“CSharpRecipes.D”.	These	messages	are	then	returned,	sorted	by	the	message	body	in
descending	order.

Discussion
There	are	a	number	of	keywords	in	this	LINQ	code	that	were	not	previously	used	to
access	a	message	queue:
var

var	instructs	the	compiler	to	infer	the	variable	type	from	the	right	side	of	the
statement.	In	essence,	the	variable	type	is	determined	by	what	is	on	the	right	side	of
the	operator,	separating	the	var	keyword	and	the	expression.	This	allows	for
implicitly	typed	local	variables.

from

The	from	keyword	sets	out	the	source	collection	to	query	against	and	a	range	variable
to	represent	a	single	element	from	that	collection.	It	is	always	the	first	clause	in	a
query	operation.	This	may	seem	counterintuitive	if	you	are	used	to	SQL	and	expect
select	to	be	first,	but	if	you	consider	that	we	need	to	know	what	to	work	on	before
we	determine	what	to	return,	it	makes	sense.	In	fact,	if	we	weren’t	already	used	to
how	SQL	works,	it	would	be	SQL	that	seems	counterintuitive.

where

The	where	keyword	specifies	the	constraints	by	which	the	elements	to	return	are
filtered.	Each	condition	must	evaluate	to	a	Boolean	result,	and	when	all	expressions
evaluate	to	true,	the	element	of	the	collection	is	allowed	to	be	selected.

orderby

orderby	indicates	that	the	result	set	should	be	sorted	according	to	the	criteria
specified.	The	default	order	is	ascending,	and	elements	use	the	default	comparer.

select

select	allows	the	projection	of	an	entire	element	from	the	collection,	the
construction	of	a	new	type	with	parts	of	that	element	and	other	calculated	values,	or	a
subcollection	of	items	into	the	result.

The	messageQueue	collection	is	of	type	System.Messaging.MessageQueue,	which
implements	the	IEnumerable	interface.	This	is	important,	as	the	LINQ	methods	provided
need	a	set	or	collection	to	implement	at	least	IEnumerable	in	order	to	work	with	that	set	or
collection.	It	is	possible	to	implement	a	set	of	extension	methods	that	do	not	need
IEnumerable,	but	most	people	will	not	have	the	need	to	do	so.	It	is	even	better	when	the
set	or	collection	implements	IEnumerable<T>,	as	LINQ	then	knows	the	type	of	element	in
the	set	or	collection	with	which	it	is	working.

Even	though	MessageQueue	implements	the	IEnumerable	interface	(but	not
IEnumerable<T>),	the	original	implementation	of	IEnumerable	had	some	problems,	so
now	if	you	try	to	use	it,	it	doesn’t	actually	enumerate	any	results.	You	will	also	get	a
deprecation	warning	reading	This	method	returns	a	MessageEnumerator	that
implements	RemoveCurrent	family	of	methods	incorrectly.	Please	use

GetMessageEnumerator2	instead.	if	you	try	to	use	GetEnumerator	on	MessageQueue.

To	address	this,	we	have	created	the	EnumerableMessageQueue,	which	derives	from
MessageQueue	but	uses	the	suggested	GetMessageEnumerator2	method	to	implement	both
IEnumerable	and	IEnumerable<Message>.	So	we	can	just	use	the
EnumerableMessageQueue	instance	with	LINQ:

public	class	EnumerableMessageQueue	:	MessageQueue,	IEnumerable<Message>

{

				public	EnumerableMessageQueue()	:

								base()	{	}

				public	EnumerableMessageQueue(string	path)	:	base(path)	{	}

				public	EnumerableMessageQueue(string	path,	bool	sharedModeDenyReceive)	:

								base	(path,	sharedModeDenyReceive)	{	}

				public	EnumerableMessageQueue(string	path,	QueueAccessMode	accessMode)	:

								base	(path,	accessMode)	{	}

				public	EnumerableMessageQueue(string	path,	bool	sharedModeDenyReceive,

								bool	enableCache)	:	base	(path,	sharedModeDenyReceive,	enableCache)	{	}

				public	EnumerableMessageQueue(string	path,	bool	sharedModeDenyReceive,

								bool	enableCache,	QueueAccessMode	accessMode)	:

												base	(path,	sharedModeDenyReceive,	enableCache,	accessMode)	{	}

				public	static	new	EnumerableMessageQueue	Create(string	path)	=>

								Create(path,	false);

				public	static	new	EnumerableMessageQueue	Create(string	path,

								bool	transactional)

				{

								//	Use	MessageQueue	directly	to	make	sure	the	queue	exists

								if	(!MessageQueue.Exists(path))

												MessageQueue.Create(path,	transactional);

								//	create	the	enumerable	queue	once	we	know	it	is	there

								return	new	EnumerableMessageQueue(path);

				}

				public	new	MessageEnumerator	GetMessageEnumerator()

				{

								throw	new	NotSupportedException("Please	use	GetEnumerator");

				}

				public	new	MessageEnumerator	GetMessageEnumerator2()

				{

								throw	new	NotSupportedException("Please	use	GetEnumerator");

				}

				IEnumerator<Message>	IEnumerable<Message>.GetEnumerator()

				{

								//NOTE:	In	.NET	3.5,	you	used	to	be	able	to	call	"GetEnumerator"	on

								//MessageQueue	via	normal	LINQ	semantics	and	have	it	work.	Now	we	

								//have	to	call	GetMessageEnumerator2,	as	GetEnumerator	has	been	

								//deprecated.	Now	we	use	EnumerableMessageQueue	which	deals	with	

								//this	for	us…

								MessageEnumerator	messageEnumerator	=	base.GetMessageEnumerator2();

								while	(messageEnumerator.MoveNext())

								{

												yield	return	messageEnumerator.Current;

								}

				}

				IEnumerator	IEnumerable.GetEnumerator()

				{

								//NOTE:	In	.NET	3.5,	you	used	to	be	able	to	call	"GetEnumerator"	on

								//MessageQueue	via	normal	LINQ	semantics	and	have	it	work.	Now	we	have

								//	to	call	GetMessageEnumerator2,	as	GetEnumerator	has	been	deprecated.

								//Now	we	use	EnumerableMessageQueue	which	deals	with	this	for	us…

								MessageEnumerator	messageEnumerator	=	base.GetMessageEnumerator2();

								while	(messageEnumerator.MoveNext())

								{

												yield	return	messageEnumerator.Current;

								}

				}

}

Now	the	query	provides	the	element	type	Message,	as	shown	in	the	from	line	in	the	LINQ
query:

var	query	=	from	Message	msg	in	messageQueue

In	the	Solution,	the	messages	in	the	queue	have	been	sent	with	BinaryFormatter.	To	be
able	to	query	against	them	correctly,	the	Formatter	property	must	be	set	on	each	Message
before	it	is	examined	as	part	of	the	where	clause:

//	The	first	assignment	to	msg.Formatter	is	so	that	we	can	touch	the

//	Message	object.	It	assigns	the	BinaryMessageFormatter	to	each	message

//	instance	so	that	it	can	be	read	to	determine	if	it	matches	the	criteria.

//	This	is	done,	and	then	it	checks	that	the	formatter	was	correctly	assigned

//	by	performing	an	equality	check,	which	satisfies	the	where	clause's	need

//	for	a	boolean	result,	while	still	executing	the	assignment	of	the	formatter.

where	((msg.Formatter	=	messageFormatter)	==	messageFormatter)	&&

There	are	two	uses	of	the	var	keyword	in	the	Solution	code:

var	query	=	from	Message	msg	in	messageQueue

												...

foreach	(var	msg	in	query)

...

The	first	usage	infers	that	an	IEnumerable<Message>	will	be	returned	and	assigned	to	the
query	variable.	The	second	usage	infers	that	the	type	of	msg	is	Message	because	the	query
variable	is	of	type	IEnumerable<Message>	and	the	msg	variable	is	an	element	from	that
IEnumerable.

It	is	also	worth	noting	that	when	performing	operations	in	a	query,	you	can	use	actual	C#
code	to	determine	the	conditions,	and	there	is	more	than	just	the	predetermined	set	of
operators.	In	the	where	clause	of	this	query,	both	int.Parse	and	string.	Contains	are
used	to	help	filter	messages:

int.Parse(msg.Label)	>	5	&&

msg.Body.ToString().Contains('CSharpRecipes.D')

Finally,	the	orderby	is	used	to	sort	the	results	in	descending	order:

orderby	msg.Body.ToString()	descending

See	Also
Recipe	4.9,	and	the	“MessageQueue	class,”	“Implicitly	typed	local	variable,”	“from
keyword,”	“where	keyword,”	“orderby	keyword,”	and	“select	keyword”	topics	in	the
MSDN	documentation.

4.2	Using	Set	Semantics	with	Data

Problem
You	would	like	to	work	with	your	collections	using	set	operations	for	union,	intersections,
exceptions,	and	distinct	items.

Solution
Use	the	set	operators	provided	as	part	of	the	standard	query	operators	to	perform	those
operations.

Distinct:

IEnumerable<string>	whoLoggedIn	=

				dailySecurityLog.Where(

								logEntry	=>	logEntry.Contains("logged	in")).Distinct();

Union:

//	Union

Console.WriteLine("Employees	for	all	projects");

var	allProjectEmployees	=	project1.Union(project2.Union(project3));

Intersect:

//	Intersect

Console.WriteLine("Employees	on	every	project");

var	everyProjectEmployees	=	project1.Intersect(project2.Intersect(project3));

Except:

Console.WriteLine("Employees	on	only	one	project");

var	onlyProjectEmployees	=	allProjectEmployees.Except(unionIntersect);

Discussion
The	standard	query	operators	are	the	set	of	methods	that	represent	the	LINQ	pattern.	This
set	includes	operators	to	perform	many	different	types	of	operations,	such	as	filtering,
projection,	sorting,	grouping,	and	many	others,	including	set	operations.

The	set	operations	for	the	standard	query	operators	are:

Distinct

Union

Intersect

Except

The	Distinct	operator	extracts	all	nonduplicate	items	from	the	collection	or	result	set
being	worked	with.	Say,	for	example,	that	we	had	a	set	of	strings	representing	today’s
login	and	logout	behavior	for	a	virtual	machine	in	a	common	use	development
environment:

string[]	dailySecurityLog	=	{

								"Rakshit	logged	in",

								"Aaron	logged	in",

								"Rakshit	logged	out",

								"Ken	logged	in",

								"Rakshit	logged	in",

								"Mahesh	logged	in",

								"Jesse	logged	in",

								"Jason	logged	in",

								"Josh	logged	in",

								"Melissa	logged	in",

								"Rakshit	logged	out",

								"Mary-Ellen	logged	out",

								"Mahesh	logged	in",

								"Alex	logged	in",

								"Scott	logged	in",

								"Aaron	logged	out",

								"Jesse	logged	out",

								"Scott	logged	out",

								"Dave	logged	in",

								"Ken	logged	out",

								"Alex	logged	out",

								"Rakshit	logged	in",

								"Dave	logged	out",

								"Josh	logged	out",

								"Jason	logged	out"};

From	that	collection,	we	would	like	to	determine	the	list	of	people	who	logged	in	to	the
virtual	machine	today.	Since	people	can	log	in	and	log	out	many	times	during	the	course
of	a	day	or	remain	logged	in	for	the	whole	day,	we	need	to	eliminate	the	duplicate	login
entries.	Distinct	is	an	extension	method	on	the	System.Linq.Enumerable	class	(which
implements	the	standard	query	operators)	that	we	can	call	on	the	string	array	(which
supports	IEnumerable)	in	order	to	get	the	distinct	set	of	items	from	the	collection.	(For
more	information	on	extension	methods,	see	Recipe	4.4.)	To	get	the	set,	we	use	another	of
the	standard	query	operators,	where,	which	takes	a	lambda	expression	that	determines	the

filter	criteria	for	the	set	and	examines	each	string	in	the	IEnumerable<string>	to
determine	if	the	string	has	“logged	in.”	Lambda	expressions	are	inline	statements	(similar
to	anonymous	methods)	that	can	be	used	in	place	of	a	delegate.	(See	Recipe	4.12	for	more
on	lambda	expressions.)	If	the	strings	have	logged	in,	then	they	are	selected.	Distinct
narrows	down	the	set	of	strings	further	to	eliminate	duplicate	“logged	in”	records,	leaving
only	one	per	user:

IEnumerable<string>	whoLoggedIn	=

				dailySecurityLog.Where(

								logEntry	=>	logEntry.Contains("logged	in")).Distinct();

Console.WriteLine("Everyone	who	logged	in	today:");

foreach	(string	who	in	whoLoggedIn)

				Console.WriteLine(who);

To	make	things	a	bit	more	interesting,	for	the	rest	of	the	operators	we	will	work	with	sets
of	employees	on	various	projects	in	a	company.	An	Employee	is	a	pretty	simple	class	with
a	Name	and	overrides	for	ToString,	Equals,	and	GetHashCode,	as	shown	here:

public	class	Employee

{

				public	string	Name	{	get;	set;	}

				public	override	string	ToString()	=>	this.Name;

				public	override	bool	Equals(object	obj)	=>

								this.GetHashCode().Equals(obj.GetHashCode());

				public	override	int	GetHashCode()	=>	this.Name.GetHashCode();

}

You	might	wonder	why	Equals	and	GetHashCode	are	overloaded	for	such	a	simple	class.
The	reason	is	that	when	LINQ	compares	elements	in	the	sets	or	collections,	it	uses	the
default	comparison,	which	in	turn	uses	Equals	and	GetHashCode	to	determine	if	one
instance	of	a	reference	type	is	the	same	as	another.	If	you	do	not	include	the	semantics	in
the	reference	type	class	to	provide	the	same	hash	code	or	equals	value	when	the	data	for
two	instances	of	the	object	is	the	same,	then	by	default	the	instances	will	be	different,	as
two	reference	types	have	different	hash	codes	by	default.	We	override	that	so	that	if	the
Name	is	the	same	for	each	Employee,	the	hash	code	and	the	equals	value	will	both	correctly
identify	the	instances	as	the	same.	There	are	also	overloads	for	the	set	operators	that	take	a
custom	comparer,	which	would	also	allow	you	to	make	this	determination	even	for	classes
for	which	you	can’t	make	the	changes	to	Equals	and	GetHashCode.

Having	done	this,	we	can	now	assign	Employees	to	projects	like	so:

Employee[]	project1	=	{

												new	Employee(){	Name	=	"Rakshit"	},

												new	Employee(){	Name	=	"Jason"	},

												new	Employee(){	Name	=	"Josh"	},

												new	Employee(){	Name	=	"Melissa"	},

												new	Employee(){	Name	=	"Aaron"	},

												new	Employee()	{	Name	=	"Dave"	},

												new	Employee()	{Name	=	"Alex"	}	};

Employee[]	project2	=	{

												new	Employee(){	Name	=	"Mahesh"	},

												new	Employee()	{Name	=	"Ken"	},

												new	Employee()	{Name	=	"Jesse"	},

												new	Employee(){	Name	=	"Melissa"	},

												new	Employee(){	Name	=	"Aaron"	},

												new	Employee(){	Name	=	"Alex"	},

												new	Employee(){	Name	=	"Mary-Ellen"	}	};

Employee[]	project3	=	{

												new	Employee(){	Name	=	"Mike"	},

												new	Employee(){	Name	=	"Scott"	},

												new	Employee(){	Name	=	"Melissa"	},

												new	Employee(){	Name	=	"Aaron"	},

												new	Employee(){	Name	=	"Alex"	},

												new	Employee(){	Name	=	"Jon"	}	};

To	find	all	Employees	on	all	projects,	we	can	use	Union	to	get	all	nonduplicate	Employees
in	all	three	projects	and	write	them	out,	as	Union	will	give	you	all	distinct	Employees	of	all
three	projects:

//	Union

Console.WriteLine("Employees	for	all	projects");

var	allProjectEmployees	=	project1.Union(project2.Union(project3));

foreach	(Employee	employee	in	allProjectEmployees)

				Console.WriteLine(employee);

We	can	then	use	Intersect	to	get	the	Employees	on	every	project,	as	Intersect	will
determine	the	common	Employees	from	each	project	and	return	those:

//	Intersect

Console.WriteLine("Employees	on	every	project");

var	everyProjectEmployees	=	project1.Intersect(project2.Intersect(project3));

foreach	(Employee	employee	in	everyProjectEmployees)

				Console.WriteLine(employee);

Finally,	we	can	use	a	combination	of	Union	and	Except	to	find	Employees	that	are	on	only
one	project,	as	Except	filters	out	all	Employees	on	more	than	one	project:

//	Except

var	intersect1_3	=	project1.Intersect(project3);

var	intersect1_2	=	project1.Intersect(project2);

var	intersect2_3	=	project2.Intersect(project3);

var	unionIntersect	=	intersect1_2.Union(intersect1_3).Union(intersect2_3);

Console.WriteLine("Employees	on	only	one	project");

var	onlyProjectEmployees	=	allProjectEmployees.Except(unionIntersect);

foreach	(Employee	employee	in	onlyProjectEmployees)

				Console.WriteLine(employee);

Output	for	the	code	shown	is:

Everyone	who	logged	in	today:

Rakshit	logged	in

Aaron	logged	in

Ken	logged	in

Mahesh	logged	in

Jesse	logged	in

Jason	logged	in

Josh	logged	in

Melissa	logged	in

Alex	logged	in

Scott	logged	in

Dave	logged	in

Employees	for	all	projects

Rakshit

Jason

Josh

Melissa

Aaron

Dave

Alex

Mahesh

Ken

Jesse

Mary-Ellen

Mike

Scott

Jon

Employees	on	every	project

Melissa

Aaron

Alex

Employees	on	only	one	project

Rakshit

Jason

Josh

Dave

Mahesh

Ken

Jesse

Mary-Ellen

Mike

Scott

Jon

See	Also
The	“Standard	Query	Operators,”	“Distinct	method,”	“Union	method,”	“Intersect
method,”	and	“Except	method”	topics	in	the	MSDN	documentation.

4.3	Reusing	Parameterized	Queries	with	LINQ	to	SQL

Problem
You	need	to	execute	the	same	parameterized	query	multiple	times	with	different	parameter
values,	but	you	want	to	avoid	the	overhead	of	parsing	the	query	expression	tree	to	build
the	parameterized	SQL	each	time	the	query	executes.

Solution
Use	the	CompiledQuery.Compile	method	to	build	an	expression	tree	that	will	not	have	to
be	parsed	each	time	the	query	is	executed	with	new	parameters:

var	GetEmployees	=

				CompiledQuery.Compile((NorthwindLinq2Sql.NorthwindLinq2SqlDataContext	nwdc,

								string	ac,	string	ttl)	=>

												from	employee	in	nwdc.Employees

												where	employee.HomePhone.Contains(ac)	&&

																				employee.Title	==	ttl

												select	employee);

var	northwindDataContext	=	new	NorthwindLinq2Sql.NorthwindLinq2SqlDataContext();

The	first	time	the	query	executes	is	when	it	actually	compiles	(where	GetEmployees	is
called	the	first	time	in	the	foreach	loop).	Every	other	iteration	in	this	loop	and	in	the	next
loop	uses	the	compiled	version,	avoiding	the	expression	tree	parsing:

foreach	(var	employee	in	GetEmployees(northwindDataContext,	"(206)",

				"Sales	Representative"))

				Console.WriteLine($"{employee.FirstName}	{employee.LastName}");

foreach	(var	employee	in	GetEmployees(northwindDataContext,	"(71)",	

				"Sales	Manager"))

				Console.WriteLine($"{employee.FirstName}	{employee.LastName}");

Discussion
We	used	var	for	the	query	declaration	because	it	was	cleaner,	but	in	this	case	var	is
actually:

System.Func<NorthwindLinq2Sql.NorthwindLinq2SqlDataContext,	string,	string,

System.Linq.IQueryable<NorthwindLinq2Sql.Employee>>

which	is	the	delegate	signature	for	the	lambda	expression	we	created	that	contains	the
query.	That’s	right	—	all	this	crazy	query	stuff,	and	we	just	instantiated	a	delegate.	To	be
fair,	the	Func	delegate	was	brought	about	in	the	System	namespace	as	part	of	LINQ,	so	do
not	despair:	we	are	still	doing	cool	stuff!

This	illustrates	that	we	are	not	returning	an	IEnumerable-	or	IQueryable-based	result	set
from	Compile,	but	rather	an	expression	tree	that	represents	the	potential	for	a	query	rather
than	the	query	itself.	Once	we	have	that	tree,	LINQ	to	SQL	then	has	to	convert	it	to	actual
SQL	that	can	run	against	the	database.	Interestingly	enough,	if	we	had	put	in	a	call	to
string.Format	as	part	of	detecting	the	area	code	in	the	employee’s	home	phone	number,
we	would	get	a	NotSupportedException	informing	us	that	string.Format	can’t	be
translated	to	SQL:

				where	employee.HomePhone.Contains(string.Format($"({ac})"))	&&

System.NotSupportedException:

Method	'System.String	Format(System.String,System.Object)'

		has	no	supported	translation	to	SQL.

This	is	understandable,	as	SQL	has	no	concept	of	.NET	Framework	methods	for
performing	actions,	but	keep	in	mind	as	you	design	your	queries	that	this	is	a	limitation	of
using	LINQ	to	SQL.

After	the	first	execution,	the	query	is	compiled,	and	for	every	iteration	after	that,	we	do
not	pay	the	transformation	cost	for	turning	the	expression	tree	into	the	parameterized	SQL.

Compiling	your	queries	is	recommended	for	parameterized	queries	that	get	a	lot	of	traffic,
but	if	a	query	is	infrequently	used,	it	may	not	be	worth	the	effort.	As	always,	profile	your
code	to	see	the	areas	where	doing	so	could	be	useful.

Note	that	in	the	templates	for	Entity	Framework	5	and	up,	you	could	not	use
CompiledQuery	with	the	context	that	is	generated,	because	those	templates	were	redone	to
use	DbContext,	not	ObjectContext,	and	CompiledQuery.Compile	requires	an
ObjectContext.	The	good	news	is	that	if	you	are	using	Entity	Framework	5	and	up,
DbContext	does	precompilation	of	queries	for	you!	You	can	still	use	CompiledQuery	with
the	LINQ	to	SQL	data	context.

Microsoft	recommends	using	a	DbContext	in	new	development,	but	if	you	have	existing
code	on	prior	data	access	mechanisms,	CompiledQuery	can	still	help!

See	Also
The	“CompiledQuery.Compile	method”	and	“Expression	Trees”	topics	in	the	MSDN
documentation.

4.4	Sorting	Results	in	a	Culture-Sensitive	Manner

Problem
You	want	to	ensure	that	when	you	sort	in	a	query,	the	sort	order	is	for	an	application-
specific	culture	that	may	not	be	the	same	as	the	thread’s	current	culture.

Solution
Use	the	overload	of	the	OrderBy	query	operator,	which	accepts	a	custom	comparer,	in
order	to	specify	the	culture	in	which	to	perform	comparisons:

//	Create	CultureInfo	for	Danish	in	Denmark.

CultureInfo	danish	=	new	CultureInfo("da-DK");

//	Create	CultureInfo	for	English	in	the	U.S.

CultureInfo	american	=	new	CultureInfo("en-US");

CultureStringComparer	comparer	=	

			new	CultureStringComparer(danish,CompareOptions.None);

var	query	=	names.OrderBy(n	=>	n,	comparer);

Discussion
Handling	localization	issues	such	as	sorting	for	a	specific	culture	is	a	relatively	trivial	task
in	.NET	if	the	current	culture	of	the	thread	is	the	one	you	want	to	use.	To	access	the
framework	classes	that	assist	in	handling	culture	issues	in	C,	you	include	the
System.Globalization	namespace.	You’d	include	this	namespace	in	order	to	make	the
code	in	the	Solution	run.	One	example	of	overriding	the	thread’s	current	culture	would	be
an	application	that	needs	to	display	a	sorted	list	of	Danish	words	on	a	version	of	Windows
that	is	set	for	US	English.	This	functionality	might	also	be	useful	if	you	are	working	with
a	multitenant	web	service	or	website	with	global	clients.

The	current	thread	in	the	application	may	have	a	CultureInfo	for	“en-US”	and,	by
default,	the	sort	order	for	OrderBy	will	use	the	current	culture’s	sort	settings.	To	specify
that	this	list	should	sort	according	to	Danish	rules	instead,	you	must	do	a	bit	of	work	in	the
form	of	a	custom	comparer:

CultureStringComparer	comparer	=

				new	CultureStringComparer(danish,CompareOptions.None);

The	comparer	variable	is	an	instance	of	the	custom	comparer	class
CultureStringComparer,	which	is	defined	to	implement	the	IComparer<T>	interface
specialized	for	strings.	This	class	is	used	to	provide	the	culture	settings	for	the	sort	order:

public	class	CultureStringComparer	:	IComparer<string>

{

				private	CultureStringComparer()

				{

				}

				public	CultureStringComparer(CultureInfo	cultureInfo,	CompareOptions	options)

				{

								if	(cultureInfo	==	null)

												throw	new	ArgumentNullException(nameof(cultureInfo));

								CurrentCultureInfo	=	cultureInfo;

								Options	=	options;

				}

				public	int	Compare(string	x,	string	y)	=>

								CurrentCultureInfo.CompareInfo.Compare(x,	y,	Options);

				public	CultureInfo	CurrentCultureInfo	{	get;	set;	}

				public	CompareOptions	Options	{	get;	set;	}

}

To	demonstrate	how	this	could	be	used,	first	we	compile	a	list	of	words	to	order	by.	Since
the	Danish	language	treats	the	character	Æ	as	an	individual	letter,	sorting	it	after	Z	in	the
alphabet,	and	the	English	language	treats	the	character	Æ	as	a	special	symbol,	sorting	it
before	the	letter	A	in	the	alphabet,	this	example	will	demonstrate	the	sort	difference:

string[]	names	=	{	"Jello",	"Apple",	"Bar",	"Æble",

				"Forsooth",	"Orange",	"Zanzibar"	};

Now,	we	can	set	up	the	CultureInfos	for	both	Danish	and	US	English	and	call	OrderBy

with	the	comparer	specific	to	each	culture.	This	query	does	not	use	the	query	expression
syntax,	but	rather	uses	the	functional	style	of	IEnumerable<string>.OrderBy():

//	Create	CultureInfo	for	Danish	in	Denmark.

CultureInfo	danish	=	new	CultureInfo("da-DK");

//	Create	CultureInfo	for	English	in	the	U.S.

CultureInfo	american	=	new	CultureInfo("en-US");

CultureStringComparer	comparer	=

				new	CultureStringComparer(danish,CompareOptions.None);

var	query	=	names.OrderBy(n	=>	n,	comparer);

Console.WriteLine($"Ordered	by	specific	culture	:	"	+

				$"{comparer.CurrentCultureInfo.Name}");

foreach	(string	name	in	query)

				Console.WriteLine(name);

comparer.CurrentCultureInfo	=	american;

query	=	names.OrderBy(n	=>	n,	comparer);

Console.WriteLine($"Ordered	by	specific	culture	:	"	+

				$"{comparer.CurrentCultureInfo.Name}");

foreach	(string	name	in	query)

				Console.WriteLine(name);

query	=	from	n	in	names

								orderby	n

								select	n;

Console.WriteLine("Ordered	by	Thread.CurrentThread.CurrentCulture	:	"	+

				$"{	Thread.CurrentThread.CurrentCulture.Name}");

foreach	(string	name	in	query)

				Console.WriteLine(name);

//	Create	CultureInfo	for	Danish	in	Denmark.

				CultureInfo	danish	=	new	CultureInfo("da-DK");

				//	Create	CultureInfo	for	English	in	the	U.S.

				CultureInfo	american	=	new	CultureInfo("en-US");

				CultureStringComparer	comparer	=

								new	CultureStringComparer(danish,	CompareOptions.None);

				var	query	=	names.OrderBy(n	=>	n,	comparer);

				Console.WriteLine("Ordered	by	specific	culture	:	"	+

								comparer.CurrentCultureInfo.Name);

				foreach	(string	name	in	query)

				{

								Console.WriteLine(name);

				}

				comparer.CurrentCultureInfo	=	american;

				query	=	names.OrderBy(n	=>	n,	comparer);

				Console.WriteLine("Ordered	by	specific	culture	:	"	+

								comparer.CurrentCultureInfo.Name);

				foreach	(string	name	in	query)

				{

								Console.WriteLine(name);

				}

These	output	results	show	that	the	word	Æble	is	last	in	the	Danish	list	and	first	in	the	US
English	list:

Ordered	by	specific	culture	:	da-DK

Apple

Bar

Forsooth

Jello

Orange

Zanzibar

Æble

Ordered	by	specific	culture	:	en-US

Æble

Apple

Bar

Forsooth

Jello

Orange

Zanzibar

See	Also
The	“OrderBy,”	“CultureInfo,”	and	“IComparer<T>”	topics	in	the	MSDN	documentation.

4.5	Adding	Functional	Extensions	for	Use	with	LINQ

Problem
There	are	operations	you	perform	on	collections	frequently	that	currently	reside	in	utility
classes.	You	would	like	to	be	able	to	have	these	operations	be	used	on	collections	in	a
more	seamless	manner	than	having	to	pass	the	reference	to	the	collection	to	the	utility
class.

Solution
Use	extension	methods	to	help	achieve	a	more	functional	style	of	programming	for	your
collection	operations.	For	example,	to	add	a	weighted	moving	average	calculation
operation	to	numeric	collections,	implement	a	set	of	WeightedMovingAverage	extension
methods	in	a	static	class	and	then	call	them	as	part	of	those	collections:

decimal[]	prices	=	new	decimal[10]	{	13.5M,	17.8M,	92.3M,	0.1M,	15.7M,

																																					19.99M,	9.08M,	6.33M,	2.1M,	14.88M	};

Console.WriteLine(prices.WeightedMovingAverage());

double[]	dprices	=	new	double[10]	{	13.5,	17.8,	92.3,	0.1,	15.7,

																																				19.99,	9.08,	6.33,	2.1,	14.88	};

Console.WriteLine(dprices.WeightedMovingAverage());

float[]	fprices	=	new	float[10]	{	13.5F,	17.8F,	92.3F,	0.1F,	15.7F,

																																		19.99F,	9.08F,	6.33F,	2.1F,	14.88F	};

Console.WriteLine(fprices.WeightedMovingAverage());

int[]	iprices	=	new	int[10]	{	13,	17,	92,	0,	15,

																														19,	9,	6,	2,	14	};

Console.WriteLine(iprices.WeightedMovingAverage());

long[]	lprices	=	new	long[10]	{	13,	17,	92,	0,	15,

																																19,	9,	6,	2,	14	};

Console.WriteLine(lprices.WeightedMovingAverage());

To	provide	WeightedMovingAverage	for	the	full	range	of	numeric	types,	methods	for	both
the	nullable	and	non-nullable	numeric	types	are	included	in	the	LinqExtensions	class:

public	static	class	LinqExtensions

{

				public	static	decimal?	WeightedMovingAverage(

								this	IEnumerable<decimal?>	source)

				{

								if	(source	==	null)

												throw	new	ArgumentNullException(nameof(source));

								decimal	aggregate	=	0.0M;

								decimal	weight;

								int	item	=	1;

								//	count	how	many	items	are	not	null	and	use	that

								//	as	the	weighting	factor

								int	count	=	source.Count(val	=>	val.HasValue);

								foreach	(var	nullable	in	source)

								{

												if	(nullable.HasValue)

												{

																weight	=	item	/	count;

																aggregate	+=	nullable.GetValueOrDefault()	*	weight;

																count++;

												}

								}

								if	(count	>	0)

												return	new	decimal?(aggregate	/	count);

								return	null;

				}

				//	The	same	method	pattern	as	above	is	followed	for	each	of	the	other

				//	types	and	its	nullable	counterparts	(double	/	double?,	int	/	int?,	etc.)

}

Discussion
Extension	methods	allow	you	to	create	operations	that	appear	to	be	part	of	a	collection.
They	are	static	methods	that	can	be	called	as	if	they	were	instance	methods,	allowing	you
to	extend	existing	types.	Extension	methods	must	also	be	declared	in	static	classes	that	are
not	nested.	Once	a	static	class	is	defined	with	extension	methods,	the	using	directive	for
the	namespace	of	the	class	makes	those	extensions	available	in	the	source	file.

NOTE
If	an	instance	method	exists	with	the	same	signature	as	the	extension	method,	the	extension	method	will
never	be	called.	Conflicting	extension	method	declarations	will	resolve	to	the	method	in	the	closest
enclosing	namespace.

You	cannot	use	extension	methods	to	create:

Properties	(get	and	set	methods)

Operators	(+,	-,	=	,	etc.)

Events

To	declare	an	extension	method,	you	specify	the	this	keyword	in	front	of	the	first
parameter	of	a	method	declaration,	and	the	type	of	that	parameter	is	the	type	being
extended.	For	example,	in	the	Nullable<decimal>	version	of	the
WeightedMovingAverage	method,	collections	that	support	IEnumerable<decimal?>	(or
IEnumerable<Nullable<decimal>>)	are	supported:

public	static	decimal?	WeightedMovingAverage(this	IEnumerable<decimal?>	source)

{

				if	(source	==	null)

								throw	new	ArgumentNullException(nameof(source));

				decimal	aggregate	=	0.0M;

				decimal	weight;

				int	item	=	1;

				//	count	how	many	items	are	not	null	and	use	that

				//	as	the	weighting	factor

				int	count	=	source.Count(val	=>	val.HasValue);

				foreach	(var	nullable	in	source)

				{

								if	(nullable.HasValue)

								{

												weight	=	item	/	count;

												aggregate	+=	nullable.GetValueOrDefault()	*	weight;

												count++;

								}

				}

				if	(count	>	0)

								return	new	decimal?(aggregate	/	count);

				return	null;

}

The	extension	methods	that	support	much	of	the	LINQ	functionality	are	on	the
System.Linq.Extensions	class,	including	an	Average	method.	The	Average	method	has
most	of	the	numeric	types	but	does	not	provide	an	overload	for	short	(Int16).	We	can
easily	rectify	that	by	adding	one	ourselves	for	short	and	Nullable<short>:

public	static	double?	Average(this	IEnumerable<short?>	source)

{

				if	(source	==	null)

								throw	new	ArgumentNullException(nameof(source));

				double	aggregate	=	0.0;

				int	count	=	0;

				foreach	(var	nullable	in	source)

				{

								if	(nullable.HasValue)

								{

												aggregate	+=	nullable.GetValueOrDefault();

												count++;

								}

				}

				if	(count	>	0)

								return	new	double?(aggregate	/	count);

				return	null;

}

public	static	double	Average(this	IEnumerable<short>	source)

{

				if	(source	==	null)

								throw	new	ArgumentNullException(nameof(source));

				double	aggregate	=	0.0;

				//	use	the	count	of	the	items	from	the	source

				int	count	=	source.Count();

				foreach	(var	value	in	source)

				{

								aggregate	+=	value;

				}

				if	(count	>	0)

								return	aggregate	/	count;

				else

								return	0.0;

}

public	static	double?	Average<TSource>(this	IEnumerable<TSource>	source,

				Func<TSource,	short?>	selector)	=>

								source.Select<TSource,	short?>(selector).Average();

public	static	double	Average<TSource>(this	IEnumerable<TSource>	source,

				Func<TSource,	short>	selector)	=>

								source.Select<TSource,	short>(selector).Average();

#endregion	//	Extend	Average

We	can	then	call	Average	on	short-based	collections	just	like	WeightedMovingAverage:

short[]	sprices	=	new	short[10]	{	13,	17,	92,	0,	15,	19,	9,	6,	2,	14	};

Console.WriteLine(sprices.WeightedMovingAverage());

//	System.Linq.Extensions	doesn't	implement	Average	for	short	but	we	do	for	them!

Console.WriteLine(sprices.Average());

See	Also
The	“Extension	Methods”	topic	in	the	MSDN	documentation.

4.6	Querying	and	Joining	Across	Data	Repositories

Problem
You	have	two	sets	of	data	from	different	data	domains,	and	you	want	to	be	able	to
combine	the	data	and	work	with	it.

Solution
Use	LINQ	to	bridge	across	the	disparate	data	domains.	LINQ	is	intended	to	be	used	in	the
same	manner	across	different	data	domains	and	supports	combining	those	sets	of	data	with
join	syntax.

To	demonstrate	this,	we	will	join	an	XML	file	full	of	categories	with	the	data	from	a
database	(Northwind)	of	products	to	create	a	new	set	of	data	for	product	information	that
holds	the	product	name,	the	category	description,	and	the	category	name:

Northwind	dataContext	=

				new	Northwind(Settings.Default.NorthwindConnectionString);

ProductsTableAdapter	adapter	=	new	ProductsTableAdapter();

Products	products	=	new	Products();

adapter.Fill(products._Products);

XElement	xmlCategories	=	XElement.Load("Categories.xml");

var	expr	=	from	product	in	products._Products

											where	product.Units_In_Stock	>	100

											join	xc	in	xmlCategories.Elements("Category")

											on	product.Category_ID	equals	int.Parse(

															xc.Attribute("CategoryID").Value)

											select	new

											{

															ProductName	=	product.Product_Name,

															Category	=	xc.Attribute("CategoryName").Value,

															CategoryDescription	=	xc.Attribute("Description").Value

											};

foreach	(var	productInfo	in	expr)

{

				Console.WriteLine("ProductName:	"	+	productInfo.ProductName	+

								"	Category:	"	+	productInfo.Category	+

								"	Category	Description:	"	+	productInfo.CategoryDescription);

}

The	new	set	of	data	is	printed	to	the	console,	but	this	could	easily	have	been	rerouted	to
another	method,	transformed	in	another	query,	or	written	out	to	a	third	data	format:

ProductName:	Grandma's	Boysenberry	Spread	Category:	Condiments	Category

Description:	Sweet	and	savory	sauces,	relishes,	spreads,	and	seasonings

ProductName:	Gustaf's	Knäckebröd	Category:	Grains/Cereals	Category	Description:

Breads,	crackers,	pasta,	and	cereal

ProductName:	Geitost	Category:	Dairy	Products	Category	Description:

Cheeses

ProductName:	Sasquatch	Ale	Category:	Beverages	Category	Description:	Soft	drinks,

coffees,	teas,	beer,	and	ale

ProductName:	Inlagd	Sill	Category:	Seafood	Category	Description:

Seaweed	and	fish

ProductName:	Boston	Crab	Meat	Category:	Seafood	Category	Description:

Seaweed	and	fish

ProductName:	Pâté	chinois	Category:	Meat/Poultry	Category	Description:

Prepared	meats

ProductName:	Sirop	d'érable	Category:	Condiments	Category	Description:

Sweet	and	savory	sauces,	relishes,	spreads,	and	seasonings

ProductName:	Röd	Kaviar	Category:	Seafood	Category	Description:

Seaweed	and	fish

ProductName:	Rhönbräu	Klosterbier	Category:	Beverages	Category	Description:

Soft	drinks,	coffees,	teas,	beer,	and	ale

Discussion
The	Solution	combines	data	from	two	different	data	domains:	XML	and	a	SQL	database.
Before	LINQ,	to	do	this	you	would	have	had	to	not	only	create	a	third	data	repository	by
hand	to	hold	the	result,	but	also	write	the	specific	code	for	each	domain	to	query	that
domain	for	its	part	of	the	data	(XPath	for	XML;	SQL	for	database)	and	then	manually
transform	the	result	sets	from	each	domain	into	the	new	data	repository.	LINQ	enables	you
to	write	the	query	to	combine	the	two	sets	of	data,	automatically	constructs	a	type	via
projecting	a	new	anonymous	type,	and	places	the	pertinent	data	in	the	new	type,	all	in	the
same	syntax.	Not	only	does	this	simplify	the	code,	but	it	also	allows	you	to	concentrate
more	on	getting	the	data	you	want	and	less	on	determining	exactly	how	to	read	both	data
domains.

This	example	uses	both	LINQ	to	DataSet	and	LINQ	to	XML	to	access	the	multiple	data
domains:

var	dataContext	=	new	NorthwindLinq2Sql.NorthwindLinq2SqlDataContext();

ProductsTableAdapter	adapter	=	new	ProductsTableAdapter();

Products	products	=	new	Products();

adapter.Fill(products._Products);

XElement	xmlCategories	=	XElement.Load("Categories.xml");

NorthwindLinq2SqlDataContext	is	a	DataContext	class.	A	DataContext	is	analogous	to
an	ADO.NET	Connection	and	Command	object	rolled	into	one.	You	use	it	to	establish	your
connection,	execute	queries,	or	access	tables	directly	via	entity	classes.	You	can	generate	a
DataContext	directly	from	the	database	through	Visual	Studio	by	adding	a	new	“LINQ	to
SQL	Classes”	item.	This	provides	access	to	the	local	Northwind.mdf	database	for	the
query.	A	Products	DataSet	is	loaded	from	the	Products	table	in	the	Northwind.mdf
database	for	use	in	the	query.

XElement	is	one	of	the	main	classes	in	LINQ	to	XML.	It	enables	the	loading	of	existing
XML,	creation	of	new	XML,	or	retrieval	of	the	XML	text	for	the	element	via	ToString.
Example	4-1	shows	the	Categories.xml	file	that	will	be	loaded.	For	more	on	XElement	and
LINQ	to	XML,	see	Chapter	10.

Example	4-1.	Categories.xml
<?xml	version="1.0"	encoding="utf-8"?>

<Categories>

		<Category	Id="1"	Name="Beverages"

				Description="Soft	drinks,	coffees,	teas,	beers,	and	ales"	/>

		<Category	Id="2"	Name="Condiments"

				Description="Sweet	and	savory	sauces,	relishes,	spreads,	and	seasonings"	/>

		<Category	Id="3"	Name="Confections"

				Description="Desserts,	candies,	and	sweet	breads"	/>

		<Category	Id="4"	Name="Dairy	Products"	Description="Cheeses"	/>

		<Category	Id="5"	Name="Grains/Cereals"

				Description="Breads,	crackers,	pasta,	and	cereal"	/>

		<Category	Id="6"	Name="Meat/Poultry"	Description="Prepared	meats"	/>

		<Category	Id="7"	Name="Produce"	Description="Dried	fruit	and	bean	curd"	/>

		<Category	Id="8"	Name="Seafood"	Description="Seaweed	and	fish"	/>

</Categories>

The	two	sets	of	data	are	joined	via	LINQ	and,	in	particular,	the	join	keyword.	We	join	the
data	by	matching	the	category	ID	in	the	Products	table	with	the	category	ID	in	the	XML
file	to	combine	the	data.	In	SQL	terms,	the	join	keyword	represents	an	inner	join:

var	expr	=	from	product	in	products._Products

												where	product.UnitsInStock	>	100

												join	xc	in	xmlCategories.Elements("Category")

												on	product.CategoryID	equals	int.Parse(xc.Attribute("Id").Value)

Once	the	join	result	is	complete,	we	project	a	new	type	using	the	select	keyword:

select	new

{

				ProductName	=	product.ProductName,

				Category	=	xc.Attribute("Name").Value,

				CategoryDescription	=	xc.Attribute("Description").Value

};

This	allows	us	to	combine	different	data	elements	from	the	two	sets	of	data	to	make	a	third
set	that	can	look	completely	different	than	either	of	the	original	two.

Doing	joins	on	two	sets	of	database	data	would	be	a	bad	idea,	as	the	database	can	do	this
much	faster	for	those	sets,	but	when	you	need	to	join	disparate	data	sets,	LINQ	can	lend	a
helping	hand.

See	Also
The	“join	keyword,”	“System.Data.Linq.DataContext,”	and	“XElement”	topics	in	the
MSDN	documentation.

4.7	Querying	Configuration	Files	with	LINQ

Problem
Data	sets	can	be	stored	in	many	different	locations,	such	as	configuration	files.	You	want
to	be	able	to	query	your	configuration	files	for	sets	of	information.

Solution
Use	LINQ	to	query	against	the	configuration	sections.	In	the	following	example,	we	do
this	by	retrieving	all	chapter	titles	with	even	numbers	and	the	word	and	in	the	title	from
the	custom	configuration	section	containing	chapter	information:

CSharpRecipesConfigurationSection	recipeConfig	=

				ConfigurationManager.GetSection("CSharpRecipesConfiguration")	as

CSharpRecipesConfigurationSection;

var	expr	=	from	ChapterConfigurationElement	chapter	in

				recipeConfig.Chapters.OfType<ChapterConfigurationElement>()

												where	(chapter.Title.Contains("and"))	&&

													((int.Parse(chapter.Number)	%	2)	==	0)

												select	new

												{

																ChapterNumber	=	$"Chapter	{chapter.Number}",

																chapter.Title

												};

foreach	(var	chapterInfo	in	expr)

				Console.WriteLine($"{chapterInfo.ChapterNumber}	:	{chapterInfo.Title}");

The	configuration	section	being	queried	looks	like	this:

<CSharpRecipesConfiguration	CurrentEdition="4">

		<Chapters>

				<add	Number="1"	Title="Classes	and	Generics"	/>

				<add	Number="2"	Title="Collections,	Enumerators,	and	Iterators"	/>

				<add	Number="3"	Title="Data	Types"	/>

				<add	Number="4"	Title="LINQ	&	Lambda	Expressions"	/>

				<add	Number="5"	Title="Debugging	and	Exception	Handling"	/>

				<add	Number="6"	Title="Reflection	and	Dynamic	Programming"	/>

				<add	Number="7"	Title="Regular	Expressions"	/>

				<add	Number="8"	Title="Filesystem	I/O"	/>

				<add	Number="9"	Title="Networking	and	Web"	/>

				<add	Number="10"	Title="XML"	/>

				<add	Number="11"	Title="Security"	/>

				<add	Number="12"	Title="Threading,	Synchronization,	and	Concurrency"	/>

				<add	Number="13"	Title="Toolbox"	/>

		</Chapters>

		<Editions>

				<add	Number="1"	PublicationYear="2004"	/>

				<add	Number="2"	PublicationYear="2006"	/>

				<add	Number="3"	PublicationYear="2007"	/>

				<add	Number="4"	PublicationYear="2015"	/>

		</Editions>

</CSharpRecipesConfiguration>

The	output	from	the	query	is:

Chapter	2	:	Collections,	Enumerators,	and	Iterators

Chapter	6	:	Reflection	and	Dynamic	Programming

Chapter	12	:	Threading,	Synchronization,	and	Concurrency

Discussion
Configuration	files	in	.NET	play	a	significant	role	in	achieving	manageability	and	ease	of
deployment	for	.NET-based	applications.	It	can	be	challenging	to	get	all	of	the	various
settings	right	in	the	hierarchy	of	configuration	files	that	can	affect	an	application,	so
understanding	how	to	write	utilities	to	programmatically	check	configuration	file	settings
is	of	great	use	during	development,	testing,	deployment,	and	ongoing	management	of	an
application.

NOTE
To	access	the	configuration	types,	you	will	need	to	reference	the	System.Configuration	assembly.

Even	though	the	ConfigurationElementCollection	class	(the	base	of	data	sets	in
configuration	files)	supports	only	IEnumerable	and	not	IEnumerable<T>,	we	can	still	use
it	to	get	the	elements	we	need	by	using	the	OfType<ChapterConfigurationElement>
method	on	the	collection,	which	selects	elements	of	that	type	from	the	collection:

var	expr	=	from	ChapterConfigurationElement	chapter	in

				recipeConfig.Chapters.OfType<ChapterConfigurationElement>()

ChapterConfigurationElement	is	a	custom	configuration	section	class	that	holds	the
chapter	number	and	title:

///	<summary>

///	Holds	the	information	about	a	chapter	in	the	configuration	file

///	</summary>

public	class	ChapterConfigurationElement	:	ConfigurationElement

{

				///	<summary>

				///	Default	constructor

				///	</summary>

				public	ChapterConfigurationElement()

				{

				}

				///	<summary>

				///	The	number	of	the	Chapter

				///	</summary>

				[ConfigurationProperty("Number",	IsRequired=true)]

				public	string	Number

				{

								get	{	return	(string)this["Number"];	}

								set	{	this["Number"]	=	value;	}

				}

				///	<summary>

				///	The	title	of	the	Chapter

				///	</summary>

				[ConfigurationProperty("Title",	IsRequired=true)]

				public	string	Title

				{

								get	{	return	(string)this["Title"];	}

								set	{	this["Title"]	=	value;	}

				}

}

This	technique	can	be	used	on	the	standard	configuration	files,	such	as	machine.config,	as
well.	This	example	determines	which	sections	in	machine.config	require	access

permissions.	For	this	collection,	OfType<ConfigurationSection>	is	used,	as	this	is	a
standard	section:

System.Configuration.Configuration	machineConfig	=

				ConfigurationManager.OpenMachineConfiguration();

var	query	=	from	ConfigurationSection	section	in

machineConfig.Sections.OfType<ConfigurationSection>()

												where	section.SectionInformation.RequirePermission

												select	section;

foreach	(ConfigurationSection	section	in	query)

				Console.WriteLine(section.SectionInformation.Name);

The	sections	detected	will	look	something	like	this:

configProtectedData

satelliteassemblies

assemblyBinding

system.codedom

system.data.dataset

system.data.odbc

system.data

system.data.oracleclient

system.data.oledb

uri

system.windows.forms

system.runtime.remoting

runtime

system.diagnostics

windows

mscorlib

system.webServer

system.data.sqlclient

startup

See	Also
The	“Enumerable.OfType	method,”	“ConfigurationSectionCollection	class”	and
“ConfigurationElementCollection	class”	topics	in	the	MSDN	documentation.

4.8	Creating	XML	Straight	from	a	Database

Problem
You	want	to	be	able	to	take	a	data	set	from	a	database	and	represent	it	as	XML.

Solution
Use	LINQ	to	Entities	and	LINQ	to	XML	to	retrieve	and	transform	the	data	all	in	one
query.	In	this	case,	we	will	select	the	top	five	customers	in	the	Northwind	database	whose
contact	is	the	owner	and	those	owners	who	placed	orders	totaling	more	than	$10,000,	then
create	XML	containing	the	company	name,	contact	name,	phone	number,	and	total	amount
of	the	orders.	Finally,	the	results	are	written	out	to	the	BigSpenders.xml	file:

NorthwindEntities	dataContext	=	new	NorthwindEntities();

//	Log	the	generated	SQL	to	the	console

dataContext.Database.Log	=	Console.WriteLine;

//	select	the	top	5	customers	whose	contact	is	the	owner	and

//	those	owners	placed	orders	spending	more	than	$10000	this	year

var	bigSpenders	=	new	XElement("BigSpenders",

				from	top5	in

								(

												(from	customer	in

																				(

																								from	c	in	dataContext.Customers

																												//	get	the	customers	where	the	contact	is	the	

																												//	owner	and	they	placed	orders

																								where	c.ContactTitle.Contains("Owner")

																								&&	c.Orders.Count	>	0

																								join	orderData	in

																												(

																																from	c	in	dataContext.Customers

																																//	get	the	customers	where	the	contact	is	the	

																																//	owner	and	they	placed	orders

																																where	c.ContactTitle.Contains("Owner")

																																&&	c.Orders.Count	>	0

																																from	o	in	c.Orders

																																				//	get	the	order	details

																																join	od	in	dataContext.Order_Details

																																				on	o.OrderID	equals	od.OrderID

																																select	new

																																{

																																				c.CompanyName,

																																				c.CustomerID,

																																				o.OrderID,

																																				//	have	to	calc	order	value	from	orderdetails

																																				//(UnitPrice*Quantity	as	Total)-	

																																				//	(Total*Discount)	as	NetOrderTotal

																																				NetOrderTotal	=	(

																																								(((double)od.UnitPrice)	*	od.Quantity)	-

																																								((((double)od.UnitPrice)	*	od.Quantity)	*

																																										od.Discount))

																																}

)

																								on	c.CustomerID	equals	orderData.CustomerID

																								into	customerOrders

																								select	new

																								{

																												c.CompanyName,

																												c.ContactName,

																												c.Phone,

																												//	Get	the	total	amount	spent	by	the	customer

																												TotalSpend	=	customerOrders.Sum(order	=>

																																												order.NetOrderTotal)

																								}

)

																				//	only	worry	about	customers	that	spent	>	10000

																where	customer.TotalSpend	>	10000

																orderby	customer.TotalSpend	descending

																//	only	take	the	top	5	spenders

																select	new

																{

																				CompanyName	=	customer.CompanyName,

																				ContactName	=	customer.ContactName,

																				Phone	=	customer.Phone,

																				TotalSpend	=	customer.TotalSpend

																}).Take(5)

).ToList()

				//	format	the	data	as	XML

				select	new	XElement("Customer",

												new	XAttribute("companyName",	top5.CompanyName),

												new	XAttribute("contactName",	top5.ContactName),

												new	XAttribute("phoneNumber",	top5.Phone),

												new	XAttribute("amountSpent",	top5.TotalSpend)));

using	(XmlWriter	writer	=	XmlWriter.Create("BigSpenders.xml"))

{

				bigSpenders.WriteTo(writer);

}

NOTE
When	building	larger	queries,	you	may	find	it	is	sometimes	easier	to	use	the	functional	approach	(.Join())
to	build	up	the	query	instead	of	the	query	expression	manner	(join	x	on	y	equals	z)	if	you	have	done
more	C#	than	SQL.

Discussion
LINQ	to	SQL	is	the	part	of	LINQ	to	ADO.NET	that	facilitates	rapid	database
development.	It	is	targeted	at	the	scenarios	where	you	want	to	program	almost	directly
against	the	database	schema.	Most	of	these	scenarios	have	one-to-one	correlations
between	strongly	typed	classes	and	database	tables.	If	you	are	in	more	of	an	enterprise
development	scenario	with	lots	of	stored	procedures	and	databases	that	have	moved	away
from	“one	table	equals	one	entity”	scenarios,	you	would	want	to	look	into	LINQ	to
Entities.

You	can	access	the	LINQ	to	SQL	visual	designer	by	adding	a	new	or	opening	an	existing
“LINQ	to	SQL	Classes”	item	(*.dbml	file)	to	the	project,	which	opens	the	designer.	This
helps	you	to	build	out	the	DataContext	and	entity	classes	for	your	database,	which	can
then	be	used	with	LINQ	(or	other	programming	constructs	if	you	wish).	A	DataContext	is
analogous	to	an	ADO.NET	Connection	and	Command	object	rolled	into	one.	You	use	it	to
establish	your	connection,	execute	queries,	or	access	tables	directly	via	entity	classes.	The
NorthwindLinq2Sql	data	context	is	a	strongly	typed	instance	of	a	DataContext	and	is
partially	shown	here:

public	partial	class	NorthwindLinq2SqlDataContext	:	System.Data.Linq.DataContext

{

				private	static	System.Data.Linq.Mapping.MappingSource	mappingSource	=	new

AttributeMappingSource();

#region	Extensibility	Method	Definitions

partial	void	OnCreated();

partial	void	InsertCategory(Category	instance);

partial	void	UpdateCategory(Category	instance);

partial	void	DeleteCategory(Category	instance);

partial	void	InsertTerritory(Territory	instance);

partial	void	UpdateTerritory(Territory	instance);

partial	void	DeleteTerritory(Territory	instance);

partial	void	InsertCustomerCustomerDemo(CustomerCustomerDemo	instance);

partial	void	UpdateCustomerCustomerDemo(CustomerCustomerDemo	instance);

partial	void	DeleteCustomerCustomerDemo(CustomerCustomerDemo	instance);

partial	void	InsertCustomerDemographic(CustomerDemographic	instance);

partial	void	UpdateCustomerDemographic(CustomerDemographic	instance);

partial	void	DeleteCustomerDemographic(CustomerDemographic	instance);

partial	void	InsertCustomer(Customer	instance);

partial	void	UpdateCustomer(Customer	instance);

partial	void	DeleteCustomer(Customer	instance);

partial	void	InsertEmployee(Employee	instance);

partial	void	UpdateEmployee(Employee	instance);

partial	void	DeleteEmployee(Employee	instance);

partial	void	InsertEmployeeTerritory(EmployeeTerritory	instance);

partial	void	UpdateEmployeeTerritory(EmployeeTerritory	instance);

partial	void	DeleteEmployeeTerritory(EmployeeTerritory	instance);

partial	void	InsertOrder_Detail(Order_Detail	instance);

partial	void	UpdateOrder_Detail(Order_Detail	instance);

partial	void	DeleteOrder_Detail(Order_Detail	instance);

partial	void	InsertOrder(Order	instance);

partial	void	UpdateOrder(Order	instance);

partial	void	DeleteOrder(Order	instance);

partial	void	InsertProduct(Product	instance);

partial	void	UpdateProduct(Product	instance);

partial	void	DeleteProduct(Product	instance);

partial	void	InsertRegion(Region	instance);

partial	void	UpdateRegion(Region	instance);

partial	void	DeleteRegion(Region	instance);

partial	void	InsertShipper(Shipper	instance);

partial	void	UpdateShipper(Shipper	instance);

partial	void	DeleteShipper(Shipper	instance);

partial	void	InsertSupplier(Supplier	instance);

partial	void	UpdateSupplier(Supplier	instance);

partial	void	DeleteSupplier(Supplier	instance);

#endregion

				public	NorthwindLinq2SqlDataContext()	:

					base(

	global::NorthwindLinq2Sql.Properties.Settings.Default.NorthwindConnectionString,

					mappingSource)				{

								OnCreated();

				}

				public	NorthwindLinq2SqlDataContext(string	connection)	:

												base(connection,	mappingSource)

				{

								OnCreated();

				}

				public	NorthwindLinq2SqlDataContext(System.Data.IDbConnection	connection)	:

												base(connection,	mappingSource)

				{

								OnCreated();

				}

				public	NorthwindLinq2SqlDataContext(string	connection,

								System.Data.Linq.Mapping.MappingSource	mappingSource)	:

												base(connection,	mappingSource)

				{

								OnCreated();

				}

				public	NorthwindLinq2SqlDataContext(System.Data.IDbConnection	connection,

System.Data.Linq.Mapping.MappingSource	mappingSource)	:

												base(connection,	mappingSource)

				{

								OnCreated();

				}

				public	System.Data.Linq.Table<Category>	Categories

				{

								get

								{

												return	this.GetTable<Category>();

								}

				}

				public	System.Data.Linq.Table<Territory>	Territories

				{

								get

								{

												return	this.GetTable<Territory>();

								}

				}

				public	System.Data.Linq.Table<CustomerCustomerDemo>	CustomerCustomerDemos

				{

								get

								{

												return	this.GetTable<CustomerCustomerDemo>();

								}

				}

				public	System.Data.Linq.Table<CustomerDemographic>	CustomerDemographics

				{

								get

								{

												return	this.GetTable<CustomerDemographic>();

								}

				}

				public	System.Data.Linq.Table<Customer>	Customers

				{

								get

								{

												return	this.GetTable<Customer>();

								}

				}

				public	System.Data.Linq.Table<Employee>	Employees

				{

								get

								{

												return	this.GetTable<Employee>();

								}

				}

				public	System.Data.Linq.Table<EmployeeTerritory>	EmployeeTerritories

				{

								get

								{

												return	this.GetTable<EmployeeTerritory>();

								}

				}

				public	System.Data.Linq.Table<Order_Detail>	Order_Details

				{

								get

								{

												return	this.GetTable<Order_Detail>();

								}

				}

				public	System.Data.Linq.Table<Order>	Orders

				{

								get

								{

												return	this.GetTable<Order>();

								}

				}

				public	System.Data.Linq.Table<Product>	Products

				{

								get

								{

												return	this.GetTable<Product>();

								}

				}

				public	System.Data.Linq.Table<Region>	Regions

				{

								get

								{

												return	this.GetTable<Region>();

								}

				}

				public	System.Data.Linq.Table<Shipper>	Shippers

				{

								get

								{

												return	this.GetTable<Shipper>();

								}

				}

				public	System.Data.Linq.Table<Supplier>	Suppliers

				{

								get

								{

												return	this.GetTable<Supplier>();

								}

				}

}

The	entity	class	definitions	for	the	Northwind	database	are	all	present	in	the	generated
code	as	well,	with	each	table	having	an	entity	class	defined	for	it.	The	entity	classes	are
indicated	by	the	Table	attribute	with	no	parameters.	This	means	that	the	name	of	the	entity
class	matches	the	table	name:

[global::System.Data.Linq.Mapping.TableAttribute(Name="dbo.Customers")]

public	partial	class	Customer	:	INotifyPropertyChanging,	INotifyPropertyChanged

{

				private	static	PropertyChangingEventArgs	emptyChangingEventArgs	=	new

PropertyChangingEventArgs(String.Empty);

				private	string	_CustomerID;

				private	string	_CompanyName;

				private	string	_ContactName;

				private	string	_ContactTitle;

				private	string	_Address;

				private	string	_City;

				private	string	_Region;

				private	string	_PostalCode;

				private	string	_Country;

				private	string	_Phone;

				private	string	_Fax;

				private	EntitySet<CustomerCustomerDemo>	_CustomerCustomerDemos;

				private	EntitySet<Order>	_Orders;

#region	Extensibility	Method	Definitions

partial	void	OnLoaded();

partial	void	OnValidate(System.Data.Linq.ChangeAction	action);

partial	void	OnCreated();

partial	void	OnCustomerIDChanging(string	value);

partial	void	OnCustomerIDChanged();

partial	void	OnCompanyNameChanging(string	value);

partial	void	OnCompanyNameChanged();

partial	void	OnContactNameChanging(string	value);

partial	void	OnContactNameChanged();

partial	void	OnContactTitleChanging(string	value);

partial	void	OnContactTitleChanged();

partial	void	OnAddressChanging(string	value);

partial	void	OnAddressChanged();

partial	void	OnCityChanging(string	value);

partial	void	OnCityChanged();

partial	void	OnRegionChanging(string	value);

partial	void	OnRegionChanged();

partial	void	OnPostalCodeChanging(string	value);

partial	void	OnPostalCodeChanged();

partial	void	OnCountryChanging(string	value);

partial	void	OnCountryChanged();

partial	void	OnPhoneChanging(string	value);

partial	void	OnPhoneChanged();

partial	void	OnFaxChanging(string	value);

partial	void	OnFaxChanged();

#endregion

				public	Customer()

				{

								this._CustomerCustomerDemos	=	new	EntitySet<CustomerCustomerDemo>(new

Action<CustomerCustomerDemo>(this.attach_CustomerCustomerDemos),	new

Action<CustomerCustomerDemo>(this.detach_CustomerCustomerDemos));

								this._Orders	=	new	EntitySet<Order>(

												new	Action<Order>(this.attach_Orders),	new

Action<Order>(this.detach_Orders));

								OnCreated();

				}

				public	event	PropertyChangingEventHandler	PropertyChanging;

				public	event	PropertyChangedEventHandler	PropertyChanged;

				protected	virtual	void	SendPropertyChanging()

				{

								if	((this.PropertyChanging	!=	null))

								{

												this.PropertyChanging(this,	emptyChangingEventArgs);

								}

				}

				protected	virtual	void	SendPropertyChanged(String	propertyName)

				{

								if	((this.PropertyChanged	!=	null))

								{

												this.PropertyChanged(this,

																new	PropertyChangedEventArgs(propertyName));

								}

				}

The	standard	property	change	notifications	are	implemented	via
INotifyPropertyChanging	and	INotifyPropertyChanged	and	have	PropertyChanging
and	PropertyChanged	events	for	conveying	the	change	to	a	property.	There	is	also	a	set	of
partial	methods	that	will	report	when	a	specific	property	is	modified	on	this	entity	class	if
they	are	implemented	in	another	partial	class	definition	for	the	entity	class.

NOTE
Many	of	the	classes	generated	by	Microsoft	.NET	are	generated	as	partial	classes.	This	is	so	that	you	can
extend	them	in	your	own	partial	class	and	add	methods	and	properties	to	the	class	without	being	in	danger
of	the	code	generator	stomping	on	your	code	the	next	time	it	is	regenerated.

In	this	case,	if	no	other	partial	class	definition	is	found,	the	compiler	will	remove	those	notifications.	Partial
methods	enable	the	declaration	of	a	method	signature	in	one	file	of	a	partial	class	declaration	and	the
implementation	of	the	method	in	another.	If	the	signature	is	found	but	the	implementation	is	not,	the
signature	is	removed	by	the	compiler.

The	properties	in	the	entity	class	match	up	to	the	columns	in	the	database	via	the	Column
attribute,	where	the	Name	value	is	the	database	column	name	and	the	Storage	value	is	the
internal	storage	for	the	class	of	the	data.	Events	for	the	property	changes	are	wired	into	the
setter	for	the	property:

[global::System.Data.Linq.Mapping.ColumnAttribute(Storage="_CompanyName",

DbType="NVarChar(40)	NOT	NULL",	CanBeNull=false)]

public	string	CompanyName

{

				get

				{

								return	this._CompanyName;

				}

				set

				{

								if	((this._CompanyName	!=	value))

								{

												this.OnCompanyNameChanging(value);

												this.SendPropertyChanging();

												this._CompanyName	=	value;

												this.SendPropertyChanged("CompanyName");

												this.OnCompanyNameChanged();

								}

				}

}

For	a	one-to-many	child	relationship,	an	EntitySet<T>	of	the	child	entity	class	is	declared
with	an	Association	attribute.	The	Association	attribute	specifies	the	relationship

information	between	the	parent	and	child	entity	classes,	as	shown	here	for	the	Orders
property	on	Customer:

	[global::System.Data.Linq.Mapping.AssociationAttribute(Name="Customer_Order",

Storage="_Orders",	ThisKey="CustomerID",	OtherKey="CustomerID")]

	public	EntitySet<Order>	Orders

	{

					get

					{

									return	this._Orders;

					}

					set

					{

									this._Orders.Assign(value);

					}

	}

LINQ	to	SQL	covers	much	more	than	what	has	been	shown	here,	and	we	encourage	you
to	investigate	it	more.	Now,	however,	let’s	move	on	to	the	other	data	domain	we	are
dealing	with:	LINQ	to	XML.

LINQ	to	XML	is	not	only	how	you	perform	queries	against	XML,	it	is	also	a	more
developer-friendly	way	to	work	with	XML.	One	of	the	main	classes	in	LINQ	to	XML	is
XElement,	which	allows	you	to	create	XML	in	a	manner	that	more	closely	resembles	the
structure	of	the	XML	itself.	This	may	not	seem	like	a	big	deal,	but	when	you	can	see	the
XML	taking	shape	in	your	code,	it’s	easier	to	know	where	you	are.	(Ever	forget	which
XmlWriter.WriteEndElement	you	were	on?	We	have!)	You	can	get	more	details	and
examples	about	using	XElement	in	Chapter	10,	so	we	won’t	go	much	further	into	it	here,
but	as	you	can	see,	it	is	very	easy	to	build	up	XML	in	a	query.

The	first	part	of	the	query	deals	with	setting	up	the	main	XML	element,	BigSpenders,	and
getting	the	initial	set	of	customers	where	the	contact	is	the	owner:

var	bigSpenders	=	new	XElement("BigSpenders",

												from	top5	in

												(

																(from	customer	in

																					(

																									from	c	in	dataContext.Customers

																									//	get	the	customers	where	the	contact	is	the	owner

																									//	and	they	placed	orders

																									where	c.ContactTitle.Contains("Owner")

																												&&	c.Orders.Count	>	0

The	middle	of	the	query	deals	with	joining	the	order	and	order	detail	information	with	the
customer	information	to	get	the	NetOrderTotal	for	the	order.	It	also	creates	order	data
containing	that	value,	the	customer	and	order	IDs,	and	the	company	name.	We	need	the
NetOrderTotal	in	the	last	part	of	the	query,	so	stay	tuned!

				join	orderData	in

								(

												from	c	in	dataContext.Customers

												//	get	the	customers	where	the	contact	is	the	owner

												//	and	they	placed	orders

												where	c.ContactTitle.Contains("Owner")

															&&	c.Orders.Count	>	0

												from	o	in	c.Orders

												//	get	the	order	details

												join	od	in	dataContext.OrderDetails

																on	o.OrderID	equals	od.OrderID

												select	new

												{

																c.CompanyName,

																c.CustomerID,

																o.OrderID,

																//	have	to	calc	order	value	from	orderdetails

																//(UnitPrice*Quantity	as	Total)

																		(Total*Discount)

																//	as	NetOrderTotal

																NetOrderTotal	=	(

(((double)od.UnitPrice)	*	od.Quantity)	-

((((double)od.UnitPrice)	*	od.Quantity)	*	od.Discount))

												}

)

				on	c.CustomerID	equals	orderData.CustomerID

				into	customerOrders

The	last	part	of	the	query	determines	the	TotalSpend	for	that	customer	across	all	orders
using	the	Sum	function	on	NetOrderTotal	for	the	generated	customerOrders	collection.
Finally,	the	query	selects	only	the	top	five	customers	with	a	TotalSpend	value	greater	than
10,000	by	using	the	Take	function.	(Take	is	the	equivalent	to	TOP	in	SQL.)	We	then	use
those	records	to	construct	one	inner	Customer	element	with	attributes	that	nest	inside	the
BigSpenders	root	element	we	set	up	in	the	first	part	of	the	query:

													select	new

													{

																		c.CompanyName,

																		c.ContactName,

																		c.Phone,

																		//	Get	the	total	amount	spent	by	the	customer

																		TotalSpend	=	customerOrders.Sum(order	=>	order.	NetOrderTotal)

													}

)

						//	only	worry	about	customers	that	spent	>	10000

						where	customer.TotalSpend	>	10000

						orderby	customer.TotalSpend	descending

					//	only	take	the	top	5	spenders

					select	customer).Take(5)

)

//	format	the	data	as	XML

select	new	XElement("Customer",

											new	XAttribute("companyName",	top5.CompanyName),

											new	XAttribute("contactName",	top5.ContactName),

											new	XAttribute("phoneNumber",	top5.Phone),

											new	XAttribute("amountSpent",	top5.TotalSpend)));

NOTE
It	is	much	easier	to	build	large-nested	queries	as	individual	queries	first	and	then	put	them	together	once
you	are	sure	the	inner	query	is	working.

At	this	point,	for	all	of	the	code	here,	nothing	has	happened	yet.	That’s	right:	until	the
query	is	accessed,	nothing	happens	because	of	the	magic	of	deferred	execution.	LINQ	has
constructed	a	query	expression,	but	nothing	has	talked	to	the	database;	there	is	no	XML	in
memory,	nada.	Once	the	WriteTo	method	is	called	on	the	bigSpenders	query	expression,
the	query	is	evaluated	by	LINQ	to	SQL,	and	the	XML	is	constructed.	The	WriteTo	method
writes	out	the	constructed	XML	to	the	XmlWriter	provided,	and	we	are	done:

using	(XmlWriter	writer	=	XmlWriter.Create("BigSpenders.xml"))

{

				bigSpenders.WriteTo(writer);

}

If	you	are	interested	in	what	that	SQL	will	look	like,	connect	the	DataContext.Log
property	to	a	TextWriter	(like	the	console):

//	Log	the	generated	SQL	to	the	console

dataContext.Log	=	Console.Out;

This	query	generates	SQL	that	looks	like	this:

				Generated	SQL	for	query	-	output	via	DataContext.Log

				SELECT	[t10].[CompanyName],	[t10].[ContactName],	[t10].[Phone],	

								[t10].[TotalSpend]

				FROM	(

								SELECT	TOP	(5)	[t0].[Company	Name]	AS	[CompanyName],	

												[t0].[Contact	Name]	AS

				[ContactName],	[t0].[Phone],	[t9].[value]	AS	[TotalSpend]

								FROM	[Customers]	AS	[t0]

								OUTER	APPLY	(

												SELECT	COUNT(*)	AS	[value]

												FROM	[Orders]	AS	[t1]

												WHERE	[t1].[Customer	ID]	=	[t0].[Customer	ID]

)	AS	[t2]

								OUTER	APPLY	(

												SELECT	SUM([t8].[value])	AS	[value]

												FROM	(

																SELECT	[t3].[Customer	ID],	[t6].[Order	ID],

																					([t7].[Unit	Price]	*

																					(CONVERT(Decimal(29,4),[t7].[Quantity])))	-

																									([t7].[Unit	Price]	*

																									(CONVERT(Decimal(29,4),[t7].[Quantity]))	*

																													(CONVERT(Decimal(29,4),[t7].[Discount])))	AS	

																																	[value],

																					[t7].[Order	ID]	AS	[Order	ID2],

																					[t3].[Contact	Title]	AS	[ContactTitle],

																					[t5].[value]	AS	[value2],

																					[t6].[Customer	ID]	AS	[CustomerID]

												FROM	[Customers]	AS	[t3]

												OUTER	APPLY	(

																SELECT	COUNT(*)	AS	[value]

																FROM	[Orders]	AS	[t4]

																WHERE	[t4].[Customer	ID]	=	[t3].[Customer	ID]

)	AS	[t5]

												CROSS	JOIN	[Orders]	AS	[t6]

												CROSS	JOIN	[Order	Details]	AS	[t7]

)	AS	[t8]

								WHERE	([t0].[Customer	ID]	=	[t8].[Customer	ID])	AND	([t8].[Order	ID]	=	[

t8].[Order	ID2])	AND	([t8].[ContactTitle]	LIKE	@p0)	AND	([t8].[value2]	>	@p1)	AN

D	([t8].[CustomerID]	=	[t8].[Customer	ID])

)	AS	[t9]

								WHERE	([t9].[value]	>	@p2)	AND	([t0].[Contact	Title]	LIKE	@p3)	AND	

												([t2].[va

				lue]	>	@p4)

								ORDER	BY	[t9].[value]	DESC

)	AS	[t10]

				ORDER	BY	[t10].[TotalSpend]	DESC

			—@p0:	Input	String	(Size	=	0;	Prec	=	0;	Scale	=	0)	[%Owner%]

			—@p1:	Input	Int32	(Size	=	0;	Prec	=	0;	Scale	=	0)	[0]

			—@p2:	Input	Decimal	(Size	=	0;	Prec	=	29;	Scale	=	4)	[10000]

			—@p3:	Input	String	(Size	=	0;	Prec	=	0;	Scale	=	0)	[%Owner%]

			—@p4:	Input	Int32	(Size	=	0;	Prec	=	0;	Scale	=	0)	[0]

			—Context:	SqlProvider(SqlCE)	Model:	AttributedMetaModel	Build:	3.5.20706.1

Here	is	the	final	XML:

<BigSpenders>

		<Customer	companyName="Folk	och	fa	HB"	contactName="Maria	Larsson"

												phoneNumber="0695-34	67	21"	amountSpent="39805.162472039461"	/>

		<Customer	companyName="White	Clover	Markets"	contactName="Karl	Jablonski"

												phoneNumber="(206)	555-4112"	amountSpent="35957.604972146451"	/>

		<Customer	companyName="Bon	app'"	contactName="Laurence	Lebihan"

												phoneNumber="91.24.45.40"	amountSpent="22311.577472746558"	/>

		<Customer	companyName="LINO-Delicateses"	contactName="Felipe	Izquierdo"

												phoneNumber="(8)	34-56-12"	amountSpent="20458.544984650609"	/>

		<Customer	companyName="Simons	bistro"	contactName="Jytte	Petersen"

												phoneNumber="31	12	34	56"	amountSpent="18978.777493602414"	/>

</BigSpenders>

See	Also
The	“The	Three	Parts	of	a	LINQ	Query,”	“DataContext.Log,	property,”	“DataContext
class,”	“XElement	class,”	and	“LINQ	to	SQL”	topics	in	the	MSDN	documentation.

4.9	Being	Selective	About	Your	Query	Results

Problem
You	want	to	be	able	to	get	a	dynamic	subset	of	a	query	result.

Solution
Use	the	TakeWhile	extension	method	to	retrieve	all	results	until	the	criteria	are	matched:

NorthwindEntities	dataContext	=	new	NorthwindEntities();

//	find	the	products	for	all	suppliers

var	query	=

				dataContext.Suppliers.GroupJoin(dataContext.Products,

								s	=>	s.SupplierID,	p	=>	p.SupplierID,

								(s,	products)	=>	new

								{

												s.CompanyName,

												s.ContactName,

												s.Phone,

												Products	=	products

								}).OrderByDescending(supplierData	=>	supplierData.Products.Count());

var	results	=

				query.AsEnumerable().TakeWhile(supplierData	=>	

								supplierData.Products.Count()	>	3);

Console.WriteLine($"Suppliers	that	provide	more	than	three	products:	"	+

				$"{results.Count()}");

foreach	(var	supplierData	in	results)

{

				Console.WriteLine($"		Company	Name	:	{supplierData.CompanyName}");

				Console.WriteLine($"		Contact	Name	:	{supplierData.ContactName}");

				Console.WriteLine($"		Contact	Phone	:	{supplierData.Phone}");

				Console.WriteLine($"		Products	Supplied	:	{supplierData.Products.Count()}");

				foreach	(var	productData	in	supplierData.Products)

								Console.WriteLine($"								Product:	{productData.ProductName}");

}

You	can	also	use	the	SkipWhile	extension	method	to	retrieve	all	results	once	the	criteria
are	matched:

NorthwindEntities	dataContext	=	new	NorthwindEntities();

//	find	the	products	for	all	suppliers

var	query	=

				dataContext.Suppliers.GroupJoin(dataContext.Products,

								s	=>	s.SupplierID,	p	=>	p.SupplierID,

								(s,	products)	=>	new

								{

												s.CompanyName,

												s.ContactName,

												s.Phone,

												Products	=	products

								}).OrderByDescending(supplierData	=>	supplierData.Products.Count());

var	results	=

				query.AsEnumerable().SkipWhile(supplierData	=>	

				supplierData.Products.Count()	>	3);

Console.WriteLine($"Suppliers	that	provide	more	than	three	products:	"	+

				$"{results.Count()}");

foreach	(var	supplierData	in	results)

{

				Console.WriteLine($"				Company	Name	:	{supplierData.CompanyName}");

				Console.WriteLine($"				Contact	Name	:	{supplierData.ContactName}");

				Console.WriteLine($"				Contact	Phone	:	{supplierData.Phone}");

				Console.WriteLine($"				Products	Supplied	:	{supplierData.Products.Count()}");

				foreach	(var	productData	in	supplierData.Products)

								Console.WriteLine($"								Product:	{productData.ProductName}");

}

Discussion
In	this	example	using	LINQ	to	Entities,	we	determine	the	number	of	products	each
supplier	provides,	and	sort	the	result	set	in	descending	order	by	product	count:

var	query	=

				dataContext.Suppliers.GroupJoin(dataContext.Products,

								s	=>	s.SupplierID,	p	=>	p.SupplierID,

								(s,	products)	=>	new

								{

												s.CompanyName,

												s.ContactName,

												s.Phone,

												Products	=	products

								}).OrderByDescending(supplierData	=>	supplierData.Products.Count());

From	that	result,	the	supplier	data	is	accepted	into	the	final	result	set	only	if	the	supplier
provides	more	than	three	products	and	the	results	are	displayed.	TakeWhile	is	used	with	a
lambda	expression	to	determine	if	the	product	count	is	greater	than	3,	and	if	so,	the
supplier	is	accepted	into	the	result	set:

var	results	=	query.AsEnumerable().TakeWhile(supplierData	=>

								supplierData.Products.Count()	>	3);

If	SkipWhile	were	used	instead,	all	of	the	suppliers	that	provide	three	or	fewer	products
would	be	returned:

var	results	=	query.AsEnumerable().SkipWhile(supplierData	=>

								supplierData.Products.Count()	>	3);

Being	able	to	write	code-based	conditions	allows	for	more	flexibility	than	the	regular	Take
and	Skip	methods,	which	are	based	on	absolute	record	count,	but	keep	in	mind	that	once
the	condition	is	hit	for	either	TakeWhile	or	SkipWhile,	you	get	all	records	after	that,	which
is	why	it’s	important	to	sort	the	result	set	before	using	them.

The	query	also	uses	GroupJoin,	which	is	comparable	to	a	SQL	LEFT	or	RIGHT	OUTER
JOIN,	but	the	result	is	not	flattened.	GroupJoin	produces	a	hierarchical	result	set	instead	of
a	tabular	one,	which	is	used	to	get	the	collection	of	products	by	supplier	in	this	example:

dataContext.Suppliers.GroupJoin(dataContext.Products,

			s	=>	s.SupplierID,	p	=>	p.SupplierID,

This	is	the	output	for	the	TakeWhile:

Suppliers	that	provide	more	than	three	products:	4

				Company	Name	:	Pavlova,	Ltd.

				Contact	Name	:	Ian	Devling

				Contact	Phone	:	(03)	444-2343

				Products	Supplied	:	5

								Product:	Pavlova

								Product:	Alice	Mutton

								Product:	Carnarvon	Tigers

								Product:	Vegie-spread

								Product:	Outback	Lager

				Company	Name	:	Plutzer	Lebensmittelgroßmärkte	AG

				Contact	Name	:	Martin	Bein

				Contact	Phone	:	(069)	992755

				Products	Supplied	:	5

								Product:	Rössle	Sauerkraut

								Product:	Thüringer	Rostbratwurst

								Product:	Wimmers	gute	Semmelknödel

								Product:	Rhönbräu	Klosterbier

								Product:	Original	Frankfurter	grüne	Soße

				Company	Name	:	New	Orleans	Cajun	Delights

				Contact	Name	:	Shelley	Burke

				Contact	Phone	:	(100)	555-4822

				Products	Supplied	:	4

								Product:	Chef	Anton's	Cajun	Seasoning

								Product:	Chef	Anton's	Gumbo	Mix

								Product:	Louisiana	Fiery	Hot	Pepper	Sauce

								Product:	Louisiana	Hot	Spiced	Okra

				Company	Name	:	Specialty	Biscuits,	Ltd.

				Contact	Name	:	Peter	Wilson

				Contact	Phone	:	(161)	555-4448

				Products	Supplied	:	4

								Product:	Teatime	Chocolate	Biscuits

								Product:	Sir	Rodney's	Marmalade

								Product:	Sir	Rodney's	Scones

								Product:	Scottish	Longbreads

See	Also
The	“Enumerable.TakeWhile	method,”	“Enumerable.SkipWhile	method,”	and
“Enumerable.GroupJoin	method”	topics	in	the	MSDN	documentation.

4.10	Using	LINQ	with	Collections	That	Don’t	Support
IEnumerable<T>

Problem
There	are	a	whole	bunch	of	collections	that	don’t	support	the	generic	versions	of
IEnumerable	or	ICollection	but	that	do	support	the	original	nongeneric	versions	of	the
IEnumerable	or	ICollection	interfaces,	and	you	would	like	to	be	able	to	query	those
collections	using	LINQ.

Solution
The	type	cannot	be	inferred	from	the	original	IEnumeration	or	ICollection	interfaces,	so
you	must	provide	it	using	either	the	OfType<T>	or	Cast<T>	extension	methods	or	by
specifying	the	type	in	the	from	clause,	which	inserts	a	Cast<T>	for	you.	The	first	example
uses	Cast<XmlNode>	to	let	LINQ	know	that	the	elements	in	the	XmlNodeList	returned
from	XmlDocument.SelectNodes	are	of	type	XmlNode.	For	an	example	of	how	to	use	the
OfType<T>	extension	method,	see	the	Discussion	section:

//	Make	some	XML	with	some	types	that	you	can	use	with	LINQ

//	that	don't	support	IEnumerable<T>	directly

XElement	xmlFragment	=	new	XElement("NonGenericLinqableTypes",

																								new	XElement("IEnumerable",

																												new	XElement("System.Collections",

																																new	XElement("ArrayList"),

																																new	XElement("BitArray"),

																																new	XElement("Hashtable"),

																																new	XElement("Queue"),

																																new	XElement("SortedList"),

																																new	XElement("Stack")),

																												new	XElement("System.Net",

																																new	XElement("CredentialCache")),

																												new	XElement("System.Xml",

																																new	XElement("XmlNodeList")),

																												new	XElement("System.Xml.XPath",

																																new	XElement("XPathNodeIterator"))),

																								new	XElement("ICollection",

																												new	XElement("System.Diagnostics",

																																new	XElement("EventLogEntryCollection")),

																												new	XElement("System.Net",

																																new	XElement("CookieCollection")),

																												new	XElement("System.Security.AccessControl",

																																new	XElement("GenericAcl")),

																												new	XElement("System.Security",

																																new	XElement("PermissionSet"))));

XmlDocument	doc	=	new	XmlDocument();

doc.LoadXml(xmlFragment.ToString());

//	Select	the	names	of	the	nodes	under	IEnumerable	that	have	children	and	are

//	named	System.Collections	and	contain	a	capital	S	and	return	that	list	in

//	descending	order

var	query	=

from	node	in

				doc.SelectNodes("/NonGenericLinqableTypes/IEnumerable/*").Cast<XmlNode>()

				where	node.HasChildNodes	&&

								node.Name	==	"System.Collections"

				from	XmlNode	xmlNode	in	node.ChildNodes

				where	xmlNode.Name.Contains('S')

				orderby	xmlNode.Name	descending

				select	xmlNode.Name;

foreach	(string	name	in	query)

				Console.WriteLine(name);

The	second	example	works	against	the	application	event	log	and	retrieves	the	errors	that
occurred	in	the	last	six	hours.	The	type	of	the	element	in	the	collection	(EventLogEntry)	is
provided	next	to	the	from	keyword,	which	allows	LINQ	to	infer	the	rest	of	the	information
it	needs	about	the	collection	element	type:

EventLog	log	=	new	EventLog("Application");

query	=	from	EventLogEntry	entry	in	log.Entries

								where	entry.EntryType	==	EventLogEntryType.Error	&&

												entry.TimeGenerated	>	DateTime.Now.Subtract(new	TimeSpan(6,	0,	0))

								select	entry.Message;

Console.WriteLine($"There	were	{query.Count<string>()}"	+

				"	Application	Event	Log	error	messages	in	the	last	6	hours!");

foreach	(string	message	in	query)

				Console.WriteLine(message);

Discussion
Cast<T>	will	transform	the	IEnumerable	into	IEnumerable<T>	so	that	LINQ	can	access
each	item	in	the	collection	in	a	strongly	typed	manner.	Before	you	use	Cast<T>,	it	would
behoove	you	to	check	that	all	elements	of	the	collection	really	are	of	type	T;	otherwise,
you	will	get	an	InvalidCastException	if	the	type	of	the	element	is	not	convertible	to	the
type	T	specified,	because	all	elements	will	be	cast	using	that	type.	Placing	the	type	of	the
element	next	to	the	from	keyword	acts	just	like	a	Cast<T>:

ArrayList	stuff	=	new	ArrayList();

stuff.Add(DateTime.Now);

stuff.Add(DateTime.Now);

stuff.Add(1);

stuff.Add(DateTime.Now);

var	expr	=	from	item	in	stuff.Cast<DateTime>()

												select	item;

foreach	(DateTime	item	in	expr)

				Console.WriteLine(item);

NOTE
Because	of	the	deferred	execution	semantics,	the	exception	that	occurs	with	Cast<T>	or	from	happens	only
once	that	element	has	been	iterated	to.

Another	way	to	approach	this	issue	is	to	use	OfType<T>,	as	it	will	return	only	the	elements
of	a	specific	type	and	not	try	to	cast	elements	from	one	type	to	another:

var	expr	=	from	item	in	stuff.OfType<DateTime>()

												select	item;

//	only	three	elements,	all	DateTime	returned.	No	exceptions

foreach	(DateTime	item	in	expr)

				Console.WriteLine(item);

See	Also
The	“OfType<TResult>	method”	and	“Cast<TResult>	method”	topics	in	the	MSDN
documentation.

4.11	Performing	an	Advanced	Interface	Search

Problem
You	are	searching	for	an	interface	using	the	Type	class.	However,	complex	interface
searches	are	not	available	through	the	GetInterface	and	GetInterfaces	methods	of	a
Type	object.

Solution
Use	LINQ	to	query	the	type	interface	information	and	perform	rich	searches.	The	method
shown	in	Example	4-2	demonstrates	one	complex	search	that	can	be	performed	with
LINQ.

Example	4-2.	Performing	complex	searches	of	interfaces	on	a	type
//	set	up	the	interfaces	to	search	for

Type[]	interfaces	=	{

				typeof(System.ICloneable),

				typeof(System.Collections.ICollection),

				typeof(System.IAppDomainSetup)	};

//	set	up	the	type	to	examine

Type	searchType	=	typeof(System.Collections.ArrayList);

var	matches	=	from	t	in	searchType.GetInterfaces()

																join	s	in	interfaces	on	t	equals	s

																select	s;

Console.WriteLine("Matches	found:");

foreach	(Type	match	in	matches)

				Console.WriteLine(match.ToString());

The	code	in	Example	4-2	searches	for	any	of	the	three	interface	types	contained	in	the
Names	array	that	are	implemented	by	the	System.Collections.ArrayList	type.	It	does
this	by	using	LINQ	to	query	if	the	type	is	an	instance	of	any	of	the	set	of	interfaces.

The	GetInterface	method	searches	for	an	interface	only	by	name	(using	a	case-sensitive
or	case-insensitive	search),	and	the	GetInterfaces	method	returns	an	array	of	all	the
interfaces	implemented	on	a	particular	type.	To	execute	a	more	focused	search	—	for
example,	searching	for	interfaces	that	define	a	method	with	a	specific	signature,	or
implemented	interfaces	that	are	loaded	from	the	Global	Assembly	Cache	(GAC)	where
common	assemblies	are	stored	—	you	need	to	use	a	different	mechanism,	like	LINQ.
LINQ	gives	you	a	more	flexible	and	more	advanced	searching	capability	for	interfaces
without	requiring	you	to	create	your	own	interface	search	engine.	You	might	use	this
capability	to	load	assemblies	with	a	specific	interface,	to	generate	code	from	existing
assemblies,	or	even	as	a	reverse-engineering	tool!

Discussion
There	are	many	ways	to	use	LINQ	to	search	for	interfaces	implemented	on	a	type.	Here
are	just	a	few	other	searches	that	can	be	performed:

A	search	for	all	implemented	interfaces	that	are	defined	within	a	particular	namespace
(in	this	case,	the	System.Collections	namespace):

var	collectionsInterfaces	=	from	type	in	searchType.GetInterfaces()

																												where	type.Namespace	==	"System.Collections"

																												select	type;

A	search	for	all	implemented	interfaces	that	contain	a	method	called	Add,	which	returns
an	Int32	value:

var	addInterfaces	=	from	type	in	searchType.GetInterfaces()

																				from	method	in	type.GetMethods()

																				where	(method.Name	==	"Add")	&&

																												(method.ReturnType	==	typeof(int))

																				select	type;

A	search	for	all	implemented	interfaces	that	are	loaded	from	the	GAC:

var	gacInterfaces	=	from	type	in	searchType.GetInterfaces()

																				where	type.Assembly.GlobalAssemblyCache

																				select	type;

A	search	for	all	implemented	interfaces	that	are	defined	within	an	assembly	with	the
version	number	4.0.0.0:

var	versionInterfaces	=	from	type	in	searchType.GetInterfaces()

																								where	type.Assembly.GlobalAssemblyCache	&&

																												type.Assembly.GetName().Version.Major	==	4	&&

																												type.Assembly.GetName().Version.Minor	==	0	&&

																												type.Assembly.GetName().Version.Build	==	0	&&

																												type.Assembly.GetName().Version.Revision	==	0

																								select	type;

See	Also
The	“Lambda	Expressions	(C#	Programming	Guide)”	and	“where	keyword	[LINQ]	(C#)”
topics	in	the	MSDN	documentation.

4.12	Using	Lambda	Expressions

Problem
C#	includes	a	feature	called	lambda	expressions.	While	you	can	view	lambda	expressions
as	syntactic	sugar	for	making	anonymous	method	definition	less	difficult,	you	also	want	to
understand	all	of	the	different	ways	that	you	can	use	them	to	help	you	in	your	daily
programming	chores	as	well	as	the	ramifications	of	those	uses.

Solution
Lambda	expressions	can	be	implemented	by	the	compiler	from	methods	created	by	the
developer.	There	are	two	orthogonal	characteristics	that	lambda	expressions	may	have:

Parameter	lists	may	have	explicit	or	implicit	types.

Bodies	may	be	expressions	or	statement	blocks.

Let’s	start	with	the	original	way	to	use	delegates.	First,	you	would	declare	a	delegate	type
—	DoWork	in	this	case	—	and	then	create	an	instance	of	it	(as	shown	here	in	the	WorkItOut
method).	Declaring	the	instance	of	the	delegate	requires	that	you	specify	a	method	to
execute	when	the	delegate	is	invoked,	and	here	the	DoWorkMethodImpl	method	has	been
connected.	The	delegate	is	invoked,	and	the	text	is	written	to	the	console	via	the
DoWorkMethodImpl	method:

class	OldWay

{

				//	declare	delegate

				delegate	int	DoWork(string	work);

				//	have	a	method	to	create	an	instance	of	and	call	the	delegate

				public	void	WorkItOut()

				{

								//	declare	instance

								DoWork	dw	=	new	DoWork(DoWorkMethodImpl);

								//	invoke	delegate

								int	i	=	dw("Do	work	the	old	way");

				}

				//	Have	a	method	that	the	delegate	is	tied	to	with	a	matching	signature

				//	so	that	it	is	invoked	when	the	delegate	is	called

				public	int	DoWorkMethodImpl(string	s)

				{

								Console.WriteLine(s);

								return	s.GetHashCode();

				}

}

Lambda	expressions	allow	you	to	set	up	code	to	run	when	a	delegate	is	invoked,	but	you
do	not	need	to	give	a	named	formal	method	declaration	to	the	delegate.	The	method	thus
declared	is	nameless	and	closed	over	the	scope	of	the	outer	method.	For	example,	you
could	have	written	the	preceding	code	using	a	lambda	expression	such	as	this:

class	LambdaWay

{

				//	declare	delegate

				delegate	int	DoWork(string	work);

				//	have	a	method	to	create	an	instance	of	and	call	the	delegate

				public	void	WorkItOut()

				{

								//	declare	instance

								DoWork	dw	=	s	=>

								{

												Console.WriteLine(s);

												return	s.GetHashCode();

								};

								//	invoke	delegate

								int	i	=	dw("Do	some	inline	work");

				}

}

Notice	that	instead	of	having	a	method	called	DoWorkMethodImpl,	you	use	the	=>	operator
to	directly	assign	the	code	from	that	method	inline	to	the	DoWork	delegate.	The	assignment
looks	like	this:

DoWork	dw	=	s	=>

{

				Console.WriteLine(s);

				return	s.GetHashCode();

};

You	also	provide	the	parameter	required	by	the	DoWork	delegate	(string),	and	your	code
returns	an	int	(s.GetHashCode())	as	the	delegate	requires.	When	you’re	setting	up	a
lambda	expression,	the	code	must	match	the	delegate	signature,	or	you	will	get	a	compiler
error.

By	“match,”	we	mean:

If	explicitly	typed,	the	lambda	parameters	must	exactly	match	the	delegate	parameters.
If	implicitly	typed,	the	lambda	parameters	get	the	delegate	parameter	types.

The	body	of	the	lambda	must	be	a	legal	expression	or	statement	block	given	the
parameter	types.

The	return	type	of	the	lambda	must	be	implicitly	convertible	to	the	return	type	of	the
delegate.	It	need	not	match	exactly.

There	is	yet	another	way	you	can	set	up	the	delegate:	through	the	magic	of	delegate
inference.	Delegate	inference	allows	you	to	assign	the	method	name	directly	to	the
delegate	instance	without	having	to	write	the	code	to	create	a	new	delegate	object.	Under
the	covers,	C#	actually	writes	the	IL	for	creating	the	delegate	object,	but	you	don’t	have	to
do	it	explicitly	here.	Using	delegate	inference	instead	of	writing	out	new	[Delegate
Type]([Method	Name])	everywhere	helps	to	unclutter	the	code	involved	in	delegate	use,
as	shown	here:

class	DirectAssignmentWay

{

				//	declare	delegate

				delegate	int	DoWork(string	work);

				//	have	a	method	to	create	an	instance	of	and	call	the	delegate

				public	void	WorkItOut()

				{

								//	declare	instance	and	assign	method

								DoWork	dw	=	DoWorkMethodImpl;

								//	invoke	delegate

								int	i	=	dw("Do	some	direct	assignment	work");

				}

				//	Have	a	method	that	the	delegate	is	tied	to	with	a	matching	signature

				//	so	that	it	is	invoked	when	the	delegate	is	called

				public	int	DoWorkMethodImpl(string	s)

				{

								Console.WriteLine(s);

								return	s.GetHashCode();

				}

}

Notice	that	all	that	is	assigned	to	the	DoWork	delegate	instance	dw	is	the	method	name
DoWorkMethodImpl.	There	is	no	new	DoWork(DoWorkMethodImpl)	call	as	there	was	in
older	C#	code.

NOTE
Remember,	the	underlying	delegate	wrapper	does	not	go	away;	delegate	inference	just	simplifies	the	syntax
a	bit	by	hiding	some	of	it.

Alternatively,	you	can	also	set	up	lambda	expressions	that	take	generic	type	parameters	to
enable	working	with	generic	delegates,	as	you	see	here	in	the	GenericWay	class:

class	GenericWay

{

				//	have	a	method	to	create	two	instances	of	and	call	the	delegates

				public	void	WorkItOut()

				{

								Func<string,	string>	dwString	=	s	=>

								{

												Console.WriteLine(s);

												return	s;

								};

								//	invoke	string	delegate

								string	retStr	=	dwString("Do	some	generic	work");

								Func<int,	int>	dwInt	=	i	=>

								{

												Console.WriteLine(i);

												return	i;

								};

								//	invoke	int	delegate

								int	j	=	dwInt(5);

				}

}

Discussion
One	of	the	useful	things	about	lambda	expressions	is	the	concept	of	outer	variables.	The
official	definition	of	outer	variable	is	any	local	variable,	value	parameter,	or	parameter
array	with	a	scope	that	contains	the	lambda	expression.

This	means	that,	inside	the	code	of	the	lambda	expression,	you	can	touch	variables	outside
the	scope	of	that	method.	This	introduces	the	concept	of	“capturing”	the	variables,	which
occurs	when	a	lambda	expression	actually	makes	reference	to	one	of	the	outer	variables.
In	the	following	example,	the	count	variable	is	captured	and	incremented	by	the	lambda
expression.	The	count	variable	is	not	part	of	the	original	scope	of	the	lambda	expression
but	rather	part	of	the	outer	scope.	It	is	incremented,	and	then	the	incremented	value	is
returned	and	totaled:

public	void	SeeOuterWork()

{

				int	count	=	0;

				int	total	=	0;

				Func<int>	countUp	=	()	=>	count++;

				for	(int	i	=	0;	i	<	10;	i++)

								total	+=	countUp();

				Debug.WriteLine($"Total	=	{total}");

}

What	capturing	actually	does	is	extend	the	lifetime	of	the	outer	variable	to	coincide	with
the	lifetime	of	the	underlying	delegate	instance	that	represents	the	lambda	expression.	This
should	encourage	you	to	be	careful	about	what	you	touch	from	inside	a	lambda
expression.	You	could	be	causing	things	to	hang	around	a	lot	longer	than	you	originally
planned.	The	garbage	collector	won’t	get	a	chance	to	clean	up	those	outer	variables	until
later,	when	they	are	used	in	the	lambda	expression.	Capturing	outer	variables	has	another
garbage-collector	effect:	when	locals	or	value	parameters	are	captured,	they	are	no	longer
considered	to	be	fixed	but	are	now	movable,	so	any	unsafe	code	must	now	fix	that	variable
—	via	the	fixed	keyword	—	before	the	variable	is	used.

Outer	variables	can	affect	how	the	compiler	generates	the	internal	IL	for	the	lambda
expression.	If	the	lambda	expression	uses	outer	variables,	the	lambda	expression	is
generated	as	a	private	method	of	a	nested	class.	If	the	lambda	expression	does	not	use
outer	variables,	it	would	be	generated	as	another	private	method	of	the	class	in	which	it	is
declared.	If	the	outer	method	is	static,	then	the	lambda	expression	cannot	access	instance
members	via	the	this	keyword,	as	the	nested	class	will	also	be	generated	as	static.

There	are	two	types	of	lambda	expressions:	expression	lambdas	and	statement	lambdas.
This	expression	lambda	has	no	parameters	and	simply	increments	the	count	variable	in	an
expression:

int	count	=	0;

Func<int>	countUp	=	()	=>	count++;

Statement	lambdas	have	the	body	enclosed	in	curly	braces	and	can	contain	any	number	of

statements	like	this:

Func<int,	int>	dwInt	=	i	=>

{

				Console.WriteLine(i);

				return	i;

};

NOTE
A	few	last	things	to	remember	about	lambda	expressions:

They	can’t	use	break,	goto,	or	continue	to	jump	from	the	lambda	expression	to	a	target	outside	the
lambda	expression	block.

No	unsafe	code	can	be	executed	inside	a	lambda	expression.

Lambda	expressions	cannot	be	used	on	the	left	side	of	the	is	operator.

Since	lambda	expressions	are	a	superset	of	anonymous	methods,	all	restrictions	that	apply	to
anonymous	methods	also	apply	to	lambda	expressions.

See	Also
The	“Lambda	Expressions	(C#	Programming	Guide)”	topic	in	the	MSDN	documentation.

4.13	Using	Different	Parameter	Modifiers	in	Lambda
Expressions

Problem
You	know	you	can	pass	parameters	to	lambda	expressions,	but	you	need	to	figure	out	what
parameter	modifiers	are	valid	with	them.

Solution
Lambda	expressions	can	use	out	and	ref	parameter	modifiers	but	not	the	params	modifier
in	their	parameter	list.	However,	this	does	not	prevent	the	creation	of	delegates	with	any	of
these	modifiers,	as	shown	here:

//	declare	out	delegate

delegate	int	DoOutWork(out	string	work);

//	declare	ref	delegate

delegate	int	DoRefWork(ref	string	work);

//	declare	params	delegate

delegate	int	DoParamsWork(params	object[]	workItems);

Even	though	the	DoParamsWork	delegate	is	defined	with	the	params	keyword	on	the
parameter,	it	can	still	be	used	as	a	type	for	a	lambda	expression,	as	you’ll	see	in	a	bit.	To
use	the	DoOutWork	delegate,	create	a	lambda	expression	inline	using	the	out	keyword	and
assign	it	to	the	DoOutWork	delegate	instance.	Inside	the	lambda	expression	body,	the	out
variable	s	is	assigned	a	value	first	(as	it	doesn’t	have	one	by	definition	as	an	out
parameter),	writes	it	to	the	console,	and	returns	the	string	hash	code.	Note	that	in	the
parameter	list,	you	must	provide	the	type	of	s	(i.e.,	string),	as	type	is	not	inferred	for
variables	marked	with	the	out	or	ref	keywords.	It	is	not	inferred	for	out	or	ref	variables
to	preserve	the	representation	at	the	call	site	and	the	parameter	declaration	site	to	help	the
developer	clearly	reason	about	the	possible	assignment	to	these	variables:

//	declare	instance	and	assign	method

DoOutWork	dow	=	(out	string	s)	=>

{

				s	=	"WorkFinished";

				Console.WriteLine(s);

				return	s.GetHashCode();

};

To	run	the	lambda	expression	code,	invoke	the	delegate	with	an	out	parameter,	and	then
print	out	the	result	to	the	console:

//	invoke	delegate

string	work;

int	i	=	dow(out	work);

Console.WriteLine(work);

To	use	the	ref	parameter	modifier	in	a	lambda	expression,	create	an	inline	method	to	hook
up	to	the	DoRefWork	delegate	with	a	ref	parameter.	In	the	method,	you	write	the	original
value	out,	reassign	the	value,	and	get	the	hash	code	of	the	new	value.	Remember	that,	as
with	the	out	keyword,	you	must	provide	the	type	of	s	(string)	in	the	parameter	list,	as
type	cannot	be	inferred	for	a	variable	marked	with	the	ref	keyword:

//	declare	instance	and	assign	method

DoRefWork	drw	=	(ref	string	s)	=>

{

				Console.WriteLine(s);

				s	=	"WorkFinished";

				return	s.GetHashCode();

};

To	run	the	lambda	expression,	assign	a	value	to	the	string	work	and	then	pass	it	as	a	ref
parameter	to	the	DoRefWork	delegate	that	is	instantiated.	Upon	the	return	from	the	delegate
call,	write	out	the	new	value	for	the	work	string:

//	invoke	delegate

work	=	"WorkStarted";

i	=	drw(ref	work);

Console.WriteLine(work);

While	it	is	possible	to	declare	a	delegate	with	the	params	modifier,	you	cannot	hook	up	the
delegate	using	a	lambda	expression	with	the	params	keyword	in	the	parameter	list.	If	you
try	this,	the	compiler	displays	the	CS1670	params	is	not	valid	in	this	context
compiler	error	on	the	DoParamsWork	line:

////Done	as	an	lambda	expression	you	also	get

////CS1670	"params	is	not	valid	in	this	context"

//DoParamsWork	dpwl	=	(params	object[]	workItems)	=>

//{

//				foreach	(object	o	in	workItems)

//				{

//								Console.WriteLine(o.ToString());

//				}

//				return	workItems.GetHashCode();

//};

Even	if	you	attempt	this	using	an	anonymous	method	instead	of	a	lambda	expression,	you
still	cannot	hook	up	this	delegate	with	the	params	keyword	in	the	parameter	list.	If	you	try,
the	compiler	still	displays	the	CS1670	params	is	not	valid	in	this	context	compiler
error	on	the	DoParamsWork	line:

//Done	as	an	anonymous	method	you	get	CS1670	

				"params	is	not	valid	in	this	context"

//DoParamsWork	dpwa	=	delegate	(params	object[]	workItems)

//{

//				foreach	(object	o	in	workItems)

//				{

//								Console.WriteLine(o.ToString());

//				}

//				return	workItems.GetHashCode();

//};

You	can,	however,	omit	the	params	keyword	and	still	set	up	the	lambda	expression	for	the
delegate,	as	shown	here:

//	All	we	have	to	do	is	omit	the	params	keyword.

DoParamsWork	dpw	=	workItems	=>

{

				foreach	(object	o	in	workItems)

								Console.WriteLine(o.ToString());

				return	workItems.GetHashCode();

};

Notice	that	although	you’ve	removed	the	params	keyword	from	the	lambda	expression,
this	doesn’t	stop	you	from	using	the	same	syntax.	The	params	keyword	is	present	on	the
delegate	type,	so	you	can	invoke	it	thusly:

int	i	=	dpw("Hello",	"42",	"bar");

So	this	illustrates	that	you	can	bind	a	lambda	expression	to	a	delegate	declared	using
params,	and	once	you’ve	done	that,	you	can	invoke	the	lambda	expression,	passing	in	any
number	of	parameters	you	like,	just	as	you’d	expect.

Discussion
Lambda	expressions	cannot	access	the	ref	or	out	parameters	of	an	outer	scope.	This
means	any	out	or	ref	variables	that	were	defined	as	part	of	the	containing	method	are	off-
limits	for	use	inside	the	body	of	the	lambda	expression:

public	void	TestOut(out	string	outStr)

{

				//	declare	instance

				DoWork	dw	=	s	=>

				{

								Console.WriteLine(s);

								//	Causes	error	CS1628:

								//	"Cannot	use	ref	or	out	parameter	'outStr'	inside	an

								//	anonymous	method,	lambda	expression,	or	query	expression"

								outStr	=	s;

								return	s.GetHashCode();

				};

				//	invoke	delegate

				int	i	=	dw("DoWorkMethodImpl1");

}

public	void	TestRef(ref	string	refStr)

{

				//	declare	instance

				DoWork	dw	=	s	=>

				{

								Console.WriteLine(s);

								//	Causes	error	CS1628:

								//	"Cannot	use	ref	or	out	parameter	'refStr'	inside	an

								//	anonymous	method,	lambda	expression,	or	query	expression"

								refStr	=	s;

								return	s.GetHashCode();

				};

				//	invoke	delegate

				int	i	=	dw("DoWorkMethodImpl1");

}

Interestingly	enough,	lambda	expressions	can	access	outer	variables	with	the	params
modifier:

//	declare	delegate

delegate	int	DoWork(string	work);

public	void	TestParams(params	string[]	items)

{

				//	declare	instance

				DoWork	dw	=	s	=>

				{

								Console.WriteLine(s);

								foreach	(string	item	in	items)

												Console.WriteLine(item);

								return	s.GetHashCode();

				};

				//	invoke	delegate

				int	i	=	dw("DoWorkMethodImpl1");

}

Because	the	params	modifier	is	there	for	the	benefit	of	the	calling	site	(so	the	compiler
knows	to	make	this	a	method	call	that	supports	variable-length	argument	lists)	and
because	lambda	expressions	are	never	called	directly	(they’re	always	called	via	a
delegate),	it	makes	no	sense	for	a	lambda	expression	to	be	decorated	with	something	there
for	the	benefit	of	the	calling	site	—	as	there	is	no	calling	site.	This	is	why	it	doesn’t	matter

that	you	can’t	use	the	params	keyword	on	a	lambda	expression.	For	lambda	expressions,
the	calling	site	is	always	calling	through	the	delegate,	so	what	matters	is	whether	that
delegate	has	the	params	keyword	or	not.

See	Also
Recipe	1.17;	the	“CS1670,”	“CS1525,”	“CS1628,”	“out,”	“ref,”	“params,”	and
“System.ParamArrayAttribute”	topics	in	the	MSDN	documentation.

4.14	Speeding	Up	LINQ	Operations	with	Parallelism

Problem
You	have	a	LINQ	query	that	performs	an	expensive	operation	that	slows	down	the
processing,	and	you	would	like	to	speed	it	up.

Solution
Use	PLINQ	(Parallel	LINQ)	to	utilize	the	full	capacities	of	your	machine	to	process	the
query	faster.

To	demonstrate	this,	let’s	consider	the	plight	of	Brooke	and	Katie.	Brooke	and	Katie	are
working	on	a	cookbook	together	and	they	need	to	evaluate	all	of	the	recipes	for	all	of	the
chapters.	Since	there	are	so	many	recipes,	they	want	to	be	able	to	hand	off	the	rudimentary
validation	steps	for	the	recipes	and	then	Brooke	or	Katie	gets	a	final	pass	at	each	recipe	as
the	main	editor	for	final	fit	and	finish.

Each	Chapter	has	a	number	of	Recipes	in	it,	and	the	Recipe	validation	steps	are:

1.	 Read	the	text	of	the	recipe	for	premise.

2.	 Check	the	recipe	accuracy	of	ingredients	and	measurements.

3.	 Prepare	the	recipe	and	taste	once	for	each	rank	of	difficulty	for	the	recipe.

4.	 Have	Brooke	or	Katie	perform	the	final	editing	pass.

If	any	stage	of	the	recipe	evaluation	fails,	that	stage	needs	to	be	redone	unless	it	is	the
tasting	stage.	If	a	Recipe	fails	the	tasting	stage,	it	needs	to	start	over.

To	process	the	collection	of	RecipeChapters	(chapters	in	the	example)	with	regular	LINQ,
we	could	use	the	following	statement:

chapters.Select(c	=>	TimedEvaluateChapter(c,	rnd)).ToList();

TimedEvaluateChapter	is	a	method	that	performs	the	evaluation	of	the	RecipeChapter
and	all	of	the	Recipes	in	the	RecipeChapter	while	timing	the	evaluation.	EvaluateRecipe
is	called	once	for	each	Recipe	in	the	RecipeChapter	to	perform	the	Recipe	validation
steps:

private	static	RecipeChapter	TimedEvaluateChapter(RecipeChapter	rc,	Random	rnd)

{

				Stopwatch	watch	=	new	Stopwatch();

				LogOutput($"Evaluating	Chapter	{rc}");

				watch.Start();

				foreach	(var	r	in	rc.Recipes)

								EvaluateRecipe(r,	rnd);

				watch.Stop();

				LogOutput($"Finished	Evaluating	Chapter	{rc}");

				return	rc;

}

In	order	to	process	the	Recipes	faster,	we	add	a	call	to	the	AsParallel	extension	method
before	we	call	Select	to	invoke	TimedEvaluateChapter	for	each	RecipeChapter:

chapters.AsParallel().Select(c	=>	TimedEvaluateChapter(c,	rnd)).ToList();

Your	results	will	vary	based	on	your	hardware,	but	the	following	times	were	recorded	on	a
run	using	regular	LINQ	and	then	subsequently	PLINQ:

Full	Chapter	Evaluation	with	LINQ	took:	00:01:19.1395258

Full	Chapter	Evaluation	with	PLINQ	took:	00:00:25.1708103

Discussion
When	you’re	using	PLINQ,	the	main	thing	to	keep	in	mind	is	that	the	unit	of	work	being
parallelized	must	be	significant	enough	to	justify	the	cost	of	the	parallelization.	There	are
additional	setup	and	teardown	costs	to	doing	operations	in	parallel	(like	partitioning	of	the
data	set)	and	if	the	data	set	is	too	small	or	the	operation	on	each	member	of	the	set	is	not
expensive	enough	to	be	helped	by	using	parallel	techniques,	you	could	actually	perform
worse.	If	PLINQ	determines	that	it	cannot	effectively	parallelize	the	query,	it	will	process
it	sequentially.	If	this	happens,	there	are	a	number	of	additional	methods	you	can	use	to
adjust	depending	upon	your	particular	situation	(WithExecutionMode,
WithDegreeOfParallelism).

As	in	all	engineering,	measuring	your	results	is	the	key	to	understanding	if	you	are
improving	or	not,	so	with	that	in	mind,	we	created	the	TimedEvaluateChapter	method	to
call	from	our	Select	statement:

chapters.AsParallel().Select(c	=>	TimedEvaluateChapter(c,	rnd)).ToList();

TimedEvaluateChapter	times	the	process	of	evaluating	every	Recipe	in	the
RecipeChapter	and	wraps	that	value	in	calls	to	Stopwatch.Start	and	Stopwatch.Stop
for	timing.	The	timing	results	are	then	available	in	Stopwatch.Elapsed.	Note	that	if	you
restart	the	Stopwatch	without	calling	Stopwatch.Reset,	the	timer	will	add	to	the	value
already	in	the	Stopwatch	and	you	may	get	a	bigger	value	than	you	expected:

private	static	RecipeChapter	TimedEvaluateChapter(RecipeChapter	rc,	Random	rnd)

{

				Stopwatch	watch	=	new	Stopwatch();

				LogOutput($"Evaluating	Chapter	{rc}");

				watch.Start();

				foreach	(var	r	in	rc.Recipes)

								EvaluateRecipe(r,	rnd);

				watch.Stop();

				LogOutput($"Finished	Evaluating	Chapter	{rc}");

				return	rc;

}

EvaluateRecipe	performs	the	validation	steps	on	each	recipe	recursively	until	it	passes
the	final	edit	from	Brooke	and	Katie.	Thread.Sleep	is	called	to	simulate	work	for	each
step:

private	static	Recipe	EvaluateRecipe(Recipe	r,	Random	rnd)

{

				//Recipe	Editing	steps

				if	(!r.TextApproved)

				{

								//Read	the	recipe	to	make	sure	it	makes	sense

								Thread.Sleep(50);

								int	evaluation	=	rnd.Next(1,	10);

								//	7	means	it	didn't	make	sense	so	don't	approve	it,

								//	send	it	back	for	rework

								if	(evaluation	==	7)

								{

												LogOutput($"{r}	failed	the	readthrough!	Reworking…");

								}

								else

												r.TextApproved	=	true;

								return	EvaluateRecipe(r,	rnd);

				}

				else	if	(!r.IngredientsApproved)

				{

								//Check	the	ingredients	and	measurements

								Thread.Sleep(100);

								int	evaluation	=	rnd.Next(1,	10);

								//	3	means	the	ingredients	or	measurements	are	incorrect,

								//	send	it	back	for	rework

								if	(evaluation	==	3)

								{

												LogOutput($"{r}	had	incorrect	measurements!	Reworking…");

								}

								else

												r.IngredientsApproved	=	true;

								return	EvaluateRecipe(r,	rnd);

				}

				else	if	(r.RecipeEvaluated	!=	r.Rank)

				{

								//Prepare	recipe	and	taste

								Thread.Sleep(50	*	r.Rank);

								int	evaluation	=	rnd.Next(1,	10);

								//	4	means	it	didn't	taste	right,	send	it	back	for	rework

								if	(evaluation	==	4)

								{

												r.TextApproved	=	false;

												r.IngredientsApproved	=	false;

												r.RecipeEvaluated	=	0;

												LogOutput($"{r}	tasted	bad!		Reworking…");

								}

								else

												r.RecipeEvaluated++;

								return	EvaluateRecipe(r,	rnd);

				}

				else

				{

								//Final	editing	pass(Brooke	or	Katie)

								Thread.Sleep(50	*	r.Rank);

								int	evaluation	=	rnd.Next(1,	10);

								//	1	means	it	just	wasn't	quite	ready,	send	it	back	for	rework

								if	(evaluation	==	1)

								{

												r.TextApproved	=	false;

												r.IngredientsApproved	=	false;

												r.RecipeEvaluated	=	0;

												LogOutput($"{r}	failed	final	editing!		Reworking…");

												return	EvaluateRecipe(r,	rnd);

								}

								else

								{

												r.FinalEditingComplete	=	true;

												LogOutput($"{r}	is	ready	for	release!");

								}

				}

				return	r;

}

Here	are	the	definitions	of	the	RecipeChapter	and	Recipe	classes	used	to	help	Brooke	and
Katie	evaluate	all	of	the	recipes:

public	class	RecipeChapter

{

				public	int	Number	{	get;	set;	}

				public	string	Title	{	get;	set;	}

				public	List<Recipe>	Recipes	{	get;	set;	}

				public	override	string	ToString()	=>	$"{Number}	-	{Title}";

}

public	class	Recipe

{

				public	RecipeChapter	Chapter	{	get;	set;	}

				public	string	MainIngredient	{	get;	set;	}

				public	int	Number	{	get;	set;	}

				public	bool	TextApproved	{	get;	set;	}

				public	bool	IngredientsApproved	{	get;	set;	}

				///	<summary>

				///	Recipe	should	be	evaluated	as	many	times	as	the	Rank	of	the	recipe

				///	</summary>

				public	int	RecipeEvaluated	{	get;	set;	}

				public	bool	FinalEditingComplete	{	get;	set;	}

				public	int	Rank	{	get;	set;	}

				public	override	string	ToString()	=>

								$"{Chapter.Number}.{Number}	({Chapter.Title}:{MainIngredient})";

}

Sample	output	from	the	LINQ	run	looks	like	this	and	processes	the	collection	in	sequential
order:

Running	Cookbook	Evaluation

Evaluating	Chapter	1	-	Soups

1.1	(Soups:Sprouts,	Mung	Bean)	is	ready	for	release!

1.2	(Soups:Potato	Bread)	is	ready	for	release!

1.3	(Soups:Chicken	Liver)	tasted	bad!		Reworking…

1.3	(Soups:Chicken	Liver)	is	ready	for	release!

1.4	(Soups:Cherimoya)	tasted	bad!		Reworking…

1.4	(Soups:Cherimoya)	had	incorrect	measurements!	Reworking…

1.4	(Soups:Cherimoya)	is	ready	for	release!

1.5	(Soups:High-Protein	Bread)	is	ready	for	release!

1.6	(Soups:Flat	Bread)	failed	the	readthrough!	Reworking…

1.6	(Soups:Flat	Bread)	is	ready	for	release!

1.7	(Soups:Pomegranate)	is	ready	for	release!

1.8	(Soups:Carissa,	Natal	Plum)	had	incorrect	measurements!	Reworking…

1.8	(Soups:Carissa,	Natal	Plum)	is	ready	for	release!

1.9	(Soups:Ideal	Flat	Bread)	is	ready	for	release!

1.10	(Soups:Banana	Bread)	tasted	bad!		Reworking…

1.10	(Soups:Banana	Bread)	is	ready	for	release!

Finished	Evaluating	Chapter	1	-	Soups

Evaluating	Chapter	2	-	Salads

2.1	(Salads:Caraway)	tasted	bad!		Reworking…

2.1	(Salads:Caraway)	tasted	bad!		Reworking…

2.1	(Salads:Caraway)	had	incorrect	measurements!	Reworking…

2.1	(Salads:Caraway)	is	ready	for	release!

2.2	(Salads:Potatoes,	Red)	had	incorrect	measurements!	Reworking…

2.2	(Salads:Potatoes,	Red)	tasted	bad!		Reworking…

2.2	(Salads:Potatoes,	Red)	is	ready	for	release!

2.3	(Salads:Lemon)	is	ready	for	release!

2.4	(Salads:Cream	cheese)	is	ready	for	release!

2.5	(Salads:Artichokes,	Domestic)	is	ready	for	release!

2.6	(Salads:Grapefruit)	is	ready	for	release!

2.7	(Salads:Lettuce,	Iceberg)	is	ready	for	release!

2.8	(Salads:Fenugreek)	is	ready	for	release!

2.9	(Salads:Ostrich)	is	ready	for	release!

2.10	(Salads:Brazil	Nuts)	tasted	bad!		Reworking…

2.10	(Salads:Brazil	Nuts)	had	incorrect	measurements!	Reworking…

2.10	(Salads:Brazil	Nuts)	tasted	bad!		Reworking…

2.10	(Salads:Brazil	Nuts)	is	ready	for	release!

Finished	Evaluating	Chapter	2	-	Salads

Evaluating	Chapter	3	-	Appetizers

3.1	(Appetizers:Loquat)	tasted	bad!		Reworking…

3.1	(Appetizers:Loquat)	had	incorrect	measurements!	Reworking…

3.1	(Appetizers:Loquat)	tasted	bad!		Reworking…

3.1	(Appetizers:Loquat)	is	ready	for	release!

3.2	(Appetizers:Bergenost)	is	ready	for	release!

3.3	(Appetizers:Tomato	Red	Roma)	had	incorrect	measurements!	Reworking…

3.3	(Appetizers:Tomato	Red	Roma)	tasted	bad!		Reworking…

3.3	(Appetizers:Tomato	Red	Roma)	tasted	bad!		Reworking…

3.3	(Appetizers:Tomato	Red	Roma)	is	ready	for	release!

3.4	(Appetizers:Guava)	failed	final	editing!		Reworking…

3.4	(Appetizers:Guava)	is	ready	for	release!

3.5	(Appetizers:Squash	Flower)	is	ready	for	release!

3.6	(Appetizers:Radishes,	Red)	is	ready	for	release!

3.7	(Appetizers:Goose	Liver)	tasted	bad!		Reworking…

3.7	(Appetizers:Goose	Liver)	had	incorrect	measurements!	Reworking…

3.7	(Appetizers:Goose	Liver)	is	ready	for	release!

3.8	(Appetizers:Okra)	had	incorrect	measurements!	Reworking…

3.8	(Appetizers:Okra)	is	ready	for	release!

3.9	(Appetizers:Borage)	is	ready	for	release!

3.10	(Appetizers:Peppers)	is	ready	for	release!

Finished	Evaluating	Chapter	3	-	Appetizers

Evaluating	Chapter	4	-	Entrees

4.1	(Entrees:Plantain)	is	ready	for	release!

4.2	(Entrees:Pignola	(Pine))	is	ready	for	release!

4.3	(Entrees:Potatoes,	Gold)	is	ready	for	release!

4.4	(Entrees:Ribeye)	failed	the	readthrough!	Reworking…

4.4	(Entrees:Ribeye)	is	ready	for	release!

4.5	(Entrees:Sprouts,	Mung	Bean)	failed	the	readthrough!	Reworking…

4.5	(Entrees:Sprouts,	Mung	Bean)	had	incorrect	measurements!	Reworking…

4.5	(Entrees:Sprouts,	Mung	Bean)	failed	final	editing!		Reworking…

4.5	(Entrees:Sprouts,	Mung	Bean)	is	ready	for	release!

4.6	(Entrees:Squash)	had	incorrect	measurements!	Reworking…

4.6	(Entrees:Squash)	is	ready	for	release!

4.7	(Entrees:Squash,	Winter)	tasted	bad!		Reworking…

4.7	(Entrees:Squash,	Winter)	is	ready	for	release!

4.8	(Entrees:Corn,	Blue)	is	ready	for	release!

4.9	(Entrees:Snake)	had	incorrect	measurements!	Reworking…

4.9	(Entrees:Snake)	tasted	bad!		Reworking…

4.9	(Entrees:Snake)	tasted	bad!		Reworking…

4.9	(Entrees:Snake)	is	ready	for	release!

4.10	(Entrees:Prosciutto)	is	ready	for	release!

Finished	Evaluating	Chapter	4	-	Entrees

Evaluating	Chapter	5	-	Desserts

5.1	(Desserts:Mushroom,	White,	Silver	Dollar)	tasted	bad!		Reworking…

5.1	(Desserts:Mushroom,	White,	Silver	Dollar)	had	incorrect	measurements!

Reworking…

5.1	(Desserts:Mushroom,	White,	Silver	Dollar)	tasted	bad!		Reworking…

5.1	(Desserts:Mushroom,	White,	Silver	Dollar)	tasted	bad!		Reworking…

5.1	(Desserts:Mushroom,	White,	Silver	Dollar)	had	incorrect	measurements!

Reworking…

5.1	(Desserts:Mushroom,	White,	Silver	Dollar)	is	ready	for	release!

5.2	(Desserts:Eggplant)	is	ready	for	release!

5.3	(Desserts:Asparagus	Peas)	tasted	bad!		Reworking…

5.3	(Desserts:Asparagus	Peas)	failed	the	readthrough!	Reworking…

5.3	(Desserts:Asparagus	Peas)	failed	the	readthrough!	Reworking…

5.3	(Desserts:Asparagus	Peas)	is	ready	for	release!

5.4	(Desserts:Squash,	Kabocha)	failed	the	readthrough!	Reworking…

5.4	(Desserts:Squash,	Kabocha)	tasted	bad!		Reworking…

5.4	(Desserts:Squash,	Kabocha)	is	ready	for	release!

5.5	(Desserts:Sprouts,	Radish)	is	ready	for	release!

5.6	(Desserts:Mushroom,	Black	Trumpet)	is	ready	for	release!

5.7	(Desserts:Tea	Cakes)	tasted	bad!		Reworking…

5.7	(Desserts:Tea	Cakes)	tasted	bad!		Reworking…

5.7	(Desserts:Tea	Cakes)	failed	the	readthrough!	Reworking…

5.7	(Desserts:Tea	Cakes)	is	ready	for	release!

5.8	(Desserts:Blueberries)	had	incorrect	measurements!	Reworking…

5.8	(Desserts:Blueberries)	tasted	bad!		Reworking…

5.8	(Desserts:Blueberries)	is	ready	for	release!

5.9	(Desserts:Sago	Palm)	is	ready	for	release!

5.10	(Desserts:Opossum)	had	incorrect	measurements!	Reworking…

5.10	(Desserts:Opossum)	is	ready	for	release!

Finished	Evaluating	Chapter	5	-	Desserts

Evaluating	Chapter	6	-	Snacks

6.1	(Snacks:Cheddar)	tasted	bad!		Reworking…

6.1	(Snacks:Cheddar)	is	ready	for	release!

6.2	(Snacks:Melon,	Bitter)	is	ready	for	release!

6.3	(Snacks:Scallion)	is	ready	for	release!

6.4	(Snacks:Squash	Chayote)	failed	final	editing!		Reworking…

6.4	(Snacks:Squash	Chayote)	is	ready	for	release!

6.5	(Snacks:Roasted	Turkey)	is	ready	for	release!

6.6	(Snacks:Lime)	is	ready	for	release!

6.7	(Snacks:Hazelnut)	is	ready	for	release!

6.8	(Snacks:Radishes,	Daikon)	tasted	bad!		Reworking…

6.8	(Snacks:Radishes,	Daikon)	tasted	bad!		Reworking…

6.8	(Snacks:Radishes,	Daikon)	failed	the	readthrough!	Reworking…

6.8	(Snacks:Radishes,	Daikon)	tasted	bad!		Reworking…

6.8	(Snacks:Radishes,	Daikon)	is	ready	for	release!

6.9	(Snacks:Salami)	failed	the	readthrough!	Reworking…

6.9	(Snacks:Salami)	is	ready	for	release!

6.10	(Snacks:Mushroom,	Oyster)	failed	the	readthrough!	Reworking…

6.10	(Snacks:Mushroom,	Oyster)	is	ready	for	release!

Finished	Evaluating	Chapter	6	-	Snacks

Evaluating	Chapter	7	-	Breakfast

7.1	(Breakfast:Daikon	Radish)	had	incorrect	measurements!	Reworking…

7.1	(Breakfast:Daikon	Radish)	is	ready	for	release!

7.2	(Breakfast:Lettuce,	Red	Leaf)	failed	final	editing!		Reworking…

7.2	(Breakfast:Lettuce,	Red	Leaf)	is	ready	for	release!

7.3	(Breakfast:Alfalfa	Sprouts)	is	ready	for	release!

7.4	(Breakfast:Tea	Cakes)	is	ready	for	release!

7.5	(Breakfast:Chia	seed)	is	ready	for	release!

7.6	(Breakfast:Tangerine)	is	ready	for	release!

7.7	(Breakfast:Spinach)	is	ready	for	release!

7.8	(Breakfast:Flank	Steak)	is	ready	for	release!

7.9	(Breakfast:Loganberries)	had	incorrect	measurements!	Reworking…

7.9	(Breakfast:Loganberries)	had	incorrect	measurements!	Reworking…

7.9	(Breakfast:Loganberries)	had	incorrect	measurements!	Reworking…

7.9	(Breakfast:Loganberries)	is	ready	for	release!

7.10	(Breakfast:Opossum)	is	ready	for	release!

Finished	Evaluating	Chapter	7	-	Breakfast

Evaluating	Chapter	8	-	Sandwiches

8.1	(Sandwiches:Rhubarb)	tasted	bad!		Reworking…

8.1	(Sandwiches:Rhubarb)	is	ready	for	release!

8.2	(Sandwiches:Pickle,	Brine)	is	ready	for	release!

8.3	(Sandwiches:Oranges)	tasted	bad!		Reworking…

8.3	(Sandwiches:Oranges)	had	incorrect	measurements!	Reworking…

8.3	(Sandwiches:Oranges)	is	ready	for	release!

8.4	(Sandwiches:Chayote,	Pipinella,	Vegetable	Pear)	tasted	bad!		Reworking…

8.4	(Sandwiches:Chayote,	Pipinella,	Vegetable	Pear)	is	ready	for	release!

8.5	(Sandwiches:Bear)	is	ready	for	release!

8.6	(Sandwiches:Panela)	had	incorrect	measurements!	Reworking…

8.6	(Sandwiches:Panela)	is	ready	for	release!

8.7	(Sandwiches:Peppers,	Red)	had	incorrect	measurements!	Reworking…

8.7	(Sandwiches:Peppers,	Red)	tasted	bad!		Reworking…

8.7	(Sandwiches:Peppers,	Red)	failed	the	readthrough!	Reworking…

8.7	(Sandwiches:Peppers,	Red)	failed	the	readthrough!	Reworking…

8.7	(Sandwiches:Peppers,	Red)	had	incorrect	measurements!	Reworking…

8.7	(Sandwiches:Peppers,	Red)	tasted	bad!		Reworking…

8.7	(Sandwiches:Peppers,	Red)	is	ready	for	release!

8.8	(Sandwiches:Oat	Bread)	is	ready	for	release!

8.9	(Sandwiches:Peppers,	Green)	is	ready	for	release!

8.10	(Sandwiches:Garlic)	is	ready	for	release!

Finished	Evaluating	Chapter	8	-	Sandwiches

Full	Chapter	Evaluation	with	LINQ	took:	00:01:19.1395258

Sample	output	from	the	PLINQ	run	looks	like	this,	processes	in	parallel	(note	the
evaluation	of	four	RecipeChapters	at	the	beginning),	and	processes	items	out	of
sequential	order:

Evaluating	Chapter	5	-	Desserts

Evaluating	Chapter	3	-	Appetizers

Evaluating	Chapter	1	-	Soups

Evaluating	Chapter	7	-	Breakfast

7.1	(Breakfast:Daikon	Radish)	failed	the	readthrough!	Reworking…

1.1	(Soups:Sprouts,	Mung	Bean)	failed	the	readthrough!	Reworking…

3.1	(Appetizers:Loquat)	had	incorrect	measurements!	Reworking…

1.1	(Soups:Sprouts,	Mung	Bean)	had	incorrect	measurements!	Reworking…

7.1	(Breakfast:Daikon	Radish)	tasted	bad!		Reworking…

5.1	(Desserts:Mushroom,	White,	Silver	Dollar)	tasted	bad!		Reworking…

3.1	(Appetizers:Loquat)	failed	final	editing!		Reworking…

7.1	(Breakfast:Daikon	Radish)	is	ready	for	release!

3.1	(Appetizers:Loquat)	tasted	bad!		Reworking…

5.1	(Desserts:Mushroom,	White,	Silver	Dollar)	tasted	bad!		Reworking…

1.1	(Soups:Sprouts,	Mung	Bean)	is	ready	for	release!

3.1	(Appetizers:Loquat)	is	ready	for	release!

1.2	(Soups:Potato	Bread)	had	incorrect	measurements!	Reworking…

1.2	(Soups:Potato	Bread)	is	ready	for	release!

1.3	(Soups:Chicken	Liver)	failed	the	readthrough!	Reworking…

3.2	(Appetizers:Bergenost)	is	ready	for	release!

1.3	(Soups:Chicken	Liver)	had	incorrect	measurements!	Reworking…

7.2	(Breakfast:Lettuce,	Red	Leaf)	failed	final	editing!		Reworking…

5.1	(Desserts:Mushroom,	White,	Silver	Dollar)	is	ready	for	release!

5.2	(Desserts:Eggplant)	is	ready	for	release!

7.2	(Breakfast:Lettuce,	Red	Leaf)	tasted	bad!		Reworking…

3.3	(Appetizers:Tomato	Red	Roma)	is	ready	for	release!

1.3	(Soups:Chicken	Liver)	is	ready	for	release!

3.4	(Appetizers:Guava)	is	ready	for	release!

5.3	(Desserts:Asparagus	Peas)	is	ready	for	release!

1.4	(Soups:Cherimoya)	is	ready	for	release!

5.4	(Desserts:Squash,	Kabocha)	is	ready	for	release!

1.5	(Soups:High-Protein	Bread)	had	incorrect	measurements!	Reworking…

7.2	(Breakfast:Lettuce,	Red	Leaf)	failed	final	editing!		Reworking…

1.5	(Soups:High-Protein	Bread)	failed	final	editing!		Reworking…

5.5	(Desserts:Sprouts,	Radish)	is	ready	for	release!

3.5	(Appetizers:Squash	Flower)	is	ready	for	release!

3.6	(Appetizers:Radishes,	Red)	failed	the	readthrough!	Reworking…

1.5	(Soups:High-Protein	Bread)	is	ready	for	release!

5.6	(Desserts:Mushroom,	Black	Trumpet)	tasted	bad!		Reworking…

1.6	(Soups:Flat	Bread)	is	ready	for	release!

1.7	(Soups:Pomegranate)	is	ready	for	release!

3.6	(Appetizers:Radishes,	Red)	is	ready	for	release!

7.2	(Breakfast:Lettuce,	Red	Leaf)	is	ready	for	release!

5.6	(Desserts:Mushroom,	Black	Trumpet)	failed	final	editing!		Reworking…

1.8	(Soups:Carissa,	Natal	Plum)	is	ready	for	release!

7.3	(Breakfast:Alfalfa	Sprouts)	is	ready	for	release!

7.4	(Breakfast:Tea	Cakes)	is	ready	for	release!

5.6	(Desserts:Mushroom,	Black	Trumpet)	is	ready	for	release!

3.7	(Appetizers:Goose	Liver)	is	ready	for	release!

1.9	(Soups:Ideal	Flat	Bread)	is	ready	for	release!

5.7	(Desserts:Tea	Cakes)	tasted	bad!		Reworking…

3.8	(Appetizers:Okra)	is	ready	for	release!

3.9	(Appetizers:Borage)	tasted	bad!		Reworking…

3.9	(Appetizers:Borage)	failed	the	readthrough!	Reworking…

3.9	(Appetizers:Borage)	failed	the	readthrough!	Reworking…

7.5	(Breakfast:Chia	seed)	is	ready	for	release!

3.9	(Appetizers:Borage)	is	ready	for	release!

1.10	(Soups:Banana	Bread)	is	ready	for	release!

Finished	Evaluating	Chapter	1	-	Soups

Evaluating	Chapter	2	-	Salads

3.10	(Appetizers:Peppers)	is	ready	for	release!

Finished	Evaluating	Chapter	3	-	Appetizers

Evaluating	Chapter	4	-	Entrees

5.7	(Desserts:Tea	Cakes)	is	ready	for	release!

7.6	(Breakfast:Tangerine)	is	ready	for	release!

4.1	(Entrees:Plantain)	is	ready	for	release!

4.2	(Entrees:Pignola	(Pine))	failed	the	readthrough!	Reworking…

2.1	(Salads:Caraway)	is	ready	for	release!

5.8	(Desserts:Blueberries)	is	ready	for	release!

5.9	(Desserts:Sago	Palm)	failed	the	readthrough!	Reworking…

5.9	(Desserts:Sago	Palm)	tasted	bad!		Reworking…

5.9	(Desserts:Sago	Palm)	is	ready	for	release!

4.2	(Entrees:Pignola	(Pine))	is	ready	for	release!

2.2	(Salads:Potatoes,	Red)	is	ready	for	release!

2.3	(Salads:Lemon)	had	incorrect	measurements!	Reworking…

4.3	(Entrees:Potatoes,	Gold)	is	ready	for	release!

7.7	(Breakfast:Spinach)	failed	final	editing!		Reworking…

2.3	(Salads:Lemon)	had	incorrect	measurements!	Reworking…

4.4	(Entrees:Ribeye)	had	incorrect	measurements!	Reworking…

7.7	(Breakfast:Spinach)	tasted	bad!		Reworking…

4.4	(Entrees:Ribeye)	is	ready	for	release!

2.3	(Salads:Lemon)	tasted	bad!		Reworking…

5.10	(Desserts:Opossum)	is	ready	for	release!

Finished	Evaluating	Chapter	5	-	Desserts

Evaluating	Chapter	6	-	Snacks

6.1	(Snacks:Cheddar)	is	ready	for	release!

4.5	(Entrees:Sprouts,	Mung	Bean)	is	ready	for	release!

7.7	(Breakfast:Spinach)	is	ready	for	release!

6.2	(Snacks:Melon,	Bitter)	is	ready	for	release!

6.3	(Snacks:Scallion)	failed	the	readthrough!	Reworking…

7.8	(Breakfast:Flank	Steak)	tasted	bad!		Reworking…

2.3	(Salads:Lemon)	failed	final	editing!		Reworking…

7.8	(Breakfast:Flank	Steak)	is	ready	for	release!

4.6	(Entrees:Squash)	is	ready	for	release!

2.3	(Salads:Lemon)	tasted	bad!		Reworking…

4.7	(Entrees:Squash,	Winter)	failed	the	readthrough!	Reworking…

4.7	(Entrees:Squash,	Winter)	had	incorrect	measurements!	Reworking…

6.3	(Snacks:Scallion)	is	ready	for	release!

6.4	(Snacks:Squash	Chayote)	is	ready	for	release!

4.7	(Entrees:Squash,	Winter)	is	ready	for	release!

7.9	(Breakfast:Loganberries)	is	ready	for	release!

2.3	(Salads:Lemon)	is	ready	for	release!

7.10	(Breakfast:Opossum)	is	ready	for	release!

Finished	Evaluating	Chapter	7	-	Breakfast

Evaluating	Chapter	8	-	Sandwiches

8.1	(Sandwiches:Rhubarb)	had	incorrect	measurements!	Reworking…

4.8	(Entrees:Corn,	Blue)	is	ready	for	release!

2.4	(Salads:Cream	cheese)	failed	final	editing!		Reworking…

2.4	(Salads:Cream	cheese)	is	ready	for	release!

6.5	(Snacks:Roasted	Turkey)	failed	final	editing!		Reworking…

4.9	(Entrees:Snake)	is	ready	for	release!

4.10	(Entrees:Prosciutto)	failed	the	readthrough!	Reworking…

6.5	(Snacks:Roasted	Turkey)	had	incorrect	measurements!	Reworking…

2.5	(Salads:Artichokes,	Domestic)	tasted	bad!		Reworking…

4.10	(Entrees:Prosciutto)	tasted	bad!		Reworking…

8.1	(Sandwiches:Rhubarb)	tasted	bad!		Reworking…

4.10	(Entrees:Prosciutto)	had	incorrect	measurements!	Reworking…

4.10	(Entrees:Prosciutto)	is	ready	for	release!

Finished	Evaluating	Chapter	4	-	Entrees

6.5	(Snacks:Roasted	Turkey)	is	ready	for	release!

6.6	(Snacks:Lime)	had	incorrect	measurements!	Reworking…

2.5	(Salads:Artichokes,	Domestic)	failed	final	editing!		Reworking…

8.1	(Sandwiches:Rhubarb)	is	ready	for	release!

6.6	(Snacks:Lime)	tasted	bad!		Reworking…

6.6	(Snacks:Lime)	is	ready	for	release!

2.5	(Salads:Artichokes,	Domestic)	is	ready	for	release!

6.7	(Snacks:Hazelnut)	is	ready	for	release!

8.2	(Sandwiches:Pickle,	Brine)	is	ready	for	release!

2.6	(Salads:Grapefruit)	is	ready	for	release!

2.7	(Salads:Lettuce,	Iceberg)	failed	final	editing!		Reworking…

2.7	(Salads:Lettuce,	Iceberg)	is	ready	for	release!

6.8	(Snacks:Radishes,	Daikon)	is	ready	for	release!

8.3	(Sandwiches:Oranges)	is	ready	for	release!

6.9	(Snacks:Salami)	tasted	bad!		Reworking…

2.8	(Salads:Fenugreek)	is	ready	for	release!

8.4	(Sandwiches:Chayote,	Pipinella,	Vegetable	Pear)	tasted	bad!		Reworking…

2.9	(Salads:Ostrich)	failed	the	readthrough!	Reworking…

6.9	(Snacks:Salami)	is	ready	for	release!

6.10	(Snacks:Mushroom,	Oyster)	is	ready	for	release!

Finished	Evaluating	Chapter	6	-	Snacks

2.9	(Salads:Ostrich)	failed	final	editing!		Reworking…

2.9	(Salads:Ostrich)	failed	the	readthrough!	Reworking…

2.9	(Salads:Ostrich)	failed	the	readthrough!	Reworking…

8.4	(Sandwiches:Chayote,	Pipinella,	Vegetable	Pear)	is	ready	for	release!

8.5	(Sandwiches:Bear)	is	ready	for	release!

2.9	(Salads:Ostrich)	failed	final	editing!		Reworking…

8.6	(Sandwiches:Panela)	tasted	bad!		Reworking…

8.6	(Sandwiches:Panela)	failed	the	readthrough!	Reworking…

2.9	(Salads:Ostrich)	is	ready	for	release!

8.6	(Sandwiches:Panela)	had	incorrect	measurements!	Reworking…

8.6	(Sandwiches:Panela)	is	ready	for	release!

2.10	(Salads:Brazil	Nuts)	is	ready	for	release!

Finished	Evaluating	Chapter	2	-	Salads

8.7	(Sandwiches:Peppers,	Red)	tasted	bad!		Reworking…

8.7	(Sandwiches:Peppers,	Red)	tasted	bad!		Reworking…

8.7	(Sandwiches:Peppers,	Red)	is	ready	for	release!

8.8	(Sandwiches:Oat	Bread)	is	ready	for	release!

8.9	(Sandwiches:Peppers,	Green)	is	ready	for	release!

8.10	(Sandwiches:Garlic)	is	ready	for	release!

Finished	Evaluating	Chapter	8	-	Sandwiches

Full	Chapter	Evaluation	with	PLINQ	took:	00:00:25.1708103

Cookbook	Evaluation	Complete

If	you	are	running	a	PLINQ	query	and	the	operation	invoked	throws	an	exception,	it	will
not	stop	the	set	evaluation	at	that	point	but	will	continue	to	the	end,	recording	any
exceptions	into	an	AggregateException,	which	can	be	caught	after	the	query	is	evaluated

(not	declared).

See	Also
The	“Parallel	LINQ”	topic	in	the	MSDN	documentation.

Chapter	5.	Debugging	and	Exception
Handling

5.0	Introduction
This	chapter	contains	recipes	covering	the	exception-handling	mechanism,	including	the
try,	catch,	and	finally	blocks.	Along	with	these	recipes	are	others	covering	the
mechanisms	used	to	throw	exceptions	manually	from	within	your	code.	The	final	recipes
deal	with	the	Exception	classes	and	their	uses,	as	well	as	subclassing	them	to	create	new
types	of	exceptions.

Often,	the	design	and	implementation	of	exception	handling	is	performed	later	in	the
development	cycle.	But	with	the	power	and	complexities	of	C#	exception	handling,	you
need	to	plan	and	even	implement	your	exception-handling	scheme	much	earlier.	Doing	so
will	increase	the	reliability	and	robustness	of	your	code	while	minimizing	the	impact	of
adding	exception	handling	after	most	or	all	of	the	application	is	coded.

Exception	handling	in	C#	is	very	flexible.	It	allows	you	to	choose	a	fine-	or	coarse-grained
approach	to	error	handling,	or	any	level	between.	This	means	that	you	can	add	exception
handling	around	any	individual	line	of	code	(the	fine-grained	approach)	or	around	a
method	that	calls	many	other	methods	(the	coarse-grained	approach),	or	you	can	use	a	mix
of	the	two,	with	mainly	a	coarse-grained	approach	and	a	more	fine-grained	approach	in
specific	critical	areas	of	the	code.	When	using	a	fine-grained	approach,	you	can	intercept
specific	exceptions	that	might	be	thrown	from	just	a	few	lines	of	code.	The	following
method	sets	an	object’s	property	to	a	numeric	value	using	fine-grained	exception	handling:

protected	void	SetValue(object	value)

{

				try

				{

								myObj.Property1	=	value;

				}

				catch	(NullReferenceException)

				{

								//	Handle	potential	exceptions	arising	from	this	call	here.

				}

}

Consequently,	this	approach	can	add	a	lot	of	extra	baggage	to	your	code	if	used
throughout	your	application.	This	fine-grained	approach	to	exception	handling	should	be
used	when	you	have	a	single	line	or	just	a	few	lines	of	code,	and	you	need	to	handle	that
exception	in	a	specific	manner.	If	you	do	not	have	specific	handling	for	errors	at	that	level,
you	should	let	the	exception	bubble	up	the	stack.	For	example,	using	the	previous
SetValue	method,	you	may	have	to	inform	the	user	that	an	exception	occurred	and
provide	a	chance	to	try	the	action	again.	If	a	method	exists	on	myObj	that	needs	to	be
called	whenever	an	exception	is	thrown	by	one	of	its	methods,	you	should	make	sure	that
this	method	is	called	at	the	appropriate	time.

Coarse-grained	exception	handling	is	quite	the	opposite;	it	uses	fewer	try-catch	or	try-
catch-finally	blocks.	One	example	of	a	coarse-grained	approach	would	be	to	place	a
try-catch	block	around	all	of	the	code	in	every	public	method	in	an	application	or
component.	Doing	this	allows	exceptions	to	be	handled	at	the	highest	level	in	your	code.	If

an	exception	is	thrown	at	any	location	in	your	code,	it	will	be	bubbled	up	the	call	stack
until	a	catch	block	is	found	that	can	handle	it.	If	try-catch	blocks	are	placed	on	all
public	methods,	then	all	exceptions	will	be	bubbled	up	to	these	methods	and	handled.
This	allows	you	to	write	much	less	exception-handling	code,	but	it	diminishes	your	ability
to	handle	specific	exceptions	that	may	occur	in	particular	areas	of	your	code.	You	must
determine	how	best	to	add	exception-handling	code	to	your	application.	This	means
applying	the	right	balance	of	fine-	and	coarse-grained	exception	handling	in	your
application.

C#	allows	you	to	write	catch	blocks	without	any	parameters.	An	example	of	this	is	shown
here:

public	void	CallCOMMethod()

{

				try

				{

								//	Call	a	method	on	a	COM	object.

								myCOMObj.Method1();

				}

				catch

				{

								//Handle	potential	exceptions	arising	from	this	call	here.

				}

}

The	catch	with	no	parameters	is	a	holdover	from	C++,	where	exception	objects	did	not
have	to	be	derived	from	the	Exception	class.	Writing	a	catch	clause	in	this	manner	in
C++	allows	any	type	of	object	thrown	as	an	exception	to	be	caught.	However,	in	C#,	only
objects	derived	from	the	Exception	base	class	may	be	thrown	as	an	exception.	Using	the
catch	block	with	no	parameters	allows	all	exceptions	to	be	caught,	but	you	lose	the	ability
to	view	the	exception	and	its	information.	A	catch	block	written	in	this	manner:

catch

{

					//	NOT	able	to	write	the	following	line	of	code

					//Console.WriteLine(e.ToString);

}

is	equivalent	to	this:

catch	(Exception	e)

{

					//	Able	to	write	the	following	line	of	code

					Console.WriteLine(e.ToString);

}

except	that	in	the	second	case,	the	Exception	object	can	be	accessed	now	that	the
exception	parameter	is	provided.

Avoid	writing	a	catch	block	without	any	parameters.	Doing	so	will	prevent	you	from
accessing	the	actual	Exception	object	that	was	thrown.

When	catching	exceptions	in	a	catch	block,	you	should	determine	up	front	when

exceptions	need	to	be	rethrown,	when	exceptions	need	to	be	wrapped	in	an	outer
exception	and	thrown,	and	when	exceptions	should	be	handled	immediately	and	not
rethrown.

Wrapping	an	exception	in	an	outer	exception	is	a	good	practice	when	the	original
exception	would	not	make	sense	to	the	caller.	When	wrapping	an	exception	in	an	outer
exception,	you	need	to	determine	what	exception	is	most	appropriate	to	wrap	the	caught
exception.	As	a	rule	of	thumb,	the	wrapping	exception	should	always	aid	in	tracking	down
the	original	problem	by	not	obscuring	the	original	exception	with	an	unrelated	or	vague
wrapping	exception.	One	of	the	rare	cases	that	can	justify	obscuring	exceptions	is	if	the
exception	is	going	to	cross	a	trust	boundary,	and	you	have	to	obscure	it	for	security
reasons.

Another	useful	practice	when	catching	exceptions	is	to	provide	catch	blocks	to	handle
specific	exceptions	in	your	code.	And	remember	that	base	class	exceptions	—	when	used
in	a	catch	block	—	catch	not	only	that	type,	but	also	all	of	its	subclasses.

The	following	code	uses	specific	catch	blocks	to	handle	different	exceptions	in	the
appropriate	manner:

public	void	CallCOMMethod()

{

				try

				{

								//	Call	a	method	on	a	COM	object.

								myCOMObj.Method1();

				}

				catch	(System.Runtime.InteropServices.ExternalException)

				{

								//	Handle	potential	COM	exceptions	arising	from	this	call	here.

				}

				catch	(InvalidOperationException)

				{

								//	Handle	any	potential	method	calls	to	the	COM	object	that	are

								//	not	valid	in	its	current	state.

				}

}

In	this	code,	ExternalException	and	its	derivatives	are	handled	differently	than
InvalidOperationException	and	its	derivatives.	If	any	other	types	of	exceptions	are
thrown	from	the	myCOMObj.Method1,	they	are	not	handled	here,	but	are	bubbled	up	until	a
valid	catch	block	is	found.	If	no	valid	catch	block	is	found,	the	exception	is	considered
unhandled	and	the	application	terminates.

At	times,	cleanup	code	must	be	executed	regardless	of	whether	an	exception	is	thrown.
Any	object	must	be	placed	in	a	stable	known	state	when	an	exception	is	thrown.	In	these
situations,	when	code	must	be	executed,	use	a	finally	block.	The	following	code	has
been	modified	(see	boldface	lines)	to	use	a	finally	block:

public	void	CallCOMMethod()

{

				try

				{

								//	Call	a	method	on	a	COM	object.

								myCOMObj.Method1();

				}

				catch	(System.Runtime.InteropServices.ExternalException)

				{

								//	Handle	potential	COM	exceptions	arising	from	this	call	here.

				}

				finally

				{

								//	Clean	up	and	free	any	resources	here.

								//	For	example,	there	could	be	a	method	on	myCOMObj	to	allow	us	to	clean

								//	up	after	using	the	Method1	method.

				}

}

NOTE
The	finally	block	will	always	execute,	no	matter	what	happens	in	the	try	and	catch	blocks.	The	finally
block	executes	even	if	a	return,	break,	or	continue	statement	is	executed	in	the	try	or	catch	blocks	or	if	a
goto	is	used	to	jump	out	of	the	exception	handler.	This	allows	for	a	reliable	method	of	cleaning	up	after	the
try	(and	possibly	catch)	block	code	executes.

The	finally	block	is	also	very	useful	for	final	resource	cleanup	when	no	catch	blocks	are
specified.	This	pattern	would	be	used	if	the	code	being	written	can’t	handle	exceptions
from	calls	it	is	making	but	wants	to	make	sure	that	resources	it	uses	are	cleaned	up
properly	before	moving	up	the	stack.	The	following	example	makes	sure	that
SqlConnection	and	SqlCommand	are	cleaned	up	properly	in	the	finally	block	through	the
use	of	the	using	keyword,	which	wraps	a	try-finally	block	around	the	scope	of	the
using	statement:

public	static	int	GetAuthorCount(string	connectionString)

{

				SqlConnection	sqlConn	=	null;

				SqlCommand	sqlComm	=	null;

				using(sqlConn	=	new	SqlConnection(connectionString))

				{

								using	(sqlComm	=	new	SqlCommand())

								{

												sqlComm.Connection	=	sqlConn;

												sqlComm.Parameters.Add("@pubName",

																SqlDbType.NChar).Value	=	"O''Reilly";

												sqlComm.CommandText	=	"SELECT	COUNT(*)	FROM	Authors	"	+

																"WHERE	Publisher=@pubName";

												sqlConn.Open();

												object	authorCount	=	sqlComm.ExecuteScalar();

												return	(int)authorCount;

								}

				}

}

When	determining	how	to	structure	exception	handling	in	your	application	or	component,
consider	doing	the	following:

Use	a	single	try-catch	or	try-catch-finally	exception	handler	at	locations	higher	up
in	your	code.	These	exception	handlers	can	be	considered	coarse-grained.

Code	farther	down	the	call	stack	should	contain	try-finally	exception	handlers.
These	exception	handlers	can	be	considered	fine-grained.

The	fine-grained	try-finally	exception	handlers	allow	for	better	control	over	cleanup
after	an	exception	occurs.	The	exception	is	then	bubbled	up	to	the	coarser-grained	try-
catch	or	try-catch-finally	exception	handler.	This	technique	allows	for	a	more
centralized	scheme	of	exception	handling	and	minimizes	the	code	that	you	have	to	write	to
handle	exceptions.

To	improve	performance,	you	should	handle	the	case	when	an	exception	could	be	thrown
(rather	than	catch	the	exception	after	it	is	thrown)	if	you	know	the	code	will	be	run	in	a
single-threaded	environment.	If	the	code	will	run	on	multiple	threads,	there	is	still	the
potential	that	the	initial	check	could	succeed,	but	the	object	value	could	change	(perhaps
to	null)	in	another	thread	before	the	actions	following	the	check	can	be	taken.

For	example,	in	a	single-threaded	environment,	if	a	method	has	a	good	chance	of	returning
a	null	value,	you	should	test	the	returned	value	for	null	before	that	value	is	used,	as
opposed	to	using	a	try-catch	block	and	allowing	the	NullReferenceException	to	be
thrown.	If	you	think	a	null	value	is	possible,	check	for	it.	If	it	shouldn’t	happen,	then	it	is
an	exceptional	condition	when	it	does,	and	exception	handling	should	be	used.	To
illustrate	this,	the	following	method	uses	exception-handling	code	to	process	the
NullReferenceException:

public	void	SomeMethod()

{

				try

				{

								Stream	s	=	GetAnyAvailableStream();

								Console.WriteLine("This	stream	has	a	length	of	"	+	s.Length);

				}

				catch	(NullReferenceException)

				{

								//	Handle	a	null	stream	here.

				}

}

Here	is	the	method	implemented	to	use	an	if-else	conditional	instead:

public	void	SomeMethod()

{

				Stream	s	=	GetAnyAvailableStream();

				if	(s	!=	null)

				{

								Console.WriteLine("This	stream	has	a	length	of	"	+	s.Length);

				}

				else

				{

								//	Handle	a	null	stream	here.

				}

}

Additionally,	you	should	make	sure	that	this	stream	is	closed	by	using	the	finally	block
as	follows:

public	void	SomeMethod()

{

				Stream	s	=	null;

				using(s	=	GetAnyAvailableStream())

				{

								if	(s	!=	null)

								{

												Console.WriteLine("This	stream	has	a	length	of	"	+	s.Length);

								}

								else

								{

												//	Handle	a	null	stream	here.

								}

				}

}

The	finally	block	contains	the	method	call	that	will	close	the	stream,	ensuring	that	there
is	no	data	loss.

Consider	throwing	exceptions	instead	of	returning	error	codes.	With	well-placed
exception-handling	code,	you	should	not	have	to	rely	on	methods	that	return	error	codes,
such	as	a	Boolean	true-false,	to	correctly	handle	errors,	making	for	much	cleaner	code.
Another	benefit	is	that	you	do	not	have	to	look	up	any	values	for	the	error	codes	to
understand	the	code.

NOTE
The	biggest	advantage	to	exceptions	is	that	when	an	exceptional	situation	arises,	you	cannot	just	ignore	it	as
you	can	with	error	codes.	This	helps	you	find	and	fix	bugs.

Throw	the	most	specific	possible	exception,	not	general	ones.	For	example,	throw	an
ArgumentNullException	instead	of	an	ArgumentException,	which	is	the	base	class	of
ArgumentNullException.	Throwing	an	ArgumentException	just	tells	you	that	there	was	a
problem	with	a	parameter	value	to	a	method.	Throwing	an	ArgumentNullException	tells
you	more	specifically	what	the	problem	with	the	parameter	really	is.	Another	potential
problem	is	that	a	more	general	exception	may	not	be	caught	if	the	catcher	of	the	exception
is	looking	for	a	more	specific	type	derived	from	the	thrown	exception.

The	FCL	provides	several	exception	types	that	you	will	find	very	useful	to	throw	in	your
own	code.	Many	of	these	exceptions	are	listed	here	with	a	definition	of	where	and	when
they	should	be	thrown:

Throw	an	InvalidOperationException	in	a	property,	indexer,	or	method	when	it	is
called	with	the	object	in	an	inappropriate	state	(e.g.,	when	an	indexer	is	called	on	an
object	that	has	not	yet	been	initialized	or	methods	are	called	out	of	sequence).

Throw	ArgumentException	if	invalid	parameters	are	passed	into	a	method,	property,	or
indexer.	The	ArgumentNullException,	ArgumentOutOfRangeException,	and
InvalidEnumArgumentException	are	three	subclasses	of	the	ArgumentException	class.
It	is	more	appropriate	to	throw	one	of	these	subclassed	exceptions	because	they	are
more	indicative	of	the	root	cause	of	the	problem.	The	ArgumentNullException
indicates	that	a	parameter	was	passed	in	as	null	and	that	this	parameter	cannot	be	null
under	any	circumstance.	The	ArgumentOutOfRangeException	indicates	that	an
argument	was	passed	in	that	was	outside	of	a	valid	acceptable	range.	This	exception	is
used	mainly	with	numeric	values.	The	InvalidEnumArgumentException	indicates	that
an	enumeration	value	was	passed	in	that	does	not	exist	in	that	enumeration	type.

Throw	a	FormatException	when	an	invalid	formatting	parameter	is	passed	in	to	a
method.	You’d	use	this	technique	mainly	when	overriding/overloading	methods	such	as
ToString	that	can	accept	formatting	strings,	as	well	as	in	the	parse	methods	on	the
various	numeric	types.

Throw	ObjectDisposedException	when	a	property,	indexer,	or	method	is	called	on	an
object	that	has	already	been	disposed.

Many	exceptions	that	derive	from	the	SystemException	class,	such	as
NullReferenceException,	ExecutionEngineException,	StackOverflowException,
OutOfMemoryException,	and	IndexOutOfRangeException,	are	thrown	only	by	the	CLR
and	should	not	be	explicitly	thrown	with	the	throw	keyword	in	your	code.

The	.NET	Framework	Class	Library	(FCL)	also	contains	many	classes	to	obtain	diagnostic
information	about	your	application,	as	well	as	the	environment	in	which	it	is	running.	In
fact,	there	are	so	many	classes	that	a	namespace,	System.Diagnostics,	was	created	to
contain	all	of	them.	This	chapter	includes	recipes	for	instrumenting	your	application	with
debug/trace	information,	obtaining	process	information,	using	the	built-in	event	log,	and
taking	advantage	of	mechanisms	like	performance	counters	or	Event	Tracing	for	Windows
(ETW)	and	EventSource.	It	should	be	noted	that	ETW	and	EventSource	are	becoming	the
preferred	performance	telemetry	mechanism	for	the	.NET	Framework.

Debugging	(via	the	Debug	class)	is	turned	on	by	default	in	debug	builds	only,	and	tracing
(via	the	Trace	class)	is	turned	on	by	default	in	both	debug	and	release	builds.	These
defaults	allow	you	to	ship	your	application	instrumented	with	tracing	code	using	the	Trace
class.	You	ship	your	code	with	tracing	compiled	in	but	turned	off	in	the	configuration	so
that	the	tracing	code	is	not	called	(for	performance	reasons)	unless	it	is	a	server-side
application	(where	the	value	of	the	instrumentation	may	outweigh	the	performance	hit,
and	in	the	cloud,	nobody	can	hear	you	scream	without	logs!).	If	a	problem	occurs	on	a
production	machine	and	you	cannot	re-create	it	on	your	development	computer,	you	can
enable	tracing	and	allow	the	tracing	information	to	be	dumped	to	a	file.	You	can	then
inspect	this	file	to	help	you	pinpoint	the	real	problem.

Since	both	the	Debug	and	Trace	classes	contain	the	same	members	with	the	same	names,
you	can	interchange	them	in	your	code	by	renaming	Debug	to	Trace	and	vice	versa.	Most
of	the	recipes	in	this	chapter	use	the	Trace	class;	to	modify	them	so	that	they	use	the
Debug	class	instead,	simply	replace	each	instance	of	Trace	with	Debug	in	the	code.

5.1	Knowing	When	to	Catch	and	Rethrow	Exceptions

Problem
You	want	to	establish	when	it	is	appropriate	to	catch	and	rethrow	an	exception.

Solution
Catching	and	rethrowing	exceptions	is	appropriate	if	you	have	a	section	of	code	where
you	want	to	perform	some	action	if	an	exception	occurs,	but	not	perform	any	actions	to
actually	handle	the	exception.	To	get	the	exception	so	that	you	can	perform	the	initial
action	on	it,	establish	a	catch	block	to	catch	the	exception.	Then,	once	the	action	has	been
performed,	rethrow	the	exception	from	the	catch	block	in	which	the	original	exception
was	handled.	Use	the	throw	keyword,	followed	by	a	semicolon,	to	rethrow	an	exception:

try

{

				Console.WriteLine("In	try");

				int	z2	=	9999999;

				checked	{	z2	*=	999999999;	}

}

catch	(OverflowException	oe)

{

				//	Record	the	fact	that	the	overflow	exception	occurred.

				EventLog.WriteEntry("MyApplication",	oe.Message,	EventLogEntryType.Error);

				throw;

}

Here,	you	create	an	EventLog	entry	that	records	the	occurrence	of	an	overflow	exception.
Then	the	exception	is	propagated	up	the	call	stack	by	the	throw	statement.

Discussion
Establishing	a	catch	block	for	an	exception	is	essentially	saying	that	you	want	to	do
something	about	that	exceptional	case.

NOTE
If	you	do	not	rethrow	the	exception,	or	create	a	new	exception	to	wrap	the	original	exception	and	throw	it,
the	assumption	is	that	you	have	handled	the	condition	that	caused	the	exception	and	that	the	program	can
continue	normal	operation.

By	choosing	to	rethrow	the	exception,	you	are	indicating	that	there	is	still	an	issue	to	be
dealt	with	and	that	you	are	counting	on	code	farther	up	the	stack	to	handle	the	condition.	If
you	need	to	perform	an	action	based	on	a	thrown	exception	and	need	to	allow	the
exception	to	continue	after	your	code	executes,	then	rethrowing	is	the	mechanism	to
handle	this.	If	both	of	those	conditions	are	not	met,	don’t	rethrow	the	exception;	just
handle	it	or	remove	the	catch	block.

NOTE
Remember	that	throwing	exceptions	is	expensive.	Try	not	to	needlessly	throw	and	rethrow	exceptions,
because	this	might	bog	down	your	application.

When	rethrowing	an	exception,	use	throw;	instead	of	throw	ex;	as	the	former	will
preserve	the	original	call	stack	of	the	exception.	Using	throw	with	the	catch	parameter
will	reset	the	call	stack	to	that	location,	and	information	about	the	error	will	be	lost.	There
might	be	some	scenarios	where	you	want	the	call	stack	changed	(to	hide	details	of	the
internals	of	a	portion	of	your	application	that	performs	sensitive	operations,	for	example)
but	on	the	whole,	give	yourself	the	best	chance	to	debug	things	and	don’t	truncate	the	call
stack.

5.2	Handling	Exceptions	Thrown	from	Methods	Invoked	via
Reflection

Problem
Using	reflection,	you	invoke	a	method	that	generates	an	exception.	You	want	to	obtain	the
real	exception	object	and	its	information	in	order	to	diagnose	and	fix	the	problem.

Solution
The	real	exception	and	its	information	can	be	obtained	through	the	InnerException
property	of	the	TargetInvocationException	that	is	thrown	by	MethodInfo.Invoke.

Discussion
Example	5-1	handles	an	exception	that	occurs	within	a	method	invoked	via	reflection.	The
Reflect	class	contains	a	ReflectionException	method	that	invokes	the	static
TestInvoke	method	using	the	reflection	classes.

Example	5-1.	Obtaining	information	on	an	exception	invoked	by	a	method	accessed
through	reflection
using	System;

using	System.Reflection;

public	static	class	Reflect

{

				public	static	void	ReflectionException()

				{

								Type	reflectedClass	=	typeof(DebuggingAndExceptionHandling);

								try

								{

												MethodInfo	methodToInvoke	=	reflectedClass.GetMethod("TestInvoke");

												methodToInvoke?.Invoke(null,	null);

								}

								catch(Exception	e)

								{

												Console.WriteLine(e.ToShortDisplayString());

								}

				}

				public	static	void	TestInvoke()

				{

								throw	(new	Exception("Thrown	from	invoked	method."));

				}

}

This	code	displays	the	following	text:

Message:	Exception	has	been	thrown	by	the	target	of	an	invocation.

Type:	System.Reflection.TargetInvocationException

Source:	mscorlib

TargetSite:	System.Object	InvokeMethod(System.Object,	System.Object[],	System.Si

gnature,	Boolean)

****	INNEREXCEPTION	START	****

Message:	Thrown	from	invoked	method.

Type:	System.Exception

Source:	CSharpRecipes

TargetSite:	Void	TestInvoke()

****	INNEREXCEPTION	END	****

When	the	methodToInvoke?.Invoke	method	is	called,	the	TestInvoke	method	is	called
and	throws	an	exception.	The	question	mark	next	to	methodToInvoke	is	a	null-conditional
operator	to	handle	the	case	where	the	MethodInfo	could	not	be	retrieved	and	is	null.	This
way,	we	didn’t	have	to	write	the	check	for	null	around	the	invocation.	The	outer
exception	is	the	TargetInvocationException;	this	is	the	generic	exception	thrown	when
a	method	invoked	through	reflection	throws	an	exception.	The	CLR	automatically	wraps
the	original	exception	thrown	by	the	invoked	method	inside	of	the
TargetInvocationException	object’s	InnerException	property.	In	this	case,	the
exception	thrown	by	the	invoked	method	is	of	type	System.Exception.	This	exception	is
shown	after	the	section	that	begins	with	the	text	****	INNEREXCEPTION	START	****.

To	display	the	exception	information,	we	call	the	ToShortDisplayString	method:

Console.WriteLine(e.ToShortDisplayString());

The	ToShortDisplayString	extension	method	for	Exception	uses	a	StringBuilder	to
create	the	string	of	information	about	the	exception	and	all	inner	exceptions.	The
WriteExceptionShortDetail	method	populates	the	StringBuilder	with	specific	parts	of
the	exception	data.	To	get	the	inner	exceptions,	we	use	the	GetNestedExceptionList
extension	method:

public	static	string	ToShortDisplayString(this	Exception	ex)

{

				StringBuilder	displayText	=	new	StringBuilder();

				WriteExceptionShortDetail(displayText,	ex);

				foreach(Exception	inner	in	ex.GetNestedExceptionList())

				{

							displayText.AppendFormat("****	INNEREXCEPTION	START	****{0}",

											Environment.NewLine);

							WriteExceptionShortDetail(displayText,	inner);

							displayText.AppendFormat("****	INNEREXCEPTION	END	****{0}{0}",

											Environment.NewLine);

				}

				return	displayText.ToString();

}

public	static	IEnumerable<Exception>	GetNestedExceptionList(

									this	Exception	exception)

{

				Exception	current	=	exception;

				do

				{

								current	=	current.InnerException;

								if	(current	!=	null)

												yield	return	current;

				}

				while	(current	!=	null);

}

public	static	void	WriteExceptionShortDetail(StringBuilder	builder,	Exception	ex)

{

				builder.AppendFormat("Message:	{0}{1}",	ex.Message,	Environment.NewLine);

				builder.AppendFormat("Type:	{0}{1}";,	ex.GetType(),	Environment.NewLine);

				builder.AppendFormat("Source:	{0}{1}",	ex.Source,	Environment.NewLine);

				builder.AppendFormat("TargetSite:	{0}{1}",	ex.TargetSite,	

								Environment.NewLine);

}

See	Also
The	“Type	Class,”	“Null-Conditional	Operator,”	and	“MethodInfo	Class”	topics	in	the
MSDN	documentation.

5.3	Creating	a	New	Exception	Type

Problem
None	of	the	built-in	exceptions	in	the	.NET	Framework	provide	the	implementation
details	that	you	require	for	an	exception	that	you	need	to	throw.	You	need	to	create	your
own	exception	class	that	operates	seamlessly	with	your	application,	as	well	as	other
applications.	Whenever	an	application	receives	this	new	exception,	it	can	inform	the	user
that	a	specific	error	occurred	in	a	specific	component.	This	report	will	greatly	reduce	the
time	required	to	debug	the	problem.

Solution
Create	your	own	exception	class.	To	illustrate,	let’s	create	a	custom	exception	class,
RemoteComponentException,	that	will	inform	a	client	application	that	an	error	has
occurred	in	a	remote	server	assembly.

Discussion
The	exception	hierarchy	starts	with	the	Exception	class;	from	this	are	derived	two	classes:
ApplicationException	and	SystemException.	The	SystemException	class	and	any
classes	derived	from	it	are	reserved	for	the	developers	of	the	FCL.	Most	of	the	common
exceptions,	such	as	the	NullReferenceException	or	the	OverflowException,	are	derived
from	SystemException.	The	FCL	developers	created	the	ApplicationException	class	for
other	developers	using	the	.NET	languages	to	derive	their	own	exceptions	from.	This
partitioning	allows	for	a	clear	distinction	between	user-defined	exceptions	and	the	built-in
system	exceptions.	However,	Microsoft	now	recommends	deriving	directly	from
Exception,	rather	than	ApplicationException.	Nothing	actively	prevents	you	from
deriving	a	class	from	either	SystemException	or	ApplicationException.	But	it	is	better
to	be	consistent	and	use	the	convention	of	always	deriving	from	the	Exception	class	for
user-defined	exceptions.

You	should	follow	the	naming	convention	for	exceptions	when	determining	the	name	of
your	exception.	The	convention	is	very	simple:	decide	on	the	exception’s	name,	and	add
the	word	Exception	to	the	end	of	it	(e.g.,	use	UnknownException	as	the	exception	name
instead	of	just	Unknown).

Every	user-defined	exception	should	include	at	least	three	constructors,	which	are
described	next.	This	is	not	a	requirement,	but	it	makes	your	exception	classes	operate
similarly	to	every	other	exception	class	in	the	FCL	and	minimizes	the	learning	curve	for
other	developers	using	your	new	exception.	These	three	constructors	are:

The	default	constructor

This	constructor	takes	no	arguments	and	simply	calls	the	base	class’s	default
constructor.

A	constructor	with	a	parameter	that	accepts	a	message	string

This	message	string	overwrites	the	default	contents	of	the	Message	field	of	this
exception.	Like	the	default	constructor,	this	constructor	also	calls	the	base	class’s
constructor,	which	also	accepts	a	message	string	as	its	only	parameter.

A	constructor	that	accepts	a	message	string	and	an	inner	exception	as	parameters

The	object	contained	in	the	innerException	parameter	is	added	to	the
InnerException	property	of	this	exception	object.	Like	the	other	two	constructors,
this	constructor	calls	the	base	class’s	constructor	of	the	same	signature.

Fields	and	their	accessors	should	be	created	to	hold	data	specific	to	the	exception.	Since
this	exception	will	be	thrown	as	a	result	of	an	error	that	occurs	in	a	remote	server
assembly,	you	will	add	a	private	field	to	contain	the	name	of	the	server	or	service.	In
addition,	you	will	add	a	public	read-only	property	to	access	this	field.	Since	you’re	adding
this	new	field,	you	should	add	two	constructors	that	accept	an	extra	parameter	used	to	set
the	value	of	the	serverName	field.

If	necessary,	override	any	base	class	members	whose	behavior	is	inherited	by	the	custom
exception	class.	For	example,	since	you	have	added	a	new	field,	you	need	to	determine
whether	it	will	need	to	be	added	to	the	default	contents	of	the	Message	field	for	this
exception.	If	it	does,	you	must	override	the	Message	property:

public	override	string	Message	=>	$"{base.Message}{Environment.NewLine}"	+

												$"The	server	({this.ServerName	??	"Unknown"})"	+

											"has	encountered	an	error.";

Notice	that	the	Message	property	in	the	base	class	is	displayed	on	the	first	line,	and	your
additional	text	is	displayed	on	the	next	line.	This	organization	takes	into	account	that	a
user	might	modify	the	message	that	will	appear	in	the	Message	property	by	using	one	of
the	overloaded	constructors	that	takes	a	message	string	as	a	parameter.

Your	exception	object	should	be	serializable	and	deserializable.	This	involves	performing
the	following	two	additional	steps:

1.	 Add	the	Serializable	attribute	to	the	class	definition.	This	attribute	specifies	that
this	class	can	be	serialized	and	deserialized.	A	SerializationException	is	thrown	if
this	attribute	does	not	exist	on	this	class,	and	an	attempt	is	made	to	serialize	this
class.

2.	 The	class	should	implement	the	ISerializable	interface	if	you	want	control	over
how	serialization	and	deserialization	are	performed,	and	it	should	provide	an
implementation	for	its	single	member,	GetObjectData.	Here	you	implement	it
because	the	base	class	implements	it,	which	means	that	you	have	no	choice	but	to
reimplement	it	if	you	want	the	fields	you	added	(e.g.,	serverName)	to	get	serialized:

//	Used	during	serialization	to	capture	information	about	extra	fields

public	override	void	GetObjectData(SerializationInfo	exceptionInfo,

																																			StreamingContext	exceptionContext)

{

				base.GetObjectData(exceptionInfo,	exceptionContext);

				exceptionInfo.AddValue("ServerName",	this.ServerName);

}

In	addition,	we	need	a	new	overridden	constructor	that	accepts	information	to	deserialize
this	object:

//	Serialization	ctor

protected	RemoteComponentException(SerializationInfo	exceptionInfo,

								StreamingContext	exceptionContext)

								:	base(exceptionInfo,	exceptionContext)

{

				this.serverName	=	exceptionInfo.GetString("ServerName");

}

NOTE
Even	though	it	is	not	required,	you	should	make	all	user-defined	exception	classes	serializable	and
deserializable.	That	way,	the	exceptions	can	be	propagated	properly	over	remoting	and	application	domain
boundaries.

For	the	case	where	this	exception	will	be	caught	in	unmanaged	code,	such	as	a	COM
object,	you	can	also	set	the	HRESULT	value	for	this	exception.	An	exception	caught	in
unmanaged	code	becomes	an	HRESULT	value.	If	the	exception	does	not	alter	the	HRESULT
value,	it	defaults	to	the	HRESULT	of	the	base	class	exception,	which,	in	the	case	of	a	user-
defined	exception	object	that	inherits	from	ApplicationException,	is
COR_E_APPLICATION	(0x80131600).	To	change	the	default	HRESULT	value,	simply	set	the
value	of	this	field	in	the	constructor.	The	following	code	demonstrates	this	technique:

public	class	RemoteComponentException	:	Exception

{

				public	RemoteComponentException()	:	base()

				{

									HResult	=	0x80040321;

				}

				public	RemoteComponentException(string	message)	:	

								base(message)

				{

								HResult	=	0x80040321;

				}

				public	RemoteComponentException(string	message,	Exception	innerException)

								:	base(message,	innerException)

				{

								HResult	=	0x80040321;

				}

}

Now	the	HResult	that	the	COM	object	will	see	is	the	value	0x80040321.

NOTE
It	is	usually	a	good	idea	to	override	the	Message	property	in	order	to	incorporate	any	new	fields	into	the
exception’s	message	text.	Always	remember	to	include	the	base	class’s	message	text	along	with	any
additional	text	you	add	to	this	property.

At	this	point,	the	RemoteComponentException	class	contains	everything	you	need	for	a
complete	user-defined	exception	class.

As	a	final	note,	it	is	generally	a	good	idea	to	place	all	user-defined	exceptions	in	a	separate
assembly,	which	allows	for	easier	reuse	of	these	exceptions	in	other	applications	and,
more	importantly,	allows	other	application	domains	and	remotely	executing	code	to	both
throw	and	handle	these	exceptions	correctly	no	matter	where	they	are	thrown.	The
assembly	that	holds	these	exceptions	should	be	signed	with	a	strong	name	and	added	to
the	Global	Assembly	Cache	(GAC),	so	that	any	code	that	uses	or	handles	these	exceptions
can	find	the	assembly	that	defines	them.	See	Recipe	11.7	for	more	information	on	how	to
do	this.

If	you	are	sure	that	the	exceptions	being	defined	won’t	ever	be	thrown	or	handled	outside
of	your	assembly,	then	you	can	leave	the	exception	definitions	there.	But	if	for	some
reason	an	exception	that	you	throw	finds	its	way	out	of	your	assembly,	the	code	that
ultimately	catches	it	will	not	be	able	to	resolve	it.

The	complete	source	code	for	the	RemoteComponentException	class	is	shown	in

Example	5-2.

Example	5-2.	RemoteComponentException	class
using	System;

using	System.IO;

using	System.Runtime.Serialization;

using	System.Runtime.Serialization.Formatters.Binary;

using	System.Security.Permissions;

[Serializable]

public	class	RemoteComponentException	:	Exception,	ISerializable

{

				#region	Constructors

				//	Normal	exception	ctor's

				public	RemoteComponentException()	:	base()

				{

				}

				public	RemoteComponentException(string	message)	:	base(message)

				{

				}

				public	RemoteComponentException(string	message,	Exception	innerException)

								:	base(message,	innerException)

				{

				}

				//	Exception	ctor's	that	accept	the	new	ServerName	parameter

				public	RemoteComponentException(string	message,	string	serverName)	:	

								base(message)

				{

								this.ServerName	=	serverName;

				}

				public	RemoteComponentException(string	message,

																	Exception	innerException,	string	serverName)

								:	base(message,	innerException)

				{

								this.ServerName	=	serverName;

				}

				//	Serialization	ctor

				protected	RemoteComponentException(SerializationInfo	exceptionInfo,

								StreamingContext	exceptionContext)

								:	base(exceptionInfo,	exceptionContext)

				{

								this.ServerName	=	exceptionInfo.GetString("ServerName");

				}

				#endregion	//	Constructors

				#region	Properties

				//	Read-only	property	for	server	name

				public	string	ServerName	{	get;	}

				public	override	string	Message	=>	$"{base.Message}{Environment.NewLine}"	+

																$"The	server	({this.ServerName	??	"Unknown"})"	+

																"has	encountered	an	error.";

				#endregion	//	Properties

				#region	Overridden	methods

				//	ToString	method

				public	override	string	ToString()	=>

										"An	error	has	occurred	in	a	server	component	of	this	client."	+

												$"{Environment.NewLine}Server	Name:	"	+

												$"{this.ServerName}{Environment.NewLine}"	+

												$"{this.ToFullDisplayString()}";

				//	Used	during	serialization	to	capture	information	about	extra	fields

				[SecurityPermission(SecurityAction.LinkDemand,	Flags	=

									SecurityPermissionFlag.SerializationFormatter)]

				public	override	void	GetObjectData(SerializationInfo	info,

								StreamingContext	context)

				{

								base.GetObjectData(info,	context);

								info.AddValue("ServerName",	this.ServerName);

				}

				#endregion	//	Overridden	methods

				public	string	ToBaseString()	=>	(base.ToString());

}

The	ToFullDisplayString	call	made	in	the	ToString	override	is	an	extension	method	for
Exception,	with	the	GetNestedExceptionList	extension	method	used	to	get	the	list	of
exceptions	and	the	WriteExceptionDetail	method	to	handle	each	Exception’s	details:

public	static	string	ToFullDisplayString(this	Exception	ex)

{

				StringBuilder	displayText	=	new	StringBuilder();

				WriteExceptionDetail(displayText,	ex);

				foreach	(Exception	inner	in	ex.GetNestedExceptionList())

				{

								displayText.AppendFormat("****	INNEREXCEPTION	START	****{0}",

												Environment.NewLine);

								WriteExceptionDetail(displayText,	inner);

								displayText.AppendFormat("****	INNEREXCEPTION	END	****{0}{0}",

												Environment.NewLine);

				}

				return	displayText.ToString();

}

public	static	IEnumerable<Exception>	GetNestedExceptionList(

				this	Exception	exception)

{

				Exception	current	=	exception;

				do

				{

								current	=	current.InnerException;

								if	(current	!=	null)

												yield	return	current;

				}

				while	(current	!=	null);

}

public	static	void	WriteExceptionDetail(StringBuilder	builder,	Exception	ex)

{

				builder.AppendFormat("Message:	{0}{1}",	ex.Message,	Environment.NewLine);

				builder.AppendFormat("Type:	{0}{1}",	ex.GetType(),	Environment.NewLine);

				builder.AppendFormat("HelpLink:	{0}{1}",	ex.HelpLink,	Environment.NewLine);

				builder.AppendFormat("Source:	{0}{1}",	ex.Source,	Environment.NewLine);

				builder.AppendFormat("TargetSite:	{0}{1}",	ex.TargetSite,	

								Environment.NewLine);

				builder.AppendFormat("Data:{0}",	Environment.NewLine);

				foreach	(DictionaryEntry	de	in	ex.Data)

				{

								builder.AppendFormat("\t{0}	:	{1}{2}",

												de.Key,	de.Value,	Environment.NewLine);

				}

				builder.AppendFormat("StackTrace:	{0}{1}",	ex.StackTrace,	

								Environment.NewLine);

}

A	partial	listing	of	the	code	to	test	the	RemoteComponentException	class	is	shown	in
Example	5-3.

Example	5-3.	Testing	the	RemoteComponentException	class
public	void	TestSpecializedException()

{

				//	Generic	inner	exception	used	to	test	the

				//	RemoteComponentException's	inner	exception.

				Exception	inner	=	new	Exception("The	inner	Exception");

				RemoteComponentException	se1	=	new	RemoteComponentException	();

				RemoteComponentException	se2	=

						new	RemoteComponentException	("A	Test	Message	for	se2");

				RemoteComponentException	se3	=

						new	RemoteComponentException	("A	Test	Message	for	se3",	inner);

				RemoteComponentException	se4	=

						new	RemoteComponentException	("A	Test	Message	for	se4",

																																					"MyServer");

				RemoteComponentException	se5	=

						new	RemoteComponentException	("A	Test	Message	for	se5",	inner,

																																					"MyServer");

				//	Test	overridden	Message	property.

				Console.WriteLine(Environment.NewLine	+

						"TEST	-OVERRIDDEN-	MESSAGE	PROPERTY");

				Console.WriteLine("se1.Message	==	"	+	se1.Message);

				Console.WriteLine("se2.Message	==	"	+	se2.Message);

				Console.WriteLine("se3.Message	==	"	+	se3.Message);

				Console.WriteLine("se4.Message	==	"	+	se4.Message);

				Console.WriteLine("se5.Message	==	"	+	se5.Message);

				//	Test	-overridden-	ToString	method.

				Console.WriteLine(Environment.NewLine	+

						"TEST	-OVERRIDDEN-	TOSTRING	METHOD");

				Console.WriteLine("se1.ToString()	==	"	+	se1.ToString());

				Console.WriteLine("se2.ToString()	==	"	+	se2.ToString());

				Console.WriteLine("se3.ToString()	==	"	+	se3.ToString());

				Console.WriteLine("se4.ToString()	==	"	+	se4.ToString());

				Console.WriteLine("se5.ToString()	==	"	+	se5.ToString());

				Console.WriteLine(Environment.NewLine	+	"END	TEST"	+	Environment.NewLine);

}

The	output	from	Example	5-3	is	presented	in	Example	5-4.

Example	5-4.	Output	displayed	by	the	RemoteComponentException	class
TEST	-OVERRIDDEN-	MESSAGE	PROPERTY

se1.Message	==	Exception	of	type	'CSharpRecipes.ExceptionHandling+RemoteComponen

tException'	was	thrown.

A	server	with	an	unknown	name	has	encountered	an	error.

se2.Message	==	A	Test	Message	for	se2

A	server	with	an	unknown	name	has	encountered	an	error.

se3.Message	==	A	Test	Message	for	se3

A	server	with	an	unknown	name	has	encountered	an	error.

se4.Message	==	A	Test	Message	for	se4

The	server	(MyServer)	has	encountered	an	error.

se5.Message	==	A	Test	Message	for	se5

The	server	(MyServer)	has	encountered	an	error.

TEST	-OVERRIDDEN-	TOSTRING	METHOD

se1.ToString()	==	An	error	has	occurred	in	a	server	component	of	this	client.

Server	Name:

Message:	Exception	of	type	'CSharpRecipes.ExceptionHandling+RemoteComponentExcep

tion'	was	thrown.

A	server	with	an	unknown	name	has	encountered	an	error.

Type:	CSharpRecipes.ExceptionHandling+RemoteComponentException

HelpLink:

Source:

TargetSite:

Data:

StackTrace:

se2.ToString()	==	An	error	has	occurred	in	a	server	component	of	this	client.

Server	Name:

Message:	A	Test	Message	for	se2

A	server	with	an	unknown	name	has	encountered	an	error.

Type:	CSharpRecipes.ExceptionHandling+RemoteComponentException

HelpLink:

Source:

TargetSite:

Data:

StackTrace:

se3.ToString()	==	An	error	has	occurred	in	a	server	component	of	this	client.

Server	Name:

Message:	A	Test	Message	for	se3

A	server	with	an	unknown	name	has	encountered	an	error.

Type:	CSharpRecipes.ExceptionHandling+RemoteComponentException

HelpLink:

Source:

TargetSite:

Data:

StackTrace:

****	INNEREXCEPTION	START	****

Message:	The	Inner	Exception

Type:	System.Exception

HelpLink:

Source:

TargetSite:

Data:

StackTrace:

****	INNEREXCEPTION	END	****

se4.ToString()	==	An	error	has	occurred	in	a	server	component	of	this	client.

Server	Name:	MyServer

Message:	A	Test	Message	for	se4

The	server	(MyServer)	has	encountered	an	error.

Type:	CSharpRecipes.ExceptionHandling+RemoteComponentException

HelpLink:

Source:

TargetSite:

Data:

StackTrace:

se5.ToString()	==	An	error	has	occurred	in	a	server	component	of	this	client.

Server	Name:	MyServer

Message:	A	Test	Message	for	se5

The	server	(MyServer)	has	encountered	an	error.

Type:	CSharpRecipes.ExceptionHandling+RemoteComponentException

HelpLink:

Source:

TargetSite:

Data:

StackTrace:

****	INNEREXCEPTION	START	****

Message:	The	Inner	Exception

Type:	System.Exception

HelpLink:

Source:

TargetSite:

Data:

StackTrace:

****	INNEREXCEPTION	END	****

END	TEST

See	Also
Recipe	11.7,	and	the	“Using	User-Defined	Exceptions”	and	“Exception	Class”	topics	in
the	MSDN	documentation.

5.4	Breaking	on	a	First-Chance	Exception

Problem
You	need	to	fix	a	problem	with	your	code	that	is	throwing	an	exception.	Unfortunately,	an
exception	handler	is	trapping	the	exception,	and	you	are	having	a	tough	time	pinpointing
where	and	when	the	exception	is	being	thrown.

Forcing	the	application	to	break	on	an	exception	before	the	application	has	a	chance	to
handle	it	is	very	useful	in	situations	in	which	you	need	to	step	through	the	code	at	the
point	where	the	exception	is	first	being	thrown.	If	this	exception	were	thrown	and	not
handled	by	your	application,	the	debugger	would	intervene	and	break	on	the	line	of	code
that	caused	the	unhandled	exception.	In	this	case,	you	can	see	the	context	in	which	the
exception	was	thrown.	However,	if	an	exception	handler	is	active	when	the	exception	is
thrown,	the	exception	handler	will	handle	it	and	continue	on,	preventing	you	from	being
able	to	see	the	context	at	the	point	where	the	exception	was	thrown.	This	is	the	default
behavior	for	all	exceptions.

Solution
Select	Debug→Exceptions	or	press	Ctrl-Alt-E	within	Visual	Studio	2015	to	display	the
Exception	Settings	tool	window	(see	Figure	5-1).	Select	the	exception	from	the	tree	that
you	want	to	modify	and	then	click	on	the	checkbox	in	the	tree	view.	Click	OK	and	then
run	your	application.	Any	time	the	application	throws	a
System.ArgumentOutOfRangeException,	the	debugger	will	break	on	that	line	of	code
before	your	application	has	a	chance	to	handle	it.

Using	the	Exception	Settings	tool	window,	you	can	target	specific	exceptions	or	sets	of
exceptions	for	which	you	wish	to	alter	the	default	behavior.	This	dialog	has	three	main
sections.	The	first	is	the	TreeView	control,	which	contains	the	list	of	categorized
exceptions.	Using	this	TreeView,	you	can	choose	one	or	more	exceptions	or	groups	of
exceptions	whose	behavior	you	wish	to	modify.

The	next	section	on	this	dialog	is	the	column	Thrown	in	the	list	next	to	the	TreeView.	This
column	contains	a	checkbox	for	each	exception	that	will	enable	the	debugger	to	break
when	that	type	of	exception	is	first	thrown.	At	this	stage,	the	exception	is	considered	a
first-chance	exception.	Checking	the	checkbox	in	the	Thrown	column	forces	the	debugger
to	intervene	when	a	first-chance	exception	of	the	type	chosen	in	the	TreeView	control	is
thrown.	Unchecking	the	checkbox	allows	the	application	to	attempt	to	handle	the	first-
chance	exception.

Figure	5-1.	The	Exceptions	Settings	tool	window

You	can	also	click	on	the	Filter	icon	in	the	top	left	of	the	window	in	order	to	narrow	down
the	view	of	the	exceptions	to	just	the	ones	you	have	selected	to	break	on	a	first-chance
exception,	as	shown	in	Figure	5-2.

Figure	5-2.	The	Exceptions	Settings	tool	window	filtered

The	Exception	Settings	tool	window	also	provides	a	Search	bar	at	the	top	to	allow	you	to
search	for	exceptions	in	the	window.	If	you	type	argumentnullexception	in	the	window,
you	will	see	the	selection	narrow	to	just	items	that	match	that	text,	as	shown	in	Figure	5-3.

Figure	5-3.	The	Exceptions	Settings	tool	window	search

To	add	a	user-defined	exception	to	the	Exception	Settings,	click	the	Add	button.	You’ll	see
the	dialog	box	shown	in	Figure	5-4.

Figure	5-4.	Adding	a	user-defined	exception	to	the	Exception	Settings

Press	Yes	to	use	the	original	Exceptions	dialog,	which	is	shown	in	Figure	5-5.

Figure	5-5.	The	Exceptions	dialog

This	dialog	contains	two	helpful	buttons,	Find	and	Find	Next,	to	allow	you	to	search	for
an	exception	rather	than	dig	into	the	TreeView	control	and	search	for	it	on	your	own.	In
addition,	three	other	buttons	—	Reset	All,	Add,	and	Delete	—	allow	you	to	reset	to	the
original	state	and	to	add	and	remove	user-defined	exceptions,	respectively.

For	example,	you	can	create	your	own	exception,	as	you	did	in	Recipe	5.3,	and	add	this
exception	to	the	TreeView	list.	You	must	add	any	managed	exception	such	as	this	to	the
TreeView	node	entitled	Common	Language	Runtime	Exceptions.	This	setting	tells	the
debugger	that	this	is	a	managed	exception	and	should	be	handled	as	such.	Figure	5-6
shows	the	addition	of	the	custom	exception.

Figure	5-6.	Adding	a	user-defined	exception	to	the	Exceptions	dialog

Type	the	name	of	the	exception	—	exactly	as	its	class	name	is	spelled	with	the	full
namespace	scoping	into	the	Name	field	of	this	dialog	box.	Do	not	append	any	other
information	to	this	name,	such	as	the	namespace	it	resides	in	or	a	class	name	that	it	is
nested	within.	Doing	so	will	prevent	the	debugger	from	seeing	this	exception	when	it	is
thrown.	Clicking	the	OK	button	places	this	exception	into	the	TreeView	under	the
Common	Language	Runtime	Exceptions	node.	The	Exceptions	dialog	box	will	look
something	like	the	one	in	Figure	5-7	after	you	add	this	user-defined	exception.

Figure	5-7.	The	Exceptions	dialog	box	after	you	add	a	user-defined	exception	to	the	TreeView

The	Delete	button	deletes	any	selected	user-defined	exception	that	you	added	to	the
TreeView.	The	Reset	All	button	deletes	any	and	all	user-defined	exceptions	that	have	been
added	to	the	TreeView.	Check	the	Thrown	column	to	have	the	debugger	stop	when	that
exception	type	is	thrown.

There	is	one	other	setting	that	can	affect	your	exception	debugging:	Just	My	Code
(Figure	5-8).	You	should	turn	this	off	to	get	the	best	picture	of	what	is	really	happening	in
your	application	when	debugging;	when	it	is	enabled,	you	cannot	see	the	related	actions	of
the	framework	code	that	your	code	calls.	Being	able	to	see	where	your	code	calls	into	the
framework	and	where	it	goes	from	there	is	very	educational	and	can	help	you	understand
the	issue	you	are	debugging	better.	The	setting	is	under	Tools\Options\Debugging\General

in	Visual	Studio	2015.

Figure	5-8.	The	Just	My	Code	setting	disabled

See	Also
The	“Exception	Handling	(Debugging)”	topic	in	the	MSDN	documentation.

5.5	Handling	Exceptions	Thrown	from	an	Asynchronous
Delegate

Problem
When	using	a	delegate	asynchronously,	you	want	to	be	notified	if	the	delegate	has	thrown
any	exceptions.

Solution
Wrap	the	EndInvoke	method	of	the	delegate	in	a	try-catch	block:

using	System;

using	System.Threading;

public	class	AsyncAction

{

				public	void	PollAsyncDelegate()

				{

								//	Create	the	async	delegate	to	call	Method1	and	call	its	

								//	BeginInvokemethod.

								AsyncInvoke	MI	=	new	AsyncInvoke(TestAsyncInvoke.Method1);

								IAsyncResult	AR	=	MI.BeginInvoke(null,	null);

								//	Poll	until	the	async	delegate	is	finished.

								while	(!AR.IsCompleted)

								{

											System.Threading.Thread.Sleep(100);

											Console.Write('.');

								}

								Console.WriteLine("Finished	Polling");

								//	Call	the	EndInvoke	method	of	the	async	delegate.

								try

								{

												int	RetVal	=	MI.EndInvoke(AR);

												Console.WriteLine("RetVal	(Polling):	"	+	RetVal);

								}

								catch	(Exception	e)

								{

												Console.WriteLine(e.ToString());

								}

				}

}

The	following	code	defines	the	AsyncInvoke	delegate	and	the	asynchronously	invoked
static	method	TestAsyncInvoke.Method1:

public	delegate	int	AsyncInvoke();

public	class	TestAsyncInvoke

{

				public	static	int	Method1()

				{

								throw	(new	Exception("Method1"));	//	Simulate	an	exception	being	thrown.

				}

}

Discussion
If	the	code	in	the	PollAsyncDelegate	method	did	not	contain	a	call	to	the	delegate’s
EndInvoke	method,	the	exception	thrown	in	Method1	either	would	simply	be	discarded
and	never	caught	or,	if	the	application	had	the	top-level	exception	handlers	wired	up
(Recipes	5.2,	5.7,	and	5.8),	it	would	be	caught.	If	EndInvoke	is	called,	then	this	exception
would	occur	when	EndInvoke	is	called	and	could	be	caught	there.	This	behavior	is	by
design;	for	all	unhandled	exceptions	that	occur	within	the	thread,	the	thread	immediately
returns	to	the	thread	pool,	and	the	exception	is	lost.

If	a	method	that	was	called	asynchronously	through	a	delegate	throws	an	exception,	the
only	way	to	trap	that	exception	is	to	include	a	call	to	the	delegate’s	EndInvoke	method	and
wrap	this	call	in	an	exception	handler.	You	must	call	the	EndInvoke	method	to	retrieve	the
results	of	the	asynchronous	delegate;	in	fact,	you	must	call	it	even	if	there	are	no	results.
You	can	obtain	these	results	through	a	return	value	or	any	ref	or	out	parameters	of	the
delegate.

See	Also
For	information	about	wiring	up	top-level	exception	handlers	in	your	application,	see
Recipes	5.2,	5.7,	and	5.8.

5.6	Giving	Exceptions	the	Extra	Info	They	Need	with
Exception.Data

Problem
You	want	to	send	some	additional	information	along	with	an	exception.

Solution
Use	the	Data	property	on	the	System.Exception	object	to	store	key/value	pairs	of
information	relevant	to	the	exception.

For	example,	say	there	is	a	System.ArgumentException	being	thrown	from	a	section	of
code,	and	you	want	to	include	the	underlying	cause	and	the	length	of	time	it	took.	You
would	add	two	key/value	pairs	to	the	Exception.Data	property	by	specifying	the	key	in
the	indexer	and	then	assigning	the	value.

In	the	example	that	follows,	the	Data	for	the	irritable	exception	uses	"Cause"	and
"Length"	for	its	keys.	Once	the	items	have	been	set	in	the	Data	collection,	the	exception
can	be	thrown	and	caught,	and	more	data	can	be	added	in	subsequent	catch	blocks	for	as
many	levels	of	exception	handling	as	the	exception	is	allowed	to	traverse:

try

{

				try

				{

								try

								{

												try

												{

																ArgumentException	irritable	=

																				new	ArgumentException("I'm	irritable!");

																irritable.Data["Cause"]="Computer	crashed";

																irritable.Data["Length"]=10;

																throw	irritable;

												}

												catch	(Exception	e)

												{

																//	See	if	I	can	help…

																if(e.Data.Contains("Cause"))

																				e.Data["Cause"]="Fixed	computer"

																throw;

												}

								}

								catch	(Exception	e)

								{

												e.Data["Comment"]="Always	grumpy	you	are";

												throw;

								}

				}

				catch	(Exception	e)

				{

								e.Data["Reassurance"]="Error	Handled";

								throw;

				}

}

The	final	catch	block	can	then	iterate	over	the	Exception.Data	collection	and	display	all
of	the	supporting	data	that	has	been	gathered	in	the	Data	collection	since	the	initial
exception	was	thrown:

catch	(Exception	e)

{

				Console.WriteLine("Exception	supporting	data:");

				foreach(DictionaryEntry	de	in	e.Data)

				{

								Console.WriteLine("\t{0}	:	{1}",de.Key,de.Value);

				}

}

Discussion
Exception.Data	is	an	object	that	supports	the	IDictionary	interface.	This	allows	you	to:

Add	and	remove	name/value	pairs.

Clear	the	contents.

Search	the	collection	to	see	if	it	contains	a	certain	key.

Get	an	IDictionaryEnumerator	for	rolling	over	the	collection	items.

Index	into	the	collection	using	the	key.

Access	an	ICollection	of	all	of	the	keys	and	all	of	the	values	separately.

NOTE
Items	placed	into	Exception.Data	need	to	be	Serializable	or	they	will	throw	an	ArgumentException	on
the	addition	to	the	collection.	If	you	are	adding	a	class	to	Exception.Data,	mark	it	as	Serializable	and
make	sure	it	can	be	serialized.

public	void	TestExceptionDataSerializable()

{

				Exception	badMonkey	=

								new	Exception("You	are	a	bad	monkey!");

				try

				{

								badMonkey.Data["Details"]	=	new	Monkey();

				}

				catch	(ArgumentException	aex)

				{

								Console.WriteLine(aex.Message);

				}

}

//[Serializable]		//	Uncomment	to	make	serializable	and	work

public	class	Monkey

{

				public	string	Name	{	get;	}	=	"George";

}

It	is	very	handy	to	be	able	to	tack	on	code-specific	data	to	the	system	exceptions,	as	it
allows	you	to	give	a	more	complete	picture	of	what	happened	in	the	code	when	the	error
occurred.	The	more	information	available	to	the	poor	soul	(probably	yourself)	who	is
trying	to	figure	out	why	the	exception	was	thrown	in	the	first	place,	the	better	the	chance
of	it	being	fixed.	Do	yourself	and	your	team	a	favor	and	give	a	little	bit	of	extra
information	when	throwing	exceptions;	you	won’t	be	sorry	you	did.

See	Also
The	“Exception.Data	Property”	topic	in	the	MSDN	documentation.

5.7	Dealing	with	Unhandled	Exceptions	in	WinForms
Applications

Problem
You	have	a	WinForms-based	application	in	which	you	want	to	catch	and	log	any
unhandled	exceptions	on	any	thread.

Solution
You	need	to	hook	up	handlers	for	both	the	System.Windows.Forms.Application.
ThreadException	event	and	the	System.Appdomain.UnhandledException	event.	Both	of
these	events	need	to	be	hooked	up,	as	the	WinForms	support	in	the	Framework	does	a	lot
of	exception	trapping	itself.	It	exposes	the
System.Windows.Forms.Application.ThreadException	event	to	allow	you	to	get	any
unhandled	exceptions	that	happen	on	the	UI	thread	that	the	WinForms	and	their	events	are
running	on.	In	spite	of	its	deceptive	name,	the
System.Windows.Forms.Application.ThreadException	event	handler	will	not	catch
unhandled	exceptions	on	worker	threads	constructed	by	the	program	or	from	ThreadPool
threads.	In	order	to	catch	all	of	those	possible	routes	for	unhandled	exceptions	in	a
WinForms	application,	you	need	to	hook	up	a	handler	for	the
System.AppDomain.UnhandledException	event
(System.Windows.Forms.Application.ThreadException	will	catch	UI	thread
exceptions).

To	hook	up	the	necessary	event	handlers	to	catch	all	of	your	unhandled	exceptions	in	a
WinForms	application,	add	the	following	code	to	the	Main	function	in	your	application:

static	void	Main()

{

				//	Adds	the	event	handler	to	catch	any	exceptions	that	happen

				//	in	the	main	UI	thread.

				Application.ThreadException	+=

								new	ThreadExceptionEventHandler(OnThreadException);

				//	Add	the	event	handler	for	all	threads	in	the	appdomain	except

				//	for	the	main	UI	thread.

				appdomain.CurrentDomain.UnhandledException	+=

								new	UnhandledExceptionEventHandler(CurrentDomain_UnhandledException);

				Application.EnableVisualStyles();

				Application.Run(new	Form1());

}

The	System.AppDomain.UnhandledException	event	handler	is	hooked	up	to	the	current
Appdomain	via	the	appdomain.CurrentDomain	property,	which	gives	access	to	the	current
Appdomain.	The	ThreadException	handler	for	the	application	is	accessed	through	the
Application.ThreadException	property.

The	event	handler	code	is	established	in	the	CurrentDomain_UnhandledException	and
OnThreadException	handler	methods.	See	Recipe	5.8	for	more	information	on	the
UnhandledExceptionEventHandler.	The	ThreadExceptionEventHandler	is	passed	the
sender	object	and	a	ThreadExceptionEventArgs	object.	ThreadExceptionEventArgs	has
an	Exception	property	that	contains	the	unhandled	exception	from	the	WinForms	UI
thread:

//	Handles	the	exception	event	for	all	other	threads

static	void	CurrentDomain_UnhandledException(object	sender,

																												UnhandledExceptionEventArgs	e)

{

				//	Just	show	the	exception	details.

				MessageBox.Show("CurrentDomain_UnhandledException:	"	+

																e.ExceptionObject.ToString());

}

//	Handles	the	exception	event	from	a	UI	thread

static	void	OnThreadException(object	sender,	ThreadExceptionEventArgs	t)

{

				//	Just	show	the	exception	details.

				MessageBox.Show("OnThreadException:	"	+	t.Exception.ToString());

}

Discussion
Exceptions	are	the	primary	way	to	convey	errors	in	.NET,	so	when	you	build	an
application,	it	is	imperative	that	there	be	a	final	line	of	defense	against	unhandled
exceptions.	An	unhandled	exception	will	crash	the	program	(even	if	it	looks	a	bit	nicer	in
.NET);	this	is	not	the	impression	you	wish	to	make	on	your	customers.	It	would	have	been
nice	to	have	one	event	to	hook	up	to	for	all	unhandled	exceptions.	The
appdomain.UnhandledException	event	comes	pretty	close	to	that,	but	having	to	handle
one	extra	event	isn’t	the	end	of	the	world,	either.	In	coding	event	handlers	for	both
appdomain.UnhandledException	and	Application.ThreadException,	you	can	easily	call
a	single	handler	that	writes	the	exception	information	to	the	event	log,	the	debug	stream,
or	custom	trace	logs	or	even	sends	you	an	email	with	the	information.	The	possibilities	are
limited	only	by	how	you	want	to	handle	errors	that	can	happen	to	any	program	given
enough	exposure.

See	Also
The	“ThreadExceptionEventHandler	Delegate”	and	“UnhandledExceptionEventHandler
Delegate”	topics	in	the	MSDN	documentation.

5.8	Dealing	with	Unhandled	Exceptions	in	WPF	Applications

Problem
You	have	a	Windows	Presentation	Foundation	(WPF)–based	application	in	which	you
want	to	catch	and	log	any	unhandled	exceptions	on	any	thread.

Solution
To	hook	up	the	necessary	event	handlers	to	catch	all	of	your	unhandled	exceptions	in	a
WPF	application,	add	the	following	code	to	the	App.xaml	file	in	your	application:

<Application	x:Class="UnhandledWPFException.App"

			xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

			xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

			StartupUri="Window1.xaml"

			DispatcherUnhandledException="Application_DispatcherUnhandledException">

			<Application.MainWindow>

							<Window	/>

			</Application.MainWindow>

			<Application.Resources>

			</Application.Resources>

</Application>

Then,	in	the	codebehind	file	App.xaml.cs,	add	the
Application_DispatcherUnhandledException	method	to	handle	otherwise	unhandled
exceptions:

private	void	Application_DispatcherUnhandledException(object	sender,

										System.Windows.Threading.DispatcherUnhandledExceptionEventArgs	e)

{

				//	Log	the	exception	information	in	the	event	log

				EventLog.WriteEntry("UnhandledWPFException	Application",

								e.Exception.ToString(),	EventLogEntryType.Error);

				//	Let	the	user	know	what	happenned

				MessageBox.Show("Application_DispatcherUnhandledException:	"	+

								e.Exception.ToString());

				//	indicate	we	handled	it

				e.Handled	=	true;

				//	shut	down	the	application

				this.Shutdown();

}

Discussion
Windows	Presentation	Foundation	provides	another	way	to	create	Windows-based
applications	for	.NET.	Protecting	users	from	unsightly	unhandled	exceptions	requires	a	bit
of	code	in	WPF,	just	as	it	does	in	WinForms	(see	Recipe	5.7	for	doing	this	in	WinForms).

The	System.Windows.Application	class	is	the	base	class	for	WPF-based	applications,
and	it	is	from	here	that	the	unhandled	exceptions	are	handled	via	the
DispatcherUnhandledException	event.	You	set	up	this	event	handler	by	specifying	the
method	to	handle	the	event	in	the	App.xaml	file	shown	here:

DispatcherUnhandledException="Application_DispatcherUnhandledException">

You	can	also	set	this	up	in	code	directly	instead	of	doing	it	the	XAML	way	by	adding	the
Startup	event	handler	(which	is	where	Microsoft	recommends	you	put	the	initialization
code	for	the	application	in	WPF)	to	the	XAML	file	like	this:

<Application	x:Class="UnhandledWPFException.App"

				xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

				xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

				StartupUri="Window1.xaml"

		Startup="Application_Startup"	>

				<Application.MainWindow>

								<Window	/>

				</Application.MainWindow>

				<Application.Resources>

				</Application.Resources>

</Application>

In	the	Startup	event,	establish	the	event	handler	for	the	DispatcherUnhandledException
like	this:

private	void	Application_Startup(object	sender,	StartupEventArgs	e)

{

				this.DispatcherUnhandledException	+=

										new	System.Windows.Threading.DispatcherUnhandledExceptionEventHandler(

															Application_DispatcherUnhandledException);

}

This	is	great	for	handling	exceptions	for	WPF	applications:	just	hook	up	and	get	all	those
unhandled	exceptions	delivered	to	your	single	handler,	right?	Wrong.	Just	as	was
necessary	in	WinForms	applications,	if	you	have	any	code	running	on	any	threads	other
than	the	UI	thread	(which	you	almost	always	will),	you	still	have	to	hook	up	to	the
AppDomain	for	the	AppDomain.UnhandledException	handler	to	catch	those	exceptions	on
threads	other	than	the	UI	thread.	In	order	to	do	that,	we	update	our	App.xaml.cs	file	as
follows:

///	<summary>

///	Interaction	logic	for	App.xaml

///	</summary>

public	partial	class	App	:	Application

{

				private	void	Application_DispatcherUnhandledException(object	sender,

										System.Windows.Threading.DispatcherUnhandledExceptionEventArgs	e)

				{

								//	indicate	we	handled	it

								e.Handled	=	true;

								ReportUnhandledException(e.Exception);

				}

				private	void	Application_Startup(object	sender,	StartupEventArgs	e)

				{

							//	WPF	UI	exceptions

							this.DispatcherUnhandledException	+=

									new	System.Windows.Threading.DispatcherUnhandledExceptionEventHandler(

											Application_DispatcherUnhandledException);

							//	Those	dirty	thread	exceptions

							AppDomain.CurrentDomain.UnhandledException	+=

											new	UnhandledExceptionEventHandler(CurrentDomain_UnhandledException);

				}

				private	void	CurrentDomain_UnhandledException(object	sender,

																																				UnhandledExceptionEventArgs	e)

				{

								ReportUnhandledException(e.ExceptionObject	as	Exception);

				}

				private	void	ReportUnhandledException(Exception	ex)

				{

								//	Log	the	exception	information	in	the	event	log

								EventLog.WriteEntry("UnhandledWPFException	Application",

												ex.ToString(),	EventLogEntryType.Error);

								//	Let	the	user	know	what	happenned

								MessageBox.Show("Unhandled	Exception:	"	+	ex.ToString());

								//	shut	down	the	application

								this.Shutdown();

				}

}

See	Also
Recipe	5.7;	the	“DispatcherUnhandledException	event”	and	“AppDomain.
UnhandledException	handler”	topics	in	the	MSDN	documentation.

5.9	Determining	Whether	a	Process	Has	Stopped
Responding

Problem
You	need	to	watch	one	or	more	processes	to	determine	whether	the	user	interface	has
stopped	responding	to	the	system.	This	functionality	is	similar	to	the	column	in	the	Task
Manager	that	displays	the	text	“Responding”	or	“Not	Responding,”	depending	on	the	state
of	the	application.

Solution
Use	the	GetProcessState	method	and	ProcessRespondingState	enumeration	shown	in
Example	5-5	to	determine	whether	a	process	has	stopped	responding.

Example	5-5.	Determining	whether	a	process	has	stopped	responding
public	enum	ProcessRespondingState

{

				Responding,

				NotResponding,

				Unknown

}

public	static	ProcessRespondingState	GetProcessState(Process	p)

{

				if	(p.MainWindowHandle	==	IntPtr.Zero)

				{

								Trace.WriteLine($"{p.ProcessName}	does	not	have	a	MainWindowHandle");

								return	ProcessRespondingState.Unknown;

				}

				else

				{

								//	This	process	has	a	MainWindowHandle

								if	(!p.Responding)

												return	ProcessRespondingState.NotResponding;

								else

												return	ProcessRespondingState.Responding;

				}

}

Discussion
The	GetProcessState	method	accepts	a	single	parameter,	process,	identifying	a	process.
The	Responding	property	is	then	called	on	the	Process	object	represented	by	the	process
parameter.	This	property	returns	a	ProcessRespondingState	enumeration	value	to
indicate	that	a	process	is	currently	responding	(Responding),	that	it	is	not	currently
responding	(NotResponding),	or	that	a	response	cannot	be	determined	for	this	process	as
there	is	no	main	window	handle	(Unknown).

The	Responding	property	always	returns	true	if	the	process	in	question	does	not	have	a
MainWindowHandle.	Processes	such	as	Idle,	spoolsv,	Rundll32,	and	svchost	do	not	have	a
main	window	handle,	and	therefore	the	Responding	property	always	returns	true	for
them.	To	weed	out	these	processes,	you	can	use	the	MainWindowHandle	property	of	the
Process	class,	which	returns	the	handle	of	the	main	window	for	a	process.	If	this	property
returns	0,	the	process	has	no	main	window.

To	determine	whether	all	processes	on	a	machine	are	responding,	you	can	call	the
GetProcessState	method	as	follows:

var	processes	=	Process.GetProcesses().ToArray();

Array.ForEach(processes,	p	=>

				{

								var	processState	=	GetProcessState(p);

								switch	(processState)

								{

												case	ProcessRespondingState.NotResponding:

																Console.WriteLine($"{p.ProcessName}	is	not	responding.");

																break;

												case	ProcessRespondingState.Responding:

																Console.WriteLine($"{p.ProcessName}	is	responding.");

																break;

												case	ProcessRespondingState.Unknown:

																Console.WriteLine(

																				$"{p.ProcessName}'s	state	could	not	be	determined.");

																break;

								}

				});

This	code	snippet	iterates	over	all	processes	currently	running	on	your	system.	The	static
GetProcesses	method	of	the	Process	class	takes	no	parameters	and	returns	an	array	of
Process	objects	with	information	for	all	processes	running	on	your	system.	Each	Process
object	is	then	passed	in	to	your	GetProcessState	method	to	determine	whether	it	is
responding.	Other	static	methods	on	the	Process	class	that	retrieve	Process	objects	are
GetProcessById,	GetCurrentProcess,	and	GetProcessesByName.

See	Also
The	“Process	Class”	topic	in	the	MSDN	documentation.

5.10	Using	Event	Logs	in	Your	Application

Problem
You	need	to	add	the	ability	for	your	application	to	log	events	that	occur	in	your
application,	such	as	startup,	shutdown,	critical	errors,	and	even	security	breaches.	Along
with	reading	and	writing	to	a	log,	you	need	the	ability	to	create,	clear,	close,	and	remove
logs	from	the	event	log.

Your	application	might	need	to	keep	track	of	several	logs	at	one	time.	For	example,	your
application	might	use	a	custom	log	to	track	specific	events,	such	as	startup	and	shutdown,
as	they	occur	in	your	application.	To	supplement	the	custom	log,	your	application	could
make	use	of	the	security	log	already	built	into	the	event	log	system	to	read/write	security
events	that	occur	in	your	application.

Support	for	multiple	logs	comes	in	handy	when	one	log	needs	to	be	created	and
maintained	on	the	local	computer	and	another,	duplicate	log	needs	to	be	created	and
maintained	on	a	remote	machine.	This	remote	machine	might	contain	logs	of	all	running
instances	of	your	application	on	each	user’s	machine.	An	administrator	could	use	these
logs	to	quickly	find	any	problems	that	occur	or	discover	if	security	is	breached	in	your
application.	In	fact,	an	application	could	be	run	in	the	background	on	the	remote
administrative	machine	that	watches	for	specific	log	entries	to	be	written	to	this	log	from
any	user’s	machine.	Recipe	13.6	uses	an	event	mechanism	to	watch	for	entries	written	to
an	event	log	and	could	easily	be	used	to	enhance	this	recipe.

Solution
Use	the	event	log	built	into	the	Microsoft	Windows	operating	system	to	record	specific
events	that	occur	infrequently.

NOTE
Don’t	flood	the	event	log	with	many	different	entries	that	you	could	handle	by	enabling	or	disabling	tracing.
Errors	are	a	must,	followed	by	the	very	important	items,	but	not	everything	should	be	written	to	the	event
log.	Be	judicious	when	writing	to	the	event	log	so	you	don’t	have	to	sort	through	all	of	it	when	you	are
looking	for	the	clues.

The	AppEvents	class	shown	in	Example	5-6	contains	all	the	methods	needed	to	create	and
use	an	event	log	in	your	application.

Example	5-6.	Creating	and	using	an	event	log
using	System;

using	System.Diagnostics;

public	class	AppEvents

{

				//	If	you	encounter	a	SecurityException	trying	to	read	the	registry	

				//	(Security	log)	follow	these	instructions:

				//	1)	Open	the	Registry	Editor	(search	for	regedit	or	type	regedit	at	the	Run	

				//	prompt)	2)	Navigate	to	the	following	key:

				//	3)	HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\Security

				//	4)	Right-click	on	this	entry	and	select	Permissions

				//	5)	Add	the	user	you	are	logged	in	as	and	give	the	user	the	Read	permission

				//	If	you	encounter	a	SecurityException	trying	to	write	to	the	event	log

				//	"Requested	registry	access	is	not	allowed.",	then	the	event	source	has	not	

				//	been	created.		Try	re-running	the	EventLogInstaller	for	your	custom	event	or	

				//	for	this	sample	code,	run	%WINDOWS%\Microsoft.NET\Framework\v4.0.30319\

				//	InstallUtil.exe	AppEventsEventLogInstallerApp.dll"

				//	If	you	just	ran	it,	you	may	need	to	wait	a	bit	until	Windows	catches	up	and

				//	recognizes	the	log	that	was	added.

				const	string	localMachine	=	".";

				//	Constructors

				public	AppEvents(string	logName)	:

								this(logName,	Process.GetCurrentProcess().ProcessName)

				{	}

				public	AppEvents(string	logName,	string	source)	:

								this(logName,	source,	localMachine)

				{	}

				public	AppEvents(string	logName,	string	source,

								string	machineName	=	localMachine)

				{

								this.LogName	=	logName;

								this.SourceName	=	source;

								this.MachineName	=	machineName;

								Log	=	new	EventLog(LogName,	MachineName,	SourceName);

				}

				private	EventLog	Log	{	get;	set;	}	=	null;

				public	string	LogName	{	get;	set;	}

				public	string	SourceName	{	get;	set;	}

				public	string	MachineName	{	get;	set;	}	=	localMachine;

				//	Methods

				public	void	WriteToLog(string	message,	EventLogEntryType	type,

								CategoryType	category,	EventIDType	eventID)

				{

								if	(Log	==	null)

												throw	(new	ArgumentNullException(nameof(Log),

																"This	Event	Log	has	not	been	opened	or	has	been	closed."));

								EventLogPermission	evtPermission	=

												new	EventLogPermission(EventLogPermissionAccess.Write,	MachineName);

								evtPermission.Demand();

								//	If	you	get	a	SecurityException	here,	see	the	notes	at	the

								//	top	of	the	class

								Log.WriteEntry(message,	type,	(int)eventID,	(short)category);

				}

				public	void	WriteToLog(string	message,	EventLogEntryType	type,

								CategoryType	category,	EventIDType	eventID,	byte[]	rawData)

				{

								if	(Log	==	null)

												throw	(new	ArgumentNullException(nameof(Log),

																"This	Event	Log	has	not	been	opened	or	has	been	closed."));

								EventLogPermission	evtPermission	=

												new	EventLogPermission(EventLogPermissionAccess.Write,	MachineName);

								evtPermission.Demand();

								//	If	you	get	a	SecurityException	here,	see	the	notes	at	the

								//	top	of	the	class

								Log.WriteEntry(message,	type,	(int)eventID,	(short)category,	rawData);

				}

				public	IEnumerable<EventLogEntry>	GetEntries()

				{

								EventLogPermission	evtPermission	=

												new	EventLogPermission(EventLogPermissionAccess.Administer,	MachineName);

								evtPermission.Demand();

								return	Log?.Entries.Cast<EventLogEntry>().Where(evt	=>

												evt.Source	==	SourceName);

				}

				public	void	ClearLog()

				{

								EventLogPermission	evtPermission	=

												new	EventLogPermission(EventLogPermissionAccess.Administer,	MachineName);

								evtPermission.Demand();

								if	(!IsNonCustomLog())

												Log?.Clear();

				}

				public	void	CloseLog()

				{

								Log?.Close();

								Log	=	null;

				}

				public	void	DeleteLog()

				{

								if	(!IsNonCustomLog())

												if	(EventLog.Exists(LogName,	MachineName))

																EventLog.Delete(LogName,	MachineName);

								CloseLog();

				}

				public	bool	IsNonCustomLog()

				{

								//	Because	Application,	Setup,	Security,	System,	and	other	non-custom	logs

								//	can	contain	crucial	information		you	can't	just	delete	or	clear	them

								if	(LogName	==	string.Empty	||	//	same	as	application

												LogName	==	"Application"	||

												LogName	==	"Security"	||

												LogName	==	"Setup"	||

												LogName	==	"System")

								{

												return	true;

								}

								return	false;

				}

}

The	EventIDType	and	CategoryType	enumerations	used	in	this	class	are	defined	as
follows:

public	enum	EventIDType

{

				NA	=	0,

				Read	=	1,

				Write	=	2,

				ExceptionThrown	=	3,

				BufferOverflowCondition	=	4,

				SecurityFailure	=	5,

				SecurityPotentiallyCompromised	=	6

}

public	enum	CategoryType	:	short

{

				None	=	0,

				WriteToDB	=	1,

				ReadFromDB	=	2,

				WriteToFile	=	3,

				ReadFromFile	=	4,

				AppStartUp	=	5,

				AppShutDown	=	6,

				UserInput	=7

}

As	a	last	note,	the	EventIDType	and	CategoryType	enumerations	are	designed	mainly	to
log	security-type	breaches	as	well	as	potential	attacks	on	the	security	of	your	application.
Using	these	event	IDs	and	categories,	the	administrator	can	more	easily	track	down
potential	security	threats	and	do	postmortem	analysis	after	security	is	breached.	You	can
easily	modify	or	replace	these	enumerations	with	your	own	to	track	different	events	that
occur	as	a	result	of	your	application	running.

Discussion
The	AppEvents	class	created	for	this	recipe	provides	applications	with	an	easy-to-use
interface	for	creating,	using,	and	deleting	single	or	multiple	event	logs	in	your	application.
The	methods	of	the	AppEvents	class	are	described	as	follows:
WriteToLog

This	method	is	overloaded	to	allow	an	entry	to	be	written	to	the	event	log	with	or
without	a	byte	array	containing	raw	data.

GetEntries

Returns	all	the	event	log	entries	for	this	event	log	and	source	in	an
IEnumerable<EventLogEntry>.

ClearLog

Removes	all	the	event	log	entries	from	this	event	log	if	it	is	a	custom	log.
CloseLog

Closes	this	event	log,	preventing	further	interaction	with	it.
DeleteLog

Deletes	this	event	log	if	it	is	a	custom	log.

You	can	add	an	AppEvents	object	to	an	array	or	collection	containing	other	AppEvents
objects;	each	AppEvents	object	corresponds	to	a	particular	event	log.	The	following	code
creates	two	AppEvents	classes	and	adds	them	to	a	ListDictionary	collection:

public	void	CreateMultipleLogs()

{

				AppEvents	AppEventLog	=	new	AppEvents("AppLog",	"AppLocal");

				AppEvents	GlobalEventLog	=	new	AppEvents("AppSystemLog",	"AppGlobal");

				ListDictionary	LogList	=	new	ListDictionary();

				LogList.Add(AppEventLog.Name,	AppEventLog);

				LogList.Add(GlobalEventLog.Name,	GlobalEventLog);

To	write	to	either	of	these	two	logs,	obtain	the	AppEvents	object	by	name	from	the
ListDictionary	object,	cast	the	resultant	object	type	to	an	AppEvents	type,	and	call	the
WriteToLog	method:

((AppEvents)LogList[AppEventLog.Name]).WriteToLog("App	startup",

				EventLogEntryType.Information,	CategoryType.AppStartUp,

				EventIDType.ExceptionThrown);

((AppEvents)LogList[GlobalEventLog.Name]).WriteToLog(

			"App	startup	security	check",

				EventLogEntryType.Information,	CategoryType.AppStartUp,

				EventIDType.BufferOverflowCondition);

Containing	all	AppEvents	objects	in	a	ListDictionary	object	allows	you	to	easily	iterate
over	all	the	AppEvents	that	your	application	has	instantiated.	Using	a	foreach	loop,	you
can	write	a	single	message	to	both	a	local	and	a	remote	event	log:

foreach	(DictionaryEntry	Log	in	LogList)

{

				((AppEvents)Log.Value).WriteToLog("App	startup",

								EventLogEntryType.FailureAudit,

								CategoryType.AppStartUp,	EventIDType.SecurityFailure);

}

To	delete	each	log	in	the	logList	object,	you	can	use	the	following	foreach	loop:

foreach	(DictionaryEntry	Log	in	LogList)

{

				((AppEvents)Log.Value).DeleteLog();

}

				LogList.Clear();

You	should	be	aware	of	several	key	points.	The	first	concerns	a	small	problem	with
constructing	multiple	AppEvents	classes.	If	you	create	two	AppEvents	objects	and	pass	in
the	same	source	string	to	the	AppEvents	constructor,	an	exception	will	be	thrown.
Consider	the	following	code,	which	instantiates	two	AppEvents	objects	with	the	same
source	string:

AppEvents	appEventLog	=	new	AppEvents("AppLog",	"AppLocal");

AppEvents	globalEventLog	=	new	AppEvents("Application",	"AppLocal");

The	objects	are	instantiated	without	errors,	but	when	the	WriteToLog	method	is	called	on
the	globalEventLog	object,	the	following	exception	is	thrown:

An	unhandled	exception	of	type	'System.ArgumentException'	occurred	in	system.dll.

Additional	information:	The	source	'AppLocal'	is	not	registered	in	log

'Application'.	(It	is	registered	in	log	'AppLog'.)	"	The	Source	and	Log

properties	must	be	matched,	or	you	may	set	Log	to	the	empty	string,	and	

it	will	automatically	be	matched	to	the	Source	property.

This	exception	occurs	because	the	WriteToLog	method	internally	calls	the	WriteEntry
method	of	the	EventLog	object.	The	WriteEntry	method	internally	checks	to	see	whether
the	specified	source	is	registered	to	the	log	you	are	attempting	to	write	to.	In	this	case,	the
AppLocal	source	was	registered	to	the	first	log	it	was	assigned	to	—	the	AppLog	log.	The
second	attempt	to	register	this	same	source	to	another	log,	Application,	failed	silently.
You	do	not	know	that	this	attempt	failed	until	you	try	to	use	the	WriteEntry	method	of	the
EventLog	object.

Another	key	point	about	the	AppEvents	class	is	the	following	code,	placed	at	the
beginning	of	each	method	(except	for	the	DeleteLog	method):

if	(log	==	null)

				throw	(new	ArgumentNullException("log",

								"This	Event	Log	has	not	been	opened	or	has	been	closed."));

This	code	checks	to	see	whether	the	private	member	variable	log	is	a	null	reference.	If	so,
an	ArgumentException	is	thrown,	informing	the	user	of	this	class	that	a	problem	occurred

with	the	creation	of	the	EventLog	object.	The	DeleteLog	method	does	not	check	the	log
variable	for	null	since	it	deletes	the	event	log	source	and	the	event	log	itself.	The
EventLog	object	is	not	involved	in	this	process	except	at	the	end	of	this	method,	where	the
log	is	closed	and	set	to	null,	if	it	is	not	already	null.	Regardless	of	the	state	of	the	log
variable,	the	source	and	event	log	should	be	deleted	in	this	method.

The	ClearLog	and	DeleteLog	methods	make	a	critical	choice	when	determining	whether
to	delete	a	log.	The	following	code	prevents	the	application,	security,	setup,	and	system
event	logs	from	being	deleted	from	your	system:

public	bool	IsNonCustomLog()

{

				//	Because	Application,	Setup,	Security,	System,	and	other	non-custom	logs

				//	can	contain	crucial	information		you	can't	just	delete	or	clear	them

				if	(LogName	==	string.Empty	||	//	same	as	application

								LogName	==	"Application"	||

								LogName	==	"Security"	||

								LogName	==	"Setup"	||

								LogName	==	"System")

				{

								return	true;

				}

				return	false;

}

If	any	of	these	logs	is	deleted,	so	are	the	sources	registered	with	the	particular	log.	Once
the	log	is	deleted,	it	is	permanent;	believe	us,	it	is	not	fun	to	try	to	re-create	the	log	and	its
sources	without	a	backup.

In	order	for	the	AppEvents	class	to	work,	however,	it	first	needs	an	event	source	created.
The	event	log	uses	event	sources	to	determine	which	application	logged	the	event.	You
can	establish	an	event	source	only	when	running	in	an	administrative	context,	and	there
are	two	ways	to	accomplish	this:

Call	the	EventLog.CreateEventSource	method.

Use	an	EventLogInstaller.

While	you	could	create	a	console	application	that	calls	the	CreateEventSource	method
and	have	a	user	run	it	in	an	administrative	context	on	her	machine,	the	recommended
option	is	to	build	an	EventLogInstaller	class	that	can	be	used	with	InstallUtil.exe
(provided	by	the	.NET	Framework)	to	create	your	initial	event	sources	and	custom	logs.

The	AppEventsEventLogInstaller,	shown	next,	will	establish	the	event	logs	and	sources
for	us.	This	installer	can	be	called	not	only	by	InstallUtil	but	also	by	most	major
installation	packages,	so	you	can	plug	it	into	your	favorite	installation	software	to	register
your	event	logs	and	sources	at	install	time	when	your	users	have	administrative	access	(or
at	least	the	help	of	an	IT	professional	with	said	access):

///	<summary>

///	To	INSTALL:	C:\Windows\Microsoft.NET\Framework\v4.0.30319\InstallUtil.exe

[PathToBinary]\AppEventsEventLogInstallerApp.dll

///	To	UNINSTALL:	C:\Windows\Microsoft.NET\Framework\v4.0.30319\InstallUtil.exe	-u

[PathToBinary]\AppEventsEventLogInstallerApp.dll

///	</summary>

[RunInstaller(true)]

public	class	AppEventsEventLogInstaller	:	Installer

{

				private	EventLogInstaller	evtLogInstaller;

				public	AppEventsEventLogInstaller()

				{

								evtLogInstaller	=	new	EventLogInstaller();

								evtLogInstaller.Source	=	"APPEVENTSSOURCE";

								evtLogInstaller.Log	=	"";	//	Default	to	Application

								Installers.Add(evtLogInstaller);

								evtLogInstaller	=	new	EventLogInstaller();

								evtLogInstaller.Source	=	"AppLocal";

								evtLogInstaller.Log	=	"AppLog";

								Installers.Add(evtLogInstaller);

								evtLogInstaller	=	new	EventLogInstaller();

								evtLogInstaller.Source	=	"AppGlobal";

								evtLogInstaller.Log	=	"AppSystemLog";

								Installers.Add(evtLogInstaller);

				}

				public	static	void	Main()

				{

								AppEventsEventLogInstaller	appEventsEventLogInstaller	=

												new	AppEventsEventLogInstaller();

				}

}

If	you	are	using	InstallUtil	to	set	this	up	locally,	here	is	a	sample	of	what	you	may	see
when	installing	using	a	proper	administrative	context	(“Run	As	Administrator”):

C:\Windows\Microsoft.NET\Framework\v4.0.30319\InstallUtil.exe

C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.dll

C:\WINDOWS\system32>C:\Windows\Microsoft.NET\Framework\v4.0.30319\InstallUtil.ex

e	C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.dll

Microsoft	(R)	.NET	Framework	Installation	utility	Version	4.0.30319.33440

Copyright	(C)	Microsoft	Corporation.		All	rights	reserved.

Running	a	transacted	installation.

Beginning	the	Install	phase	of	the	installation.

See	the	contents	of	the	log	file	for	the

C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.dll

assembly's	progress.

The	file	is	located	at	C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.InstallLog.

Installing	assembly	'C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.dll'.

Affected	parameters	are:

			logtoconsole	=

			logfile	=	C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.InstallLog

			assemblypath	=

C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.dll

Creating	EventLog	source	APPEVENTSSOURCE	in	log…

Creating	EventLog	source	AppLocal	in	log	AppLog…

Creating	EventLog	source	AppGlobal	in	log	AppSystemLog…

The	Install	phase	completed	successfully,	and	the	Commit	phase	is	beginning.

See	the	contents	of	the	log	file	for	the

C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.dll

assembly's	progress.

The	file	is	located	at	C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.InstallLog.

Committing	assembly

'C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.dll'.

Affected	parameters	are:

			logtoconsole	=

			logfile	=	C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.InstallLog

			assemblypath	=

C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.dll

The	Commit	phase	completed	successfully.

The	transacted	install	has	completed.

If	you	attempt	to	run	InstallUtil	in	a	nonadministrative	context,	you	will	see	results
similar	to	the	following:

C:\Windows\Microsoft.NET\Framework\v4.0.30319\InstallUtil.exe

C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.dll

Microsoft	(R)	.NET	Framework	Installation	utility	Version	4.0.30319.33440

Copyright	(C)	Microsoft	Corporation.		All	rights	reserved.

Running	a	transacted	installation.

Beginning	the	Install	phase	of	the	installation.

See	the	contents	of	the	log	file	for	the

C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\AppEventsEventLogInstallerApp.dll

assembly's	progress.

The	file	is	located	at	C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.InstallLog.

Installing	assembly

'C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.dll'.

Affected	parameters	are:

			logtoconsole	=

			logfile	=	C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.InstallLog

			assemblypath	=

C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.dll

Creating	EventLog	source	APPEVENTSSOURCE	in	log	APPEVENTSLOG…

An	exception	occurred	during	the	Install	phase.

System.Security.SecurityException:	The	source	was	not	found,	but	some	or	all	

event	logs	could	not	be	searched.	Inaccessible	logs:	Security.

The	Rollback	phase	of	the	installation	is	beginning.

See	the	contents	of	the	log	file	for	the

C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.dll

assembly's	progress.

The	file	is	located	at	C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.InstallLog.

Rolling	back	assembly

'C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.dll'.

Affected	parameters	are:

			logtoconsole	=

			logfile	=	C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.InstallLog

			assemblypath	=

C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.dll

Restoring	event	log	to	previous	state	for	source	APPEVENTSSOURCE.

An	exception	occurred	during	the	Rollback	phase	of	the

System.Diagnostics.EventLogInstaller	installer.

System.Security.SecurityException:	Requested	registry	access	is	not	allowed.

An	exception	occurred	during	the	Rollback	phase	of	the	installation.	This	except

ion	will	be	ignored	and	the	rollback	will	continue.	However,	the	machine	might	n

ot	fully	revert	to	its	initial	state	after	the	rollback	is	complete.

The	Rollback	phase	completed	successfully.

The	transacted	install	has	completed.

The	installation	failed,	and	the	rollback	has	been	performed.

Not	only	can	InstallUtil	install	your	event	logs	and	sources,	it	can	help	remove	them
too	using	the	–u	parameter!

C:\Windows\Microsoft.NET\Framework\v4.0.30319\InstallUtil.exe	-u

C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.dll

Microsoft	(R)	.NET	Framework	Installation	utility	Version	4.0.30319.33440

Copyright	(C)	Microsoft	Corporation.		All	rights	reserved.

The	uninstall	is	beginning.

See	the	contents	of	the	log	file	for	the

C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.dll

assembly's	progress.

The	file	is	located	at	C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.InstallLog.

Uninstalling	assembly

'C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.dll'.

Affected	parameters	are:

			logtoconsole	=

			logfile	=	C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.InstallLog

			assemblypath	=

C:\CSCB6\AppEventsEventLogInstallerApp\bin\Debug\

AppEventsEventLogInstallerApp.dll

Removing	EventLog	source	AppGlobal.

Deleting	event	log	AppSystemLog.

Removing	EventLog	source	AppLocal.

Deleting	event	log	AppLog.

Removing	EventLog	source	APPEVENTSSOURCE.

The	uninstall	has	completed.

WARNING
You	should	minimize	the	number	of	entries	written	to	the	event	log	from	your	application,	as	writing	to	the
event	log	causes	a	performance	hit	and	some	logs	are	not	set	to	roll	over	or	clear	after	a	certain	number	of
entries.	Writing	too	much	information	to	the	event	log	can	noticeably	slow	your	application	or	cause	the
server	problems.	Choose	the	entries	you	write	to	the	event	log	wisely.

See	Also
The	“EventLog	Class,”	“InstallUtil.exe,”	and	“EventLogInstaller	Class”	topics	in	the
MSDN	documentation.

5.11	Watching	the	Event	Log	for	a	Specific	Entry

Problem
You	may	have	multiple	applications	that	write	to	a	single	event	log.	For	each	of	these
applications,	you	want	a	monitoring	application	to	watch	for	one	or	more	specific	log
entries	to	be	written	to	the	event	log.	For	example,	you	might	want	to	watch	for	a	log	entry
that	indicates	that	an	application	encountered	a	critical	error	or	shut	down	unexpectedly.
These	log	entries	should	be	reported	in	real	time.

Solution
Monitoring	an	event	log	for	a	specific	entry	requires	the	following	steps:

1.	 Create	the	following	method	to	set	up	the	event	handler	to	handle	event	log	writes:

public	void	WatchForAppEvent(EventLog	log)

{

				log.EnableRaisingEvents	=	true;

				//	Hook	up	the	System.Diagnostics.EntryWrittenEventHandler.

				log.EntryWritten	+=	new	EntryWrittenEventHandler(OnEntryWritten);

}

2.	 Create	the	event	handler	to	examine	the	log	entries	and	determine	whether	further
action	is	to	be	performed.	For	example:

public	static	void	OnEntryWritten(object	source,

																																		EntryWrittenEventArgs	entryArg)

{

				if	(entryArg.Entry.EntryType	==	EventLogEntryType.Error)

				{

								Console.WriteLine(entryArg.Entry.Message);

								Console.WriteLine(entryArg.Entry.Category);

								Console.WriteLine(entryArg.Entry.EntryType.ToString());

								//	Do	further	actions	here	as	necessary…

				}

}

Discussion
This	recipe	revolves	around	the	EntryWrittenEventHandler	delegate,	which	calls	back	to
a	method	whenever	any	new	entry	is	written	to	the	event	log.	The
EntryWrittenEventHandler	delegate	accepts	two	arguments:	a	source	of	type	object	and
an	entryArg	of	type	EntryWrittenEventArgs.	The	entryArg	parameter	is	the	more
interesting	of	the	two.	It	contains	a	property	called	Entry	that	returns	an	EventLogEntry
object.	This	EventLogEntry	object	contains	all	the	information	you	need	concerning	the
entry	that	was	written	to	the	event	log.

This	event	log	that	you	are	watching	is	passed	as	the	WatchForAppEvent	method’s	log
parameter.	This	method	performs	two	actions.	First,	it	sets	log’s	EnableRaisingEvents
property	to	true.	If	this	property	were	set	to	false,	no	events	would	be	raised	for	this
event	log	when	an	entry	is	written	to	it.	The	second	action	this	method	performs	is	to	add
the	OnEntryWritten	callback	method	to	the	list	of	event	handlers	for	this	event	log.

To	prevent	this	delegate	from	calling	the	OnEntryWritten	callback	method,	you	can	set
the	EnableRaisingEvents	property	to	false,	effectively	turning	off	the	delegate.

Note	that	the	Entry	object	passed	to	the	entryArg	parameter	of	the	OnEntryWritten
callback	method	is	read-only,	so	the	entry	cannot	be	modified	before	it	is	written	to	the
event	log.

See	Also
The	“EventLog.EntryWritten	Event”	topic	in	the	MSDN	documentation.

5.12	Implementing	a	Simple	Performance	Counter

Problem
You	need	to	use	a	performance	counter	to	track	application-specific	information.	The
simpler	performance	counters	find,	for	example,	the	change	in	a	counter	value	between
successive	samplings	or	just	count	the	number	of	times	an	action	occurs.	Other,	more
complex	counters	exist	but	are	not	dealt	with	in	this	recipe.	For	example,	you	could	build
a	custom	counter	to	keep	track	of	the	number	of	database	transactions,	the	number	of
failed	network	connections	to	a	server,	or	even	the	number	of	users	connecting	to	your
web	service	per	minute.

Solution
Create	a	simple	performance	counter	that	finds,	for	example,	the	change	in	a	counter	value
between	successive	samplings	or	that	just	counts	the	number	of	times	an	action	occurs.
Use	the	following	method	(CreateSimpleCounter)	to	create	a	simple	custom	counter:

public	static	PerformanceCounter	CreateSimpleCounter(string	counterName,

				string	counterHelp,	PerformanceCounterType	counterType,	string	categoryName,

				string	categoryHelp)

{

				CounterCreationDataCollection	counterCollection	=

								new	CounterCreationDataCollection();

				//	Create	the	custom	counter	object	and	add	it	to	the	collection	of	counters

				CounterCreationData	counter	=

								new	CounterCreationData(counterName,	counterHelp,	counterType);

				counterCollection.Add(counter);

				//	Create	category

				if	(PerformanceCounterCategory.Exists(categoryName))

								PerformanceCounterCategory.Delete(categoryName);

				PerformanceCounterCategory	appCategory	=

								PerformanceCounterCategory.Create(categoryName,	categoryHelp,

												PerformanceCounterCategoryType.SingleInstance,	counterCollection);

				//	Create	the	counter	and	initialize	it

				PerformanceCounter	appCounter	=

								new	PerformanceCounter(categoryName,	counterName,	false);

				appCounter.RawValue	=	0;

				return	(appCounter);

}

Discussion
The	first	action	this	method	takes	is	to	create	the	CounterCreationDataCollection	object
and	CounterCreationData	object.	The	CounterCreationData	object	is	created	using	the
counterName,	counterHelp,	and	counterType	parameters	passed	to	the
CreateSimpleCounter	method.	The	CounterCreationData	object	is	then	added	to	the
counterCollection.

WARNING
The	ASPNET	user	account,	as	well	as	many	other	user	accounts,	by	default	prevents	performance	counters
from	being	read	for	security	reasons.	You	can	either	increase	the	permissions	allowed	for	these	accounts	or
use	impersonation	with	an	account	that	has	access	to	enable	this	functionality.	However,	this	then	becomes
a	deployment	requirement	of	your	application.

There	is	also	risk	in	doing	this,	as	you	as	the	developer	are	the	first	line	of	defense	for	security	matters.	If
you	build	it	and	make	choices	that	loosen	security	restrictions,	you	are	assuming	that	responsibility,	so
please	don’t	do	it	indiscriminately	or	without	a	full	understanding	of	the	repercussions.

If	categoryName	—	a	string	containing	the	name	of	the	category	that	is	passed	as	a
parameter	to	the	method	—	is	not	registered	on	the	system,	a	new	category	is	created	from
a	PerformanceCounterCategory	object.	If	one	is	registered,	it	is	deleted	and	created	anew.
Finally,	the	actual	performance	counter	is	created	from	a	PerformanceCounter	object.
This	object	is	initialized	to	0	and	returned	by	the	method.	PerformanceCounterCategory
takes	a	PerformanceCounterCategoryType	as	a	parameter.	The	possible	settings	are
shown	in	Table	5-1.

Table	5-1.	PerformanceCounterCategoryType	enumeration
values

Name Description
MultiInstance There	can	be	multiple	instances	of	the	performance	counter.
SingleInstance There	can	be	only	one	instance	of	the	performance	counter.
Unknown Instance	functionality	for	this	performance	counter	is	unknown.

The	CreateSimpleCounter	method	returns	a	PerformanceCounter	object	that	will	be	used
by	an	application.	The	application	can	perform	several	actions	on	a	PerformanceCounter
object.	An	application	can	increment	or	decrement	it	using	one	of	these	three	methods:

long	value	=	appCounter.Increment();

long	value	=	appCounter.Decrement();

long	value	=	appCounter.IncrementBy(i);

//	Additionally,	a	negative	number	may	be	passed	to	the

//	IncrementBy	method	to	mimic	a	DecrementBy	method

//	(which	is	not	included	in	this	class).	For	example:

long	value	=	appCounter.IncrementBy(-i);

The	first	two	methods	accept	no	parameters,	while	the	third	accepts	a	long	containing	the
number	by	which	to	increment	the	counter.	All	three	methods	return	a	long	type	indicating

the	new	value	of	the	counter.

In	addition	to	incrementing	or	decrementing	this	counter,	you	can	also	take	samples	of	the
counter	at	various	points	in	the	application.	A	sample	is	a	snapshot	of	the	counter	and	all
of	its	values	at	a	particular	instance	in	time.	You	may	take	a	sample	using	the	following
line	of	code:

CounterSample	counterSampleValue	=	appCounter.NextSample();

The	NextSample	method	accepts	no	parameters	and	returns	a	CounterSample	structure.

At	another	point	in	the	application,	a	counter	can	be	sampled	again,	and	both	samples	can
be	passed	in	to	the	static	Calculate	method	on	the	CounterSample	class.	These	actions
may	be	performed	on	a	single	line	of	code	as	follows:

float	calculatedSample	=	CounterSample.Calculate(counterSampleValue,

																																																	appCounter.NextSample());

The	calculated	sample	calculatedSample	may	be	stored	for	future	analysis.

The	simpler	performance	counters	already	available	in	the	.NET	Framework	are:

CounterDelta32/CounterDelta64

Determines	the	difference	(or	change)	in	value	between	two	samplings	of	this
counter.	The	CounterDelta64	counter	can	hold	larger	values	than	CounterDelta32.

CounterTimer

Calculates	the	percentage	of	the	CounterTimer	value	change	over	the	CounterTimer
time	change.	Tracks	the	average	active	time	for	a	resource	as	a	percentage	of	the	total
sample	time.

CounterTimerInverse

Calculates	the	inverse	of	the	CounterTimer	counter.	Tracks	the	average	inactive	time
for	a	resource	as	a	percentage	of	the	total	sample	time.

CountPerTimeInterval32/CountPerTimeInterval64

Calculates	the	number	of	items	waiting	within	a	queue	to	a	resource	over	the	time
elapsed.	These	counters	give	the	delta	of	the	queue	length	for	the	last	two	sample
intervals	divided	by	the	interval	duration.

ElapsedTime

Calculates	the	difference	in	time	between	when	this	counter	recorded	the	start	of	an
event	and	the	current	time,	measured	in	seconds.

NumberOfItems32/NumberOfItems64

These	counters	return	their	value	in	decimal	format.	The	NumberOfItems64	counter
can	hold	larger	values	than	NumberOfItems32.	This	counter	does	not	need	to	be
passed	to	the	static	Calculate	method	of	the	CounterSample	class;	there	are	no
values	that	must	be	calculated.	Instead,	use	the	RawValue	property	of	the
PerformanceCounter	object	(i.e.,	in	this	recipe,	the	appCounter.RawValue	property
would	be	used).

RateOfCountsPerSecond32/RateOfCountsPerSecond64

Calculates	the	RateOfCountsPerSecond*	value	change	over	the
RateOfCountsPerSecond*	time	change,	measured	in	seconds.	The
RateOfCountsPerSecond64	counter	can	hold	larger	values	than	the
RateOfCountsPerSecond32	counter.

Timer100Ns

Shows	the	active	component	time	as	a	percentage	of	the	total	elapsed	time	of	the
sample	interval	measured	in	100	nanoseconds	(ns)	units.	Processor\	%	User	Time	is
an	example	of	this	type	of	counter.

Timer100nsInverse

Percentage-based	counter	showing	the	average	active	percentage	of	time	tracked
during	the	sample	interval.	Processor\	%	Processor	Time	is	one	example	of	this	type
of	counter.

See	Also
The	“PerformanceCounter	Class,”	“PerformanceCounterType	Enumeration,”
“PerformanceCounterCategory	Class,”	“ASP.NET	Impersonation,”	and	“Monitoring
Performance	Thresholds”	topics	in	the	MSDN	documentation.

5.13	Creating	Custom	Debugging	Displays	for	Your	Classes

Problem
You	have	a	set	of	classes	that	are	used	in	your	application.	You	would	like	to	see	at	a
glance	in	the	debugger	what	a	particular	instance	of	the	class	holds.	The	default	debugger
display	doesn’t	show	any	useful	information	for	your	class	today.

Solution
Add	a	DebuggerDisplayAttribute	to	your	class	to	make	the	debugger	show	you
something	you	consider	useful	about	your	class.	For	example,	if	you	had	a	Citizen	class
that	held	the	honorific	and	name	information,	you	could	add	a
DebuggerDisplayAttribute	like	this	one:

[DebuggerDisplay("Citizen	Full	Name	=	{Honorific}{First}{Middle}{Last}")]

public	class	Citizen

{

				public	string	Honorific	{	get;	set;	}

				public	string	First	{	get;	set;	}

				public	string	Middle	{	get;	set;	}

				public	string	Last	{	get;	set;	}

}

Now,	when	instances	of	the	Citizen	class	are	instantiated,	the	debugger	will	show	the
information	as	directed	by	the	DebuggerDisplayAttribute	on	the	class.	To	see	this,
instantiate	two	Citizens,	Mrs.	Alice	G.	Jones	and	Mr.	Robert	Frederick	Jones,	like	this:

Citizen	mrsJones	=	new	Citizen()

{

				Honorific	=	"Mrs.",

				First	=	"Alice",

				Middle	=	"G.",

				Last	=	"Jones"

};

Citizen	mrJones	=	new	Citizen()

{

				Honorific	=	"Mr.",

				First	=	"Robert",

				Middle	=	"Frederick",

				Last	=	"Jones"

};

When	this	code	is	run	under	the	debugger,	the	custom	display	is	used,	as	shown	in
Figure	5-9.

Figure	5-9.	Debugger	display	controlled	by	DebuggerDisplayAttribute

Discussion
It	is	nice	to	be	able	to	quickly	see	the	pertinent	information	for	classes	that	you	are
creating,	but	the	more	powerful	part	of	this	feature	is	the	ability	for	your	team	members	to
quickly	understand	what	this	class	instance	holds.	The	this	pointer	is	accessible	from	the
DebuggerDisplayAttribute	declaration,	but	any	properties	accessed	via	the	this	pointer
will	not	evaluate	the	property	attributes	before	processing.	Essentially,	if	you	access	a
property	on	the	current	object	instance	as	part	of	constructing	the	display	string,	if	that
property	has	attributes,	they	will	not	be	processed,	and	therefore	you	may	not	get	the	value
you	thought	you	would.	If	you	have	custom	ToString()	overrides	in	place	already,	the
debugger	will	use	these	as	the	DebuggerDisplayAttribute	without	your	specifying	it,
provided	the	correct	option	is	enabled	under	Tools\Options\Debugging,	as	shown	in
Figure	5-10.

Figure	5-10.	Setting	the	debugger	to	call	ToString()	for	object	display

See	Also
The	“Using	DebuggerDisplayAttribute”	and	“DebuggerDisplayAttribute”	topics	in	the
MSDN	documentation.

5.14	Tracking	Where	Exceptions	Come	From

Problem
You	want	to	be	able	to	determine	what	method	an	exception	was	caught	in	or	who	called
the	method	that	caused	an	exception	to	be	thrown	to	help	debug	the	issue.

Solution
Use	the	CallerMemberName,	CallerFilePath,	and	CallerLineNumber	attributes	(also
known	as	the	Caller	Info	attributes)	from	the	System.Runtime.CompilerServices
namespace	to	determine	the	calling	method.

For	example,	if	you	wanted	to	record	the	location	of	the	catch	block	that	caught	an
exception,	you	could	use	a	method	like	RecordCatchBlock:

public	void	RecordCatchBlock(Exception	ex,

				[CallerMemberName]	string	memberName	=	"",

				[CallerFilePath]	string	sourceFilePath	=	"",

				[CallerLineNumber]	int	sourceLineNumber	=	0)

{

				string	catchDetails	=

								$"{ex.GetType().Name}	caught	in	member	\"{memberName}\"	"	+

								$"in	catch	block	encompassing	line	{sourceLineNumber}	"	+

								$"in	file	{sourceFilePath}	"	+

								$"with	message	\"{ex.Message}\"";

				Console.WriteLine(catchDetails);

}

You	would	then	call	this	method	from	your	catch	blocks	like	this:

public	void	TestCallerInfoAttribs()

{

				try

				{

								LibraryMethod();

				}

				catch(Exception	ex)

				{

								RecordCatchBlock(ex);

				}

}

This	would	allow	you	to	see	the	type	of	the	exception	caught,	the	class	member	name	it
was	caught	in,	and	the	source	file	and	line	number	that	is	encompassed	by	the	catch	block
where	the	exception	was	caught	without	having	to	traverse	the	call	stack:

LibraryException	caught	in	member	"TestCallerInfoAttribs"	in	catch	block	encompa

ssing	line	1303	in	file	C:\CSCB6\CSharpRecipes\

05_DebuggingAndExceptionHandling.cs

with	message	"Object	reference	not	set	to	an	instance	of	an	object."

You	could	also	use	this	to	help	determine	what	method	called	into	a	library	method,	as	it
can	sometimes	be	difficult	to	debug	which	function	called	the	library	method:

public	void	LibraryMethod(

												[CallerMemberName]	string	memberName	=	"",

												[CallerFilePath]	string	sourceFilePath	=	"",

												[CallerLineNumber]	int	sourceLineNumber	=	0)

{

				try

				{

								//	Do	some	library	action

								//	had	a	problem

								throw	new	NullReferenceException();

				}

				catch(Exception	ex)

				{

								//	Wrap	the	exception	and	capture	the	source	of	where	the

								//	library	method	was	called	from

								throw	new	LibraryException(ex)

								{

												CallerMemberName	=	memberName,

												CallerFilePath	=	sourceFilePath,

												CallerLineNumber	=	sourceLineNumber

								};

				}

}

Using	the	LibraryException,	you	can	record	at	runtime	the	attributes	of	the	calling
method	and	convey	that	with	the	originating	exception:

[Serializable]

public	class	LibraryException	:	Exception

{

				public	LibraryException(Exception	inner)	:	base(inner.Message,inner)

				{

				}

				public	string	CallerMemberName	{	get;	set;	}

				public	string	CallerFilePath	{	get;	set;	}

				public	int	CallerLineNumber	{	get;	set;	}

				public	override	void	GetObjectData(SerializationInfo	info,

																																							StreamingContext	context)

				{

								base.GetObjectData(info,	context);

								info.AddValue("CallerMemberName",	this.CallerMemberName);

								info.AddValue("CallerFilePath",	this.CallerFilePath);

								info.AddValue("CallerLineNumber",	this.CallerLineNumber);

				}

				public	override	string	ToString()	=>	"LibraryException	originated	in	"	+

								$"member	\"{CallerMemberName}\"	"	+

								$"on	line	{CallerLineNumber}	"	+

								$"in	file	{CallerFilePath}	"	+

								$"with	exception	details:	{Environment.NewLine}"	+

								$"{InnerException.ToString()}";

}

The	LibraryException.ToString	method	will	provide	a	synopsis	of	the	issue:

LLibraryException	originated	in	member	"TestCallerInfoAttribs"	on	line	1299	in	

file	C:\CSCB6\CSharpRecipes\05_DebuggingAndExceptionHandling.cs	with	exception	

details:

System.NullReferenceException:	Object	reference	not	set	to	an	instance	of	an	obj

etc.

			at	CSharpRecipes.DebuggingAndExceptionHandling.LibraryMethod(String	memberNam

e,	String	sourceFilePath,	Int32	sourceLineNumber)	in	D:\PRJ32\Book_6_0\CS60_Cook

book\CSCB6\CSharpRecipes\05_DebuggingAndExceptionHandling.cs:line	1318

Discussion
As	the	CallerInfo	attributes	are	determined	at	compile	time,	there	is	no	cost	during
runtime	to	retrieve	the	information	about	where	the	previous	method	on	the	stack	came
from.	While	not	as	comprehensive	as	a	full	stack	trace,	it	is	a	cheaper	and	simpler
alternative	that	could	give	you	method,	file,	and	line	information	with	which	you	can
enhance	your	exception	logging.	Any	time	you	can	have	that	sort	of	information	handed	to
you	with	a	defect/bug	report/issue	ticket	(pick	your	favorite	way	to	be	notified	that	the
code	is	broken),	your	life	will	become	much	easier.

You	may	notice	that	the	CallerInfo	attributes	require	a	default	value:

public	void	RecordCatchBlock(Exception	ex,

				[CallerMemberName]	string	memberName	=	"",

				[CallerFilePath]	string	sourceFilePath	=	"",

				[CallerLineNumber]	int	sourceLineNumber	=	0)

Those	parameters	need	a	default	value	because	the	CallerInfo	attributes	were
implemented	using	optional	parameters,	and	optional	parameters	require	a	default	value.
Here’s	how	you	can	still	call	the	method	hosting	the	attributes	without	providing	a	value
for	them:

RecordCatchBlock(ex);

See	Also
See	the	“CallerMemberNameAttribute,”	“CallerFilePathAttribute,”	and
“CallerLineNumberAttribute”	topics	in	the	MSDN	documentation.

5.15	Handling	Exceptions	in	Asynchronous	Scenarios

Problem
You	are	working	with	asynchronous	methods	using	async	and	await	and	you	need	to	be
able	to	catch	any	possible	exceptions	that	may	result	during	the	method	(or	methods)
execution.

Solution
When	you’re	handling	exceptions	from	the	invocation	of	a	single	method,	the	.NET
Framework	will	handle	the	return	of	an	exception	that	occurs	between	the	asynchronous
invocation	and	awaiting	of	the	return.	When	you’re	handling	exceptions	from	the
simultaneous	invocation	of	multiple	methods	asynchronously,	a	bit	more	work	is	required
to	extract	all	of	the	exception	detail.	Finally,	when	dealing	with	the	result	of	an	exception,
you	can	call	an	asynchronous	method	in	the	catch	block	to	handle	the	work.

To	demonstrate	this,	let’s	work	with	the	rather	common	scenario	of	a	software
development	team	manager	named	Bill	who	needs	to	have	some	work	done.

User	story	1:	Bill	needs	Steve	to	implement	a	new	feature	in	the	product

Bill	comes	to	Steve’s	desk	and	asks	him	to	implement	the	new	feature	in	this	sprint,	then
walks	away,	leaving	Steve	to	implement	on	his	own	(asynchronously	from	Bill’s	request):

try

{

				//	Steve,	get	that	project	done!

				await	SteveCreateSomeCodeAsync();

}

catch	(DefectCreatedException	dce)

{

				Console.WriteLine($"Steve	introduced	a	Defect:	{dce.Message}");

}

Steve	works	hard,	as	all	developers	do,	but	even	the	best	of	us	can	have	an	off	day.	Steve
happens	to	generate	a	defect	in	the	feature	he	was	asked	to	implement	in
SteveCreateSomeCodeAsync.	Luckily,	even	though	Steve	was	doing	this	asynchronously,
we	can	still	catch	the	DefectCreatedException	and	handle	it	normally,	as	the	async	and
await	support	transports	the	exception	back	to	the	catch	block	automatically.	(More	about
how	this	happens	in	the	Discussion	section.	Look	for	ExceptionDispatchInfo!)

The	output	we	captured	from	the	caught	exception	lets	us	know	where	the	issue	is	so
Steve	can	fix	it	later:

Steve	introduced	a	Defect:	A	defect	was	introduced:	(Null	Reference	on	line	42)

User	story	2:	Bill	has	a	large	set	of	features	to	be	implemented	by	Jay,	Tom,	and	Seth

Bill	knows	Steve	is	busy,	so	he	approaches	the	other	members	of	the	team	(Jay,	Tom,	and
Seth)	to	get	a	whole	new	set	of	features	completed	in	the	sprint.	It	looks	like	they	are
going	to	have	to	come	in	on	Saturday!	Jay,	Tom,	and	Seth	get	together,	divide	up	the	work,
and	all	start	coding	at	the	same	time.	Even	though	they	may	finish	at	different	times,	Bill
still	wants	to	be	on	the	lookout	for	any	defects	they	created:

//	OK	Team,	make	that	new	thing	this	weekend!	You	guys	better	hurry	up	with	that!

Task	jayCode	=	JayCreateSomeCodeAsync();

Task	tomCode	=	TomCreateSomeCodeAsync();

Task	sethCode	=	SethCreateSomeCodeAsync();

Task	teamComplete	=	Task.WhenAll(new	Task[]	{	jayCode,	tomCode,	sethCode	});

try

{

				await	teamComplete;

}

catch

{

				//	Get	the	messages	from	the	exceptions	thrown	from

				//	the	set	of	actions

				var	defectMessages	=

								teamComplete.Exception?.InnerExceptions.Select(e	=>

												e.Message).ToList();

				defectMessages?.ForEach(m	=>

								Console.WriteLine($"{m}"));

}

First,	each	unit	of	work	(JayCreateSomeCodeAsync,	TomCreateSomeCodeAsync,
SethCreateSomeCodeAsync)	is	turned	into	a	Task.	The	Task.WhenAll	method	is	then
called	to	create	an	encompassing	Task	(teamComplete),	which	will	complete	when	all	of
the	individual	Tasks	are	completed.

Once	all	of	the	tasks	have	completed,	the	await	will	throw	an	AggregateException	if	any
of	the	Tasks	threw	an	Exception	during	execution.	This	AggregateException	is	accessed
on	the	teamComplete.Exception	property,	and	it	holds	a	list	of	InnerExceptions,	which
is	of	type	ReadOnlyCollection<Exception>.

Since	the	developers	introduced	this	set	of	exceptions,	they	are	more
DefectCreatedExceptions!

The	resulting	logging	tells	us	where	the	team	will	need	to	clean	up:

A	defect	was	introduced:	(Ambiguous	Match	on	line	2)

A	defect	was	introduced:	(Quota	Exceeded	on	line	11)

A	defect	was	introduced:	(Out	Of	Memory	on	line	8)

User	story	3:	Bill	wants	to	record	if	there	are	any	issues	implementing	a	new	feature

Finally,	Bill	realizes	that	he	needs	a	better	system	to	determine	if	there	were	defects
introduced	into	the	code.	Bill	adds	logging	to	the	code	that	will	write	the	details	of	the
defect	to	the	EventLog	when	a	DefectCreatedException	is	caught.	Since	writing	to	the
EventLog	can	be	a	hit	to	performance,	he	decides	to	do	this	asynchronously.

try

{

				await	SteveCreateSomeCodeAsync();

}

catch	(DefectCreatedException	dce)

{

				await	WriteEventLogEntryAsync("ManagerApplication",	dce.Message,

								EventLogEntryType.Error);

				throw;

}

Discussion
Running	code	asynchronously	doesn’t	mean	you	don’t	still	need	to	have	proper	error
handling,	it	just	complicates	the	process	a	bit.	Luckily,	the	C#	and	.NET	teams	at
Microsoft	have	done	a	lot	to	make	this	task	as	painless	as	possible.

Awaiting	these	operations	means	that	they	are	run	in	a	context,	either	the	current
SynchronizationContext	or	the	TaskScheduler.	This	context	is	captured	when	the	async
method	awaits	another	method,	and	is	restored	when	work	resumes	in	the	async	method.

The	context	captured	depends	on	where	your	async	method	code	is	executing:

User	interface	(WinForms/WPF):	UI	context

ASP.NET:	ASP.NET	request	context

Other:	ThreadPool	context

In	user	story	1,	we	mentioned	that	the	implementation	of	async	and	await	used	a	class
called	System.Runtime.ExceptionServices.ExceptionDispatchInfo	to	handle	when	an
exception	is	thrown	on	one	thread	and	needs	to	be	caught	on	another	as	the	result	of	an
asynchronous	operation.

ExceptionDispatchInfo	allows	the	capture	of	an	exception	that	was	thrown	in	one	thread
and	then	allows	it	to	be	rethrown	—	without	losing	any	of	the	information	(exception	data
and	stack	trace)	—	from	another	thread.	This	is	what	happens	from	an	error-handling
standpoint	when	you	await	an	async	method.

One	other	item	of	note	is	the	use	of	ConfigureAwait,	which	allows	you	to	change	the
behavior	of	context	resumption	after	the	async	method	has	completed.	If	you	pass	false
to	ConfigureAwait,	it	will	not	attempt	to	resume	the	original	context:

await	MyAsyncMethod().ConfigureAwait(false);

WARNING
If	you	use	ConfigureAwait(false),	then	any	code	after	the	await	finishes	and	the	async	method	resumes
cannot	rely	on	the	original	context,	as	the	thread	on	which	the	code	continues	will	not	have	it.	If	this	async
method	were	called	from	an	ASP.NET	context,	for	example,	the	request	context	will	not	be	available	once	it
resumes.

The	code	for	the	hardworking	team	is	presented	in	Example	5-7.

Example	5-7.	Teamwork	in	action!
public	async	Task	TestHandlingAsyncExceptionsAsync()

{

				//	Team	producing	software

				//	Manager	sends	Steve	to	create	code,	exception"DefectCreatedException"	thrown

				//	Manager	sends	Jay,	Tom,	Seth	to	write	code,	all	throw	DefectCreatedExceptions

				//	Single	async	method	call

				try

				{

								//	Steve,	get	that	project	done!

								await	SteveCreateSomeCodeAsync();

				}

				catch	(DefectCreatedException	dce)

				{

								Console.WriteLine($"Steve	introduced	a	Defect:	{dce.Message}");

				}

				//	Multiple	async	methods	(WaitAll)

				//	OK	Team,	make	that	new	thing	this	weekend!	You	guys	better	hurry	up	with	that!

				Task	jayCode	=	JayCreateSomeCodeAsync();

				Task	tomCode	=	TomCreateSomeCodeAsync();

				Task	sethCode	=	SethCreateSomeCodeAsync();

				Task	teamComplete	=	Task.WhenAll(new	Task[]	{	jayCode,	tomCode,	sethCode	});

				try

				{

								await	teamComplete;

				}

				catch

				{

								//	Get	the	messages	from	the	exceptions	thrown	from

								//	the	set	of	actions

								var	defectMessages	=

												teamComplete.Exception?.InnerExceptions.Select(e	=>

																e.Message).ToList();

								defectMessages?.ForEach(m	=>

												Console.WriteLine($"{m}"));

				}

				//	awaiting	an	action	in	an	exception	handler

				//	discuss	how	the	original	throw	location	is	preserved	via

				//	System.Runtime.ExceptionServices.ExceptionDispatchInfo

				try

				{

								try

								{

												await	SteveCreateSomeCodeAsync();

								}

								catch	(DefectCreatedException	dce)

								{

												Console.WriteLine(dce.ToString());

												await	WriteEventLogEntry("ManagerApplication",	dce.Message,

																EventLogEntryType.Error);

												throw;

								}

				}

				catch(DefectCreatedException	dce)

				{

								Console.WriteLine(dce.ToString());

				}

}

public	async	Task	WriteEventLogEntryAsync(string	source,	string	message,

				EventLogEntryType	type)

{

				await	Task.Factory.StartNew(()	=>	EventLog.WriteEntry(source,	message,	type));

}

public	async	Task	SteveCreateSomeCodeAsync()

{

				Random	rnd	=	new	Random();

				await	Task.Delay(rnd.Next(100,	1000));

				throw	new	DefectCreatedException("Null	Reference",42);

}

public	async	Task	JayCreateSomeCodeAsync()

{

				Random	rnd	=	new	Random();

				await	Task.Delay(rnd.Next(100,	1000));

				throw	new	DefectCreatedException("Ambiguous	Match",2);

}

public	async	Task	TomCreateSomeCodeAsync()

{

				Random	rnd	=	new	Random();

				await	Task.Delay(rnd.Next(100,	1000));

				throw	new	DefectCreatedException("Quota	Exceeded",11);

}

public	async	Task	SethCreateSomeCodeAsync()

{

				Random	rnd	=	new	Random();

				await	Task.Delay(rnd.Next(100,	1000));

				throw	new	DefectCreatedException("Out	Of	Memory",	8);

}

The	custom	DefectCreatedException	is	listed	in	Example	5-8.

Example	5-8.	Defect	tracking
[Serializable]

public	class	DefectCreatedException	:	Exception

{

				#region	Constructors

				//	Normal	exception	ctor's

				public	DefectCreatedException()	:	base()

				{

				}

				public	DefectCreatedException(string	message)	:	base(message)

				{

				}

				public	DefectCreatedException(string	message,	Exception	innerException)

								:	base(message,	innerException)

				{

				}

				//	Exception	ctor's	that	accept	the	new	parameters

				public	DefectCreatedException(string	defect,	int	line)	:	base(string.Empty)

				{

								this.Defect	=	defect;

								this.Line	=	line;

				}

				public	DefectCreatedException(string	defect,	int	line,	Exception	innerException)

								:	base(string.Empty,	innerException)

				{

								this.Defect	=	defect;

								this.Line	=	line;

				}

				//	Serialization	ctor

				protected	DefectCreatedException(SerializationInfo	exceptionInfo,

								StreamingContext	exceptionContext)

								:	base(exceptionInfo,	exceptionContext)

				{

				}

				#endregion	//	Constructors

				#region	Properties

				public	string	Defect	{	get;	}

				public	int	Line	{	get;	}

				public	override	string	Message	=>

								$"A	defect	was	introduced:	({this.Defect	??	"Unknown"}	on	line	{this.Line})";

				#endregion	//	Properties

				#region	Overridden	methods

				//	ToString	method

				public	override	string	ToString()	=>

								$"{Environment.NewLine}{this.ToFullDisplayString()}";

				//	Used	during	serialization	to	capture	information	about	extra	fields

				[SecurityPermission(SecurityAction.LinkDemand,

								Flags	=	SecurityPermissionFlag.SerializationFormatter)]

				public	override	void	GetObjectData(SerializationInfo	info,

								StreamingContext	context)

				{

								base.GetObjectData(info,	context);

								info.AddValue("Defect",	this.Defect);

								info.AddValue("Line",	this.Line);

				}

				#endregion	//	Overridden	methods

				public	string	ToBaseString()	=>	(base.ToString());

}

See	Also
The	“async,”	“await,”	“AggregateException,”	“ConfigureAwait,”	and
“System.Runtime.ExceptionServices.ExceptionDispatchInfo”	topics	in	the	MSDN
documentation.

5.16	Being	Selective	About	Exception	Processing

Problem
You	want	to	handle	only	a	particular	instance	of	an	exception	that	is	thrown	for	multiple
reasons.

Solution
Use	exception	filters	to	catch	only	exceptions	where	you	want	to	do	something	about	the
condition.

As	an	example,	say	you	called	a	database	and	you	wanted	to	handle	timeouts	differently.	If
you	were	calling	from	ASP.NET	WebApi,	you	might	even	want	to	return	a	503	Service
Unavailable	message	to	indicate	that	the	service	is	busy	when	you	start	seeing	timeout
errors	from	the	database.

The	ProtectedCallTheDatabase	method	wraps	the	CallTheDatabase	method	in	a	try-
catch	block	and	adds	an	exception	filter	(using	the	when	keyword)	to	check	for	a
DatabaseException	where	the	allotted	Number	property	is	set	to	–2.	When	the	Number
property	is	set	to	–2	on	a	DatabaseException,	it	indicates	a	timeout	(much	like	a	current
Microsoft	database	offering)	and	we	will	catch	the	exception	and	can	handle	it	from	there.
If	Number	is	not	set	to	–2,	we	will	not	catch	the	exception	and	it	will	propagate	up	the	call
stack	to	the	caller	of	the	ProtectedCallTheDatabase	method:

private	void	ProtectedCallTheDatabase(string	problem)

{

				try

				{

								CallTheDatabase(problem);

								Console.WriteLine("No	error	on	database	call");

				}

				catch	(DatabaseException	dex)	when	(dex.Number	==	-2)	//	watch	for	timeouts

				{

								Console.WriteLine(

												"DatabaseException	catch	caught	a	database	exception:	"	+

											$"{dex.Message}");

				}

}

The	CallTheDatabase	method	simulates	calling	the	database	and	encountering	a	problem:

private	void	CallTheDatabase(string	problem)

{

				switch	(problem)

				{

								case	"timeout":

												throw	new	DatabaseException(

																"Timeout	expired.	The	timeout	period	elapsed	prior	to	"	+

																"completion	of	the	operation	or	the	server	is	not	"	+

																"responding.	(Microsoft	SQL	Server,	Error:	-2).")

												{

																Number	=	-2,

																Class	=	11

												};

								case	"loginfail":

												throw	new	DatabaseException("Login	failed	for	user")

												{

																Number	=	18456,

												};

				}

}

We	can	call	the	ProtectedCallTheDatabase	method	in	the	three	ways	shown	in
Example	5-9.

Example	5-9.	Testing	exception	filters
Console.WriteLine("Simulating	database	call	timeout");

try

{

				ProtectedCallTheDatabase("timeout");

}

catch(Exception	ex)

{

				Console.WriteLine($"Exception	catch	caught	a	database	exception:	{ex.Message}");

}

Console.WriteLine("");

Console.WriteLine("Simulating	database	call	login	failure");

try

{

				ProtectedCallTheDatabase("loginfail");

}

catch	(Exception	ex)

{

				Console.WriteLine($"Exception	catch	caught	a	database	exception:	{ex.Message}");

}

Console.WriteLine("");

Console.WriteLine("Simulating	successful	database	call");

try

{

				ProtectedCallTheDatabase("noerror");

}

catch	(Exception	ex)

{

				Console.WriteLine($"Exception	catch	caught	a	database	exception:	{ex.Message}");

}

Console.WriteLine("");

We	get	the	output	shown	in	Example	5-10.

Example	5-10.	Exception	filter	testing	output
Simulating	database	call	timeout

DatabaseException	catch	caught	a	database	exception:	Timeout	expired.

The	timeout	period	elapsed	prior	to	completion	of	the	operation	or	the	server

is	not	responding.	(Microsoft	SQL	Server,	Error:	-2).

Simulating	database	call	login	failure

Exception	catch	caught	a	database	exception:	Login	failed	for	user

Simulating	successful	database	call

No	error	on	database	call

Note	that	the	timeout	was	caught	in	the	catch	block	in	ProtectedCallTheDatabase,	while
the	login	failure	was	not	caught	until	it	returned	to	the	catch	block	in	the	testing	code.

Discussion
Exception	filters	allow	you	to	conditionally	evaluate	if	a	catch	block	should	catch	an
exception,	which	is	quite	powerful	and	allows	you	to	handle	only	exceptions	you	can	do
something	about	at	a	finer-grained	level	than	was	previously	possible.

Another	advantage	of	using	exception	filters	is	that	it	does	not	require	the	constant
catching	and	rethrowing	of	exceptions.	When	this	is	done	improperly	it	can	affect	the	call
stack	of	the	exception	and	hide	errors	(see	Recipe	5.1	for	more	details),	whereas	exception
filters	let	you	examine	and	even	perform	operations	with	exceptions	(like	logging)	without
interfering	with	the	original	flow	of	the	exception.	In	order	to	not	interfere,	the	code
executed	in	the	exception	filter	must	return	false	so	that	the	exception	continues	to
propagate	normally.	The	code	introduced	to	make	the	true	or	false	determination	in	the
exception	filter	should	be	kept	to	a	minimum,	as	you	are	in	a	catch	handler	and	the	same
rules	apply.	Don’t	do	things	that	could	cause	other	exceptions	and	mask	the	original	error
condition	you	were	trying	to	trap	for	in	the	first	place.

The	full	listing	for	the	DatabaseException	is	shown	in	Example	5-11.

Example	5-11.	Exception	filter	testing	output
[Serializable]

public	class	DatabaseException	:	DbException

{

				public	DatabaseException(string	message)	:	base(message)	{	}

				public	byte	Class	{	get;	set;	}

				public	Guid	ClientConnectionId	{	get;	set;	}

				[DesignerSerializationVisibility(DesignerSerializationVisibility.Content)]

				public	SqlErrorCollection	Errors	{	get;	set;	}

				public	int	LineNumber	{	get;	set;	}

				public	int	Number	{	get;	set;	}

				public	string	Procedure	{	get;	set;	}

				public	string	Server	{	get;	set;	}

				public	override	string	Source	=>	base.Source;

				public	byte	State	{	get;	set;	}

				public	override	void	GetObjectData(SerializationInfo	si,

								StreamingContext	context)

				{

								base.GetObjectData(si,	context);

				}

}

See	Also
The	“Exception	Filters”	topic	in	the	MSDN	documentation.

Chapter	6.	Reflection	and	Dynamic
Programming

6.0	Introduction
Reflection	is	the	mechanism	provided	by	the	.NET	Framework	to	allow	you	to	inspect
how	a	program	is	constructed.	Using	reflection,	you	can	obtain	information	such	as	the
name	of	an	assembly	and	what	other	assemblies	a	given	assembly	imports.	You	can	even
dynamically	call	methods	on	an	instance	of	a	type	in	a	given	assembly.	Reflection	also
allows	you	to	create	code	dynamically	and	compile	it	to	an	in-memory	assembly	or	to
build	a	symbol	table	of	type	entries	in	an	assembly.

Reflection	is	a	very	powerful	feature	of	the	Framework	and,	as	such,	is	guarded	by	the
runtime.	The	ReflectionPermission	must	be	granted	to	assemblies	that	are	going	to
access	the	protected	or	private	members	of	a	type.	If	you	are	going	to	access	only	the
public	members	of	a	public	type,	you	will	not	need	to	be	granted	the
ReflectionPermission.	Code	Access	Security	(CAS)	has	only	two	permission	sets	that
give	all	reflection	access	by	default:	FullTrust	and	Everything.	The	LocalIntranet
permission	set	includes	the	ReflectionEmit	privilege,	which	allows	for	emitting	metadata
and	creating	assemblies,	and	the	MemberAccess	privilege,	which	allows	for	performing
dynamic	invocation	of	methods	on	types	in	assemblies.

In	this	chapter,	you	will	see	how	you	can	use	reflection	to	dynamically	invoke	members
on	types,	figure	out	all	of	the	assemblies	a	given	assembly	is	dependent	on,	and	inspect
assemblies	for	different	types	of	information.	Reflection	is	a	great	way	to	understand	how
things	are	put	together	in	.NET,	and	this	chapter	provides	a	starting	point.

This	chapter	will	also	cover	the	dynamic	keyword	in	C#,	which	is	supported	by	the
Dynamic	Language	Runtime	(DLR)	in	.NET.	It	is	used	to	help	extend	C#	to	identify	the
type	of	an	object	at	runtime	instead	of	statically	at	compile	time,	and	to	support	dynamic
behavior.	To	use	these	features,	you	need	to	reference	the	System.Dynamic	assembly	and
namespace.

The	DLR	was	introduced	to	support	the	following	use	cases:

Porting	other	languages	(like	Python	and	Ruby)	to	.NET

Enabling	dynamic	features	in	static	languages	(like	C#	and	Visual	Basic)

Enabling	more	sharing	of	libraries	between	languages

Caching	binding	operations	(like	Reflection)	to	improve	performance	instead	of
determining	everything	at	runtime	each	time

The	DLR	provides	three	main	services:

Expression	trees	(to	represent	language	semantics	such	as	those	used	in	LINQ)

Call	site	caching	(caches	the	characteristics	of	the	operation	the	first	time	it	is
performed)

Dynamic	object	interoperability	(through	the	use	of	IDynamicMetaObjectProvider,
DynamicMetaObject,	DynamicObject,	and	ExpandoObject)

The	three	main	constructs	provided	to	do	dynamic	programming	in	C#	are	the	dynamic
type	(an	object	that	is	not	bound	by	compile-time	checking),	the	ExpandoObject	class
(used	to	construct	or	deconstruct	the	members	of	an	object	at	runtime),	and	the
DynamicObject	class	(a	base	class	for	adding	dynamic	behavior	to	your	own	objects).	All
three	constructs	are	demonstrated	in	this	chapter.

6.1	Listing	Referenced	Assemblies

Problem
You	need	to	determine	each	assembly	imported	by	a	particular	assembly.	This	information
can	show	you	if	this	assembly	is	using	one	or	more	of	your	assemblies	or	if	it	is	using
another	specific	assembly.

Solution
Use	the	Assembly.GetReferencedAssemblies	method,	as	shown	in	Example	6-1,	to
obtain	the	imported	assemblies	of	a	particular	assembly.

Example	6-1.	Using	the	Assembly.GetReferencedAssemblies	method
public	static	void	BuildDependentAssemblyList(string	path,

				StringCollection	assemblies)

{

				//	maintain	a	list	of	assemblies	the	original	one	needs

				if(assemblies	==	null)

								assemblies	=	new	StringCollection();

				//	have	we	already	seen	this	one?

				if(assemblies.Contains(path)==true)

								return;

				try

				{

								Assembly	asm	=	null;

								//	look	for	common	path	delimiters	in	the	string

								//	to	see	if	it	is	a	name	or	a	path

								if	((path.IndexOf(@"\",	0,	path.Length,	StringComparison.Ordinal)	!=	-1)	||

												(path.IndexOf("/",	0,	path.Length,	StringComparison.Ordinal)	!=	-1))

								{

												//	load	the	assembly	from	a	path

												asm	=	Assembly.LoadFrom(path);

								}

								else

								{

												//	try	as	assembly	name

												asm	=	Assembly.Load(path);

								}

								//	add	the	assembly	to	the	list

								if	(asm	!=	null)

												assemblies.Add(path);

								//	get	the	referenced	assemblies

								AssemblyName[]	imports	=	asm.GetReferencedAssemblies();

								//	iterate

								foreach	(AssemblyName	asmName	in	imports)

								{

												//	now	recursively	call	this	assembly	to	get	the	new	modules

												//	it	references

												BuildDependentAssemblyList(asmName.FullName,	assemblies);

								}

				}

				catch	(FileLoadException	fle)

				{

								//	just	let	this	one	go…

								Console.WriteLine(fle);

				}

}

This	code	returns	a	StringCollection	containing	the	original	assembly,	all	imported
assemblies,	and	the	dependent	assemblies	of	the	imported	assemblies.

If	you	ran	this	method	against	the	assembly
C:\CSharpRecipes\bin\Debug\CSharpRecipes.exe,	you’d	get	the	following	dependency
tree:

Assembly	C:\CSharpRecipes\bin\Debug\CSharpRecipes.exe	has	a	dependency	tree	of

these	assemblies	:

				C:\CSharpRecipes\bin\Debug\CSharpRecipes.exe

				mscorlib,	Version=4.0.0.0,	Culture=neutral,	PublicKeyToken=b77a5c561934e089

				System,	Version=4.0.0.0,	Culture=neutral,	PublicKeyToken=b77a5c561934e089

				System.Configuration,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

				System.Xml,	Version=4.0.0.0,	Culture=neutral,	PublicKeyToken=b77a5c561934e089

				System.Data.SqlXml,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b77a5c561934e089

				System.Security,	Version=4.0.0.0,	Culture=neutral,	

				PublicKeyToken=b03f5f7f11d50a3a

				System.Core,	Version=4.0.0.0,	Culture=neutral,	

				PublicKeyToken=b77a5c561934e089

				System.Numerics,	Version=4.0.0.0,	Culture=neutral,	

				PublicKeyToken=b77a5c561934e089

				System.Messaging,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

				System.DirectoryServices,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

				System.Transactions,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b77a5c561934e089

				System.EnterpriseServices,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

				System.Runtime.Remoting,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b77a5c561934e089

				System.Web,	Version=4.0.0.0,	Culture=neutral,	PublicKeyToken=b03f5f7f11d50a3a

				System.Drawing,	Version=4.0.0.0,	Culture=neutral,	

				PublicKeyToken=b03f5f7f11d50a3a

				System.Data,	Version=4.0.0.0,	Culture=neutral,	

				PublicKeyToken=b77a5c561934e089

				System.Web.RegularExpressions,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

				System.Design,	Version=4.0.0.0,	Culture=neutral,	

				PublicKeyToken=b03f5f7f11d50a3a

				System.Windows.Forms,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b77a5c561934e089

				Accessibility,	Version=4.0.0.0,	Culture=neutral,	

				PublicKeyToken=b03f5f7f11d50a3a

				System.Runtime.Serialization.Formatters.Soap,	Version=4.0.0.0,	

				Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

				System.Deployment,	Version=4.0.0.0,	Culture=neutral,	

				PublicKeyToken=b03f5f7f11d50a3a

				System.Data.OracleClient,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b77a5c561934e089

				System.Drawing.Design,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

				System.Web.ApplicationServices,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=31bf3856ad364e35

				System.ComponentModel.DataAnnotations,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=31bf3856ad364e35

				System.DirectoryServices.Protocols,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

				System.Runtime.Caching,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

				System.ServiceProcess,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

				System.Configuration.Install,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

				System.Runtime.Serialization,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b77a5c561934e089

				System.ServiceModel.Internals,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=31bf3856ad364e35

				SMDiagnostics,	Version=4.0.0.0,	Culture=neutral,	

				PublicKeyToken=b77a5c561934e089

				System.Web.Services,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

				Microsoft.Build.Utilities.v4.0,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

				Microsoft.Build.Framework,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

				System.Xaml,	Version=4.0.0.0,	Culture=neutral,	

				PublicKeyToken=b77a5c561934e089

				Microsoft.Build.Tasks.v4.0,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

				NorthwindLinq2Sql,	Version=1.0.0.0,	Culture=neutral,

PublicKeyToken=fe85c3941fbcc4c5

				System.Data.Linq,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b77a5c561934e089

				System.Xml.Linq,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b77a5c561934e089

				EntityFramework,	Version=6.0.0.0,	Culture=neutral,

PublicKeyToken=b77a5c561934e089

				Microsoft.CSharp,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a

				System.Dynamic,	Version=4.0.0.0,	Culture=neutral,	

				PublicKeyToken=b03f5f7f11d50a3a

				System.Data.DataSetExtensions,	Version=4.0.0.0,	Culture=neutral,

PublicKeyToken=b77a5c561934e089

Discussion
Obtaining	the	imported	types	in	an	assembly	is	useful	in	determining	what	assemblies
another	assembly	is	using.	This	knowledge	can	greatly	aid	you	in	learning	to	use	a	new
assembly.	This	method	can	also	help	you	determine	dependencies	between	assemblies	for
shipping	purposes	or	to	perform	compliance	management	if	you	are	restricted	from	using
or	exporting	certain	types	of	assemblies.

The	GetReferencedAssemblies	method	of	the	System.Reflection.Assembly	class
obtains	a	list	of	all	the	imported	assemblies.	This	method	accepts	no	parameters	and
returns	an	array	of	AssemblyName	objects	instead	of	an	array	of	Types.	The	AssemblyName
type	is	made	up	of	members	that	allow	access	to	the	information	about	an	assembly,	such
as	the	name,	version,	culture	information,	public/private	key	pairs,	and	other	data.

To	call	the	BuildDependentAssemblyList	method	on	the	current	executable,	run	this
example	code:

string	file	=	GetProcessPath();

StringCollection	assemblies	=	new	StringCollection();

ReflectionAndDynamicProgramming.BuildDependentAssemblyList(file,assemblies);

Console.WriteLine($"Assembly	{file}	has	a	dependency	tree	of	these

assemblies:{Environment.NewLine}");

foreach(string	name	in	assemblies)

{

				Console.WriteLine($"\t{name}{Environment.NewLine}");

}

GetProcessPath,	shown	here,	returns	the	current	path	to	the	process	executable:

private	static	string	GetProcessPath()

{

				//	fix	the	path	so	that	if	running	under	the	debugger	we	get	the	original

				//	file

				string	processName	=	Process.GetCurrentProcess().MainModule.FileName;

				int	index	=	processName.IndexOf("vshost",	StringComparison.Ordinal);

				if	(index	!=	-1)

				{

								string	first	=	processName.Substring(0,	index);

								int	numChars	=	processName.Length	-	(index	+	7);

								string	second	=	processName.Substring(index	+	7,	numChars);

								processName	=	first	+	second;

				}

				return	processName;

}

Note	that	this	method	does	not	account	for	assemblies	loaded	via	Assembly.
ReflectionOnlyLoad*	methods,	as	it	is	inspecting	for	only	compile-time	references.

WARNING
When	loading	assemblies	for	inspection	using	reflection,	you	should	use	the	ReflectionOnlyLoad*
methods.	These	methods	do	not	allow	you	to	execute	code	from	the	loaded	assembly.	The	reasoning	is	that
you	may	not	know	if	you	are	loading	assemblies	containing	hostile	code	or	not.	These	methods	prevent	any
hostile	code	from	executing.

See	Also
The	“Assembly	Class”	topic	in	the	MSDN	documentation.

6.2	Determining	Type	Characteristics	in	Assemblies

Problem
You	need	to	find	types	with	certain	characteristics	in	an	assembly,	such	as:

By	method	name

Types	available	outside	the	assembly

Serializable	types

Subclasses	of	a	given	type

Nested	types

Solution
Use	reflection	to	enumerate	the	types	that	match	the	characteristics	you	are	looking	for.
For	the	characteristics	we	have	outlined,	you	would	use	the	methods	listed	in	Table	6-1.

Table	6-1.	Finding	types	by
characteristics

Characteristic Reflection	method

Method	name Type.GetMember

Exported	types Assembly.GetExportedTypes()

Serializable	types Type.IsSerializeable

Subclasses	of	a	type Type.IsSubclassOf

Nested	types Type.GetNestedTypes

To	find	methods	by	name	in	an	assembly,	use	the	extension	method
GetMembersInAssembly:

public	static	IEnumerable<MemberInfo>	GetMembersInAssembly(this	Assembly	asm,

				string	memberName)	=>

				from	type	in	asm.GetTypes()

								from	ms	in	type.GetMember(memberName,	MemberTypes.All,

												BindingFlags.Public	|	BindingFlags.NonPublic	|

												BindingFlags.Static	|	BindingFlags.Instance)

								select	ms;

GetMembersInAssembly	uses	Type.GetMember	to	search	for	all	members	that	have	a
matching	name	and	returns	the	set	of	MethodInfos	for	those:

var	members	=	asm.GetMembersInAssembly(memberSearchName);

For	types	available	outside	an	assembly,	use	Assembly.GetExportedTypes	to	obtain	the
exported	types	of	an	assembly:

var	types	=	asm.GetExportedTypes();

To	determine	the	Serializable	types	in	an	assembly,	use	the	extension	method
GetSerializableTypes:

public	static	IEnumerable<Type>	GetSerializableTypes(this	Assembly	asm)	=>

				from	type	in	asm.GetTypes()

				where	type.IsSerializable	&&	

								!type.IsNestedPrivate	//	filters	out	anonymous	types

				select	type;

GetSerializableType	uses	the	Type.IsSerializable	property	to	determine	if	the	type
supports	serialization	and	returns	a	set	of	serializable	types.	Instead	of	testing	the
implemented	interfaces	and	attributes	on	every	type,	you	can	query	the

Type.IsSerialized	property	to	determine	whether	it	is	marked	as	serializable:

var	serializeableTypes	=	asm.GetSerializableTypes();

To	get	the	set	of	types	in	an	assembly	that	subclass	a	particular	type,	use	the	extension
method	GetSubclassesForType:

public	static	IEnumerable<Type>	GetSubclassesForType(this	Assembly	asm,

																																																								Type	baseClassType)	=>

				from	type	in	asm.GetTypes()

				where	type.IsSubclassOf(baseClassType)

				select	type;

GetSubclassesForType	uses	the	Type.IsSubclassOf	method	to	determine	which	types	in
the	assembly	subclass	the	given	type	and	accepts	an	assembly	path	string	and	a	type	to
represent	the	base	class.	This	method	returns	an	IEnumerable<Type>	representing	the
subclasses	of	the	type	passed	to	the	baseClassType	parameter.	In	the	example,	first	you
get	the	assembly	path	from	the	current	process,	and	then	you	set	up	use	of
CSharpRecipes.ReflectionUtils+BaseOverrides	as	the	type	to	test	for	subclasses.	You
call	GetSubClassesForType,	and	it	returns	an	IEnumerable<Type>:

Type	type	=	Type.GetType(

				"CSharpRecipes.ReflectionAndDynamicProgramming+BaseOverrides");

var	subClasses	=	asm.GetSubclassesForType(type);

Finally,	to	determine	the	nested	types	in	an	assembly,	use	the	extension	method
GetNestedTypes:

public	static	IEnumerable<Type>	GetNestedTypes(this	Assembly	asm)	=>

				from	t	in	asm.GetTypes()

								from	t2	in	t.GetNestedTypes(BindingFlags.Instance	|

																				BindingFlags.Static	|

																				BindingFlags.Public	|

																				BindingFlags.NonPublic)

								where	!t2.IsEnum	&&	!t2.IsInterface	&&

														!t2.IsNestedPrivate	//	filters	out	anonymous	types

								select	t2;

GetNestedTypes	uses	the	Type.GetNestedTypes	method	and	inspects	each	type	in	the
assembly	to	determine	if	it	has	nested	types:

var	nestedTypes	=	asm.GetNestedTypes();

Discussion
Why	should	you	care	about	these	random	facts	about	types	in	assemblies?	Because	they
help	you	figure	out	how	you	are	constructing	your	code	and	discover	coding	practices	you
may	or	may	not	want	to	allow.	Let’s	look	at	each	one	individually	so	you	can	see	why	you
might	want	to	know	about	it.

Method	name

The	memberName	argument	can	contain	the	wildcard	character	*	to	indicate	any	character
or	characters.	So,	to	find	all	methods	starting	with	the	string	"Test",	pass	the	string
"Test*"	to	the	memberName	parameter.	Note	that	the	memberName	argument	is	case-
sensitive,	but	the	asmPath	argument	is	not.	If	you’d	like	to	do	a	case-insensitive	search	for
members,	add	the	BindingFlags.IgnoreCase	flag	to	the	other	BindingFlags	in	the	call	to
Type.GetMember.

The	GetMember	method	of	the	System.Type	class	is	useful	for	finding	one	or	more
methods	within	a	type.	This	method	returns	an	array	of	MemberInfo	objects	that	describe
any	members	that	match	the	given	parameters.

NOTE
The	*	character	may	be	used	as	a	wildcard	character	only	at	the	end	of	the	name	parameter	string.	If	placed
anywhere	else	in	the	string,	it	will	not	be	treated	as	a	wildcard	character.	In	addition,	it	must	be	the	only
character	in	the	name	parameter	to	ensure	that	all	members	are	returned.	No	other	wildcard	characters,	such
as	?,	are	supported.

Once	you	obtain	an	array	of	MemberInfo	objects,	you	need	to	examine	what	kind	of
members	they	are.	The	MemberInfo	class	contains	a	MemberType	property	that	returns	a
System.Reflection.MemberTypes	enumeration	value,	which	can	be	any	of	the	values
defined	in	Table	6-2	except	All.

Table	6-2.	MemberTypes	enumeration	values

Enumeration	value Definition
All All	member	types
Constructor A	constructor	member
Custom A	custom	member	type
Event An	event	member
Field A	field	member
Method A	method	member
NestedType A	nested	type
Property A	property	member
TypeInfo A	type	member	that	represents	a	TypeInfo	member

Exported	types

Obtaining	the	exported	types	in	an	assembly	is	useful	when	you	are	trying	to	determine
the	public	interface	to	that	assembly.	This	ability	can	greatly	aid	someone	learning	to	use	a
new	assembly	or	can	aid	the	assembly	developer	in	determining	all	the	assembly’s	access
points	to	verify	that	they	are	adequately	secure	from	malicious	code.	To	get	these	exported
types,	use	the	GetExportedTypes	method	on	the	System.Reflection.Assembly	type.	The
exported	types	consist	of	all	of	the	types	that	are	publicly	accessible	from	outside	of	the
assembly.	A	type	may	be	publicly	accessible	but	not	be	accessible	from	outside	of	the
assembly.	Take,	for	example,	the	following	code:

public	class	Outer

{

				public	class	Inner	{}

				private	class	SecretInner	{}

}

The	exported	types	are	Outer	and	Outer.Inner;	the	type	SecretInner	is	not	exposed	to
the	world	outside	of	this	assembly.	If	you	change	the	Outer	accessibility	from	public	to
private,	you	now	have	no	types	accessible	to	the	outside	world	—	the	Inner	class	access
level	is	downgraded	because	of	the	private	on	the	Outer	class.

Serializable	types

A	type	may	be	marked	as	serializable	with	the	SerializableAttribute	attribute.	Testing
for	SerializableAttribute	on	a	type	can	turn	into	a	fair	amount	of	work.	This	is	because
SerializableAttribute	is	a	magic	attribute	that	the	C#	compiler	actually	strips	off	your
code	at	compile	time.	Using	ildasm	(the	.NET	platform	decompiler),	you	will	see	that	this
custom	attribute	just	isn’t	there	—	normally	you	see	a	.custom	entry	for	each	custom
attribute,	but	not	with	SerializableAttribute.	The	C#	compiler	removes	it	and	instead
sets	a	flag	in	the	metadata	of	the	class.	In	source	code,	it	looks	like	a	custom	attribute,	but
it	compiles	into	one	of	a	small	set	of	attributes	that	gets	a	special	representation	in
metadata.	That’s	why	it	gets	special	treatment	in	the	reflection	APIs.	Fortunately,	you	do
not	have	to	do	all	of	this	work.	The	IsSerializable	property	on	the	Type	class	returns
true	if	the	current	type	is	marked	as	serializable	with	the	SerializableAttribute;
otherwise,	this	property	returns	false.

Subclasses	of	a	type

The	IsSubclassOf	method	on	the	Type	class	allows	you	to	determine	whether	the	current
type	is	a	subclass	of	the	type	passed	in	to	this	method.	Knowing	if	a	type	has	been
subclassed	allows	you	to	explore	the	type	hierarchy	that	your	team	or	company	has
created	and	can	lead	to	opportunities	for	code	reuse,	refactoring,	or	developing	a	better
understanding	of	the	dependencies	in	the	code	base.

Nested	types

Determining	the	nested	types	allows	you	to	programmatically	examine	various	aspects	of
some	design	patterns.	Various	design	patterns	may	specify	that	a	type	will	contain	another
type;	for	example,	the	Decorator	and	State	design	patterns	make	use	of	object
containment.

The	GetNestedTypes	extension	method	uses	a	LINQ	query	to	query	all	types	in	the
assembly	specified	by	the	asmPath	parameter.	The	LINQ	query	also	queries	for	the	nested
types	with	the	assembly	by	using	the	Type.GetNestedTypes	method	of	the	Type	class.

Usually	the	dot	operator	is	used	to	delimit	namespaces	and	types;	however,	nested	types
are	somewhat	special.	You	set	nested	types	apart	from	other	types	by	using	the	+	operator
in	their	fully	qualified	name	when	dealing	with	them	in	the	reflection	APIs.	By	passing
this	fully	qualified	name	in	to	the	static	GetType	methods,	you	can	acquire	the	actual	type
that	it	represents.

These	methods	return	a	Type	object	that	represents	the	type	identified	by	the	typeName
parameter.

NOTE
Calling	Type.GetType	to	retrieve	a	type	defined	in	a	dynamic	assembly	(one	that	is	created	using	the	types
defined	in	the	System.Reflection.Emit	namespace)	returns	a	null	if	that	assembly	has	not	already	been
persisted	to	disk.	Typically,	you	would	use	the	static	Assembly.GetType	method	on	the	dynamic	assembly’s
Assembly	object.

See	Also
The	“Assembly	Class,”	“Type	Class,”	“TypeAttributes	Enumeration,”	“Determining	and
Obtaining	Nested	Types	Within	an	Assembly,”	“BindingFlags	Enumeration,”
“MemberInfo	Class,”	and	“Finding	Members	in	an	Assembly”	topics	in	the	MSDN
documentation.

6.3	Determining	Inheritance	Characteristics

Problem
You	need	to	determine	the	inheritance	characteristics	of	types	such	as:

The	inheritance	hierarchy

Base	class	methods	that	are	overridden

Solution
Use	reflection	to	enumerate	the	inheritance	chains	and	base	class	method	overrides,	as
shown	in	Table	6-3.

Table	6-3.	Finding	types	by	characteristics

Characteristic Reflection	method

Inheritance	hierarchy Type.BaseType

Base	class	methods MethodInfo.GetBaseDefinition

Use	the	extension	method	GetInheritanceChain	to	retrieve	the	entire	inheritance
hierarchy	for	a	single	type.	GetInheritanceChain	uses	the	GetBaseTypes	method	to
enumerate	the	types	and	then	reverses	the	default	order	to	present	the	enumerated	list
sorted	from	base	type	to	derived	type.	In	other	words,	when	GetBaseTypes	traverses	the
BaseType	property	of	each	type	it	encounters,	the	resulting	list	of	types	is	ordered	from
most	derived	to	least	derived,	so	we	call	Reverse	to	order	the	list	with	the	least	derived
type	(Object)	first:

public	static	IEnumerable<Type>	GetInheritanceChain(this	Type	derivedType)	=>

				(from	t	in	derivedType.GetBaseTypes()

				select	t).Reverse();

private	static	IEnumerable<Type>	GetBaseTypes(this	Type	type)

{

				Type	current	=	type;

				while	(current	!=	null)

				{

								yield	return	current;

								current	=	current.BaseType;

				}

}

If	you	wanted	to	do	this	for	all	types	in	an	assembly,	you	could	use	the	extension	method
GetTypeHierarchies,	which	uses	the	custom	TypeHierarchy	class	to	represent	the
derived	type	and	its	inheritance	chain:

public	class	TypeHierarchy

{

				public	Type	DerivedType	{	get;	set;	}

				public	IEnumerable<Type>	InheritanceChain	{	get;	set;	}

}

public	static	IEnumerable<TypeHierarchy>	GetTypeHierarchies(this	Assembly	asm)	=>

				from	Type	type	in	asm.GetTypes()

				select	new	TypeHierarchy

				{

								DerivedType	=	type,

								InheritanceChain	=	GetInheritanceChain(type)

				};

GetTypeHierarchies	projects	each	type	as	the	DerivedType	and	uses
GetInheritanceChain	to	determine	the	InheritanceChain	for	the	type.

To	determine	if	base	class	methods	are	being	overridden,	use	the
MethodInfo.GetBaseDefinition	method	to	determine	which	method	is	overridden	in
what	base	class.	The	extension	method	GetMethodOverrides	shown	in	Example	6-1
examines	all	of	the	public	instance	methods	in	a	class	and	displays	which	methods
override	their	respective	base	class	methods.	This	method	also	determines	which	base
class	the	overridden	method	is	in.	This	extension	method	is	based	on	Type	and	uses	the
type	to	find	overriding	methods.

Example	6-2.	The	GetMethodOverrides	methods
public	class	ReflectionUtils

{

				public	static	IEnumerable<MemberInfo>	GetMethodOverrides(this	Type	type)	=>

								from	ms	in	type.GetMethods(BindingFlags.Instance	|

																																BindingFlags.NonPublic	|	BindingFlags.Public	|

																																BindingFlags.Static	|	BindingFlags.DeclaredOnly)

								where	ms	!=	ms.GetBaseDefinition()

								select	ms.GetBaseDefinition;

The	next	extension	method,	GetBaseMethodOverridden,	allows	you	to	determine	whether
a	particular	method	overrides	a	method	in	its	base	class	and	to	get	the	MethodInfo	for	that
overridden	method	back.	It	also	extends	Type,	the	full	method	name,	and	an	array	of	Type
objects	representing	its	parameter	types:

public	class	ReflectionUtils

{

				public	static	MethodInfo	GetBaseMethodOverridden(this	Type	type,

																																												string	methodName,	Type[]	paramTypes)

				{

								MethodInfo	method	=	type.GetMethod(methodName,	paramTypes);

								MethodInfo	baseDef	=	method?.GetBaseDefinition();

								if	(baseDef	!=	method)

								{

												bool	foundMatch	=	(from	p	in	baseDef.GetParameters()

																								join	op	in	paramTypes

																												on	p.ParameterType.UnderlyingSystemType

																																equals	op.UnderlyingSystemType

																								select	p).Any();

												if	(foundMatch)

																return	baseDef;

								}

								return	null;

				}

}

Discussion

Inheritance	hierarchy

Unfortunately,	no	property	of	the	Type	class	exists	to	obtain	the	inheritance	hierarchy	of	a
type.	The	DisplayInheritanceChain	methods	in	this	recipe,	however,	allow	you	to	do	so.
All	that	is	required	is	the	assembly	path	and	the	name	of	the	type	with	the	inheritance
hierarchy	you	wish	to	obtain.	The	DisplayInheritanceChain	method	requires	only	an
assembly	path	since	it	displays	the	inheritance	hierarchy	for	all	types	within	that	assembly.

The	core	code	of	this	recipe	exists	in	the	GetBaseTypes	method.	This	is	a	recursive
method	that	walks	each	inherited	type	until	it	finds	the	ultimate	base	class	—	which	is
always	the	object	class.	Once	it	arrives	at	this	ultimate	base	class,	it	returns	to	its	caller.
Each	time	the	method	returns	to	its	caller,	the	next	base	class	in	the	inheritance	hierarchy
is	added	to	the	list	until	the	final	GetBaseTypes	method	returns	the	completed	inheritance
chain.

To	display	the	inheritance	chain	of	a	type,	use	the	DisplayInheritanceChain	method	call.

private	static	void	DisplayInheritanceChain(IEnumerable<Type>	chain)

{

				StringBuilder	builder	=	new	StringBuilder();

				foreach	(var	type	in	chain)

				{

								if	(builder.Length	==	0)

												builder.Append(type.Name);

								else

												builder.AppendFormat($"<-{type.Name}");

				}

				Console.WriteLine($"Base	Type	List:	{builder.ToString()}");

}

To	display	the	inheritance	hierarchy	of	all	types	in	an	assembly,	use	GetTypeHierarchies
in	conjunction	with	DisplayInheritanceChain:

//	all	types	in	the	assembly

var	typeHierarchies	=	asm.GetTypeHierarchies();

foreach	(var	th	in	typeHierarchies)

{

				//	Recurse	over	all	base	types

				Console.WriteLine($"Derived	Type:	{th.DerivedType.FullName}");

				DisplayInheritanceChain(th.InheritanceChain);

				Console.WriteLine();

}

These	methods	result	in	output	like	the	following:

Derived	Type:	CSharpRecipes.Reflection

Base	Type	List:	Object<-Reflection

Derived	Type:	CSharpRecipes.ReflectionUtils+BaseOverrides

Base	Type	List:	Object<-BaseOverrides

Derived	Type:	CSharpRecipes.ReflectionUtils+DerivedOverrides

Base	Type	List:	Object<-BaseOverrides	<-DerivedOverrides

This	output	shows	that	the	base	type	list	(or	inheritance	hierarchy)	of	the	Reflection	class

in	the	CSharpRecipes	namespace	starts	with	Object	(like	all	class	and	struct	types	in
.NET).	The	nested	class	BaseOverrides	also	shows	a	base	type	list	starting	with	Object.
The	nested	class	DerivedOverrides	shows	a	more	interesting	base	type	list,	where
DerivedOverrides	derives	from	BaseOverrides,	which	derives	from	Object.

Base	class	methods	that	are	overridden

Determining	which	methods	override	their	base	class	methods	would	be	a	tedious	chore	if
it	were	not	for	the	GetBaseDefinition	method	of	the	System.Reflection.MethodInfo
type.	This	method	takes	no	parameters	and	returns	a	MethodInfo	object	that	corresponds
to	the	overridden	method	in	the	base	class.	If	this	method	is	used	on	a	MethodInfo	object
representing	a	method	that	is	not	being	overridden	—	as	is	the	case	with	a	virtual	or
abstract	method	—	GetBaseDefinition	returns	the	original	MethodInfo	object.

The	Type	object’s	GetMethod	method	is	called	when	both	the	method	name	and	its
parameter	array	are	passed	in	to	GetBaseMethodOverridden;	otherwise,	GetMethods	is
used	for	GetMethodOverrides.	If	the	method	is	correctly	located	and	its	MethodInfo
object	obtained,	the	GetBaseDefinition	method	is	called	on	that	MethodInfo	object	to	get
the	first	overridden	method	in	the	nearest	base	class	in	the	inheritance	hierarchy.	This
MethodInfo	type	is	compared	to	the	MethodInfo	type	on	which	the	GetBaseDefinition
method	was	called.	If	these	two	objects	are	the	same,	it	means	that	there	were	no
overridden	methods	in	any	base	classes;	therefore,	nothing	is	returned.	This	code	will
return	only	the	overridden	method;	if	no	methods	are	overridden,	then	null	is	returned.

The	following	code	shows	how	to	use	each	of	these	overloaded	methods:

Type	derivedType	=

		asm.GetType("CSharpRecipes.ReflectionAndDynamicProgramming+DerivedOverrides",

				true,	true);

var	methodOverrides	=	derivedType.GetMethodOverrides();

foreach	(MethodInfo	mi	in	methodOverrides)

{

				Console.WriteLine();

				Console.WriteLine($"Current	Method:	{mi.ToString()}");

				Console.WriteLine($"Base	Type	FullName:		{mi.DeclaringType.FullName}");

				Console.WriteLine($"Base	Method:		{mi.ToString()}");

				//	list	the	types	of	this	method

				foreach	(ParameterInfo	pi	in	mi.GetParameters())

				{

								Console.WriteLine($"\tParam	{pi.Name}	:	{pi.ParameterType.ToString()}");

				}

}

//	try	the	signature	findmethodoverrides

string	methodName	=	"Foo";

var	baseTypeMethodInfo	=	derivedType.GetBaseMethodOverridden(methodName,

				new	Type[3]	{	typeof(long),	typeof(double),	typeof(byte[])	});

Console.WriteLine(

				$"{Environment.NewLine}For	[Type]	Method:	[{derivedType.Name}]"	+

				$"	{methodName}");

Console.WriteLine(

				$"Base	Type	FullName:	{baseTypeMethodInfo.ReflectedType.FullName}");

Console.WriteLine($"Base	Method:	{baseTypeMethodInfo}");

foreach	(ParameterInfo	pi	in	baseTypeMethodInfo.GetParameters())

{

				//	list	the	params	so	we	can	see	which	one	we	got

				Console.WriteLine($"\tParam	{pi.Name}	:	{pi.ParameterType.ToString()}");

}

In	the	usage	code,	you	get	the	path	to	the	test	code	assembly	(CSharpRecipes.exe)	via	the
Process	class.	You	then	use	that	to	find	a	class	that	has	been	defined	in	the
ReflectionUtils	class,	called	DerivedOverrides,	which	derives	from	BaseOverrides.
DerivedOverrides	and	BaseOverrides	are	both	shown	here:

public	abstract	class	BaseOverrides

{

				public	abstract	void	Foo(string	str,	int	i);

				public	abstract	void	Foo(long	l,	double	d,	byte[]	bytes);

}

public	class	DerivedOverrides	:	BaseOverrides

{

				public	override	void	Foo(string	str,	int	i)

				{

				}

				public	override	void	Foo(long	l,	double	d,	byte[]	bytes)

				{

				}

}

GetMethodOverrides	returns	every	overridden	method	for	each	method	it	finds	in	the
Reflection.DerivedOverrides	type.	If	you	want	to	display	all	overriding	methods	and
their	corresponding	overridden	methods,	you	can	remove	the
BindingFlags.DeclaredOnly	binding	enumeration	from	the	GetMethods	method	call:

return	from	ms	in	type.GetMethods(BindingFlags.Instance	|

											BindingFlags.NonPublic	|	BindingFlags.Public)

							where	ms	!=	ms.GetBaseDefinition()

							select	ms.GetBaseDefinition();

GetBaseMethodOverridden	passes	a	method	name,	and	the	parameters	for	this	method,	to
find	the	override	that	specifically	matches	the	signature	based	on	the	parameters.	In	this
case,	the	parameter	types	of	method	Foo	are	long,	double,	and	byte[].	This	method
displays	the	method	that	DerivedOverrides.Foo	overrides.

See	Also
The	“Assembly	Class,”	“Type.BaseType	Method,”	“Finding	Members	in	an	Assembly,”
“MethodInfo	Class,”	and	“ParameterInfo	Class”	topics	in	the	MSDN	documentation.

6.4	Invoking	Members	Using	Reflection

Problem
You	have	a	list	of	method	names	that	you	wish	to	invoke	dynamically	within	your
application.	As	your	code	executes,	it	will	pull	names	off	this	list	and	attempt	to	invoke
these	methods.	This	technique	might	be	useful	to	create	a	test	harness	for	components	that
reads	in	the	methods	to	execute	from	an	XML	(or	JSON)	file	and	executes	them	with	the
given	arguments.

Solution
The	TestReflectionInvocation	method	shown	in	Example	6-3	calls	the
ReflectionInvoke	method,	which	opens	the	XML	configuration	file,	reads	out	the	test
information	using	LINQ,	and	executes	each	test	method.

Example	6-3.	Invoking	members	via	reflection
public	static	void	TestReflectionInvocation()

{

				XDocument	xdoc	=

								XDocument.Load(@"..\..\SampleClassLibrary\SampleClassLibraryTests.xml");

				ReflectionInvoke(xdoc,	@"SampleClassLibrary.dll");

}

This	is	the	XML	document	in	which	the	test	method	information	is	contained:

<?xml	version="1.0"	encoding="utf-8"	?>

<Tests>

				<Test	className='SampleClassLibrary.SampleClass'

				methodName='TestMethod1'>

								<Argument>Running	TestMethod1</Argument>

				</Test>

				<Test	className='SampleClassLibrary.SampleClass'

				methodName='TestMethod2'>

								<Parameter>Running	TestMethod2</Parameter>

								<Parameter>27</Parameter>

				</Test>

</Tests>

ReflectionInvoke,	as	shown	in	Example	6-4,	dynamically	invokes	the	method	that	is
passed	to	it	using	the	information	contained	in	the	XDocument.	This	code	determines	each
parameter’s	type	by	examining	the	ParameterInfo	items	on	the	MethodInfo,	and	then
converts	the	values	to	the	actual	type	from	a	string	via	the	Convert.ChangeType	method.
Finally,	the	return	value	of	the	invoked	method	is	returned	by	the	MethodBase.Invoke
method.

Example	6-4.	ReflectionInvoke	method
public	static	void	ReflectionInvoke(XDocument	xdoc,	string	asmPath)

{

				var	test	=	from	t	in	xdoc.Root.Elements("Test")

																select	new

																{

																				typeName	=	(string)t.Attribute("className").Value,

																				methodName	=	(string)t.Attribute("methodName").Value,

																				parameter	=	from	p	in	t.Elements("Parameter")

																																select	new	{	arg	=	p.Value	}

																};

				//	Load	the	assembly

				Assembly	asm	=	Assembly.LoadFrom(asmPath);

				foreach	(var	elem	in	test)

				{

								//	create	the	actual	type

								Type	reflClassType	=	asm.GetType(elem.typeName,	true,	false);

								//	Create	an	instance	of	this	type	and	verify	that	it	exists

								object	reflObj	=	Activator.CreateInstance(reflClassType);

								if	(reflObj	!=	null)

								{

												//	Verify	that	the	method	exists	and	get	its	MethodInfo	obj

												MethodInfo	invokedMethod	=	reflClassType.GetMethod(elem.methodName);

												if	(invokedMethod	!=	null)

												{

																//	Create	the	argument	list	for	the	dynamically	invoked	methods

																object[]	arguments	=	new	object[elem.parameter.Count()];

																int	index	=	0;

																//	for	each	parameter,	add	it	to	the	list

																foreach	(var	arg	in	elem.parameter)

																{

																				//	get	the	type	of	the	parameter

																				Type	paramType	=

																								invokedMethod.GetParameters()[index].ParameterType;

																				//	change	the	value	to	that	type	and	assign	it

																				arguments[index]	=

																								Convert.ChangeType(arg.arg,	paramType);

																				index++;

																}

																//	Invoke	the	method	with	the	parameters

																object	retObj	=	invokedMethod.Invoke(reflObj,	arguments);

																Console.WriteLine($"\tReturned	object:	{retObj}");

																Console.WriteLine($"\tReturned	object:	{retObj.GetType().FullName}");

												}

								}

				}

}

These	are	the	dynamically	invoked	methods	located	on	the	SampleClass	type	in	the
SampleClassLibrary	assembly:

public	bool	TestMethod1(string	text)

{

				Console.WriteLine(text);

				return	(true);

}

public	bool	TestMethod2(string	text,	int	n)

{

				Console.WriteLine(text	+	"	invoked	with	{0}",n);

				return	(true);

}

And	here	is	the	output	from	these	methods:

Running	TestMethod1

								Returned	object:	True

								Returned	object:	System.Boolean

Running	TestMethod2	invoked	with	27

								Returned	object:	True

								Returned	object:	System.Boolean

Discussion
Reflection	enables	you	to	dynamically	invoke	both	static	and	instance	methods	within	a
type	in	either	the	same	assembly	or	in	a	different	one.	This	can	be	a	very	powerful	tool	to
allow	your	code	to	determine	at	runtime	which	method	to	call.	This	determination	can	be
based	on	an	assembly	name,	a	type	name,	or	a	method	name,	though	the	assembly	name	is
not	required	if	the	method	exists	in	the	same	assembly	as	the	invoking	code,	if	you	already
have	the	Assembly	object,	or	if	you	have	a	Type	object	for	the	class	the	method	is	on.

NOTE
As	always,	with	great	power	comes	great	responsibility.	Dynamically	loading	an	assembly	without	knowing
the	origin	(or	even	invoking	a	legit	one	in	an	elevated	context)	can	cause	unwanted	consequences,	so	use
this	technique	wisely	and	securely!

This	technique	may	seem	similar	to	delegates	since	both	can	dynamically	determine	at
runtime	which	method	is	to	be	called.	Delegates,	on	the	whole,	require	you	to	know
signatures	of	methods	you	might	call	at	runtime,	whereas	with	reflection,	you	can	invoke
methods	when	you	have	no	idea	of	the	signature,	providing	a	much	looser	binding.
However,	you	will	still	have	to	pass	in	reasonable	arguments.	More	dynamic	invocation
can	be	achieved	with	Delegate.DynamicInvoke,	but	this	is	more	of	a	reflection-based
method	than	the	traditional	delegate	invocation.

The	DynamicInvoke	method	shown	in	the	Solution	contains	all	the	code	required	to
dynamically	invoke	a	method.	This	code	first	loads	the	assembly	using	its	assembly	name
(passed	in	through	the	asmPath	parameter).	Next,	it	gets	the	Type	object	for	the	class
containing	the	method	to	invoke	(it	obtains	the	class	name	from	the	Test	element’s
className	attribute	using	LINQ).	It	then	retrieves	the	method	name	from	the	Test
element’s	methodName	attribute	using	LINQ.	Once	you	have	all	of	the	information	from
the	Test	element,	an	instance	of	the	Type	object	is	created,	and	you	then	invoke	the
specified	method	on	this	created	instance:

First,	the	static	Activator.CreateInstance	method	is	called	to	actually	create	an
instance	of	the	Type	object	contained	in	the	local	variable	dynClassType.	The	method
returns	an	object	reference	to	the	instance	of	type	that	was	created	or	throws	an
exception	if	the	object	cannot	be	created.

Once	you	have	successfully	obtained	the	instance	of	this	class,	the	MethodInfo	object
of	the	method	to	be	invoked	is	acquired	through	a	call	to	GetMethod	on	the	Type	object.

The	instance	of	the	object	created	with	the	CreateInstance	method	is	then	passed	as	the
first	parameter	to	the	MethodInfo.Invoke	method.	This	method	returns	an	object
containing	the	return	value	of	the	invoked	method.	This	object	is	then	returned	by
InvokeMethod.	The	second	parameter	to	MethodInfo.Invoke	is	an	object	array	containing
any	parameters	to	be	passed	to	this	method.	This	array	is	constructed	based	on	the	number
of	Parameter	elements	under	each	Test	element	in	the	XML.	You	then	look	at	the

ParameterInfo	of	each	parameter	(obtained	from	MethodInfo.	GetParameters)	and	use
the	Convert.ChangeType	method	to	coerce	the	string	value	from	the	XML	to	the	proper
type.

The	DynamicInvoke	method	finally	displays	each	returned	object	value	and	its	type.	Note
that	there	is	no	extra	logic	required	to	return	different	return	values	from	the	invoked
methods	since	they	are	all	returned	as	an	object,	unlike	when	you	pass	differing	arguments
to	the	invoked	methods.

See	Also
The	“Activator	Class,”	“MethodInfo	Class,”	“Convert.ChangeType	Method,”	and
“ParameterInfo	Class”	topics	in	the	MSDN	documentation.

6.5	Accessing	Local	Variable	Information

Problem
You	are	building	a	tool	that	examines	code,	and	you	need	to	get	access	to	the	local
variables	within	a	method.

Solution
Use	the	LocalVariables	property	on	the	MethodBody	class	to	return	an	IList	of
LocalVariableInfo	objects,	each	of	which	describes	a	local	variable	within	the	method:

public	static	ReadOnlyCollection<LocalVariableInfo>

GetLocalVars(string	asmPath,	string	typeName,	string	methodName)

{

				Assembly	asm	=	Assembly.LoadFrom(asmPath);

				Type	asmType	=	asm.GetType(typeName);

				MethodInfo	mi	=	asmType.GetMethod(methodName);

				MethodBody	mb	=	mi.GetMethodBody();

				System.Collections.ObjectModel.ReadOnlyCollection<LocalVariableInfo>	vars	=

								(System.Collections.ObjectModel.ReadOnlyCollection<LocalVariableInfo>)

												mb.LocalVariables;

				//	Display	information	about	each	local	variable

				foreach	(LocalVariableInfo	lvi	in	vars)

				{

								Console.WriteLine($"IsPinned:	{lvi.IsPinned}");

								Console.WriteLine($"LocalIndex:	{lvi.LocalIndex}");

								Console.WriteLine($"LocalType.Module:	{lvi.LocalType.Module}");

								Console.WriteLine($"LocalType.FullName:	{lvi.LocalType.FullName}");

								Console.WriteLine($"ToString():	{lvi.ToString()}");

				}

				return	(vars);

}

You	can	call	the	GetLocalVars	method	using	the	following	code:

public	static	void	TestGetLocalVars()

{

				string	file	=	GetProcessPath();

				//	Get	all	local	var	info	for	the	

				//	CSharpRecipes.Reflection.GetLocalVars	method

				System.Collections.ObjectModel.ReadOnlyCollection<LocalVariableInfo>	vars	=

								GetLocalVars(file,	"CSharpRecipes.ReflectionAndDynamicProgramming",

												"GetLocalVars");

}

GetProcessPath,	shown	here,	returns	the	current	path	to	the	process	executable:

private	static	string	GetProcessPath()

{

				//	fix	the	path	so	that	if	running	under	the	debugger	we	get	the	

				//	original	file

				string	processName	=	Process.GetCurrentProcess().MainModule.FileName;

				int	index	=	processName.IndexOf("vshost",	StringComparison.Ordinal);

				if	(index	!=	-1)

				{

								string	first	=	processName.Substring(0,	index);

								int	numChars	=	processName.Length	-	(index	+	7);

								string	second	=	processName.Substring(index	+	7,	numChars);

								processName	=	first	+	second;

				}

				return	processName;

}

Here	is	the	output	of	this	method:

IsPinned:	False

LocalIndex:	0

LocalType.Module:	CommonLanguageRuntimeLibrary

LocalType.FullName:	System.Reflection.Assembly

ToString():	System.Reflection.Assembly	(0)

IsPinned:	False

LocalIndex:	1

LocalType.Module:	CommonLanguageRuntimeLibrary

LocalType.FullName:	System.Type

ToString():	System.Type	(1)

IsPinned:	False

LocalIndex:	2

LocalType.Module:	CommonLanguageRuntimeLibrary

LocalType.FullName:	System.Reflection.MethodInfo

ToString():	System.Reflection.MethodInfo	(2)

IsPinned:	False

LocalIndex:	3

LocalType.Module:	CommonLanguageRuntimeLibrary

LocalType.FullName:	System.Reflection.MethodBody

ToString():	System.Reflection.MethodBody	(3)

IsPinned:	False

LocalIndex:	4

LocalType.Module:	CommonLanguageRuntimeLibrary

LocalType.FullName:	System.Collections.ObjectModel.ReadOnlyCollection`1[[System.

Reflection.LocalVariableInfo,	mscorlib,	Version=4.0.0.0,	Culture=neutral,	Public

KeyToken=b77a5c561934e089]]

ToString():	System.Collections.ObjectModel.ReadOnlyCollection`1[System.Reflectio

n.LocalVariableInfo]	(4)

IsPinned:	False

LocalIndex:	5

LocalType.Module:	CommonLanguageRuntimeLibrary

LocalType.FullName:	System.Collections.Generic.IEnumerator`1[[System.Reflection.

LocalVariableInfo,	mscorlib,	Version=4.0.0.0,	Culture=neutral,	PublicKeyToken=b7

7a5c561934e089]]

ToString():	System.Collections.Generic.IEnumerator`1[System.Reflection.LocalVari

ableInfo]	(5)

IsPinned:	False

LocalIndex:	6

LocalType.Module:	CommonLanguageRuntimeLibrary

LocalType.FullName:	System.Reflection.LocalVariableInfo

ToString():	System.Reflection.LocalVariableInfo	(6)

IsPinned:	False

LocalIndex:	7

LocalType.Module:	CommonLanguageRuntimeLibrary

LocalType.FullName:	System.Collections.ObjectModel.ReadOnlyCollection`1[[System.

Reflection.LocalVariableInfo,	mscorlib,	Version=4.0.0.0,	Culture=neutral,	Public

KeyToken=b77a5c561934e089]]

ToString():	System.Collections.ObjectModel.ReadOnlyCollection`1[System.Reflectio

n.LocalVariableInfo]	(7)

The	LocalVariableInfo	objects	for	each	local	variable	found	in	the
CSharpRecipes.Reflection.GetLocalVars	method	will	be	returned	in	the	vars	IList
collection.

Discussion
The	LocalVariables	property	can	give	you	a	good	amount	of	information	about	variables
within	a	method.	It	returns	an	IList<LocalVariableInfo>	collection.	Each
LocalVariableInfo	object	contains	the	information	described	in	Table	6-4.

Table	6-4.	LocalVariableInfo	information

Member Definition
IsPinned Returns	a	bool	indicating	if	the	object	that	this	variable	refers	to	is	pinned	in	memory	(true)	or	not

(false).	In	unmanaged	code,	an	object	must	be	pinned	before	it	can	be	referred	to	by	an	unmanaged
pointer.	While	it	is	pinned,	it	cannot	be	moved	by	garbage	collection.

LocalIndex Returns	the	index	of	this	variable	within	this	method’s	body.
LocalType Returns	a	Type	object	that	describes	the	type	of	this	variable.
ToString Returns	the	LocalType.FullName,	a	space,	and	then	the	LocalIndex	value	surrounded	by	parentheses.

See	Also
The	“MethodInfo	Class,”	“MethodBody	Class,”	“ReadOnlyCollection<T>	Class,”	and
“LocalVariableInfo	Class”	topics	in	the	MSDN	documentation.

6.6	Creating	a	Generic	Type

Problem
You	want	to	create	a	generic	type	using	only	the	reflection	APIs.

Solution
You	create	a	generic	type	similarly	to	how	you	create	a	nongeneric	type;	however,	there	is
an	extra	step	to	create	the	type	arguments	you	want	to	use	and	to	bind	these	type
arguments	to	the	generic	type’s	type	parameters	at	construction.	You	will	use	a	new
method	added	to	the	Type	class	called	BindGenericParameters:

public	static	void	CreateDictionary()

{

				//	Get	the	type	we	want	to	construct

				Type	typeToConstruct	=	typeof(Dictionary<,>);

				//	Get	the	type	arguments	we	want	to	construct	our	type	with

				Type[]	typeArguments	=	{typeof(int),	typeof(string)};

				//	Bind	these	type	arguments	to	our	generic	type

				Type	newType	=	typeToConstruct.MakeGenericType(typeArguments);

				//	Construct	our	type

				Dictionary<int,	string>	dict	=

								(Dictionary<int,	string>)Activator.CreateInstance(newType);

				//	Test	our	newly	constructed	type

				Console.WriteLine($"Count	==	{dict.Count}");

				dict.Add(1,	"test1");

				Console.WriteLine($"Count	==	{dict.Count}");

}

This	is	the	code	to	test	the	CreateDictionary	method:

public	static	void	TestCreateMultiMap()

{

				Assembly	asm	=	Assembly.LoadFrom("C:\\CSCB6	"	+

													"\\Code\\CSharpRecipes\\bin\\Debug\\CSharpRecipes.exe");

				CreateDictionary(asm);

}

And	here	is	the	output	of	this	method:

Count	==	0

Count	==	1

Discussion
Type	parameters	are	defined	on	a	class	and	indicate	that	any	type	that	can	be	converted	to
an	Object	can	be	substituted	for	this	type	parameter	(unless,	of	course,	there	are
constraints	placed	on	this	type	parameter	via	the	where	keyword).	For	example,	the
following	class	has	two	type	parameters,	T	and	U:

public	class	Foo<T,	U>	{...}

NOTE
Of	course,	you	do	not	have	to	use	T	and	U;	you	can	instead	use	another	letter	or	even	a	full	name,	such	as
TypeParam1	and	TypeParam2.

A	type	argument	is	defined	as	the	actual	type	that	will	be	substituted	for	the	type
parameter.	In	the	previously	defined	class	Foo,	you	can	replace	type	parameter	T	with	the
type	argument	int,	and	type	parameter	U	with	the	type	argument	string.

The	BindGenericParameters	method	allows	you	to	substitute	type	parameters	with	actual
type	arguments.	This	method	accepts	a	single	Type	array	parameter.	This	Type	array
consists	of	each	type	argument	that	will	be	substituted	for	each	type	parameter	of	the
generic	type.	These	type	arguments	must	be	added	to	this	Type	array	in	the	same	order	as
they	are	defined	on	the	class.	For	example,	the	Foo	class	defines	type	parameters	T	and	U,
in	that	order.	The	Type	array	that	you	define	contains	an	int	type	and	a	string	type,	in
that	order.	This	means	that	the	type	parameter	T	will	be	substituted	for	the	type	argument
int,	and	U	will	be	replaced	with	a	string	type.	The	BindGenericParameters	method
returns	a	Type	object	of	the	type	you	specified	along	with	the	type	arguments.

See	Also
The	“Type.BindGenericParameters	method”	topic	in	the	MSDN	documentation.

6.7	Using	dynamic	Versus	object

Problem
You	want	to	know	the	differences	between	using	dynamic	and	object	as	the	type
specification.

Solution
To	demonstrate	the	primary	difference	between	dynamic	and	object,	we	will	revisit	the
sample	class	we	used	in	Recipe	6.4.	That	code	dynamically	loaded	an	instance	of	the
SampleClass	type	and	then,	using	an	XML	file	and	reflection,	ran	certain	operations	on
the	instance.	That	instance	was	of	type	object.	If	we	created	the	type	and	made	it
dynamic,	we	could	actually	write	the	code	to	call	the	methods	right	in	the	code	(giving	up
the	flexibility	of	the	first	example	but	making	the	code	much	neater)	even	though	our
dynamic	object	instance	is	not	of	type	SampleClass:

//	Load	the	assembly

Assembly	asm	=	Assembly.LoadFrom(@"SampleClassLibrary.dll");

//	Get	the	SampleClass	type

Type	reflClassType	=	asm?.GetType("SampleClassLibrary.SampleClass",	true,	false);

if	(reflClassType	!=	null)

{

				//	Create	our	sample	class	instance

				dynamic	sampleClass	=	Activator.CreateInstance(reflClassType);

				Console.WriteLine($"LastMessage:	{sampleClass.LastMessage}");

				Console.WriteLine("Calling	TestMethod1");

				sampleClass.TestMethod1("Running	TestMethod1");

				Console.WriteLine($"LastMessage:	{sampleClass.LastMessage}");

				Console.WriteLine("Calling	TestMethod2");

				sampleClass.TestMethod2("Running	TestMethod2",	27);

				Console.WriteLine($"LastMessage:	{sampleClass.LastMessage}");

}

Notice	that	we	can	call	the	methods	directly	without	error	even	though	the	type	of	the
object	instance	is	dynamic.	This	is	because	the	compiler	knows	to	defer	type	checking	of
these	calls	(LastMessage,	TestMethod1,	TestMethod2)	until	runtime.	Although	dynamic	is
treated	like	object	and	even	ultimately	compiles	to	object,	it	tells	the	compiler,	“Hey
relax,	I	know	what	I’m	doing!”	and	allows	you	to	invoke	methods	and	properties	that	the
compiler	can’t	resolve.

The	output	of	this	example	is	shown	here:

LastMessage:	Not	set	yet

Calling	TestMethod1

Running	TestMethod1

LastMessage:	Running	TestMethod1

Calling	TestMethod2

Running	TestMethod2	invoked	with	27

LastMessage:	Running	TestMethod2

Discussion
The	dynamic	type	allows	you	to	bypass	compile-time	type	checking	and	binds	the
operations	to	call	sites	at	runtime.

WARNING
Just	remember,	if	you	aren’t	finding	out	until	runtime,	you	might	see	exceptions	you	weren’t	expecting	if
you	access	things	on	a	dynamic	object	that	are	not	present.

Most	of	the	time,	dynamic	acts	just	like	object,	with	the	main	difference	being	the
deferred	checking.	Once	the	operation	for	a	dynamic	type	is	invoked,	the	results	of	the
binding	are	cached	to	help	with	performance	the	next	time	the	operation	is	called.	If	you
look	at	the	IL	for	a	dynamic	method,	you	will	see	that	the	sampleClass	local	variable
actually	compiles	down	to	the	type	object:

.locals	init	([0]	class	[mscorlib]System.Reflection.Assembly	asm,

									[1]	class	[mscorlib]System.Type	reflClassType,

									[2]	bool	V_2,

									[3]	object	sampleClass)

If	we	tried	to	do	the	same	operations	on	our	SampleClass	instance	using	object	instead	of
dynamic,	like	this:

object	objSampleClass	=	Activator.CreateInstance(reflClassType);

Console.WriteLine($"LastMessage:	{objSampleClass.LastMessage}");

Console.WriteLine("Calling	TestMethod1");

objSampleClass.TestMethod1("Running	TestMethod1");

Console.WriteLine($"LastMessage:	{objSampleClass.LastMessage}");

Console.WriteLine("Calling	TestMethod2");

objSampleClass.TestMethod2("Running	TestMethod2",	27);

Console.WriteLine($"LastMessage:	{objSampleClass.LastMessage}");

We	would	get	the	following	compiler	errors:

Error	CS1061		'object'	does	not	contain	a	definition	for	'LastMessage'	and	no

extension	method	'LastMessage'	accepting	a	first	argument	of	type	'object'	could

be	found(are	you	missing	a	using	directive	or	an	assembly	reference	?)

06_ReflectionAndDynamicProgramming.cs		482

Error	CS1061		'object'	does	not	contain	a	definition	for	'TestMethod1'	and	no

extension	method	'TestMethod1'	accepting	a	first	argument	of	type	'object'	could

be	found(are	you	missing	a	using	directive	or	an	assembly	reference	?)

06_ReflectionAndDynamicProgramming.cs		484

Error	CS1061		'object'	does	not	contain	a	definition	for	'LastMessage'	and	no

extension	method	'LastMessage'	accepting	a	first	argument	of	type	'object'	could

be	found(are	you	missing	a	using	directive	or	an	assembly	reference	?)

06_ReflectionAndDynamicProgramming.cs		485

Error	CS1061		'object'	does	not	contain	a	definition	for	'TestMethod2'	and	no

extension	method	'TestMethod2'	accepting	a	first	argument	of	type	'object'	could

be	found(are	you	missing	a	using	directive	or	an	assembly	reference	?)

06_ReflectionAndDynamicProgramming.cs		487

Error	CS1061		'object'	does	not	contain	a	definition	for	'LastMessage'	and	no

extension	method	'LastMessage'	accepting	a	first	argument	of	type	'object'	could

be	found(are	you	missing	a	using	directive	or	an	assembly	reference	?)

06_ReflectionAndDynamicProgramming.cs		488

See	Also
The	“dynamic”	topic	in	the	MSDN	documentation.

6.8	Building	Objects	Dynamically

Problem
You	want	to	be	able	to	build	up	an	object	to	work	with	on	the	fly	at	runtime.

Solution
Use	ExpandoObject	to	create	an	object	that	you	can	add	properties,	methods,	and	events	to
and	be	able	to	bind	data	to	in	a	user	interface.

We	can	use	ExpandoObject	to	create	an	initial	object	to	hold	someone’s	Name	and	current
Country:

dynamic	expando	=	new	ExpandoObject();

expando.Name	=	"Brian";

expando.Country	=	"USA";

Once	we	have	added	properties	directly,	we	can	also	add	properties	to	our	object	in	a	more
dynamic	fashion	using	the	AddProperty	method	we	have	provided	for	you.	One	example
of	why	you	might	do	this	is	to	add	properties	to	your	object	from	another	source	of	data.
We	will	add	the	Language	property:

//	Add	properties	dynamically	to	expando

AddProperty(expando,	"Language",	"English");

The	AddProperty	method	takes	advantage	of	ExpandoObject’s	support	for
IDictionary<string,	object>	and	allows	us	to	add	properties	using	values	we
determine	at	runtime:

public	static	void	AddProperty(ExpandoObject	expando,	string	propertyName,

				object	propertyValue)

{

				//	ExpandoObject	supports	IDictionary	so	we	can	extend	it	like	this

				var	expandoDict	=	expando	as	IDictionary<string,	object>;

				if	(expandoDict.ContainsKey(propertyName))

								expandoDict[propertyName]	=	propertyValue;

				else

								expandoDict.Add(propertyName,	propertyValue);

}

We	can	also	add	methods	to	the	ExpandoObject	by	using	the	Func<>	generic	type,	which
represents	a	method	call.	In	our	example,	we	will	add	a	validation	method	for	our	object:

//	Add	method	to	expando

expando.IsValid	=	(Func<bool>)(()	=>

{

				//	Check	that	they	supplied	a	name

				if(string.IsNullOrWhiteSpace(expando.Name))

								return	false;

				return	true;

});

if(!expando.IsValid())

{

				//	Don't	allow	continuation…

}

Now	we	can	also	define	and	add	events	to	the	ExpandoObject	using	the	Action<>	generic
type.	We	will	add	two	events,	LanguageChanged	and	CountryChanged.	We’ll	add
LanguageChanged	after	defining	the	eventHandler	variable	to	hold	the

Action<object,EventArgs>,	and	we’ll	add	CountryChanged	directly	as	an	inline
anonymous	method.	CountryChanged	looks	at	the	Country	that	changed	and	invokes	the
LanguageChanged	event	with	the	proper	Language	for	the	Country.	(Note	that
LanguageChanged	is	also	an	anonymous	method,	but	sometimes	it	can	make	for	cleaner
code	to	have	a	variable	for	these.)

//	You	can	also	add	event	handlers	to	expando	objects

var	eventHandler	=

				new	Action<object,	EventArgs>((sender,	eventArgs)	=>

				{

								dynamic	exp	=	sender	as	ExpandoObject;

								var	langArgs	=	eventArgs	as	LanguageChangedEventArgs;

								Console.WriteLine($"Setting	Language	to	:	{langArgs?.Language}");

								exp.Language	=	langArgs?.Language;

				});

//	Add	a	LanguageChanged	event	and	predefined	event	handler

AddEvent(expando,	"LanguageChanged",	eventHandler);

//	Add	a	CountryChanged	event	and	an	inline	event	handler

AddEvent(expando,	"CountryChanged",

				new	Action<object,	EventArgs>((sender,	eventArgs)	=>

{

				dynamic	exp	=	sender	as	ExpandoObject;

				var	ctryArgs	=	eventArgs	as	CountryChangedEventArgs;

				string	newLanguage	=	string.Empty;

				switch	(ctryArgs?.Country)

				{

								case	"France":

												newLanguage	=	"French";

												break;

								case	"China":

												newLanguage	=	"Mandarin";

												break;

								case	"Spain":

												newLanguage	=	"Spanish";

												break;

				}

				Console.WriteLine($"Country	changed	to	{ctryArgs?.Country},	"	+

								$"changing	Language	to	{newLanguage}");

				exp?.LanguageChanged(sender,

								new	LanguageChangedEventArgs()	{	Language	=	newLanguage	});

}));

We	have	provided	the	AddEvent	method	for	you	to	encapsulate	the	details	of	adding	the
event	to	the	ExpandoObject.	This	again	takes	advantage	of	ExpandoObject’s	support	of
IDictionary<string,object>:

public	static	void	AddEvent(ExpandoObject	expando,	string	eventName,

Action<object,	EventArgs>	handler)

{

				var	expandoDict	=	expando	as	IDictionary<string,	object>;

				if	(expandoDict.ContainsKey(eventName))

								expandoDict[eventName]	=	handler;

				else

								expandoDict.Add(eventName,	handler);

}

Finally,	ExpandoObject	supports	INotifyPropertyChanged,	which	is	the	foundation	of
binding	data	to	properties	in	.NET.	We	hook	up	the	event	handler,	and	when	the	Country
property	is	changed	we	fire	the	CountryChanged	event:

	((INotifyPropertyChanged)expando).PropertyChanged	+=

				new	PropertyChangedEventHandler((sender,	ea)	=>

{

				dynamic	exp	=	sender	as	dynamic;

				var	pcea	=	ea	as	PropertyChangedEventArgs;

				if(pcea?.PropertyName	==	"Country")

								exp.CountryChanged(exp,	new	CountryChangedEventArgs()

												{	Country	=	exp.Country	});

});

Now	that	we’ve	finished	constructing	our	object,	we	can	invoke	it	like	this	to	simulate	our
friend	travelling	around	the	world:

Console.WriteLine($"expando	contains:	{expando.Name},	{expando.Country},	"	+

				$"{expando.Language}");

Console.WriteLine();

Console.WriteLine("Changing	Country	to	France…");

expando.Country	=	"France";

Console.WriteLine($"expando	contains:	{expando.Name},	{expando.Country},		"	+

				$"{expando.Language}");

Console.WriteLine();

Console.WriteLine("Changing	Country	to	China…");

expando.Country	=	"China";

Console.WriteLine($"expando	contains:	{expando.Name},	{expando.Country},		"	+

				$"{expando.Language}");

Console.WriteLine();

Console.WriteLine("Changing	Country	to	Spain…");

expando.Country	=	"Spain";

Console.WriteLine($"expando	contains:	{expando.Name},	{expando.Country},		"	+

				$"{expando.Language}");

Console.WriteLine();

The	output	of	this	example	is	shown	here:

expando	contains:	Brian,	USA,	English

Changing	Country	to	France…

Country	changed	to	France,	changing	Language	to	French

Setting	Language	to:	French

expando	contains:	Brian,	France,	French

Changing	Country	to	China…

Country	changed	to	China,	changing	Language	to	Mandarin

Setting	Language	to:	Mandarin

expando	contains:	Brian,	China,	Mandarin

Changing	Country	to	Spain…

Country	changed	to	Spain,	changing	Language	to	Spanish

Setting	Language	to:	Spanish

expando	contains:	Brian,	Spain,	Spanish

Discussion
ExpandoObject	allows	you	to	write	code	that	is	more	readable	than	typical	reflection	code
with	GetProperty("Field")	syntax.	When	you’re	dealing	with	XML	or	JSON,
ExpandoObject	can	be	useful	for	quickly	setting	up	a	type	to	program	against	instead	of
always	having	to	create	data	transfer	objects.	ExpandoObject’s	support	for	data	binding
through	INotifyPropertyChanged	is	a	huge	win	for	anyone	using	WPF,	MVC,	or	any
other	binding	framework	in	.NET,	as	it	allows	you	to	use	these	objects,	as	well	as	other
statically	typed	classes,	“on	the	fly.”

Since	ExpandoObject	can	take	delegates	as	members,	you	can	attach	methods	and	events
to	these	dynamic	types	while	the	code	looks	like	you	are	addressing	a	static	type:

public	static	void	AddEvent(ExpandoObject	expando,	string	eventName,

Action<object,	EventArgs>	handler)

{

				var	expandoDict	=	expando	as	IDictionary<string,	object>;

				if	(expandoDict.ContainsKey(eventName))

								expandoDict[eventName]	=	handler;

				else

								expandoDict.Add(eventName,	handler);

}

You	might	be	wondering	why	we	didn’t	use	extension	methods	for	AddProperty	and
AddEvent.	They	both	could	hang	off	of	ExpandoObject	and	make	the	syntax	even	cleaner,
right?	Unfortunately,	no.	The	way	extension	methods	work	is	that	the	compiler	does	a
search	on	all	classes	that	might	be	a	match	for	the	extended	class.	This	means	that	the
DLR	would	have	to	know	all	of	this	information	at	runtime	as	well	(since	ExpandoObject
is	handled	by	the	DLR),	and	currently	not	all	of	that	information	is	encoded	into	the	call
site	for	the	class	and	methods.

The	event	argument	classes	for	the	LanguageChanged	and	CountryChanged	events	are
listed	here:

public	class	LanguageChangedEventArgs	:	EventArgs

{

				public	string	Language	{	get;	set;	}

}

public	class	CountryChangedEventArgs	:	EventArgs

{

				public	string	Country	{	get;	set;	}

}

See	Also
The	“ExpandoObject	class,”	”Func<>	delegate,”	“Action<>	delegate,”	and
“INotifyPropertyChanged	interface”	topics	in	the	MSDN	documentation.

6.9	Make	Your	Objects	Extensible

Problem
You	want	to	have	a	base	class	for	objects	that	will	allow	you	to	extend	the	objects	at
runtime	so	that	you	can	derive	your	models	from	it	and	avoid	duplicated	code.

Solution
Use	the	DynamicBase<T>	class	derived	from	DynamicObject	to	create	a	new	class	or
encapsulate	an	existing	class:

public	class	DynamicBase<T>	:	DynamicObject

				where	T	:	new()

{

				private	T	_containedObject	=	default(T);

				[JsonExtensionData]	//JSON.NET	5.0	and	above

				private	Dictionary<string,	object>	_dynamicMembers	=

								new	Dictionary<string,	object>();

				private	List<PropertyInfo>	_propertyInfos	=

								new	List<PropertyInfo>(typeof(T).GetProperties());

				public	DynamicBase()

				{

				}

				public	DynamicBase(T	containedObject)

				{

								_containedObject	=	containedObject;

				}

				public	override	bool	TryInvokeMember(InvokeMemberBinder	binder,	

								object[]	args,	out	object	result)

				{

								if	(_dynamicMembers.ContainsKey(binder.Name)	

								&&	_dynamicMembers[binder.Name]	is	Delegate)

								{

												result	=	(_dynamicMembers[binder.Name]	as	Delegate).DynamicInvoke(

																args);

												return	true;

								}

								return	base.TryInvokeMember(binder,	args,	out	result);

				}

				public	override	IEnumerable<string>	GetDynamicMemberNames()	=>	

								_dynamicMembers.Keys;

				public	override	bool	TryGetMember(GetMemberBinder	binder,	out	object	result)

				{

								result	=	null;

								var	propertyInfo	=	_propertyInfos.Where(pi	=>

												pi.Name	==	binder.Name).FirstOrDefault();

								//	Make	sure	this	member	isn't	a	property	on	the	object	yet

								if	(propertyInfo	==	null)

								{

												//	look	in	the	additional	items	collection	for	it

												if	(_dynamicMembers.Keys.Contains(binder.Name))

												{

																//	return	the	dynamic	item

																result	=	_dynamicMembers[binder.Name];

																return	true;

												}

								}

								else

								{

												//	get	it	from	the	contained	object

												if	(_containedObject	!=	null)

												{

																result	=	propertyInfo.GetValue(_containedObject);

																return	true;

												}

								}

								return	base.TryGetMember(binder,	out	result);

				}

				public	override	bool	TrySetMember(SetMemberBinder	binder,	object	value)

				{

								var	propertyInfo	=	_propertyInfos.Where(pi	=>

												pi.Name	==	binder.Name).FirstOrDefault();

								//	Make	sure	this	member	isn't	a	property	on	the	object	yet

								if	(propertyInfo	==	null)

								{

												//	look	in	the	additional	items	collection	for	it

												if	(_dynamicMembers.Keys.Contains(binder.Name))

												{

																//	set	the	dynamic	item

																_dynamicMembers[binder.Name]	=	value;

																return	true;

												}

												else

												{

																_dynamicMembers.Add(binder.Name,	value);

																return	true;

												}

								}

								else

								{

												//	put	it	in	the	contained	object

												if	(_containedObject	!=	null)

												{

																propertyInfo.SetValue(_containedObject,	value);

																return	true;

												}

								}

								return	base.TrySetMember(binder,	value);

				}

				public	override	string	ToString()

				{

								StringBuilder	builder	=	new	StringBuilder();

								foreach	(var	propInfo	in	_propertyInfos)

								{

												if(_containedObject	!=	null)

																builder.AppendFormat("{0}:{1}{2}",	propInfo.Name,

																			propInfo.GetValue(_containedObject),	Environment.NewLine);

												else

																builder.AppendFormat("{0}:{1}{2}",	propInfo.Name,

																			propInfo.GetValue(this),	Environment.NewLine);

								}

								foreach	(var	addlItem	in	_dynamicMembers)

								{

												//	exclude	methods	that	are	added	from	the	description

												Type	itemType	=	addlItem.Value.GetType();

												Type	genericType	=

																itemType.IsGenericType	?	

																				itemType.GetGenericTypeDefinition()	:	null;

												if	(genericType	!=	null)

												{

																if	(genericType	!=	typeof(Func<>)	&&

																				genericType	!=	typeof(Action<>))

																				builder.AppendFormat("{0}:{1}{2}",	addlItem.Key,

																								addlItem.Value,	Environment.NewLine);

												}

												else

																builder.AppendFormat("{0}:{1}{2}",	addlItem.Key,	addlItem.Value,

																			Environment.NewLine);

								}

								return	builder.ToString();

				}

}

To	understand	how	DynamicBase<T>	is	used,	consider	a	scenario	where	we	have	a	web
service	that	is	receiving	a	serialized	JSON	payload	of	athlete	information.	Currently	we
have	defined	the	DynamicAthlete	class	with	properties	for	both	a	Name	and	a	Sport:

public	class	DynamicAthlete	:	DynamicBase<DynamicAthlete>

{

				public	string	Name	{	get;	set;	}

				public	string	Sport	{	get;	set;	}

}

In	the	payload	being	sent	to	us,	the	supplier	has	started	to	send	additional	information
about	the	Position	the	athlete	plays.	This	can	happen	at	times	when	legacy	system
integrations	change	and	all	systems	cannot	update	at	the	same	time.	For	our	receiving
system,	we	don’t	want	to	lose	the	new	data	being	sent	from	some	systems.	We	simulate
the	construction	of	the	JSON	payload	using	dynamic	and	the	JSON.NET	serializer
available	via	NuGet	(thank	you,	James	Newton-King	—	this	thing	rocks!):

//	Create	a	set	of	information	on	athletes

//	Note	that	the	service	receiving	these	doesn't	have	Position	as	a

//	property	on	the	Athlete	object

dynamic	initialAthletes	=	new[]

{

				new

				{

								Name	=	"Tom	Brady",

								Sport	=	"Football",

								Position	=	"Quarterback"

				},

				new

				{

								Name	=	"Derek	Jeter",

								Sport	=	"Baseball",

								Position	=	"Shortstop"

				},

				new

				{

								Name	=	"Michael	Jordan",

								Sport	=	"Basketball",

								Position	=	"Small	Forward"

				},

				new

				{

								Name	=	"Lionel	Messi",

								Sport	=	"Soccer",

								Position	=	"Forward"

				}

};

//	serialize	the	JSON	to	send	to	a	web	service	about	athletes…

string	serializedAthletes	=	JsonNetSerialize(initialAthletes);

Assume	the	JSON	payload	for	the	athletes	comes	in	to	your	service	and	is	deserialized
(once	again,	props	to	JSON.NET)	and	we	deserialize	it	as	an	array	of	DynamicAthletes:

//	deserialize	the	JSON	we	were	sent

var	athletes	=	JsonNetDeserialize<DynamicAthlete[]>(serializedAthletes);

Now,	everyone	who	has	done	any	kind	of	web	service	development	(or	any	serialization
development,	for	that	matter)	knows	that	if	you	don’t	have	a	place	to	put	things	while
deserializing,	they	get	lost	or	cause	errors.	So	what	happens	to	the	Position	property
value	that	was	passed	in	since	that	property	is	not	declared	on	DynamicAthlete?	If	you
look	back	at	the	declaration	of	DynamicBase<T>	(from	which	DynamicAthlete	derives),
you	will	see	an	internal	private	Dictionary<string,object>	that	is	marked	with	the
JsonExtensionData	attribute.	This	attribute	tells	the	serializer	where	to	put	property
values	that	do	not	have	a	place	in	the	derived	object.	How	cool	is	that?!	So	our	Position
value	is	stored	in	this	internal	dictionary,	which	is	great,	but	how	do	we	access	it?

[JsonExtensionData]	//JSON.NET	5.0	and	above

private	Dictionary<string,	object>	_dynamicMembers	=

				new	Dictionary<string,	object>();

Since	our	DynamicAthlete	is	derived	from	DynamicBase<T>,	which	in	turn	derives	from
DynamicObject,	we	can	assign	the	first	athlete	we	received	into	the	dynamic	variable	da.
Once	it	is	in	a	dynamic	variable,	we	can	access	Position	just	as	if	it	were	one	of	the
defined	properties	of	DynamicAthlete:

dynamic	da	=	athletes[0];

Console.WriteLine($"Position	of	first	athlete:	{da.Position}");

So	we	can	preserve	the	value	of	the	properties	sent	to	us	even	if	we	don’t	know	about
them	directly	when	we	deploy	the	service,	which	is	a	nice	robustness	feature.	We	could
also	add	a	new	method	to	each	DynamicAthlete	to	get	the	Name	in	uppercase	while
printing	out	the	contents	we	received:

//	Inspect	the	athletes	and	see	that	we	not	only	got	the	Position

//	information,	but	we	can	also	add	an	operation	to	work	on	the

//	entity	and	invoke	that	as	part	of	the	dynamic	entity

foreach(var	athlete	in	athletes)

{

				dynamic	dynamicAthlete	=	(dynamic)athlete;

				dynamicAthlete.GetUppercaseName	=

								(Func<string>)(()	=>

								{

												return	((string)dynamicAthlete.Name).ToUpper();

								});

				Console.WriteLine($"Athlete:");

				Console.WriteLine(athlete);

				Console.WriteLine($"Uppercase	Name:	{dynamicAthlete.GetUppercaseName()}");

				Console.WriteLine();

				Console.WriteLine();

}

GetUppercaseName	is	added	to	the	object	and	then	called	to	return	the	uppercase	version
of	the	Name.	Here	is	the	output:

Athlete:

Name:Tom	Brady

Sport:Football

Position:Quarterback

Uppercase	Name:	TOM	BRADY

Athlete:

Name:Derek	Jeter

Sport:Baseball

Position:Shortstop

Uppercase	Name:	DEREK	JETER

Athlete:

Name:Michael	Jordan

Sport:Basketball

Position:Small	Forward

Uppercase	Name:	MICHAEL	JORDAN

Athlete:

Name:Lionel	Messi

Sport:Soccer

Position:Forward

Uppercase	Name:	LIONEL	MESSI

What	about	the	case	where	we	already	have	our	objects	defined?	How	can	we	get	in	on
this	extension	goodness?	Let’s	look	at	the	StaticAthlete	class	as	an	example:

public	class	StaticAthlete

{

				public	string	Name	{	get;	set;	}

				public	string	Sport	{	get;	set;	}

}

StaticAthlete	looks	almost	the	same	as	DynamicAthlete,	but	it	is	not	derived	from
anything.

If	we	create	an	instance	of	StaticAthlete,	we	can	still	use	DynamicBase<T>	to	wrap	it
and	get	the	same	extension	behavior	as	we	did	when	DynamicAthlete	was	inheriting	from
DynamicBase<T>.	DynamicBase<T>	is	no	Super	Bass-O-Matic	’76,	but	it	slices	and	dices
classes	pretty	well	too!

//Wrap	an	existing	athlete

StaticAthlete	staticAthlete	=	new	StaticAthlete()

{

				Sport	=	"Hockey"

};

dynamic	extendedAthlete	=	new	DynamicBase<StaticAthlete>(staticAthlete);

extendedAthlete.Name	=	"Bobby	Orr";

extendedAthlete.Position	=	"Defenseman";

extendedAthlete.GetUppercaseName	=

								(Func<string>)(()	=>

								{

												return	((string)extendedAthlete.Name).ToUpper();

								});

Console.WriteLine($"Static	Athlete	(extended):");

Console.WriteLine(extendedAthlete);

Console.WriteLine($"Uppercase	Name:	{extendedAthlete.GetUppercaseName()}");

Console.WriteLine();

Console.WriteLine();

You	can	see	that	the	output	for	StaticAthlete	is	exactly	the	same	as	it	was	for	the
DynamicAthletes:

Static	Athlete	(extended):

Name:Bobby	Orr

Sport:Hockey

Position:Defenseman

Uppercase	Name:	BOBBY	ORR

Discussion
DynamicObject	acts	as	a	base	class	to	help	you	add	dynamic	behaviors	to	your	classes.
Unlike	ExpandoObject	it	cannot	be	instantiated,	but	it	can	be	derived	from.	With
DynamicObject,	you	can	override	many	different	types	of	operations,	such	as	property	or
method	access	or	any	binary,	unary,	or	type	conversion	operations,	which	allows	you	the
flexibility	to	determine	how	the	class	will	react	at	runtime.

We	do	some	of	these	things	in	DynamicBase<T>	by	overriding	the	following	methods	on
DynamicObject:

TryInvokeMember

GetDynamicMemberNames

TryGetMember

TrySetMember

TryInvokeMember	allows	us	to	determine	what	should	happen	when	a	member	is	invoked
on	the	object.	We	use	it	in	DynamicBase<T>	to	look	at	the	internal	collection	and	if	we
have	a	matching	item,	we	invoke	it	dynamically	as	a	delegate:

				public	override	bool	TryInvokeMember(InvokeMemberBinder	binder,	

								object[]	args,

out	object	result)

				{

								if	(_dynamicMembers.ContainsKey(binder.Name)	&&

												_dynamicMembers[binder.Name]	is	Delegate)

								{

												result	=	(_dynamicMembers[binder.Name]	as	Delegate).DynamicInvoke(

																args);

												return	true;

								}

								return	base.TryInvokeMember(binder,	args,	out	result);

				}

GetDynamicMemberNames	gets	the	set	of	all	members	that	were	added	dynamically:

public	override	IEnumerable<string>	GetDynamicMemberNames()

{

				return	_dynamicMembers.Keys;

}

TryGetMember	is	overridden	to	allow	the	caller	to	get	property	values	for	the	items	that
have	been	added	dynamically.	If	we	don’t	find	it	in	the	main	property	information	for	the
class,	we	look	in	the	internal	dictionary	of	dynamic	members	and	return	it	from	there:

public	override	bool	TryGetMember(GetMemberBinder	binder,	out	object	result)

{

				result	=	null;

				var	propertyInfo	=	_propertyInfos.Where(pi	=>

								pi.Name	==	binder.Name).FirstOrDefault();

				//	Make	sure	this	member	isn't	a	property	on	the	object	yet

				if	(propertyInfo	==	null)

				{

								//	look	in	the	additional	items	collection	for	it

								if	(_dynamicMembers.Keys.Contains(binder.Name))

								{

												//	return	the	dynamic	item

												result	=	_dynamicMembers[binder.Name];

												return	true;

								}

				}

				else

				{

								//	get	it	from	the	contained	object

								if	(_containedObject	!=	null)

								{

												result	=	propertyInfo.GetValue(_containedObject);

												return	true;

								}

				}

				return	base.TryGetMember(binder,	out	result);

}

The	override	for	TrySetMember	handles	when	a	property	value	is	being	set.	Once	again,
we	look	at	the	typed	object	first	and	then	look	to	the	dynamic	dictionary	for	where	to	store
the	value:

public	override	bool	TrySetMember(SetMemberBinder	binder,	object	value)

{

				var	propertyInfo	=	_propertyInfos.Where(pi	=>

								pi.Name	==	binder.Name).FirstOrDefault();

				//	Make	sure	this	member	isn't	a	property	on	the	object	yet

				if	(propertyInfo	==	null)

				{

								//	look	in	the	additional	items	collection	for	it

								if	(_dynamicMembers.Keys.Contains(binder.Name))

								{

												//	set	the	dynamic	item

												_dynamicMembers[binder.Name]	=	value;

												return	true;

								}

								else

								{

												_dynamicMembers.Add(binder.Name,	value);

												return	true;

								}

				}

				else

				{

								//	put	it	in	the	contained	object

								if	(_containedObject	!=	null)

								{

												propertyInfo.SetValue(_containedObject,	value);

												return	true;

								}

				}

				return	base.TrySetMember(binder,	value);

}

We	have	also	overridden	ToString	so	that	we	can	get	all	of	the	properties	(static	and
dynamic)	on	the	class	to	be	represented	in	the	string:

public	override	string	ToString()

{

				StringBuilder	builder	=	new	StringBuilder();

				foreach	(var	propInfo	in	_propertyInfos)

				{

								if(_containedObject	!=	null)

												builder.AppendFormat("{0}:{1}{2}",	propInfo.Name,

																propInfo.GetValue(_containedObject),	Environment.NewLine);

								else

												builder.AppendFormat("{0}:{1}{2}",	propInfo.Name,

																propInfo.GetValue(this),	Environment.NewLine);

				}

				foreach	(var	addlItem	in	_dynamicMembers)

				{

								//	exclude	methods	that	are	added	from	the	description

								Type	itemType	=	addlItem.Value.GetType();

								Type	genericType	=

												itemType.IsGenericType	?	itemType.GetGenericTypeDefinition()	:	null;

								if	(genericType	!=	null)

								{

												if	(genericType	!=	typeof(Func<>)	&&

																genericType	!=	typeof(Action<>))

																builder.AppendFormat("{0}:{1}{2}",	addlItem.Key,	addlItem.Value,

																				Environment.NewLine);

								}

								else

												builder.AppendFormat("{0}:{1}{2}",	addlItem.Key,	addlItem.Value,

																Environment.NewLine);

				}

				return	builder.ToString();

}

We	do	a	bit	of	filtering	to	handle	the	cases	where	dynamic	methods	or	events	are	added
and	when	the	member	or	method	is	on	the	contained	object.	This	allows	us	to	get	the
representation	of	all	properties	like	this:

Name:Bobby	Orr

Sport:Hockey

Position:Defenseman

As	you	can	see,	DynamicObject	gives	you	all	the	power	you	need	to	extend	your	objects
as	far	as	you	want	to	take	them.

See	Also
The	“DynamicObject	Class”	topic	in	the	MSDN	documentation.

Chapter	7.	Regular	Expressions

7.0	Introduction
The	.NET	Framework	Class	Library	(FCL)	includes	the
System.Text.RegularExpressions	namespace,	which	is	devoted	to	creating,	executing,
and	obtaining	results	from	regular	expressions	executed	against	a	string.

Regular	expressions	take	the	form	of	a	pattern	that	matches	zero	or	more	characters	within
a	string.	The	simplest	of	these	patterns,	such	as	.*	(which	matches	anything	except
newline	characters)	and	[A-Za-z]	(which	matches	any	letter)	are	easy	to	learn,	but	more
advanced	patterns	can	be	difficult	to	learn	and	even	more	difficult	to	implement	correctly.
Learning	and	understanding	regular	expressions	can	take	considerable	time	and	effort,	but
the	work	will	pay	off.

NOTE
Two	books	that	will	help	you	learn	and	expand	your	understanding	of	regular	expressions	are	Michael
Fitzgerald’s	Introducing	Regular	Expressions	and	Jan	Goyvaerts	and	Steven	Levithan’s	Regular
Expressions	Cookbook,	both	from	O’Reilly.

Regular	expression	patterns	can	take	a	simple	form	—	such	as	a	single	word	or	character
—	or	a	much	more	complex	pattern.	The	more	complex	patterns	can	recognize	and	match
such	items	as	the	year	portion	of	a	date,	all	of	the	<SCRIPT>	tags	in	an	ASP	page,	or	a
phrase	in	a	sentence	that	varies	with	each	use.	The	.NET	regular	expression	classes
provide	a	very	flexible	and	powerful	way	to	perform	tasks	such	as	recognizing	text,
replacing	text	within	a	string,	and	splitting	up	text	into	individual	sections	based	on	one	or
more	complex	delimiters.

Despite	the	complexity	of	regular	expression	patterns,	the	regular	expression	classes	in	the
FCL	are	easy	to	use	in	your	applications.	Executing	a	regular	expression	consists	of	the
following	steps:

1.	 Create	an	instance	of	a	Regex	object	that	contains	the	regular	expression	pattern
along	with	any	options	for	executing	that	pattern.

2.	 Retrieve	a	reference	to	an	instance	of	a	Match	object	by	calling	the	Match	instance
method	if	you	want	only	the	first	match	found.	Or,	retrieve	a	reference	to	an	instance
of	the	MatchesCollection	object	by	calling	the	Matches	instance	method	if	you
want	more	than	just	the	first	match	found.	If,	however,	you	want	to	know	only
whether	the	input	string	was	a	match	and	do	not	need	the	extra	details	on	the	nature
of	the	match,	you	can	use	the	Regex.IsMatch	method.

3.	 If	you’ve	called	the	Matches	method	to	retrieve	a	MatchCollection	object,	iterate
over	the	MatchCollection	using	a	foreach	loop.	Each	iteration	will	allow	access	to
every	Match	object	that	the	regular	expression	produced.

http://shop.oreilly.com/product/0636920012337.do
http://shop.oreilly.com/product/0636920023630.do

7.1	Extracting	Groups	from	a	MatchCollection

Problem
You	have	a	regular	expression	that	contains	one	or	more	named	groups	(also	known	as
named	capture	groups),	such	as	the	following:

\\\\(?<TheServer>\w*)\\(?<TheService>\w*)\\

where	the	named	group	TheServer	will	match	any	server	name	within	a	UNC	string,	and
TheService	will	match	any	service	name	within	a	UNC	string.

NOTE
This	pattern	does	not	match	the	UNCW	format.

You	need	to	store	the	groups	that	are	returned	by	this	regular	expression	in	a	keyed
collection	(such	as	a	Dictionary<string,	Group>)	in	which	the	key	is	the	group	name.

Solution
The	ExtractGroupings	method	shown	in	Example	7-1	obtains	a	set	of	Group	objects
keyed	by	their	matching	group	name.

Example	7-1.	ExtractGroupings	method
using	System;

using	System.Collections;

using	System.Collections.Generics;

using	System.Text.RegularExpressions;

public	static	List<Dictionary<string,	Group>>	ExtractGroupings(string	source

																																																											string	matchPattern,

																																																											bool	wantInitialMatch)

{

				List<Dictionary<string,	Group>>	keyedMatches	=

								new	List<Dictionary<string,	Group>>();

				int	startingElement	=	1;

				if	(wantInitialMatch)

				{

								startingElement	=	0;

				}

				Regex	RE	=	new	Regex(matchPattern,	RegexOptions.Multiline);

				MatchCollection	theMatches	=	RE.Matches(source);

				foreach(Match	m	in	theMatches)

				{

								Dictionary<string,	Group>	groupings	=	new	Dictionary<string,	Group>();

								for	(int	counter	=	startingElement;	counter	<	m.Groups.Count;	counter++)

								{

												//	If	we	had	just	returned	the	MatchCollection	directly,	the

												//	GroupNameFromNumber	method	would	not	be	available	to	use.

												groupings.Add(RE.GroupNameFromNumber(counter),	m.Groups[counter]);

								}

								keyedMatches.Add(groupings);

				}

				return	(keyedMatches);

}

The	ExtractGroupings	method	can	be	used	in	the	following	manner	to	extract	named
groups	and	organize	them	by	name:

public	static	void	TestExtractGroupings()

{

				string	source	=	@"Path	=	""\\MyServer\MyService\MyPath;

																														\\MyServer2\MyService2\MyPath2\""";

				string	matchPattern	=	@"\\\\(?<TheServer>\w*)\\(?<TheService>\w*)\\";

				foreach	(Dictionary<string,	Group>	grouping	in

													ExtractGroupings(source,	matchPattern,	true))

				{

								foreach	(KeyValuePair<string,	Group>	kvp	in	grouping)

												Console.WriteLine($"Key/Value	=	{kvp.Key}	/	{kvp.Value}");

								Console.WriteLine("");

				}

}

This	test	method	creates	a	source	string	and	a	regular	expression	pattern	in	the
MatchPattern	variable.	The	two	groupings	in	this	regular	expression	are	highlighted	here:

string	matchPattern	=	@"\\\\(?<TheServer>\w*)\\(?<TheService>\w*)\\";

The	names	for	these	two	groups	are	TheServer	and	TheService.	Text	that	matches	either

of	these	groupings	can	be	accessed	through	these	group	names.

The	source	and	matchPattern	variables	are	passed	in	to	the	ExtractGroupings	method,
along	with	a	Boolean	value,	which	is	discussed	shortly.	This	method	returns	a	List<T>
containing	Dictionary<string,Group>	objects.	These	Dictionary<string,Group>
objects	contain	the	matches	for	each	of	the	named	groups	in	the	regular	expression,	keyed
by	their	group	name.

This	test	method,	TestExtractGroupings,	returns	the	following:

Key	/	Value	=	0	/	\\MyServer\MyService\

Key	/	Value	=	TheService	/	MyService

Key	/	Value	=	TheServer	/	MyServer

Key	/	Value	=	0	/	\\MyServer2\MyService2\

Key	/	Value	=	TheService	/	MyService2

Key	/	Value	=	TheServer	/	MyServer2

If	the	last	parameter	to	the	ExtractGroupings	method	were	to	be	changed	to	false,	the
following	output	would	result:

Key	/	Value	=	TheService	/	MyService

Key	/	Value	=	TheServer	/	MyServer

Key	/	Value	=	TheService	/	MyService2

Key	/	Value	=	TheServer	/	MyServer2

The	only	difference	between	these	two	outputs	is	that	the	first	grouping	is	not	displayed
when	the	last	parameter	to	ExtractGroupings	is	changed	to	false.	The	first	grouping	is
always	the	complete	match	of	the	regular	expression.

Discussion
Groups	within	a	regular	expression	can	be	defined	in	one	of	two	ways.	The	first	way	is	to
add	parentheses	around	the	subpattern	that	you	wish	to	define	as	a	grouping.	This	type	of
grouping	is	sometimes	labeled	as	unnamed.	Later	you	can	easily	extract	this	grouping
from	the	final	text	in	each	returned	Match	object	by	running	the	regular	expression.	The
regular	expression	for	this	recipe	could	be	modified,	as	follows,	to	use	a	simple	unnamed
group:

string	matchPattern	=	@"\\\\(\w*)\\(\w*)\\";

After	running	the	regular	expression,	you	can	access	these	groups	using	a	numeric	integer
value	starting	with	1.

The	second	way	to	define	a	group	within	a	regular	expression	is	to	use	one	or	more	named
groups.	You	define	a	named	group	by	adding	parentheses	around	the	subpattern	that	you
wish	to	define	as	a	grouping	and	adding	a	name	to	each	grouping,	using	the	following
syntax:

(?<Name>\w*)

The	Name	portion	of	this	syntax	is	the	name	you	specify	for	this	group.	After	executing	this
regular	expression,	you	can	access	this	group	by	the	name	Name.

To	access	each	group,	you	must	first	use	a	loop	to	iterate	each	Match	object	in	the
MatchCollection.	For	each	Match	object,	you	access	the	GroupCollection’s	indexer,
using	the	following	unnamed	syntax:

string	group1	=	m.Groups[1].Value;

string	group2	=	m.Groups[2].Value;

or	the	following	named	syntax,	where	m	is	the	Match	object:

string	group1	=	m.Groups["Group1_Name"].Value;

string	group2	=	m.Groups["Group2_Name"].Value;

If	the	Match	method	was	used	to	return	a	single	Match	object	instead	of	the
MatchCollection,	use	the	following	syntax	to	access	each	group:

//	Unnamed	syntax

string	group1	=	theMatch.Groups[1].Value;

string	group2	=	theMatch.Groups[2].Value;

//	Named	syntax

string	group1	=	theMatch.Groups["Group1_Name"].Value;

string	group2	=	theMatch.Groups["Group2_Name"].Value;

where	theMatch	is	the	Match	object	returned	by	the	Match	method.

See	Also
The	“.NET	Framework	Regular	Expressions”	and	“Dictionary	Class”	topics	in	the	MSDN
documentation.

7.2	Verifying	the	Syntax	of	a	Regular	Expression

Problem
You	have	constructed	a	regular	expression	dynamically,	either	from	your	code	or	based	on
user	input.	You	need	to	test	the	validity	of	this	regular	expression’s	syntax	before	you
actually	use	it.

Solution
Use	the	VerifyRegEx	method	shown	in	Example	7-2	to	test	the	validity	of	a	regular
expression’s	syntax.

Example	7-2.	VerifyRegEx	method
using	System;

using	System.Text.RegularExpressions;

public	static	bool	VerifyRegEx(string	testPattern)

{

				bool	isValid	=	true;

				if	((testPattern?.Length	??	0)	>	0)

				{

								try

								{

											Regex.Match("",	testPattern);

								}

								catch	(ArgumentException)

								{

											//	BAD	PATTERN:	syntax	error

												isValid	=	false;

								}

				}

				else

				{

								//BAD	PATTERN:	pattern	is	null	or	empty

								isValid	=	false;

				}

				return	(isValid);

}

To	use	this	method,	pass	it	the	regular	expression	that	you	wish	to	verify:

public	static	void	TestUserInputRegEx(string	regEx)

{

				if	(VerifyRegEx(regEx))

								Console.WriteLine("This	is	a	valid	regular	expression.");

				else

								Console.WriteLine("This	is	not	a	valid	regular	expression.");

}

Discussion
The	VerifyRegEx	method	calls	the	static	Regex.Match	method,	which	is	useful	for	running
regular	expressions	on	the	fly	against	a	string.	The	static	Regex.Match	method	returns	a
single	Match	object.	By	using	this	static	method	to	run	a	regular	expression	against	a	string
(in	this	case,	an	empty	string),	you	can	determine	whether	the	regular	expression	is	invalid
by	watching	for	a	thrown	exception.	The	Regex.Match	method	will	throw	an
ArgumentException	if	the	regular	expression	is	not	syntactically	correct.	The	Message
property	of	this	exception	contains	the	reason	the	regular	expression	failed	to	run,	and	the
ParamName	property	contains	the	regular	expression	passed	to	the	Match	method.	Both	of
these	properties	are	read-only.

Before	testing	the	regular	expression	with	the	static	Match	method,	VerifyRegEx	tests	the
regular	expression	to	see	if	it	is	null	or	blank.	A	null	regular	expression	string	returns	an
ArgumentNullException	when	passed	in	to	the	Match	method.	On	the	other	hand,	if	a
blank	regular	expression	is	passed	in	to	the	Match	method,	no	exception	is	thrown	(as	long
as	a	valid	string	is	also	passed	to	the	first	parameter	of	the	Match	method).

While	this	recipe	validates	whether	or	not	the	regular	expression	syntax	is	correct,	it	does
not	look	for	poorly	written	expressions.	One	common	case	of	poorly	written	regular
expressions	is	when	the	expressions	rely	on	backtracking.	Backtracking	can	cause	the
regular	expression	to	take	an	exponentially	long	time	to	complete,	making	it	appear	as	if
the	code	executing	the	regular	expression	has	frozen.

NOTE
For	a	thorough	explanation	of	backtracking	in	regular	expressions,	read	the	MSDN	topic	“Backtracking”
under	the	“.NET	Framework	Regular	Expressions”	parent	topic.

In	cases	where	regular	expressions	use	backtracking,	it	is	recommended	that	you	use	a
timeout	value	to	limit	the	time	a	regular	expression	has	to	complete.	Use	the	following
RegEx	constructor:

Regex	(String,	RegexOptions,	TimeSpan)

where	TimeSpan	is	the	length	of	time	within	which	the	regular	expression	is	allowed	to
execute:

Regex	regex	=	new	RegEx(bkTrkPattern,	RegexOptions.None,

																								TimeSpan.FromMilliseconds(1000));

You	can	then	execute	the	regular	expression	within	a	try-catch	block,	using	the
RegexMatchTimeoutException	to	catch	a	poorly	written	regular	expression	that	takes	an
unusually	long	time	to	execute.

7.3	Augmenting	the	Basic	String	Replacement	Function

Problem
You	need	to	replace	character	patterns	within	the	target	string	with	a	new	string.	However,
in	this	case,	each	replacement	operation	has	a	unique	set	of	conditions	that	must	be
satisfied	in	order	to	allow	the	replacement	to	occur.

Solution
Use	the	overloaded	instance	Replace	method	shown	in	Example	7-3,	which	accepts	a
MatchEvaluator	delegate	along	with	its	other	parameters.	The	MatchEvaluator	delegate
is	a	callback	method	that	overrides	the	default	behavior	of	the	Replace	method.

Example	7-3.	Overloaded	Replace	method	that	accepts	a	MatchEvaluator	delegate
using	System;

using	System.Text.RegularExpressions;

public	static	string	MatchHandler(Match	theMatch)

{

				//	Handle	all	ControlID_	entries.

				if	(theMatch.Value.StartsWith("ControlID_",	StringComparison.Ordinal))

				{

								long	controlValue	=	0;

								//	Obtain	the	numeric	value	of	the	Top	attribute.

								Match	topAttributeMatch	=	Regex.Match(theMatch.Value,	"Top=([-]*\\d*)");

								if	(topAttributeMatch.Success)

								{

												if	(topAttributeMatch.Groups[1].Value.Trim().Equals(""))

												{

																//	If	blank,	set	to	zero.

																return	(theMatch.Value.Replace(

																								topAttributeMatch.Groups[0].Value.Trim(),

																								"Top=0"));

												}

												else	if	(topAttributeMatch.Groups[1].Value.Trim().StartsWith("-"

																																									,	StringComparison.Ordinal))

												{

															//	If	only	a	negative	sign	(syntax	error),	set	to	zero.

															return	(theMatch.Value.Replace(

																							topAttributeMatch.Groups[0].Value.Trim(),	"Top=0"));

												}

												else

												{

																//	We	have	a	valid	number.

																//	Convert	the	matched	string	to	a	numeric	value.

																controlValue	=	long.Parse(topAttributeMatch.Groups[1].Value,

																											System.Globalization.NumberStyles.Any);

															//	If	the	Top	attribute	is	out	of	the	specified	range,

															//	set	it	to	zero.

															if	(controlValue	<	0	||	controlValue	>	5000)

															{

																			return	(theMatch.Value.Replace(

																											topAttributeMatch.Groups[0].Value.Trim(),

																											"Top=0"));

															}

												}

								}

				}

				return	(theMatch.Value);

}

The	callback	method	for	the	Replace	method	is	shown	here:

public	static	void	ComplexReplace(string	matchPattern,	string	source)

{

				MatchEvaluator	replaceCallback	=	new	MatchEvaluator(MatchHandler);

				Regex	RE	=	new	Regex(matchPattern,	RegexOptions.Multiline);

				string	newString	=	RE.Replace(source,	replaceCallback);

				Console.WriteLine($"Replaced	String	=	{newString}");

}

To	use	this	callback	method	with	the	static	Replace	method,	modify	the	previous

ComplexReplace	method	as	follows:

public	void	ComplexReplace(string	matchPattern,	string	source)

{

				MatchEvaluator	replaceCallback	=	new	MatchEvaluator(MatchHandler);

				string	newString	=	Regex.Replace(source,	matchPattern,	replaceCallback);

				Console.WriteLine("Replaced	String	=	"	+	newString);

}

where	source	is	the	original	string	to	run	the	replace	operation	against,	and	matchPattern
is	the	regular	expression	pattern	to	match	in	the	source	string.

If	the	ComplexReplace	method	is	called	from	the	following	code:

public	static	void	TestComplexReplace()

{

				string	matchPattern	=	"(ControlID_.*)";

				string	source	=	@"WindowID=Main

				ControlID_TextBox1	Top=–100	Left=0	Text=BLANK

				ControlID_Label1	Top=9999990	Left=0	Caption=Enter	Name	Here

				ControlID_Label2	Top=	Left=0	Caption=Enter	Name	Here";

				ComplexReplace(matchPattern,	source);

}

only	the	Top	attributes	of	the	ControlID_*	lines	are	changed	from	their	original	values	to
0.

The	result	of	this	replace	action	will	change	the	Top	attribute	value	of	a	ControlID_*	line
to	0	if	it	is	less	than	0	or	greater	than	5,000.	Any	other	tag	that	contains	a	Top	attribute	will
remain	unchanged.	The	following	three	lines	of	the	source	string	will	be	changed	from:

ControlID_TextBox1	Top=–100	Left=0	Text=BLANK

ControlID_Label1	Top=9999990	Left=0	Caption=Enter	Name	Here

ControlID_Label2	Top=	Left=0	Caption=Enter	Name	Here";

to:

ControlID_TextBox1	Top=0	Left=0	Text=BLANK

ControlID_Label1	Top=0	Left=0	Caption=Enter	Name	Here

ControlID_Label2	Top=0	Left=0	Caption=Enter	Name	Here";

Discussion
The	MatchEvaluator	delegate,	which	is	automatically	invoked	when	it	is	supplied	as	a
parameter	to	the	Regex	class’s	Replace	method,	allows	for	custom	replacement	of	each
string	that	conforms	to	the	regular	expression	pattern.

If	the	current	Match	object	is	operating	on	a	ControlID_*	line	with	a	Top	attribute	that	is
out	of	the	specified	range,	the	code	within	the	MatchHandler	callback	method	returns	a
new	modified	string.	Otherwise,	the	currently	matched	string	is	returned	unchanged.	This
allows	you	to	override	the	default	Replace	functionality	by	modifying	only	that	part	of	the
source	string	that	meets	certain	criteria.	The	code	within	this	callback	method	gives	you
some	idea	of	what	you	can	accomplish	using	this	replacement	technique.

To	make	use	of	this	callback	method,	you	need	a	way	to	call	it	from	the	ComplexReplace
method.	First,	a	variable	of	type	System.Text.RegularExpressions.MatchEvaluator	is
created.	This	variable	(replaceCallback)	is	the	delegate	that	is	used	to	call	the
MatchHandler	method:

MatchEvaluator	replaceCallback	=	new	MatchEvaluator(MatchHandler);

Finally,	the	Replace	method	is	called	with	the	reference	to	the	MatchEvaluator	delegate
passed	in	as	a	parameter:

string	newString	=	Regex.Replace(source,	matchPattern,	replaceCallback);

See	Also
The	“.NET	Framework	Regular	Expressions”	topic	in	the	MSDN	documentation.

7.4	Implementing	a	Better	Tokenizer

Problem
You	need	a	tokenizer	—	also	referred	to	as	a	lexer	—	that	can	split	up	a	string	based	on	a
well-defined	set	of	characters.

Solution
With	the	Split	method	of	the	Regex	class,	you	can	create	a	regular	expression	to	indicate
the	types	of	tokens	and	separators	that	you	are	interested	in	gathering.	This	technique
works	especially	well	with	equations,	since	the	tokens	of	an	equation	are	well	defined.	For
example,	the	code:

using	System;

using	System.Text.RegularExpressions;

public	static	string[]	Tokenize(string	equation)

{

				Regex	re	=	new	Regex(@"([\+\–*\(\)\^\\])");

				return	(re.Split(equation));

}

will	divide	up	a	string	according	to	the	regular	expression	specified	in	the	Regex
constructor.	In	other	words,	the	string	passed	in	to	the	Tokenize	method	will	be	divided	up
based	on	the	delimiters	+,	–,	*,	(,),	^,	and	\.	The	following	method	will	call	the	Tokenize
method	to	tokenize	the	equation	(y	–	3)*(3111*x^21	+	x	+	320):

public	static	void	TestTokenize()

{

				foreach(string	token	in	Tokenize("(y	–	3)*(3111*x^21	+	x	+	320)"))

								Console.WriteLine("String	token	=	"	+	token.Trim());

}

which	displays	the	following	output:

string	token	=

String	token	=	(

String	token	=	y

String	token	=	-

String	token	=	3

String	token	=)

String	token	=	*

String	token	=	(

String	token	=	3111

String	token	=	*

String	token	=	x

String	token	=	^

String	token	=	21

String	token	=	+

String	token	=	x

String	token	=	+

String	token	=	320

String	token	=)

String	token	=

Notice	that	each	individual	operator,	parenthesis,	and	number	has	been	broken	out	into	its
own	separate	token.

Discussion
In	real-world	projects,	you	do	not	always	have	the	luxury	of	being	able	to	control	the	set
of	inputs	to	your	code.	By	making	use	of	regular	expressions,	you	can	take	the	original
tokenizer	and	make	it	flexible	enough	to	allow	it	to	be	applied	to	many	types	or	styles	of
input.

The	key	method	used	here	is	the	Split	instance	method	of	the	Regex	class.	The	return
value	of	this	method	is	a	string	array	with	elements	that	include	each	individual	token	of
the	source	string	—	the	equation,	in	this	case.

Note	that	the	static	Split	method	allows	RegexOptions	enumeration	values	to	be	used,
while	the	instance	method	allows	for	a	starting	position	to	be	defined	and	a	maximum
number	of	matches	to	occur.	This	may	have	some	bearing	on	whether	you	choose	the
static	or	instance	method.

See	Also
The	“.NET	Framework	Regular	Expressions”	topic	in	the	MSDN	documentation.

7.5	Returning	the	Entire	Line	in	Which	a	Match	Is	Found

Problem
You	have	a	string	or	file	that	contains	multiple	lines.	When	a	specific	character	pattern	is
found	on	a	line,	you	want	to	return	the	entire	line,	not	just	the	matched	text.

Solution
Use	the	StreamReader.ReadLine	method	to	obtain	each	line	in	a	file	to	run	a	regular
expression	against,	as	shown	in	Example	7-4.

Example	7-4.	Returning	the	entire	line	in	which	a	match	is	found
public	static	List<string>	GetLines(string	source,	string	pattern,	bool	isFileName)

{

				List<string>	matchedLines	=	new	List<string>();

				//	If	this	is	a	file,	get	the	entire	file's	text.

				if	(isFileName)

				{

								using	(FileStream	FS	=	new	FileStream(source,	FileMode.Open,

															FileAccess.Read,	FileShare.Read))

								{

												using	(StreamReader	SR	=	new	StreamReader(FS))

												{

																Regex	RE	=	new	Regex(pattern,	RegexOptions.Multiline);

																string	text	=	"";

																while	(text	!=	null)

																{

																				text	=	SR.ReadLine();

																				if	(text	!=	null)

																				{

																								//	Run	the	regex	on	each	line	in	the	string.

																								if	(RE.IsMatch(text))

																								{

																												//	Get	the	line	if	a	match	was	found.

																												matchedLines.Add(text);

																								}

																				}

																}

												}

								}

				}

				else

				{

								//	Run	the	regex	once	on	the	entire	string.

								Regex	RE	=	new	Regex(pattern,	RegexOptions.Multiline);

								MatchCollection	theMatches	=	RE.Matches(source);

								//	Use	these	vars	to	remember	the	last	line	added	to	matchedLines

								//	so	that	we	do	not	add	duplicate	lines.

								int	lastLineStartPos	=	-1;

								int	lastLineEndPos	=	-1;

								//	Get	the	line	for	each	match.

								foreach	(Match	m	in	theMatches)

								{

												int	lineStartPos	=	GetBeginningOfLine(source,	m.Index);

												int	lineEndPos	=	GetEndOfLine(source,	(m.Index	+	m.Length	-	1));

												//	If	this	is	not	a	duplicate	line,	add	it.

												if	(lastLineStartPos	!=	lineStartPos	&&

																lastLineEndPos	!=	lineEndPos)

												{

																string	line	=	source.Substring(lineStartPos,

																																lineEndPos	-	lineStartPos);

																matchedLines.Add(line);

																//	Reset	line	positions.

																lastLineStartPos	=	lineStartPos;

																lastLineEndPos	=	lineEndPos;

												}

								}

				}

				return	(matchedLines);

}

public	static	int	GetBeginningOfLine(string	text,	int	startPointOfMatch)

{

							if	(startPointOfMatch	>	0)

							{

											--startPointOfMatch;

							}

							if	(startPointOfMatch	>=	0	&&	startPointOfMatch	<	text?.Length)

							{

											//	Move	to	the	left	until	the	first	'\n	char	is	found.

											for	(int	index	=	startPointOfMatch;	index	>=	0;	index--)

											{

															if	(text?[index]	==	'\n')

															{

																			return	(index	+	1);

															}

											}

											return	(0);

							}

							return	(startPointOfMatch);

}

public	static	int	GetEndOfLine(string	text,	int	endPointOfMatch)

{

				if	(endPointOfMatch	>=	0	&&	endPointOfMatch	<	text?.Length)

				{

							//	Move	to	the	right	until	the	first	'\n	char	is	found.

							for	(int	index	=	endPointOfMatch;	index	<	text.Length;	index++)

							{

											if	(text?[index]	==	'\n')

											{

															return	(index);

											}

							}

							return	(text.Length);

			}

			return	(endPointOfMatch);

}

The	following	method	shows	how	to	call	the	GetLines	method	with	either	a	filename	or	a
string:

public	static	void	TestGetLine()

{

				//	Get	each	line	within	the	file	TestFile.txt	as	a	separate	string.

				Console.WriteLine();

				List<string>	lines	=	GetLines(@"C:\TestFile.txt",	"Line",	true);

				foreach	(string	s	in	lines)

								Console.WriteLine($"MatchedLine:	{s}");

				//	Get	the	lines	matching	the	text	"Line"	within	the	given	string.

				Console.WriteLine();

				lines	=	GetLines("Line1\r\nLine2\r\nLine3\nLine4",	"Line",	false);

				foreach	(string	s	in	lines)

								Console.WriteLine($"MatchedLine:	{s}");

}

Discussion
The	GetLines	method	accepts	three	parameters:
source

The	string	or	filename	in	which	to	search	for	a	pattern.
pattern

The	regular	expression	pattern	to	apply	to	the	source	string.
isFileName

Pass	in	true	if	source	is	a	filename,	or	false	if	source	is	a	string.

This	method	returns	a	List<string>	of	strings	that	contains	each	line	in	which	the	regular
expression	match	was	found.

The	GetLines	method	can	obtain	the	lines	on	which	matches	occur	within	a	string	or	a
file.	When	a	regular	expression	is	run	against	a	file	whose	name	is	passed	in	to	the	source
parameter	(when	isFileName	equals	true)	in	the	GetLines	method,	the	file	is	opened	and
read	line	by	line.	The	regular	expression	is	run	against	each	line,	and	if	a	match	is	found,
that	line	is	stored	in	the	matchedLines	List<string>.	Using	the	ReadLine	method	of	the
StreamReader	object	saves	you	from	having	to	determine	where	each	line	starts	and	ends.
Determining	where	a	line	starts	and	ends	in	a	string	requires	some	work,	as	you	will	see.

Running	the	regular	expression	against	a	string	passed	in	to	the	source	parameter	(when
isFileName	equals	false)	in	the	GetLines	method	produces	a	MatchCollection.	Each
Match	object	in	this	collection	is	used	to	obtain	the	line	on	which	it	is	located	in	the
source	string.	We	obtain	the	line	by	starting	at	the	position	of	the	first	character	of	the
match	in	the	source	string	and	moving	one	character	to	the	left	until	either	an	\n	character
or	the	beginning	of	the	source	string	is	found	(this	code	is	found	in	the
GetBeginningOfLine	method).	This	gives	you	the	beginning	of	the	line,	which	is	placed
in	the	variable	LineStartPos.	Next,	we	find	the	end	of	the	line	by	starting	at	the	last
character	of	the	match	in	the	source	string	and	moving	to	the	right	until	either	an	\n
character	or	the	end	of	the	source	string	is	found	(this	code	is	found	in	the	GetEndOfLine
method).	This	ending	position	is	placed	in	the	LineEndPos	variable.	All	of	the	text
between	the	LineStartPos	and	LineEndPos	will	be	the	line	in	which	the	match	is	found.
Each	of	these	lines	is	added	to	the	matchedLines	List<string>	and	returned	to	the	caller.

Something	interesting	you	can	do	with	the	GetLines	method	is	to	pass	in	the	string	"\n"
in	the	pattern	parameter	of	this	method.	This	trick	will	effectively	return	each	line	of	the
string	or	file	as	a	string	in	the	List<string>.	While	this	will	work	with	strings	that
already	have	the	CRLF	characters	embedded	in	them,	it	will	not	work	on	text	returned
from	a	file.	The	reason	is	that	the	ReadLine	method	in	the	preceding	GetLines	method
will	strip	off	the	CRLF	characters.	To	fix	this	we	can	simply	add	these	characters	back	in,
as	we	are	performing	the	match	in	the	GetLines	method:

//	It	is	necessary	to	add	CRLF	chars

//	since	Readline()	strips	off	these	chars

if	(RE.IsMatch(text	+	Environment.NewLine))

Finally,	note	that	if	more	than	one	match	is	found	on	a	line,	each	matching	line	will	be
added	to	the	List<string>.

WARNING
Take	care	when	adding	line	break	characters	back	into	the	text.	If	you	are	using	and	processing	this	text
exclusively	on	Windows	systems,	you	won’t	have	any	issues.	However,	if	you	are	using	other	systems,	or	a
mix	of	systems,	you	need	to	make	sure	you	add	the	correct	line	break	characters	—	that	is,	for	UNIX	and
OS	X,	use	only	the	Linefeed	character	(\n).

See	Also
The	“.NET	Framework	Regular	Expressions,”	“FileStream	Class,”	and	“Stream-Reader
Class”	topics	in	the	MSDN	documentation.

7.6	Finding	a	Particular	Occurrence	of	a	Match

Problem
You	need	to	find	a	specific	occurrence	of	a	match	within	a	string.	For	example,	you	want
to	find	the	third	occurrence	of	a	word	or	the	second	occurrence	of	a	Social	Security
number.	In	addition,	you	may	need	to	find	every	third	occurrence	of	a	word	in	a	string.

Solution
To	find	a	particular	occurrence	of	a	match	in	a	string,	simply	subscript	the	array	returned
from	Regex.Matches:

public	static	Match	FindOccurrenceOf(string	source,	string	pattern,

																																					int	occurrence)

{

				if	(occurrence	<	1)

				{

								throw	(new	ArgumentException("Cannot	be	less	than	1",

																																					nameof(occurrence)));

				}

				//	Make	occurrence	zero-based.

				--occurrence;

				//	Run	the	regex	once	on	the	source	string.

				Regex	RE	=	new	Regex(pattern,	RegexOptions.Multiline);

				MatchCollection	theMatches	=	RE.Matches(source);

				if	(occurrence	>=	theMatches.Count)

				{

								return	(null);

				}

				else

				{

								return	(theMatches[occurrence]);

				}

}

To	find	each	particular	occurrence	of	a	match	in	a	string,	build	a	List<Match>	on	the	fly:

public	static	List<Match>	FindEachOccurrenceOf(string	source,	string	pattern,

																																															int	occurrence)

{

				if	(occurrence	<	1)

				{

								throw	(new	ArgumentException("Cannot	be	less	than	1",

																																					nameof(occurrence)));

				}

				List<Match>	occurrences	=	new	List<Match>();

				//	Run	the	regex	once	on	the	source	string.

				Regex	RE	=	new	Regex(pattern,	RegexOptions.Multiline);

				MatchCollection	theMatches	=	RE.Matches(source);

				for	(int	index	=	(occurrence	-	1);	index	<	theMatches.Count;

									index	+=	occurrence)

				{

								occurrences.Add(theMatches[index]);

				}

				return	(occurrences);

}

The	following	method	shows	how	to	invoke	the	two	previous	methods:

public	static	void	TestOccurrencesOf()

{

				Match	matchResult	=	FindOccurrenceOf

																								("one	two	three	one	two	three	one	two	three	one"

																									+	"	two	three	one	two	three	one	two	three",	"two",	2);

				Console.WriteLine($"{matchResult?.ToString()}\t{matchResult?.Index}");

				Console.WriteLine();

				List<Match>	results	=	FindEachOccurrenceOf

																										("one	one	two	three	one	two	three	one	"

																											+	"	two	three	one	two	three",	"one",	2);

				foreach	(Match	m	in	results)

								Console.WriteLine($"{m.ToString()}\t{m.Index}");

}

Discussion
This	recipe	contains	two	similar	but	distinct	methods.	The	first	method,
FindOccurrenceOf,	returns	a	particular	occurrence	of	a	regular	expression	match.	The
occurrence	you	want	to	find	is	passed	in	to	this	method	via	the	occurrence	parameter.	If
the	particular	occurrence	of	the	match	does	not	exist	—	for	example,	you	ask	to	find	the
second	occurrence,	but	only	one	occurrence	exists	—	a	null	is	returned	from	this	method.
Because	of	this,	you	should	check	that	the	returned	object	of	this	method	is	not	null
before	using	that	object.	If	the	particular	occurrence	exists,	the	Match	object	that	holds	the
match	information	for	that	occurrence	is	returned.

The	second	method	in	this	recipe,	FindEachOccurrenceOf,	works	similarly	to	the
FindOccurrenceOf	method,	except	that	it	continues	to	find	a	particular	occurrence	of	a
regular	expression	match	until	the	end	of	the	string	is	reached.	For	example,	if	you	ask	to
find	the	second	occurrence,	this	method	would	return	a	List<Match>	of	zero	or	more
Match	objects.	The	Match	objects	would	correspond	to	the	second,	fourth,	sixth,	and	eighth
occurrences	of	a	match	and	so	on	until	the	end	of	the	string	is	reached.

See	Also
The	“.NET	Framework	Regular	Expressions”	and	“ArrayList	Class”	topics	in	the	MSDN
documentation.

7.7	Using	Common	Patterns

Problem
You	need	a	quick	list	from	which	to	choose	regular	expression	patterns	that	match
standard	items.	These	standard	items	could	be	a	Social	Security	number,	a	zip	code,	a
word	containing	only	characters,	an	alphanumeric	word,	an	email	address,	a	URL,	dates,
or	one	of	many	other	possible	items	used	throughout	business	applications.

These	patterns	can	be	useful	in	making	sure	that	a	user	has	input	the	correct	data	and	that
it	is	well	formed.	These	patterns	can	also	be	used	as	an	extra	security	measure	to	keep
hackers	from	attempting	to	break	your	code	by	entering	strange	or	malformed	input	(e.g.,
SQL	injection	or	cross-site-scripting	attacks).	Note	that	these	regular	expressions	are	not	a
silver	bullet	that	will	stop	all	attacks	on	your	system;	rather,	they	are	an	added	layer	of
defense.

Solution
Match	only	alphanumeric	characters	along	with	the	characters	-,	+,	.,	and	any
whitespace:

^([\w\.\+\-]|\s)*$

NOTE
Be	careful	using	the	-	(hyphen)	character	within	a	character	class	—	that	is,	a	regular	expression
enclosed	within	[and].	That	character	is	also	used	to	specify	a	range	of	characters,	as	in	a-z	for	“a
through	z	inclusive.”	If	you	want	to	use	a	literal	-	character,	either	escape	it	with	\	or	put	it	at	the	end	of
the	expression,	as	shown	in	the	next	examples.

Match	only	alphanumeric	characters	along	with	the	characters	-,	+,	.,	and	any
whitespace,	with	the	stipulation	that	there	is	at	least	one	of	these	characters	and	no
more	than	10	of	these	characters:

^([\w\.\+\-]|\s){1,10}$

Match	a	person’s	name,	up	to	55	characters:

^[a-zA-Z\'\-\s]{1,55}$

Match	a	positive	or	negative	integer:

^(\+|\-)?\d+$

Match	a	positive	or	negative	floating-point	number	only;	this	pattern	does	not	match
integers:

^(\+|\-)?(\d*\.\d+)$

Match	a	floating-point	or	integer	number	that	can	have	a	positive	or	negative	value:

^(\+|\-)?(\d*\.)?\d+$

Match	a	date	in	the	form	##/##/####,	where	the	day	and	month	can	be	a	one-	or	two-
digit	value	and	the	year	can	only	be	a	four-digit	value:

^\d{1,2}\/\d{1,2}\/\d{4}$

Verify	if	the	input	is	a	Social	Security	number	of	the	form	###-##-####:

^\d{3}-\d{2}-\d{4}$

Match	an	IPv4	address:

^([0-2]?[0-9]?[0-9]\.){3}[0-2]?[0-9]?[0-9]$

Verify	that	an	email	address	is	in	the	form	name@address	where	address	is	not	an	IP
address:

^[A-Za-z0-9_\-\.]+@(([A-Za-z0-9\-])+\.)+([A-Za-z\-])+$

Verify	that	an	email	address	is	in	the	form	name@address	where	address	is	an	IP
address:

^[A-Za-z0-9_\-\.]+@([0-2]?[0-9]?[0-9]\.){3}[0-2]?[0-9]?[0-9]$

Match	or	verify	a	URL	that	uses	either	the	HTTP,	HTTPS,	or	FTP	protocol.	Note	that
this	regular	expression	will	not	match	relative	URLs:

^(http|https|ftp)\://[a-zA-Z0-9\-\.]+\.[a-zA-Z]{2,3}(:[a-zA-Z0-9]*)?/?

([a-zA-Z0-9\-\._\?\,\'/\\\+&%\$#\=~])*$

Match	only	a	dollar	amount	with	the	optional	$	and	+	or	-	preceding	characters	(note
that	any	number	of	decimal	places	may	be	added):

^\$?[+-]?[\d,]*(\.\d*)?$

This	is	similar	to	the	previous	regular	expression,	except	that	no	more	than	two	decimal
places	are	allowed:

^\$?[+-]?[\d,]*\.?\d{0,2}$

Match	a	credit	card	number	to	be	entered	as	four	sets	of	four	digits	separated	with	a
space,	-,	or	no	character	at	all:

^((\d{4}[-]?){3}\d{4})$

Match	a	zip	code	to	be	entered	as	five	digits	with	an	optional	four-digit	extension:

^\d{5}(-\d{4})?$

Match	a	North	American	phone	number	with	an	optional	area	code	and	an	optional	-
character	to	be	used	in	the	phone	number	and	no	extension:

^(\(?[0-9]{3}\)?)?\-?[0-9]{3}\-?[0-9]{4}$

Match	a	phone	number	similar	to	the	previous	regular	expression	but	allow	an	optional
five-digit	extension	prefixed	with	either	ext	or	extension:

^(\(?[0-9]{3}\)?)?\-?[0-9]{3}\-?[0-9]{4}(\s*ext(ension)?[0-9]{5})?$

Match	a	full	path	beginning	with	the	drive	letter	and	optionally	match	a	filename	with	a

three-character	extension	(note	that	no	..	characters	signifying	to	move	up	the	directory
hierarchy	are	allowed,	nor	is	a	directory	name	with	a	.	followed	by	an	extension):

^[a-zA-Z]:[\\/]([_a-zA-Z0-9]+[\\/]?)*([_a-zA-Z0-9]+\.[_a-zA-Z0-9]{0,3})?$

Verify	if	the	input	password	string	matches	some	specific	rules	for	entering	a	password
(i.e.,	the	password	is	between	6	and	25	characters	in	length	and	contains	alphanumeric
characters):

^(?=.*\d)(?=.*[a-z])(?=.*[A-Z]).{6,25}$

Determine	if	any	malicious	characters	were	input	by	the	user.	Note	that	this	regular
expression	will	not	prevent	all	malicious	input,	and	it	also	prevents	some	valid	input,
such	as	last	names	that	contain	a	single	quote:

^([^\)\(\<\>\"\'\%\&\+\;][(-{2})])*$

Extract	a	tag	from	an	XHTML,	HTML,	or	XML	string.	This	regular	expression	will
return	the	beginning	tag	and	ending	tag,	including	any	attributes	of	the	tag.	
Note	that	you	will	need	to	replace	TAGNAME	with	the	real	tag	name	you	want	to	search
for:

<TAGNAME.*?>(.*?)</TAGNAME>

Extract	a	comment	line	from	code.	The	following	regular	expression	extracts	HTML
comments	from	a	web	page.	This	can	be	useful	in	determining	if	any	HTML	comments
that	are	leaking	sensitive	information	need	to	be	removed	from	your	code	base	before	it
goes	into	production:

<!--.*?-->

Match	a	C#	single-line	comment:

//.*$

Match	a	C#	multiline	comment:

/*.*?*/

NOTE
While	the	four	aforementioned	regular	expressions	are	great	for	finding	tags	and	comments,	they	are	not
foolproof.	To	accurately	find	all	tags	and	comments,	you	need	to	use	a	full	parser	for	the	language	you	are
targeting.

Discussion
Regular	expressions	are	effective	at	finding	specific	information,	and	they	have	a	wide
range	of	uses.	Many	applications	use	them	to	locate	specific	information	within	a	larger
range	of	text,	as	well	as	to	filter	out	bad	input.	The	filtering	action	is	very	useful	in
tightening	the	security	of	an	application	and	preventing	an	attacker	from	attempting	to	use
carefully	formed	input	to	gain	access	to	a	machine	on	the	Internet	or	a	local	network.	By
using	a	regular	expression	to	allow	only	good	input	to	be	passed	to	the	application,	you
can	reduce	the	likelihood	of	many	types	of	attacks,	such	as	SQL	injection	or	cross-site
scripting.

The	regular	expressions	presented	in	this	recipe	provide	only	a	small	cross-section	of	what
you	can	accomplish	with	them.	You	can	easily	modify	these	expressions	to	suit	your
needs.	Take,	for	example,	the	following	expression,	which	allows	only	between	1	and	10
alphanumeric	characters,	along	with	a	few	symbols,	as	input:

^([\w\.\+\–]|\s){1,10}$

By	changing	the	{1,10}	part	of	the	regular	expression	to	{0,200},	you	can	make	this
expression	match	a	blank	entry	or	an	entry	of	the	specified	symbols	up	to	and	including
200	characters.

Note	the	use	of	the	^	character	at	the	beginning	of	the	expression	and	the	$	character	at	the
end	of	the	expression.	These	characters	start	the	match	at	the	beginning	of	the	text	and
match	all	the	way	to	the	end	of	the	text.	Adding	these	characters	forces	the	regular
expression	to	match	the	entire	string	or	none	of	it.	By	removing	these	characters,	you	can
search	for	specific	text	within	a	larger	block	of	text.	For	example,	the	following	regular
expression	matches	only	a	string	containing	nothing	but	a	US	zip	code	(there	can	be	no
leading	or	trailing	spaces):

^\d{5}(-\d{4})?$

This	version	matches	only	a	zip	code	with	leading	or	trailing	spaces	(notice	the	addition	of
the	\s*	to	the	beginning	and	ending	of	the	expression):

^\s*\d{5}(-\d{4})?\s*$

However,	this	modified	expression	matches	a	zip	code	found	anywhere	within	a	string
(including	a	string	containing	just	a	zip	code):

\d{5}(-\d{4})?

Use	the	regular	expressions	in	this	recipe	and	modify	them	to	suit	your	needs.

See	Also
Introducing	Regular	Expressions	by	Michael	Fitzgerald	and	Regular	Expressions
Cookbook	by	Jan	Goyvaerts	and	Steven	Levithan	(both	O’Reilly).

http://shop.oreilly.com/product/0636920012337.do
http://shop.oreilly.com/product/0636920023630.do

Chapter	8.	Filesystem	I/O

8.0	Introduction
This	chapter	deals	with	a	number	of	filesystem-related	subjects,	such	as	directory-	or
folder-based	programming	tasks.	Some	of	the	more	advanced	topics	in	filesystem	I/O
(input/output)	are	also	touched	on,	such	as:

Locking	subsections	of	a	file

Monitoring	for	certain	filesystem	actions

Version	information	in	files

File	compression

Various	file	and	directory	I/O	techniques	are	used	throughout	the	recipes	to	show	you	how
to	perform	tasks	such	as	creating,	opening,	deleting,	reading,	and	writing	with	files	and
directories.	This	is	fundamental	knowledge	that	will	help	you	understand	the	file	I/O
recipes	and	how	to	modify	them	for	your	purposes.

A	number	of	the	recipes	have	been	updated	to	use	the	async	and	await	operators	to	help
alleviate	the	latency	you’d	typically	encounter	when	dealing	with	the	filesystem	or
network	when	performing	file	I/O.	Using	async	and	await	improves	your	code’s	overall
responsiveness	by	allowing	the	I/O	operations	to	occur	but	not	to	block	the	calling	thread
as	they	normally	would	until	they’ve	completed.

Unless	otherwise	specified,	you	need	the	following	using	statements	in	any	program	that
uses	snippets	or	methods	from	this	chapter:

using	System;

using	System.IO;

8.1	Searching	for	Directories	or	Files	Using	Wildcards

Problem
You	are	attempting	to	find	one	or	more	specific	files	or	directories	that	may	or	may	not
exist	within	the	current	filesystem.	You	might	need	to	use	wildcard	characters	in	order	to
widen	the	search	—	for	example,	searching	for	all	usermode	dump	files	in	a	filesystem.
These	files	have	a	.dmp	extension.

Solution
There	are	several	methods	of	obtaining	this	information.	The	first	three	methods	return	a
string	array	containing	the	full	path	of	each	item.	The	next	three	methods	return	an	object
that	encapsulates	a	directory,	a	file,	or	both.

The	static	GetFileSystemEntries	method	on	the	Directory	class	returns	a	string	array
containing	the	names	of	all	files	and	directories	within	a	single	directory,	for	example:

public	static	void	DisplayFilesAndSubDirectories(string	path)

{

				if	(string.IsNullOrWhiteSpace(path))

								throw	new	ArgumentNullException(nameof(path));

				string[]	items	=	Directory.GetFileSystemEntries(path);

				Array.ForEach(items,	item	=>

				{

								Console.WriteLine(item);

				});

}

The	static	GetDirectories	method	on	the	Directory	class	returns	a	string	array
containing	the	names	of	all	directories	within	a	single	directory.	The	following	method,
DisplayDirs,	shows	how	you	might	use	it:

public	static	void	DisplaySubDirectories(string	path)

{

				if	(string.IsNullOrWhiteSpace(path))

								throw	new	ArgumentNullException(nameof(path));

				string[]	items	=	Directory.GetDirectories(path);

				Array.ForEach(items,	item	=>

				{

								Console.WriteLine(item);

				});

}

The	static	GetFiles	method	on	the	Directory	class	returns	a	string	array	containing	the
names	of	all	files	within	a	single	directory.	The	following	method	is	very	similar	to
DisplayDirs	but	calls	Directory.GetFiles	instead	of	Directory.GetDirectories:

public	static	void	DisplayFiles(string	path)

{

				if	(string.IsNullOrWhiteSpace(path))

								throw	new	ArgumentNullException(nameof(path));

				string[]	items	=	Directory.GetFiles(path);

				Array.ForEach(items,	item	=>

				{

								Console.WriteLine(item);

				});

}

These	next	two	methods	return	an	object	instead	of	simply	a	string.	The
GetFileSystemInfos	method	of	the	DirectoryInfo	object	returns	a	strongly	typed	array
of	FileSystemInfo	objects	(that	is,	of	DirectoryInfo	and	FileInfo	objects)	representing
the	directories	and	files	within	a	single	directory.	The	following	example	calls	the

GetFileSystemInfos	method	to	retrieve	an	array	of	FileSystemInfo	objects	representing
all	the	items	in	a	particular	directory	and	then	lists	a	string	of	display	information	for
FileSystemInfo	to	the	console	window.	The	display	information	is	created	by	the
extension	method	ToDisplayString	on	FileSystemInfo:

public	static	void	DisplayDirectoryContents(string	path)

{

				if	(string.IsNullOrWhiteSpace(path))

								throw	new	ArgumentNullException(nameof(path));

				DirectoryInfo	mainDir	=	new	DirectoryInfo(path);

				var	fileSystemDisplayInfos	=

								(from	fsi	in	mainDir.GetFileSystemInfos()

								where	fsi	is	FileSystemInfo	||	fsi	is	DirectoryInfo

								select	fsi.ToDisplayString()).ToArray();

				Array.ForEach(fileSystemDisplayInfos,	s	=>

				{

								Console.WriteLine(s);

				});

}

public	static	string	ToDisplayString(this	FileSystemInfo	fileSystemInfo)

{

				string	type	=	fileSystemInfo.GetType().ToString();

				if	(fileSystemInfo	is	DirectoryInfo)

								type	=	"DIRECTORY";

				else	if	(fileSystemInfo	is	FileInfo)

								type	=	"FILE";

				return	$"{type}:	{fileSystemInfo.Name}";

}

The	output	for	this	code	is	shown	here:

DIRECTORY:	MyNestedTempDir

DIRECTORY:	MyNestedTempDirPattern

FILE:	MyTempFile.PDB

FILE:	MyTempFile.TXT

The	GetDirectories	instance	method	of	the	DirectoryInfo	object	returns	an	array	of
DirectoryInfo	objects	representing	only	subdirectories	in	a	single	directory.	For	example,
the	following	code	calls	the	GetDirectories	method	to	retrieve	an	array	of
DirectoryInfo	objects	and	then	displays	the	Name	property	of	each	object	to	the	console
window:

public	static	void	DisplayDirectoriesFromInfo(string	path)

{

				if	(string.IsNullOrWhiteSpace(path))

								throw	new	ArgumentNullException(nameof(path));

				DirectoryInfo	mainDir	=	new	DirectoryInfo(path);

				DirectoryInfo[]	items	=	mainDir.GetDirectories();

				Array.ForEach(items,	item	=>

				{

								Console.WriteLine($"DIRECTORY:	{item.Name}");

				});

}

The	GetFiles	instance	method	of	the	DirectoryInfo	object	returns	an	array	of	FileInfo
objects	representing	only	the	files	in	a	single	directory.	For	example,	the	following	code

calls	the	GetFiles	method	to	retrieve	an	array	of	FileInfo	objects,	and	then	it	displays
the	Name	property	of	each	object	to	the	console	window:

public	static	void	DisplayFilesFromInfo(string	path)

{

				if	(string.IsNullOrWhiteSpace(path))

								throw	new	ArgumentNullException(nameof(path));

				DirectoryInfo	mainDir	=	new	DirectoryInfo(path);

				FileInfo[]	items	=	mainDir.GetFiles();

				Array.ForEach(items,	item	=>

				{

								Console.WriteLine($"FILE:	{item.Name}");

				});

}

The	static	GetFileSystemEntries	method	on	the	Directory	class	returns	all	files	and
directories	in	a	single	directory	that	match	pattern:

public	static	void	DisplayFilesWithPattern(string	path,	string	pattern)

{

				if	(string.IsNullOrWhiteSpace(path))

								throw	new	ArgumentNullException(nameof(path));

				if	(string.IsNullOrWhiteSpace(pattern))

								throw	new	ArgumentNullException(nameof(pattern));

				string[]	items	=	Directory.GetFileSystemEntries(path,	pattern);

				Array.ForEach(items,	item	=>

				{

								Console.WriteLine(item);

				});

}

The	static	GetDirectories	method	on	the	Directory	class	returns	only	those	directories
in	a	single	directory	that	match	pattern:

public	static	void	DisplayDirectoriesWithPattern(string	path,	string	pattern)

{

				if	(string.IsNullOrWhiteSpace(path))

								throw	new	ArgumentNullException(nameof(path));

				if	(string.IsNullOrWhiteSpace(pattern))

								throw	new	ArgumentNullException(nameof(pattern));

				string[]	items	=	Directory.GetDirectories(path,	pattern);

				Array.ForEach(items,	item	=>

				{

								Console.WriteLine(item);

				});

}

The	static	GetFiles	method	on	the	Directory	class	returns	only	those	files	in	a	single
directory	that	match	pattern:

public	static	void	DisplayFilesWithGetFiles(string	path,	string	pattern)

{

				if	(string.IsNullOrWhiteSpace(path))

								throw	new	ArgumentNullException(nameof(path));

				if	(string.IsNullOrWhiteSpace(pattern))

								throw	new	ArgumentNullException(nameof(pattern));

				string[]	items	=	Directory.GetFiles(path,	pattern);

				Array.ForEach(items,	item	=>

				{

								Console.WriteLine(item);

				});

}

These	next	three	methods	return	an	object	instead	of	simply	a	string.	The	first	instance
method	is	GetFileSystemInfos,	which	returns	both	directories	and	files	in	a	single
directory	that	match	pattern:

public	static	void	DisplayDirectoryContentsWithPattern(string	path,	

				string	pattern)

{

				if	(string.IsNullOrWhiteSpace(path))

								throw	new	ArgumentNullException(nameof(path));

				if	(string.IsNullOrWhiteSpace(pattern))

								throw	new	ArgumentNullException(nameof(pattern));

				DirectoryInfo	mainDir	=	new	DirectoryInfo(path);

				var	fileSystemDisplayInfos	=

								(from	fsi	in	mainDir.GetFileSystemInfos(pattern)

								where	fsi	is	FileSystemInfo	||	fsi	is	DirectoryInfo

								select	fsi.ToDisplayString()).ToArray();

				Array.ForEach(fileSystemDisplayInfos,	s	=>

				{

								Console.WriteLine(s);

				});

}

The	GetDirectories	instance	method	returns	only	directories	(contained	in	the
DirectoryInfo	object)	in	a	single	directory	that	match	pattern:

public	static	void	DisplayDirectoriesWithPatternFromInfo(string	path,	

				string	pattern)

{

				if	(string.IsNullOrWhiteSpace(path))

								throw	new	ArgumentNullException(nameof(path));

				if	(string.IsNullOrWhiteSpace(pattern))

								throw	new	ArgumentNullException(nameof(pattern));

				DirectoryInfo	mainDir	=	new	DirectoryInfo(path);

				DirectoryInfo[]	items	=	mainDir.GetDirectories(pattern);

				Array.ForEach(items,	item	=>

				{

								Console.WriteLine($"DIRECTORY:	{item.Name}");

				});

}

The	GetFiles	instance	method	returns	only	file	information	(contained	in	the	FileInfo
object)	in	a	single	directory	that	matches	pattern:

public	static	void	DisplayFilesWithInstanceGetFiles(string	path,	string	pattern)

{

				if	(string.IsNullOrWhiteSpace(path))

								throw	new	ArgumentNullException(nameof(path));

				if	(string.IsNullOrWhiteSpace(pattern))

								throw	new	ArgumentNullException(nameof(pattern));

				DirectoryInfo	mainDir	=	new	DirectoryInfo(path);

				FileInfo[]	items	=	mainDir.GetFiles(pattern);

				Array.ForEach(items,	item	=>

				{

								Console.WriteLine($"FILE:	{item.Name}");

				});

}

Discussion
If	you	need	just	an	array	of	strings	containing	paths	to	both	directories	and	files,	you	can
use	the	static	method	Directory.GetFileSystemEntries.	The	string	array	returned	does
not	include	any	information	about	whether	an	individual	element	is	a	directory	or	a	file.
Each	string	element	contains	the	entire	path	to	either	a	directory	or	file	contained	within
the	specified	path.

To	quickly	and	easily	distinguish	between	directories	and	files,	use	the	Directory.
GetDirectories	and	Directory.GetFiles	static	methods.	These	methods	return	arrays	of
directory	names	and	filenames.	These	methods	return	an	array	of	string	objects.	Each
element	contains	the	full	path	to	the	directory	or	file.

Returning	a	string	is	fine	if	you	do	not	need	any	other	information	about	the	directory	or
file	returned	or	if	you	are	going	to	need	more	information	for	only	one	of	the	files
returned.	It	is	more	efficient	to	use	the	static	methods	to	get	the	list	of	filenames	and	just
retrieve	the	FileInfo	for	the	ones	you	need	than	to	have	all	of	the	FileInfos	constructed
for	the	directory,	as	the	instance	methods	will	do.	If	you	need	to	access	attributes,	lengths,
or	times	on	every	one	of	the	files,	you	should	consider	using	the	instance	methods	that
retrieve	the	FileInfo	details.

The	instance	method	GetFileSystemInfos	returns	an	array	of	strongly	typed
FileSystemInfo	objects.	(The	FileSystemInfo	object	is	the	base	class	to	the
DirectoryInfo	and	FileInfo	objects.)	Therefore,	you	can	test	whether	the	returned	type
is	a	DirectoryInfo	or	FileInfo	object	using	the	is	or	as	keyword.	Once	you	know	what
subclass	the	object	really	is,	you	can	cast	the	object	to	that	type	and	begin	using	it.

To	get	only	DirectoryInfo	objects,	use	the	overloaded	GetDirectories	instance	method.
To	get	only	FileInfo	objects,	use	the	overloaded	GetFiles	instance	method.	These
methods	return	an	array	of	DirectoryInfo	and	FileInfo	objects,	respectively,	each
element	of	which	encapsulates	a	directory	or	file.

There	are	certain	behaviors	to	be	aware	of	for	the	patterns	you	can	provide	when	filtering
the	results	from	GetFiles	or	GetFileSystemInfos:

The	pattern	cannot	contain	any	of	the	InvalidPathChars	and	cannot	use	the	“go	back
up	in	the	folder	structure	one	level”	symbol	(..).

The	order	in	which	the	items	in	the	array	are	returned	is	not	guaranteed,	but	you	can
use	Sort	or	order	the	results	in	a	query.

When	an	extension	is	exactly	three	characters,	the	behavior	is	different	in	that	the
pattern	will	match	on	any	files	with	those	first	three	characters	in	the	extension.

*.htm	returns	files	having	an	extension	of	.htm,	.html,	.htma,	and	so	on.

When	an	extension	has	fewer	than	or	more	than	three	characters,	the	pattern	will

perform	exact	matching.

*.cs	returns	only	files	having	an	extension	of	.cs.

See	Also
The	“DirectoryInfo	Class,”	“FileInfo	Class,”	and	“FileSystemInfo	Class”	topics	in	the
MSDN	documentation.

8.2	Obtaining	the	Directory	Tree

Problem
You	need	to	get	a	directory	tree,	potentially	including	filenames,	extending	from	any	point
in	the	directory	hierarchy.	In	addition,	each	directory	or	file	returned	must	be	in	the	form
of	an	object	encapsulating	that	item.	This	will	allow	you	to	perform	operations	on	the
returned	objects,	such	as	deleting	the	file,	renaming	the	file,	or	examining/changing	its
attributes.	Finally,	you	potentially	need	the	ability	to	search	for	a	specific	subset	of	these
items	based	on	a	pattern,	such	as	finding	only	files	with	the	.pdb	extension.

Solution
By	calling	the	GetFileSystemInfos	instance	method,	you	can	retrieve	all	of	the	files	and
directories	down	the	directory	hierarchy	from	any	starting	point	as	an	enumerable	list:

public	static	IEnumerable<FileSystemInfo>	GetAllFilesAndDirectories(string	dir)

{

				if	(string.IsNullOrWhiteSpace(dir))

								throw	new	ArgumentNullException(nameof(dir));

				DirectoryInfo	dirInfo	=	new	DirectoryInfo(dir);

				Stack<FileSystemInfo>	stack	=	new	Stack<FileSystemInfo>();

				stack.Push(dirInfo);

				while	(dirInfo	!=	null	||	stack.Count	>	0)

				{

								FileSystemInfo	fileSystemInfo	=	stack.Pop();

								DirectoryInfo	subDirectoryInfo	=	fileSystemInfo	as	DirectoryInfo;

								if	(subDirectoryInfo	!=	null)

								{

												yield	return	subDirectoryInfo;

												foreach	(FileSystemInfo	fsi	in	subDirectoryInfo.GetFileSystemInfos())

																stack.Push(fsi);

												dirInfo	=	subDirectoryInfo;

								}

								else

								{

												yield	return	fileSystemInfo;

												dirInfo	=	null;

								}

				}

}

To	display	the	results	of	the	file	and	directory	retrieval,	use	the	following	query:

public	static	void	DisplayAllFilesAndDirectories(string	dir)

{

				if	(string.IsNullOrWhiteSpace(dir))

								throw	new	ArgumentNullException(nameof(dir));

				var	strings	=	(from	fileSystemInfo	in	GetAllFilesAndDirectories(dir)

																				select	fileSystemInfo.ToDisplayString()).ToArray();

				Array.ForEach(strings,	s	=>	{	Console.WriteLine(s);	});

}

Since	the	results	are	queryable,	you	don’t	have	to	retrieve	information	about	all	files	and
directories.	The	following	query	uses	a	case-insensitive	comparison	to	obtain	a	listing	of
all	files	with	the	extension	of	.pdb	that	reside	in	directories	that	contain	Chapter	1:

public	static	void	DisplayAllFilesWithExtension(string	dir,	string	extension)

{

				if	(string.IsNullOrWhiteSpace(dir))

								throw	new	ArgumentNullException(nameof(dir));

				if	(string.IsNullOrWhiteSpace(extension))

								throw	new	ArgumentNullException(nameof(extension));

				var	strings	=	(from	fileSystemInfo	in	GetAllFilesAndDirectories(dir)

																				where	fileSystemInfo	is	FileInfo	&&

																												fileSystemInfo.FullName.Contains("Chapter	1")	&&

																												(string.Compare(fileSystemInfo.Extension,	extension,

																																								StringComparison.OrdinalIgnoreCase)	==	0)

																				select	fileSystemInfo.ToDisplayString()).ToArray();

				Array.ForEach(strings,	s	=>	{	Console.WriteLine(s);	});

}

Discussion
To	obtain	a	tree	representation	of	a	directory	and	the	files	it	contains,	you	could	use
recursive	iterators	in	a	method	like	this:

public	static	IEnumerable<FileSystemInfo>	GetAllFilesAndDirectoriesWithRecursion(

				string	dir)

{

				if	(string.IsNullOrWhiteSpace(dir))

								throw	new	ArgumentNullException(nameof(dir));

				DirectoryInfo	dirInfo	=	new	DirectoryInfo(dir);

				FileSystemInfo[]	fileSystemInfos	=	dirInfo.GetFileSystemInfos();

				foreach	(FileSystemInfo	fileSystemInfo	in	fileSystemInfos)

				{

								yield	return	fileSystemInfo;

								if	(fileSystemInfo	is	DirectoryInfo)

								{

												foreach	(FileSystemInfo	fsi	in

GetAllFilesAndDirectoriesWithRecursion(fileSystemInfo.FullName))

																yield	return	fsi;

								}

				}

}

public	static	void	DisplayAllFilesAndDirectoriesWithRecursion(string	dir)

{

				if	(string.IsNullOrWhiteSpace(dir))

								throw	new	ArgumentNullException(nameof(dir));

				var	strings	=	(from	fileSystemInfo	in	

																				GetAllFilesAndDirectoriesWithRecursion(dir)

																				select	fileSystemInfo.ToDisplayString()).ToArray();

				Array.ForEach(strings,	s	=>	{	Console.WriteLine(s);	});

}

The	main	difference	between	this	and	the	Solution	code	is	that	this	uses	recursive
iterators,	and	the	Solution	uses	iterative	iterators	and	an	explicit	stack.

NOTE
You	would	not	want	to	use	the	recursive	iterator	method,	as	the	performance	is	in	fact	O(n	*	d),	where	n	is
the	number	of	FileSystemInfos	and	d	is	the	depth	of	the	directory	hierarchy	—	which	is	typically	log	n.
See	the	demonstration	code.

You	can	check	the	performance	with	the	following	code	if	the	Solution	methods	are
renamed	to	DisplayAllFilesAndDirectoriesWithoutRecursion	and
DisplayAllFilesWithExtensionWithoutRecursion,	respectively:

string	dir	=	Environment.GetFolderPath(Environment.SpecialFolder.ProgramFiles);

//	list	all	of	the	files	without	recursion

Stopwatch	watch1	=	Stopwatch.StartNew();

DisplayAllFilesAndDirectoriesWithoutRecursion(tempDir1);

watch1.Stop();

Console.WriteLine("*************************");

//	list	all	of	the	files	without	using	recursion

Stopwatch	watch2	=	Stopwatch.StartNew();

DisplayAllFilesAndDirectoriesWithoutRecursion(tempDir1);

watch2.Stop();

Console.WriteLine("*************************");

Console.WriteLine(

				$"Non-Recursive	method	time	elapsed	{watch1.Elapsed.ToString()}");

Console.WriteLine($"Recursive	method	time	elapsed	{watch2.Elapsed.ToString()}");

Here	is	the	code	without	recursion	methods:

public	static	void	DisplayAllFilesAndDirectoriesWithoutRecursion(string	dir)

{

				var	strings	=	from	fileSystemInfo	in	

																				GetAllFilesAndDirectoriesWithoutRecursion(dir)

																				select	fileSystemInfo.ToDisplayString();

				foreach	(string	s	in	strings)

								Console.WriteLine(s);

}

public	static	void	DisplayAllFilesWithExtensionWithoutRecursion(string	dir,

				string	extension)

{

				var	strings	=	from	fileSystemInfo	in	

																				GetAllFilesAndDirectoriesWithoutRecursion(dir)

																				where	fileSystemInfo	is	FileInfo	&&

																								fileSystemInfo.FullName.Contains("Chapter	1")	&&

																								(string.Compare(fileSystemInfo.Extension,	extension,

																																								StringComparison.OrdinalIgnoreCase)	==	0)

																				select	fileSystemInfo.ToDisplayString();

				foreach	(string	s	in	strings)

								Console.WriteLine(s);

}

public	static	IEnumerable<FileSystemInfo>	

				GetAllFilesAndDirectoriesWithoutRecursion(

				string	dir)

{

				DirectoryInfo	dirInfo	=	new	DirectoryInfo(dir);

				Stack<FileSystemInfo>	stack	=	new	Stack<FileSystemInfo>();

				stack.Push(dirInfo);

				while	(dirInfo	!=	null	||	stack.Count	>	0)

				{

								FileSystemInfo	fileSystemInfo	=	stack.Pop();

								DirectoryInfo	subDirectoryInfo	=	fileSystemInfo	as	DirectoryInfo;

								if	(subDirectoryInfo	!=	null)

								{

												yield	return	subDirectoryInfo;

												foreach	(FileSystemInfo	fsi	in	subDirectoryInfo.GetFileSystemInfos())

																stack.Push(fsi);

												dirInfo	=	subDirectoryInfo;

								}

								else

								{

												yield	return	fileSystemInfo;

												dirInfo	=	null;

								}

				}

}

See	Also
The	“DirectoryInfo	Class,”	“FileInfo	Class,”	and	“FileSystemInfo	Class”	topics	in	the
MSDN	documentation.

8.3	Parsing	a	Path

Problem
You	need	to	separate	the	constituent	parts	of	a	path	and	place	them	into	separate	variables.

Solution
Use	the	static	methods	of	the	Path	class:

public	static	void	DisplayPathParts(string	path)

{

				if	(string.IsNullOrWhiteSpace(path))

								throw	new	ArgumentNullException(nameof(path));

				string	root	=	Path.GetPathRoot(path);

				string	dirName	=	Path.GetDirectoryName(path);

				string	fullFileName	=	Path.GetFileName(path);

				string	fileExt	=	Path.GetExtension(path);

				string	fileNameWithoutExt	=	Path.GetFileNameWithoutExtension(path);

				StringBuilder	format	=	new	StringBuilder();

				format.Append($"ParsePath	of	{path}	breaks	up	into	the	following	pieces:"	+

								$"{Environment.NewLine}");

				format.Append($"\tRoot:	{root}{Environment.NewLine}");

				format.Append($"\tDirectory	Name:	{dirName}{Environment.NewLine}");

				format.Append($"\tFull	File	Name:	{fullFileName}{Environment.NewLine}");

				format.Append($"\tFile	Extension:	{fileExt}{Environment.NewLine}");

				format.Append($"\tFile	Name	Without	Extension:	{fileNameWithoutExt}"	+

								$"{Environment.NewLine}");

				Console.WriteLine(format.ToString());

}

If	the	string	C:\test\tempfile.txt	is	passed	to	this	method,	the	output	looks	like	this:

ParsePath	of	C:\test\tempfile.txt	breaks	up	into	the	following	pieces:

								Root:	C:\

								Directory	Name:	C:\test

								Full	File	Name:	tempfile.txt

								File	Extension:	.txt

								File	Name	Without	Extension:	tempfile

Discussion
The	Path	class	contains	methods	that	can	be	used	to	parse	a	given	path.	Using	these
classes	is	much	easier	and	less	error-prone	than	writing	path-	and	filename-parsing	code.
If	these	classes	are	not	used,	you	could	also	introduce	security	holes	into	your	application
if	the	information	gathered	from	manual	parsing	routines	is	used	in	security	decisions	for
your	application.	There	are	five	main	methods	used	to	parse	a	path:	GetPathRoot,
GetDirectoryName,	GetFileName,	GetExtension,	and	GetFileNameWithoutExtension.
Each	has	a	single	parameter,	path,	which	represents	the	path	to	be	parsed:
GetPathRoot

This	method	returns	the	root	directory	of	the	path.	If	no	root	is	provided	in	the	path,
such	as	when	a	relative	path	is	used,	this	method	returns	an	empty	string,	not	null.

GetDirectoryName

This	method	returns	the	complete	path	for	the	directory	containing	the	file.
GetFileName

This	method	returns	the	filename,	including	the	file	extension.	If	no	filename	is
provided	in	the	path,	this	method	returns	an	empty	string,	not	null.

GetExtension

This	method	returns	the	file’s	extension.	If	no	extension	is	provided	for	the	file	or	no
file	exists	in	the	path,	this	method	returns	an	empty	string,	not	null.

GetFileNameWithoutExtension

This	method	returns	the	root	filename	without	the	file	extension.

Be	aware	that	these	methods	do	not	actually	determine	whether	the	drives,	directories,	or
even	files	exist	on	the	system	that	runs	these	methods.	These	methods	are	string	parsers,
and	if	you	pass	one	of	them	a	string	in	some	strange	format	(such	as	\\ZY:\foo),	it	will	try
to	do	what	it	can	with	it	anyway:

ParsePath	of	\\ZY:\foo	breaks	up	into	the	following	pieces:

								Root:	\\ZY:\foo

								Directory	Name:

								Full	File	Name:	foo

								File	Extension:

								File	Name	Without	Extension:	foo

These	methods	will,	however,	throw	an	exception	if	illegal	characters	are	found	in	the
path.

To	determine	whether	files	or	directories	exist,	use	the	static	Directory.Exists	or
File.Exists	method.

See	Also
The	“Path	Class”	topic	in	the	MSDN	documentation.

8.4	Launching	and	Interacting	with	Console	Utilities

Problem
You	have	an	application	that	you	need	to	automate	and	that	takes	input	only	from	the
standard	input	stream.	You	need	to	drive	this	application	via	the	commands	it	will	take
over	the	standard	input	stream.

Solution
Say	you	need	to	drive	the	cmd.exe	application	to	display	the	current	time	with	the	TIME	/T
command	(you	could	just	run	this	command	from	the	command	line,	but	this	way	we	can
demonstrate	an	alternative	method	to	drive	an	application	that	responds	to	standard	input).
The	way	to	do	this	is	to	launch	a	process	that	is	looking	for	input	on	the	standard	input
stream.	This	is	accomplished	via	the	Process	class	StartInfo	property,	which	is	an
instance	of	a	ProcessStartInfo	class.	StartInfo	has	fields	that	control	many	details	of
the	environment	in	which	the	new	process	will	execute,	and	the	Process.Start	method
will	launch	the	new	process	with	those	options.

First,	make	sure	that	the	StartInfo.RedirectStandardInput	property	is	set	to	true.	This
setting	notifies	the	process	that	it	should	read	from	standard	input.	Then,	set	the
StartInfo.UseShellExecute	property	to	false,	because	if	you	were	to	let	the	shell
launch	the	process	for	you,	it	would	prevent	you	from	redirecting	standard	input.

Once	this	is	done,	launch	the	process	and	write	to	its	standard	input	stream	as	shown	in
Example	8-1.

Example	8-1.	RunProcessToReadStdIn	method
public	static	void	RunProcessToReadStandardInput()

{

				Process	application	=	new	Process();

				//	Run	the	command	shell.

				application.StartInfo.FileName	=	@"cmd.exe";

				//	Turn	on	command	extensions	for	cmd.exe.

				application.StartInfo.Arguments	=	"/E:ON";

				application.StartInfo.RedirectStandardInput	=	true;

				application.StartInfo.UseShellExecute	=	false;

				application.Start();

				StreamWriter	input	=	application.StandardInput;

				//	Run	the	command	to	display	the	time.

				input.WriteLine("TIME	/T");

				//	Stop	the	application	we	launched.

				input.WriteLine("exit");

}

Discussion
Redirecting	the	input	stream	for	a	process	allows	you	to	programmatically	interact	with
certain	applications	and	utilities	that	you	would	otherwise	not	be	able	to	automate	without
additional	tools.	Once	the	input	has	been	redirected,	you	can	write	into	the	standard	input
stream	of	the	process	by	reading	the	Process.StandardInput	property,	which	returns	a
StreamWriter.	Once	you	have	that,	you	can	send	things	to	the	process	via	WriteLine
calls,	as	shown	earlier.

To	use	StandardInput,	you	have	to	specify	true	for	the	StartInfo	property’s
RedirectStandardInput	property.	Otherwise,	reading	the	StandardInput	property	throws
an	exception.

When	UseShellExecute	is	false,	you	can	use	Process	only	to	create	executable
processes.	Normally	you	can	use	the	Process	class	to	perform	operations	on	the	file,	such
as	printing	a	Microsoft	Word	document.	Another	difference	when	UseShellExecute	is	set
to	false	is	that	the	working	directory	is	not	used	to	find	the	executable,	so	you	must	be
mindful	to	pass	a	full	path	or	have	the	executable	on	your	PATH	environment	variable.

See	Also
The	“Process	Class,”	“ProcessStartInfo	Class,”	“RedirectStandardInput	Property,”	and
“UseShellExecute	Property”	topics	in	the	MSDN	documentation.

8.5	Locking	Subsections	of	a	File

Problem
You	need	to	read	or	write	data	from	or	to	a	section	of	a	file,	and	you	want	to	make	sure
that	no	other	processes	or	threads	can	access,	modify,	or	delete	the	file	until	you	have
finished	with	it.

Solution
To	lock	out	other	processes	from	accessing	your	file	while	you	are	using	it,	you	use	the
Lock	method	of	the	FileStream	class.	The	following	code	creates	a	file	from	the	fileName
parameter	and	writes	two	lines	to	it.	The	entire	file	is	then	locked	via	the	Lock	method.
While	the	file	is	locked,	the	code	goes	off	and	does	some	other	processing;	when	this	code
returns,	the	file	is	closed	and	thereby	unlocked:

public	static	async	Task	CreateLockedFileAsync(string	fileName)

{

				if	(string.IsNullOrWhiteSpace(fileName))

								throw	new	ArgumentNullException(nameof(fileName));

				FileStream	fileStream	=	null;

				try

				{

								fileStream	=	new	FileStream(fileName,

																FileMode.Create,

																FileAccess.ReadWrite,

																FileShare.ReadWrite,	4096,	useAsync:	true);

								using	(StreamWriter	writer	=	new	StreamWriter(fileStream))

								{

												await	writer.WriteLineAsync("The	First	Line");

												await	writer.WriteLineAsync("The	Second	Line");

												await	writer.FlushAsync();

												try

												{

																//	Lock	all	of	the	file.

																fileStream.Lock(0,	fileStream.Length);

																//	Do	some	lengthy	processing	here…

																Thread.Sleep(1000);

												}

												finally

												{

																//	Make	sure	we	unlock	the	file.

																//	If	a	process	terminates	with	part	of	a	file	locked	or	closes	

																//	a	file	that	has	outstanding	locks,	the	behavior	is	undefined	

																//	which	is	MS	speak	for	bad	things….

																fileStream.Unlock(0,	fileStream.Length);

												}

												await	writer.WriteLineAsync("The	Third	Line");

												fileStream	=	null;

								}

				}

				finally

				{

								if	(fileStream	!=	null)

												fileStream.Dispose();

				}

}

NOTE
Note	that	in	the	CreateLockedFileAsync	method	we	are	using	the	async	and	await	operators.	The	async
operator	allows	you	to	indicate	that	a	method	is	eligible	for	suspension	at	certain	points,	and	the	await
operator	designates	those	suspension	points	in	your	code	—	which	means	that	the	compiler	knows	that	the
async	method	can’t	continue	past	that	point	until	the	awaited	asynchronous	process	is	complete.	While	it
waits,	the	caller	gets	control	back.	This	helps	your	program	in	that	the	thread	for	the	caller	is	not	blocked
and	can	perform	other	work,	but	the	method	will	still	act	as	if	it	was	called	synchronously.

Discussion
If	a	file	is	opened	within	your	application	and	the	FileShare	parameter	of	the
FileStream.Open	call	is	set	to	FileShare.ReadWrite	or	FileShare.Write,	other	code	in
your	application	can	view	or	alter	the	contents	of	the	file	while	you	are	using	it.	To	handle
file	access	with	more	granularity,	use	the	Lock	method	of	the	FileStream	object	to	prevent
other	code	from	overwriting	all	or	a	portion	of	your	file.	Once	you	are	done	with	the
locked	portion	of	your	file,	you	can	call	the	Unlock	method	on	the	FileStream	object	to
allow	other	code	in	your	application	to	write	data	to	that	portion	of	the	file.

To	lock	an	entire	file,	use	the	following	syntax:

fileStream.Lock(0,	fileStream.Length);

To	lock	a	portion	of	a	file,	use	the	following	syntax:

fileStream.Lock(4,	fileStream.Length	-	4);

This	line	of	code	locks	the	entire	file	except	for	the	first	four	characters.	Note	that	you	can
lock	an	entire	file	and	still	open	it	multiple	times,	as	well	as	write	to	it.

If	another	thread	is	accessing	this	file,	you	might	see	an	IOException	thrown	during	the
call	to	one	of	the	WriteAsync,	FlushAsync,	or	Close	methods.	For	example,	the	following
code	is	prone	to	such	an	exception:

public	static	async	Task	CreateLockedFileWithExceptionAsync(string	fileName)

{

				FileStream	fileStream	=	null;

				try

				{

								fileStream	=	new	FileStream(fileName,

																FileMode.Create,

																FileAccess.ReadWrite,

																FileShare.ReadWrite,	4096,	useAsync:	true);

								using	(StreamWriter	streamWriter	=	new	StreamWriter(fileStream))

								{

												await	streamWriter.WriteLineAsync("The	First	Line");

												await	streamWriter.WriteLineAsync("The	Second	Line");

												await	streamWriter.FlushAsync();

												//	Lock	all	of	the	file.

												fileStream.Lock(0,	fileStream.Length);

												FileStream	writeFileStream	=	null;

												try

												{

																writeFileStream	=	new	FileStream(fileName,

																																												FileMode.Open,

																																												FileAccess.Write,

																																												FileShare.ReadWrite,	4096,	

																																												useAsync:	true);

																using	(StreamWriter	streamWriter2	=	

																				new	StreamWriter(writeFileStream))

																{

																				await	streamWriter2.WriteAsync("foo	");

																				try

																				{

																								streamWriter2.Close();	//	-->	Exception	occurs	here!

																				}

																				catch

																				{

																								Console.WriteLine(

																								"The	streamWriter2.Close	call	generated	an	exception.");

																				}

																				streamWriter.WriteLine("The	Third	Line");

																}

																writeFileStream	=	null;

												}

												finally

												{

																if	(writeFileStream	!=	null)

																				writeFileStream.Dispose();

												}

								}

								fileStream	=	null;

				}

				finally

				{

								if	(fileStream	!=	null)

												fileStream.Dispose();

				}

}

This	code	produces	the	following	output:

The	streamWriter2.Close	call	generated	an	exception.

Even	though	streamWriter2,	the	second	StreamWriter	object,	writes	to	a	locked	file,	it	is
only	when	the	streamWriter2.Close	method	is	executed	that	the	IOException	is	thrown.

If	the	code	for	this	recipe	were	rewritten	as	follows:

public	static	async	Task	CreateLockedFileWithUnlockAsync(string	fileName)

{

				FileStream	fileStream	=	null;

				try

				{

								fileStream	=	new	FileStream(fileName,

																																				FileMode.Create,

																																				FileAccess.ReadWrite,

																																				FileShare.ReadWrite,	4096,	useAsync:	true);

								using	(StreamWriter	streamWriter	=	new	StreamWriter(fileStream))

								{

												await	streamWriter.WriteLineAsync("The	First	Line");

												await	streamWriter.WriteLineAsync("The	Second	Line");

												await	streamWriter.FlushAsync();

												//	Lock	all	of	the	file.

												fileStream.Lock(0,	fileStream.Length);

												//	Try	to	access	the	locked	file…

												FileStream	writeFileStream	=	null;

												try

												{

																writeFileStream	=	new	FileStream(fileName,

																																												FileMode.Open,

																																												FileAccess.Write,

																																												FileShare.ReadWrite,	4096,	

																																												useAsync:	true);

																using	(StreamWriter	streamWriter2	=	

																				new	StreamWriter(writeFileStream))

																{

																				await	streamWriter2.WriteAsync("foo");

																				fileStream.Unlock(0,	fileStream.Length);

																				await	streamWriter2.FlushAsync();

																}

																writeFileStream	=	null;

												}

												finally

												{

																if	(writeFileStream	!=	null)

																				writeFileStream.Dispose();

												}

								}

								fileStream	=	null;

				}

				finally

				{

								if	(fileStream	!=	null)

												fileStream.Dispose();

				}

}

no	exception	is	thrown.	This	is	because	the	code	unlocked	the	FileStream	object	that
initially	locked	the	entire	file.	This	action	also	freed	all	of	the	locks	on	the	file	that	this
FileStream	object	was	holding	onto.	In	the	example,	the
streamWriter2.WriteAsync("Foo")	method	had	written	Foo	to	the	stream’s	buffer	but
had	not	flushed	it,	so	the	string	Foo	was	still	waiting	to	be	flushed	and	written	to	the	actual
file.	Keep	this	situation	in	mind	when	interleaving	the	opening,	locking,	and	closing	of
streams.	Sometimes	mistakes	in	code	are	not	immediately	found	during	code	reviews,	unit
testing,	or	formal	quality	assurance,	and	this	can	lead	to	some	bugs	that	are	more	difficult
to	track	down,	so	tread	carefully	when	using	file	locking.

See	Also
The	“StreamWriter	Class,”	“FileStream	Class,”	and	“Asynchronous	Programming	with
Async	and	Await”	topics	in	the	MSDN	documentation.

8.6	Waiting	for	an	Action	to	Occur	in	the	Filesystem

Problem
You	need	to	be	notified	when	a	particular	event	occurs	in	the	filesystem,	such	as	the
renaming	of	a	file	or	directory,	the	increasing	or	decreasing	of	the	size	of	a	file,	the
deletion	of	a	file	or	directory,	the	creation	of	a	file	or	directory,	or	even	the	changing	of	a
file’s	or	directory’s	attribute(s).	However,	this	notification	must	occur	synchronously.	In
other	words,	the	application	cannot	continue	unless	a	specific	action	occurs	to	a	file	or
directory.

Solution
The	WaitForChanged	method	of	the	FileSystemWatcher	class	can	be	called	to	wait
synchronously	for	an	event	notification.	This	is	illustrated	by	the	WaitForZipCreation
method	shown	in	Example	8-2,	which	waits	for	an	action	—	more	specifically,	the
creation	of	the	Backup.zip	file	somewhere	on	the	C:\	drive	—	to	be	performed	before
proceeding	to	the	next	line	of	code,	which	is	the	WriteLine	statement.	Finally,	we	spin	off
a	task	to	do	the	actual	work	of	creating	the	file.	By	doing	this	as	a	Task,	we	allow	the
processing	to	occur	on	a	separate	thread	when	one	becomes	available	and	the
FileSystemWatcher	to	detect	the	file	creation.

Example	8-2.	WaitForZipCreation	method
public	static	void	WaitForZipCreation(string	path,	string	fileName)

{

				if	(string.IsNullOrWhiteSpace(path))

								throw	new	ArgumentNullException(nameof(path));

				if	(string.IsNullOrWhiteSpace(fileName))

								throw	new	ArgumentNullException(nameof(fileName));

				FileSystemWatcher	fsw	=	null;

				try

				{

								fsw	=	new	FileSystemWatcher();

								string	[]	data	=	new	string[]	{path,fileName};

								fsw.Path	=	path;

								fsw.Filter	=	fileName;

								fsw.NotifyFilter	=	NotifyFilters.LastAccess	|	NotifyFilters.LastWrite

												|	NotifyFilters.FileName	|	NotifyFilters.DirectoryName;

								//	Run	the	code	to	generate	the	file	we	are	looking	for

								//	Normally	you	wouldn't	do	this	as	another	source	is	creating

								//	this	file

								Task	work	=	Task.Run(()	=>

								{

												try

												{

																//	wait	a	sec…

																Thread.Sleep(1000);

																//	create	a	file	in	the	temp	directory

																if	(data.Length	==	2)

																{

																				string	dataPath	=	data[0];

																				string	dataFile	=	path	+	data[1];

																				Console.WriteLine($"Creating	{dataFile}	in	task…");

																				FileStream	fileStream	=	File.Create(dataFile);

																				fileStream.Close();

																}

												}

												catch	(Exception	e)

												{

																Console.WriteLine(e.ToString());

												}

								});

								//	Don't	await	the	work	task	finish,	as	we	detect	that

								//	through	the	FileSystemWatcher

								WaitForChangedResult	result	=

												fsw.WaitForChanged(WatcherChangeTypes.Created);

								Console.WriteLine($"{result.Name}	created	at	{path}.");

				}

				catch(Exception	e)

				{

								Console.WriteLine(e.ToString());

				}

				finally

				{

								//	clean	it	up

								File.Delete(fileName);

								fsw?.Dispose();

				}

}

Discussion
The	WaitForChanged	method	returns	a	WaitForChangedResult	structure	that	contains	the
properties	listed	in	Table	8-1.

Table	8-1.	WaitForChangedResult	properties

Property Description
ChangeType Lists	the	type	of	change	that	occurred.	This	change	is	returned	as	a	WatcherChangeTypes	enumeration.

The	values	of	this	enumeration	can	possibly	be	ORed	together.
Name Holds	the	name	of	the	file	or	directory	that	was	changed.	If	the	file	or	directory	was	renamed,	this

property	returns	the	changed	name.	Its	value	is	set	to	null	if	the	operation	method	call	times	out.
OldName The	original	name	of	the	modified	file	or	directory.	If	this	file	or	directory	was	not	renamed,	this	property

will	return	the	same	value	as	the	Name	property.	Its	value	is	set	to	null	if	the	operation	method	call	times
out.

TimedOut Holds	a	Boolean	indicating	whether	the	WaitForChanged	method	timed	out	(true)	or	not	(false).

The	way	we	are	currently	making	the	WaitForChanged	call	could	possibly	block
indefinitely.	To	prevent	the	code	from	hanging	forever	on	the	WaitForChanged	call,	you
can	specify	a	timeout	value	of	three	seconds	as	follows:

WaitForChangedResult	result	=

									fsw.WaitForChanged(WatcherChangeTypes.Created,	3000);

The	NotifyFilters	enumeration	allows	you	to	specify	the	types	of	files	or	folders	to
watch	for,	as	shown	in	Table	8-2.

Table	8-2.	NotifyFilters	enumeration

Enumeration	value Definition
FileName Name	of	the	file
DirectoryName Name	of	the	directory
Attributes The	file	or	folder	attributes
Size The	file	or	folder	size
LastWrite The	date	the	file	or	folder	last	had	anything	written	to	it
LastAccess The	date	the	file	or	folder	was	last	opened
CreationTime The	time	the	file	or	folder	was	created
Security The	security	settings	of	the	file	or	folder

See	Also
The	“FileSystemWatcher	Class,”	“NotifyFilters	Enumeration,”	and
“WaitForChangedResult	Structure”	topics	in	the	MSDN	documentation.

8.7	Comparing	Version	Information	of	Two	Executable
Modules

Problem
You	need	to	programmatically	compare	the	version	information	of	two	executable
modules.	An	executable	module	is	a	file	that	contains	executable	code,	such	as	an	.exe	or
.dll	file.	The	ability	to	compare	the	version	information	of	two	executable	modules	can	be
very	useful	to	an	application	in	situations	such	as:

Trying	to	determine	if	it	has	all	of	the	“right”	pieces	present	to	execute.

Deciding	on	an	assembly	to	dynamically	load	through	reflection.

Looking	for	the	newest	version	of	a	file	or	.dll	from	many	files	spread	out	in	the	local
filesystem	or	on	a	network.

Solution
Use	the	CompareFileVersions	method	to	compare	executable	module	version
information.	This	method	accepts	two	filenames,	including	their	paths,	as	parameters.	The
version	information	of	each	module	is	retrieved	and	compared.	This	file	returns	a
FileComparison	enumeration,	defined	as	follows:

public	enum	FileComparison

{

				Error	=	0,

				Newer	=	1,

				Older	=	2,

				Same	=	3

}

The	code	for	the	CompareFileVersions	method	is	shown	in	Example	8-3.

Example	8-3.	CompareFileVersions	method
private	static	FileComparison	ComparePart(int	p1,	int	p2)	=>

				p1	>	p2	?	FileComparison.Newer	:

								(p1	<	p2	?	FileComparison.Older	:	FileComparison.Same);

public	static	FileComparison	CompareFileVersions(string	file1,	string	file2)

{

				if	(string.IsNullOrWhiteSpace(file1))

								throw	new	ArgumentNullException(nameof(file1));

				if	(string.IsNullOrWhiteSpace(file2))

								throw	new	ArgumentNullException(nameof(file2));

				FileComparison	retValue	=	FileComparison.Error;

				//	get	the	version	information

				FileVersionInfo	file1Version	=	FileVersionInfo.GetVersionInfo(file1);

				FileVersionInfo	file2Version	=	FileVersionInfo.GetVersionInfo(file2);

				retValue	=	ComparePart(file1Version.FileMajorPart,	

								file2Version.FileMajorPart);

				if	(retValue	!=	FileComparison.Same)

				{

								retValue	=	ComparePart(file1Version.FileMinorPart,	file2Version.FileMinorPart);

								if	(retValue	!=	FileComparison.Same)

								{

												retValue	=	ComparePart(file1Version.FileBuildPart,

																											file2Version.FileBuildPart);

												if	(retValue	!=	FileComparison.Same)

																retValue	=	ComparePart(file1Version.FilePrivatePart,

																								file2Version.FilePrivatePart);

								}

				}

				return	retValue;

}

Discussion
Not	all	executable	modules	have	version	information.	If	you	load	a	module	with	no
version	information	using	the	FileVersionInfo	class,	you	will	not	provoke	an	exception,
nor	will	you	get	null	back	for	the	object	reference.	Instead,	you	will	get	a	valid
FileVersionInfo	object	with	all	data	members	in	their	initial	state,	which	is	null	for
.NET	objects.

Assemblies	actually	have	two	sets	of	version	information:	the	version	information
available	in	the	assembly	manifest	and	the	PE	(portable	executable)	file	version
information.	FileVersionInfo	reads	the	assembly	manifest	version	information.

The	first	action	this	method	takes	is	to	determine	whether	the	two	files	passed	in	to	the
file1	and	file2	parameters	actually	exist.	If	so,	the	static	GetVersionInfo	method	of	the
FileVersionInfo	class	is	called	to	get	version	information	for	the	two	files.

The	CompareFileVersions	method	attempts	to	compare	each	portion	of	the	file’s	version
number	using	the	following	properties	of	the	FileVersionInfo	object	returned	by
GetVersionInfo:
FileMajorPart

The	first	two	bytes	of	the	version	number.
FileMinorPart

The	second	two	bytes	of	the	version	number.
FileBuildPart

The	third	two	bytes	of	the	version	number.
FilePrivatePart

The	final	two	bytes	of	the	version	number.

The	full	version	number	is	composed	of	these	four	parts,	making	up	an	8-byte	number
representing	the	file’s	version	number.

The	CompareFileVersions	method	first	compares	the	FileMajorPart	version	information
of	the	two	files.	If	these	are	equal,	the	FileMinorPart	version	information	of	the	two	files
is	compared.	This	continues	through	the	FileBuildPart	and	finally	the	FilePrivatePart
version	information	values.	If	all	four	parts	are	equal,	the	files	are	considered	to	have	the
same	version	number.	If	either	file	is	found	to	have	a	higher	number	than	the	other	file,	it
is	considered	to	be	the	latest	version.

See	Also
The	“FileVersionInfo	Class”	topic	in	the	MSDN	documentation.

8.8	Querying	Information	for	All	Drives	on	a	System

Problem
Your	application	needs	to	know	if	a	drive	(HDD,	CD	drive,	DVD	drive,	BluRay	drive,
etc.)	is	available	and	ready	to	be	written	to	and/or	read	from	and	if	you	have	enough
available	free	space	on	the	drive.

Solution
Use	the	various	properties	in	the	DriveInfo	class	as	shown	here:

public	static	void	DisplayAllDriveInfo()

{

				DriveInfo[]	drives	=	DriveInfo.GetDrives();

				Array.ForEach(drives,	drive	=>

				{

								if	(drive.IsReady)

								{

												Console.WriteLine($"Drive	{drive.Name}	is	ready.");

												Console.WriteLine($"AvailableFreeSpace:	{drive.AvailableFreeSpace}");

												Console.WriteLine($"DriveFormat:	{drive.DriveFormat}");

												Console.WriteLine($"DriveType:	{drive.DriveType}");

												Console.WriteLine($"Name:	{drive.Name}");

												Console.WriteLine("RootDirectory.FullName:	"	+

																$"{drive.RootDirectory.FullName}");

												Console.WriteLine($"TotalFreeSpace:	{drive.TotalFreeSpace}");

												Console.WriteLine($"TotalSize:	{drive.TotalSize}");

												Console.WriteLine($"VolumeLabel:	{drive.VolumeLabel}");

								}

								else

								{

												Console.WriteLine($"Drive	{drive.Name}	is	not	ready.");

								}

								Console.WriteLine();

				});

}

This	code	will	display	the	results	in	the	following	format.	Because	each	system	is
different,	the	results	will	vary:

Drive	C:\	is	ready.

AvailableFreeSpace:	143210795008

DriveFormat:	NTFS

DriveType:	Fixed

Name:	C:\

RootDirectory.FullName:	C:\

TotalFreeSpace:	143210795008

TotalSize:	159989886976

VolumeLabel:	Vol1

Drive	D:\	is	ready.

AvailableFreeSpace:	0

DriveFormat:	UDF

DriveType:	CDRom

Name:	D:\

RootDirectory.FullName:	D:\

TotalFreeSpace:	0

TotalSize:	3305965568

VolumeLabel:	Vol2

Drive	E:\	is	ready.

AvailableFreeSpace:	4649025536

DriveFormat:	UDF

DriveType:	CDRom

Name:	E:\

RootDirectory.FullName:	E:\

TotalFreeSpace:	4649025536

TotalSize:	4691197952

VolumeLabel:	Vol3

Drive	F:\	is	not	ready

Of	particular	interest	are	the	IsReady	and	AvailableFreeSpace	properties.	The	IsReady
property	determines	if	the	drive	is	ready	to	be	queried,	written	to,	or	read	from	but	is	not

terribly	reliable,	as	this	state	could	quickly	change.	When	using	IsReady,	be	sure	to
account	for	the	case	where	the	drive	becomes	not	ready	as	well.	The	AvailableFreeSpace
property	returns	the	free	space	on	that	drive	in	bytes.

Discussion
The	DriveInfo	class	from	the	.NET	Framework	allows	you	to	easily	query	information	on
one	particular	drive	or	on	all	drives	in	the	system.	To	query	the	information	from	a	single
drive,	use	the	code	in	Example	8-4.

Example	8-4.	Getting	information	from	a	specific	drive
DriveInfo	drive	=	new	DriveInfo("D");

if	(drive.IsReady)

				Console.WriteLine($"The	space	available	on	the	D:\\	drive:	"	+

																$"{drive.AvailableFreeSpace}");

else

				Console.WriteLine("Drive	D:\\	is	not	ready.");

Notice	that	only	the	drive	letter	is	passed	in	to	the	DriveInfo	constructor.	The	drive	letter
can	be	either	uppercase	or	lowercase	—	it	does	not	matter.	The	next	thing	you	will	notice
with	the	code	in	the	Solution	to	this	recipe	is	that	the	IsReady	property	is	always	tested	for
true	before	either	using	the	drive	or	querying	its	properties.	If	we	did	not	test	this
property	for	true	and	for	some	reason	the	drive	was	not	ready	(e.g.,	a	CD	was	not	in	the
drive	at	that	time),	a	System.IO.IOException	would	be	returned	stating	“The	device	is
not	ready.”	The	DriveInfo	constructor	was	not	used	for	the	Solution	to	this	recipe.
Instead,	the	static	GetDrives	method	of	the	DriveInfo	class	was	used	to	return	an	array	of
DriveInfo	objects.	Each	DriveInfo	object	in	this	array	corresponds	to	one	drive	on	the
current	system.

The	DriveType	property	of	the	DriveInfo	class	returns	an	enumeration	value	from	the
DriveType	enumeration.	This	enumeration	value	identifies	what	type	of	drive	the	current
DriveInfo	object	represents.	Table	8-3	identifies	the	various	values	of	the	DriveType
enumeration.

Table	8-3.	DriveType	enumeration	values

Enum	value Description
CDRom This	can	be	a	CD-ROM,	CD	writer,	DVD-ROM,	DVD,	or	Blu-ray	writer	drive.
Fixed This	is	the	fixed	drive,	such	as	an	HDD.	Note	that	USB	HDDs	fall	into	this	category.
Network A	network	drive.
NoRootDirectory No	root	directory	was	found	on	this	drive.
Ram A	RAM	disk.
Removable A	removable	storage	device.
Unknown Some	other	type	of	drive	than	those	listed	here.

In	the	DriveInfo	class	there	are	two	very	similar	properties,	AvailableFreeSpace	and
TotalFreeSpace.	Both	properties	will	return	the	same	value	in	most	cases.	However,
AvailableFreeSpace	also	takes	into	account	any	disk-quota	information	for	a	particular
drive.	You	can	find	disk-quota	information	by	right-clicking	a	drive	in	Windows	Explorer
and	selecting	the	Properties	pop-up	menu	item.	This	displays	the	Properties	page	for	the

drive.	Click	the	Quota	tab	on	the	Properties	page	to	view	the	quota	information	for	the
drive.	If	the	Enable	Quota	Management	checkbox	is	unchecked,	then	disk-quota
management	is	disabled,	and	the	AvailableFreeSpace	and	TotalFreeSpace	properties
should	be	equal.

See	Also
The	“DriveInfo	Class”	topic	in	the	MSDN	documentation.

8.9	Compressing	and	Decompressing	Your	Files

Problem
You	need	a	way	to	compress	a	file	using	one	of	the	stream-based	classes	without	being
constrained	by	the	4	GB	limit	imposed	by	the	framework	classes.	In	addition,	you	need	a
way	to	decompress	the	file	to	allow	you	to	read	it	back	in.

Solution
Use	the	System.IO.Compression.DeflateStream	or	the
System.IO.Compression.GZipStream	classes	to	read	and	write	compressed	data	to	a	file
using	a	“chunking”	routine.	The	CompressFileAsync,	DecompressFileAsync,	and
Decompress	methods	shown	in	Example	8-5	demonstrate	how	to	use	these	classes	to
compress	and	decompress	files	on	the	fly.

Example	8-5.	The	CompressFileAsync	and	DecompressFileAsync	methods
///	<summary>

///	Compress	the	source	file	to	the	destination	file.

///	This	is	done	in	1MB	chunks	to	not	overwhelm	the	memory	usage.

///	</summary>

///	<param	name="sourceFile">the	uncompressed	file</param>

///	<param	name="destinationFile">the	compressed	file</param>

///	<param	name="compressionType">the	type	of	compression	to	use</param>

public	static	async	Task	CompressFileAsync(string	sourceFile,

																																string	destinationFile,

																																CompressionType	compressionType)

{

				if	(string.IsNullOrWhiteSpace(sourceFile))

								throw	new	ArgumentNullException(nameof(sourceFile));

				if	(string.IsNullOrWhiteSpace(destinationFile))

								throw	new	ArgumentNullException(nameof(destinationFile));

				FileStream	streamSource	=	null;

				FileStream	streamDestination	=	null;

				Stream	streamCompressed	=	null;

				int	bufferSize	=	4096;

				using	(streamSource	=	new	FileStream(sourceFile,

												FileMode.OpenOrCreate,	FileAccess.Read,	FileShare.None,

												bufferSize,	useAsync:	true))

				{

								using	(streamDestination	=	new	FileStream(destinationFile,

												FileMode.OpenOrCreate,	FileAccess.Write,	FileShare.None,

												bufferSize,	useAsync:	true))

								{

												//	read	1MB	chunks	and	compress	them

												long	fileLength	=	streamSource.Length;

												//	write	out	the	fileLength	size

												byte[]	size	=	BitConverter.GetBytes(fileLength);

												await	streamDestination.WriteAsync(size,	0,	size.Length);

												long	chunkSize	=	1048576;	//	1MB

												while	(fileLength	>	0)

												{

																//	read	the	chunk

																byte[]	data	=	new	byte[chunkSize];

																await	streamSource.ReadAsync(data,	0,	data.Length);

																//	compress	the	chunk

																MemoryStream	compressedDataStream	=

																				new	MemoryStream();

																if	(compressionType	==	CompressionType.Deflate)

																				streamCompressed	=

																								new	DeflateStream(compressedDataStream,

																												CompressionMode.Compress);

																else

																				streamCompressed	=

																								new	GZipStream(compressedDataStream,

																												CompressionMode.Compress);

																using	(streamCompressed)

																{

																				//	write	the	chunk	in	the	compressed	stream

																				await	streamCompressed.WriteAsync(data,	0,	data.Length);

																}

																//	get	the	bytes	for	the	compressed	chunk

																byte[]	compressedData	=

																				compressedDataStream.GetBuffer();

																//	write	out	the	chunk	size

																size	=	BitConverter.GetBytes(chunkSize);

																await	streamDestination.WriteAsync(size,	0,	size.Length);

																//	write	out	the	compressed	size

																size	=	BitConverter.GetBytes(compressedData.Length);

																await	streamDestination.WriteAsync(size,	0,	size.Length);

																//	write	out	the	compressed	chunk

																await	streamDestination.WriteAsync(compressedData,	0,

																				compressedData.Length);

																//	subtract	the	chunk	size	from	the	file	size

																fileLength	-=	chunkSize;

																//	if	chunk	is	less	than	remaining	file	use

																//	remaining	file

																if	(fileLength	<	chunkSize)

																				chunkSize	=	fileLength;

												}

								}

				}

}

///	<summary>

///	This	function	will	decompress	the	chunked	compressed	file

///	created	by	the	CompressFile	function.

///	</summary>

///	<param	name="sourceFile">the	compressed	file</param>

///	<param	name="destinationFile">the	destination	file</param>

///	<param	name="compressionType">the	type	of	compression	to	use</param>

public	static	async	Task	DecompressFileAsync(string	sourceFile,

																																string	destinationFile,

																																CompressionType	compressionType)

{

				if	(string.IsNullOrWhiteSpace(sourceFile))

								throw	new	ArgumentNullException(nameof(sourceFile));

				if	(string.IsNullOrWhiteSpace(destinationFile))

								throw	new	ArgumentNullException(nameof(destinationFile));

				FileStream	streamSource	=	null;

				FileStream	streamDestination	=	null;

				Stream	streamUncompressed	=	null;

				int	bufferSize	=	4096;

				using	(streamSource	=	new	FileStream(sourceFile,

												FileMode.OpenOrCreate,	FileAccess.Read,	FileShare.None,

												bufferSize,	useAsync:	true))

				{

								using	(streamDestination	=	new	FileStream(destinationFile,

												FileMode.OpenOrCreate,	FileAccess.Write,	FileShare.None,

												bufferSize,	useAsync:	true))

								{

												//	read	the	fileLength	size

												//	read	the	chunk	size

												byte[]	size	=	new	byte[sizeof(long)];

												await	streamSource.ReadAsync(size,	0,	size.Length);

												//	convert	the	size	back	to	a	number

												long	fileLength	=	BitConverter.ToInt64(size,	0);

												long	chunkSize	=	0;

												int	storedSize	=	0;

												long	workingSet	=	Process.GetCurrentProcess().WorkingSet64;

												while	(fileLength	>	0)

												{

																//	read	the	chunk	size

																size	=	new	byte[sizeof(long)];

																await	streamSource.ReadAsync(size,	0,	size.Length);

																//	convert	the	size	back	to	a	number

																chunkSize	=	BitConverter.ToInt64(size,	0);

																if	(chunkSize	>	fileLength	||

																				chunkSize	>	workingSet)

																				throw	new	InvalidDataException();

																//	read	the	compressed	size

																size	=	new	byte[sizeof(int)];

																await	streamSource.ReadAsync(size,	0,	size.Length);

																//	convert	the	size	back	to	a	number

																storedSize	=	BitConverter.ToInt32(size,	0);

																if	(storedSize	>	fileLength	||

																				storedSize	>	workingSet)

																				throw	new	InvalidDataException();

																if	(storedSize	>	chunkSize)

																				throw	new	InvalidDataException();

																byte[]	uncompressedData	=	new	byte[chunkSize];

																byte[]	compressedData	=	new	byte[storedSize];

																await	streamSource.ReadAsync(compressedData,	0,

																				compressedData.Length);

																//	uncompress	the	chunk

																MemoryStream	uncompressedDataStream	=

																				new	MemoryStream(compressedData);

																if	(compressionType	==	CompressionType.Deflate)

																				streamUncompressed	=

																								new	DeflateStream(uncompressedDataStream,

																												CompressionMode.Decompress);

																else

																				streamUncompressed	=

																								new	GZipStream(uncompressedDataStream,

																												CompressionMode.Decompress);

																using	(streamUncompressed)

																{

																				//	read	the	chunk	in	the	compressed	stream

																				await	streamUncompressed.ReadAsync(uncompressedData,	0,

																								uncompressedData.Length);

																}

																//	write	out	the	uncompressed	chunk

																await	streamDestination.WriteAsync(uncompressedData,	0,

																				uncompressedData.Length);

																//	subtract	the	chunk	size	from	the	file	size

																fileLength	-=	chunkSize;

																//	if	chunk	is	less	than	remaining	file	use	remaining	file

																if	(fileLength	<	chunkSize)

																				chunkSize	=	fileLength;

												}

								}

				}

The	CompressionType	enumeration	is	defined	as	follows:

public	enum	CompressionType

{

				Deflate,

				GZip

}

Discussion
The	CompressFileAsync	method	accepts	a	path	to	the	source	file	to	compress,	a	path	to
the	destination	of	the	compressed	file,	and	a	CompressionType	enumeration	value
indicating	which	type	of	compression	algorithm	to	use	(Deflate	or	GZip).	This	method
produces	a	file	containing	the	compressed	data.

The	DecompressFileAsync	method	accepts	a	path	to	the	source	compressed	file	to
decompress,	a	path	to	the	destination	of	the	decompressed	file,	and	a	CompressionType
enumeration	value	indicating	which	type	of	decompression	algorithm	to	use	(Deflate	or
GZip).

The	TestCompressNewFile	method	shown	in	Example	8-6	exercises	the
CompressFileAsync	and	DecompressFileAsync	methods	defined	in	the	Solution	section
of	this	recipe.

Example	8-6.	Using	the	CompressFile	and	DecompressFile	methods
public	static	async	void	TestCompressNewFileAsync()

{

				byte[]	data	=	new	byte[10000000];

				for	(int	i	=	0;	i	<	10000000;	i++)

								data[i]	=	(byte)i;

				using(FileStream	fs	=

								new	FileStream(@"C:\NewNormalFile.txt",

												FileMode.OpenOrCreate,	FileAccess.ReadWrite,	FileShare.None,

												4096,	useAsync:true))

				{

								await	fs.WriteAsync(data,	0,	data.Length);

				}

				await	CompressFileAsync(@"C:\NewNormalFile.txt",	@"C:\NewCompressedFile.txt",

								CompressionType.Deflate);

				await	DecompressFileAsync(@"C:\NewCompressedFile.txt",

								@"C:\NewDecompressedFile.txt",

								CompressionType.Deflate);

				await	CompressFileAsync(@"C:\NewNormalFile.txt",	@"C:\NewGZCompressedFile.txt",

								CompressionType.GZip);

				await	DecompressFileAsync(@"C:\NewGZCompressedFile.txt",

								@"C:\NewGZDecompressedFile.txt",

								CompressionType.GZip);

				//Normal	file	size	==	10,000,000	bytes

				//GZipped	file	size	==	84,362

				//Deflated	file	size	==	42,145

				//Pre	.NET	4.5	GZipped	file	size	==	155,204

				//Pre	.NET	4.5	Deflated	file	size	==	155,168

				//	36	bytes	are	related	to	the	GZip	CRC

}

When	this	test	code	is	run,	we	get	three	files	with	different	sizes.	The	first	file,
NewNormalFile.txt,	is	10,000,000	bytes	in	size.	The	NewCompressedFile.txt	file	is	42,145
bytes.	The	final	file,	NewGzCompressedFile.txt,	file	is	84,362	bytes.	As	you	can	see,	there
is	not	much	difference	between	the	sizes	for	the	files	compressed	with	the	DeflateStream
class	and	the	GZipStream	class.	The	reason	for	this	is	that	both	compression	classes	use
the	same	compression/decompression	algorithm	(i.e.,	the	lossless	Deflate	algorithm	as

described	in	the	RFC	1951:	Deflate	1.3	specification).

In	.NET	4.5,	the	GZipStream	and	DeflateStream	classes	have	been	updated	to	use	the
zlib	library	behind	the	scenes	to	perform	the	compression,	which	has	improved	the
compression	ratios.	You	can	see	this	if	you	run	the	older	version	of	the	CompressFile	and
DecompressFile	methods	on	prior	versions	of	the	.NET	Framework,	as	shown	in
Example	8-7.

Example	8-7.	Pre–.NET	4.5	version	of	the	CompressFile	and	DecompressFile	methods
///	<summary>

///	Compress	the	source	file	to	the	destination	file.

///	This	is	done	in	1MB	chunks	to	not	overwhelm	the	memory	usage.

///	</summary>

///	<param	name="sourceFile">the	uncompressed	file</param>

///	<param	name="destinationFile">the	compressed	file</param>

///	<param	name="compressionType">the	type	of	compression	to	use</param>

public	static	void	CompressFile(string	sourceFile,

																																string	destinationFile,

																																CompressionType	compressionType)

{

				if	(sourceFile	!=	null)

				{

								FileStream	streamSource	=	null;

								FileStream	streamDestination	=	null;

								Stream	streamCompressed	=	null;

								using	(streamSource	=	File.OpenRead(sourceFile))

								{

												using	(streamDestination	=	File.OpenWrite(destinationFile))

												{

																//	read	1MB	chunks	and	compress	them

																long	fileLength	=	streamSource.Length;

																//	write	out	the	fileLength	size

																byte[]	size	=	BitConverter.GetBytes(fileLength);

																streamDestination.Write(size,	0,	size.Length);

																long	chunkSize	=	1048576;	//	1MB

																while	(fileLength	>	0)

																{

																				//	read	the	chunk

																				byte[]	data	=	new	byte[chunkSize];

																				streamSource.Read(data,	0,	data.Length);

																				//	compress	the	chunk

																				MemoryStream	compressedDataStream	=

																								new	MemoryStream();

																				if	(compressionType	==	CompressionType.Deflate)

																								streamCompressed	=

																												new	DeflateStream(compressedDataStream,

																																CompressionMode.Compress);

																				else

																								streamCompressed	=

																												new	GZipStream(compressedDataStream,

																																CompressionMode.Compress);

																				using	(streamCompressed)

																				{

																								//	write	the	chunk	in	the	compressed	stream

																								streamCompressed.Write(data,	0,	data.Length);

																				}

																				//	get	the	bytes	for	the	compressed	chunk

																				byte[]	compressedData	=

																								compressedDataStream.GetBuffer();

																				//	write	out	the	chunk	size

																				size	=	BitConverter.GetBytes(chunkSize);

																				streamDestination.Write(size,	0,	size.Length);

http://www.zlib.net/

																				//	write	out	the	compressed	size

																				size	=	BitConverter.GetBytes(compressedData.Length);

																				streamDestination.Write(size,	0,	size.Length);

																				//	write	out	the	compressed	chunk

																				streamDestination.Write(compressedData,	0,

																								compressedData.Length);

																				//	subtract	the	chunk	size	from	the	file	size

																				fileLength	-=	chunkSize;

																				//	if	chunk	is	less	than	remaining	file	use

																				//	remaining	file

																				if	(fileLength	<	chunkSize)

																								chunkSize	=	fileLength;

																}

												}

								}

				}

}

///	<summary>

///	This	function	will	decompress	the	chunked	compressed	file

///	created	by	the	CompressFile	function.

///	</summary>

///	<param	name="sourceFile">the	compressed	file</param>

///	<param	name="destinationFile">the	destination	file</param>

///	<param	name="compressionType">the	type	of	compression	to	use</param>

public	static	void	DecompressFile(string	sourceFile,

																																string	destinationFile,

																																CompressionType	compressionType)

{

				FileStream	streamSource	=	null;

				FileStream	streamDestination	=	null;

				Stream	streamUncompressed	=	null;

				using	(streamSource	=	File.OpenRead(sourceFile))

				{

								using	(streamDestination	=	File.OpenWrite(destinationFile))

								{

												//	read	the	fileLength	size

												//	read	the	chunk	size

												byte[]	size	=	new	byte[sizeof(long)];

												streamSource.Read(size,	0,	size.Length);

												//	convert	the	size	back	to	a	number

												long	fileLength	=	BitConverter.ToInt64(size,	0);

												long	chunkSize	=	0;

												int	storedSize	=	0;

												long	workingSet	=	Process.GetCurrentProcess().WorkingSet64;

												while	(fileLength	>	0)

												{

																//	read	the	chunk	size

																size	=	new	byte[sizeof(long)];

																streamSource.Read(size,	0,	size.Length);

																//	convert	the	size	back	to	a	number

																chunkSize	=	BitConverter.ToInt64(size,	0);

																if	(chunkSize	>	fileLength	||

																				chunkSize	>	workingSet)

																				throw	new	InvalidDataException();

																//	read	the	compressed	size

																size	=	new	byte[sizeof(int)];

																streamSource.Read(size,	0,	size.Length);

																//	convert	the	size	back	to	a	number

																storedSize	=	BitConverter.ToInt32(size,	0);

																if	(storedSize	>	fileLength	||

																				storedSize	>	workingSet)

																				throw	new	InvalidDataException();

																if	(storedSize	>	chunkSize)

																				throw	new	InvalidDataException();

																byte[]	uncompressedData	=	new	byte[chunkSize];

																byte[]	compressedData	=	new	byte[storedSize];

																streamSource.Read(compressedData,	0,

																				compressedData.Length);

																//	uncompress	the	chunk

																MemoryStream	uncompressedDataStream	=

																				new	MemoryStream(compressedData);

																if	(compressionType	==	CompressionType.Deflate)

																				streamUncompressed	=

																								new	DeflateStream(uncompressedDataStream,

																												CompressionMode.Decompress);

																else

																				streamUncompressed	=

																								new	GZipStream(uncompressedDataStream,

																												CompressionMode.Decompress);

																using	(streamUncompressed)

																{

																				//	read	the	chunk	in	the	compressed	stream

																				streamUncompressed.Read(uncompressedData,	0,

																								uncompressedData.Length);

																}

																//	write	out	the	uncompressed	chunk

																streamDestination.Write(uncompressedData,	0,

																				uncompressedData.Length);

																//	subtract	the	chunk	size	from	the	file	size

																fileLength	-=	chunkSize;

																//	if	chunk	is	less	than	remaining	file	use	remaining	file

																if	(fileLength	<	chunkSize)

																				chunkSize	=	fileLength;

												}

								}

				}

}

You	may	be	wondering	why	you	would	pick	one	class	over	the	other	if	they	use	the	same
algorithm.	One	good	reason	is	that	the	GZipStream	class	adds	a	CRC	(cyclic	redundancy
check)	to	the	compressed	data	to	determine	if	it	has	been	corrupted.	If	the	data	has	been
corrupted,	an	InvalidDataException	is	thrown	with	the	statement	“The	CRC	in	GZip
footer	does	not	match	the	CRC	calculated	from	the	decompressed	data.”	By	catching	this
exception,	you	can	determine	if	your	data	is	corrupted.

In	the	Decompress	method,	it’s	possible	for	some	InvalidDataException	instances	to	be
thrown:

//	read	the	chunk	size

size	=	new	byte[sizeof(long)];

streamSource.Read(size,	0,	size.Length);

//	convert	the	size	back	to	a	number

chunkSize	=	BitConverter.ToInt64(size,	0);

if	(chunkSize	>	fileLength	||	chunkSize	>	workingSet)

				throw	new	InvalidDataException();

//	read	the	compressed	size

size	=	new	byte[sizeof(int)];

streamSource.Read(size,	0,	size.Length);

//	convert	the	size	back	to	a	number

storedSize	=	BitConverter.ToInt32(size,	0);

if	(storedSize	>	fileLength	||	storedSize	>	workingSet)

				throw	new	InvalidDataException();

if	(storedSize	>	chunkSize)

				throw	new	InvalidDataException();

byte[]	uncompressedData	=	new	byte[chunkSize];

byte[]	compressedData	=	new	byte[storedSize];

The	code	is	reading	in	a	buffer	that	may	have	been	tampered	with,	so	we	need	to	check	not

only	for	stability	but	also	for	security	reasons.	Since	Decompress	will	actually	allocate
memory	based	on	the	numbers	derived	from	the	buffer,	it	needs	to	be	careful	about	what
those	numbers	turn	out	to	be,	and	we	don’t	want	to	unwittingly	bring	in	other	code	that
has	been	injected	into	the	stream	either.	The	very	basic	checks	being	done	here	are	to
ensure	that:

The	size	of	the	chunk	is	not	bigger	than	the	file	length.

The	size	of	the	chunk	is	not	bigger	than	the	current	program	working	set.

The	size	of	the	compressed	chunk	is	not	bigger	than	the	file	length.

The	size	of	the	compressed	chunk	is	not	bigger	than	the	current	program	working	set.

The	size	of	the	compressed	chunk	is	not	bigger	than	the	actual	chunk	size.

See	Also
The	“DeflateStream	Class”	and	“GZipStream”	topics	in	the	MSDN	documentation.

Chapter	9.	Networking	and	Web

9.0	Introduction
Connectivity	is	more	important	than	ever	in	solutions,	and	the	.NET	Framework	provides
a	number	of	ways	to	help	you	support	that	need.	.NET	provides	many	lower-level	classes
to	help	make	network	programming	easier	than	many	environments	that	preceded	it.	There
is	a	great	deal	of	functionality	to	assist	you	with	tasks	such	as:

Building	network-aware	applications

Downloading	files	via	FTP

Sending	and	receiving	HTTP	requests

Getting	a	higher	degree	of	control	using	TCP/IP	and	sockets	directly

In	the	areas	in	which	Microsoft	has	not	provided	managed	classes	to	access	networking
functionality	(such	as	some	of	the	methods	exposed	by	the	WinInet	API	for	Internet
connection	settings),	there	is	always	P/Invoke,	so	you	can	code	to	the	Win32	API,	as	we’ll
explore	in	this	chapter.	With	all	of	the	functionality	at	your	disposal	in	the	System.Net
namespaces,	you	can	also	write	network	utilities	very	quickly.

In	addition	to	the	lower-level	networking	support,	.NET	embraces	the	World	Wide	Web
and	has	incorporated	support	for	the	Web	into	every	nook	and	cranny	of	what	most	.NET
developers	encounter	when	building	their	solutions	today.	Web	services	(both	REST	and
SOAP	based)	are	in	heavy	use,	and	ASP.NET	is	one	of	the	main	players	in	the	web
application	space.	Given	the	general	need	to	work	with	HTML	and	TCP/IP	name
resolution,	and	because	uniform	resource	indicators	(URIs)	and	uniform	resource	locators
(URLs)	are	being	used	for	more	and	more	purposes,	developers	need	tools	to	help	them
concentrate	on	building	the	best	web	interactive	applications	possible.	This	chapter	is
dedicated	to	taking	care	of	some	of	the	grunge	that	comes	along	with	programming	when
the	Web	is	involved.	It	is	not	a	Web	Services	or	ASP.NET	tutorial	but	rather	covers	some
functionality	that	developers	can	use	in	ASP.NET	applications	and	services	and	other	C#-
based	applications	that	interact	with	networks	and	the	Web.

9.1	Handling	Web	Server	Errors

Problem
You	have	obtained	a	response	from	a	web	server,	and	you	want	to	make	sure	that	there
were	no	errors	in	processing	the	initial	request,	such	as	failing	to	connect,	being
redirected,	timing	out,	or	failing	to	validate	a	certificate.	You	want	to	avoid	checking	for
all	of	the	different	response	codes	available.

Solution
Check	the	StatusCode	property	of	the	HttpWebResponse	class	to	determine	what	category
of	status	this	StatusCode	falls	into	and	return	an	enumeration	value
(ResponseCategories)	representing	the	category.	This	technique	allows	you	to	use	a
broader	approach	to	dealing	with	response	codes:

public	static	ResponseCategories	CategorizeResponse(HttpWebResponse	httpResponse)

{

				//	Just	in	case	there	are	more	success	codes	defined	in	the	future

				//	by	HttpStatusCode,	we	will	check	here	for	the	"success"	ranges

				//	instead	of	using	the	HttpStatusCode	enum,	as	it	overloads	some

				//	values

				int	statusCode	=	(int)httpResponse.StatusCode;

				if	((statusCode	>=	100)	&&	(statusCode	<=	199))

				{

								return	ResponseCategories.Informational;

				}

				else	if	((statusCode	>=	200)	&&	(statusCode	<=	299))

				{

								return	ResponseCategories.Success;

				}

				else	if	((statusCode	>=	300)	&&	(statusCode	<=	399))

				{

								return	ResponseCategories.Redirected;

				}

				else	if	((statusCode	>=	400)	&&	(statusCode	<=	499))

				{

								return	ResponseCategories.ClientError;

				}

				else	if	((statusCode	>=	500)	&&	(statusCode	<=	599))

				{

								return	ResponseCategories.ServerError;

				}

				return	ResponseCategories.Unknown;

}

The	ResponseCategories	enumeration	is	defined	like	this:

public	enum	ResponseCategories

{

				Unknown,								//	unknown	code		(<	100	or	>	599)

				Informational,		//	informational	codes	(100	<=	199)

				Success,								//	success	codes	(200	<=	299)

				Redirected,					//	redirection	code	(300	<=	399)

				ClientError,				//	client	error	code	(400	<=	499)

				ServerError					//	server	error	code	(500	<=	599)

}

Discussion
There	are	five	different	categories	of	status	codes	on	an	HTTP	response,	as	shown	in
Table	9-1.

Table	9-1.	Categories	of	HTTP	response	status
codes

Category Available	range HttpStatusCode	defined	range

Informational 100–199 100–101

Successful 200–299 200–206

Redirection 300–399 300–307

Client	Error 400–499 400–426

Server	Error 500–599 500–505

Each	of	the	status	codes	defined	by	Microsoft	in	the	.NET	Framework	is	assigned	an
enumeration	value	in	the	HttpStatusCode	enumeration.	These	status	codes	reflect	what
can	happen	when	a	request	is	submitted.	The	web	server	is	free	to	return	a	status	code	in
the	available	range,	even	if	it	is	not	currently	defined	for	most	commercial	web	servers.
The	defined	status	codes	are	listed	in	RFC	2616	—	Section	10	for	HTTP/1.1.

You	are	trying	to	figure	out	the	broad	category	of	the	status	of	the	request.	You	achieve
this	by	inspecting	the	HttpResponse.StatusCode	property,	comparing	it	to	the	defined
status	code	ranges	for	HTTP,	and	returning	the	appropriate	ResponseCategories	value.

When	dealing	with	HttpStatusCode,	you	will	notice	that	there	are	certain
HttpStatusCode	flags	that	map	to	the	same	status	code	value.	An	example	of	this	is
HttpStatusCode.Ambiguous	and	HttpStatusCode.MultipleChoices,	which	both	map	to
HTTP	status	code	300.	If	you	try	to	use	both	of	these	in	a	switch	statement	on	the
HttpStatusCode,	you	will	get	the	following	error	because	the	C#	compiler	cannot	tell	the
difference:

error	CS0152:	The	label	'case	300:'	already	occurs	in	this	switch	statement.

See	Also
HTTP:	The	Definitive	Guide	(O’Reilly);	the	“HttpStatusCode	Enumeration”	topic	in	the
MSDN	documentation;	and	HTTP/1.1	RFC	2616	—	Section	10	Status	Codes.

http://shop.oreilly.com/product/9781565925090.do
http://bit.ly/stat-codes

9.2	Communicating	with	a	Web	Server

Problem
You	want	to	send	a	request	to	a	web	server	in	the	form	of	a	GET	or	POST	request.	After	you
send	the	request	to	a	web	server,	you	want	to	get	the	results	of	that	request	(the	response)
from	the	web	server.

Solution
Use	the	HttpWebRequest	class	in	conjunction	with	the	WebRequest	class	to	create	and
send	a	request	to	a	server.

Take	the	Uri	(universal	resource	identifier;	defined	in	RFC	3986)	of	the	resource,	the
method	to	use	in	the	request	(GET	or	POST),	and	the	data	to	send	(only	for	POST	requests),
and	use	this	information	to	create	an	HttpWebRequest,	as	shown	in	Example	9-1.

Example	9-1.	Communicating	with	a	web	server
using	System.Net;

using	System.IO;

using	System.Text;

//	GET	overload

public	static	HttpWebRequest	GenerateHttpWebRequest(Uri	uri)

{

				//	create	the	initial	request

				HttpWebRequest	httpRequest	=	(HttpWebRequest)WebRequest.Create(uri);

				//	return	the	request

				return	httpRequest;

}

//	POST	overload

public	static	HttpWebRequest	GenerateHttpWebRequest(Uri	uri,

				string	postData,

				string	contentType)

{

				//	create	the	initial	request

				HttpWebRequest	httpRequest	=	GenerateHttpWebRequest(uri);

				//	Get	the	bytes	for	the	request,	should	be	pre-escaped

				byte[]	bytes	=	Encoding.UTF8.GetBytes(postData);

				//	Set	the	content	type	of	the	data	being	posted.

				httpRequest.ContentType	=	contentType;

								//"application/x-www-form-urlencoded";	for	forms

									//"application/json"	for	json	data

									//"application/xml"	for	xml	data

				//	Set	the	content	length	of	the	string	being	posted.

				httpRequest.ContentLength	=	postData.Length;

				//	Get	the	request	stream	and	write	the	post	data	in

				using	(Stream	requestStream	=	httpRequest.GetRequestStream())

				{

								requestStream.Write(bytes,	0,	bytes.Length);

				}

				//	return	the	request

				return	httpRequest;

}

Once	you	have	an	HttpWebRequest,	you	send	the	request	and	get	the	response	using	the
GetResponse	method.	It	takes	the	newly	created	HttpWebRequest	as	input	and	returns	an
HttpWebResponse.	The	following	example	performs	a	GET	for	the	index.aspx	page	from
the	http://localhost/mysite	website:

HttpWebRequest	request	=

				GenerateHttpWebRequest(new	Uri("http://localhost/mysite/index.aspx"));

using(HttpWebResponse	response	=	(HttpWebResponse)	request.GetResponse())

{

				//	This	next	line	uses	CategorizeResponse	from	Recipe	9.1.

				if(CategorizeResponse(response)==ResponseCategories.Success)

				{

								Console.WriteLine("Request	succeeded");

				}

}

You	generate	the	HttpWebRequest,	send	it	and	get	the	HttpWebResponse,	then	check	for
success	using	the	CategorizeResponse	method	from	Recipe	9.1.

Discussion
The	WebRequest	and	WebResponse	classes	encapsulate	all	of	the	functionality	to	perform
basic	web	communications.	HttpWebRequest	and	HttpWebResponse	are	derived	from
these	classes	and	provide	the	HTTP-specific	support.

At	the	most	fundamental	level,	to	perform	an	HTTP-based	web	transaction,	you	use	the
Create	method	on	the	WebRequest	class	to	get	a	WebRequest	that	can	be	cast	to	an
HttpWebRequest	(so	long	as	the	scheme	is	http://	or	https://).	This	HttpWebRequest	is
then	submitted	to	the	web	server	in	question	when	the	GetResponse	method	is	called,	and
it	returns	an	HttpWebResponse	that	can	then	be	inspected	for	the	response	data.

See	Also
The	“WebRequest	Class,”	“WebResponse	Class,”	“HttpWebRequest	Class,”	and
“HttpWebResponse	Class”	topics	in	the	MSDN	documentation,	and	the	Universal
Resource	Identifier	RFC.

http://bit.ly/1KvPJT1

9.3	Going	Through	a	Proxy

Problem
Many	companies	have	a	proxy	server	(sometimes	called	a	web	proxy)	that	allows
employees	to	access	the	Internet,	while	preventing	outsiders	from	accessing	the
company’s	internal	network.	The	problem	is	that	to	create	an	application	that	accesses	the
Internet	from	within	your	company,	you	must	first	connect	to	your	proxy	and	then	send
information	through	it,	rather	than	directly	out	to	an	Internet	web	server.

Solution
To	get	an	HttpWebRequest	successfully	through	a	specific	proxy	server,	you	need	to	set	up
a	WebProxy	object	with	the	settings	to	validate	your	specific	request	to	a	given	proxy.
Since	this	function	is	generic	for	any	request,	you	can	create	the	AddProxyInfoToRequest
method:

public	static	HttpWebRequest	AddProxyInfoToRequest(HttpWebRequest	httpRequest,

				Uri	proxyUri,

				string	proxyId,

				string	proxyPassword,

				string	proxyDomain)

{

				if	(httpRequest	==	null)

								throw	new	ArgumentNullException(nameof(httpRequest));

				//	create	the	proxy	object

				WebProxy	proxyInfo	=	new	WebProxy();

				//	add	the	address	of	the	proxy	server	to	use

				proxyInfo.Address	=	proxyUri;

				//	tell	it	to	bypass	the	proxy	server	for	local	addresses

				proxyInfo.BypassProxyOnLocal	=	true;

				//	add	any	credential	information	to	present	to	the	proxy	server

				proxyInfo.Credentials	=	new	NetworkCredential(proxyId,

								proxyPassword,

								proxyDomain);

				//	assign	the	proxy	information	to	the	request

				httpRequest.Proxy	=	proxyInfo;

				//	return	the	request

				return	httpRequest;

}

If	all	requests	are	going	to	go	through	the	same	proxy,	in	the	1.x	versions	of	the
Framework	you	used	the	static	Select	method	on	the	GlobalProxySelection	class	to	set
up	the	proxy	settings	for	all	WebRequests.	In	versions	after	1.x,	the
WebRequest.DefaultWebProxy	property	should	be	used:

//	Set	it	up	to	go	through	the	same	proxy	for	all	requests	to	this	Uri

Uri	proxyURI	=	new	Uri("http://webproxy:80");

//	in	1.1	you	used	to	do	this:

//GlobalProxySelection.Select	=	new	WebProxy(proxyURI);

//	Now	in	2.0	and	above	you	do	this:

WebRequest.DefaultWebProxy	=	new	WebProxy(proxyURI);

Discussion
AddProxyInfoToRequest	takes	the	URI	of	the	proxy	and	creates	a	Uri	object,	which	is
used	to	construct	the	WebProxy	object.	The	WebProxy	object	is	set	to	bypass	the	proxy	for
local	addresses	and	then	the	credential	information	is	used	to	create	a	NetworkCredential
object.	The	NetworkCredential	object	represents	the	authentication	information
necessary	for	the	request	to	succeed	at	this	proxy	and	is	assigned	to	the
WebProxy.Credentials	property.	Once	the	WebProxy	object	is	completed,	it	is	assigned	to
the	Proxy	property	of	the	HttpWebRequest,	and	the	request	is	ready	to	be	submitted.

To	get	the	proxy	settings	for	the	current	user	from	Internet	Explorer,	you	can	use	the
System.Net.WebRequest.GetSystemWebProxy	method	and	then	assign	the	returned
IWebProxy	to	either	the	proxy	on	the	HttpWebRequest	or	the	DefaultWebProxy	property
on	the	WebRequest:

WebRequest.DefaultWebProxy	=	WebRequest.GetSystemWebProxy();

See	Also
The	“WebProxy	Class,”	“NetworkCredential	Class,”	and	“HttpWebRequest	Class”	topics
in	the	MSDN	documentation.

9.4	Obtaining	the	HTML	from	a	URL

Problem
You	need	to	get	the	HTML	returned	from	a	web	server	in	order	to	examine	it	for	items	of
interest.	For	example,	you	could	examine	the	returned	HTML	for	links	to	other	pages	or
for	headlines	from	a	news	site.

Solution
You	can	use	the	methods	for	web	communication	that	were	set	up	in	Recipes	9.1	and	9.2
to	make	the	HTTP	request	and	verify	the	response;	then,	you	can	get	at	the	HTML	via	the
ResponseStream	property	of	the	HttpWebResponse	object:

public	static	async	Task<string>	GetHtmlFromUrlAsync(Uri	url)

{

				string	html	=	string.Empty;

				HttpWebRequest	request	=	GenerateHttpWebRequest(url);

				using(HttpWebResponse	response	=	

								(HttpWebResponse)	await	request.GetResponseAsync())

				{

								if	(CategorizeResponse(response)	==	ResponseCategories.Success)

								{

												//	get	the	response	stream.

												Stream	responseStream	=	response.GetResponseStream();

												//	use	a	stream	reader	that	understands	UTF8

												using(StreamReader	reader	=	

																new	StreamReader(responseStream,	Encoding.UTF8))

												{

																html	=	reader.ReadToEnd();

												}

								}

				}

				return	html;

}

Discussion
The	GetHtmlFromUrlAsync	method	gets	a	web	page	using	the	GenerateHttpWebRequest
and	GetResponse	methods,	verifies	the	response	using	the	CategorizeResponse	method,
and	then,	once	it	has	a	valid	response,	starts	looking	for	the	HTML	that	was	returned.

The	GetResponseStream	method	on	the	HttpWebResponse	provides	access	to	the	body	of
the	message	that	was	returned	in	a	System.IO.Stream	object.	To	read	the	data,	you
instantiate	a	StreamReader	with	the	response	stream	and	the	UTF8	property	of	the
Encoding	class	to	allow	for	the	UTF8-encoded	text	data	to	be	read	correctly	from	the
stream.	Then	call	the	StreamReader’s	ReadToEnd	method,	which	puts	all	of	the	content	in
the	string	variable	called	html,	and	return	it.

See	Also
The	“HttpWebResponse.GetResponseStream	Method,”	“Stream	Class,”	and	“String-
Builder	Class”	topics	in	the	MSDN	documentation.

9.5	Using	the	Web	Browser	Control

Problem
You	need	to	display	HTML-based	content	in	a	WinForms-based	application.

Solution
Use	the	System.Windows.Forms.WebBrowser	class	to	embed	web	browser	functionality
into	your	application.	The	Cheapo-Browser	seen	in	Figure	9-1	shows	some	of	the
capabilities	of	this	control.

While	this	is	a	not	a	production	quality	user	interface	(it	is	called	Cheapo-Browser	for	a
reason!)	it	can	be	used	to	select	a	web	address,	display	the	content,	navigate	forward	and
backward,	cancel	the	request,	go	to	the	home	page,	add	HTML	directly	to	the	control,
print	the	HTML	or	save	it,	and	finally,	enable	or	disable	the	context	menu	inside	of	the
browser	window.	The	WebBrowser	control	is	capable	of	much	more,	but	this	recipe	is
meant	to	give	you	a	taste	of	what	is	possible.	It	would	be	well	worth	exploring	its
capabilities	further	to	see	what	other	needs	it	might	fill.

Figure	9-1.	The	web	browser	control

When	you	add	your	HTML	(<h1>Hey	you	added	some	HTML!</h1>),	it	is	displayed	as
shown	in	Figure	9-2.

The	code	to	accomplish	this	is	rather	simple:

this._webBrowser.Document.Body.InnerHtml	=	"<h1>Hey	you	added	some	HTML!</h1>";

The	navigation	to	a	web	page	is	equally	trivial:

Uri	uri	=	new	Uri(this._txtAddress.Text);

this._webBrowser.Navigate(uri);

Figure	9-2.	Adding	HTML	to	the	Cheapo-Browser

The	nice	thing	about	the	way	that	navigation	is	handled	is	that	you	can	subscribe	to	the
Navigated	event	so	that	you	are	notified	when	the	navigation	has	completed.	This	allows
code	to	spin	this	off	in	a	thread	and	then	come	back	to	it	once	it	is	fully	loaded.	The	event
provides	a	WebBrowserNavigatedEventArgs	class	that	has	a	Url	property	to	tell	the	URL
of	the	document	that	has	been	navigated	to:

private	void	_webBrowser_Navigated(object	sender,	WebBrowserNavigatedEventArgs	e)

{

				//	Update	with	where	we	ended	up	in	case	of	redirection

				//	from	the	original	Uri.

				this._txtAddress.Text	=	e.Url.ToString();

				this._btnBack.Enabled	=	this._webBrowser.CanGoBack;

				this._btnForward.Enabled	=	this._webBrowser.CanGoForward;

}

Discussion
Way	back	in	the	1.x	versions	of	the	.NET	Framework,	embedding	a	web	browser	in	your
WinForms	application	was	much	more	difficult	and	error-prone.	Now	there	is	a	.NET-
based	web	browser	control	to	handle	the	hard	stuff.	You	no	longer	have	to	struggle	with
some	of	the	COM	interop	issues	that	could	arise	while	you’re	trying	to	hook	up	to	browser
events.	This	is	a	good	opportunity	to	blur	the	line	between	your	desktop	and	web
applications	even	further	and	use	the	power	of	a	rich	client	combined	with	web	flexibility.

See	Also
The	“WebBrowser	Class”	topic	in	the	MSDN	documentation.

9.6	Prebuilding	an	ASP.NET	Website	Programmatically

Problem
You	want	to	prebuild	your	website	to	avoid	compilation	delays	and	to	avoid	the	hosting
scenario	in	which	source	code	needs	to	be	on	the	server.

Solution
Use	the	ClientBuildManager	to	prebuild	your	website	into	an	assembly.	To	prebuild	the
website,	you	must	specify:

The	virtual	directory	for	the	web	application

The	physical	path	to	the	web	application	directory

The	location	where	you	want	to	build	the	web	application

Flags	that	help	control	the	compilation

To	prebuild	the	web	application	in	the	sample	code	for	the	book,	first	retrieve	the	directory
where	the	web	application	is	located,	and	then	provide	a	virtual	directory	name	and	a
location	for	the	web	application	to	build	to:

string	cscbWebPath	=	GetWebAppPath();

if(cscbWebPath.Length	>	0)

{

				string	appVirtualDir	=	@"CSCBWeb";

				string	appPhysicalSourceDir	=	cscbWebPath;

				//	Make	the	target	an	adjacent	directory	as	it	cannot	be	in	the	same	tree

				//	or	the	build	manager	screams…

				string	appPhysicalTargetDir	=	

								Path.GetDirectoryName(cscbWebPath)	+	@"\	BuildCSCB";

Next,	set	up	the	flags	for	the	compile	using	the	PrecompilationFlags	enumeration.	The
PrecompilationFlags	values	are	listed	in	Table	9-2.

Table	9-2.	PrecompilationFlags	enumeration	values

Flag	value Purpose
AllowPartiallyTrustedCallers Add	the	APTC	attribute	to	the	built	assembly.
Clean Remove	any	existing	compiled	image.
CodeAnalysis Build	for	code	analysis.
Default Use	the	default	compile	options.
DelaySign DelaySign	the	assembly.
FixedNames Assembly	generated	with	fixed	names	for	pages.	No	batch	compilation	is

performed,	just	individual	compilation.
ForceDebug Ensure	that	the	assembly	is	compiled	for	debugging.
OverwriteTarget The	target	assembly	should	be	overwritten	if	it	exists.
Updateable Ensure	the	assembly	is	updateable.

To	build	a	debug	image	and	make	sure	it	is	created	successfully	if	the	compilation	is	good,
use	the	ForceDebug	and	OverwriteTarget	flags:

PrecompilationFlags	flags	=	PrecompilationFlags.ForceDebug	|

																												PrecompilationFlags.OverwriteTarget;

The	PrecompilationFlags	are	then	stored	in	a	new	instance	of	the
ClientBuildManagerParameter	class,	and	the	ClientBuildManager	is	created	with	the
parameters	that	have	been	set	up	for	it.	To	accomplish	the	prebuild,	you	call	the
PrecompileApplication	method.	Notice	that	there	is	an	instance	of	a	class	called
MyClientBuildManagerCallback	that	is	passed	to	the	PrecompileApplication	method:

				ClientBuildManagerParameter	cbmp	=	new	ClientBuildManagerParameter();

				cbmp.PrecompilationFlags	=	flags;

				ClientBuildManager	cbm	=

								new	ClientBuildManager(appVirtualDir,

																													appPhysicalSourceDir,

																													appPhysicalTargetDir,

																													cbmp);

				MyClientBuildManagerCallback	myCallback	=	new	MyClientBuildManagerCallback();

				cbm.PrecompileApplication(myCallback);

}

The	MyClientBuildManagerCallback	class	is	derived	from	the
ClientBuildManagerCallback	class	and	allows	the	code	to	receive	notifications	during
the	compilation	of	the	web	application.	The	ClientBuildManagerCallback	methods	have
LinkDemands	on	them,	which	require	that	the	callback	methods	also	have	them.	Compiler
errors,	parsing	errors,	and	progress	notifications	are	all	available.	In	the
MyClientBuildManagerCallback	class,	they	are	all	implemented	to	write	to	the	debug
stream	and	the	console:

public	class	MyClientBuildManagerCallback	:	ClientBuildManagerCallback

{

				public	MyClientBuildManagerCallback()

								:	base()

				{

				}

				[PermissionSet(SecurityAction.Demand,	Unrestricted	=	true)]

				public	override	void	ReportCompilerError(CompilerError	error)

				{

								string	msg	=	$"Report	Compiler	Error:	{error.ToString()}";

								Debug.WriteLine(msg);

								Console.WriteLine(msg);

				}

				[PermissionSet(SecurityAction.Demand,	Unrestricted	=	true)]

				public	override	void	ReportParseError(ParserError	error)

				{

								string	msg	=	$"Report	Parse	Error:	{error.ToString()}";

								Debug.WriteLine(msg);

								Console.WriteLine(msg);

				}

				[PermissionSet(SecurityAction.Demand,	Unrestricted	=	true)]

				public	override	void	ReportProgress(string	message)

				{

								string	msg	=	$"Report	Progress:	{message}";

								Debug.WriteLine(msg);

								Console.WriteLine(msg);

				}

}

The	output	from	a	successful	compilation	of	the	CSCB	website	looks	like	this:

Report	Progress:	Building	directory	'/CSCBWeb/Properties'.

Report	Progress:	Building	directory	'/CSCBWeb'.

Discussion
ClientBuildManager	is	actually	a	thin	wrapper	around	the	BuildManager	class,
BuildManager	classwhich	does	most	of	the	heavy	lifting	of	the	compilation.
ClientBuildManager	makes	it	more	straightforward	to	ensure	that	all	the	important	parts
of	the	web	application	are	addressed,	while	BuildManager	gives	a	bit	more	fine-grained
control.	The	ClientBuildManager	also	allows	for	subscribing	to	appdomain	notification
events	such	as	start,	shutdown,	and	unload,	allowing	for	error	handling	in	the	event	that
the	appdomain	is	going	away	during	a	prebuild.

To	prebuild	applications	in	ASP.NET	without	resorting	to	the	ClientBuildManager,	you
can	post	an	HTTP	request	to	the	website	in	the	format
http://server/webapp/precompile.axd.	The	precompile.axd	“document”	triggers	an
ASP.NET	HttpHandler	for	this	that	will	prebuild	the	website	for	you.	This	is	handled	by
the	aspnet_compiler.exe	module,	which	essentially	wraps	the	ClientBuildManager
functionality.

See	Also
The	“ClientBuildManager,”	“ClientBuildManagerParameters,”	“BuildManager,”	and
“ASP.NET	Web	Site	Precompilation”	topics	in	the	MSDN	documentation.

9.7	Escaping	and	Unescaping	Data	for	the	Web

Problem
You	need	to	transform	data	for	use	in	web	operations	from	escaped	to	unescaped	format	or
vice	versa	for	proper	transmission.	This	escaping	and	unescaping	should	follow	the	format
outlined	in	RFC	2396	—	Uniform	Resource	Identifiers	(URI):	Generic	Syntax.

Solution
Use	the	Uri	class	static	methods	for	escaping	and	unescaping	data	and	Uris.

To	escape	data,	use	the	static	Uri.EscapeDataString	method,	as	shown	here:

string	data	=	"<H1>My	html</H1>";

Console.WriteLine($"Original	Data:	{data}");

Console.WriteLine();

string	escapedData	=	Uri.EscapeDataString(data);

Console.WriteLine($"Escaped	Data:	{escapedData}");

Console.WriteLine();

//	Output	from	above	code	is

//	Original	Data:	<H1>My	html</H1>

//

//	Escaped	Data:	%3CH1%3EMy%20html%3C%2FH1%3E

To	unescape	the	data,	use	the	static	Uri.UnescapeDataString	method:

string	unescapedData	=	Uri.UnescapeDataString(escapedData);

Console.WriteLine($"Unescaped	Data:	{unescapedData}");

Console.WriteLine();

//	Output	from	above	code	is

//

//	Unescaped	Data:	<H1>My	html</H1>

To	escape	a	Uri,	use	the	static	Uri.EscapeUriString	method:

string	uriString	=	"http://user:password@localhost:8080/www.abc.com/"	+

				"home	page.htm?item=1233;html=<h1>Heading</h1>#stuff";

Console.WriteLine($"Original	Uri	string:	{uriString}");

Console.WriteLine();

string	escapedUriString	=	Uri.EscapeUriString(uriString);

Console.WriteLine($"Escaped	Uri	string:	{escapedUriString}");

Console.WriteLine();

//	Output	from	above	code	is

//

//	Original	Uri	string:	http://user:password@localhost:8080/www.abc.com/home	

//	page.htm?item=1233;html=<h1>Heading</h1>#stuff

//

//	Escaped	Uri	string:	http://user:password@localhost:8080/www.abc.com/home

//	%20page.htm?item=1233;html=%3Ch1%3EHeading%3C/h1%3E#stuff

In	case	you	are	wondering	why	escaping	a	Uri	has	its	own	method	(EscapeUriString),
take	a	look	at	what	the	escaped	Uri	looks	like	if	you	use	Uri.EscapeDataString	and
Uri.UnescapeDataString	on	it:

//	Why	not	just	use	EscapeDataString	to	escape	a	Uri?		It's	not	picky	enough…

string	escapedUriData	=	Uri.EscapeDataString(uriString);

Console.WriteLine($"Escaped	Uri	data:	{escapedUriData}");

Console.WriteLine();

Console.WriteLine(Uri.UnescapeDataString(escapedUriString));

//	Output	from	above	code	is

//

//	Escaped	Uri	data:	http%3A%2F%2Fuser%3Apassword%40localhost%3A8080%2Fwww.abc.

//	com%2Fhome%20page.htm%3Fitem%3D1233%3Bhtml%3D%3Ch1%3EHeading%3C%2Fh1%3E%23

//	stuff

//	http://user:password@localhost:8080/www.abc.com/home	page.htm?item=1233;html

//	=<h1>Heading</h1>#stuff

Notice	that	the	:,	/,	:,	@,	and	?	characters	get	escaped	when	they	shouldn’t,	which	is	why
you	use	the	EscapeUriString	method	for	Uris.

Discussion
EscapeUriString	assumes	that	there	are	no	escape	sequences	already	present	in	the	string
being	escaped.	The	escaping	follows	the	convention	set	down	in	RFC	2396	for	converting
all	reserved	characters	and	characters	with	a	value	greater	than	128	to	their	hexadecimal
format.

In	Section	2.2	of	RFC	2396,	it	states	that	the	reserved	characters	are:

;|/|	?	|:|	@	|	&	|	=	|	+	|	$	|	,

The	EscapeUriString	method	is	useful	when	you	are	creating	a	System.Uri	object	to
ensure	that	the	Uri	is	escaped	correctly.

See	Also
The	“EscapeUriString	Method,”	“EscapeUriData	Method,”	and	“Unescape-DataString
Method”	topics	in	the	MSDN	documentation.

9.8	Checking	Out	a	Web	Server’s	Custom	Error	Pages

Problem
You	have	an	application	that	needs	to	know	what	custom	error	pages	are	set	up	for	the
various	HTTP	error	return	codes	on	a	given	IIS	server.

Solution
Use	the	System.DirectoryServices.DirectoryEntry	class	to	talk	to	the	Internet
Information	Server	(IIS)	metabase	to	find	out	which	custom	error	pages	are	set	up.	The
metabase	holds	the	configuration	information	for	the	web	server.	DirectoryEntry	uses	the
Active	Directory	IIS	service	provider	to	communicate	with	the	metabase	by	specifying	the
“IIS”	scheme	in	the	constructor	for	the	DirectoryEntry:

//	This	is	a	case-sensitive	entry	in	the	metabase

//	You'd	think	it	was	misspelled	but	you	would	be	mistaken…

const	string	WebServerSchema	=	"IIsWebServer";

//	set	up	to	talk	to	the	local	IIS	server

string	server	=	"localhost";

//	Create	a	dictionary	entry	for	the	IIS	server	with	a	fake

//	user	and	password.		Credentials	would	have	to	be	provided

//	if	you	are	running	as	a	regular	user

using	(DirectoryEntry	w3svc	=

				new	DirectoryEntry($"IIS://{server}/w3svc",

												"Domain/UserCode",	"Password"))

{

Once	the	connection	is	established,	the	web	server	schema	entry	is	specified	to	show
where	the	IIS	settings	are	kept	(IIsWebServer).	The	DirectoryEntry	has	a	property	that
allows	access	to	its	children	(Children),	and	the	SchemaClassName	is	checked	for	each
entry	to	see	if	it	is	in	the	web	server	settings	section.	Once	the	web	server	settings	are
found,	the	web	root	node	is	located,	and	from	there,	the	HttpErrors	property	is	retrieved.
HttpErrors	is	a	comma-delimited	string	that	indicates	the	HTTP	error	code,	the	HTTP
suberror	code,	the	message	type,	and	the	path	to	the	HTML	file	to	serve	when	this	error
occurs.	To	accomplish	this,	just	write	a	LINQ	query	to	get	all	of	the	HttpErrors,	as	shown
in	Example	9-2.	Once	the	HttpErrors	are	retrieved,	use	the	Split	method	to	break	this
into	a	string	array	that	allows	the	code	to	access	the	individual	values	and	write	them	out.
The	code	for	carrying	out	these	operations	is	shown	in	Example	9-2.

Example	9-2.	Finding	custom	error	pages
//	Use	a	regular	query	expression	to

//	select	the	http	errors	for	all	websites	on	the	machine

var	httpErrors	=	from	site	in	w3svc?.Children.OfType<DirectoryEntry>()

																	where	site.SchemaClassName	==	WebServerSchema

																	from	siteDir	in	site.Children.OfType<DirectoryEntry>()

																	where	siteDir.Name	==	"ROOT"

																	from	httpError	in	siteDir.Properties["HttpErrors"].OfType<string>()

																	select	httpError;

//	use	eager	evaluation	to	convert	this	to	the	array

//	so	that	we	don't	requery	on	each	iteration.		We	would	miss

//	updates	to	the	metabase	that	occur	during	execution,	but

//	that	is	a	small	price	to	pay	vs.	the	requery	cost.

//	This	will	force	the	evaluation	of	the	query	now	once.

string[]	errors	=	httpErrors.ToArray();

foreach	(var	httpError	in	errors)

{

				//400,*,FILE,C:\WINDOWS\help\iisHelp\common\400.htm

				string[]	errorParts	=	httpError.ToString().Split(',');

				Console.WriteLine("Error	Mapping	Entry:");

				Console.WriteLine($"\tHTTP	error	code:	{errorParts[0]}");

				Console.WriteLine($"\tHTTP	sub-error	code:	{errorParts[1]}");

				Console.WriteLine($"\tMessage	Type:	{errorParts[2]}");

				Console.WriteLine($"\tPath	to	error	HTML	file:	{errorParts[3]}");

}

We	could,	of	course,	have	done	this	without	using	LINQ	to	query	the	metabase,	which
would	have	looked	like	Example	9-3.

Example	9-3.	Finding	custom	error	pages	without	LINQ
foreach	(DirectoryEntry	site	in	w3svc?.Children)

{

				if	(site	!=	null)

				{

								using	(site)

								{

												//	check	all	web	servers	on	this	box

												if	(site.SchemaClassName	==	WebServerSchema)

												{

																//	get	the	metabase	entry	for	this	server

																string	metabaseDir	=	$"/w3svc/{site.Name}/ROOT";

																if	(site.Children	!=	null)

																{

																				//	find	the	ROOT	directory	for	each	server

																				foreach	(DirectoryEntry	root	in	site.Children)

																				{

																								using	(root)

																								{

																												//	did	we	find	the	root	dir	for	this	site?

																												if	(root?.Name.Equals("ROOT",

																																				StringComparison.OrdinalIgnoreCase)	??	false)

																												{

																																//	get	the	HttpErrors

																																if	(root?.Properties.Contains("HttpErrors")	==	true)

																																{

																																				//	write	them	out

																																				PropertyValueCollection	httpErrors	=

																																											root?.Properties["HttpErrors"];

																																				for	(int	i	=	0;	i	<	httpErrors?.Count;	i++)

																																				{

																																								//400,*,FILE,

																																								//C:\WINDOWS\help\iisHelp\common\400.htm

																																								string[]	errorParts	=

																																												httpErrors?[i].ToString().Split(',');

																																								Console.WriteLine("Error	Mapping	Entry:");

																																								Console.WriteLine($"\tHTTP	error	code:"	+

																																												$"{errorParts[0]}");

																																								Console.WriteLine($"\tHTTP	sub-error	code:"	+

																																												$"{errorParts[1]}");

																																								Console.WriteLine($"\tMessage	Type:	"	+

																																												$"{errorParts[2]}");

																																								Console.WriteLine(

																																												$"\tPath	to	error	HTML	file:

																																												{errorParts[3]}");

																																				}

																																}

																												}

																								}

																				}

																}

												}

								}

				}

}

At	this	point,	an	application	could	cache	these	settings	for	mapping	its	own	error	results,
or	it	could	dynamically	modify	the	error	pages	to	provide	customized	content.	The
takeaway	here	is	that	the	settings	information	for	the	web	server	is	readily	available	to	all
applications	with	a	bit	of	coding.

Discussion
System.DirectoryServices.DirectoryEntry	is	usually	used	for	Active	Directory
programming,	but	it	is	able	to	use	any	of	the	providers	that	are	available	for	Active
Directory	as	well.	This	approach	allows	code	to	examine	the	IIS	metabase	for	both	the
older-style	IIS	5.x	metabases	as	well	as	the	newer	IIS	metabases	that	ship	with	Windows
Server.

In	Example	9-2,	where	LINQ	was	used	to	query	the	metabase,	a	number	of	interesting
things	are	occurring.	The	query	is	walking	the	metabase	hierarchy	to	retrieve	the
HttpErrors,	but	note	that	the	DirectoryEntry.Children	property	is	a	DirectoryEntries
collection	class.	DirectoryEntries	does	support	IEnumerable,	but	it	does	not	support
IEnumerable<T>,	which	LINQ	uses	to	do	its	work.	See	Recipe	4.10	for	more	of	an
explanation	about	this.	The	OfType<DirectoryEntry>	extension	method	returns	the
strongly	typed	IEnumerable<DirectoryEntry>	from	the	IEnumerable	interface	supported
by	DirectoryEntries.	This	is	done	to	find	the	website	and	the	root	directory,	after	which
OfType<string>	is	used	to	get	an	enumerable	list	of	strings	with	the	HttpErrors	in	it:

var	httpErrors	=	from	site	in	w3svc?.Children.OfType<DirectoryEntry>()

																	where	site.SchemaClassName	==	WebServerSchema

																	from	siteDir	in	site.Children.OfType<DirectoryEntry>()

																	where	siteDir.Name	==	"ROOT"

																	from	httpError	in	

																					siteDir.Properties["HttpErrors"].OfType<string>()

																	select	httpError;

We’ve	written	this	query	using	the	usual	query	expression	syntax,	but	we	could	also	have
built	it	using	what	is	known	as	explicit	dot	notation	syntax,	which	would	look	like	this:

var	httpErrors	=	w3svc?.Children.OfType<DirectoryEntry>()

																				.Where(site	=>	site.SchemaClassName	==	WebServerSchema)

																				.SelectMany(siteDir	=>	

																								siteDir.Children.OfType<DirectoryEntry>())

																				.Where(siteDir	=>	siteDir.Name	==	"ROOT")

																				.SelectMany<DirectoryEntry,	string>(siteDir	=>

																				siteDir.Properties["HttpErrors"].OfType<string>());

Explicit	dot	notation	syntax	is	simply	calling	the	extension	methods	that	LINQ	is	built
upon	directly	from	the	collection	type	or	interface	that	has	been	extended.	These	extension
methods	are	defined	in	the	System.Core	assembly	on	the	static	Enumerable	class	in	the
System.Linq	namespace	and	are	the	foundation	upon	which	the	query	expression	syntax
is	built.	Query	expression	syntax	tells	the	C#	compiler	to	use	these	extension	methods	to
perform	the	query	requested.

The	use	of	SelectMany	is	implied	in	the	normal	query	syntax	through	the	use	of	multiple
from	statements.	SelectMany	allows	the	query	to	collapse	the	results	into	a	single	set	so
that	we	have	IEnumerable<string>	as	the	httpErrors	result;	if	Select	were	used,	it
would	be	IEnumerable<IEnumerable<string>>,	which	would	be	a	set	of	string
collections	instead	of	one	contiguous	collection.

To	build	the	query	in	the	first	place,	you	might	find	it	easier	to	start	out	with	separate
smaller	queries	and	then	combine	them.	When	using	the	explicit	dot	notation	syntax,	you
can	easily	recombine	the	subqueries,	as	shown	here:

//	Break	up	the	query	using	Explicit	dot	notation	into	getting	the	site,

//	then	the	http	error	property	values.

var	sites	=	w3svc?.Children.OfType<DirectoryEntry>()

												.Where(child	=>	child.SchemaClassName	==	WebServerSchema)

												.SelectMany(child	=>	child.Children.OfType<DirectoryEntry>());

var	httpErrors	=	sites

																	.Where(site	=>	site.Name	==	"ROOT")

																	.SelectMany<DirectoryEntry,string>(site	=>

																					site.Properties["HttpErrors"].OfType<string>());

//	Combine	the	query	using	Explicit	dot	notation.

var	combinedHttpErrors	=	w3svc?.Children.OfType<DirectoryEntry>()

																									.Where(site	=>	site.SchemaClassName	==	WebServerSchema)

																									.SelectMany(siteDir	=>

																														siteDir.Children.OfType<DirectoryEntry>())

																									.Where(siteDir	=>	siteDir.Name	==	"ROOT")

																									.SelectMany<DirectoryEntry,	string>(siteDir	=>

																												siteDir.Properties["HttpErrors"].OfType<string>());

See	Also
The	“SelectMany<TSource,	TResult>	method,”	“OfType<TResult>	method,”	“HttpErrors
[IIS],”	“IIS	Metabase	Properties,”	and	“DirectoryEntry	Class”	topics	in	the	MSDN
documentation.

9.9	Writing	a	TCP	Server

Problem
You	need	to	create	a	server	that	listens	on	a	port	for	incoming	requests	from	a	TCP	client
in	either	a	secured	or	unsecured	fashion.	These	client	requests	can	then	be	processed	at	the
server,	and	any	responses	can	be	sent	back	to	the	client.	Recipe	9.10	shows	how	to	write	a
TCP	client	to	interact	with	this	server.

Solution
Use	the	MyTcpServer	class	created	here	to	listen	on	a	TCP-based	endpoint	for	requests
arriving	on	a	given	port:

class	MyTcpServer

{

				#region	Private	Members

				private	TcpListener	_listener;

				private	IPAddress	_address;

				private	int	_port;

				private	bool	_listening;

				private	string	_sslServerName;

				private	object	_syncRoot	=	new	object();

				#endregion

				#region	CTORs

				public	MyTcpServer(IPAddress	address,	int	port,	string	sslServerName	=	null)

				{

								_port	=	port;

								_address	=	address;

								_sslServerName	=	sslServerName;

				}

				#endregion	//	CTORs

The	TCPServer	class	has	four	properties:

Address,	an	IPAddress

Port,	an	int

Listening,	a	bool

SSLServerName,	a	string

These	return	the	current	address	and	port	on	which	the	server	is	listening,	the	listening
state,	and	the	name	of	the	SSL	(Secure	Sockets	Layer)	server	that	the	TcpServer	is
listening	as:

#region	Properties

public	IPAddress	Address	{	get;	}

public	int	Port	{	get;	}

public	bool	Listening	{	get;	private	set;	}

public	string	SSLServerName		{	get;	}

#endregion

The	ListenAsync	method	tells	the	MyTcpServer	class	to	start	listening	on	the	specified
address	and	port	combination.	You	create	and	start	a	TcpListener,	and	then	run	a	Task	to
call	its	AcceptTcpClientAsync	method	to	wait	for	a	client	request	to	arrive.	Once	the
client	connects,	the	ProcessClientAsync	method	is	run	to	service	the	client	interaction.

The	listener	shuts	down	after	serving	the	client:

				#region	Public	Methods

				public	async	Task	ListenAsync(CancellationToken	cancellationToken	=

default(CancellationToken))

				{

								cancellationToken.ThrowIfCancellationRequested();

								try

								{

												lock	(_syncRoot)

												{

																_listener	=	new	TcpListener(Address,	Port);

																//	fire	up	the	server

																_listener.Start();

																//	set	listening	bit

																Listening	=	true;

												}

												//	Enter	the	listening	loop.

												do

												{

																Console.Write("Looking	for	someone	to	talk	to…	");

																//	Wait	for	connection

																try

																{

																				cancellationToken.ThrowIfCancellationRequested();

																				await	Task.Run(async	()	=>

																				{

																								TcpClient	newClient	=	

																												await	_listener.AcceptTcpClientAsync();

																								Console.WriteLine("Connected	to	new	client");

																								await	ProcessClientAsync(newClient,	cancellationToken);

																				},cancellationToken);

																}

																catch	(OperationCanceledException)

																{

																				//	the	user	cancelled

																				Listening	=	false;

																}

												}

												while	(Listening);

								}

								catch	(SocketException	se)

								{

												Console.WriteLine($"SocketException:	{se}");

								}

								finally

								{

												//	shut	it	down

												StopListening();

								}

				}

The	StopListening	method	is	called	to	stop	the	TCPServer	from	listening	for	requests:

public	void	StopListening()

{

				if	(Listening)

				{

								lock	(_syncRoot)

								{

												//	set	listening	bit

												Listening	=	false;

												try

												{

																//	shut	it	down	if	it	is	listening

																if	(_listener.Server.IsBound)

																				_listener.Stop();

												}

												catch	(ObjectDisposedException)

												{

																//	if	we	try	to	stop	listening	while	waiting

																//	for	a	connection	in	AcceptTcpClientAsync	(since	it	blocks)

																//	it	will	throw	an	ObjectDisposedException	here

																//	Since	we	know	in	this	case	we	are	shutting	down	anyway

																//	just	note	that	we	cancelled

																Console.WriteLine("Cancelled	the	listener");

												}

								}

				}

}

#endregion

The	ProcessClientAsync	method	shown	in	Example	9-4	executes	to	serve	a	connected
client.	It	determines	if	the	server	name	for	an	SSL	connection	has	been	set	and	if	so,
creates	an	SslStream	using	TcpClient.GetStream	and	using	the	configured	server	name
to	get	the	server	certificate.	It	then	authenticates	using	the	AuthenticateAsServer
method.	If	SSL	is	not	being	used,	ProcessClientAsync	gets	the	NetworkStream	from	the
client	using	the	TcpClient.GetStream	method	and	then	reads	the	whole	request.	After
sending	back	a	response,	it	shuts	down	the	client	connection.

Example	9-4.	ProcessClientAsync	method
#region	Private	Methods

private	async	Task	ProcessClientAsync(TcpClient	client,

						CancellationToken	cancellationToken	=	default(CancellationToken))

{

				cancellationToken.ThrowIfCancellationRequested();

				try

				{

								//	Buffer	for	reading	data

								byte[]	bytes	=	new	byte[1024];

								StringBuilder	clientData	=	new	StringBuilder();

								Stream	stream	=	null;

								if	(!string.IsNullOrWhiteSpace(SSLServerName))

								{

												Console.WriteLine($"Talking	to	client	over	SSL	using	{SSLServerName}");

												SslStream	sslStream	=	new	SslStream(client.GetStream());

												sslStream.AuthenticateAsServer(GetServerCert(SSLServerName),	false,

																	SslProtocols.Default,	true);

												stream	=	sslStream;

								}

								else

								{

												Console.WriteLine("Talking	to	client	over	regular	HTTP");

												stream	=	client.GetStream();

								}

								//	get	the	stream	to	talk	to	the	client	over

								using	(stream)

								{

												//	set	initial	read	timeout	to	1	minute	to	allow	for	connection

												stream.ReadTimeout	=	60000;

												//	Loop	to	receive	all	the	data	sent	by	the	client.

												int	bytesRead	=	0;

												do

												{

																//	THIS	SEEMS	LIKE	A	BUG,	but	it	apparently	isn't…

																//	When	we	use	Read,	the	first	time	it	works	fine,	and	then	on	the

																//	second	read	when	there	is	no	data	the	IOException	is	thrown	for

																//	the	timeout	resulting	from	the	1	second	timeout	set	on	the

																//	NetworkStream.	If	we	use	ReadAsync,	it	just	hangs	forever	when

																//	there	is	no	data	on	the	second	read.	This	is	because	timeouts

																//	are	ignored	on	the	Socket	class	when	Async	is	used.

																try

																{

																				//	We	use	Read	here	and	not	ReadAsync	as	if	you	call	ReadAsync

																				//	it	will	not	timeout	as	you	might	expect	(see	note	above)

																				bytesRead	=	stream.Read(bytes,	0,	bytes.Length);

																				if	(bytesRead	>	0)

																				{

																								//	Translate	data	bytes	to	an	ASCII	string	and	append

																								clientData.Append(

																												Encoding.ASCII.GetString(bytes,	0,	bytesRead));

																								//	decrease	read	timeout	to	1/2	second	now	that	data	is

																								//	coming	in.

																								stream.ReadTimeout	=	500;

																				}

																}

																catch	(IOException	ioe)

																{

																				//	read	timed	out,	all	data	has	been	retrieved

																				Trace.WriteLine($"Read	timed	out:	{ioe}");

																				bytesRead	=	0;

																}

												}

												while	(bytesRead	>	0);

												Console.WriteLine($"Client	says:	{clientData}");

												//	Thank	them	for	their	input

												bytes	=	Encoding.ASCII.GetBytes("Thanks	call	again!");

												//	Send	back	a	response.

												await	stream.WriteAsync(bytes,	0,	bytes.Length,	cancellationToken);

								}

				}

				finally

				{

								//	stop	talking	to	client

								client?.Close();

				}

}

Finally,	the	GetServerCert	method	retrieves	the	X509Certificate	when	the	TcpServer	is
set	up	to	use	SSL.	This	expects	that	the	certificate	is	accessible	in	the	Personal	certificate
store	on	the	local	machine.	If	it	is	a	self-signed	certificate,	then	the	certificate	will	need	to
be	available	in	the	Trusted	Root	certificate	store	as	well:

				private	static	X509Certificate	GetServerCert(string	subjectName)

				{

								using	(X509Store	store	=

											new	X509Store(StoreName.My,	StoreLocation.LocalMachine))

								{

												store.Open(OpenFlags.ReadOnly);

												X509CertificateCollection	certificate	=

																store.Certificates.Find(X509FindType.FindBySubjectName,

																			subjectName,	true);

												if	(certificate.Count	>	0)

																return	(certificate[0]);

												else

																return	(null);

								}

				}

}

Here’s	an	example	of	a	simple	server	that	listens	for	clients	until	the	Escape	key	is
pressed:

class	Program

{

				private	static	MyTcpServer	_server;

				private	static	CancellationTokenSource	_cts;

				static	void	Main()

				{

								_cts	=	new	CancellationTokenSource();

								try

								{

												//	We	don't	await	this	call	as	we	want	to	continue	so

												//	that	the	Console	UI	can	process	keystrokes

												RunServer(_cts.Token);

								}

								catch(Exception	ex)

								{

												Console.WriteLine(ex.ToString());

								}

								string	msg	=	"Press	Esc	to	stop	the	server…";

								Console.WriteLine(msg);

								ConsoleKeyInfo	cki;

								while	(true)

								{

												cki	=	Console.ReadKey();

												if	(cki.Key	==	ConsoleKey.Escape)

												{

																_cts.Cancel();

																_server.StopListening();

																break;	//	allow	exit

												}

								}

								Console.WriteLine("");

								Console.WriteLine("All	done	listening");

				}

				private	static	async	Task	RunServer(CancellationToken	cancellationToken)

				{

								try

								{

												await	Task.Run(async()	=>

												{

																cancellationToken.ThrowIfCancellationRequested();

																_server	=	new	MyTcpServer(IPAddress.Loopback,	55555);

																await	_server.ListenAsync(cancellationToken);

												},	cancellationToken);

								}

								catch	(OperationCanceledException)

								{

												Console.WriteLine("Cancelled.");

								}

				}

}

When	talking	to	the	MyTcpClient	class	in	Recipe	9.10,	the	server	gives	output	like	this:

Press	Esc	to	stop	the	server…

Looking	for	someone	to	talk	to…	Connected	to	new	client

Client	says:	Just	wanted	to	say	hi

Looking	for	someone	to	talk	to…	Connected	to	new	client

Client	says:	Just	wanted	to	say	hi	again

Looking	for	someone	to	talk	to…	Connected	to	new	client

Client	says:	Are	you	ignoring	me?

Looking	for	someone	to	talk	to…	Connected	to	new	client

Client	says:	I'll	not	be	ignored!	(round	0)

Looking	for	someone	to	talk	to…	Connected	to	new	client

Client	says:	I'll	not	be	ignored!	(round	1)

Looking	for	someone	to	talk	to…	Connected	to	new	client

Client	says:	I'll	not	be	ignored!	(round	2)

Looking	for	someone	to	talk	to…	Connected	to	new	client

Client	says:	I'll	not	be	ignored!	(round	3)

Looking	for	someone	to	talk	to…	Connected	to	new	client

Client	says:	I'll	not	be	ignored!	(round	4)

Looking	for	someone	to	talk	to…	Connected	to	new	client

Client	says:	I'll	not	be	ignored!	(round	5)

Looking	for	someone	to	talk	to…	Connected	to	new	client

Client	says:	I'll	not	be	ignored!	(round	6)

Looking	for	someone	to	talk	to…	Connected	to	new	client

Client	says:	I'll	not	be	ignored!	(round	7)

Looking	for	someone	to	talk	to…	Connected	to	new	client

Client	says:	I'll	not	be	ignored!	(round	8)

Looking	for	someone	to	talk	to…	Connected	to	new	client

Client	says:	I'll	not	be	ignored!	(round	9)

Looking	for	someone	to	talk	to…	Connected	to	new	client

Client	says:	I'll	not	be	ignored!	(round	10)

				[more	output	follows…]

Discussion
The	Transmission	Control	Protocol	(TCP)	is	the	protocol	used	by	the	majority	of	traffic	on
the	Internet	today.	TCP	is	responsible	for	the	correct	delivery	of	data	packets	from	one
endpoint	to	another.	It	uses	the	Internet	Protocol	(IP)	to	make	the	delivery.	IP	handles
getting	the	packets	from	node	to	node;	TCP	detects	when	packets	are	not	correct,	are
missing,	or	are	sent	out	of	order,	and	it	arranges	for	missing	or	damaged	packets	to	be
resent.	The	TCPServer	class	is	a	basic	server	mechanism	for	dealing	with	requests	that
come	from	clients	over	TCP.

MyTcpServer	takes	the	IP	address	and	port	passed	in	the	constructor	method	and	creates	a
TcpListener	on	that	IPAddress	and	port.	Once	created,	the	TcpListener.Start	method
is	called	to	start	up	the	server.	The	AcceptTcpClientAsync	method	is	called	to	listen	for
requests	from	TCP-based	clients	and	is	awaited	for	a	connection	from	a	client.	Once	the
client	connects,	the	ProcessClientAsync	method	is	executed.	In	this	method,	the	server
reads	request	data	from	the	client	and	returns	a	brief	acknowledgment.	The	server
disconnects	from	the	client	via	TcpClient.Close.	The	server	stops	listening	when	the
StopListening	method	is	called,	which	takes	the	server	offline	by	calling
TcpListener.Stop.

To	support	secured	requests,	you	can	set	the	SSLServerName	in	the	TcpServer	constructor,
which	identifies	the	certificate	to	use	for	authentication.

The	program	running	the	server	would	then	supply	this	name	in	the	constructor	like	this:

_server	=	new	MyTcpServer(IPAddress.Loopback,	55555,	"CSharpCookBook.net");

In	the	ListenAsync	method,	we	used	the	lock	statement:

public	async	Task	ListenAsync(CancellationToken	cancellationToken	=

				default(CancellationToken))

{

				cancellationToken.ThrowIfCancellationRequested();

				try

				{

								lock	(_syncRoot)

								{

												_listener	=	new	TcpListener(Address,	Port);

												//	fire	up	the	server

												_listener.Start();

												//	set	listening	bit

												Listening	=	true;

								}

WARNING
MSDN	defines	lock	as	follows:	“The	lock	keyword	marks	a	statement	block	as	a	critical	section	by
obtaining	the	mutual-exclusion	lock	for	a	given	object,	executing	a	statement,	and	then	releasing	the	lock.”
While	this	is	true,	you	can	more	simply	think	“no	other	thread	will	run	in	the	section	of	code	inside	the
brackets	for	the	lock	statement	until	the	first	thread	is	finished.”	Those	of	you	who	like	to	push	the
envelope	might	think,	“Hey,	I	could	use	async	and	await	inside	the	lock	statement	and	then	it	would	yield
to	the	next	thread,	right?”	Yes,	technically	you	could,	but	you	shouldn’t,	as	that	is	almost	certainly	going	to
cause	deadlocks	in	your	application.	The	code	you	await	could	be	taking	out	locks	itself	and	causing	the
deadlocking.	The	code	inside	the	lock	could	also	then	resume	on	another	thread	(since	when	you	await,	it
doesn’t	usually	resume	on	the	same	thread),	so	you	would	be	unlocking	from	a	different	thread	than	you
established	the	lock	on.	This	is	a	“Very	Bad	Thing,”	so	please	don’t	do	it.

See	Also
The	“IPAddress	Class,”	“TcpListener	Class,”	“SslStream	Class,”	“lock	statement,”	and
“TcpClient	Class”	topics	in	the	MSDN	documentation.

9.10	Writing	a	TCP	Client

Problem
You	want	to	interact	with	a	TCP-based	server	in	a	secured	or	unsecured	fashion.

Solution
Use	the	MyTcpClient	class	shown	in	Example	9-5	to	connect	to	and	converse	with	a	TCP-
based	server	by	passing	the	address,	port,	and	SSL	server	name	(if	authenticated)	of	the
server	to	talk	to,	using	the	System.Net.TcpClient	class.	This	example	will	talk	to	the
server	from	Recipe	9.9.

Example	9-5.	MyTcpClient	class
class	MyTcpClient	:	IDisposable

{

				private	TcpClient	_client;

				private	IPEndPoint	_endPoint;

				private	bool	_disposed;

				#region	Properties

				public	IPAddress	Address	{	get;	}

				public	int	Port	{	get;	}

				public	string	SSLServerName	{	get;	}

				#endregion

				public	MyTcpClient(IPAddress	address,	int	port,	string	sslServerName	=	null)

				{

								Address	=	address;

								Port	=	port;

								_endPoint	=	new	IPEndPoint(Address,	Port);

								SSLServerName	=	sslServerName;

				}

				public	async	Task	ConnectToServerAsync(string	msg)

				{

								try

								{

												_client	=	new	TcpClient();

												await	_client.ConnectAsync(_endPoint.Address,_endPoint.Port);

												Stream	stream	=	null;

												if	(!string.IsNullOrWhiteSpace(SSLServerName))

												{

																SslStream	sslStream	=

																				new	SslStream(_client.GetStream(),	false,

																								new	RemoteCertificateValidationCallback(

																												CertificateValidationCallback));

																sslStream.AuthenticateAsClient(SSLServerName);

																DisplaySSLInformation(SSLServerName,	sslStream,	true);

																stream	=	sslStream;

												}

												else

												{

																stream	=	_client.GetStream();

												}

												using	(stream)

												{

																//	Get	the	bytes	to	send	for	the	message

																byte[]	bytes	=	Encoding.ASCII.GetBytes(msg);

																//	send	message

																Console.WriteLine($"Sending	message	to	server:	{msg}");

																await	stream?.WriteAsync(bytes,	0,	bytes.Length);

																//	Get	the	response

																//	Buffer	to	store	the	response	bytes.

																bytes	=	new	byte[1024];

																//	Display	the	response

																int	bytesRead	=	await	stream?.ReadAsync(bytes,	0,	bytes.Length);

																string	serverResponse	=	

																				Encoding.ASCII.GetString(bytes,	0,	bytesRead);

																Console.WriteLine($"Server	said:	{serverResponse}");

												}

								}

								catch	(SocketException	se)

								{

												Console.WriteLine($"There	was	an	error	talking	to	the	server:	{se}");

								}

								finally

								{

												Dispose();

								}

				}

				#region	IDisposable	Members

				public	void	Dispose()

				{

								Dispose(true);

								GC.SuppressFinalize(this);

				}

				private	void	Dispose(bool	disposing)

				{

								if	(!_disposed)

								{

												if	(disposing)

												{

																_client?.Close();

												}

												_disposed	=	true;

								}

				}

				#endregion

				private	bool	CertificateValidationCallback(object	sender,

												X509Certificate	certificate,

												X509Chain	chain,

												SslPolicyErrors	sslPolicyErrors)

				{

								if	(sslPolicyErrors	==	SslPolicyErrors.None)

								{

												return	true;

								}

								else

								{

												if	(sslPolicyErrors	==	SslPolicyErrors.RemoteCertificateChainErrors)

												{

																Console.WriteLine("The	X509Chain.ChainStatus	returned	an	array	of	"	+

																				"X509ChainStatus	objects	containing	error	information.");

												}

												else	if	(sslPolicyErrors	==	

																SslPolicyErrors.RemoteCertificateNameMismatch)

												{

																Console.WriteLine(

																				"There	was	a	mismatch	of	the	name	on	a	certificate.");

												}

												else	if	(sslPolicyErrors	==	

																SslPolicyErrors.RemoteCertificateNotAvailable)

												{

																Console.WriteLine("No	certificate	was	available.");

												}

												else

												{

																Console.WriteLine("SSL	Certificate	Validation	Error!");

												}

												Console.WriteLine("");

												Console.WriteLine("SSL	Certificate	Validation	Error!");

												Console.WriteLine(sslPolicyErrors.ToString());

												return	false;

								}

				}

				private	static	void	DisplaySSLInformation(string	serverName,

								SslStream	sslStream,	bool	verbose)

				{

								DisplayCertInformation(sslStream.RemoteCertificate,	verbose);

								Console.WriteLine("");

								Console.WriteLine($"SSL	Connect	Report	for	:	{serverName}");

								Console.WriteLine("");

								Console.WriteLine(

												$"Is	Authenticated:												{sslStream.IsAuthenticated}");

								Console.WriteLine($"Is	Encrypted:																{sslStream.IsEncrypted}");

								Console.WriteLine($"Is	Signed:																			{sslStream.IsSigned}");

								Console.WriteLine($"Is	Mutually	Authenticated:			"	+

												$"{sslStream.IsMutuallyAuthenticated}");

								Console.WriteLine("");

								Console.WriteLine($"Hash	Algorithm:														{sslStream.HashAlgorithm}");

								Console.WriteLine($"Hash	Strength:															{sslStream.HashStrength}");

								Console.WriteLine(

												$"Cipher	Algorithm:												{sslStream.CipherAlgorithm}");

								Console.WriteLine(

												$"Cipher	Strength:													{sslStream.CipherStrength}");

								Console.WriteLine("");

								Console.WriteLine($"Key	Exchange	Algorithm:						"	+

												$"{sslStream.KeyExchangeAlgorithm}");

								Console.WriteLine($"Key	Exchange	Strength:							"	+

												$"{sslStream.KeyExchangeStrength}");

								Console.WriteLine("");

								Console.WriteLine(4"SSL	Protocol:																{sslStream.SslProtocol}");

				}

				private	static	void	DisplayCertInformation(X509Certificate	remoteCertificate,

								bool	verbose)

				{

								Console.WriteLine("");

								Console.WriteLine("Certficate	Information	for:");

								Console.WriteLine($"{remoteCertificate.Subject}");

								Console.WriteLine("");

								Console.WriteLine("Valid	From:");

								Console.WriteLine($"{remoteCertificate.GetEffectiveDateString()}");

								Console.WriteLine("Valid	To:");

								Console.WriteLine($"{remoteCertificate.GetExpirationDateString()}");

								Console.WriteLine("Certificate	Format:");

								Console.WriteLine($"{remoteCertificate.GetFormat()}");

								Console.WriteLine("");

								Console.WriteLine("Issuer	Name:");

								Console.WriteLine($"{remoteCertificate.Issuer}");

								if	(verbose)

								{

												Console.WriteLine("Serial	Number:");

												Console.WriteLine($"{remoteCertificate.GetSerialNumberString()}");

												Console.WriteLine("Hash:");

												Console.WriteLine($"{remoteCertificate.GetCertHashString()}");

												Console.WriteLine("Key	Algorithm:");

												Console.WriteLine($"{remoteCertificate.GetKeyAlgorithm()}");

												Console.WriteLine("Key	Algorithm	Parameters:");

												Console.WriteLine(

																$"{remoteCertificate.GetKeyAlgorithmParametersString()}");

												Console.WriteLine("Public	Key:");

												Console.WriteLine($"{remoteCertificate.GetPublicKeyString()}");

								}

				}

}

To	use	the	MyTcpClient	in	a	program,	you	can	simply	create	an	instance	of	it	and	call
ConnectToServerAsync	to	send	a	request.	In	the	TalkToServerAsync	method,	you	first
make	three	calls	to	the	server	to	test	the	basic	mechanism	and	await	the	results	from	the
MakeClientCallToServer	method.	Next,	you	enter	a	loop	to	really	pound	on	it	and	spawn
a	number	of	Task	requests	that	each	await	the	MakeClientCallToServer	method.	This
verifies	that	the	server’s	mechanism	for	handling	multiple	requests	is	sound:

static	void	Main()

{

				Task	serverChat	=	TalkToServerAsync();

				serverChat.Wait();

				Console.WriteLine(@"Press	the	ENTER	key	to	continue…");

				Console.Read();

}

private	static	async	Task	MakeClientCallToServerAsync(string	msg)

{

				MyTcpClient	client	=	new	MyTcpClient(IPAddress.Loopback,	55555);

				//	Uncomment	to	use	SSL	to	talk	to	the	server

				//MyTcpClient	client	=	new	MyTcpClient(IPAddress.Loopback,	55555,

				//				"CSharpCookBook.net");

				await	client.ConnectToServerAsync(msg);

}

private	static	async	Task	TalkToServerAsync()

{

				await	MakeClientCallToServerAsync("Just	wanted	to	say	hi");

				await	MakeClientCallToServerAsync("Just	wanted	to	say	hi	again");

				await	MakeClientCallToServerAsync("Are	you	ignoring	me?");

				//	now	send	a	bunch	of	messages…

				string	msg;

				for	(int	i	=	0;	i	<	100;	i++)

				{

								msg	=	$"I'll	not	be	ignored!	(round	{i})";

								RunClientCallAsTask(msg);

				}

}

private	static	void	RunClientCallAsTask(string	msg)

{

				Task	work	=	Task.Run(async	()	=>

				{

								await	MakeClientCallToServerAsync(msg);

				});

}

The	output	on	the	client	side	for	this	exchange	of	messages	is:

Sending	message	to	server:	Just	wanted	to	say	hi

Server	said:	Thanks	call	again!

Sending	message	to	server:	Just	wanted	to	say	hi	again

Server	said:	Thanks	call	again!

Sending	message	to	server:	Are	you	ignoring	me?

Server	said:	Thanks	call	again!

Press	the	ENTER	key	to	continue…

Sending	message	to	server:	I'll	not	be	ignored!	(round	1)

Sending	message	to	server:	I'll	not	be	ignored!	(round	0)

Sending	message	to	server:	I'll	not	be	ignored!	(round	2)

Sending	message	to	server:	I'll	not	be	ignored!	(round	3)

Sending	message	to	server:	I'll	not	be	ignored!	(round	4)

Sending	message	to	server:	I'll	not	be	ignored!	(round	6)

Sending	message	to	server:	I'll	not	be	ignored!	(round	5)

Sending	message	to	server:	I'll	not	be	ignored!	(round	7)

Sending	message	to	server:	I'll	not	be	ignored!	(round	9)

Sending	message	to	server:	I'll	not	be	ignored!	(round	10)

[once	all	requests	are	set	up	as	tasks	you	see	the	responses…]

Server	said:	Thanks	call	again!

Server	said:	Thanks	call	again!

Server	said:	Thanks	call	again!

Server	said:	Thanks	call	again!

Server	said:	Thanks	call	again!

Server	said:	Thanks	call	again!

Server	said:	Thanks	call	again!

Server	said:	Thanks	call	again!

Server	said:	Thanks	call	again!

Server	said:	Thanks	call	again!

Server	said:	Thanks	call	again!

Discussion
MyTcpClient.ConnectToServerAsync	is	designed	to	send	one	message,	get	the	response,
display	it	as	a	string,	and	then	close	the	connection.	To	accomplish	this,	it	creates	a
System.Net.TcpClient	and	connects	to	the	server	by	calling	the
TcpClient.ConnectAsync	method.	ConnectAsync	targets	the	server	using	an	IPEndPoint
built	from	the	address	and	port	that	you	passed	to	the	MyTcpClient	constructor.

MyTcpClient.ConnectToServerAsync	then	gets	the	bytes	for	the	string	using	the
Encoding.ASCII.GetBytes	method.	Once	it	has	the	bytes	to	send,	it	gets	either	the
NetworkStream	or	the	SslStream	from	the	underlying	System.Net.TcpClient	by	calling
its	GetStream	method	and	then	sends	the	message	using	the	TcpClient.WriteAsync
method.

To	receive	the	response	from	the	server,	MyTcpClient.ConnectToServerAsync	calls	the
blocking	TcpClient.ReadAsync	method.	Once	ReadAsync	is	awaited	and	returns,	the
bytes	are	decoded	to	get	the	string	that	contains	the	response	from	the	server.	The
connections	are	then	closed	and	the	client	ends.

To	support	secured	requests,	you	can	set	the	SSLServerName	in	the	TcpClient	constructor,
which	identifies	the	certificate	to	use	for	authentication.

The	program	running	the	client	would	then	supply	this	name	in	the	constructor	like	this:

MyTcpClient	client	=	

				new	MyTcpClient(IPAddress.Loopback,	55555,	"CSharpCookBook.net");

When	using	a	secured	connection,	we	use	the	DisplaySSLInformation	and
DisplayCertInformation	methods	of	MyTcpClient	to	display	all	of	the	details	of	the
connection	as	they	pertain	to	the	certificate	and	security	status:

Certficate	Information	for:

CN=CSharpCookBook.net

Valid	From:

12/27/2014	7:29:31	PM

Valid	To:

12/31/2039	6:59:59	PM

Certificate	Format:

X509

Issuer	Name:

CN=CSharpCookBook.net

Serial	Number:

0F0E1C4148C6A09C42EDEDAFCD2E83E2

Hash:

664E30B62C4FB9DBEE0C29F27A15E5EDE2C46187

Key	Algorithm:

1.2.840.113549.1.1.1

Key	Algorithm	Parameters:

0500

Public	Key:

3082020A0282020100EAB6004CD3F2F5214773E8FE4FA40FE610F1C27E888276E81EBBB86020B904

3B136CF02197C928ED0BCA8339A31334059C2744A8BB617849BBC98C8B242FC360C88BF62E2C491B

1A6F951DDB65E0036D8839AC6695B26CD3E50DD749A5610C8564CF99EE79FED272D04A3100B51A4A

4BAE076BB8129E39B382ED1FDB8382A2D3C057D7F46072DDDE0654083E1F2CB4E25685B5EE4B4F25

F3D2561B61869D9C39B9FB389E6A06D9DEFA6693D94C6A1F2CA34462B3D9C68CF91A179B0957050E

A9A30D508C067C216CAD59CA9E846B0EBA02472333BBF2462415B13567EBF6930FC1000EECC3EA70

9867B8BD6869BF828B8EBA5BA2E4A7660B46B798A8BB8D046FFE1C767F5A77AF1CD6E83F9E013AB1

748264F89617D9C106813F554B8AF4184AC58B55A1A58ABAA2F171CDBFF6923C27FE801FEE5D3664

87F54FAD184B0FCBB874532EC8E6B3BAA322F05DB6AD99E5982B98AD43C0E9BB2356270DB07BA5E5

AAE2F0B66E630A6A0435FDFC61DB46B0FF348AF5D2285C74A35E8AAFC86F45C0E674C2D9FE98B6C1

17208668CF4B03DD77948AE45AE84D33178C3042B1155E58D3B49492697D5CA4CF4AB24549E4A240

CCEB6CF61CEF6F33F412A91BC32803136A6481B6B246FEA5A3943EEB7FDA5E54CC561DE737BBB380

BC2B467F1A5B8CA1BDFC66B6B4E60DCCC7C3912449D0BF8B9878D22C04A36A09898D2AAED0CE32DB

770203010001

SSL	Connect	Report	for	:	CSharpCookBook.net

Is	Authenticated:												True

Is	Encrypted:																True

Is	Signed:																			True

Is	Mutually	Authenticated:			False

Hash	Algorithm:														Sha1

Hash	Strength:															160

Cipher	Algorithm:												Aes256

Cipher	Strength:													256

Key	Exchange	Algorithm:						44550

Key	Exchange	Strength:							256

SSL	Protocol:																Tls

Sending	message	to	server:	I'll	not	be	ignored!	(round	95)

Server	said:	Thanks	call	again!

In	the	Solution,	we	added	the	IDisposable	interface	implementation	to	the	MyTcpClient
class	as	follows:

#region	IDisposable	Members

public	void	Dispose()

{

				Dispose(true);

				GC.SuppressFinalize(this);

}

private	void	Dispose(bool	disposing)

{

				if	(!_disposed)

				{

								if	(disposing)

								{

												_client?.Close();

								}

								_disposed	=	true;

				}

}

#endregion

We	did	this	to	handle	the	closing	of	the	private	TcpClient	instance	variable	_client
correctly,	as	it	provides	its	own	Close	method	so	that	it	can	perform	some	logging	and
clean	up	its	resources.	SuppressFinalize	is	called	in	the	Dispose	method	to	inform	the
garbage	collector	that	the	object	has	already	been	cleaned	up	fully.

See	Also
The	“TcpClient	Class,”	“SslStream	Class,”	“NetworkStream	Class,”	“IDisposable
Interface,”	and	“Encoding.ASCII	Property”	topics	in	the	MSDN	documentation.

9.11	Simulating	Form	Execution

Problem
You	need	to	send	a	collection	of	name/value	pairs	to	simulate	a	form	being	executed	on	a
browser	to	a	location	identified	by	a	URL.

Solution
Use	the	System.Net.WebClient	class	to	send	a	set	of	name/value	pairs	to	the	web	server
using	the	UploadValues	method.	This	class	enables	you	to	masquerade	as	the	browser
executing	a	form	by	setting	up	the	name/value	pairs	with	the	input	data.	The	input	field	ID
is	the	name,	and	the	value	to	use	in	the	field	is	the	value:

//	In	order	to	use	this,	you	need	to	run	the	CSCBWeb	project	first.

Uri	uri	=	new	Uri("http://localhost:4088/WebForm1.aspx");

WebClient	client	=	new	WebClient();

//	Create	a	series	of	name/value	pairs	to	send

//	Add	necessary	parameter/value	pairs	to	the	name/value	container.

NameValueCollection	collection	=	new	NameValueCollection()

				{	{"Item",	"WebParts"},

								{"Identity",	"foo@bar.com"},

								{"Quantity",	"5"}	};

Console.WriteLine(

				$"Uploading	name/value	pairs	to	URI	{uri.AbsoluteUri}	...");

//	Upload	the	NameValueCollection.

byte[]	responseArray	=

				await	client.UploadValuesTaskAsync(uri,	"POST",	collection);

//	Decode	and	display	the	response.

Console.WriteLine(

				$"\nResponse	received	was	{Encoding.UTF8.GetString(responseArray)}");

The	WebForm1.aspx	page,	which	receives	and	processes	this	data,	looks	like	this:

<%@	Page	Language="C#"	AutoEventWireup="true"	CodeFile="WebForm1.aspx.cs"

				Inherits="WebForm1"	%>

<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html	xmlns="http://www.w3.org/1999/xhtml">

<head	runat="server">

				<title>Untitled	Page</title>

</head>

<body>

				<form	id="form1"	runat="server">

				<div>

								<asp:Table	ID="Table1"	runat="server"	Height="139px"	Width="361px">

												<asp:TableRow	runat="server">

																<asp:TableCell	runat="server"><asp:Label	ID="Label1"	

																runat="server"

Text="Identity"></asp:Label></asp:TableCell>

																<asp:TableCell	runat="server"><asp:TextBox	ID="Identity"

runat="server"/></asp:TableCell>

												</asp:TableRow>

												<asp:TableRow	runat="server">

																<asp:TableCell	runat="server"><asp:Label	ID="Label2"	

																runat="server"

Text="Item"></asp:Label></asp:TableCell>

																<asp:TableCell	runat="server"><asp:TextBox	ID="Item"

runat="server"/></asp:TableCell>

												</asp:TableRow>

												<asp:TableRow	runat="server">

																<asp:TableCell	runat="server"><asp:Label	ID="Label3"	

																runat="server"

Text="Quantity"></asp:Label></asp:TableCell>

																<asp:TableCell	runat="server"><asp:TextBox	ID="Quantity"

runat="server"/></asp:TableCell>

												</asp:TableRow>

												<asp:TableRow	runat="server">

																<asp:TableCell	runat="server"></asp:TableCell>

																<asp:TableCell	runat="server"><asp:Button	ID="Button1"	

																runat="server"

onclick="Button1_Click"	Text="Submit"	/></asp:TableCell>

												</asp:TableRow>

								</asp:Table>

				</div>

				</form>

</body>

</html>

The	WebForm1.aspx.cs	codebehind	looks	like	this:

using	System;

using	System.Web;

public	partial	class	WebForm1	:	System.Web.UI.Page

{

				protected	void	Page_Load(object	sender,	EventArgs	e)

				{

								if(HttpContext.Current.Request.HttpMethod.ToUpper()	==	"POST")

												WriteOrderResponse();

				}

				protected	void	Button1_Click(object	sender,	EventArgs	e)

				{

								WriteOrderResponse();

				}

				private	void	WriteOrderResponse()

				{

								string	response	=	"Thanks	for	the	order!
";

								response	+=	"Identity:	"	+	Request.Form["Identity"]	+	"
";

								response	+=	"Item:	"	+	Request.Form["Item"]	+	"
";

								response	+=	"Quantity:	"	+	Request.Form["Quantity"]	+	"
";

								Response.Write(response);

				}

}

The	output	from	the	form	execution	looks	like	this:

Uploading	name/value	pairs	to	URI	http://localhost:4088/WebForm1.aspx…

Response	received	was	?Thanks	for	the	order!
Identity:	foo@bar.com
Item:

	WebParts
Quantity:	5

<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"	"http://www.w3.or

g/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html	xmlns="http://www.w3.org/1999/xhtml">

<head><title>

								Untitled	Page

</title></head>

<body>

				<form	name="form1"	method="post"	action="WebForm1.aspx"	id="form1">

<input	type="hidden"	name="__VIEWSTATE"	id="__VIEWSTATE"	value="/wEPDwULLTE3NDA4

NzI1OTJkZHS2esbeFu36oKf1n3XvCfLBFbminq7tuASWazSmVzNV"	/>

				<div>

																<table	id="Table1"	border="0"	height="139"	width="361">

								<tr>

																<td>Identity</td><td><input	name="Ident

ity"	type="text"	id="Identity"	/></td>

								</tr><tr>

																<td>Item</td><td><input	name="Item"	typ

e="text"	id="Item"	/></td>

								</tr><tr>

																<td>Quantity</td><td><input	name="Quant

ity"	type="text"	id="Quantity"	/></td>

								</tr><tr>

																<td></td><td><input	type="submit"	name="Button1"	value="Submit"

id="Button1"	/></td>

								</tr>

</table>

				</div>

<input	type="hidden"	name="__VIEWSTATEGENERATOR"	id="__VIEWSTATEGENERATOR"	value

="B6E7D48B"	/>

<input	type="hidden"	name="__EVENTVALIDATION"	id="__EVENTVALIDATION"	value="/wEd

AAWO/dj0xplxW6YoKRXH5OHbmz/pl7ppA227nN6820C6Sskwyhj63BXMkV5ahbRAQpWWUallXbdbKxLN

IxdB86x+zfg78Z8BXhXifTCAVkevd657ebmKYjtae5uEq9PVWd0RhH/uhX8f6dI/Hiyy1p14"	/></fo

rm>

<!--	Visual	Studio	Browser	Link	-->

<script	type="application/json"	id="__browserLink_initializationData">

				{"appName":"Unknown","requestId":"c7ee16b51c9b4bccae0c3c79a9fba779"}

</script>

<script	type="text/javascript"	src="http://localhost:2976/eef9532a4f984be0b28884

3bb4cee559/browserLink"	async="async"></script>

<!--	End	Browser	Link	-->

</body>

</html>

Discussion
The	WebClient	class	makes	it	easy	to	upload	form	data	to	a	web	server	in	the	common
format	of	a	set	of	name/value	pairs.	You	can	see	this	technique	in	the	call	to
UploadValuesTaskAsync	that	takes	a	URI	(http://localhost:4088/WebForm1.aspx),	the
HTTP	method	to	use	(POST),	and	the	NameValueCollection	you	created	(collection).

NOTE
Note	that	the	asynchronous	version	of	the	UploadValues*	methods	is	called	and	that	the	one	used
(UploadValuesTaskAsync)	is	the	one	specific	to	using	with	async	and	await.

You	populate	the	NameValueCollection	with	the	data	for	each	field	on	the	form	by	calling
its	Add	method,	passing	the	id	of	the	input	field	as	the	name	and	the	value	to	put	in	the
field	as	the	value.	In	this	example,	you	fill	in	the	Identity	field	with	foo@bar.com,	the
Item	field	with	WebParts,	and	the	Quantity	field	with	5.	You	then	print	out	the	resulting
response	from	the	POST	to	the	console	window.

See	Also
The	“WebClient	Class”	topic	in	the	MSDN	documentation.

9.12	Transferring	Data	via	HTTP

Problem
You	need	to	download	data	from	or	upload	data	to	a	location	specified	by	a	URL;	this	data
can	be	either	an	array	of	bytes	or	a	file.

Solution
Use	the	WebClient.UploadDataTaskAsync	or	WebClient.DownloadDataTaskAsync
methods	to	transfer	data	using	a	URL.

To	download	the	data	for	a	web	page,	do	the	following:

Uri	uri	=	new	Uri("http://localhost:4088/DownloadData.aspx");

//	make	a	client

using	(WebClient	client	=	new	WebClient())

{

				//	get	the	contents	of	the	file

				Console.WriteLine($"Downloading	{uri.AbsoluteUri}");

				//	download	the	page	and	store	the	bytes

				byte[]	bytes;

				try

				{

								//	NOTE:	There	is	also	a	DownloadDataAsync	that	is	used	in	the	older

								//	EAP	pattern,	which	we	do	not	use	here.

								bytes	=	await	client.DownloadDataTaskAsync(uri);

				}

				catch	(WebException	we)

				{

								Console.WriteLine(we.ToString());

								return;

				}

				//	Write	the	HTML	out

				string	page	=	Encoding.UTF8.GetString(bytes);

				Console.WriteLine(page);

}

This	will	produce	the	following	output:

Downloading	http://localhost:4088/DownloadData.aspx

?

<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"	"http://www.w3.or

g/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html	xmlns="http://www.w3.org/1999/xhtml">

<head><title>

								Download	Data

</title></head>

<body>

				<form	name="Form1"	method="post"	action="DownloadData.aspx"	id="Form2">

								<input	type="hidden"	name="__VIEWSTATE"

value="dDwyMDQwNjUzNDY2Ozs+kS9hguYm9369sybDqmIow0AvxBg="	/>

				<span	id="Label1"	style="Z-INDEX:	101;	LEFT:	142px;	POSITION:	absolute;

TOP:	164px">This	is	downloaded	html!

				</form>

<!--	Visual	Studio	Browser	Link	-->

<script	type="application/json"	id="__browserLink_initializationData">

				{"appName":"Unknown","requestId":"b43b962ff6264058b5dbf17aed23a082"}

</script>

<script	type="text/javascript"	src="http://localhost:3587/db7b63d3424649c7a10386

29bc71b103/browserLink"	async="async"></script>

<!--	End	Browser	Link	-->

</body>

</html>

You	can	also	download	data	to	a	file	using	DownloadFileTaskAsync:

Uri	uri	=	new	Uri("http://localhost:4088/DownloadData.aspx");

//	make	a	client

using	(WebClient	client	=	new	WebClient())

{

				//	go	get	the	file

				Console.WriteLine($"Retrieving	file	from	{uri}...{Environment.NewLine}");

				//	get	file	and	put	it	in	a	temp	file

				string	tempFile	=	Path.GetTempFileName();

				try

				{

								//	NOTE:	There	is	also	a	DownloadFileAsync	that	is	used	in	the	older

								//	EAP	pattern,	which	we	do	not	use	here.

								await	client.DownloadFileTaskAsync(uri,	tempFile);

				}

				catch	(WebException	we)

				{

								Console.WriteLine(we.ToString());

								return;

				}

				Console.WriteLine($"Downloaded	{uri}	to	{tempFile}");

}

This	will	produce	output	similar	to	the	following	(temporary	file	path	and	name	will
change):

Retrieving	file	from	http://localhost:4088/DownloadData.aspx…

Downloaded	http://localhost:4088/DownloadData.aspx	to	C:\Users\jhilyard\AppData\

Local\Temp\tmpA5D7.tmp

To	upload	a	file	to	a	URL,	use	UploadFileTaskAsync	like	so:

Uri	uri	=	new	Uri("http://localhost:4088/UploadData.aspx");

//	make	a	client

using	(WebClient	client	=	new	WebClient())

{

				Console.WriteLine($"Uploading	to	{uri.AbsoluteUri}");

				try

				{

								//	NOTE:	There	is	also	a	UploadFileAsync	that	is	used	in	the	older

								//	EAP	pattern,	which	we	do	not	use	here.

								await	client.UploadFileTaskAsync(uri,	"SampleClassLibrary.dll");

								Console.WriteLine($"Uploaded	successfully	to	{uri.AbsoluteUri}");

				}

				catch	(WebException	we)

				{

								Console.WriteLine(we.ToString());

				}

}

The	code	for	an	ASPX	page	that	could	receive	this	would	look	as	follows:

using	System;

using	System.Web;

public	partial	class	UploadData	:	System.Web.UI.Page

{

				protected	void	Page_Load(object	sender,	EventArgs	e)

				{

								foreach	(string	f	in	Request.Files.AllKeys)

								{

												HttpPostedFile	file	=	Request.Files[f];

												//	need	to	have	write	permissions	for	the	directory	to	write	to

												try

												{

																string	path	=	Server.MapPath(".")	+	@"\"	+	file.FileName;

																file.SaveAs(path);

																Response.Write("Saved	"	+	path);

												}

												catch	(HttpException	hex)

												{

																//	return	error	information	specific	to	the	save

																Response.Write("Failed	to	save	file	with	error:	"	+

																				hex.Message);

												}

								}

				}

}

NOTE
Note	that	while	the	preceding	ASPX	page	will	receive	and	store	the	file,	it	is	a	basic	sample	meant	to
illustrate	uploading	with	WebClient.	When	building	a	page	to	receive	files,	make	sure	you	deal	with	the
security	aspects	of	file	uploads	as	specified	in	the	Unrestricted	File	Upload	vulnerability	described	by
OWASP	(Open	Web	Application	Security	Project)	on	its	website
(https://www.owasp.org/index.php/Unrestricted_File_Upload).

This	will	produce	the	following	output:

Uploading	to	http://localhost:4088/UploadData.aspx

Uploaded	successfully	to	http://localhost:4088/UploadData.aspx

https://www.owasp.org/index.php/Unrestricted_File_Upload

Discussion
WebClient	simplifies	downloading	of	files	and	bytes	in	files,	as	these	are	common	tasks
when	you	are	dealing	with	the	Web.	The	more	traditional	stream-based	method	for
downloading	can	also	be	accessed	via	the	OpenReadTaskAsync	method	on	the	WebClient.

See	Also
The	“WebClient	Class”	topic	in	the	MSDN	documentation	and	the	OWASP	website.

https://www.owasp.org

9.13	Using	Named	Pipes	to	Communicate

Problem
You	need	a	way	to	use	named	pipes	to	communicate	with	another	application	across	the
network.

Solution
Use	the	NamedPipeClientStream	and	NamedPipeServerStream	in	the	System.IO.Pipes
namespace.	You	can	then	create	a	client	and	server	to	work	with	named	pipes.

To	use	the	NamedPipeClientStream	class,	you	need	some	code	like	that	shown	in
Example	9-6.

Example	9-6.	Using	the	NamedPipeClientStream	class
using	System;

using	System.Text;

using	System.IO.Pipes;

using	System.Threading.Tasks;

namespace	NamedPipes

{

				class	NamedPipeClientConsole

				{

								static	void	Main()

								{

												Task	client	=	RunClient();

												client.Wait();

												Console.WriteLine("Press	Enter	to	exit…");

												Console.ReadLine();

								}

								private	static	async	Task	RunClient()

								{

												Console.WriteLine("Initiating	client,	looking	for	server…");

												//	set	up	a	message	to	send

												string	messageText	=	"Sample	text	message!";

												int	bytesRead;

												//	set	up	the	named	pipe	client	and	close	it	when	complete

												using	(NamedPipeClientStream	clientPipe	=

																				new	NamedPipeClientStream(".",	"mypipe",	PipeDirection.InOut,

																				PipeOptions.None))

												{

																//	connect	to	the	server	stream

																await	clientPipe.ConnectAsync();

																//	set	the	read	mode	to	message

																clientPipe.ReadMode	=	PipeTransmissionMode.Message;

																//	write	the	message	ten	times

																for	(int	i	=	0;	i	<	10;	i++)

																{

																				Console.WriteLine($"Sending	message:	{messageText}");

																				byte[]	messageBytes	=	Encoding.Unicode.GetBytes(messageText);

																				//	check	and	write	the	message

																				if	(clientPipe.CanWrite)

																				{

																								await	clientPipe.WriteAsync(

																												messageBytes,	0,	messageBytes.Length);

																								await	clientPipe.FlushAsync();

																								//	wait	till	it	is	read

																								clientPipe.WaitForPipeDrain();

																				}

																				//	set	up	a	buffer	for	the	message	bytes

																				messageBytes	=	new	byte[256];

																				do

																				{

																								//	collect	the	message	bits	in	the	stringbuilder

																								StringBuilder	message	=	new	StringBuilder();

																								//	read	all	of	the	bits	until	we	have	the

																								//	complete	response	message

																								do

																								{

																												//	read	from	the	pipe

																												bytesRead	=

																																await	clientPipe.ReadAsync(

																																				messageBytes,	0,	messageBytes.Length);

																												//	if	we	got	something,	add	it	to	the	message

																												if	(bytesRead	>	0)

																												{

																																message.Append(

																																				Encoding.Unicode.GetString(messageBytes,	0,

																																								bytesRead));

																																Array.Clear(messageBytes,	0,	messageBytes.Length);

																												}

																								}

																								while	(!clientPipe.IsMessageComplete);

																								//	set	to	zero	as	we	have	read	the	whole	message

																								bytesRead	=	0;

																								Console.WriteLine($"				Received	message:	"	+

																												$"{message.ToString()}");

																				}

																				while	(bytesRead	!=	0);

																}

												}

								}

				}

}

Then,	to	set	up	a	server	for	the	client	to	talk	to,	you	use	the	NamedPipeServerStream	class,
as	shown	in	Example	9-7.

Example	9-7.	Setting	up	a	server	for	the	client
using	System;

using	System.Text;

using	System.IO.Pipes;

using	System.Threading.Tasks;

namespace	NamedPipes

{

				class	NamedPipeServerConsole

				{

								static	void	Main()

								{

												Task	server	=	RunServer();

												server.Wait();

												//	make	our	server	hang	around	so	you	can	see	the	messages	sent

												Console.WriteLine("Press	Enter	to	exit…");

												Console.ReadLine();

								}

								private	static	async	Task	RunServer()

								{

												Console.WriteLine("Initiating	server,	waiting	for	client…");

												//	Start	up	our	named	pipe	in	message	mode	and	close	the	pipe

												//	when	done.

												using	(NamedPipeServerStream	serverPipe	=	new

																				NamedPipeServerStream("mypipe",	PipeDirection.InOut,	1,

																				PipeTransmissionMode.Message,	PipeOptions.None))

												{

																//	wait	for	a	client…

																await	serverPipe.WaitForConnectionAsync();

																//	process	messages	until	the	client	goes	away

																while	(serverPipe.IsConnected)

																{

																				int	bytesRead	=	0;

																				byte[]	messageBytes	=	new	byte[256];

																				//	read	until	we	have	the	message	then	respond

																				do

																				{

																								//	build	up	the	client	message

																								StringBuilder	message	=	new	StringBuilder();

																								//	check	that	we	can	read	the	pipe

																								if	(serverPipe.CanRead)

																								{

																												//	loop	until	the	entire	message	is	read

																												do

																												{

																																bytesRead	=

																																				await	serverPipe.ReadAsync(messageBytes,	0,

																																																		messageBytes.Length);

																																//	got	bytes	from	the	stream	so	add	them	to	the	

																																//	message

																																if	(bytesRead	>	0)

																																{

																																				message.Append(

																																								Encoding.Unicode.GetString(messageBytes,	0,

																																												bytesRead));

																																				Array.Clear(messageBytes,	0,	

																																								messageBytes.Length);

																																}

																												}

																												while	(!serverPipe.IsMessageComplete);

																								}

																								//	if	we	got	a	message,	write	it	out	and	respond

																								if	(message.Length	>	0)

																								{

																												//	set	to	zero	as	we	have	read	the	whole	message

																												bytesRead	=	0;

																												Console.WriteLine($"Received	message:	"	+

																																$"{message.ToString()}");

																												//	return	the	message	text	we	got	from	the

																												//	client	in	reverse

																												char[]	messageChars	=

																																message.ToString().Trim().ToCharArray();

																												Array.Reverse(messageChars);

																												string	reversedMessageText	=	new	string(messageChars);

																												//	show	the	return	message

																												Console.WriteLine($"				Returning	Message:	"	+

																																$"{{reversedMessageText}");

																												//	write	the	response

																												messageBytes	=	Encoding.Unicode.GetBytes(messageChars);

																												if	(serverPipe.CanWrite)

																												{

																																//	write	the	message

																																await	serverPipe.WriteAsync(messageBytes,	0,

																																				messageBytes.Length);

																																//	flush	the	buffer

																																await	serverPipe.FlushAsync();

																																//	wait	till	read	by	client

																																serverPipe.WaitForPipeDrain();

																												}

																								}

																				}

																				while	(bytesRead	!=	0);

																}

												}

								}

				}

}

Discussion
Named	pipes	are	a	mechanism	to	allow	interprocess	or	intermachine	communications	in
Windows.	The	.NET	Framework	has	provided	managed	access	to	named	pipes,	which
makes	it	much	easier	to	utilize	named	pipes	in	managed	applications.	In	many	cases,	you
could	use	Windows	Communication	Foundation	(WCF)	to	set	up	the	server	and	client
code	and	even	provide	a	named	pipe	binding	to	accomplish	this	as	well.	It	depends	on
what	your	application	requirements	call	for,	as	well	as	at	what	level	of	the	application
stack	you	want	to	work.	If	you	have	an	existing	application	that	sets	up	a	named	pipe,	why
use	WCF	when	you	can	just	connect	directly?	Using	named	pipes	is	like	using	sockets	and
keeps	your	code	very	close	to	the	pipe.	The	benefit	is	that	there	are	fewer	code	layers	to
process;	the	drawback	is	that	you	have	to	do	more	in	terms	of	message	processing.

In	the	Solution,	we	created	some	code	to	use	NamedPipeClientStream	and
NamedPipeServerStream.	The	interaction	between	these	two	goes	like	this:

1.	 The	server	process	is	started;	it	fires	up	a	NamedPipeServerStream	and	then	calls
WaitForConnectionAsync	to	wait	for	a	client	to	connect:

//	Start	up	our	named	pipe	in	message	mode	and	close	the	pipe

//	when	done.

using	(NamedPipeServerStream	serverPipe	=	new

											NamedPipeServerStream("mypipe",	PipeDirection.InOut,	1,

															PipeTransmissionMode.Message,	PipeOptions.None))

{

					//	wait	for	a	client…

					await	serverPipe.WaitForConnectionAsync();

2.	 The	client	process	is	created;	it	fires	up	a	NamedPipeClientStream,	calls
ConnectAsync,	and	connects	to	the	server	process:

//	set	up	the	named	pipe	client	and	close	it	when	complete

using	(NamedPipeClientStream	clientPipe	=

					new	NamedPipeClientStream(".","mypipe",

											PipeDirection.InOut,PipeOptions.None))

{

				//	connect	to	the	server	stream

				await	clientPipe.ConnectAsync();

3.	 The	server	process	sees	the	connection	from	the	client	and	then	calls	IsConnected	in
a	loop,	looking	for	messages	from	the	client	until	the	connection	is	gone:

//	process	messages	until	the	client	goes	away

while	(serverPipe.IsConnected)

{

							//	More	processing	code	in	here…

}

4.	 The	client	process	then	writes	a	number	of	messages	to	the	server	process	using
WriteAsync,	FlushAsync,	and	WaitForPipeDrain:

string	messageText	=	"Sample	text	message!";

//	write	the	message	ten	times

for	(int	i	=	0;	i	<	10;	i++)

{

				Console.WriteLine($"Sending	message:	{messageText}");

				byte[]	messageBytes	=	Encoding.Unicode.GetBytes(messageText);

				//	check	and	write	the	message

				if	(clientPipe.CanWrite)

				{

								await	clientPipe.WriteAsync(

												messageBytes,	0,	messageBytes.Length);

								await	clientPipe.FlushAsync();

								//	wait	till	it	is	read

								clientPipe.WaitForPipeDrain();

				}

				//	response	processing….

}

5.	 When	the	client	process	receives	the	response	from	the	server,	it	reads	the	message
bytes	until	complete.	If	the	message	sending	is	complete,	the
NamedPipeClientStream	goes	out	of	the	scope	of	the	using	statement	and	closes
(thereby	closing	the	connection	on	the	client	side)	and	then	waits	to	go	away	when
the	user	presses	Enter:

//	set	up	a	buffer	for	the	message	bytes

messageBytes	=	new	byte[256];

do

{

				//	collect	the	message	bits	in	the	stringbuilder

				StringBuilder	message	=	new	StringBuilder();

				//	read	all	of	the	bits	until	we	have	the

				//	complete	response	message

				do

				{

								//	read	from	the	pipe

								bytesRead	=

											await	clientPipe.ReadAsync(

															messageBytes,	0,	messageBytes.Length);

								//	if	we	got	something,	add	it	to	the	message

								if	(bytesRead	>	0)

								{

												message.Append(

																				Encoding.Unicode.GetString(messageBytes,	0,	

																								bytesRead));

												Array.Clear(messageBytes,	0,	messageBytes.Length);

								}

				}

				while	(!clientPipe.IsMessageComplete);

				//	set	to	zero	as	we	have	read	the	whole	message

				bytesRead	=	0;

				Console.WriteLine($"				Received	message:	{message.ToString()}");

}

while	(bytesRead	!=	0);

6.	 The	server	process	notes	that	the	client	has	closed	the	pipe	connection	via	the	failed
IsConnected	call	in	the	while	loop.	The	NamedPipeServerStream	goes	out	of	the
scope	of	the	using	statement,	which	closes	the	pipe.	
The	client	output	looks	like	this:

Initiating	client,	looking	for	server…

Sending	message:	Sample	text	message!

				Received	message:	!egassem	txet	elpmaS

Sending	message:	Sample	text	message!

				Received	message:	!egassem	txet	elpmaS

Sending	message:	Sample	text	message!

				Received	message:	!egassem	txet	elpmaS

Sending	message:	Sample	text	message!

				Received	message:	!egassem	txet	elpmaS

Sending	message:	Sample	text	message!

				Received	message:	!egassem	txet	elpmaS

Sending	message:	Sample	text	message!

				Received	message:	!egassem	txet	elpmaS

Sending	message:	Sample	text	message!

				Received	message:	!egassem	txet	elpmaS

Sending	message:	Sample	text	message!

				Received	message:	!egassem	txet	elpmaS

Sending	message:	Sample	text	message!

				Received	message:	!egassem	txet	elpmaS

Sending	message:	Sample	text	message!

				Received	message:	!egassem	txet	elpmaS

Press	Enter	to	exit…

The	server	output	looks	like	this:

Initiating	server,	waiting	for	client…

Received	message:	Sample	text	message!

				Returning	Message:	!egassem	txet	elpmaS

Received	message:	Sample	text	message!

				Returning	Message:	!egassem	txet	elpmaS

Received	message:	Sample	text	message!

				Returning	Message:	!egassem	txet	elpmaS

Received	message:	Sample	text	message!

				Returning	Message:	!egassem	txet	elpmaS

Received	message:	Sample	text	message!

				Returning	Message:	!egassem	txet	elpmaS

Received	message:	Sample	text	message!

				Returning	Message:	!egassem	txet	elpmaS

Received	message:	Sample	text	message!

				Returning	Message:	!egassem	txet	elpmaS

Received	message:	Sample	text	message!

				Returning	Message:	!egassem	txet	elpmaS

Received	message:	Sample	text	message!

				Returning	Message:	!egassem	txet	elpmaS

Received	message:	Sample	text	message!

				Returning	Message:	!egassem	txet	elpmaS

Press	Enter	to	exit…

The	PipeOptions	enumeration	controls	how	the	pipe	operations	function.	The
enumeration	values	are	described	in	Table	9-3.

Table	9-3.	PipeOptions	enumeration	values

Member
name

Description

None No	specific	options	are	specified.
WriteThrough When	writing	to	the	pipe,	operations	will	not	return	control	until	the	write	is	accomplished	at	the

server.	Without	this	flag,	writes	are	buffered,	and	the	write	returns	more	quickly.
Asychronous Enables	asynchronous	pipe	usage	(calls	return	immediately	and	process	in	the	background).

See	Also
The	“Named	Pipes,”	“NamedPipeClientStream	Class,”	“NamedPipeServerStream	Class,”
and	“System.IO.Pipes	Namespace”	topics	in	the	MSDN	documentation.

9.14	Pinging	Programmatically

Problem
You	want	to	check	a	computer’s	availability	on	the	network.

Solution
Use	the	System.Net.NetworkInformation.Ping	class	to	determine	if	a	machine	is
available.	In	the	TestPing	method,	create	an	instance	of	the	Ping	class.	Send	a	ping
request	using	the	Send	method.	The	SendPingAsync	method	is	asynchronous	and	when
awaited	returns	a	PingReply	that	you	can	examine	for	the	result	of	the	ping.	You	can	also
perform	the	second	ping	request	asynchronously	using	the	older	SendAsync	method,	after
hooking	up	to	the	Ping	class	for	the	PingCompleted	event.	The	second	parameter	of	the
SendAsync	method	holds	a	user	token	value	that	will	be	returned	to	the
pinger_PingCompleted	event	handler	when	the	ping	is	complete.	SendPingAsync	should
be	used	when	async	and	await	are	available	to	you,	but	if	you	were	doing	this	on	an	older
framework,	SendAsync	would	be	your	only	async	option.	The	token	returned	can	be	used
to	identify	requests	between	the	initiation	and	completion	code:

public	static	async	Task	TestPing()

{

				System.Net.NetworkInformation.Ping	pinger	=

								new	System.Net.NetworkInformation.Ping();

				PingReply	reply	=	await	pinger.SendPingAsync("www.oreilly.com");

				DisplayPingReplyInfo(reply);

				pinger.PingCompleted	+=	pinger_PingCompleted;

				pinger.SendAsync("www.oreilly.com",	"oreilly	ping");

}

The	DisplayPingReplyInfo	method	shows	some	of	the	more	common	pieces	of	data	you
want	to	get	from	a	ping,	such	as	the	RoundtripTime	and	the	Status	of	the	reply.	These	can
be	accessed	from	those	properties	on	the	PingReply:

private	static	void	DisplayPingReplyInfo(PingReply	reply)

{

				Console.WriteLine("Results	from	pinging	"	+	reply.Address);

				Console.WriteLine(

								$"\tFragmentation	allowed?:	{!reply.Options.DontFragment}");

				Console.WriteLine($"\tTime	to	live:	{reply.Options.Ttl}");

				Console.WriteLine($"\tRoundtrip	took:	{reply.RoundtripTime}");

				Console.WriteLine($"\tStatus:	{reply.Status.ToString()}");

}

The	event	handler	for	the	PingCompleted	event	is	the	pinger_PingCompleted	method.
This	event	handler	follows	the	usual	EventHandler	convention	of	the	sender	object	and
event	arguments.	The	argument	type	for	this	event	is	PingCompletedEventArgs.	The
PingReply	can	be	accessed	in	the	Reply	property	of	the	event	arguments.	If	the	ping	was
canceled	or	an	exception	was	thrown,	that	information	can	be	accessed	via	the	Cancelled
and	Error	properties.	The	UserState	property	on	the	PingCompletedEventArgs	class
holds	the	user	token	value	provided	in	SendAsync:

private	static	void	pinger_PingCompleted(object	sender,	PingCompletedEventArgs	e)

{

				PingReply	reply	=	e.Reply;

				DisplayPingReplyInfo(reply);

				if	(e.Cancelled)

								Console.WriteLine($"Ping	for	{e.UserState.ToString()}	was	cancelled");

				else

								Console.WriteLine(

												$"Exception	thrown	during	ping:	{e.Error?.ToString()}");

}

The	output	from	DisplayPingReplyInfo	looks	like	this:

Results	from	pinging	23.3.106.121

								Fragmentation	allowed?:	True

								Time	to	live:	60

								Roundtrip	took:	13

								Status:	Success

Discussion
Ping	uses	an	Internet	Control	Message	Protocol	(ICMP)	echo	request	message	as	defined
in	RFC	792.	If	a	computer	is	not	reached	successfully	by	the	ping	request,	it	does	not
necessarily	mean	that	the	computer	is	unreachable.	Many	factors	can	prevent	a	ping	from
succeeding	aside	from	the	machine	being	offline.	Network	topology,	firewalls,	packet
filters,	and	proxy	servers	all	can	interrupt	the	normal	flow	of	a	ping	request.	By	default,
Windows	Firewall	disables	ICMP	traffic,	so	if	you	are	having	difficulty	pinging	a
machine,	check	the	firewall	settings	on	that	machine.

See	Also
The	“Ping	Class,”	“PingReply	Class,”	and	“PingCompleted	Event”	topics	in	the	MSDN
documentation.

9.15	Sending	SMTP	Mail	Using	the	SMTP	Service

Problem
You	want	to	be	able	to	send	email	via	SMTP	from	your	program,	but	you	don’t	want	to
learn	the	SMTP	protocol	and	handcode	a	class	to	implement	it.

Solution
Use	the	System.Net.Mail	namespace,	which	contains	classes	to	take	care	of	the	harder
parts	of	constructing	an	SMTP-based	email	message.	The	System.Net.Mail.MailMessage
class	encapsulates	constructing	an	SMTP-based	message,	and	the
System.Net.Mail.SmtpClient	class	provides	the	sending	mechanism	for	sending	the
message	to	an	SMTP	server.	SmtpClient	does	depend	on	there	being	an	SMTP	server	set
up	somewhere	for	it	to	relay	messages	through.	You	add	attachments	by	creating	instances
of	System.Net.Mail.Attachment	and	providing	the	path	to	the	file	as	well	as	the	media
type:

//	send	a	message	with	attachments

string	from	=	"authors@oreilly.com";

string	to	=	"authors@oreilly.com";

MailMessage	attachmentMessage	=	new	MailMessage(from,	to);

attachmentMessage.Subject	=	"Hi	there!";

attachmentMessage.Body	=	"Check	out	this	cool	code!";

//	many	systems	filter	out	HTML	mail	that	is	relayed

attachmentMessage.IsBodyHtml	=	false;

//	set	up	the	attachment

string	pathToCode	=	@"..\..\09_NetworkingAndWeb.cs";

Attachment	attachment	=

				new	Attachment(pathToCode,

								MediaTypeNames.Application.Octet);

attachmentMessage.Attachments.Add(attachment);

//	or	just	send	text

MailMessage	textMessage	=	new	MailMessage("authors@oreilly.com",

																				"authors@oreilly.com",

																				"Me	again",

																				"You	need	therapy,	talking	to	yourself	is	one	thing	but	

writing	code	to	send	email	is	a	whole	other	thing…");

To	send	a	simple	email	with	no	attachments,	call	the	System.Net.Mail.MailMessage
constructor	with	just	the	to	address,	from	address,	subject,	and	body	information.	This
version	of	the	MailMessage	constructor	simply	fills	in	those	items,	and	then	you	can	pass
it	to	SmtpClient.Send	to	send	it	along:

//	If	you	have	one,	you	can	bounce	this	off	the	local	SMTP	service.

//	The	local	SMTP	service	needs	to	have	relaying	set	up	to	go	through

//	a	real	email	server	like	you	used	to	be	able	to	do	in	IIS6…

//SmtpClient	client	=	new	SmtpClient("localhost");

//	Since	we	live	in	a	more	security-conscious	time,	we	would	provide	the

//	correct	parameters	to	connect	to	the	SMTP	server	with	the	hostname,

//	port,	SSL	enabled,	and	your	credentials.

//	NOTE:	If	you	don't	replace	the	current	values	you	will	get	a

//	XXX	exception	like	this:

//	System.Net.Mail.SmtpException:	The	SMTP	host	was	not	found.	--->

//	System.Net.WebException:	The	remote	name	could	not	be	resolved:

//	'YOURSMTPSERVERHERE'

using	(SmtpClient	client	=	new	SmtpClient("YOURSMTPSERVERHERE",	999))

{

				client.EnableSsl	=	true;

				client.Credentials	=	new	NetworkCredential("YOURSMTPUSERNAME",	

				//	"YOURSMTPPASSWORD");

				await	client.SendMailAsync(attachmentMessage);

}

Discussion
SMTP	stands	for	Simple	Mail	Transfer	Protocol,	as	defined	in	RFC	2821.	To	take
advantage	of	the	support	for	SMTP	mail	in	the	.NET	Framework	using	the
System.Net.Mail.SmtpClient	class,	you	must	specify	an	SMTP	server	to	relay	the
messages	through.	In	older	versions	of	Windows	(pre–Windows	8/Windows	Server	2012),
the	operating	system	came	with	an	SMTP	server	that	could	be	installed	as	part	of	IIS.	In
the	Solution,	the	code	shows	how	you	could	use	the	SmtpClient	to	take	advantage	of	this
feature	by	specifying	"localhost"	for	the	server	to	connect	to,	which	indicates	that	the
local	machine	is	the	SMTP	relay	server.	Setting	up	the	SMTP	service	may	not	be	possible
in	your	network	environment,	and	you	may	need	to	use	the	SmtpClient	class	to	set	up
credentials	to	connect	to	the	SMTP	server	on	the	network	directly,	as	shown	in	the
Solution:

using(SmtpClient	client	=	new	SmtpClient("YOURSMTPSERVERHERE",999))

{

				client.EnableSsl	=	true;

				client.Credentials	=	new	NetworkCredential("YOURSMTPUSERNAME",	

				//	"YOURSMTPPASSWORD");

				await	client.SendMailAsync(attachmentMessage);

}

The	MediaTypeNames.class	used	in	the	Solution	identifies	the	attachment	type.	The	valid
attachment	types	are	listed	in	Table	9-4.

Table	9-4.	MediaTypeNames.Attachment
values

Name Description
Octet The	data	is	not	interpreted	as	any	specific	type.						
Pdf The	data	is	in	Portable	Data	Format.
Rtf The	data	is	in	Rich	Text	Format.
Soap The	data	is	a	SOAP	document.
Zip The	data	is	compressed.

See	Also
The	“Using	SMTP	for	Outgoing	Messages,”	“SmtpMail	Class,”	“MailMessage	Class,”
and	“MailAttachment	Class”	topics	in	the	MSDN	documentation.

9.16	Using	Sockets	to	Scan	the	Ports	on	a	Machine

Problem
You	want	to	determine	the	open	ports	on	a	machine	to	see	where	the	security	risks	are.

Solution
Use	the	CheapoPortScanner	class	constructed	for	your	use;	its	code	is	shown	in
Example	9-8.	CheapoPortScanner	uses	the	Socket	class	to	attempt	to	open	a	socket	and
connect	to	an	address	on	a	given	port.	The	ScanAsync	method	supports	reporting	progress
via	IProgress<T>	for	each	port	in	the	range	supplied	to	the	CheapoPortScanner
constructor	or	in	the	default	range	(1	to	65535).	By	default,	CheapoPortScanner	will	scan
the	local	machine.

Example	9-8.	CheapoPortScanner	class
public	class	CheapoPortScanner

{

				#region	Private	consts	and	members

				private	const	int	PORT_MIN_VALUE	=	1;

				private	const	int	PORT_MAX_VALUE	=	65535;

				private	List<int>	_openPorts;

				private	List<int>	_closedPorts;

				#endregion

There	are	two	properties	on	CheapoPortScanner	that	bear	mentioning.	The	OpenPorts	and
ClosedPorts	properties	return	a	ReadOnlyCollection	of	type	int	that	is	a	list	of	the	port
numbers	that	are	open	and	closed,	respectively.	Their	code	is	shown	in	Example	9-9.

Example	9-9.	OpenPorts	and	ClosedPorts	properties
#region	Properties

public	ReadOnlyCollection<int>	OpenPorts	=>

				new	ReadOnlyCollection<int>(_openPorts);

public	ReadOnlyCollection<int>	ClosedPorts	=>

				new	ReadOnlyCollection<int>(_closedPorts);

public	int	MinPort	{	get;	}	=	PORT_MIN_VALUE;

public	int	MaxPort	{	get;	}	=	PORT_MAX_VALUE;

public	string	Host	{	get;	}	=	"127.0.0.1";	//	localhost

#endregion	//	Properties

#region	CTORs	&	Init	code

public	CheapoPortScanner()

{

				//	defaults	are	already	set	for	ports	and	localhost

				SetupLists();

}

public	CheapoPortScanner(string	host,	int	minPort,	int	maxPort)

{

				if	(minPort	>	maxPort)

								throw	new	ArgumentException("Min	port	cannot	be	greater	than	max	port");

				if	(minPort	<	PORT_MIN_VALUE	||	minPort	>	PORT_MAX_VALUE)

								throw	new	ArgumentOutOfRangeException(

												$"Min	port	cannot	be	less	than	{PORT_MIN_VALUE}	"	+

												$"or	greater	than	{PORT_MAX_VALUE}");

				if	(maxPort	<	PORT_MIN_VALUE	||	maxPort	>	PORT_MAX_VALUE)

								throw	new	ArgumentOutOfRangeException(

												$"Max	port	cannot	be	less	than	{PORT_MIN_VALUE}	"	+

												$"or	greater	than	{PORT_MAX_VALUE}");

				this.Host	=	host;

				this.MinPort	=	minPort;

				this.MaxPort	=	maxPort;

				SetupLists();

}

private	void	SetupLists()

{

				//	set	up	lists	with	capacity	to	hold	half	of	range

				//	since	we	can't	know	how	many	ports	are	going	to	be	open

				//	so	we	compromise	and	allocate	enough	for	half

				//	rangeCount	is	max	-	min	+	1

				int	rangeCount	=	(this.MaxPort	-	this.MinPort)	+	1;

				//	if	there	are	an	odd	number,	bump	by	one	to	get	one	extra	slot

				if	(rangeCount	%	2	!=	0)

								rangeCount	+=	1;

				//	reserve	half	the	ports	in	the	range	for	each

				_openPorts	=	new	List<int>(rangeCount	/	2);

				_closedPorts	=	new	List<int>(rangeCount	/	2);

}

#endregion	//	CTORs	&	Init	code

#region	Progress	Result

public	class	PortScanResult

{

				public	int	PortNum	{	get;	set;	}

				public	bool	IsPortOpen	{	get;	set;	}

}

#endregion	//	Progress	Result

#region	Private	Methods

private	async	Task	CheckPortAsync(int	port,	IProgress<PortScanResult>	progress)

{

				if	(await	IsPortOpenAsync(port))

				{

								//	if	we	got	here	it	is	open

								_openPorts.Add(port);

								//	notify	anyone	paying	attention

								progress?.Report(

												new	PortScanResult()	{	PortNum	=	port,	IsPortOpen	=	true	});

				}

				else

				{

								//	server	doesn't	have	that	port	open

								_closedPorts.Add(port);

								progress?.Report(

												new	PortScanResult()	{	PortNum	=	port,	IsPortOpen	=	false	});

				}

}

private	async	Task<bool>	IsPortOpenAsync(int	port)

{

				Socket	sock	=	null;

				try

				{

								//	make	a	TCP	based	socket

								sock	=	new	Socket(AddressFamily.InterNetwork,

																								SocketType.Stream,

																								ProtocolType.Tcp);

								//	connect

								await	Task.Run(()	=>	sock.Connect(this.Host,	port));

								return	true;

				}

				catch	(SocketException	se)

				{

								if	(se.SocketErrorCode	==	SocketError.ConnectionRefused)

												return	false;

								else

								{

												//An	error	occurred	when	attempting	to	access	the	socket.

												Debug.WriteLine(se.ToString());

												Console.WriteLine(se.ToString());

								}

				}

				finally

				{

								if	(sock?.Connected	??	false)

												sock?.Disconnect(false);

								sock?.Close();

				}

				return	false;

}

#endregion

The	trigger	method	for	the	CheapoPortScanner	is	ScanAsync.	ScanAsync	will	check	all	of
the	ports	in	the	range	specified	in	the	constructor.	The	LastPortScanSummary	method	will
dump	the	pertinent	information	about	the	last	scan	to	the	console	output	stream:

				#region	Public	Methods

				public	async	Task	ScanAsync(IProgress<PortScanResult>	progress)

				{

								for	(int	port	=	this.MinPort;	port	<=	this.MaxPort;	port++)

												await	CheckPortAsync(port,	progress);

				}

				public	void	LastPortScanSummary()

				{

								Console.WriteLine($"Port	Scan	for	host	at	{this.Host}");

								Console.WriteLine($"\tStarting	Port:	{this.MinPort}");

								Console.WriteLine($"\tEnding	Port:	{this.MaxPort}");

								Console.WriteLine($"\tOpen	ports:	{string.Join(",",	_openPorts)}");

								Console.WriteLine($"\tClosed	ports:	{string.Join(",",	_closedPorts)}");

				}

				#endregion	//	Public	Methods

}

The	TestPortScanner	method	demonstrates	how	to	use	CheapoPortScanner	by	scanning
ports	75–85	on	the	local	machine.	A	Progress<CheapoPortScanner.PortScanResult>
reporter	is	created	and	in	the	ProgressChanged	event	is	subscribed	to	with	an	anonymous
method	to	report	the	progress	for	the	scan.	Next,	TestPortScanner	calls	the	ScanAsync
method	with	the	Progress<T>	we	created	to	get	progress	reports	as	the	scanner	works.
Finally,	it	calls	LastPortScanSummary	to	show	the	full	results	of	the	scan,	including	the
closed	ports	as	well	as	the	open	ones:

public	static	async	Task	TestPortScanner()

{

				//	do	a	specific	range

				Console.WriteLine("Checking	ports	75-85	on	localhost…");

				CheapoPortScanner	cps	=

								new	CheapoPortScanner("127.0.0.1",	75,	85);

				var	progress	=	new	Progress<CheapoPortScanner.PortScanResult>();

				progress.ProgressChanged	+=	(sender,	args)	=>

				{

								Console.WriteLine(

												$"Port	{args.PortNum}	is	"	+

												$"{args.IsPortOpen	?	"open"	:	"closed"}");

				};

				await	cps.ScanAsync(progress);

				cps.LastPortScanSummary();

				//	do	the	local	machine,	whole	port	range	1-65535

				//cps	=	new	CheapoPortScanner();

				//await	cps.Scan(progress);

				//cps.LastPortScanSummary();

}

Here	is	the	output	for	the	port	scanner	as	shown:

Checking	ports	75-85	on	localhost…

Port	75	is	closed

Port	76	is	closed

Port	77	is	closed

Port	78	is	closed

Port	79	is	closed

Port	80	is	open

Port	81	is	closed

Port	82	is	closed

Port	83	is	closed

Port	84	is	closed

Port	85	is	closed

Port	Scan	for	host	at	127.0.0.1

								Starting	Port:	75

								Ending	Port:	85

								Open	ports:	80

								Closed	ports:	75,76,77,78,79,81,82,83,84,85

Discussion
Open	ports	on	a	machine	are	significant	because	they	indicate	the	presence	of	a	program
listening	on	them.	Hackers	look	for	“open”	ports	as	ways	to	enter	your	systems	without
permission.	CheapoPortScanner	is	an	admittedly	rudimentary	mechanism	for	checking	for
open	ports,	but	it	demonstrates	the	principle	well	enough	to	provide	a	good	starting	point.

WARNING
If	you	run	this	on	a	corporate	network,	you	may	quickly	get	a	visit	from	your	network	administrator,	as	you
may	set	off	alarms	in	some	intrusion-detection	systems.	Be	judicious	in	your	use	of	this	code.

See	Also
The	“Socket	Class”	and	“Sockets”	topics	in	the	MSDN	documentation.

9.17	Using	the	Current	Internet	Connection	Settings

Problem
Your	program	wants	to	use	the	current	Internet	connection	settings	without	forcing	the
user	to	add	them	to	your	application	manually.

Solution
Read	the	current	Internet	connectivity	settings	with	the	InternetSettingsReader	class
provided	for	you	in	Example	9-10.	InternetSettingsReader	calls	some	methods	of	the
WinINet	API	via	P/Invoke	to	retrieve	current	Internet	connection	information.

NOTE
P/Invoke	(Platform	Invoke)	is	the	.NET	Framework	mechanism	for	performing	native	calls	into	unmanaged
(not	run	in	the	.NET	CLR)	code.	When	you	are	using	P/Invoke,	the	data	being	passed	between	managed
and	unmanaged	code	needs	to	be	marshaled	across	that	boundary.	Marshaling	is	the	process	of	making	the
calls	between	the	layers	and	converting	the	parameter	and	return	data	from	managed	to	unmanaged	types
and	then	back	again.	Typically	structures	are	used	to	transfer	sets	of	data,	as	they	are	value	types	on	the
stack	and	can	be	used	as	in/out	parameters	to	transfer	the	data,	whereas	classes	are	reference	types	that
would	exist	on	the	heap	and	typically	can	only	be	used	as	in	parameters.

You	do	the	majority	of	the	work	in	setting	up	the	structures	that	WinINet	uses	and	then
marshaling	the	structure	pointers	correctly	to	retrieve	the	values.

Example	9-10.	InternetSettingsReader	class
public	class	InternetSettingsReader

{

				#region	Private	Members

				string	_proxyAddr;

				int	_proxyPort	=	-1;

				bool	_bypassLocal;

				string	_autoConfigAddr;

				List<string>	_proxyExceptions;

				PerConnFlags	_flags;

				#endregion

				#region	CTOR

				public	InternetSettingsReader()

				{

				}

				#endregion

Each	property	of	InternetSettingsReader	shown	in	Example	9-11	calls	into	the
GetInternetConnectionOption	method,	which	returns	an	InternetConnectionOption.
The	InternetConnectionOption	structure	holds	all	of	the	pertinent	data	for	the	value
being	returned,	and	that	value	is	then	retrieved	based	on	what	type	of	value	was	requested
by	the	specific	properties.

Example	9-11.	InternetSettingsReader	properties
#region	Properties

public	string	ProxyAddress

{

				get

				{

								InternetConnectionOption	ico	=

												GetInternetConnectionOption(

																PerConnOption.INTERNET_PER_CONN_PROXY_SERVER);

								//	parse	out	the	addr	and	port

								string	proxyInfo	=	Marshal.PtrToStringUni(

																																ico.m_Value.m_StringPtr);

								ParseProxyInfo(proxyInfo);

								return	_proxyAddr;

				}

}

public	int	ProxyPort

{

				get

				{

								InternetConnectionOption	ico	=

												GetInternetConnectionOption(

																PerConnOption.INTERNET_PER_CONN_PROXY_SERVER);

								//	parse	out	the	addr	and	port

								string	proxyInfo	=	Marshal.PtrToStringUni(

																																ico.m_Value.m_StringPtr);

								ParseProxyInfo(proxyInfo);

								return	_proxyPort;

				}

}

public	bool	BypassLocalAddresses

{

				get

				{

								InternetConnectionOption	ico	=

												GetInternetConnectionOption(

																PerConnOption.INTERNET_PER_CONN_PROXY_BYPASS);

								//	bypass	is	listed	as	<local>	in	the	exceptions	list

								string	exceptions	=

												Marshal.PtrToStringUni(ico.m_Value.m_StringPtr);

								if	(exceptions.IndexOf("<local>")	!=	-1)

												_bypassLocal	=	true;

								else

												_bypassLocal	=	false;

								return	_bypassLocal;

				}

}

public	string	AutoConfigurationAddress

{

				get

				{

								InternetConnectionOption	ico	=

												GetInternetConnectionOption(

																PerConnOption.INTERNET_PER_CONN_AUTOCONFIG_URL);

								//	get	these	straight

								_autoConfigAddr	=

												Marshal.PtrToStringUni(ico.m_Value.m_StringPtr);

								if	(_autoConfigAddr	==	null)

												_autoConfigAddr	=	"";

								return	_autoConfigAddr;

				}

}

public	IList<string>	ProxyExceptions

{

				get

				{

								InternetConnectionOption	ico	=

												GetInternetConnectionOption(

																PerConnOption.INTERNET_PER_CONN_PROXY_BYPASS);

								//	exceptions	are	seperated	by	semi	colon

								string	exceptions	=

												Marshal.PtrToStringUni(ico.m_Value.m_StringPtr);

								if	(!string.IsNullOrEmpty(exceptions))

								{

												_proxyExceptions	=	new	List<string>(exceptions.Split(';'));

								}

								return	_proxyExceptions;

				}

}

public	PerConnFlags	ConnectionType

{

				get

				{

								InternetConnectionOption	ico	=

												GetInternetConnectionOption(

																PerConnOption.INTERNET_PER_CONN_FLAGS);

								_flags	=	(PerConnFlags)ico.m_Value.m_Int;

								return	_flags;

				}

}

#endregion

#region	Private	Methods

private	void	ParseProxyInfo(string	proxyInfo)

{

				if	(!string.IsNullOrEmpty(proxyInfo))

				{

								string[]	parts	=	proxyInfo.Split(':');

								if	(parts.Length	==	2)

								{

												_proxyAddr	=	parts[0];

												try

												{

																_proxyPort	=	Convert.ToInt32(parts[1]);

												}

												catch	(FormatException)

												{

																//	no	port

																_proxyPort	=	-1;

												}

								}

								else

								{

												_proxyAddr	=	parts[0];

												_proxyPort	=	-1;

								}

				}

}

The	GetInternetConnectionOption	method	shown	in	Example	9-12	does	the	heavy
lifting	as	far	as	communicating	with	WinINet.	First,	an	InternetPerConnOptionList	is
created	as	well	as	an	InternetConnectionOption	structure	to	hold	the	returned	value.	The
InternetConnectionOption	structure	is	then	pinned	so	that	the	garbage	collector	does	not
move	the	structure	in	memory,	and	the	PerConnOption	value	is	assigned	to	determine
what	Internet	option	to	retrieve.	Marshal.SizeOf	is	used	to	determine	the	size	of	the	two
managed	structures	in	unmanaged	memory.	These	values	are	used	to	initialize	the	size
values	for	the	structures,	which	allows	the	operating	system	to	determine	the	version	of
the	unmanaged	structure	it’s	dealing	with.

The	InternetPerConnOptionList	is	initialized	to	hold	the	option	values,	and	then	the
WinINet	function	InternetQueryOption	is	called.	You	fill	the
InternetConnectionOption	type	by	using	the	Marshal.PtrToStructure	method,	which
maps	the	data	from	the	unmanaged	structure	containing	the	InternetConnectionOption
data	from	unmanaged	code	to	the	managed	object	instance,	and	then	the	managed	version
is	returned	with	the	value.

Example	9-12.	GetInternetConnectionOption	method
				private	static	InternetConnectionOption	GetInternetConnectionOption(

								PerConnOption	pco)

				{

								//Allocate	the	list	and	option.

								InternetPerConnOptionList	perConnOptList	=	new	InternetPerConnOptionList();

								InternetConnectionOption	ico	=	new	InternetConnectionOption();

								//pin	the	option	structure

								GCHandle	gch	=	GCHandle.Alloc(ico,	GCHandleType.Pinned);

								//initialize	the	option	for	the	data	we	want

								ico.m_Option	=	pco;

								//Initialize	the	option	list	for	the	default	connection	or	LAN.

								int	listSize	=	Marshal.SizeOf(perConnOptList);

								perConnOptList.dwSize	=	listSize;

								perConnOptList.szConnection	=	IntPtr.Zero;

								perConnOptList.dwOptionCount	=	1;

								perConnOptList.dwOptionError	=	0;

								//	figure	out	sizes	&	offsets

								int	icoSize	=	Marshal.SizeOf(ico);

								//	alloc	enough	memory	for	the	option	(native	memory	not	.NET	heap)

								perConnOptList.options	=

												Marshal.AllocCoTaskMem(icoSize);

								//	Make	pointer	from	the	structure

								IntPtr	optionListPtr	=	perConnOptList.options;

								Marshal.StructureToPtr(ico,	optionListPtr,	false);

								//Make	the	query

								if	(NativeMethods.InternetQueryOption(

												IntPtr.Zero,

												75,	//(int)InternetOption.INTERNET_OPTION_PER_CONNECTION_OPTION,

												ref	perConnOptList,

												ref	listSize)	==	true)

								{

												//retrieve	the	value

												ico	=

																(InternetConnectionOption)Marshal.PtrToStructure(

																																								perConnOptList.options,

																																								typeof(InternetConnectionOption));

								}

								//	free	the	COM	memory

								Marshal.FreeCoTaskMem(perConnOptList.options);

								//unpin	the	structs

								gch.Free();

								return	ico;

				}

				#endregion

}

The	use	of	InternetSettingsReader	is	demonstrated	in	the	GetInternetSettings
method	shown	in	Example	9-13.	The	proxy	information	is	retrieved	and	displayed	to	the
console	here,	but	could	easily	be	stored	in	another	program	for	use	as	proxy	information
when	connecting.	See	Recipe	9.3	for	details	on	setting	up	the	proxy	information	for	a
WebRequest.

Example	9-13.	Using	the	InternetSettingsReader
public	static	void	GetInternetSettings()

{

								Console.WriteLine("");

								Console.WriteLine("Reading	current	internet	connection	settings");

								InternetSettingsReader	isr	=	new	InternetSettingsReader();

								Console.WriteLine($"Current	Proxy	Address:	{isr.ProxyAddress}");

								Console.WriteLine($"Current	Proxy	Port:	{isr.ProxyPort}");

								Console.WriteLine($"Current	ByPass	Local	Address	setting:	"	+

												$"{{isr.BypassLocalAddresses}");

								Console.WriteLine("Exception	addresses	for	proxy	(bypass):");

								string	exceptions;

								if	(isr.ProxyExceptions?.Count	>	0)

												exceptions	=	"\t"	+	(string.Join(",",	isr.ProxyExceptions?.ToArray()));

								else

												exceptions	=	"\tNone";

								Console.WriteLine($"Proxy	connection	type:	{isr.ConnectionType.ToString()}");

								Console.WriteLine("");

}

Here	is	the	output	for	the	Solution:

Reading	current	internet	connection	settings

Current	Proxy	Address:	http=127.0.0.1

Current	Proxy	Port:	-1

Current	ByPass	Local	Address	setting:	False

Exception	addresses	for	proxy	(bypass):

								<-loopback>

Proxy	connection	type:	PROXY_TYPE_DIRECT

Discussion
The	WinInet	Windows	Internet	(WinInet)	API	is	the	unmanaged	API	for	interacting	with
the	FTP,	HTTP,	and	Gopher	protocols.	This	API	can	be	used	to	fill	in	where	managed	code
leaves	off,	such	as	with	the	Internet	configuration	settings	shown	in	the	Solution.	It	can
also	be	used	for	downloading	files,	working	with	cookies,	and	participating	in	Gopher
sessions.	Keep	in	mind	that	WinInet	is	meant	to	be	a	client-side	API	and	is	not	suited	for
server-side	or	service	applications;	issues	could	arise	in	your	application	from	improper
usage.

There	is	a	huge	amount	of	information	available	to	the	C#	programmer	directly	through
the	BCL	(base	class	library),	but	at	times	you	still	need	to	roll	up	your	sleeves	and	talk	to
the	Win32	API.	Even	in	situations	in	which	restricted	privileges	are	the	norm,	it	is	not
always	out	of	bounds	to	create	a	small	assembly	that	needs	enhanced	access	to	do
P/Invoke.	It	can	have	its	access	locked	down	so	as	not	to	become	a	risk	to	the	system.	We
show	how	you	could	restrict	an	assembly	like	this	in	Recipe	11.6,	and	you	would	need	to
assert	the	SecurityPermission	with	SecurityPermissionFlag.UnmanagedCode.

See	Also
The	“InternetQueryOption	Function	[WinInet],”	“Interoperating	with	Unmanaged	Code,”
and	“Using	P/Invoke	to	Call	Unmanaged	APIs	from	Your	Managed	Classes”	topics	in	the
MSDN	documentation.

9.18	Transferring	Files	Using	FTP

Problem
You	want	to	programmatically	download	and	upload	files	using	the	File	Transfer	Protocol
(FTP).

Solution
Use	the	System.Net.FtpWebRequest	class	to	perform	these	operations.	You	create
FtpWebRequests	from	the	WebRequest	class’s	Create	method	by	specifying	the	URI	for
the	FTP	download.	In	the	example	that	follows,	the	source	code	from	the	latest	edition	of
the	C#	Cookbook	is	the	target	for	the	download.	A	FileStream	is	opened	for	the	target	and
then	is	wrapped	by	a	BinaryWriter.	A	BinaryReader	is	created	with	the	response	stream
from	the	FtpWebRequest.	Then,	the	stream	is	read,	and	the	target	is	written	until	the	entire
file	has	been	downloaded.	This	series	of	operations	is	demonstrated	in	Example	9-14	in
the	FtpDownloadAsync	method.

Example	9-14.	Using	the	System.Net.FtpWebRequest	class
public	static	async	Task	FtpDownloadAsync(Uri	ftpSite,	string	targetPath)

{

				try

				{

								FtpWebRequest	request	=

												(FtpWebRequest)WebRequest.Create(

												ftpSite);

								request.Credentials	=	new	NetworkCredential("anonymous",	

												"authors@oreilly.com");

								using	(FtpWebResponse	response	=

												(FtpWebResponse)await	request.GetResponseAsync())

								{

												Stream	data	=	response.GetResponseStream();

												File.Delete(targetPath);

												Console.WriteLine(

																$"Downloading	{ftpSite.AbsoluteUri}	to	{targetPath}...");

												byte[]	byteBuffer	=	new	byte[4096];

												using	(FileStream	output	=	new	FileStream(targetPath,	FileMode.CreateNew,

																FileAccess.ReadWrite,FileShare.ReadWrite,	4096,	useAsync:	true))

												{

																int	bytesRead	=	0;

																do

																{

																				bytesRead	=	await	data.ReadAsync(byteBuffer,	0,	

																								byteBuffer.Length);

																				if	(bytesRead	>	0)

																								await	output.WriteAsync(byteBuffer,	0,	bytesRead);

																}

																while	(bytesRead	>	0);

												}

												Console.WriteLine($"Downloaded	{ftpSite.AbsoluteUri}	to	{targetPath}");

								}

				}

				catch	(WebException	e)

				{

								Console.WriteLine(

												$"Failed	to	download	{ftpSite.AbsoluteUri}	to	{targetPath}");

								Console.WriteLine(e);

				}

}

Here	is	an	example	of	calling	the	FtpDownloadAsync	method:

Uri	downloadFtpSite	=

			new	Uri("ftp://ftp.oreilly.com/pub/examples/csharpckbk/CSharpCookbook.zip");

string	targetPath	=	"CSharpCookbook.zip";

await	NetworkingAndWeb.FtpDownloadAsync(downloadFtpSite,	targetPath);

To	upload	a	file,	use	FtpWebRequest	to	get	a	stream	on	the	request	using

GetRequestStream	and	use	it	to	upload	the	file.	Once	the	file	has	been	opened	and	written
into	the	request	stream,	execute	the	request	by	calling	GetResponse	and	check	the
StatusDescription	property	for	the	result	of	the	operation.	This	is	demonstrated	here	in
the	FtpUploadAsync	method:

public	static	async	Task	FtpUploadAsync(Uri	ftpSite,	string	uploadFile)

{

				Console.WriteLine($"Uploading	{uploadFile}	to	{ftpSite.AbsoluteUri}...");

				try

				{

								FileInfo	fileInfo	=	new	FileInfo(uploadFile);

								FtpWebRequest	request	=

												(FtpWebRequest)WebRequest.Create(

												ftpSite);

								request.Method	=	WebRequestMethods.Ftp.UploadFile;

								//if	working	with	text	files	and	going	across	operating	system	platforms,

								//you	might	want	to	set	this	value	to	false	to	avoid	line	ending	problems

								request.UseBinary	=	true;

								request.ContentLength	=	fileInfo.Length;

								request.Credentials	=	new	NetworkCredential("anonymous",	

												"authors@oreilly.com");

								byte[]	byteBuffer	=	new	byte[4096];

								using	(Stream	requestStream	=	await	request.GetRequestStreamAsync())

								{

												using	(FileStream	fileStream	=

																new	FileStream(uploadFile,	FileMode.Open,	FileAccess.Read,

																FileShare.Read,	4096,	useAsync:	true))

												{

																int	bytesRead	=	0;

																do

																{

																				bytesRead	=	await	fileStream.ReadAsync(byteBuffer,	0,

																																				byteBuffer.Length);

																				if	(bytesRead	>	0)

																								await	requestStream.WriteAsync(byteBuffer,	0,	bytesRead);

																}

																while	(bytesRead	>	0);

												}

								}

								using	(FtpWebResponse	response	=

														(FtpWebResponse)	await	request.GetResponseAsync())

								{

												Console.WriteLine(response.StatusDescription);

								}

								Console.WriteLine($"Uploaded	{uploadFile}	to	{ftpSite.AbsoluteUri}...");

				}

				catch	(WebException	e)

				{

								Console.WriteLine(

												$"Failed	to	upload	{uploadFile}	to	{ftpSite.AbsoluteUri}.");

								Console.WriteLine(((FtpWebResponse)e.Response).StatusDescription);

								Console.WriteLine(e);

				}

}

Here	is	an	example	of	calling	the	FtpUploadAsync	method:

string	uploadFile	=	"SampleClassLibrary.dll";

Uri	uploadFtpSite	=

				new	Uri($"ftp://localhost/{uploadFile}");

await	NetworkingAndWeb.FtpUploadAsync(uploadFtpSite,	uploadFile);

Discussion
The	File	Transfer	Protocol	is	defined	in	RFC	959	and	is	one	of	the	main	ways	files	are
distributed	over	the	Internet.	The	port	number	for	FTP	is	usually	21.	Happily,	you	don’t
have	to	really	know	much	about	how	FTP	works	in	order	to	use	it.	This	could	be	useful	to
your	applications	in	automatic	download	of	information	from	a	dedicated	FTP	site	or	in
providing	automatic	update	capabilities.

See	Also
The	“FtpWebRequest	Class,”	“FtpWebResponse	Class,”	“WebRequest	Class,”	and
“WebResponse	Class”	topics	in	the	MSDN	documentation.

Chapter	10.	XML

10.0	Introduction
Extensible	Markup	Language	(XML)	is	a	simple,	portable,	and	flexible	way	to	represent
data	in	a	structured	format.	XML	is	used	in	a	myriad	of	ways,	from	acting	as	the
foundation	of	web-based	messaging	protocols	such	as	SOAP	to	being	one	of	the	more
popular	ways	to	store	configuration	data	(such	as	the	web.config,	machine.config,	or
security.config	files	in	the	.NET	Framework).	Microsoft	recognized	the	usefulness	of
XML	to	developers	and	has	done	a	nice	job	of	giving	you	choices	concerning	the	trade-
offs	involved.	Sometimes	you	want	to	simply	run	through	an	XML	document	looking	for	a
value	in	a	read-only	cursorlike	fashion;	other	times	you	need	to	be	able	to	randomly	access
various	pieces	of	the	document;	and	sometimes,	it	is	handy	to	be	able	to	query	and	work
with	XML	declaratively.	Microsoft	provides	classes	such	as	XmlReader	and	XmlWriter	for
lighter	access	and	XmlDocument	for	full	Document	Object	Model	(DOM)	processing
support.	To	support	querying	an	XML	document	or	constructing	XML	declaratively,	C#
provides	LINQ	to	XML	(also	known	as	XLINQ)	in	the	form	of	the	XElement	and
XDocument	classes.

It	is	likely	that	you	will	be	dealing	with	XML	in	.NET	to	one	degree	or	another.	This
chapter	explores	some	of	the	uses	for	XML	and	XML-based	technologies,	such	as	XPath
and	XSLT,	as	well	as	showing	how	these	technologies	are	used	by	and	sometimes	replaced
by	LINQ	to	XML.	It	also	explores	topics	such	as	XML	validation	and	transformation	of
XML	to	HTML.

10.1	Reading	and	Accessing	XML	Data	in	Document	Order

Problem
You	need	to	read	in	all	the	elements	of	an	XML	document	and	obtain	information	about
each	element,	such	as	its	name	and	attributes.

Solution
Create	an	XmlReader	and	use	its	Read	method	to	process	the	document	as	shown	in
Example	10-1.

Example	10-1.	Reading	an	XML	document
public	static	void	AccessXml()

{

				//	New	LINQ	to	XML	syntax	for	constructing	XML

				XDocument	xDoc	=	new	XDocument(

																								new	XDeclaration("1.0",	"UTF-8",	"yes"),

																								new	XComment("My	sample	XML"),

																								new	XProcessingInstruction("myProcessingInstruction",	

																												"value"),

																								new	XElement("Root",

																												new	XElement("Node1",

																																new	XAttribute("nodeId",	"1"),	"FirstNode"),

																												new	XElement("Node2",

																																new	XAttribute("nodeId",	"2"),	"SecondNode"),

																												new	XElement("Node3",

																																new	XAttribute("nodeId",	"1"),	"ThirdNode")

)

);

				//	write	out	the	XML	to	the	console

				Console.WriteLine(xDoc.ToString());

				//	create	an	XmlReader	from	the	XDocument

				XmlReader	reader	=	xDoc.CreateReader();

				reader.Settings.CheckCharacters	=	true;

				int	level	=	0;

				while	(reader.Read())

				{

								switch	(reader.NodeType)

								{

												case	XmlNodeType.CDATA:

																Display(level,	$"CDATA:	{reader.Value}");

																break;

												case	XmlNodeType.Comment:

																Display(level,	$"COMMENT:	{reader.Value}");

																break;

												case	XmlNodeType.DocumentType:

																Display(level,	$"DOCTYPE:	{reader.Name}={reader.Value}");

																break;

												case	XmlNodeType.Element:

																Display(level,	$"ELEMENT:	{reader.Name}");

																level++;

																while	(reader.MoveToNextAttribute())

																{

																				Display(level,	$"ATTRIBUTE:	{reader.Name}='{reader.Value}'");

																}

																break;

												case	XmlNodeType.EndElement:

																level--;

																break;

												case	XmlNodeType.EntityReference:

																Display(level,	$"ENTITY:	{reader.Name}",	reader.Name);

																break;

												case	XmlNodeType.ProcessingInstruction:

																Display(level,	$"INSTRUCTION:	{reader.Name}={reader.Value}");

																break;

												case	XmlNodeType.Text:

																Display(level,	$"TEXT:	{reader.Value}");

																break;

												case	XmlNodeType.XmlDeclaration:

																Display(level,	$"DECLARATION:	{reader.Name}={reader.Value}");

																break;

								}

				}

}

private	static	void	Display(int	indentLevel,	string	format,	params	object[]	args)

{

				for	(int	i	=	0;	i	<	indentLevel;	i++)

								Console.Write("	");

				Console.WriteLine(format,	args);

}

This	code	dumps	the	XML	document	in	a	hierarchical	format:

<!--My	sample	XML-->

<?myProcessingInstruction	value?>

<Root>

		<Node1	nodeId="1">FirstNode</Node1>

		<Node2	nodeId="2">SecondNode</Node2>

		<Node3	nodeId="1">ThirdNode</Node3>

</Root>

COMMENT:	My	sample	XML

INSTRUCTION:	myProcessingInstruction=value

ELEMENT:	Root

	ELEMENT:	Node1

		ATTRIBUTE:	nodeId='1'

		TEXT:	FirstNode

	ELEMENT:	Node2

		ATTRIBUTE:	nodeId='2'

		TEXT:	SecondNode

	ELEMENT:	Node3

		ATTRIBUTE:	nodeId='1'

		TEXT:	ThirdNode

Discussion
Reading	existing	XML	and	identifying	different	node	types	is	one	of	the	fundamental
actions	that	you	will	need	to	perform	when	dealing	with	XML.	The	code	in	the	Solution
creates	an	XmlReader	from	a	declaratively	constructed	XML	document	and	then	iterates
over	the	nodes	while	re-creating	the	formatted	XML	for	output	to	the	console	window.

The	Solution	shows	you	how	to	create	an	XML	document	by	using	an	XDocument	and
composing	the	XML	inline	using	various	XML	to	LINQ	classes,	such	as	XElement,
XAttribute,	XComment,	and	so	on:

XDocument	xDoc	=	new	XDocument(

																				new	XDeclaration("1.0",	"UTF-8",	"yes"),

																				new	XComment("My	sample	XML"),

																				new	XProcessingInstruction("myProcessingInstruction",	

																								"value"),

																				new	XElement("Root",

																								new	XElement("Node1",

																												new	XAttribute("nodeId",	"1"),	"FirstNode"),

																								new	XElement("Node2",

																												new	XAttribute("nodeId",	"2"),	"SecondNode"),

																								new	XElement("Node3",

																												new	XAttribute("nodeId",	"1"),	"ThirdNode")

)

);

Once	the	XDocument	has	been	established,	you	need	to	configure	the	settings	for	the
XmlReader	on	an	XmlReaderSettings	object	instance	via	the	XmlReader.Settings
property.	These	settings	tell	the	XmlReader	to	check	for	any	illegal	characters	in	the	XML
fragment:

//	create	an	XmlReader	from	the	XDocument

XmlReader	reader	=	xDoc.CreateReader();

reader.Settings.CheckCharacters	=	true;

The	while	loop	iterates	over	the	XML	by	reading	one	node	at	a	time	and	examining	the
NodeType	property	of	the	reader’s	current	node	to	determine	what	type	of	XML	node	it	is:

while	(reader.Read())

{

				switch	(reader.NodeType)

				{

The	NodeType	property	is	an	XmlNodeType	enumeration	value	that	specifies	the	types	of
XML	nodes	that	can	be	present.	The	XmlNodeType	enumeration	values	are	shown	in
Table	10-1.

Table	10-1.	The	XmlNodeType	enumeration	values

Name Description
Attribute An	attribute	node	of	an	element.
CDATA A	marker	for	sections	of	text	to	escape	that	would	usually	be	treated	as	markup.
Comment

A	comment	in	the	XML:

<!--	my	comment	-->

Document The	root	of	the	XML	document	tree.
DocumentFragment A	document	fragment	node.
DocumentType The	document	type	declaration.
Element

An	element	tag:

<myelement>

EndElement
An	end	element	tag:

</myelement>

EndEntity Returned	at	the	end	of	an	entity	after	ResolveEntity	is	called.
Entity An	entity	declaration.
EntityReference A	reference	to	an	entity.
None The	node	returned	if	Read	has	not	yet	been	called	on	the	XmlReader.
Notation A	notation	in	the	DTD	(document	type	definition).
ProcessingInstruction The	processing	instruction:

<?pi	myProcessingInstruction?>

SignificantWhitespace Whitespace	when	a	mixed-content	model	is	used	or	when	whitespace	is	being	preserved.
Text Text	content	for	a	node.
Whitespace The	whitespace	between	markup	entries.
XmlDeclaration The	first	node	in	the	document	that	cannot	have	children:

<?xml	version='1.0'?>

See	Also
The	“XmlReader	Class,”	“XmlNodeType	Enumeration,”	and	“XDocument	Class”	topics
in	the	MSDN	documentation.

10.2	Querying	the	Contents	of	an	XML	Document

Problem
You	have	a	large	and	complex	XML	document,	and	you	need	to	find	various	pieces	of
information,	such	as	all	of	the	contents	in	a	specific	element	that	have	a	particular	attribute
setting.	You	want	to	query	the	XML	structure	without	having	to	iterate	through	all	the
nodes	in	the	XML	document	and	search	for	a	particular	item	by	hand.

Solution
Use	the	new	Language	Integrated	Query	(LINQ)	to	XML	API	to	query	the	XML
document	for	the	items	of	interest.	LINQ	allows	you	to	select	elements	based	on	element
and	attribute	values,	order	the	results,	and	return	an	IEnumerable-based	collection	of	the
resulting	data,	as	shown	in	Example	10-2.

Example	10-2.	Querying	an	XML	document	with	LINQ
private	static	XDocument	GetAClue()	=>	new	XDocument(

																				new	XDeclaration("1.0",	"UTF-8",	"yes"),

																				new	XElement("Clue",

																								new	XElement("Participant",

																												new	XAttribute("type",	"Perpetrator"),	"Professor	Plum"),

																								new	XElement("Participant",

																												new	XAttribute("type",	"Witness"),	"Colonel	Mustard"),

																								new	XElement("Participant",

																												new	XAttribute("type",	"Witness"),	"Mrs.	White"),

																								new	XElement("Participant",

																												new	XAttribute("type",	"Witness"),	"Mrs.	Peacock"),

																								new	XElement("Participant",

																												new	XAttribute("type",	"Witness"),	"Mr.	Green"),

																								new	XElement("Participant",

																												new	XAttribute("type",	"Witness"),	"Miss	Scarlet"),

																								new	XElement("Participant",

																												new	XAttribute("type",	"Victim"),	"Mr.	Boddy")

));

Notice	the	similarity	between	the	structure	of	the	XML	and	the	structure	of	the	code	when
we	use	LINQ	to	construct	this	XML	fragment	in	the	GetAClue	method:

public	static	void	QueryXml()

{

				XDocument	xDoc	=	GetAClue();

				//	set	up	the	query	looking	for	the	married	female	participants

				//	who	were	witnesses

				var	query	=	from	p	in	xDoc.Root.Elements("Participant")

																where	p.Attribute("type").Value	==	"Witness"	&&

																				p.Value.Contains("Mrs.")

																orderby	p.Value

																select	p.Value;

				//	write	out	the	nodes	found	(Mrs.	Peacock	and	Mrs.	White	in	this	instance,

				//	as	it	is	sorted)

				foreach	(string	s	in	query)

				{

								Console.WriteLine(s);

				}

}

This	outputs	the	following	for	the	LINQ	to	XML	example:

Mrs.	Peacock

Mrs.	White

To	query	an	XML	document	without	LINQ,	you	could	also	use	XPath.	In	.NET,	this	means
using	the	System.Xml.XPath	namespace	and	classes	such	as	XPathDocument,
XPathNavigator,	and	XPathNodeIterator.	LINQ	to	XML	also	supports	using	XPath	to
identify	items	in	a	query	through	the	XElement.XPathSelectElements	method.

In	the	following	example,	you	use	these	classes	to	select	nodes	from	an	XML	document

that	holds	members	from	the	board	game	Clue	(or	Cluedo,	as	it	is	known	outside	North
America)	and	their	various	roles.	You	want	to	be	able	to	select	the	married	female
participants	who	were	witnesses	to	the	crime.	To	do	this,	pass	an	XPath	expression	to
query	the	XML	data	set,	as	shown	in	Example	10-3.

Example	10-3.	Querying	an	XML	document	with	XPath
public	static	void	QueryXML()

{

				XDocument	xDoc	=	GetAClue();

				using	(StringReader	reader	=	new	StringReader(xDoc.ToString()))

				{

								//	Instantiate	an	XPathDocument	using	the	StringReader.

								XPathDocument	xpathDoc	=	new	XPathDocument(reader);

								//	Get	the	navigator.

								XPathNavigator	xpathNav	=	xpathDoc.CreateNavigator();

								//	Get	up	the	query	looking	for	the	married	female	participants

								//	who	were	witnesses.

								string	xpathQuery	=

												"/Clue/Participant[attribute::type='Witness'][contains(text(),'Mrs.')]";

								XPathExpression	xpathExpr	=	xpathNav.Compile(xpathQuery);

								//	Get	the	nodeset	from	the	compiled	expression.

								XPathNodeIterator	xpathIter	=	xpathNav.Select(xpathExpr);

								//	Write	out	the	nodes	found	(Mrs.	White	and	Mrs.Peacock,	in	this	instance).

								while	(xpathIter.MoveNext())

								{

												Console.WriteLine(xpathIter.Current.Value);

								}

				}

}

This	outputs	the	following	for	the	XPath	example:

Mrs.	White

Mrs.	Peacock

Discussion
Query	support	is	a	first-class	citizen	in	C#	when	you	are	using	LINQ.	LINQ	to	XML
brings	a	more	intuitive	syntax	to	writing	queries	for	most	developers	than	XPath	and	thus
is	a	welcome	addition	to	the	language.	XPath	is	a	valuable	tool	to	have	in	your	arsenal	if
you	are	working	with	systems	that	deal	with	XML	extensively,	but	in	many	cases,	you
know	what	you	want	to	ask	for;	you	just	don’t	know	the	syntax	in	XPath.	For	developers
with	even	minimal	SQL	experience,	querying	in	C#	just	got	a	lot	easier:

The	XML	being	worked	on	in	this	recipe	looks	like	this:

<?xml	version='1.0'?>

<Clue>

		<Participant	type="Perpetrator">Professor	Plum</Participant>

		<Participant	type="Witness">Colonel	Mustard</Participant>

		<Participant	type="Witness">Mrs.	White</Participant>

		<Participant	type="Witness">Mrs.	Peacock</Participant>

		<Participant	type="Witness">Mr.	Green</Participant>

		<Participant	type="Witness">Miss	Scarlet</Participant>

		<Participant	type="Victim">Mr.	Boddy</Participant>

</Clue>

This	query	says,	“Select	all	of	the	Participant	elements	where	the	Participant	is	a
witness	and	her	title	is	Mrs.”:

//	set	up	the	query	looking	for	the	married	female	participants

//	who	were	witnesses

var	query	=	from	p	in	xDoc.Root.Elements("Participant")

												where	p.Attribute("type").Value	==	"Witness"	&&

																p.Value.Contains("Mrs.")

												orderby	p.Value

												select	p.Value;

Contrast	this	with	the	same	query	syntax	in	XPath:

//	set	up	the	query	looking	for	the	married	female	participants

//	who	were	witnesses

string	xpathQuery	=

		"/Clue/Participant[attribute::type='Witness'][contains(text(),'Mrs.')]";

Both	ways	of	performing	the	query	have	merit,	but	the	issue	to	consider	is	how	easily	the
next	developer	will	be	able	to	understand	what	you	have	written.	It	is	very	easy	to	break
code	that	is	not	well	understood.

NOTE
Generally,	more	developers	understand	SQL	than	XPath,	even	with	all	of	the	web	service	work	today.	This
may	differ	from	your	experience,	especially	if	you	do	a	lot	of	cross-platform	work,	but	the	point	is	to	think
of	LINQ	as	not	just	another	syntax,	but	as	a	way	to	make	your	code	more	readable	by	a	broader	audience	of
developers.	Code	is	rarely	owned	by	one	person,	even	in	the	short	term,	so	why	not	make	it	easy	for	those
who	come	after	you?	After	all,	you	may	be	on	the	other	side	of	that	coin	someday.	Let’s	break	down	the	two
queries	a	bit	more.

The	LINQ	query	uses	some	of	the	keywords	in	C#:

var	indicates	to	the	compiler	to	expect	an	inferred	type	based	on	the	result	set.

from,	which	is	known	as	the	generator,	provides	a	data	source	for	the	query	to	operate
on	as	well	as	a	range	variable	to	allow	access	to	the	individual	element.

where	allows	for	a	Boolean	condition	to	be	applied	to	each	element	of	the	data	source
to	determine	if	it	should	be	included	in	the	result	set.

orderby	determines	the	sort	order	of	the	result	set	based	on	the	number	of	elements	and
indicators	of	ascending	or	descending	per	element.	Multiple	criteria	can	be	specified
for	multiple	levels	of	sorting.

select	indicates	the	sequence	of	values	that	will	be	returned	after	all	evaluation	of
conditions.	This	is	also	referred	to	as	projection	of	the	values.

This	means	that	our	syntax	can	be	boiled	down	as	follows:

from	p	in	xDoc.Root.Elements("Participant")	says,	“Get	all	of	the	Participants
under	the	root-level	node	Clue.”

where	p.Attribute("type").Value	==	"Witness"	says,	“Select	only	Participants
with	an	attribute	called	type	with	a	value	of	Witness.”

&&	p.Value.Contains("Mrs.")	says,	“Select	only	Participants	with	a	value	that
contains	Mrs.”.

orderby	(string)	p.Value	says,	“Order	the	participants	by	name	in	ascending
order.”

select	(string)	p.Value	says,	“Select	the	value	of	the	Participant	elements	where
all	of	the	previous	criteria	have	been	met.”

The	XPath	syntax	performs	the	same	function:

/Clue/Participant	says,	“Get	all	of	the	Participants	under	the	root-level	node
Clue.”

Participant[attribute::type='Witness']	says,	“Select	only	Participants	with	an
attribute	called	type	with	a	value	of	Witness.”

Participant[contains(text(),'Mrs.')]	says,	“Select	only	Participants	with	a
value	that	contains	Mrs.”.

Put	them	all	together,	and	you	get	all	of	the	married	female	participants	who	were
witnesses	in	both	cases,	with	the	additional	twist	for	LINQ	that	it	sorted	the	results.

See	Also
The	“Query	Expressions,”	“XElement	Class,”	and	“XPath,	reading	XML”	topics	in	the
MSDN	documentation.

10.3	Validating	XML

Problem
You	are	accepting	an	XML	document	created	by	another	source,	and	you	want	to	verify
that	it	conforms	to	a	specific	schema.	This	schema	may	be	in	the	form	of	an	XML	schema
(XSD	or	XML–XDR).	Alternatively,	you	want	the	flexibility	to	use	a	document	type
definition	(DTD)	to	validate	the	XML.

Solution
Use	the	XDocument.Validate	method	and	XmlReader.Settings	property	to	validate	XML
documents	against	any	descriptor	document,	such	as	an	XSD,	a	DTD,	or	an	XDR,	as
shown	in	Example	10-4.	Validating	the	XML	that	you	generate	from	your	software	as	part
of	your	testing	will	save	you	from	bugs	later	when	you’re	integrating	with	other	systems
(or	components	of	your	systems)	and	is	highly	encouraged!

Example	10-4.	Validating	XML
public	static	void	ValidateXml()

{

				//	open	the	bookbad.xml	file

				XDocument	book	=	XDocument.Load(@"..\..\BookBad.xml");

				//	create	XSD	schema	collection	with	book.xsd

				XmlSchemaSet	schemas	=	new	XmlSchemaSet();

				schemas.Add(null,@"..\..\Book.xsd");

				//	wire	up	handler	to	get	any	validation	errors

				book.Validate(schemas,	settings_ValidationEventHandler);

				//	create	a	reader	to	roll	over	the	file	so	validation	fires

				XmlReader	reader	=	book.CreateReader();

				//	report	warnings	as	well	as	errors

				reader.Settings.ValidationFlags	=	

								XmlSchemaValidationFlags.ReportValidationWarnings;

				//	use	XML	Schema

				reader.Settings.ValidationType	=	ValidationType.Schema;

				//	roll	over	the	XML

				while	(reader.Read())

				{

								if	(reader.NodeType	==	XmlNodeType.Element)

								{

												Console.Write($"<{reader.Name}");

												while	(reader.MoveToNextAttribute())

												{

																Console.Write($"{reader.Name}='{reader.Value}'");

												}

												Console.Write(">");

								}

								else	if	(reader.NodeType	==	XmlNodeType.Text)

								{

												Console.Write(reader.Value);

								}

								else	if	(reader.NodeType	==	XmlNodeType.EndElement)

								{

												Console.WriteLine($"</{reader.Name}>");

								}

				}

}

private	static	void	settings_ValidationEventHandler(object	sender,

				ValidationEventArgs	e)

{

				Console.WriteLine($"Validation	Error	Message:	{e.Message}");

				Console.WriteLine($"Validation	Error	Severity:	{e.Severity}");

				Console.WriteLine($"Validation	Error	Line	Number:	{e.Exception?.LineNumber}");

				Console.WriteLine(

								$"Validation	Error	Line	Position:	{e.Exception?.LinePosition}");

				Console.WriteLine($"Validation	Error	Source:	{e.Exception?.Source}");

				Console.WriteLine($"Validation	Error	Source	Schema:	"	+

																						$"{{e.Exception?.SourceSchemaObject}");

				Console.WriteLine($"Validation	Error	Source	Uri:	{e.Exception?.SourceUri}");

				Console.WriteLine($"Validation	Error	thrown	from:	{e.Exception?.TargetSite}");

				Console.WriteLine($"Validation	Error	callstack:	{e.Exception?.StackTrace}");

}

Discussion
The	Solution	illustrates	how	to	use	the	XDocument	and	XmlReader	to	validate	the	book.xml
document	against	a	book.xsd	XSD	definition	file.	DTDs	were	the	original	way	to	specify
the	structure	of	an	XML	document,	but	it	has	become	more	common	to	use	XSD	since	it
reached	W3C	Recommendation	status	in	May	2001.	XDR	was	a	predecessor	of	XSD
provided	by	Microsoft,	and,	while	you	might	encounter	it	in	existing	systems,	it	should	not
be	used	for	new	development.

The	first	thing	to	do	is	create	an	XmlSchemaSet	to	hold	your	XSD	file	(book.xsd)	and	call
the	Add	method	to	add	the	XSD	to	the	XmlSchemaSet.	Call	the	Validate	method	on	the
XDocument	with	the	XmlSchemaSet	and	the	handler	method	for	validation	events.	Now	that
the	validation	is	mostly	set	up,	we	can	set	a	few	more	items	on	the	XmlReader	created
from	the	XDocument.	The	ValidationFlags	property	on	the	XmlReaderSettings	allows
for	signing	up	for	warnings	in	validation,	processing	identity	constraints	during	validation,
and	processing	inline	schemas,	and	allows	for	attributes	that	may	not	be	defined	in	the
schema:

//	create	XSD	schema	collection	with	book.xsd

XmlSchemaSet	schemas	=	new	XmlSchemaSet();

schemas.Add(null,@"..\..\Book.xsd");

//	wire	up	handler	to	get	any	validation	errors

book.Validate(schemas,	settings_ValidationEventHandler);

//	create	a	reader	to	roll	over	the	file	so	validation	fires

XmlReader	reader	=	book.CreateReader();

//	report	warnings	as	well	as	errors

reader.Settings.ValidationFlags	=	

				XmlSchemaValidationFlags.ReportValidationWarnings;

//	use	XML	Schema

reader.Settings.ValidationType	=	ValidationType.Schema;

NOTE
To	perform	DTD	validation,	use	a	DTD	and	ValidationType.DTD,	and	to	perform	XDR	validation,	use	an
XDR	schema	and	ValidationType.XDR.

The	settings_ValidationEventHandler	function	then	examines	the
ValidationEventArgs	object	passed	when	a	validation	error	occurs	and	writes	the
pertinent	information	to	the	console:

private	static	void	settings_ValidationEventHandler(object	sender,

				ValidationEventArgs	e)

{

				Console.WriteLine($"Validation	Error	Message:	{e.Message}");

				Console.WriteLine($"Validation	Error	Severity:	{e.Severity}");

				Console.WriteLine(

								$"Validation	Error	Line	Number:	{e.Exception?.LineNumber}");

				Console.WriteLine(

								$"Validation	Error	Line	Position:	{e.Exception?.LinePosition}");

				Console.WriteLine($"Validation	Error	Source:	{e.Exception?.Source}");

				Console.WriteLine($"Validation	Error	Source	Schema:	"	+

																						$"{{e.Exception?.SourceSchemaObject}");

				Console.WriteLine($"Validation	Error	Source	Uri:	{e.Exception?.SourceUri}");

				Console.WriteLine(

								$"Validation	Error	thrown	from:	{e.Exception?.TargetSite}");

				Console.WriteLine($"Validation	Error	callstack:	{e.Exception?.StackTrace}");

}

You	then	proceed	to	roll	over	the	XML	document	and	write	out	the	elements	and
attributes:

while	(readerOld.Read())

{

				if	(readerOld.NodeType	==	XmlNodeType.Element)

				{

								Console.Write($"<{readerOld.Name}");

								while	(reader.MoveToNextAttribute())

								{

												Console.Write($"{readerOld.Name}='{readerOld.Value}'");

								}

								Console.Write(">");

				}

				else	if	(readerOld.NodeType	==	XmlNodeType.Text)

				{

								Console.Write(reader.Value);

				}

				else	if	(readerOld.NodeType	==	XmlNodeType.EndElement)

				{

								Console.WriteLine($"</{readerOld.Name}>");

				}

}

The	BookBad.xml	file	contains	the	following:

<?xml	version="1.0"	encoding="utf-8"?>

<Book	xmlns="http://tempuri.org/Book.xsd"	name="C#	Cookbook">

				<Chapter>File	System	IO</Chapter>

				<Chapter>Security</Chapter>

				<Chapter>Data	Structures	and	Algorithms</Chapter>

				<Chapter>Reflection</Chapter>

				<Chapter>Threading	and	Synchronization</Chapter>

				<Chapter>Numbers	and	Enumerations</Chapter>

				<BadElement>I	don't	belong	here</BadElement>

				<Chapter>Strings	and	Characters</Chapter>

				<Chapter>Classes	And	Structures</Chapter>

				<Chapter>Collections</Chapter>

				<Chapter>XML</Chapter>

				<Chapter>Delegates,	Events,	and	Anonymous	Methods</Chapter>

				<Chapter>Diagnostics</Chapter>

				<Chapter>Toolbox</Chapter>

				<Chapter>Unsafe	Code</Chapter>

				<Chapter>Regular	Expressions</Chapter>

				<Chapter>Generics</Chapter>

				<Chapter>Iterators	and	Partial	Types</Chapter>

				<Chapter>Exception	Handling</Chapter>

				<Chapter>Web</Chapter>

				<Chapter>Networking</Chapter>

</Book>

The	book.xsd	file	contains	the	following:

<?xml	version="1.0"	?>

<xs:schema	id="NewDataSet"	targetNamespace="http://tempuri.org/Book.xsd"

xmlns:mstns="http://tempuri.org/Book.xsd"

				xmlns="http://tempuri.org/Book.xsd"

				xmlns:xs="http://www.w3.org/2001/XMLSchema"

				xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

				attributeFormDefault="qualified"	elementFormDefault="qualified">

		<xs:element	name="Book">

				<xs:complexType>

						<xs:sequence>

								<xs:element	name="Chapter"	nillable="true"

																				minOccurs="0"	maxOccurs="unbounded">

										<xs:complexType>

												<xs:simpleContent

msdata:ColumnName="Chapter_Text"	msdata:Ordinal="0">

														<xs:extension	base="xs:string">

														</xs:extension>

												</xs:simpleContent>

										</xs:complexType>

								</xs:element>

						</xs:sequence>

						<xs:attribute	name="name"	form="unqualified"	type="xs:string"/>

				</xs:complexType>

		</xs:element>

</xs:schema>

When	this	is	run,	the	following	output	is	generated,	showing	the	validation	failure
occurring	on	BadElement:

Validation	Error	Message:	The	element	'Book'	in	namespace	'http://tempuri.org/Bo

ok.xsd'	has	invalid	child	element	'BadElement'	in	namespace	'http://tempuri.org/

Book.xsd'.	List	of	possible	elements	expected:	'Chapter'	in	namespace	'http://te

mpuri.org/Book.xsd'.

Validation	Error	Severity:	Error

Validation	Error	Line	Number:	0

Validation	Error	Line	Position:	0

Validation	Error	Source:

Validation	Error	Source	Schema:

Validation	Error	Source	Uri:

Validation	Error	thrown	from:

Validation	Error	callstack:

<Book	xmlns='http://tempuri.org/Book.xsd'	name='C#	Cookbook'><Chapter>File	Syste

m	IO</Chapter>

<Chapter>Security</Chapter>

<Chapter>Data	Structures	and	Algorithms</Chapter>

<Chapter>Reflection</Chapter>

<Chapter>Threading	and	Synchronization</Chapter>

<Chapter>Numbers	and	Enumerations</Chapter>

<BadElement>I	don't	belong	here</BadElement>

<Chapter>Strings	and	Characters</Chapter>

<Chapter>Classes	And	Structures</Chapter>

<Chapter>Collections</Chapter>

<Chapter>XML</Chapter>

<Chapter>Delegates,	Events,	and	Anonymous	Methods</Chapter>

<Chapter>Diagnostics</Chapter>

<Chapter>Toolbox</Chapter>

<Chapter>Unsafe	Code</Chapter>

<Chapter>Regular	Expressions</Chapter>

<Chapter>Generics</Chapter>

<Chapter>Iterators	and	Partial	Types</Chapter>

<Chapter>Exception	Handling</Chapter>

<Chapter>Web</Chapter>

<Chapter>Networking</Chapter>

</Book>

See	Also
The	“XmlReader	Class,”	“XmlSchemaSet	Class,”	“ValidationEventHandler	Class,”
“ValidationType	Enumeration,”	and	“XDocument	Class”	topics	in	the	MSDN
documentation.

10.4	Detecting	Changes	to	an	XML	Document

Problem
You	need	to	inform	one	or	more	classes	or	components	that	a	node	in	an	XML	document
has	been	inserted	or	removed	or	had	its	value	changed.

Solution
To	track	changes	to	an	active	XML	document,	subscribe	to	the	events	published	by	the
XDocument	class.	XDocument	publishes	events	for	when	a	node	is	changing	and	when	it	has
changed	for	both	the	pre-	and	post-conditions	of	a	node	change.

Example	10-5	shows	a	number	of	event	handlers	defined	in	the	same	scope	as	the
DetectXMLChanges	method,	but	they	could	just	as	easily	be	callbacks	to	functions	on	other
classes	that	are	interested	in	the	manipulation	of	the	live	XML	document.

DetectXMLChanges	loads	an	XML	fragment	you	define	in	the	method;	wires	up	the	event
handlers	for	the	node	events;	adds,	changes,	and	removes	some	nodes	to	trigger	the
events;	and	then	writes	out	the	resulting	XML.

Example	10-5.	Detecting	changes	to	an	XML	document
public	static	void	DetectXmlChanges()

{

				XDocument	xDoc	=	new	XDocument(

																								new	XDeclaration("1.0",	"UTF-8",	"yes"),

																								new	XComment("My	sample	XML"),

																								new	XProcessingInstruction("myProcessingInstruction",	

																												"value"),

																								new	XElement("Root",

																												new	XElement("Node1",

																																new	XAttribute("nodeId",	"1"),	"FirstNode"),

																												new	XElement("Node2",

																																new	XAttribute("nodeId",	"2"),	"SecondNode"),

																												new	XElement("Node3",

																																new	XAttribute("nodeId",	"1"),	"ThirdNode"),

																												new	XElement("Node4",

																																new	XCData(@"<>\&'"))

)

);

				//Create	the	event	handlers.

				xDoc.Changing	+=	xDoc_Changing;

				xDoc.Changed	+=	xDoc_Changed;

				//	Add	a	new	element	node.

				XElement	element	=	new	XElement("Node5",	"Fifth	Element");

				xDoc.Root.Add(element);

				//	Change	the	first	node

				//doc.DocumentElement.FirstChild.InnerText	=	"1st	Node";

				if(xDoc.Root.FirstNode.NodeType	==	XmlNodeType.Element)

								((XElement)xDoc.Root.FirstNode).Value	=	"1st	Node";

				//	remove	the	fourth	node

				var	query	=	from	e	in	xDoc.Descendants()

																where	e.Name.LocalName	==	"Node4"

																select	e;

				XElement[]	elements	=	query.ToArray<XElement>();

				foreach	(XElement	xelem	in	elements)

				{

								xelem.Remove();

				}

				//	write	out	the	new	xml

				Console.WriteLine();

				Console.WriteLine(xDoc.ToString());

				Console.WriteLine();

}

Example	10-6	shows	the	event	handlers	from	the	XDocument,	along	with	one	formatting
method,	WriteElementInfo.	This	method	takes	an	action	string	and	gets	the	name	and
value	of	the	object	being	manipulated.	Both	of	the	event	handlers	invoke	this	formatting
method,	passing	the	corresponding	action	string.

Example	10-6.	XDocument	event	handlers	and	WriteElementInfo	method
private	static	void	xDoc_Changed(object	sender,	XObjectChangeEventArgs	e)

{

				//Add	-	An	XObject	has	been	or	will	be	added	to	an	XContainer.

				//Name	-	An	XObject	has	been	or	will	be	renamed.

				//Remove	-	An	XObject	has	been	or	will	be	removed	from	an	XContainer.

				//Value	-	The	value	of	an	XObject	has	been	or	will	be	changed.	In	addition,	a

				//change	in	the	serialization	of	an	empty	element	(either	from	an	empty	tag	to

				//start/end	tag	pair	or	vice	versa)	raises	this	event.

				WriteElementInfo("changed",	e.ObjectChange,	(XObject)sender);

}

private	static	void	xDoc_Changing(object	sender,	XObjectChangeEventArgs	e)

{

				//Add	-	An	XObject	has	been	or	will	be	added	to	an	XContainer.

				//Name	-	An	XObject	has	been	or	will	be	renamed.

				//Remove	-	An	XObject	has	been	or	will	be	removed	from	an	XContainer.

				//Value	-	The	value	of	an	XObject	has	been	or	will	be	changed.	In	addition,	a

				//change	in	the	serialization	of	an	empty	element	(either	from	an	empty	tag	to	

				//start/end	tag	pair	or	vice	versa)	raises	this	event.

				WriteElementInfo("changing",	e.ObjectChange,	(XObject)sender);

}

private	static	void	WriteElementInfo(string	action,	XObjectChange	change,	

				XObject	xobj)

{

				if	(xobj	!=	null)

								Console.WriteLine($"XObject:	<{xobj.NodeType.ToString()}>	"+

												$"{action}	{change}	with	value	{xobj}");

				else

								Console.WriteLine("XObject:	<{xobj.NodeType.ToString()}>	"	+

												$"{action}	{change}	with	null	value");

}

The	DetectXmlChanges	method	results	in	the	following	output:

XObject:	<Element>	changing	Add	with	value	<Node5>Fifth	Element</Node5>

XObject:	<Element>	changed	Add	with	value	<Node5>Fifth	Element</Node5>

XObject:	<Text>	changing	Remove	with	value	FirstNode

XObject:	<Text>	changed	Remove	with	value	FirstNode

XObject:	<Text>	changing	Add	with	value	1st	Node

XObject:	<Text>	changed	Add	with	value	1st	Node

XObject:	<Element>	changing	Remove	with	value	<Node4><![CDATA[<>\&']]></Node4>

XObject:	<Element>	changed	Remove	with	value	<Node4><![CDATA[<>\&']]></Node4>

<!--My	sample	XML-->

<?myProcessingInstruction	value?>

<Root>

		<Node1	nodeId="1">1st	Node</Node1>

		<Node2	nodeId="2">SecondNode</Node2>

		<Node3	nodeId="1">ThirdNode</Node3>

		<Node5>Fifth	Element</Node5>

</Root>

Discussion
The	XDocument	class	is	derived	from	the	XElement	class.	XDocument	can	also	contain	a
DTD	(XDocumentType),	a	root	element	(XDocument.Root),	comments	(XComment),	and
processing	instructions	(XProcessingInstruction).	Typically,	you	would	use	XElement
for	constructing	most	types	of	XML	documents,	but	if	you	need	to	specify	any	of	the
preceding	items,	use	XDocument.

See	Also
The	“XDocument	Class”	and	“XObjectChangeEventHandler	delegate”	topics	in	the
MSDN	documentation.

10.5	Handling	Invalid	Characters	in	an	XML	String

Problem
You	are	creating	an	XML	string.	Before	adding	a	tag	containing	a	text	element,	you	want
to	check	it	to	determine	whether	the	string	contains	any	of	the	following	invalid
characters:

<

>

"

'

&

If	any	of	these	characters	are	encountered,	you	want	them	to	be	replaced	with	their
escaped	form:

<	(<)

>	(>)

"	(")

'	(')

&	(&)

Solution
There	are	different	ways	to	accomplish	this,	depending	on	which	XML-creation	approach
you	are	using.	If	you	are	using	XElement,	either	using	the	XCData	object	or	just	adding	the
text	directly	as	the	value	of	the	XElement	will	take	care	of	the	proper	escaping.	If	you	are
using	XmlWriter,	the	WriteCData,	WriteString,	WriteAttributeString,	WriteValue,
and	WriteElementString	methods	take	care	of	this	for	you.	If	you	are	using	XmlDocument
and	XmlElements,	the	XmlElement.InnerText	method	will	handle	these	characters.

In	the	first	way	to	handle	invalid	characters	using	XElement,	the	XCData	object	will	wrap
the	invalid	character	text	in	a	CDATA	section,	as	shown	in	the	creation	of	the
InvalidChars1	element	in	the	example	that	follows.	The	second	way	using	XElement	is	to
assign	the	text	as	the	value	of	the	XElement,	and	that	will	automatically	escape	the	text	for
you,	as	shown	in	the	creation	of	the	InvalidChars2	element:

//	set	up	a	string	with	our	invalid	chars

string	invalidChars	=	@"<>\&'";

XElement	element	=	new	XElement("Root",

																								new	XElement("InvalidChars1",

																												new	XCData(invalidChars)),

																								new	XElement("InvalidChars2",invalidChars));

Console.WriteLine($"Generated	XElement	with	Invalid	Chars:\r\n{element}");

Console.WriteLine();

The	output	from	this	is:

Generated	XElement	with	Invalid	Chars:

<Root>

		<InvalidChars1><![CDATA[<>\&']]></InvalidChars1>

		<InvalidChars2><>\&'</InvalidChars2>

</Root>

In	the	first	way	to	handle	invalid	characters	using	XmlWriter,	the	WriteCData	method	will
wrap	the	invalid	character	text	in	a	CDATA	section,	as	shown	in	the	creation	of	the
InvalidChars1	element	in	the	example	that	follows.	The	second	way	using	XmlWriter	is
to	use	the	WriteElementString	method	to	automatically	escape	the	text	for	you,	as	shown
in	the	creation	of	the	InvalidChars2	element:

//	Set	up	a	string	with	our	invalid	chars.

string	invalidChars	=	@"<>\&'";

XmlWriterSettings	settings	=	new	XmlWriterSettings();

settings.Indent	=	true;

using	(XmlWriter	writer	=	XmlWriter.Create(Console.Out,	settings))

{

				writer.WriteStartElement("Root");

				writer.WriteStartElement("InvalidChars1");

				writer.WriteCData(invalidChars);

				writer.WriteEndElement();

				writer.WriteElementString("InvalidChars2",	invalidChars);

				writer.WriteEndElement();

}

The	output	from	this	is:

<?xml	version="1.0"	encoding="IBM437"?>

<Root>

		<InvalidChars1><![CDATA[<>\&']]></InvalidChars1>

		<InvalidChars2><>\&'</InvalidChars2>

</Root>

There	are	two	ways	you	can	handle	this	problem	with	XmlDocument	and	XmlElement.	The
first	way	is	to	surround	the	text	you	are	adding	to	the	XML	element	with	a	CDATA	section
and	add	it	to	the	InnerXML	property	of	the	XmlElement:

//	Set	up	a	string	with	our	invalid	chars.

string	invalidChars	=	@"<>\&'";

//	create	the	first	invalid	character	node

XmlElement	invalidElement1	=	xmlDoc.CreateElement("InvalidChars1");

//	wrap	the	invalid	chars	in	a	CDATA	section	and	use	the

//	InnerXML	property	to	assign	the	value,	as	it	doesn't

//	escape	the	values,	just	passes	in	the	text	provided

invalidElement1.AppendChild(xmlDoc.CreateCDataSection(invalidChars));

The	second	way	is	to	let	the	XmlElement	class	escape	the	data	for	you,	by	assigning	the
text	directly	to	the	InnerText	property	like	this:

//	Set	up	a	string	with	our	invalid	chars.

string	invalidChars	=	@"<>\&'";

//	create	the	second	invalid	character	node

XmlElement	invalidElement2	=	xmlDoc.CreateElement("InvalidChars2");

//	Add	the	invalid	chars	directly	using	the	InnerText

//	property	to	assign	the	value	as	it	will	automatically

//	escape	the	values

invalidElement2.InnerText	=	invalidChars;

//	append	the	element	to	the	root	node

root.AppendChild(invalidElement2);

The	whole	XmlDocument	is	created	with	these	XmlElements	in	this	code:

public	static	void	HandleInvalidChars()

{

				//	set	up	a	string	with	our	invalid	chars

				string	invalidChars	=	@"<>\&'";

				XElement	element	=	new	XElement("Root",

																												new	XElement("InvalidChars1",

																																new	XCData(invalidChars)),

																												new	XElement("InvalidChars2",invalidChars));

				Console.WriteLine($"Generated	XElement	with	Invalid	Chars:\r\n{element}");

				Console.WriteLine();

				XmlWriterSettings	settings	=	new	XmlWriterSettings();

				settings.Indent	=	true;

				using	(XmlWriter	writer	=	XmlWriter.Create(Console.Out,	settings))

				{

								writer.WriteStartElement("Root");

								writer.WriteStartElement("InvalidChars1");

								writer.WriteCData(invalidChars);

								writer.WriteEndElement();

								writer.WriteElementString("InvalidChars2",	invalidChars);

								writer.WriteEndElement();

				}

				Console.WriteLine();

				XmlDocument	xmlDoc	=	new	XmlDocument();

				//	create	a	root	node	for	the	document

				XmlElement	root	=	xmlDoc.CreateElement("Root");

				xmlDoc.AppendChild(root);

				//	create	the	first	invalid	character	node

				XmlElement	invalidElement1	=	xmlDoc.CreateElement("InvalidChars1");

				//	wrap	the	invalid	chars	in	a	CDATA	section	and	use	the

				//	InnerXML	property	to	assign	the	value	as	it	doesn't

				//	escape	the	values,	just	passes	in	the	text	provided

				invalidElement1.AppendChild(xmlDoc.CreateCDataSection(invalidChars));

				//	append	the	element	to	the	root	node

				root.AppendChild(invalidElement1);

				//	create	the	second	invalid	character	node

				XmlElement	invalidElement2	=	xmlDoc.CreateElement("InvalidChars2");

				//	Add	the	invalid	chars	directly	using	the	InnerText

				//	property	to	assign	the	value	as	it	will	automatically

				//	escape	the	values

				invalidElement2.InnerText	=	invalidChars;

				//	append	the	element	to	the	root	node

				root.AppendChild(invalidElement2);

				Console.WriteLine($"Generated	XML	with	Invalid	Chars:\r\n{xmlDoc.OuterXml}");

				Console.WriteLine();

}

The	XML	created	by	this	procedure	(and	output	to	the	console)	looks	like	this:

Generated	XML	with	Invalid	Chars:

<Root><InvalidChars1><![CDATA[<>\&']]></InvalidChars1><InvalidChars2><>\&a

mp;'</InvalidChars2></Root>

Discussion
The	CDATA	node	allows	you	to	represent	the	items	in	the	text	section	as	character	data,	not
as	escaped	XML,	for	ease	of	entry.	Normally,	these	characters	would	need	to	be	in	their
escaped	format	(e.g.,	<	for	<),	but	the	CDATA	section	allows	you	to	enter	them	as
regular	text.

When	you	use	the	CDATA	tag	in	conjunction	with	the	InnerXml	property	of	the	XmlElement
class,	you	can	submit	characters	that	would	normally	need	to	be	escaped	first.	The
XmlElement	class	also	has	an	InnerText	property	that	will	automatically	escape	any
markup	found	in	the	string	assigned.	This	allows	you	to	add	these	characters	without
having	to	worry	about	them.

See	Also
The	“XElement	Class,”	“XCData	Class,”	“XmlDocument	Class,”	“XmlWriter	Class,”
“XmlElement	Class,”	and	“CDATA	Sections”	topics	in	the	MSDN	documentation.

10.6	Transforming	XML

Problem
You	have	a	raw	XML	document	that	you	need	to	convert	into	a	more	readable	format.	For
example,	you	have	personnel	data	that	is	stored	as	an	XML	document,	and	you	need	to
display	it	on	a	web	page	or	place	it	in	a	comma-delimited	text	file	for	legacy	system
integration.	Unfortunately,	not	everyone	wants	to	sort	through	reams	of	XML	all	day;	they
would	rather	read	the	data	as	a	formatted	list	or	within	a	grid	with	defined	columns	and
rows.	You	need	a	method	of	transforming	the	XML	data	into	a	more	readable	form	as	well
as	into	the	comma-delimited	format.

Solution
The	solution	for	this	problem	is	to	use	LINQ	to	XML	to	perform	a	transformation	in	C#.
In	the	example	code,	you	transform	some	personnel	data	from	a	fictitious	business	stored
in	Personnel.xml.	The	data	is	first	transformed	into	HTML,	and	then	into	comma-
delimited	format:

//	LINQ	way

XElement	personnelData	=	XElement.Load(@"..\..\Personnel.xml");

//	Create	HTML

XElement	personnelHtml	=

				new	XElement("html",

								new	XElement("head"),

								new	XElement("body",

												new	XAttribute("title","Personnel"),

												new	XElement("p",

																new	XElement("table",

																				new	XAttribute("border","1"),

																				new	XElement("thead",

																								new	XElement("tr",

																												new	XElement("td","Employee	Name"),

																												new	XElement("td","Employee	Title"),

																												new	XElement("td","Years	with	Company"),

																												new	XElement("td","Also	Known	As")

)

),

																				new	XElement("tbody",

																								from	p	in	personnelData.Elements("Employee")

																								select	new	XElement("tr",

																												new	XElement("td",	p.Attribute("name").Value),

																												new	XElement("td",	p.Attribute("title").Value),

																												new	XElement("td",	

																																p.Attribute("companyYears").Value),

																												new	XElement("td",	p.Attribute("nickname").Value)

)

)

)

)

)

);

personnelHtml.Save(@"..\..\Personnel_LINQ.html");

var	queryCSV	=	from	p	in	personnelData.Elements("Employee")

																orderby	p.Attribute("name").Value	descending

																select	p;

StringBuilder	sb	=	new	StringBuilder();

foreach(XElement	e	in	queryCSV)

{

				sb.AppendFormat($"{EscapeAttributeForCSV(e,	"name")},"	+

								$"{EscapeAttributeForCSV(e,	"title")},"	+

								$"{EscapeAttributeForCSV(e,	"companyYears")},"	+

								$"{EscapeAttributeForCSV(e,	"nickname")}"	+

								$"{Environment.NewLine}");

}

using(StreamWriter	writer	=	File.CreateText(@"..\..\Personnel_LINQ.csv"))

{

				writer.Write(sb.ToString());

}

The	output	from	the	LINQ	transformation	to	CSV	is	shown	here:

Rutherford,CEO,27,""BigTime""

Chas,Salesman,3,""Money""

Bob,Customer	Service,1,""Happy""

Alice,Manager,12,""Business""

The	Personnel.xml	file	contains	the	following	items:

<?xml	version="1.0"	encoding="utf-8"?>

<Personnel	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

				<Employee	name="Bob"	title="Customer	Service"	companyYears="1"

								nickname=""Happy""/>

				<Employee	name="Alice"	title="Manager"	companyYears="12"

								nickname=""Business""/>

				<Employee	name="Chas"	title="Salesman"	companyYears="3"

								nickname=""Money""/>

				<Employee	name="Rutherford"	title="CEO"	companyYears="27"

								nickname=""BigTime""/>

</Personnel>

You	might	be	wondering	why	the	nickname	attribute	values	have	extra	double	quotes	in
the	CSV	output.	This	is	to	support	RFC	4180,	“Common	Format	and	MIME	Type	for
CSV	Files,”	which	says,	“If	double-quotes	are	used	to	enclose	fields,	then	a	double-quote
appearing	inside	a	field	must	be	escaped	by	preceding	it	with	another	double	quote.”	We
do	this	with	the	EscapeAttributeForCSV	method:

private	static	string	EscapeAttributeForCSV(XElement	element,	

				string	attributeName)

{

				string	attributeValue	=	element.Attribute(attributeName).Value;

				//RFC-4180,	paragraph	"If	double-quotes	are	used	to	enclose	fields,	then	a

				//double-quote	appearing	inside	a	field	must	be	escaped	by	preceding	it	with

				//another	double	quote."

				return	attributeValue.Replace("\"",	"\"\"");

}

This	approach	is	discussed	more	in	Recipe	10.8.

We	can	also	accomplish	this	solution	using	an	XSLT	stylesheet	to	transform	the	XML	into
another	format	using	the	XslCompiledTransform	class.	First,	load	the	stylesheet	for
generating	HTML	output	and	then	perform	the	transformation	to	HTML	via	XSLT	using
the	PersonnelHTML.xsl	stylesheet.	After	that,	transform	the	data	to	comma-delimited
format	using	the	PersonnelCSV.xsl	stylesheet:

//	Create	a	resolver	with	default	credentials.

XmlUrlResolver	resolver	=	new	XmlUrlResolver();

resolver.Credentials	=	System.Net.CredentialCache.DefaultCredentials;

//	transform	the	personnel.xml	file	to	html

XslCompiledTransform	transform	=	new	XslCompiledTransform();

XsltSettings	settings	=	new	XsltSettings();

//	disable	both	of	these	(the	default)	for	security	reasons

settings.EnableDocumentFunction	=	false;

settings.EnableScript	=	false;

//	load	up	the	stylesheet

transform.Load(@"..\..\PersonnelHTML.xsl",settings,resolver);

//	perform	the	transformation

transform.Transform(@"..\..\Personnel.xml",@"..\..\Personnel.html");

The	PersonnelHTML.xsl	stylesheet	looks	like	this:

<?xml	version="1.0"	encoding="UTF-8"?>

<xsl:stylesheet	version="1.0"	xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

																xmlns:xs="http://www.w3.org/2001/XMLSchema">

		<xsl:template	match="/">

				<html>

						<head	/>

						<body	title="Personnel">

								<xsl:for-each	select="Personnel">

										<p>

												<xsl:for-each	select="Employee">

														<xsl:if	test="position()=1">

																<table	border="1">

																		<thead>

																				<tr>

																						<td>Employee	Name</td>

																						<td>Employee	Title</td>

																						<td>Years	with	Company</td>

																						<td>Also	Known	As</td>

																				</tr>

																		</thead>

																		<tbody>

																				<xsl:for-each	select="../Employee">

																						<tr>

																								<td>

																										<xsl:for-each	select="@name">

																												<xsl:value-of	select="."	/>

																										</xsl:for-each>

																								</td>

																								<td>

																										<xsl:for-each	select="@title">

																												<xsl:value-of	select="."	/>

																										</xsl:for-each>

																								</td>

																								<td>

																										<xsl:for-each	select="@companyYears">

																												<xsl:value-of	select="."	/>

																										</xsl:for-each>

																								</td>

																								<td>

																										<xsl:for-each	select="@nickname">

																												<xsl:value-of	select="."	/>

																										</xsl:for-each>

																								</td>

																						</tr>

																				</xsl:for-each>

																		</tbody>

																</table>

														</xsl:if>

												</xsl:for-each>

										</p>

								</xsl:for-each>

						</body>

				</html>

		</xsl:template>

</xsl:stylesheet>

To	generate	the	HTML	screen	in	Figure	10-1,	use	the	PersonnelHTML.xsl	stylesheet	and
the	Personnel.xml	file.

Figure	10-1.	Personnel	HTML	table	generated	from	Personnel.xml

Here	is	the	HTML	source	for	the	LINQ	transformation:

<?xml	version="1.0"	encoding="utf-8"?>

<html>

		<head	/>

		<body	title="Personnel">

				<p>

						<table	border="1">

								<thead>

										<tr>

												<td>Employee	Name</td>

												<td>Employee	Title</td>

												<td>Years	with	Company</td>

												<td>Also	Known	As</td>

										</tr>

								</thead>

								<tbody>

										<tr>

												<td>Bob</td>

												<td>Customer	Service</td>

												<td>1</td>

												<td>"Happy"</td>

										</tr>

										<tr>

												<td>Alice</td>

												<td>Manager</td>

												<td>12</td>

												<td>"Business"</td>

										</tr>

										<tr>

												<td>Chas</td>

												<td>Salesman</td>

												<td>3</td>

												<td>"Money"</td>

										</tr>

										<tr>

												<td>Rutherford</td>

												<td>CEO</td>

												<td>27</td>

												<td>"BigTime"</td>

										</tr>

								</tbody>

						</table>

				</p>

		</body>

</html>

Here	is	the	HTML	source	for	the	XSLT	transformation:

<?xml	version="1.0"	encoding="utf-8"?>

<html>

		<head	/>

		<body	title="Personnel">

				<table	border="1">

						<thead>

								<tr>

										<td>Employee	Name</td>

										<td>Employee	Title</td>

										<td>Years	with	Company</td>

								</tr>

						</thead>

						<tbody>

								<tr>

										<td	name="Bob"	/>

										<td	title="Customer	Service"	/>

										<td	name="Bob"	/>

								</tr>

								<tr>

										<td	name="Alice"	/>

										<td	title="Manager"	/>

										<td	name="Alice"	/>

								</tr>

								<tr>

										<td	name="Chas"	/>

										<td	title="Salesman"	/>

										<td	name="Chas"	/>

								</tr>

								<tr>

										<td	name="Rutherford"	/>

										<td	title="CEO"	/>

										<td	name="Rutherford"	/>

								</tr>

						</tbody>

				</table>

		</body>

</html>

To	generate	comma-delimited	output,	use	PersonnelCSV.xsl	and	Personnel.xml:

//	transform	the	personnel.xml	file	to	comma-delimited	format

//	load	up	the	stylesheet

XslCompiledTransform	transformCSV	=	new	XslCompiledTransform();

XsltSettings	settingsCSV	=	new	XsltSettings();

//	disable	both	of	these	(the	default)	for	security	reasons

settingsCSV.EnableDocumentFunction	=	false;

settingsCSV.EnableScript	=	false;

transformCSV.Load(@"..\..\PersonnelCSV.xsl",	settingsCSV,	resolver);

//	perform	the	transformation

XsltArgumentList	xslArg	=	new	XsltArgumentList();

CsvExtensionObject	xslExt	=	new	CsvExtensionObject();

xslArg.AddExtensionObject("urn:xslext",	xslExt);

XPathDocument	xPathDoc	=	new	XPathDocument(@"..\..\Personnel.xml");

XmlWriterSettings	xmlWriterSettings	=	new	XmlWriterSettings();

xmlWriterSettings.ConformanceLevel	=	ConformanceLevel.Fragment;

using	(XmlWriter	writer	=	XmlWriter.Create(@"..\..\Personnel.csv",	

				xmlWriterSettings))

{

				transformCSV.Transform(xPathDoc,	xslArg,	writer);

}

The	PersonnelCSV.xsl	stylesheet	is	shown	here:

<?xml	version="1.0"	encoding="UTF-8"?>

<xsl:stylesheet	version="1.0"	xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

																xmlns:xs="http://www.w3.org/2001/XMLSchema"

																xmlns:xslext="urn:xslext">

<xsl:output	method="text"	encoding="UTF-8"/>

				<xsl:template	match="/">

								<xsl:for-each	select="Personnel">

												<xsl:for-each	select="Employee">

																	<xsl:for-each	select="@name">

																					<xsl:value-of	

																									select="xslext:EscapeAttributeForCSV(string(.))"	/>

																	</xsl:for-each>,<xsl:for-each	select="@title">

																					<xsl:value-of	

																									select="xslext:EscapeAttributeForCSV(string(.))"	/>

																	</xsl:for-each>,<xsl:for-each	select="@companyYears">

																					<xsl:value-of	

																								select="xslext:EscapeAttributeForCSV(string(.))"	/>

																	</xsl:for-each>,<xsl:for-each	select="@nickname">

																					<xsl:value-of	

																									select="xslext:EscapeAttributeForCSV(string(.))"	/>

																	</xsl:for-each>

															<xsl:text>	
</xsl:text>

												</xsl:for-each>

							</xsl:for-each>

				</xsl:template>

</xsl:stylesheet>

The	output	from	the	PersonnelCSV.xsl	stylesheet	is	shown	here:

Bob,Customer	Service,1,""Happy""

Alice,Manager,12,""Business""

Chas,Salesman,3,""Money""

Rutherford,CEO,27,""BigTime""

Once	again	we	do	some	work	to	support	RFC	4180,	“Common	Format	and	MIME	Type
for	CSV	Files,”	with	the	EscapeAttributeForCSV	method	on	the	CsvExtensionObject
that	we	passed	as	an	Extension	object	to	the	transform,	which	is	discussed	in	more	detail
in	Recipe	10.8:

public	class	CsvExtensionObject

{

				public	string	EscapeAttributeForCSV(string	attributeValue)	=>

								attributeValue.Replace("\"",	"\"\"");

}

Discussion
XSLT	is	a	very	powerful	way	to	transform	XML	from	one	format	to	another.	That	being
said,	the	capacity	that	LINQ	brings	in	C#	to	perform	XML	transformations	without	having
to	shell	out	to	another	parser	or	process	is	very	compelling.	This	means	that	to	perform
XML	transformations	in	your	applications,	you	no	longer	have	to	understand	XSLT	syntax
or	maintain	application	code	in	both	C#	and	XSLT.	This	also	means	that	when	reviewing
code	from	other	team	members,	you	no	longer	have	to	go	into	separate	files	to	understand
what	the	transformation	is	doing;	it’s	all	C#	and	all	right	there.

XSLT	is	by	no	means	dead	or	inappropriate	as	a	method	for	transforming	XML;	it	is
simply	no	longer	the	only	realistic	alternative	for	C#	developers.	XSLT	can	still	be	used
with	all	of	the	existing	XML	API	in	.NET	and	will	continue	to	be	feasible	for	years	to
come.	Our	challenge	to	you	is	to	try	implementing	a	transformation	in	LINQ	that	you
currently	have	in	XSLT	and	see	for	yourself	the	possibilities	with	LINQ.

When	you	are	performing	transformations	using	XSLT,	there	are	many	overrides	for	the
XslCompiledTransform.Transform	method.	Since	XmlResolver	is	an	abstract	class,	you
need	to	use	either	the	XmlUrlResolver	or	the	XmlSecureResolver	or	pass	null	as	the
XmlResolver-typed	argument.	The	XmlUrlResolver	will	resolve	URLs	to	external
resources,	such	as	schema	files,	using	the	FILE,	HTTP,	and	HTTPS	protocols.	The
XmlSecureResolver	restricts	the	resources	that	you	can	access	by	requiring	you	to	pass	in
evidence,	which	helps	prevent	cross-domain	redirection	in	XML.

NOTE
If	you	are	accepting	XML	from	the	Internet,	it	could	easily	redirect	to	a	site	where	malicious	XML	is
waiting	to	be	downloaded	and	executed	if	you	are	not	using	the	XmlSecureResolver.	If	you	pass	null	for
the	XmlResolver,	you	are	saying	you	do	not	want	to	resolve	any	external	resources.	Microsoft	has	declared
the	null	option	to	be	obsolete,	and	it	shouldn’t	be	used	anyway	because	you	should	always	use	some	type
of	XmlResolver.

XSLT	is	a	very	powerful	technology	that	allows	you	to	transform	XML	into	just	about	any
format	you	can	think	of,	but	it	can	be	frustrating	at	times.	The	simple	need	of	a	carriage
return/line	feed	combination	in	the	XSLT	output	was	such	a	trial	that	we	were	able	to	find
more	than	20	different	message	board	requests	for	help	on	how	to	do	this!	After	looking	at
the	W3C	spec	for	XSLT,	we	found	you	could	do	this	combination	using	the	xsl:text
element	like	this:

<xsl:text>	
</xsl:text>

The		stands	for	a	hexadecimal	13,	or	a	carriage	return,	and	the	
	stands	for	a
hexadecimal	10,	or	a	line	feed.	This	is	output	at	the	end	of	each	employee’s	data	from	the
XML.

See	Also
The	“XslCompiledTransform	Class,”	“XmlResolver	Class,”	“XmlUrlResolver	Class,”
“XmlSecureResolver	Class,”	and	“xsl:text”	topics	in	the	MSDN	documentation.

10.7	Validating	Modified	XML	Documents	Without
Reloading

Problem
You	are	using	the	XDocument	or	the	XmlDocument	to	modify	an	XML	document	loaded	in
memory.	Once	the	document	has	been	modified,	the	modifications	need	to	be	verified,	and
schema	defaults	need	to	be	enforced.

Solution
Use	the	XDocument.Validate	method	to	perform	the	validation	and	apply	schema	defaults
and	type	information.

Create	an	XmlSchemaSet	with	the	XML	Schema	document	(book.xsd)	and	an	XmlReader
and	then	load	the	book.xml	file	using	XDocument.Load:

//	Create	the	schema	set

XmlSchemaSet	xmlSchemaSet	=	new	XmlSchemaSet();

//	add	the	new	schema	with	the	target	namespace

//	(could	add	all	the	schema	at	once	here	if	there	are	multiple)

xmlSchemaSet.Add("http://tempuri.org/Book.xsd",

				XmlReader.Create(@"..\..\Book.xsd"));

XDocument	book	=	XDocument.Load(@"..\..\Book.xml");

Set	up	a	ValidationEventHandler	to	catch	any	errors	and	then	call	XDocument.Validate
with	the	schema	set	and	the	event	handler	to	validate	book.xml	against	the	book.xsd
schema:

ValidationHandler	validationHandler	=	new	ValidationHandler();

ValidationEventHandler	validationEventHandler	=	

				validationHandler.HandleValidation;

//	validate	after	load

book.Validate(xmlSchemaSet,	validationEventHandler);

The	ValidationHandler	class	holds	the	current	validation	state	in	a	ValidXml	property
and	the	code	for	the	ValidationEventHandler	implementation	method
HandleValidation:

public	class	ValidationHandler

{

				private	object	_syncRoot	=	new	object();

				public	ValidationHandler()

				{

								lock(_syncRoot)

								{

												//	set	the	initial	check	for	validity	to	true

												this.ValidXml	=	true;

								}

				}

				public	bool	ValidXml	{	get;	private	set;	}

				public	void	HandleValidation(object	sender,	ValidationEventArgs	e)

				{

								lock(_syncRoot)

								{

												//	we	got	called	so	this	isn't	valid

												ValidXml	=	false;

												Console.WriteLine($"Validation	Error	Message:	{e.Message}");

												Console.WriteLine($"Validation	Error	Severity:	{e.Severity}");

												Console.WriteLine($"Validation	Error	Line	Number:	"	+

																																$"{{e.Exception?.LineNumber}");

												Console.WriteLine($"Validation	Error	Line	Position:	"	+

																																$"{{e.Exception?.LinePosition}");

												Console.WriteLine($"Validation	Error	Source:	{e.Exception?.Source}");

															Console.WriteLine($"Validation	Error	Source	Schema:	"	+

																	"{e.Exception?.SourceSchemaObject}");

												Console.WriteLine($"Validation	Error	Source	Uri:	"	+

																																$"{{e.Exception?.SourceUri}");

												Console.WriteLine($"Validation	Error	thrown	from:	"	+

																																$"{{e.Exception?.TargetSite}");

												Console.WriteLine($"Validation	Error	callstack:	"	+

																																$"{{e.Exception?.StackTrace}");

								}

				}

}

If	you	are	wondering	what	the	lock	statement	is	for	in	the	preceding	code	sample,	check
out	Recipe	12.2	for	a	full	explanation.	The	short	version	is	that	multiple	threads	can’t	run
in	a	lock	statement.

Add	a	new	element	node	that	is	not	in	the	schema	into	the	XDocument	and	then	call
Validate	again	with	the	schema	set	and	event	handler	to	revalidate	the	changed
XDocument.	If	the	document	triggers	any	validation	events,	then	the
validationHandler.ValidXml	property	is	set	to	false	in	the	ValidationHandler
instance:

//	add	in	a	new	node	that	is	not	in	the	schema

//	since	we	have	already	validated,	no	callbacks	fire	during	the	add…

book.Root.Add(new	XElement("BogusElement","Totally"));

//	now	we	will	do	validation	of	the	new	stuff	we	added

book.Validate(xmlSchemaSet,	validationEventHandler);

if	(validationHandler.ValidXml)

				Console.WriteLine("Successfully	validated	modified	LINQ	XML");

else

				Console.WriteLine("Modified	LINQ	XML	did	not	validate	successfully");

Console.WriteLine();

You	could	also	use	the	XmlDocument.Validate	method	to	perform	the	validation	in	a
similar	fashion	to	XDocument:

string	xmlFile	=	@"..\..\Book.xml";

string	xsdFile	=	@"..\..\Book.xsd";

//	Create	the	schema	set

XmlSchemaSet	schemaSet	=	new	XmlSchemaSet();

//	add	the	new	schema	with	the	target	namespace

//	(could	add	all	the	schema	at	once	here	if	there	are	multiple)

schemaSet.Add("http://tempuri.org/Book.xsd",	XmlReader.Create(xsdFile));

//	load	up	the	xml	file

XmlDocument	xmlDoc	=	new	XmlDocument();

//	add	the	schema

xmlDoc.Schemas	=	schemaSet;

Load	the	book.xml	file	into	the	XmlDocument,	set	up	a	ValidationEventHandler	to	catch
any	errors,	and	then	call	Validate	with	the	event	handler	to	validate	book.xml	against	the
book.xsd	schema:

//	validate	after	load

xmlDoc.Load(xmlFile);

ValidationHandler	handler	=	new	ValidationHandler();

ValidationEventHandler	eventHandler	=	handler.HandleValidation;

xmlDoc.Validate(eventHandler);

Add	a	new	element	node	that	is	not	in	the	schema	into	the	XmlDocument	and	then	call

Validate	again	with	the	event	handler	to	revalidate	the	changed	XmlDocument.	If	the
document	triggers	any	validation	events,	then	the	ValidationHandler.ValidXml	property
is	set	to	false:

//	add	in	a	new	node	that	is	not	in	the	schema

//	since	we	have	already	validated,	no	callbacks	fire	during	the	add…

XmlNode	newNode	=	xmlDoc.CreateElement("BogusElement");

newNode.InnerText	=	"Totally";

//	add	the	new	element

xmlDoc.DocumentElement.AppendChild(newNode);

//	now	we	will	do	validation	of	the	new	stuff	we	added

xmlDoc.Validate(eventHandler);

if	(handler.ValidXml)

				Console.WriteLine("Successfully	validated	modified	XML");

else

				Console.WriteLine("Modified	XML	did	not	validate	successfully");

Discussion
One	advantage	to	using	XmlDocument	over	XDocument	is	that	there	is	an	override	to	the
XmlDocument.Validate	method	that	allows	you	to	pass	a	specific	XmlNode	to	validate.
This	fine-grained	control	is	not	available	on	XDocument.

public	void	Validate(

				ValidationEventHandler	validationEventHandler,

				XmlNode	nodeToValidate

);

One	other	approach	to	this	problem	is	to	instantiate	an	instance	of	the	XmlNodeReader	with
the	XmlDocument	and	then	create	an	XmlReader	with	validation	settings,	as	shown	in
Recipe	10.3.	This	would	allow	for	continual	validation	while	the	reader	navigated	through
the	underlying	XML.

The	output	from	running	the	code	is	listed	here:

Validation	Error	Message:	The	element	'Book'	in	namespace	'http://tempuri.org/Bo

ok.xsd'	has	invalid	child	element	'BogusElement'.	List	of	possible	elements	expe

cted:	'Chapter'	in	namespace	'http://tempuri.org/Book.xsd'.

Validation	Error	Severity:	Error

Validation	Error	Line	Number:	0

Validation	Error	Line	Position:	0

Validation	Error	Source:

Validation	Error	Source	Schema:

Validation	Error	Source	Uri:

Validation	Error	thrown	from:

Validation	Error	callstack:

Modified	LINQ	XML	did	not	validate	successfully

Validation	Error	Message:	The	element	'Book'	in	namespace	'http://tempuri.org/Bo

ok.xsd'	has	invalid	child	element	'BogusElement'.	List	of	possible	elements	expe

cted:	'Chapter'	in	namespace	'http://tempuri.org/Book.xsd'.

Validation	Error	Severity:	Error

Validation	Error	Line	Number:	0

Validation	Error	Line	Position:	0

Validation	Error	Source:

Validation	Error	Source	Schema:

Validation	Error	Source	Uri:	file:///C:/CSCB6/CSharpRecipes/Book.xml

Validation	Error	thrown	from:

Validation	Error	callstack:

Modified	XML	did	not	validate	successfully

Notice	that	the	BogusElement	element	you	added	was	not	part	of	the	schema	for	the	Book
element,	so	you	got	a	validation	error	along	with	the	information	about	where	the	error
occurred.	Finally,	you	got	a	report	that	the	modified	XML	did	not	validate	correctly.

See	Also
Recipe	10.2;	the	“XDocument	Class”	and	“XmlDocument.Validate”	topics	in	the	MSDN
documentation.

10.8	Extending	Transformations

Problem
You	want	to	perform	operations	that	are	outside	the	scope	of	the	transformation
technology	to	include	data	in	the	transformed	result.

Solution
If	you	are	using	LINQ	to	XML,	you	can	call	out	to	a	function	directly	when	transforming
the	result	set,	as	shown	here	by	the	call	to	GetErrata:

XElement	publications	=	XElement.Load(@"..\..\publications.xml");

XElement	transformedPublications	=

				new	XElement("PublishedWorks",

								from	b	in	publications.Elements("Book")

								select	new	XElement(b.Name,

																				new	XAttribute(b.Attribute("name")),

																				from	c	in	b.Elements("Chapter")

																				select	new	XElement("Chapter",	GetErrata(c))));

Console.WriteLine(transformedPublications.ToString());

Console.WriteLine();

The	GetErrata	method	used	in	the	preceding	sample	is	listed	here:

private	static	XElement	GetErrata(XElement	chapter)

{

				//	In	here	we	could	go	do	other	lookup	calls	(XML,	database,	web	service)

				//	to	get	information	to	add	back	in	to	the	transformation	result

				string	errata	=	$"{chapter.Value}	has	{chapter.Value.Length}	errata";

				return	new	XElement("Errata",	errata);

}

If	you	are	using	XSLT,	you	can	add	an	extension	object	to	the	transformation	that	can
perform	the	operations	necessary	based	on	the	node	it	is	passed.	You	accomplish	this	by
using	the	XsltArgumentList.AddExtensionObject	method.	This	object	you’ve	created
(XslExtensionObject)	can	then	be	accessed	in	the	XSLT	and	a	method	called	on	it	to
return	the	data	you	want	included	in	the	final	transformed	result:

string	xmlFile	=	@"..\..\publications.xml";

string	xslt	=	@"..\..\publications.xsl";

//Create	the	XslCompiledTransform	and	load	the	style	sheet.

XslCompiledTransform	transform	=	new	XslCompiledTransform();

transform.Load(xslt);

//	load	the	xml

XPathDocument	xPathDoc	=	new	XPathDocument(xmlFile);

//	make	up	the	args	for	the	stylesheet	with	the	extension	object

XsltArgumentList	xslArg	=	new	XsltArgumentList();

XslExtensionObject	xslExt	=	new	XslExtensionObject();

xslArg.AddExtensionObject("urn:xslext",	xslExt);

//	send	output	to	the	console	and	do	the	transformation

using	(XmlWriter	writer	=	XmlWriter.Create(Console.Out))

{

				transform.Transform(xPathDoc,	xslArg,	writer);

}

Note	that	when	the	extension	object	is	added	to	the	XsltArgumentList,	it	supplies	a
namespace	of	urn:xslext.	This	namespace	is	used	in	the	XSLT	stylesheet	to	reference	the
object.	The	XSLExtensionObject	is	defined	here:

//	Our	extension	object	to	help	with	functionality

public	class	XslExtensionObject

{

				public	XPathNodeIterator	GetErrata(XPathNodeIterator	nodeChapter)

				{

								//	In	here	we	could	go	do	other	lookup	calls	(XML,	database,	web	service)

								//	to	get	information	to	add	back	in	to	the	transformation	result

								nodeChapter.MoveNext();

								string	errata	=	$"<Errata>{nodeChapter.Current.Value}	has	"	+

												$"{nodeChapter.Current.Value.Length}	errata</Errata>";

								XmlDocument	xDoc	=	new	XmlDocument();

								xDoc.LoadXml(errata);

								XPathNavigator	xPathNav	=	xDoc.CreateNavigator();

								xPathNav.MoveToChild(XPathNodeType.Element);

								XPathNodeIterator	iter	=	xPathNav.Select(".");

								return	iter;

				}

}

The	GetErrata	method	is	called	during	the	execution	of	the	XSLT	stylesheet	to	provide
data	in	XPathNodeIterator	format	to	the	transformation.	The	xmlns:xslext	namespace	is
declared	as	urn:xslext,	which	matches	the	namespace	value	you	passed	as	an	argument
to	the	transformation.	In	the	processing	of	the	Book	template	for	each	Chapter,	an
xsl:value-of	is	called	with	the	select	criteria	containing	a	call	to	the	xslext:GetErrata
method.	The	stylesheet	makes	the	call,	as	shown	here:

<xsl:stylesheet	version="1.0"	xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

				xmlns:xslext="urn:xslext">

				<xsl:template	match="/">

								<xsl:element	name="PublishedWorks">

												<xsl:apply-templates/>

								</xsl:element>

				</xsl:template>

				<xsl:template	match="Book">

								<Book>

												<xsl:attribute	name	="name">

																<xsl:value-of	select="@name"/>

												</xsl:attribute>

												<xsl:for-each	select="Chapter">

																<Chapter>

																				<xsl:value-of	select="xslext:GetErrata(/)"/>

																</Chapter>

												</xsl:for-each>

								</Book>

				</xsl:template>

</xsl:stylesheet>

The	outputs	for	the	two	approaches	are	the	same	and	look	like	this	(partial	listing):

<PublishedWorks>

		<Book	name="Subclassing	and	Hooking	with	Visual	Basic">

				<Chapter>

						<Errata>Introduction	has	12	errata</Errata>

				</Chapter>

				...

		</Book>

		<Book	name="C#	Cookbook">

				<Chapter>

						<Errata>Numbers	has	7	errata</Errata>

				</Chapter>

				...

		</Book>

		<Book	name="C#	Cookbook	2.0">

				<Chapter>

						<Errata>Numbers	and	Enumerations	has	24	errata</Errata>

				</Chapter>

				...

		</Book>

		<Book	name="C#	3.0	Cookbook">

				<Chapter>

						<Errata>Language	Integrated	Query	(LINQ)	has	32	errata</Errata>

				</Chapter>

				...

		</Book>

		<Book	name="C#	6.0	Cookbook">

				<Chapter>

						<Errata>Classes	and	Generics	has	20	errata</Errata>

				</Chapter>

				<Chapter>

						<Errata>Collections,	Enumerators,	and	Iterators	has	39	errata</Errata>

				</Chapter>

				<Chapter>

						<Errata>Data	Types	has	10	errata</Errata>

				</Chapter>

				<Chapter>

						<Errata>LINQ	and	Lambda	Expressions	has	27	errata</Errata>

				</Chapter>

				<Chapter>

						<Errata>Debugging	and	Exception	Handling	has	32	errata</Errata>

				</Chapter>

				<Chapter>

						<Errata>Reflection	and	Dynamic	Programming	has	34	errata</Errata>

				</Chapter>

				<Chapter>

						<Errata>Regular	Expressions	has	19	errata</Errata>

				</Chapter>

				<Chapter>

						<Errata>Filesystem	I/O	has	14	errata</Errata>

				</Chapter>

				<Chapter>

						<Errata>Networking	and	Web	has	18	errata</Errata>

				</Chapter>

				<Chapter>

						<Errata>XML	has	3	errata</Errata>

				</Chapter>

				<Chapter>

						<Errata>Security	has	8	errata</Errata>

				</Chapter>

				<Chapter>

						<Errata>Threading,	Synchronization,	and	Concurrency	has	43	errata</Errata>

				</Chapter>

				<Chapter>

						<Errata>Toolbox	has	7	errata</Errata>

				</Chapter>

		</Book>

</PublishedWorks>

Discussion
Using	LINQ	to	XML,	you	can	extend	your	transformation	code	to	include	additional	logic
simply	by	adding	method	calls	that	know	how	to	operate	and	return	XElements.	This	is
simply	adding	another	method	call	to	the	query	that	contributes	to	the	result	set,	and	no
additional	performance	penalty	is	assessed	just	by	the	call.	Certainly	if	the	operation	is
expensive	it	could	slow	down	the	transformation,	but	this	is	now	easily	located	when	your
code	is	profiled.

The	ability	to	call	custom	code	from	inside	an	XSLT	stylesheet	is	very	powerful,	but
should	be	used	cautiously.	Adding	code	like	this	into	stylesheets	usually	renders	them	less
useful	in	other	environments.	If	the	stylesheet	never	has	to	be	used	to	transform	XML	in
another	parser,	this	can	be	a	good	way	to	offload	work	that	is	either	difficult	or	impossible
to	accomplish	in	regular	XSLT	syntax.

The	sample	data	used	in	the	Solution	is	presented	here:

<?xml	version="1.0"	encoding="utf-8"?>

<Publications>

		<Book	name="Subclassing	and	Hooking	with	Visual	Basic">

				<Chapter>Introduction</Chapter>

				<Chapter>Windows	System-Specific	Information</Chapter>

				<Chapter>The	Basics	of	Subclassing	and	Hooks</Chapter>

				<Chapter>Subclassing	and	Superclassing</Chapter>

				<Chapter>Subclassing	the	Windows	Common	Dialog	Boxes</Chapter>

				<Chapter>ActiveX	Controls	and	Subclassing</Chapter>

				<Chapter>Superclassing</Chapter>

				<Chapter>Debugging	Techniques	for	Subclassing</Chapter>

				<Chapter>WH_CALLWNDPROC</Chapter>

				<Chapter>WH_CALLWNDPROCRET</Chapter>

				<Chapter>WH_GETMESSAGE</Chapter>

				<Chapter>WH_KEYBOARD	and	WH_KEYBOARD_LL</Chapter>

				<Chapter>WH_MOUSE	and	WH_MOUSE_LL</Chapter>

				<Chapter>WH_FOREGROUNDIDLE</Chapter>

				<Chapter>WH_MSGFILTER</Chapter>

				<Chapter>WH_SYSMSGFILTER</Chapter>

				<Chapter>WH_SHELL</Chapter>

				<Chapter>WH_CBT</Chapter>

				<Chapter>WH_JOURNALRECORD</Chapter>

				<Chapter>WH_JOURNALPLAYBACK</Chapter>

				<Chapter>WH_DEBUG</Chapter>

				<Chapter>Subclassing	.NET	WinForms</Chapter>

				<Chapter>Implementing	Hooks	in	VB.NET</Chapter>

		</Book>

		<Book	name="C#	Cookbook">

				<Chapter>Numbers</Chapter>

				<Chapter>Strings	and	Characters</Chapter>

				<Chapter>Classes	And	Structures</Chapter>

				<Chapter>Enums</Chapter>

				<Chapter>Exception	Handling</Chapter>

				<Chapter>Diagnostics</Chapter>

				<Chapter>Delegates	and	Events</Chapter>

				<Chapter>Regular	Expressions</Chapter>

				<Chapter>Collections</Chapter>

				<Chapter>Data	Structures	and	Algorithms</Chapter>

				<Chapter>File	System	IO</Chapter>

				<Chapter>Reflection</Chapter>

				<Chapter>Networking</Chapter>

				<Chapter>Security</Chapter>

				<Chapter>Threading</Chapter>

				<Chapter>Unsafe	Code</Chapter>

				<Chapter>XML</Chapter>

		</Book>

		<Book	name="C#	Cookbook	2.0">

				<Chapter>Numbers	and	Enumerations</Chapter>

				<Chapter>Strings	and	Characters</Chapter>

				<Chapter>Classes	And	Structures</Chapter>

				<Chapter>Generics</Chapter>

				<Chapter>Collections</Chapter>

				<Chapter>Iterators	and	Partial	Types</Chapter>

				<Chapter>Exception	Handling</Chapter>

				<Chapter>Diagnostics</Chapter>

				<Chapter>Delegates,	Events,	and	Anonymous	Methods</Chapter>

				<Chapter>Regular	Expressions</Chapter>

				<Chapter>Data	Structures	and	Algorithms</Chapter>

				<Chapter>File	System	IO</Chapter>

				<Chapter>Reflection</Chapter>

				<Chapter>Web</Chapter>

				<Chapter>XML</Chapter>

				<Chapter>Networking</Chapter>

				<Chapter>Security</Chapter>

				<Chapter>Threading	and	Synchronization</Chapter>

				<Chapter>Unsafe	Code</Chapter>

				<Chapter>Toolbox</Chapter>

		</Book>

		<Book	name="C#	3.0	Cookbook">

				<Chapter>Language	Integrated	Query	(LINQ)</Chapter>

				<Chapter>Strings	and	Characters</Chapter>

				<Chapter>Classes	And	Structures</Chapter>

				<Chapter>Generics</Chapter>

				<Chapter>Collections</Chapter>

				<Chapter>Iterators,	Partial	Types,	and	Partial	Methods	</Chapter>

				<Chapter>Exception	Handling</Chapter>

				<Chapter>Diagnostics</Chapter>

				<Chapter>Delegates,	Events,	and	Lambda	Expressions</Chapter>

				<Chapter>Regular	Expressions</Chapter>

				<Chapter>Data	Structures	and	Algorithms</Chapter>

				<Chapter>File	System	IO</Chapter>

				<Chapter>Reflection</Chapter>

				<Chapter>Web</Chapter>

				<Chapter>XML</Chapter>

				<Chapter>Networking</Chapter>

				<Chapter>Security</Chapter>

				<Chapter>Threading	and	Synchronization</Chapter>

				<Chapter>Toolbox</Chapter>

				<Chapter>Numbers	and	Enumerations</Chapter>

		</Book>

		<Book	name="C#	6.0	Cookbook">

				<Chapter>Classes	and	Generics</Chapter>

				<Chapter>Collections,	Enumerators,	and	Iterators</Chapter>

				<Chapter>Data	Types</Chapter>

				<Chapter>LINQ	and	Lambda	Expressions</Chapter>

				<Chapter>Debugging	and	Exception	Handling</Chapter>

				<Chapter>Reflection	and	Dynamic	Programming</Chapter>

				<Chapter>Regular	Expressions</Chapter>

				<Chapter>Filesystem	I/O</Chapter>

				<Chapter>Networking	and	Web</Chapter>

				<Chapter>XML</Chapter>

				<Chapter>Security</Chapter>

				<Chapter>Threading,	Synchronization,	and	Concurrency</Chapter>

				<Chapter>Toolbox</Chapter>

		</Book>

</Publications>

See	Also
The	“LINQ,	transforming	data”	and	“XsltArgumentList	Class”	topics	in	the	MSDN
documentation.

10.9	Getting	Your	Schemas	in	Bulk	from	Existing	XML	Files

Problem
You	have	come	on	to	a	new	project	in	which	XML	was	used	for	data	transmission,	but	the
programmers	who	came	before	you	didn’t	use	an	XSD	for	one	reason	or	another.	You
need	to	generate	beginning	schema	files	for	each	of	the	XML	examples.

Solution
Use	the	XmlSchemaInference	class	to	infer	schema	from	the	XML	samples.	The
GenerateSchemasForDirectory	function	in	Example	10-7	enumerates	all	of	the	XML
files	in	a	given	directory	and	processes	each	of	them	using	the	GenerateSchemasForFile
method.	GenerateSchemasForFile	uses	the	XmlSchemaInference.InferSchema	method
to	get	the	schemas	for	the	given	XML	file.	Once	the	schemas	have	been	determined,
GenerateSchemasForFile	rolls	over	the	collection	and	saves	out	each	schema	to	an	XSD
file	using	a	FileStream.

Example	10-7.	Generating	an	XML	schema
public	static	void	GenerateSchemasForFile(string	file)

{

				//	set	up	a	reader	for	the	file

				using	(XmlReader	reader	=	XmlReader.Create(file))

				{

								XmlSchemaSet	schemaSet	=	new	XmlSchemaSet();

								XmlSchemaInference	schemaInference	=

																								new	XmlSchemaInference();

								//	get	the	schema

								schemaSet	=	schemaInference.InferSchema(reader);

								string	schemaPath	=	string.Empty;

								foreach	(XmlSchema	schema	in	schemaSet.Schemas())

								{

												//	make	schema	file	path	and	write	it	out

												schemaPath	=	$"{Path.GetDirectoryName(file)}\\"	+

																												$"{Path.GetFileNameWithoutExtension(file)}.xsd";

												using	(FileStream	fs	=

																new	FileStream(schemaPath,	FileMode.OpenOrCreate))

												{

																schema.Write(fs);

																fs.Flush();

												}

								}

				}

}

public	static	void	GenerateSchemasForDirectory(string	dir)

{

				//	make	sure	the	directory	exists

				if	(Directory.Exists(dir))

				{

								//	get	the	files	in	the	directory

								string[]	files	=	Directory.GetFiles(dir,	"*.xml");

								foreach	(string	file	in	files)

								{

												GenerateSchemasForFile(file);

								}

				}

}

The	GenerateSchemasForDirectory	method	can	be	called	like	this:

//	Get	the	directory	two	levels	up	from	where	we	are	running.

DirectoryInfo	di	=	new	DirectoryInfo(@"..\..");

string	dir	=	di.FullName;

//	Generate	the	schema.

GenerateSchemasForDirectory(dir);

Discussion
Having	an	XSD	for	the	XML	files	in	an	application	allows	for:

Validation	of	XML	presented	to	the	system

Documentation	of	the	semantics	of	the	data

Programmatic	discovery	of	the	data	structure	through	XML	reading	methods

Using	the	GenerateSchemasForFile	method	can	jump-start	the	process	of	developing
schema	for	your	XML,	but	each	schema	should	be	reviewed	by	the	team	member
responsible	for	producing	the	XML.	This	will	help	to	ensure	that	the	rules	as	stated	in	the
schema	are	correct	and	also	that	additional	items,	such	as	schema	default	values	and	other
relationships,	are	added.	Any	relationships	that	were	not	present	in	the	example	XML	files
would	be	missed	by	the	schema	generator.

See	Also
The	“XmlSchemaInference	Class”	and	“XML	Schemas	(XSD)	Reference”	topics	in	the
MSDN	documentation.

10.10	Passing	Parameters	to	Transformations

Problem
You	need	to	transform	some	data	using	a	mostly	common	pattern.	For	the	few	data	items
that	could	change	between	transformations,	you	don’t	want	to	have	a	separate	mechanism
for	each	variation.

Solution
If	you	are	using	LINQ	to	XML,	simply	build	a	method	to	encapsulate	the	transformation
code	and	pass	parameters	to	the	method	just	as	you	normally	would	for	other	code:

//	transform	using	LINQ	instead	of	XSLT

string	storeTitle	=	"Hero	Comics	Inventory";

string	pageDate	=	DateTime.Now.ToString("F");

XElement	parameterExample	=	XElement.Load(@"..\..\ParameterExample.xml");

string	htmlPath	=	@"..\..\ParameterExample_LINQ.htm";

TransformWithParameters(storeTitle,	pageDate,	parameterExample,	htmlPath);

//	now	change	the	parameters

storeTitle	=	"Fabulous	Adventures	Inventory";

pageDate	=	DateTime.Now.ToString("D");

htmlPath	=	@"..\..\ParameterExample2_LINQ.htm";

TransformWithParameters(storeTitle,	pageDate,	parameterExample,	htmlPath);

The	TransformWithParameters	method	looks	like	this:

private	static	void	TransformWithParameters(string	storeTitle,	string	pageDate,

				XElement	parameterExample,	string	htmlPath)

{

				XElement	transformedParameterExample	=

								new	XElement("html",

												new	XElement("head"),

												new	XElement("body",

																new	XElement("h3",	$"Brought	to	you	by	{storeTitle}	"	+

																								$"on	{pageDate}{Environment.NewLine}"),

																new	XElement("br"),

																new	XElement("table",

																				new	XAttribute("border","2"),

																				new	XElement("thead",

																								new	XElement("tr",

																												new	XElement("td",

																																new	XElement("b","Heroes")),

																												new	XElement("td",

																																new	XElement("b","Edition")))),

																				new	XElement("tbody",

																								from	cb	in	parameterExample.Elements("ComicBook")

																								orderby	cb.Attribute("name").Value	descending

																								select	new	XElement("tr",

																																new	XElement("td",cb.Attribute("name").Value),

																																new	XElement("td",

																																				cb.Attribute("edition").Value))))));

				transformedParameterExample.Save(htmlPath);

}

If	you	are	using	XSLT	to	perform	transformations,	use	the	XsltArgumentList	class	to
pass	arguments	to	the	XSLT	transformation.	This	technique	allows	the	program	to
generate	an	object	(such	as	a	dynamic	string)	for	the	stylesheet	to	access	and	use	while	it
transforms	the	given	XML	file.	The	storeTitle	and	pageDate	arguments	are	passed	in	to
the	transformation	in	the	following	example.	The	storeTitle	is	for	the	title	of	the	comic
store,	and	pageDate	is	the	date	for	which	the	report	is	run.	You	add	these	using	the
AddParam	method	of	the	XsltArgumentList	object	instance	args:

//transform	using	XSLT	and	parameters

XsltArgumentList	args	=	new	XsltArgumentList();

args.AddParam("storeTitle",	"",	"Hero	Comics	Inventory");

args.AddParam("pageDate",	"",	DateTime.Now.ToString("F"));

//	Create	a	resolver	with	default	credentials.

XmlUrlResolver	resolver	=	new	XmlUrlResolver();

resolver.Credentials	=	System.Net.CredentialCache.DefaultCredentials;

The	XsltSettings	class	allows	for	changing	the	behavior	of	the	transformation.	If	you	use
the	XsltSettings.Default	instance,	you	can	do	the	transformation	without	allowing
scripting	or	the	use	of	the	document	XSLT	function,	as	they	can	be	security	risks.	If	the
stylesheet	is	from	a	trusted	source,	you	can	just	create	an	XsltSettings	object	and	use	it,
but	it	is	better	to	be	safe.	Further	changes	to	the	code	could	open	it	up	to	use	with
untrusted	XSLT	stylesheets:

XslCompiledTransform	transform	=	new	XslCompiledTransform();

//	load	up	the	stylesheet

transform.Load(@"..\..\ParameterExample.xslt",	XsltSettings.Default,	

				resolver);

//	perform	the	transformation

FileStream	fs	=	null;

using	(fs	=

				new	FileStream(@"..\..\ParameterExample.htm",

																				FileMode.OpenOrCreate,	FileAccess.Write))

{

				transform.Transform(@"..\..\ParameterExample.xml",	args,	fs);

}				XslCompiledTransform	transform	=	new	XslCompiledTransform();

				//	Load	up	the	stylesheet.

				transform.Load(@"..\..\ParameterExample.xslt",	XsltSettings.Default,	

								resolver);

				//	Perform	the	transformation.

				FileStream	fs	=	null;

				using	(fs	=	new	FileStream(@"..\..\ParameterExample.htm",

									FileMode.OpenOrCreate,	FileAccess.Write))

				{

								transform.Transform(@"..\..\ParameterExample.xml",	args,	fs);

				}

To	show	the	different	parameters	in	action,	now	you	change	storeTitle	and	pageDate
and	run	the	transformation	again:

//	now	change	the	parameters	and	reprocess

args	=	new	XsltArgumentList();

args.AddParam("storeTitle",	"",	"Fabulous	Adventures	Inventory");

args.AddParam("pageDate",	"",	DateTime.Now.ToString("D"));

using	(fs	=	new	FileStream(@"..\..\ParameterExample2.htm",

				FileMode.OpenOrCreate,	FileAccess.Write))

{

				transform.Transform(@"..\..\ParameterExample.xml",	args,	fs);

}

The	ParameterExample.xml	file	contains	the	following:

<?xml	version="1.0"	encoding="utf-8"	?>

<?xml-stylesheet	href="ParameterExample.xslt"	type="text/xsl"?>

<ParameterExample>

				<ComicBook	name="The	Amazing	Spider-Man"	edition="1"/>

				<ComicBook	name="The	Uncanny	X-Men"	edition="2"/>

				<ComicBook	name="Superman"	edition="3"/>

				<ComicBook	name="Batman"	edition="4"/>

				<ComicBook	name="The	Fantastic	Four"	edition="5"/>

</ParameterExample>

The	ParameterExample.xslt	file	contains	the	following:

<?xml	version="1.0"	encoding="UTF-8"	?>

<xsl:stylesheet	version="1.0"	xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

		<xsl:output	method="html"	indent="yes"	/>

		<xsl:param	name="storeTitle"/>

		<xsl:param	name="pageDate"/>

		<xsl:template	match="ParameterExample">

				<html>

						<head/>

						<body>

								<h3>

										<xsl:text>Brought	to	you	by	</xsl:text>

										<xsl:value-of	select="$storeTitle"/>

										<xsl:text>	on	</xsl:text>

										<xsl:value-of	select="$pageDate"/>

										<xsl:text>	
</xsl:text>

								</h3>

								

								<table	border="2">

										<thead>

												<tr>

														<td>

																Heroes

														</td>

														<td>

																Edition

														</td>

												</tr>

										</thead>

										<tbody>

												<xsl:apply-templates/>

										</tbody>

								</table>

						</body>

				</html>

		</xsl:template>

		<xsl:template	match="ComicBook">

				<tr>

						<td>

								<xsl:value-of	select="@name"/>

						</td>

						<td>

								<xsl:value-of	select="@edition"/>

						</td>

				</tr>

		</xsl:template>

</xsl:stylesheet>

The	output	from	the	first	transformation	using	XSLT	to	ParameterExample.htm	or	using
LINQ	to	ParameterExample_LINQ.htm	is	shown	in	Figure	10-2.

Figure	10-2.	Output	from	the	first	set	of	parameters

Output	from	the	second	transformation	using	XSLT	to	ParameterExample2.htm	or	using

LINQ	to	ParameterExample2_LINQ.htm	is	shown	in	Figure	10-3.

Figure	10-3.	Output	from	the	second	set	of	parameters

Discussion
Both	approaches	allow	you	to	templatize	your	code	and	provide	parameters	to	modify	the
output.	With	the	LINQ	to	XML	method,	the	code	is	all	in	.NET,	and	.NET	analysis	tools
can	be	used	to	measure	the	impact	of	the	transformation.	Using	the	declarative	style	of	the
code	conveys	the	intent	more	clearly	than	having	to	go	to	the	external	XSLT	file.	If	you
don’t	know	XSLT,	you	don’t	have	to	learn	it,	as	you	can	do	it	in	code	now.

If	you	already	know	XSLT,	you	can	continue	to	leverage	it.	Being	able	to	pass	information
to	the	XSLT	stylesheet	allows	for	a	much	greater	degree	of	flexibility	when	you	are
designing	reports	or	user	interfaces	via	XSLT	transformations.	This	capability	can	help
you	customize	the	output	based	on	just	about	any	criteria	you	can	think	of,	as	the	data
being	passed	in	is	totally	controlled	by	your	program.	Once	you	get	the	hang	of	using
parameters	with	XSLT,	a	whole	new	level	of	customization	becomes	possible.	As	an
added	bonus,	it	is	portable	between	environments.

See	Also
The	“LINQ,	transforming	data,”	“XsltArgumentList	Class,”	and	“XsltSettings	Class”
topics	in	the	MSDN	documentation.

Chapter	11.	Security

11.0	Introduction
The	security	of	running	code	in	.NET	revolves	around	the	concept	of	Code	Access
Security	(CAS).	CAS	determines	the	trustworthiness	of	an	assembly	based	upon	its	origin
and	the	characteristics	of	the	assembly	itself,	such	as	its	hash	value.	For	example,	code
installed	locally	on	the	machine	is	more	trusted	than	code	downloaded	from	the	Internet.
The	runtime	will	also	validate	an	assembly’s	metadata	and	type	safety	before	that	code	is
allowed	to	run.

There	are	many	mechanisms	that	we	can	use	to	write	secure	code	and	protect	data	using
the	.NET	Framework.	In	this	chapter,	we	explore	such	topics	as	controlling	access	to
types,	encryption/decryption,	randomizing	numbers	for	use	with	encryption,	securely
storing	data,	and	using	programmatic	and	declarative	security.

11.1	Encrypting	and	Decrypting	a	String

Problem
You	have	data	in	a	string	that	you	want	to	be	able	to	encrypt	and	decrypt	—	perhaps	a
password	or	software	key	—	which	will	be	stored	in	some	form,	such	as	in	a	file	or	the
registry.	You	want	to	keep	this	string	a	secret	so	that	users	cannot	take	this	information
from	you.

Solution
Encrypting	the	string	will	help	to	prevent	users	from	being	able	to	read	and	decipher	the
information.	The	CryptoString	class	shown	in	Example	11-1	contains	two	static	methods
to	encrypt	and	decrypt	a	string	and	two	static	properties	to	retrieve	the	generated	key	and
initialization	vector	(IV	—	a	random	number	used	as	a	starting	point	to	encrypt	data)	after
encryption	has	occurred.

Example	11-1.	CryptoString	class
using	System;

using	System.Security.Cryptography;

public	sealed	class	CryptoString

{

				private	CryptoString()	{}

				private	static	byte[]	savedKey	=	null;

				private	static	byte[]	savedIV	=	null;

				public	static	byte[]	Key	{	get;	set;	}

				public	static	byte[]	IV	{	get;	set;	}

				private	static	void	RdGenerateSecretKey(RijndaelManaged	rdProvider)

				{

								if	(savedKey	==	null)

								{

												rdProvider.KeySize	=	256;

												rdProvider.GenerateKey();

												savedKey	=	rdProvider.Key;

								}

				}

				private	static	void	RdGenerateSecretInitVector(RijndaelManaged	rdProvider)

				{

								if	(savedIV	==	null)

								{

												rdProvider.GenerateIV();

												savedIV	=	rdProvider.IV;

								}

				}

				public	static	string	Encrypt(string	originalStr)

				{

								//	Encode	data	string	to	be	stored	in	memory.

								byte[]	originalStrAsBytes	=	Encoding.ASCII.GetBytes(originalStr);

								byte[]	originalBytes	=	{};

								//	Create	MemoryStream	to	contain	output.

								using	(MemoryStream	memStream	=	new

																	MemoryStream(originalStrAsBytes.Length))

								{

												using	(RijndaelManaged	rijndael	=	new	RijndaelManaged())

												{

																//	Generate	and	save	secret	key	and	init	vector.

																RdGenerateSecretKey(rijndael);

																RdGenerateSecretInitVector(rijndael);

																if	(savedKey	==	null	||	savedIV	==	null)

																{

																				throw	(new	NullReferenceException(

																												"savedKey	and	savedIV	must	be	non-null."));

																}

																//	Create	encryptor	and	stream	objects.

																using	(ICryptoTransform	rdTransform	=

																							rijndael.CreateEncryptor((byte[])savedKey.

																							Clone(),(byte[])savedIV.Clone()))

																{

																				using	(CryptoStream	cryptoStream	=	new	CryptoStream(memStream,

																										rdTransform,	CryptoStreamMode.Write))

																				{

																								//	Write	encrypted	data	to	the	MemoryStream.

																								cryptoStream.Write(originalStrAsBytes,	0,

																																			originalStrAsBytes.Length);

																								cryptoStream.FlushFinalBlock();

																								originalBytes	=	memStream.ToArray();

																				}

																}

												}

								}

								//	Convert	encrypted	string.

								string	encryptedStr	=	Convert.ToBase64String(originalBytes);

								return	(encryptedStr);

				}

				public	static	string	Decrypt(string	encryptedStr)

				{

								//	Unconvert	encrypted	string.

								byte[]	encryptedStrAsBytes	=	Convert.FromBase64String(encryptedStr);

								byte[]	initialText	=	new	Byte[encryptedStrAsBytes.Length];

								using	(RijndaelManaged	rijndael	=	new	RijndaelManaged())

								{

												using	(MemoryStream	memStream	=	new	MemoryStream(encryptedStrAsBytes))

												{

																if	(savedKey	==	null	||	savedIV	==	null)

																{

																				throw	(new	NullReferenceException(

																												"savedKey	and	savedIV	must	be	non-null."));

																}

																//	Create	decryptor	and	stream	objects.

																using	(ICryptoTransform	rdTransform	=

																					rijndael.CreateDecryptor((byte[])savedKey.Clone(),

																					(byte[])savedIV.Clone()))

																{

																				using	(CryptoStream	cryptoStream	=	new	CryptoStream(memStream,

																					rdTransform,	CryptoStreamMode.Read))

																					{

																									//	Read	in	decrypted	string	as	a	byte[].

																									cryptoStream.Read(initialText,	0,	initialText.Length);

																					}

																}

												}

								}

								//	Convert	byte[]	to	string.

								string	decryptedStr	=	Encoding.ASCII.GetString(initialText);

								return	(decryptedStr);

				}

}

Discussion
The	CryptoString	class	contains	only	static	members,	except	for	the	private	instance
constructor,	which	prevents	anyone	from	directly	creating	an	object	from	this	class.

This	class	uses	the	Rijndael	algorithm	to	encrypt	and	decrypt	a	string.	This	algorithm	is
found	in	the	System.Security.Cryptography.RijndaelManaged	class.	This	algorithm
requires	a	secret	key	and	an	initialization	vector;	both	are	byte	arrays.	You	can	generate	a
random	secret	key	by	calling	the	GenerateKey	method	on	the	RijndaelManaged	class.
This	method	accepts	no	parameters	and	returns	void.	The	generated	key	is	placed	in	the
Key	property	of	the	RijndaelManaged	class.	The	GenerateIV	method	generates	a	random
initialization	vector	and	places	this	vector	in	the	IV	property	of	the	RijndaelManaged
class.

The	byte	array	values	in	the	Key	and	IV	properties	must	be	stored	for	later	use	and	not
modified.	This	is	due	to	the	nature	of	private-key	encryption	classes,	such	as
RijndaelManaged.	The	Key	and	IV	values	must	be	used	by	both	the	encryption	and
decryption	routines	to	successfully	encrypt	and	decrypt	data.

The	SavedKey	and	SavedIV	private	static	fields	contain	the	secret	key	and	initialization
vector,	respectively.	The	secret	key	is	used	by	both	the	encryption	and	decryption	methods
to	encrypt	and	decrypt	data.	This	is	why	there	are	public	properties	for	these	values,	so
they	can	be	stored	somewhere	secure	for	later	use.	This	means	that	any	strings	encrypted
by	this	object	must	be	decrypted	by	this	object.	The	initialization	vector	is	there	to	make	it
much	more	difficult	to	deduce	the	secret	key	from	the	encrypted	string.	The	initialization
vector	does	this	by	making	two	identical	encrypted	strings	(encrypted	with	the	same	key)
look	very	different	in	their	encrypted	forms.

Two	methods	in	the	CryptoString	class,	RdGenerateSecretKey	and
RdGenerateSecretInitVector,	are	used	to	generate	a	secret	key	and	initialization	vector
when	none	exists.	The	RdGenerateSecretKey	method	generates	the	secret	key,	which	is
placed	in	the	SavedKey	field.	Likewise,	the	RdGenerateSecretInitVector	generates	the
initialization	vector,	which	is	placed	in	the	SavedIV	field.	There	is	only	one	key	and	one
IV	generated	for	this	class.	This	enables	the	encryption	and	decryption	routines	to	have
access	to	the	same	key	and	IV	information	at	all	times.

The	Encrypt	and	Decrypt	methods	of	the	CryptoString	class	do	the	actual	work	of
encrypting	and	decrypting	a	string.	The	Encrypt	method	accepts	a	string	that	you	want	to
encrypt	and	returns	an	encrypted	string.	The	following	code	calls	this	method	and	passes
in	a	string	to	be	encrypted:

string	encryptedString	=	CryptoString.Encrypt("MyPassword");

Console.WriteLine($"encryptedString:	{encryptedString}");

//	Get	the	key	and	IV	used	so	you	can	decrypt	it	later.

byte	[]	key	=	CryptoString.Key;

byte	[]	IV	=	CryptoString.IV;

Once	the	string	is	encrypted,	the	key	and	IV	are	stored	for	later	decryption.	This	method
displays:

encryptedString:	NmmKqBO4iPT+BDxgLVwzgQ==

Note	that	your	output	may	differ	since	you	will	be	using	a	different	key	and	IV	value.	The
following	code	sets	the	key	and	IV	used	to	encrypt	the	string	and	then	calls	the	Decrypt
method	to	decrypt	the	previously	encrypted	string:

CryptoString.Key	=	key;

CryptoString.IV	=	IV;

string	decryptedString	=	CryptoString.Decrypt(encryptedString);

Console.WriteLine($"decryptedString:	{decryptedString}");

This	method	displays:

decryptedString:	MyPassword

There	does	not	seem	to	be	any	problem	with	using	escape	sequences	such	as	\r,	\n,	\r\n,
or	\t	in	the	string	to	be	encrypted.	In	addition,	using	a	quoted	string	literal,	with	or
without	escaped	characters,	works	without	a	problem:

@"MyPassword"

See	Also
Recipe	11.2;	the	“System.Cryptography	Namespace,”	“MemoryStream	Class,”
“ICryptoTransform	Interface,”	and	“RijndaelManaged	Class”	topics	in	the	MSDN
documentation.

11.2	Encrypting	and	Decrypting	a	File

Problem
You	have	sensitive	information	that	must	be	encrypted	before	it	is	written	to	a	file	that
might	be	stored	in	a	nonsecure	area.	This	information	must	also	be	decrypted	before	it	is
read	back	in	to	the	application.

Solution
Use	multiple	cryptography	providers	and	write	the	data	to	a	file	in	encrypted	format.	This
is	accomplished	in	the	following	class,	which	has	a	constructor	that	expects	an	instance	of
the	System.Security.Cryptography.SymmetricAlgorithm	class	and	a	path	for	the	file.
The	SymmetricAlgorithm	class	is	an	abstract	base	class	for	all	cryptographic	providers	in
.NET,	so	you	can	be	reasonably	assured	that	this	class	could	be	extended	to	cover	all	of
them.	This	example	implements	support	for	TripleDES	and	Rijndael.

The	following	namespaces	are	needed	for	this	solution:

using	System;

using	System.Text;

using	System.IO;

using	System.Security.Cryptography;

The	class	SecretFile	(see	Example	11-2)	can	be	used	for	TripleDES	as	shown:

//	Use	TripleDES.

using	(TripleDESCryptoServiceProvider	tdes	=	new

							TripleDESCryptoServiceProvider())

{

				SecretFile	secretTDESFile	=	new	SecretFile(tdes,"tdestext.secret");

				string	encrypt	=	"My	TDES	Secret	Data!";

				Console.WriteLine($"Writing	secret	data:	{encrypt}");

				secretTDESFile.SaveSensitiveData(encrypt);

				//	Save	for	storage	to	read	file.

				byte	[]	key	=	secretTDESFile.Key;

				byte	[]	IV	=	secretTDESFile.IV;

				string	decrypt	=	secretTDESFile.ReadSensitiveData();

				Console.WriteLine($"Read	secret	data:	{decrypt}");

}

To	use	SecretFile	with	Rijndael,	just	substitute	the	provider	in	the	constructor	like	this:

//	Use	Rijndael.

using	(RijndaelManaged	rdProvider	=	new	RijndaelManaged())

{

				SecretFile	secretRDFile	=	new	SecretFile(rdProvider,"rdtext.secret");

				string	encrypt	=	"My	Rijndael	Secret	Data!";

				Console.WriteLine($"Writing	secret	data:	{encrypt}");

				secretRDFile.SaveSensitiveData(encrypt);

				//	Save	for	storage	to	read	file.

				byte	[]	key	=	secretRDFile.Key;

				byte	[]	IV	=	secretRDFile.IV;

				string	decrypt	=	secretRDFile.ReadSensitiveData();

				Console.WriteLine($"Read	secret	data:	{decrypt}");

}

Example	11-2	shows	the	implementation	of	SecretFile.

Example	11-2.	SecretFile	class
public	class	SecretFile

{

				private	byte[]	savedKey	=	null;

				private	byte[]	savedIV	=	null;

				private	SymmetricAlgorithm	symmetricAlgorithm;

				string	path;

				public	byte[]	Key	{	get;	set;	}

				public	byte[]	IV	{	get;	set;	}

				public	SecretFile(SymmetricAlgorithm	algorithm,	string	fileName)

				{

								symmetricalgorithm;

								path	=	fileName;

				}

				public	void	SaveSensitiveData(string	sensitiveData)

				{

								//	Encode	data	string	to	be	stored	in	encrypted	file.

								byte[]	encodedData	=	Encoding.Unicode.GetBytes(sensitiveData);

								//	Create	FileStream	and	crypto	service	provider	objects.

								using	(FileStream	fileStream	=	new	FileStream(path,

																																															FileMode.Create,

																																															FileAccess.Write))

								{

												//	Generate	and	save	secret	key	and	init	vector.

												GenerateSecretKey();

												GenerateSecretInitVector();

												//	Create	crypto	transform	and	stream	objects.

												using	(ICryptoTransform	transform	=

																								symmetricAlgorithm.CreateEncryptor(savedKey,

																																savedIV))

												{

																using	(CryptoStream	cryptoStream	=

																							new	CryptoStream(fileStream,	transform,

																																								CryptoStreamMode.Write))

																{

																				//	Write	encrypted	data	to	the	file.

																				cryptoStream.Write(encodedData,	0,	encodedData.Length);

																}

												}

								}

				}

				public	string	ReadSensitiveData()

				{

								string	decrypted	=	"";

								//	Create	file	stream	to	read	encrypted	file	back.

								using	(FileStream	fileStream	=	new	FileStream(path,

																																															FileMode.Open,

																																															FileAccess.Read))

								{

												//	Print	out	the	contents	of	the	encrypted	file.

												using	(BinaryReader	binReader	=	new	BinaryReader(fileStream))

												{

																Console.WriteLine("----------	Encrypted	Data	---------");

																int	count	=	(Convert.ToInt32(binReader.BaseStream.Length));

																byte	[]	bytes	=	binReader.ReadBytes(count);

																char	[]	array	=	Encoding.Unicode.GetChars(bytes);

																string	encdata	=	new	string(array);

																Console.WriteLine(encdata);

																Console.WriteLine($"----------	Encrypted	Data	---------

																																			{Environment.NewLine}");

																//	Reset	the	file	stream.

																fileStream.Seek(0,SeekOrigin.Begin);

																//	Create	decryptor.

																using	(ICryptoTransform	transform	=

																				symmetricAlgorithm.CreateDecryptor(savedKey,	savedIV))

																{

																				using	(CryptoStream	cryptoStream	=	new	CryptoStream(fileStream,

																																																					transform,

																																																					CryptoStreamMode.Read))

																				{

																								//	Print	out	the	contents	of	the	decrypted	file.

																								using	(StreamReader	srDecrypted	=

																															new	StreamReader(cryptoStream,	new	UnicodeEncoding()))

																								{

																												Console.WriteLine("----------	Decrypted	Data	---------");

																												decrypted	=	srDecrypted.ReadToEnd();

																												Console.WriteLine(decrypted);

																												Console.WriteLine($"----------	Decrypted	Data	---------

																																															{Environment.NewLine}");

																								}

																				}

																}

												}

								}

								return	decrypted;

				}

				private	void	GenerateSecretKey()

				{

								if	(null	!=	(symmetricAlgorithm	as	TripleDESCryptoServiceProvider))

								{

												TripleDESCryptoServiceProvider	tdes;

												tdes	=	symmetricAlgorithm	as	TripleDESCryptoServiceProvider;

												tdes.KeySize	=	192;	//	Maximum	key	size

												tdes.GenerateKey();

												savedKey	=	tdes.Key;

								}

								else	if	(null	!=	(symmetricAlgorithm	as	RijndaelManaged))

								{

												RijndaelManaged	rdProvider;

												rdProvider	=	symmetricAlgorithm	as	RijndaelManaged;

												rdProvider.KeySize	=	256;	//	Maximum	key	size

												rdProvider.GenerateKey();

												savedKey	=	rdProvider.Key;

								}

				}

				private	void	GenerateSecretInitVector()

				{

								if	(null	!=	(symmetricAlgorithm	as	TripleDESCryptoServiceProvider))

								{

												TripleDESCryptoServiceProvider	tdes;

												tdes	=	symmetricAlgorithm	as	TripleDESCryptoServiceProvider;

												tdes.GenerateIV();

												savedIV	=	tdes.IV;

								}

								else	if	(null	!=	(symmetricAlgorithm	as	RijndaelManaged))

								{

												RijndaelManaged	rdProvider;

												rdProvider	=	symmetricAlgorithm	as	RijndaelManaged;

												rdProvider.GenerateIV();

												savedIV	=	rdProvider.IV;

								}

				}

If	the	SaveSensitiveData	method	is	used	to	save	the	following	text	to	a	file:

This	is	a	test

This	is	sensitive	data!

the	ReadSensitiveData	method	will	display	the	following	information	from	this	same
file:

----------	Encrypted	Data	--------

??

----------	Encrypted	Data	--------

----------	Decrypted	Data	---------

This	is	a	test

This	is	sensitive	data!

----------	Decrypted	Data	---------

Discussion
Encrypting	data	is	essential	to	many	applications,	especially	those	that	store	information	in
easily	accessible	locations.	Once	data	is	encrypted,	a	decryption	scheme	is	required	to
restore	the	data	back	to	an	unencrypted	form	without	losing	any	information.

The	encryption	schemes	used	in	this	recipe	are	TripleDES	and	Rijndael.	The	reasons	for
using	Triple	DES	are:

TripleDES	employs	symmetric	encryption,	meaning	that	a	single	private	key	is	used	to
encrypt	and	decrypt	data.	This	process	allows	much	faster	encryption	and	decryption,
especially	as	the	streams	of	data	become	larger.

TripleDES	encryption	is	much	harder	to	crack	than	the	older	DES	encryption	and	is
widely	considered	to	be	of	high	strength.

If	you	wish	to	use	another	type	of	encryption,	you	can	easily	convert	this	recipe	using
any	provider	derived	from	the	SymmetricAlgorithm	class.

TripleDES	is	widely	deployed	in	the	industry	today.

The	main	drawback	to	TripleDES	is	that	both	the	sender	and	receiver	must	use	the	same
key	and	initialization	vector	(IV)	in	order	to	encrypt	and	decrypt	the	data	successfully.	If
you	wish	to	have	an	even	more	secure	encryption	scheme,	use	the	Rijndael	scheme.	This
type	of	encryption	scheme	is	highly	regarded	as	a	solid	encryption	scheme,	since	it	is	fast
and	can	use	larger	key	sizes	than	TripleDES.	However,	it	is	still	a	symmetric
cryptosystem,	which	means	that	it	relies	on	shared	secrets.	For	a	cryptosystem	that	uses
shared	public	keys	with	private	keys	that	are	never	shared	between	parties,	use	an
asymmetric	cryptosystem,	such	as	RSA	or	DSA.

See	Also
The	“SymmetricAlgorithm	Class,”	“TripleDESCryptoServiceProvider	Class,”	and
“RijndaelManaged	Class”	topics	in	the	MSDN	documentation.

11.3	Cleaning	Up	Cryptography	Information

Problem
You	will	be	using	the	cryptography	classes	in	the	FCL	to	encrypt	and/or	decrypt	data.	In
doing	so,	you	want	to	make	sure	that	no	data	(e.g.,	seed	values	or	keys)	is	left	in	memory
for	longer	than	you	are	using	the	cryptography	classes.	An	attacker	can	sometimes	find
this	information	in	memory	and	use	it	to	break	your	encryption	or,	worse,	to	break	your
encryption,	modify	the	data,	and	then	re-encrypt	the	data,	forcing	your	application	to	use
tainted	data	rather	than	valid	data.

Solution
To	clear	out	the	key	and	initialization	vector	(or	seed),	you	need	to	call	the	Clear	method
on	whichever	SymmetricAlgorithm-	or	AsymmetricAlgorithm-derived	class	you	are
using.	Clear	reinitializes	the	Key	and	IV	properties,	preventing	them	from	being	found	in
memory.	You	call	it	after	saving	the	key	and	IV	so	that	you	can	decrypt	later.	Example	11-
3	shows	how	to	encrypt	a	string	and	then	clean	up	immediately	afterward	to	provide	the
smallest	window	possible	for	potential	attackers.

Example	11-3.	Cleaning	up	cryptography	information
using	System;

using	System.Text;

using	System.IO;

using	System.Security.Cryptography;

public	static	void	CleanUpCrypto()

{

				string	originalStr	=	"SuperSecret	information";

				//	Encode	data	string	to	be	stored	in	memory.

				byte[]	originalStrAsBytes	=	Encoding.ASCII.GetBytes(originalStr);

				//	Create	MemoryStream	to	contain	output.

				MemoryStream	memStream	=	new	MemoryStream(originalStrAsBytes.Length);

				RijndaelManaged	rijndael	=	new	RijndaelManaged();

				//	Generate	secret	key	and	init	vector.

				rijndael.KeySize	=	256;

				rijndael.GenerateKey();

				rijndael.GenerateIV();

				//	Save	the	key	and	IV	for	later	decryption.

				byte	[]	key	=	rijndael.Key;

				byte	[]	IV	=	rijndael.IV;

				//	Create	encryptor	and	stream	objects.

				ICryptoTransform	transform	=	rijndael.CreateEncryptor(rijndael.Key,

								rijndael.IV);

				CryptoStream	cryptoStream	=	new	CryptoStream(memStream,	transform,

								CryptoStreamMode.Write);

				//	Write	encrypted	data	to	the	MemoryStream.

				cryptoStream.Write(originalStrAsBytes,	0,	originalStrAsBytes.Length);

				cryptoStream.FlushFinalBlock();

				//	Release	all	resources	as	soon	as	we	are	done	with	them

				//	to	prevent	retaining	any	information	in	memory.

				memStream.Close();

				cryptoStream.Close();

				transform.Dispose();

				//	This	clear	statement	regens	both	the	key	and	the	init	vector	so	that

				//	what	is	left	in	memory	is	no	longer	the	values	you	used	to	encrypt	with.

				rijndael.Clear();

}

You	can	also	make	your	life	a	little	easier	by	taking	advantage	of	the	using	statement,
instead	of	having	to	remember	to	manually	call	each	of	the	Close	methods	individually.
This	code	block	shows	how	to	use	the	using	statement:

public	static	void	CleanUpCryptoWithUsing()

{

				string	originalStr	=	"SuperSecret	information";

				//	Encode	data	string	to	be	stored	in	memory.

				byte[]	originalStrAsBytes	=	Encoding.ASCII.GetBytes(originalStr);

				byte[]	originalBytes	=	{	};

				//	Create	MemoryStream	to	contain	output.

				using	(MemoryStream	memStream	=	new	MemoryStream(originalStrAsBytes.Length))

				{

								using	(RijndaelManaged	rijndael	=	new	RijndaelManaged())

								{

												//	Generate	secret	key	and	init	vector.

												rijndael.KeySize	=	256;

												rijndael.GenerateKey();

												rijndael.GenerateIV();

												//	Save	off	the	key	and	IV	for	later	decryption.

												byte[]	key	=	rijndael.Key;

												byte[]	IV	=	rijndael.IV;

												//	Create	encryptor	and	stream	objects.

												using	(ICryptoTransform	transform	=

																				rijndael.CreateEncryptor(rijndael.Key,	rijndael.IV))

												{

																using	(CryptoStream	cryptoStream	=	new

																							CryptoStream(memStream,	transform,

																								CryptoStreamMode.Write))

																{

																				//	Write	encrypted	data	to	the	MemoryStream.

																				cryptoStream.Write(originalStrAsBytes,	0,

																																originalStrAsBytes.Length);

																				cryptoStream.FlushFinalBlock();

																}

												}

								}

				}

}

Discussion
To	make	sure	your	data	is	safe,	you	need	to	close	the	MemoryStream	and	CryptoStream
objects	as	soon	as	possible,	as	well	as	calling	Dispose	on	the	ICryptoTransform
implementation	to	clear	out	any	resources	used	in	this	encryption.	The	using	statement
makes	this	process	much	easier,	makes	your	code	easier	to	read,	and	leads	to	fewer
programming	mistakes.

See	Also
The	“SymmetricAlgorithm.Clear	Method”	and	“AsymmetricAlgorithm.Clear	Method”
topics	in	the	MSDN	documentation.

11.4	Preventing	String	Tampering	in	Transit	or	at	Rest

Problem
You	need	to	send	some	text	across	a	network	to	another	machine	for	processing	or	perhaps
place	it	in	a	storage	medium	for	later	retrieval.	You	need	to	verify	that	this	text	remains
unmodified,	untampered	with,	and	uncorrupted.

Solution
Calculate	a	hash	value	from	the	string,	digitally	sign	the	hash	value,	and	send	both	the
string	and	its	digital	signature	to	the	recipient	(a	public	key	will	also	be	provided	to	the
recipient).	Once	the	destination	receives	this	information,	it	can	determine	whether	the
string	is	the	same	one	that	was	initially	sent	by	verifying	its	digital	signature,	which
cannot	be	forged	or	manipulated.

Before	getting	into	the	details	of	how	this	works,	first	we’ll	look	at	the	code	used	to
digitally	sign	some	string	data	and,	in	turn,	verify	that	this	string	has	not	changed	using
this	same	digital	signature.	In	Example	11-4,	the	AntiTamper	class	contains	two	methods,
SignString	and	VerifySignedString,	which	perform	each	of	these	duties.	The
SignString	method	takes	a	clear	text	string	and	generates	a	digital	signature	from	it.	The
VerifySignedString	method	is	used	by	the	code	that	receives	the	string	to	determine	if
the	string	has	been	modified	in	any	way	prior	to	reception.

Example	11-4.	The	AntiTamper	class
public	class	AntiTamper

{

				static	private	readonly	int	RSA_KEY_SIZE	=	2048;

				public	static	byte[]	SignString(string	clearText,	out	string	rsaPublicKey)

				{

								byte[]	signature	=	null;

								rsaPublicKey	=	null;

								byte[]	encodedClearText	=	Encoding.Unicode.GetBytes(clearText);

								using	(SHA512CryptoServiceProvider	sha512	=

																													new	SHA512CryptoServiceProvider())

								{

												using	(RSACryptoServiceProvider	rsa	=

																			new	RSACryptoServiceProvider(RSA_KEY_SIZE))

												{

																signature	=	rsa.SignData(encodedClearText,	sha512);

																rsaPublicKey	=	rsa.ToXmlString(false);

												}

								}

								return	signature;

				}

				public	static	bool	VerifySignedString(string	clearText,	byte[]	signature,

																																										string	rsaPublicKey)

				{

								bool	verified	=	false;

								byte[]	encodedClearText	=	Encoding.Unicode.GetBytes(clearText);

								using	(SHA512CryptoServiceProvider	sha512	=

																													new	SHA512CryptoServiceProvider())

								{

												using	(RSACryptoServiceProvider	rsa	=

																			new	RSACryptoServiceProvider(RSA_KEY_SIZE))

												{

																rsa.FromXmlString(rsaPublicKey);

																verified	=	rsa.VerifyData(encodedClearText,	sha512,	signature);

												}

								}

								return	verified;

				}

}

The	VerifyStringIntegrity	method	shows	how	to	use	the	AntiTamper	class	to	sign	and
verify	a	string.	The	VerifyStringIntegrity	method	first	calls	the	SendData	method.	This
method	encapsulates	the	code	that	would	exist	on	the	sender’s	side,	but	you	will	need	to
add	code	to	actually	send	the	complete	message	to	the	receiver.	Before	the	message	is
sent,	this	method	generates	a	digital	signature	from	the	string	data	that	we	want	to	protect
from	tampering.	You	generate	the	digital	signature	by	calling	the	static
AntiTamper.SignString	method.	This	method	returns	a	digital	signature	as	a	byte[]	and
the	RSA	public	key	information	through	an	out	parameter.	The	RSA	public	key
information	is	required	by	the	verification	method,	ReceiveData.

NOTE
It	is	important	to	understand	that	the	receiver	needs	three	things:	the	original	string	data,	its	digital
signature,	and	the	public	key.	The	string	data	and	signature	can	be	sent	together	in	the	same	message;
however,	the	public	key	could	be	sent	either	along	with	the	message	or	distributed	through	a	separate
channel.	This	separate	channel	could	be	one	of	several	mechanisms:	a	signed	and	encrypted	email	message,
a	secure	FTP	server,	an	X.509	certificate	signed	by	a	trusted	third-party	authority,	Simple	Public	Key
Infrastructure	(SPKI),	or	Pretty	Good	Privacy	(PGP)	used	to	sign	and	encrypt	the	public	key	to	prove	that	it
originated	from	the	expected	party.

Whatever	mechanism	you	use	to	distribute	the	public	key,	it	is	critical	that	the	recipient	trusts	that	this	key
is	indeed	originating	from	the	correct	party.

The	second	method,	ReceiveData,	receives	the	string	data,	the	generated	digital	signature,
and	the	RSA	public	key	information,	which	is	used	to	verify	the	digital	signature	against
the	string	data	received.	This	method	encapsulates	the	code	that	would	exist	on	the
receiver’s	side,	but	you	will	need	to	add	code	to	actually	receive	the	complete	message
from	the	sender.	If	the	digital	signature	indeed	proves	that	the	string	data	has	not	been
tampered	with,	a	Boolean	value	of	true	is	returned;	otherwise,	false	is	returned,
indicating	that	the	string	data	has	been	modified	or	tampered	with:

public	static	void	VerifyStringIntegrity()

{

				string	originalString	=	"This	is	the	string	that	we'll	be	testing.";

				//	Create	a	hash	value	from	the	original	string	value	we	need	to	protect

				//			and	sign	the	hash	value

				string	rsaPublicKey;

				byte[]	signature	=	SendData(originalString,	out	rsaPublicKey);

				//		Uncomment	the	code	below	to	quickly	test	handling	a	tampered	string:

				//						originalString	+=	"a";

				//		Uncomment	the	code	below	to	quickly	test	handling	a	tampered	signature:

				//						signature[1]	=	100;

				//	Now,	verify	that	the	string	has	not	been	corrupted,	nor	tampered	with

				if	(ReceiveData(originalString,	signature,	rsaPublicKey))

				{

								Console.WriteLine(

												"The	original	string	was	NOT	corrupted	or	tampered	with.");

				}

				else

				{

								Console.WriteLine(

												"ALERT:		The	original	string	was	corrupted	and/or	tampered	with.");

				}

}

private	static	byte[]	SendData(string	originalString,	out	string	rsaPublicKey)

{

				//	Digitally	sign	the	string	data

				byte[]	signature	=	AntiTamper.SignString(originalString,	out	rsaPublicKey);

				//	Send	the	data	to	its	destination…

				return	signature;

}

private	static	bool	ReceiveData(string	originalString,	byte[]	signature,

																																string	rsaPublicKey)

{

				//	Receive	the	data	from	the	sender…

				//	Verify	the	digital	signature

				return	(AntiTamper.VerifySignedString(originalString,	signature,	

								rsaPublicKey));

}

The	output	of	this	method	is	shown	here	when	the	string	is	uncorrupted:

The	original	string	was	NOT	corrupted	or	tampered	with.

The	output	of	this	method	is	shown	here	when	the	string	has	been	corrupted:

ALERT:		The	original	string	was	corrupted	and/or	tampered	with.

To	see	this	in	action,	simply	uncomment	one	of	the	following	two	commented	lines	in	the
VerifyStringIntegrity	method:

//		Uncomment	the	code	below	to	quickly	test	handling	a	tampered	string:

						originalString	+=	"a";

or:

//		Uncomment	the	code	below	to	quickly	test	handling	a	tampered	signature:

						signature[1]	=	100;

Discussion
Hash	values	are	useful	in	determining	if	data	has	been	modified	or	corrupted	at	rest	or	in
transit.	A	hash	value	—	or	even	a	checksum,	or	cyclic	redundancy	check	(CRC)	value	—
is	first	calculated	from	the	data	you	are	trying	to	protect.	This	hash	value	along	with	the
data	is	then	sent	to	the	receiver.	The	receiver	recalculates	the	hash	value	based	on	the	data
received.	If	the	new	hash	value	matches	the	hash	value	received,	the	data	has	not	changed;
otherwise,	the	data	has	been	modified	or	corrupted	at	some	point.

NOTE
It	is	critical	that	both	sides	agree	on	a	hash	algorithm	that	will	be	used.	Either	the	SHA-256	or	SHA-512
algorithm	is	a	good	secure	choice	as	well	as	an	industry	standard.

While	this	hashing	technique	works	well	in	flagging	data	that	has	become	corrupted	or	has
been	modified	accidentally,	it	cannot	protect	against	an	attacker	surreptitiously	modifying
the	data	in	an	attempt	to	gain	access	to	a	system	or	plant	false	information	in	an	attempt	to
blackmail	or	extort.	If	only	a	hash	value	is	used	to	protect	the	data,	an	attacker	can
intercept	the	data	(using	a	Man-in-the-Middle	attack),	modify	the	data,	and	then
regenerate	a	new	hash	from	the	modified	data.	The	old	hash	value	is	then	replaced	with
the	new	one	before	the	data	is	resent	to	the	intended	receiver.	The	intended	receiver	is
none	the	wiser	that	the	data	has	been	tampered	with;	since,	from	the	receiver’s	point	of
view,	the	hash	the	receiver	generates	is	exactly	the	same	as	the	one	received.	To	prevent
against	these	types	of	attacks,	a	more	robust	system	is	needed.	This	is	where	digital
signatures	come	into	play.

A	digital	signature	is	generated	through	an	asymmetric	public	key	cryptography	algorithm.
This	means	that	there	are	two	keys.	The	first	key	is	a	public	key	that	can	be	distributed	to
all	parties	that	will	receive	the	signed	data.	This	public	key	will	be	used	to	verify	the
digital	signature	of	the	received	data.	The	second	key	is	a	private	key	that	must	remain
securely	in	the	hands	of	the	party	sending	the	data.	The	private	key	is	used	only	to	initially
sign	the	data	before	it	is	sent	to	the	receiver.	The	public	and	private	keys	work	together,
one	to	sign	the	data	and	the	other	to	prove	not	only	that	the	signature	is	from	the	intended
sender,	but	also	that	the	data	signed	with	this	signature	has	not	been	tampered	with,
modified,	or	corrupted.

WARNING
If	the	private	key	is	stolen,	an	attacker	will	be	able	to	digitally	sign	data	as	if	he	were	the	legitimate	sender
of	the	data.	Never	send	the	private	key	to	parties	other	than	those	required	to	have	it,	and	never	transmit	or
store	it	in	plain	text.

Here	is	how	data	is	digitally	signed	by	the	sender.	The	AntiTamper.SignString	method	is
called,	and	the	data	to	be	signed	is	passed	into	the	first	argument	(clearText)	and	a	string
variable	(rsaPublicKey)	is	passed	in	as	the	second	argument.	The	rsaPublicKey	variable
will	eventually	hold	the	public	key	information,	which	must	be	used	to	verify	the	signature
later	in	the	AntiTamper.VerifySignedString	method:

public	static	byte[]	SignString(string	clearText,	out	string	rsaPublicKey)

{

				byte[]	signature	=	null;

				rsaPublicKey	=	null;

				byte[]	encodedClearText	=	Encoding.Unicode.GetBytes(clearText);

				using	(SHA512CryptoServiceProvider	sha512	=

																									new	SHA512CryptoServiceProvider())

				{

								using	(RSACryptoServiceProvider	rsa	=

															new	RSACryptoServiceProvider(RSA_KEY_SIZE))

								{

												signature	=	rsa.SignData(encodedClearText,	sha512);

												rsaPublicKey	=	rsa.ToXmlString(false);

								}

				}

				return	signature;

}

First	the	SignString	method	creates	a	SHA512CryptoServiceProvider	object	that	will	be
used	to	create	a	hash	that	will	be	digitally	signed.	Note	here	that	we	are	creating	a	SHA-
512	hash	value	for	the	data	that	we	need	to	protect.	However,	we	are	not	actually	signing
the	data	we	are	protecting;	rather,	we	are	signing	the	SHA-512	hash	value.	This	is
important	because	asymmetric	cryptography	algorithms	are	inherently	slow.	If	we	signed
the	data	we	were	protecting	—	and	that	data	could	be	extremely	large	(e.g.,	megabytes	or
gigbaytes	in	size)	—	our	signing	process	would	slow	down	the	system.	By	signing	the
much	smaller	hash	value	(in	our	case,	512	bytes),	we	don’t	have	to	worry	about
performance	bottlenecks.

Next,	an	RSACryptoServiceProvider	object	is	created	that	will	be	used	to	sign	the	data.
The	RSACryptoServiceProvider.SignData	instance	method	accepts	the	clear	text	data	to
be	signed	in	the	form	of	a	byte[]	as	well	as	our	hashing	algorithm	(SHA-512).	These	are
used	to	generate	a	hash	value,	which	in	turn	generates	a	digital	signature.	Only	the	digital
signature	is	returned	by	this	method.

There	is	one	final	very	important	step,	which	is	to	capture	the	public	key	information
generated	by	this	RSACryptoServiceProvider	object.	We	do	this	by	calling	the
RSACryptoServiceProvider.ToXmlString	instance	method.	This	method	returns	the
public	key	information	necessary	to	verify	the	signature.

WARNING
When	calling	ToXMLString,	pass	in	the	Boolean	value	of	false	to	return	only	the	public	key.	If	you	pass	in
true,	both	the	public	and	private	key	will	be	returned.	As	mentioned	before,	it	is	imperative	that	the	private
key	is	protected	and	not	accidentally	distributed.

Now	all	the	sender	has	to	do	is	send	the	data,	the	digital	signature,	and	the	public	key
information	returned	by	the	AntiTamper.SignString	method	to	the	intended	recipient:

private	static	byte[]	SendData(string	originalString,	out	string	rsaPublicKey)

{

				//	Digitally	sign	the	string	data

				byte[]	signature	=	AntiTamper.SignString(originalString,	out	rsaPublicKey);

				//	Send	the	data	and	the	signature	to	its	destination…

				return	signature;

}

The	recipient	then	calls	the	AntiTamper.VerifySignedString	method,	passing	in	the
received	data,	the	digital	signature,	and	the	public	key	information.	Note	that	the
AntiTamper	class	will	need	to	be	referenced	in	both	the	sender’s	and	receiver’s	code:

private	static	bool	ReceiveData(string	originalString,	byte[]	signature,

																																string	rsaPublicKey)

{

				//	Receive	the	data	and	signature	from	the	sender…

				//	Verify	the	digital	signature

				return	(AntiTamper.VerifySignedString(originalString,	signature,	

								rsaPublicKey));

}

The	VerifySignedString	method	must	use	the	same	SHA512CryptoServiceProvider
object	that	the	sender	used	in	the	previous	SignString	method;	otherwise,	the	signature
will	not	be	verified.	An	RSACryptoServiceProvider	object	is	also	created,	but	before	this
object	is	used	to	verify	the	signature,	the	RSACryptoServiceProvider.FromXmlString
method	is	called	to	import	the	public	key	information	needed	to	properly	verify	the
signature.	Finally,	the	RSACryptoServiceProvider.VerifyData	method	is	called	to	verify
the	data	along	with	its	signature.	This	method	returns	a	Boolean	true	if	the	string	data	was
not	tampered	with	or	corrupted,	and	false	otherwise:

public	static	bool	VerifySignedString(string	clearText,	byte[]	signature,

																																			string	rsaPublicKey)

{

				bool	verified	=	false;

				byte[]	encodedClearText	=	Encoding.Unicode.GetBytes(clearText);

				using	(SHA512CryptoServiceProvider	sha512	=

																									new	SHA512CryptoServiceProvider())

				{

								using	(RSACryptoServiceProvider	rsa	=

															new	RSACryptoServiceProvider(RSA_KEY_SIZE))

								{

												rsa.FromXmlString(rsaPublicKey);

												verified	=	rsa.VerifyData(encodedClearText,	sha512,	signature);

								}

				}

				return	verified;

}

See	Also
The	“RSACryptoServiceProvider	Class,”	“SHA512CryptoServiceProvider	Class,”	and
“Encoding.Unicode.GetBytes	Method”	topics	in	the	MSDN	documentation.	For	more	on
public	keys,	see	the	Wikipedia	article	“Public-key	cryptography”.

http://bit.ly/1ixa8xt

11.5	Making	a	Security	Assert	Safe

Problem
You	want	to	assert	that	at	a	particular	point	in	the	call	stack,	a	given	permission	is
available	for	all	subsequent	calls.	However,	doing	this	can	easily	open	a	security	hole	to
allow	other	malicious	code	to	spoof	your	code	or	to	create	a	back	door	into	your
component.	You	want	to	assert	a	given	security	permission,	but	you	want	to	do	so	in	a
secure	and	efficient	manner.

Solution
To	make	this	approach	secure,	you	need	to	call	Demand	on	the	permissions	that	the
subsequent	calls	need.	This	makes	sure	that	code	that	doesn’t	have	these	permissions	can’t
slip	by	due	to	the	Assert.	The	Demand	ensures	that	you	have	indeed	been	granted	this
permission	before	using	the	Assert	to	short-circuit	the	stackwalk.	This	is	demonstrated	by
the	function	CallSecureFunctionSafelyAndEfficiently,	which	performs	a	Demand	and
an	Assert	before	calling	SecureFunction,	which	in	turn	does	a	Demand	for	a
ReflectionPermission.

The	code	listing	for	CallSecureFunctionSafelyAndEfficiently	is	shown	in
Example	11-5.

Example	11-5.	CallSecureFunctionSafelyAndEfficiently	function
public	static	void	CallSecureFunctionSafelyAndEfficiently()

{

				//	Set	up	a	permission	to	be	able	to	access	nonpublic	members

				//	via	reflection.

				ReflectionPermission	perm	=

								new	ReflectionPermission(ReflectionPermissionFlag.MemberAccess);

				//	Demand	the	permission	set	we	have	compiled	before	using	Assert

				//	to	make	sure	we	have	the	right	before	we	Assert	it.	We	do

				//	the	Demand	to	ensure	that	we	have	checked	for	this	permission

				//	before	using	Assert	to	short-circuit	stackwalking	for	it,	which

				//	helps	us	stay	secure,	while	performing	better.

				perm.Demand();

				//	Assert	this	right	before	calling	into	the	function	that

				//	would	also	perform	the	Demand	to	short-circuit	the	stack	walk

				//	each	call	would	generate.	The	Assert	helps	us	to	optimize

				//	our	use	of	SecureFunction.

				perm.Assert();

				

				//	We	call	the	secure	function	100	times	but	only	generate

				//	the	stackwalk	from	the	function	to	this	calling	function

				//	instead	of	walking	the	whole	stack	100	times.

				for(int	i=0;i<100;i++)

				{

								SecureFunction();

				}

}

The	code	listing	for	SecureFunction	is	shown	here:

public	static	void	SecureFunction()

{

				//	Set	up	a	permission	to	be	able	to	access	nonpublic	members

				//	via	reflection.

				ReflectionPermission	perm	=

								new	ReflectionPermission(ReflectionPermissionFlag.MemberAccess);

				//	Demand	the	right	to	do	this	and	cause	a	stackwalk.

				perm.Demand();

				//	Perform	the	action	here…

}

Discussion
In	the	demonstration	function	CallSecureFunctionSafelyAndEfficiently,	the	function
you	are	calling	(SecureFunction)	performs	a	Demand	on	a	ReflectionPermission	to
ensure	that	the	code	can	access	nonpublic	members	of	classes	via	reflection.	Normally,
this	would	result	in	a	stackwalk	for	every	call	to	SecureFunction.	The	Demand	in
CallSecureFunctionSafelyAndEfficiently	is	there	only	to	protect	against	the	usage	of
the	Assert	in	the	first	place.	To	make	this	more	efficient,	you	can	use	Assert	to	state	that
all	functions	issuing	Demands	that	are	called	from	this	one	do	not	have	to	stackwalk	any
further.	The	Assert	says	stop	checking	for	this	permission	in	the	call	stack.	In	order	to	do
this,	you	need	the	permission	to	call	Assert.

The	problem	comes	in	with	this	Assert,	as	it	opens	up	a	potential	luring	attack	where
SecureFunction	is	called	via	CallSecureFunctionSafelyAndEfficiently,	which	calls
Assert	to	stop	the	Demand	stackwalks	from	SecureFunction.	If	unauthorized	code	without
ReflectionPermission	were	able	to	call	CallSecureFunctionSafelyAndEfficiently,
the	Assert	would	prevent	the	SecureFunction	Demand	call	from	determining	that	there	is
some	code	in	the	call	stack	without	the	proper	rights.	This	is	the	power	of	the	call	stack
checking	in	the	CLR	when	a	Demand	occurs.

To	protect	against	this,	you	issue	a	Demand	for	the	ReflectionPermission	needed	by
SecureFunction	in	CallSecureFunctionSafelyAndEfficiently	to	close	this	hole	before
issuing	the	Assert.	The	combination	of	this	Demand	and	the	Assert	causes	you	to	do	one
stackwalk	instead	of	the	original	100	that	would	have	been	caused	by	the	Demand	in
SecureFunction.

Security	optimization	techniques,	such	as	using	Assert	in	this	case	(even	though	it	isn’t
the	primary	reason	to	use	Assert),	can	help	class	library	and	control	developers	who	are
trusted	to	perform	Asserts	in	order	to	speed	the	interaction	of	their	code	with	the	CLR;
but	if	used	improperly,	these	techniques	can	also	open	up	holes	in	the	security	picture.
This	example	shows	that	you	can	have	both	performance	and	security	where	secure	access
is	concerned.

If	you	are	using	Assert,	be	mindful	that	stackwalk	overrides	should	never	be	made	in	a
class	constructor.	Constructors	are	not	guaranteed	to	have	any	particular	security	context,
nor	are	they	guaranteed	to	execute	at	a	specific	point	in	time.	Thus,	the	call	stack	is	not
well	defined,	and	Assert	used	in	this	context	can	produce	unexpected	results.

One	other	thing	to	remember	with	Assert	is	that	you	can	have	only	one	active	Assert	in	a
function	at	a	given	time.	If	you	Assert	the	same	permission	twice,	a	SecurityException
is	thrown	by	the	CLR.	You	must	revert	the	original	Assert	by	first	using	RevertAssert.
Then,	you	can	declare	the	second	Assert.

See	Also
The	“CodeAccessSecurity.Assert	Method,”	“CodeAccessSecurity.Demand	Method,”
“CodeAccessSecurity.RevertAssert	Method,”	and	“Overriding	Security	Checks”	topics	in
the	MSDN	documentation.

11.6	Verifying	That	an	Assembly	Has	Been	Granted	Specific
Permissions

Problem
When	your	assembly	requests	optional	permissions	(such	as	asking	for	disk	access	to
enable	users	to	export	data	to	disk	as	a	product	feature)	using	the
SecurityAction.RequestOptional	flag,	it	might	or	might	not	actually	obtain	those
permissions.	Regardless,	your	assembly	will	still	load	and	execute.	You	need	a	way	to
verify	whether	your	assembly	actually	obtained	those	permissions.	This	can	help	prevent
many	security	exceptions	from	being	thrown.	For	example,	if	you	optionally	requested
read/write	permissions	on	the	registry	but	did	not	receive	them,	you	could	disable	the	user
interface	controls	that	are	used	to	read	and	store	application	settings	in	the	registry.

Solution
Check	to	see	if	your	assembly	received	the	optional	permissions	using	the
PermissionSet.IsSubsetOf	method	like	this:

using	System;

using	System.Text.RegularExpressions;

using	System.Web;

using	System.Net;

using	System.Security;

Regex	regex	=	new	Regex(@"http://www\.oreilly\.com/.*");

WebPermission	webConnectPerm	=	new	WebPermission(NetworkAccess.	Connect,regex);

PermissionSet	pSet	=	new	PermissionSet(PermissionState.None);

pSet.AddPermission(webConnectPerm);

if	(pSet.IsSubsetOf(Assembly.GetExecutingAssembly().PermissionSet))

{

			//	Connect	to	the	O'Reilly	site.

}

This	code	sets	up	a	Regex	for	the	O’Reilly	website	and	then	uses	it	to	create	a
WebPermission	for	connecting	to	that	site	and	all	sites	containing	the	string.	You	then
check	the	WebPermission	by	creating	a	new	PermissionSet	object	with	no	access	to	the
protected	resource	(i.e.,	PermissionState.None),	adding	the	webConnectPerm	permission
to	this	newly	created	PermissionSet	object,	and	finally	checking	if	this	new
PermissionSet	object	is	a	subset	of	the	executing	assembly’s	permission	set.

Discussion
The	IsSubsetOf	method	is	a	lightweight	way	of	determining	whether	permission	is
granted	for	an	assembly	without	first	incurring	the	full	stackwalk	that	a	Demand	gives	you.
Note,	however,	that	once	you	exercise	any	code	that	performs	a	Demand,	the	full	stackwalk
will	then	take	place.

One	reason	you	might	design	an	assembly	to	have	optional	permissions	is	for	deployment
in	different	customer	scenarios.	In	some	scenarios	(such	as	desktop	applications),	it	might
be	acceptable	to	have	an	assembly	that	can	perform	more	robust	actions	(talk	to	a
database,	create	network	traffic,	etc.).	In	other	scenarios,	you	can	defer	these	actions	if	the
customer	does	not	wish	to	grant	enough	permissions	for	these	extra	services	to	function.

See	Also
The	“WebPermission	Class,”	“SecurityManager	Class,”	and	“IsGranted	Method”	topics	in
the	MSDN	documentation.

11.7	Minimizing	the	Attack	Surface	of	an	Assembly

Problem
Someone	attacking	your	assembly	will	first	attempt	to	find	out	as	many	things	as	possible
about	your	assembly	and	then	use	this	information	in	constructing	the	attack(s).	The	more
surface	area	you	give	to	attackers,	the	more	they	have	to	work	with.	You	need	to	minimize
what	your	assembly	is	allowed	to	do	so	that	if	an	attacker	is	successful	in	taking	it	over,
the	attacker	will	not	have	the	necessary	privileges	to	do	any	damage	to	the	system.

Solution
Use	the	SecurityAction.RequestRefuse	enumeration	member	to	indicate,	at	an	assembly
level,	the	permissions	that	you	do	not	wish	this	assembly	to	have.	This	will	force	the	CLR
to	refuse	these	permissions	to	your	code	and	will	ensure	that,	even	if	another	part	of	the
system	is	compromised,	your	code	cannot	be	used	to	perform	functions	that	it	does	not
need	the	rights	to	do.

The	following	example	allows	the	assembly	to	perform	file	I/O	as	part	of	its	minimal
permission	set	but	explicitly	refuses	to	allow	this	assembly	to	have	permissions	to	skip
verification:

[assembly:	FileIOPermission(SecurityAction.RequestMinimum,Unrestricted=true)]

[assembly:	SecurityPermission(SecurityAction.RequestRefuse,

													SkipVerification=false)]

Discussion
Once	you	have	determined	what	permissions	your	assembly	needs	as	part	of	your	normal
security	testing,	you	can	use	RequestRefuse	to	lock	down	your	code.	If	this	seems
extreme,	think	of	scenarios	in	which	your	code	could	be	accessing	a	data	store	containing
sensitive	information,	such	as	Social	Security	numbers	or	salary	information.	This
proactive	step	can	help	you	show	your	customers	that	you	take	security	seriously	and	can
help	defend	your	interests	in	case	a	break-in	occurs	on	a	system	containing	your	code.

One	serious	consideration	with	this	approach	is	that	the	use	of	RequestRefuse	marks	your
assembly	as	partially	trusted.	This	in	turn	prevents	it	from	calling	any	strong-named
assembly	that	hasn’t	been	marked	with	the	AllowPartiallyTrustedCallers	attribute.

See	Also
The	“Using	Libraries	from	Partially	Trusted	Code,”	“SecurityAction	Enumeration,”	and
“Global	Attributes”	topics	in	the	MSDN	documentation.

11.8	Obtaining	Security	and/or	Audit	Information

Problem
You	need	to	obtain	the	security	rights	and/or	audit	information	for	a	file	or	registry	key.

Solution
When	obtaining	security	and/or	audit	information	for	a	file,	use	the	static
GetAccessControl	method	of	the	File	class	to	obtain	a
System.Security.AccessControl.FileSecurity	object.	Use	the	FileSecurity	object	to
access	the	security	and	audit	information	for	the	file.	These	steps	are	demonstrated	in
Example	11-6.

Example	11-6.	Obtaining	security	audit	information
public	static	void	ViewFileRights()

{

				//	Get	security	information	from	a	file.

				string	file	=	@"C:\Windows\win.ini";

				FileSecurity	fileSec	=	File.GetAccessControl(file);

				DisplayFileSecurityInfo(fileSec);

}

public	static	void	DisplayFileSecurityInfo(FileSecurity	fileSec)

{

				Console.WriteLine($"GetSecurityDescriptorSddlForm:

																{fileSec.GetSecurityDescriptorSddlForm(AccessControlSections.All)}");

				foreach	(FileSystemAccessRule	ace	in

												fileSec.GetAccessRules(true,	true,	typeof(NTAccount)))

				{

								Console.WriteLine("\tIdentityReference.Value:	

																													{ace.IdentityReference.Value}");

								Console.WriteLine($"\tAccessControlType:	{ace.AccessControlType}");

								Console.WriteLine($"\tFileSystemRights:	{ace.FileSystemRights}");

								Console.WriteLine($"\tInheritanceFlags:	{ace.InheritanceFlags}");

								Console.WriteLine($"\tIsInherited:	{ace.IsInherited}");

								Console.WriteLine($"\tPropagationFlags:	{ace.PropagationFlags}");

								Console.WriteLine("-----------------\r\n\r\n");

				}

				foreach	(FileSystemAuditRule	ace	in

												fileSec.GetAuditRules(true,	true,	typeof(NTAccount)))

				{

								Console.WriteLine("\tIdentityReference.Value:	

																											{ace.IdentityReference.Value}");

								Console.WriteLine($"\tAuditFlags:	{ace.AuditFlags}");

								Console.WriteLine($"\tFileSystemRights:	{ace.FileSystemRights}");

								Console.WriteLine($"\tInheritanceFlags:	{ace.InheritanceFlags}");

								Console.WriteLine($"\tIsInherited:	{ace.IsInherited}");

								Console.WriteLine($"\tPropagationFlags:	{ace.PropagationFlags}");

								Console.WriteLine("-----------------\r\n\r\n");

				}

				Console.WriteLine($"GetGroup(typeof(NTAccount)).Value:

																								{fileSec.GetGroup(typeof(NTAccount)).Value}");

				Console.WriteLine($"GetOwner(typeof(NTAccount)).Value:

																								{fileSec.GetOwner(typeof(NTAccount)).Value}");

				Console.WriteLine("---------------------------------------\r\n\r\n\r\n");

}

These	methods	produce	the	following	output:

GetSecurityDescriptorSddlForm:		O:SYG:SYD:AI(A;ID;FA;;;SY)(A;ID;FA;;;BA)

																					(A;ID;0x1200a9;;;BU)(A;ID;0x1200a9;;;AC)

								IdentityReference.Value:	NT	AUTHORITY\SYSTEM

								AccessControlType:	Allow

								FileSystemRights:	FullControl

								InheritanceFlags:	None

								IsInherited:	True

								PropagationFlags:	None

								IdentityReference.Value:	BUILTIN\Administrators

								AccessControlType:	Allow

								FileSystemRights:	FullControl

								InheritanceFlags:	None

								IsInherited:	True

								PropagationFlags:	None

								IdentityReference.Value:	BUILTIN\Users

								AccessControlType:	Allow

								FileSystemRights:	ReadAndExecute,	Synchronize

								InheritanceFlags:	None

								IsInherited:	True

								PropagationFlags:	None

								IdentityReference.Value:

																									APPLICATION	PACKAGE	AUTHORITY\ALL	APPLICATION	PACKAGES

								AccessControlType:	Allow

								FileSystemRights:	ReadAndExecute,	Synchronize

								InheritanceFlags:	None

								IsInherited:	True

								PropagationFlags:	None

GetGroup(typeof(NTAccount)).Value:	NT	AUTHORITY\SYSTEM

GetOwner(typeof(NTAccount)).Value:	NT	AUTHORITY\SYSTEM

When	obtaining	security	and/or	audit	information	for	a	registry	key,	use	the
GetAccessControl	instance	method	of	the	Microsoft.Win32.RegistryKey	class	to	obtain
a	System.Security.AccessControl.RegistrySecurity	object.	Use	the
RegistrySecurity	object	to	access	the	security	and	audit	information	for	the	registry	key.
These	steps	are	demonstrated	in	Example	11-7.

Example	11-7.	Getting	security	or	audit	information	for	a	registry	key
public	static	void	ViewRegKeyRights()

{

				//	Get	security	information	from	a	registry	key.

				using	(RegistryKey	regKey	=

								Registry.CurrentUser.OpenSubKey(@"Software\Microsoft\VisualStudio\14.0"))

				{

								RegistrySecurity	regSecurity	=	regKey.GetAccessControl();

								DisplayRegKeySecurityInfo(regSecurity);

				}

}

public	static	void	DisplayRegKeySecurityInfo(RegistrySecurity	regSec)

{

				Console.WriteLine($"GetSecurityDescriptorSddlForm:

												{fileSec.GetSecurityDescriptorSddlForm(AccessControlSections.All)}");

				foreach	(RegistryAccessRule	ace	in

												regSec.GetAccessRules(true,	true,	typeof(NTAccount)))

				{

								Console.WriteLine("\tIdentityReference.Value:	

																											{ace.IdentityReference.Value}");

								Console.WriteLine($"\tAccessControlType:	{ace.AccessControlType}");

								Console.WriteLine($"\tFileSystemRights:	{ace.FileSystemRights}");

								Console.WriteLine($"\tInheritanceFlags:	{ace.InheritanceFlags}");

								Console.WriteLine($"\tIsInherited:	{ace.IsInherited}");

								Console.WriteLine($"\tPropagationFlags:	{ace.PropagationFlags}");

								Console.WriteLine("-----------------\r\n\r\n");

				}

				foreach	(RegistryAuditRule	ace	in

												regSec.GetAuditRules(true,	true,	typeof(NTAccount)))

				{

								Console.WriteLine("\tIdentityReference.Value:	

																											{ace.IdentityReference.Value}");

								Console.WriteLine($"\tAuditFlags:	{ace.AuditFlags}");

								Console.WriteLine($"\tFileSystemRights:	{ace.FileSystemRights}");

								Console.WriteLine($"\tInheritanceFlags:	{ace.InheritanceFlags}");

								Console.WriteLine($"\tIsInherited:	{ace.IsInherited}");

								Console.WriteLine($"\tPropagationFlags:	{ace.PropagationFlags}");

								Console.WriteLine("-----------------\r\n\r\n");

				}

				Console.WriteLine($"GetGroup(typeof(NTAccount)).Value:

																								{fileSec.GetGroup(typeof(NTAccount)).Value}");

				Console.WriteLine($"GetOwner(typeof(NTAccount)).Value:

																								{fileSec.GetOwner(typeof(NTAccount)).Value}");

				Console.WriteLine("---------------------------------------\r\n\r\n\r\n");

}

These	methods	produce	the	following	output:

GetSecurityDescriptorSddlForm:		O:S-1-5-21-3613598369-3284219489-1294304910-1001G:

													S-1-5-21-3613598369-3284219489-1294304910-1001D:

												(A;OICIID;KA;;;S-1-5-21-3613598369-3284219489-1294304910-1001)

												(A;OICIID;KA;;;SY)(A;OICIID;KA;;;BA)(A;OICIID;KR;;;RC)

								IdentityReference.Value:	VM_Win81_VS14\Teilhet

								AccessControlType:	Allow

								RegistryRights:	FullControl

								InheritanceFlags:	ContainerInherit,	ObjectInherit

								IsInherited:	True

								PropagationFlags:	None

								IdentityReference.Value:	NT	AUTHORITY\SYSTEM

								AccessControlType:	Allow

								RegistryRights:	FullControl

								InheritanceFlags:	ContainerInherit,	ObjectInherit

								IsInherited:	True

								PropagationFlags:	None

								IdentityReference.Value:	BUILTIN\Administrators

								AccessControlType:	Allow

								RegistryRights:	FullControl

								InheritanceFlags:	ContainerInherit,	ObjectInherit

								IsInherited:	True

								PropagationFlags:	None

								IdentityReference.Value:	NT	AUTHORITY\RESTRICTED

								AccessControlType:	Allow

								RegistryRights:	ReadKey

								InheritanceFlags:	ContainerInherit,	ObjectInherit

								IsInherited:	True

								PropagationFlags:	None

GetGroup(typeof(NTAccount)).Value:	VM_WIN81_VS14\Teilhet

GetOwner(typeof(NTAccount)).Value:	VM_WIN81_VS14\Teilhet

Discussion
The	essential	method	that	is	used	to	obtain	the	security	information	for	a	file	or	registry
key	is	GetAccessControl.	When	this	method	is	called	on	the	RegistryKey	object,	a
RegistrySecurity	object	is	returned.	However,	when	this	method	is	called	on	a	File
class,	a	FileSecurity	object	is	returned.	The	RegistrySecurity	and	FileSecurity
objects	essentially	represent	a	Discretionary	Access	Control	List	(DACL),	which	is	what
developers	writing	code	in	unmanaged	languages	such	as	C++	are	used	to	working	with.

The	RegistrySecurity	and	FileSecurity	objects	each	contain	a	list	of	security	rules	that
has	been	applied	to	the	system	object	that	it	represents.	The	RegistrySecurity	object
contains	a	list	of	RegistryAccessRule	objects,	and	the	FileSecurity	object	contains	a
list	of	FileSystemAccessRule	objects.	These	rule	objects	are	the	equivalent	of	the	Access
Control	Entries	(ACE)	that	make	up	the	list	of	security	rules	within	a	DACL.

System	objects	other	than	just	the	File	class	and	RegistryKey	object	allow	security
privileges	to	be	queried.	Table	11-1	lists	all	the	.NET	Framework	classes	that	return	a
security	object	type	and	what	that	type	is.	In	addition,	the	rule-object	type	that	is	contained
in	the	security	object	is	also	listed.

Table	11-1.	List	of	all	*Security	and	*AccessRule	objects	and	the	types	to	which	they	apply

Class Object	returned	by	the	GetAccessControl
method

Rule-object	type	contained	within	the	security
object

Directory DirectorySecurity FileSystemAccessRule

DirectoryInfo DirectorySecurity FileSystemAccessRule

EventWaitHandle EventWaitHandleSecurity EventWaitHandleAccessRule

File FileSecurity FileSystemAccessRule

FileInfo FileSecurity FileSystemAccessRule

FileStream FileSecurity FileSystemAccessRule

Mutex MutexSecurity MutexAccessRule

RegistryKey RegistrySecurity RegistryAccessRule

Semaphore SemaphoreSecurity SemaphoreAccessRule

The	abstraction	of	a	system	object’s	DACL	through	the	*Security	objects	and	the
abstraction	of	a	DACL’s	ACE	through	the	*AccessRule	objects	allows	easy	access	to	the
security	privileges	of	that	system	object.	In	previous	versions	of	the	.NET	Framework,
these	DACLs	and	their	ACEs	would	have	been	accessible	only	in	unmanaged	code.	With
the	.NET	2.0	Framework	and	later,	you	now	have	access	to	view	and	program	these
objects.

See	Also
Recipe	11.9;	the	“System.IO.File.GetAccessControl	Method,”	“System.Security.
AccessControl.FileSecurity	Class,”	“Microsoft.Win32.RegistryKey.GetAccessControl
Method,”	and	“System.Security.AccessControl.RegistrySecurity	Class”	topics	in	the
MSDN	documentation.

11.9	Granting	or	Revoking	Access	to	a	File	or	Registry	Key

Problem
You	need	to	change	the	security	privileges	of	either	a	file	or	registry	key
programmatically.

Solution
The	code	shown	in	Example	11-8	grants	and	then	revokes	the	ability	to	perform	write
actions	on	a	registry	key.

Example	11-8.	Granting	and	revoking	the	right	to	perform	write	actions	on	a	registry	key
public	static	void	GrantRevokeRegKeyRights()

{

				NTAccount	user	=	new	NTAccount(@"WRKSTN\ST");

				using	(RegistryKey	regKey	=	Registry.LocalMachine.OpenSubKey(

																												@"SOFTWARE\MyCompany\MyApp"))

				{

								GrantRegKeyRights(regKey,	user,	RegistryRights.WriteKey,

																							InheritanceFlags.None,	PropagationFlags.None,

																							AccessControlType.Allow);

								RevokeRegKeyRights(regKey,	user,	RegistryRights.WriteKey,

																							InheritanceFlags.None,	PropagationFlags.None,

																							AccessControlType.Allow)

				}

}

public	static	void	GrantRegKeyRights(RegistryKey	regKey,

																																					NTAccount	user,

																																					RegistryRights	rightsFlags,

																																					InheritanceFlags	inherFlags,

																																					PropagationFlags	propFlags,

																																					AccessControlType	actFlags)

{

				Registry	Security	regSecurity	=	regKey.GetAccessControl();

				RegistryAccessRule	rule	=	new	RegistryAccessRule(user,	rightsFlags,	inherFlags,

																																																					propFlags,	actFlags);

				regSecurity.AddAccessRule(rule);

				regKey.SetAccessControl(regSecurity);

}

public	static	void	RevokeRegKeyRights(RegistryKey	regKey,

																																						NTAccount	user,

																																						RegistryRights	rightsFlags,

																																						InheritanceFlags	inherFlags,

																																						PropagationFlags	propFlags,

																																						AccessControlType	actFlags)

{

				RegistrySecurity	regSecurity	=	regKey.GetAccessControl();

				RegistryAccessRule	rule	=	new	RegistryAccessRule(user,	rightsFlags,	inherFlags,

																																																					propFlags,	actFlags);

				regSecurity.RemoveAccessRuleSpecific(rule);

				regKey.SetAccessControl(regSecurity);

}

The	code	shown	in	Example	11-9	grants	and	then	revokes	the	ability	to	delete	a	file.

Example	11-9.	Granting	and	revoking	the	right	to	delete	a	file
public	static	void	GrantRevokeFileRights()

{

				NTAccount	user	=	new	NTAccount(@"WRKSTN\ST");

				string	file	=	@"c:\FOO.TXT";

				GrantFileRights(file,	user,	FileSystemRights.Delete,	InheritanceFlags.None,

																				PropagationFlags.None,	AccessControlType.Allow);

				RevokeFileRights(file,	user,	FileSystemRights.Delete,	InheritanceFlags.None,

																					PropagationFlags.None,	AccessControlType.Allow);

}

public	static	void	GrantFileRights(string	file,

																																			NTAccount	user,

																																			FileSystemRights	rightsFlags,

																																			InheritanceFlags	inherFlags,

																																			PropagationFlags	propFlags,

																																			AccessControlType	actFlags)

{

				FileSecurity	fileSecurity	=	File.GetAccessControl(file);

				FileSystemAccessRule	rule	=	new	FileSystem	AccessRule(user,	rightsFlags,

																																																										inherFlags,	propFlags,

																																																										actFlags);

				fileSecurity.AddAccessRule(rule);

				File.SetAccessControl(file,	fileSecurity);

}

public	static	void	RevokeFileRights(string	file,

																																				NTAccount	user,

																																				FileSystemRights	rightsFlags,

																																				InheritanceFlags	inherFlags,

																																				PropagationFlags	propFlags,

																																				AccessControlType	actFlags)

{

				FileSecurity	fileSecurity	=	File.GetAccessControl(file);

				FileSystemAccessRule	rule	=	new	FileSystemAccessRule(user,	rightsFlags,

																																																									inherFlags,	propFlags,

																																																									actFlags);

				fileSecurity.RemoveAccessRuleSpecific(rule);

				File.SetAccessControl(file,	fileSecurity);

}

Discussion
When	granting	or	revoking	access	rights	on	a	file	or	registry	key,	you	need	two	things.
The	first	is	a	valid	NTAccount	object.	This	object	essentially	encapsulates	a	user	or	group
account,	and	is	required	to	create	either	a	new	RegistryAccessRule	or	a	new
FileSystemAccessRule.	The	NTAccount	identifies	the	user	or	group	this	access	rule	will
apply	to.	Note	that	the	string	passed	in	to	the	NTAccount	constructor	must	be	changed	to	a
valid	user	or	group	name	that	exists	on	your	machine.	If	you	pass	in	the	name	of	an
existing	user	or	group	account	that	has	been	disabled,	an	IdentityNotMappedException
will	be	thrown	with	the	message	“Some	or	all	identity	references	could	not	be	translated.”

The	second	item	you	need	is	either	a	valid	RegistryKey	object,	if	you	are	modifying
security	access	to	a	registry	key,	or	a	string	containing	a	valid	path	and	filename	to	an
existing	file.	These	objects	will	have	security	permissions	either	granted	to	them	or
revoked	from	them.

Once	these	two	items	have	been	obtained,	you	can	use	the	second	item	to	obtain	a	security
object,	which	contains	the	list	of	access-rule	objects.	For	example,	the	following	code
obtains	the	security	object	for	the	registry	key	HKEY-
LOCAL_MACHINE\SOFTWARE\MyCompany\MyApp:

RegistryKey	regKey	=	Registry.LocalMachine.OpenSubKey(

																												@"SOFTWARE\MyCompany\MyApp");

RegistrySecurity	regSecurity	=	regKey.GetAccessControl();

The	following	code	obtains	the	security	object	for	the	FOO.TXT	file:

string	file	=	@"c:\FOO.TXT";

FileSecurity	fileSecurity	=	File.Get	AccessControl(file);

Now	that	you	have	your	particular	security	object,	you	can	create	an	access-rule	object
that	will	be	added	to	it.	To	do	this,	you	need	to	create	a	new	access	rule.	For	a	registry	key,
you	have	to	create	a	new	RegistryAccessRule	object,	and	for	a	file,	you	have	to	create	a
new	FileSystemAccessRule	object.	To	add	this	access	rule	to	the	correct	security	object,
you	call	the	SetAccessControl	method	on	the	security	object.	Note	that
RegistryAccessRule	objects	can	be	added	only	to	RegistrySecurity	objects,	and
FileSystemAccessRule	objects	can	be	added	only	to	FileSecurity	objects.

To	remove	an	access-rule	object	from	a	system	object,	you	follow	the	same	set	of	steps,
except	that	you	call	the	RemoveAccessRuleSpecific	method	instead	of	AddAccessRule.
RemoveAccessRuleSpecific	accepts	an	access-rule	object	and	attempts	to	remove	the	rule
that	exactly	matches	this	rule	object	from	the	security	object.	As	always,	you	must
remember	to	call	the	SetAccessControl	method	to	apply	any	changes	to	the	actual	system
object.

For	a	list	of	other	classes	that	allow	security	permissions	to	be	modified	programmatically,

see	Recipe	11.8.

See	Also
Recipe	11.8;	the	“System.IO.File.GetAccessControl	Method,”	“System.Security.
AccessControl.FileSecurity	Class,”	“System.Security.AccessControl.FileSystemAc-
cessRule	Class,”	“Microsoft.Win32.RegistryKey.GetAccessControl	Method,”
“System.Security.AccessControl.RegistrySecurity	Class,”	and
“System.Security.AccessControl.RegistryAccessRule	Class”	topics	in	the	MSDN
documentation.

11.10	Protecting	String	Data	with	Secure	Strings

Problem
You	need	to	store	sensitive	information,	such	as	a	Social	Security	number,	in	a	string.
However,	you	do	not	want	prying	eyes	to	be	able	to	view	this	data	in	memory.

Solution
Use	the	SecureString	object.

To	copy	text	from	a	stream	object	to	a	SecureString	object,	use	the	following	method:

public	static	SecureString	CreateSecureString(StreamReader	secretStream)

{

				SecureString	secretStr	=	new	SecureString();

				char	buf;

				while	(secretStream.Peek()	>=	0)

				{

								buf	=	(char)secretStream.Read();

								secretStr.AppendChar(buf);

				}

				//	Make	the	secretStr	object	read-only.

				secretStr.MakeReadOnly();

				return	(secretStr);

}

To	copy	text	from	a	string	containing	sensitive	data,	use	the	following	method:

public	static	SecureString	CreateSecureString(string	secret)

{

				SecureString	secretStr	=	new	SecureString();

				char[]	buf	=	new	char[1];

				foreach	(char	c	in	secret)

				{

								secretStr.AppendChar(c);

				}

				//	Make	the	secretStr	object	read-only

				secretStr.MakeReadOnly();

				return	(secretStr);

}

To	pull	the	plain	text	out	of	a	SecureString	object,	use	the	following	method:

public	static	void	ReadSecureString(SecureString	secretStr)

{

				//	In	order	to	read	back	the	string,	you	need	to	use	some	special	methods.

				IntPtr	secretStrPtr	=	Marshal.SecureStringToBSTR(secretStr);

				string	nonSecureStr	=	Marshal.PtrToStringBSTR(secretStrPtr);

				//	Use	the	unprotected	string.

				Console.WriteLine($"nonSecureStr	=	{nonSecureStr}");

				Marshal.ZeroFreeBSTR(secretStrPtr);

				if	(!secretStr.IsReadOnly())

				{

								secretStr.Clear();

				}

}

Discussion
A	SecureString	object	is	designed	specifically	to	contain	string	data	that	you	want	to
keep	secret.	Some	of	the	data	you	may	want	to	store	in	a	SecureString	object	would	be	a
Social	Security	number,	a	credit	card	number,	a	PIN,	a	password,	an	employee	ID,	or	any
other	type	of	sensitive	information.

This	string	data	is	automatically	encrypted	immediately	upon	being	added	to	the
SecureString	object,	and	it	is	automatically	decrypted	when	the	string	data	is	extracted
from	the	SecureString	object.	The	encryption	is	one	of	the	highlights	of	using	this	object.

Another	feature	of	a	SecureString	object	is	that	when	the	MakeReadOnly	method	is
called,	the	SecureString	becomes	immutable.	Any	attempt	to	modify	the	string	data
within	the	read-only	SecureString	object	causes	an	InvalidOperationException	to	be
thrown.	Once	a	SecureString	object	is	made	read-only,	it	cannot	go	back	to	a	read/write
state.	However,	you	need	to	be	careful	when	calling	the	Copy	method	on	an	existing
SecureString	object.	This	method	will	create	a	new	instance	of	the	SecureString	object
on	which	it	was	called,	with	a	copy	of	its	data.	However,	this	new	SecureString	object	is
now	readable	and	writable.	You	should	review	your	code	to	determine	if	this	new
SecureString	object	should	be	made	read-only	similarly	to	its	original	SecureString
object.

NOTE
The	SecureString	object	can	be	used	only	on	Windows	2000	(with	Service	Pack	3	or	greater)	or	later
operating	system.

In	this	recipe,	you	create	a	SecureString	object	from	data	read	in	from	a	stream	or	a
simple	string.	This	data	could	also	come	from	a	char*	using	unsafe	code.	The
SecureString	object	contains	a	constructor	that	accepts	a	parameter	of	this	type	in
addition	to	an	integer	parameter	that	takes	a	length	value,	which	determines	the	number	of
characters	to	pull	from	the	char*.

Getting	data	out	of	a	SecureString	object	is	not	obvious	at	first	glance.	There	are	no
methods	to	return	the	data	contained	within	a	SecureString	object.	To	accomplish	this,
you	must	use	two	static	methods	on	the	Marshal	class.	The	first	is	the
SecureStringToBSTR,	which	accepts	your	SecureString	object	and	returns	an	IntPtr.
This	IntPtr	is	then	passed	into	the	PtrToStringBSTR	method,	also	on	the	Marshal	class.
The	PtrToStringBSTR	method	then	returns	an	unsecure	String	object	containing	your
decrypted	string	data.

Once	you	are	done	using	the	SecureString	object,	you	should	call	the	static
ZeroFreeBSTR	method	on	the	Marshal	class	to	zero	out	any	memory	allocated	when
extracting	the	data	from	the	SecureString.	As	an	added	safeguard,	you	should	call	the
Clear	method	of	the	SecureString	object	to	zero	out	the	encrypted	string	from	memory.

If	you	have	made	your	SecureString	object	read-only,	you	will	not	be	able	to	call	the
Clear	method	to	wipe	out	its	data.	In	this	situation,	you	must	either	call	the	Dispose
method	on	the	SecureString	object	(the	use	of	a	using	block	would	be	preferable	here)	or
rely	on	the	garbage	collector	to	remove	the	SecureString	object	and	its	data	from
memory.

Notice	that	when	you	pull	a	SecureString	object	into	an	unsecure	String,	its	data
becomes	viewable	by	an	attacker.	So	it	may	seem	pointless	to	go	through	the	trouble	of
using	a	SecureString	when	you	are	just	going	to	convert	it	into	an	insecure	String.
However,	by	using	a	SecureString,	you	narrow	the	window	of	opportunity	for	an	attacker
to	view	this	data	in	memory.	In	addition,	some	APIs	only	accept	a	SecureString	as	a
parameter	so	that	you	don’t	have	to	convert	it	to	an	unsecure	String.	The
ProcessStartInfo,	for	example,	accepts	a	password	in	its	Password	property	as	a
SecureString	object.

NOTE
The	SecureString	object	is	not	a	silver	bullet	for	securing	your	data.	It	is,	however,	another	layer	of
defense	you	can	add	to	your	application.

See	Also
The	“Secure	String	Class”	topic	in	the	MSDN	documentation.

11.11	Securing	Stream	Data

Problem
You	want	to	use	the	TCP	server	in	Recipe	9.9	to	communicate	with	the	TCP	client	in
Recipe	9.10.	However,	you	need	to	encrypt	the	communication	and	verify	that	it	has	not
been	tampered	with	in	transit.

Solution
Replace	the	NetworkStream	class	with	the	more	secure	SslStream	class	on	both	the	client
and	the	server.	The	code	for	the	more	secure	TCP	client,	TCPClient_SSL,	is	shown	in
Example	11-10	(changes	are	in	boldface).

Example	11-10.	TCPClient_SSL	class
class	TCPClient_SSL

{

				private	TcpClient	_client	=	null;

				private	IPAddress	_address	=	IPAddress.Parse("127.0.0.1");

				private	int	_port	=	5;

				private	IPEndPoint	_endPoint	=	null;

				public	TCPClient_SSL(string	address,	string	port)

				{

								_address	=	IPAddress.Parse(address);

								_port	=	Convert.ToInt32(port);

								_endPoint	=	new	IPEndPoint(_address,	_port);

				}

				public	void	ConnectToServer(string	msg)

				{

								try

								{

												using	(client	=	new	TcpClient())

												{

																client.Connect(_endPoint);

																using(SslStreamsslStream	=	newSslStream(_client.GetStream(),	false,

																				new	RemoteCertificateValidationCallback

																													(CertificateValidationCallback)))

																	{

																				sslStream.AuthenticateAsClient("MyTestCert2");

																				//	Get	the	bytes	to	send	for	the	message.

																				byte[]	bytes	=	Encoding.ASCII.GetBytes(msg);

																				//	Send	message.

																				Console.WriteLine($"Sending	message	to	server:	{	msg}");

																				sslStream.Write(bytes,	0,	bytes.Length);

																				//	Get	the	response.

																				//	Buffer	to	store	the	response	bytes.

																				bytes	=	new	byte[1024];

																				//	Display	the	response.

																				int	bytesRead	=	sslStream.Read(bytes,	0,	bytes.Length);

																				string	serverResponse	=	Encoding.ASCII.GetString(bytes,	0,

																										bytesRead);

																				Console.WriteLine($"Server	said:	{	serverResponse}");

																}

												}

								}

								catch	(SocketException	e)

								{

												Console.WriteLine

																					($"There	was	an	error	talking	to	the	server:	{e.ToString()}");

								}

				}

				private	bool	CertificateValidationCallback(objectsender,

																	X509Certificate	certificate,	X509Chain	chain,

																	SslPolicyErrors	sslPolicyErrors)

					{

										if	(sslPolicyErrors	==	SslPolicyErrors.None)

										{

														return	true;

										}

										else

										{

														if	(sslPolicyErrors	==	SslPolicyErrors.RemoteCertificateChainErrors)

														{

																		Console.WriteLine("The	X509Chain.ChainStatus	returned	an	array	"	+

																								"of	X509ChainStatus	objects	containing	error	information.");

														}

														else	if	(sslPolicyErrors	==

																							SslPolicyErrors.RemoteCertificateNameMismatch)

														{

																			Console.WriteLine(

																													"There	was	a	mismatch	of	the	name	on	a	certificate.");

														}

														else	if	(sslPolicyErrors	==

																							SslPolicyErrors.RemoteCertificateNotAvailable)

														{

																			Console.WriteLine("No	certificate	was	available.");

														}

														else

														{

																		Console.WriteLine("SSL	Certificate	Validation	Error!");

														}

										}

										Console.WriteLine(Environment.NewLine	+

																												"SSL	Certificate	Validation	Error!");

										Console.WriteLine(sslPolicyErrors.ToString());

										return	false;

					}

}

The	new	code	for	the	more	secure	TCP	server,	TCPServer_SSL,	is	shown	in	Example	11-
11	(changes	are	in	boldface).

Example	11-11.	TCPServer_SSL	class
class	TCPServer_SSL

{

				private	TcpListener	_listener	=	null;

				private	IPAddress	_address	=	IPAddress.Parse("127.0.0.1");

				private	int	_port	=	55555;

				#region	CTORs

				public	TCPServer_SSL()

				{

				}

				public	TCPServer_SSL	(string	address,	string	port)

				{

								_port	=	Convert.ToInt32(port);

								_address	=	IPAddress.Parse(address);

				}

				#endregion	//	CTORs

				#region	Properties

				public	IPAddress	Address

				{

								get	{	return	_address;	}

								set	{	_address	=	value;	}

				}

				public	int	Port

				{

								get	{	return	_port;	}

								set	{	_port	=	value;	}

				}

				#endregion

				public	void	Listen()

				{

								try

								{

											using(listener	=	new	TcpListener(_address,	_port))

												{

																//	Fire	up	the	server.

																listener.Start();

																//	Enter	the	listening	loop.

																while	(true)

																{

																				Console.Write("Looking	for	someone	to	talk	to…	");

																				//	Wait	for	connection.

																				TcpClient	newClient	=	_listener.AcceptTcpClient();

																				Console.WriteLine("Connected	to	new	client");

																				//	Spin	a	thread	to	take	care	of	the	client.

																				ThreadPool.QueueUserWorkItem(new	WaitCallback(ProcessClient),

																																													newClient);

																}

												}

								}

								catch	(SocketException	e)

								{

												Console.WriteLine($"SocketException:	{e}");

								}

								finally

								{

												//	Shut	it	down.

												_listener.Stop();

								}

								Console.WriteLine("Hit	any	key	(where	is	ANYKEY?)	to	continue…");

								Console.Read();

				}

				private	void	ProcessClient(object	client)

				{

								using	(TcpClient	newClient	=	(TcpClient)client)

								{

												//	Buffer	for	reading	data.

												byte[]	bytes	=	new	byte[1024];

												string	clientData	=	null;

												using	(Ssl	Stream	sslStream	=	new	SslStream(newClient.GetStream()))

												{

																	sslStream.AuthenticateAsServer(GetServerCert("MyTestCert2"),	false,

																																																SslProtocols.Default,	true);

															//	Loop	to	receive	all	the	data	sent	by	the	client.

															int	bytesRead	=	0;

															while	((bytesRead	=	sslStream.Read(bytes,	0,	bytes.Length))	!=	0)

															{

																			//	Translate	data	bytes	to	an	ASCII	string.

																			clientData	=	Encoding.ASCII.GetString(bytes,	0,	bytesRead);

																			Console.WriteLine($"Client	says:	{clientData}");

																			//	Thank	them	for	their	input.

																			bytes	=	Encoding.ASCII.GetBytes("Thanks	call	again!");

																			//	Send	back	a	response.

																			ssl	Stream.Write(bytes,	0,	bytes.Length);

															}

												}

								}

				}

				private	static	X509Certificate	GetServerCert(string	subjectName)

				{

								X509Store	store	=	new	X509Store(StoreName.My,	StoreLocation.LocalMachine);

								store.Open(OpenFlags.ReadOnly);

								X509CertificateCollection	certificate	=

																store.Certificates.Find(X509FindType.FindBySubjectName,

																																								subjectName,	true);

								if	(certificate.Count	>	0)

												return	(certificate[0]);

								else

												return	(null);

				}

}

Discussion
For	more	information	about	the	inner	workings	of	the	TCP	server	and	client	and	how	to
run	these	applications,	see	Recipes	9.9	and	9.10.	In	this	recipe,	we	will	cover	only	the
changes	needed	to	convert	the	TCP	server	and	client	to	use	the	SslStream	object	for
secure	communication.

The	SslStream	object	uses	the	SSL	protocol	to	provide	a	secure	encrypted	channel	on
which	to	send	data.	However,	encryption	is	just	one	of	the	security	features	built	into	the
SslStream	object.	Another	feature	of	SslStream	is	that	it	detects	malicious	or	even
accidental	modification	to	the	data.	Even	though	the	data	is	encrypted,	it	may	become
modified	during	transit.	To	determine	if	this	has	occurred,	the	data	is	signed	with	a	hash
before	it	is	sent;	when	it	is	received,	the	data	is	rehashed	and	the	two	hashes	are	compared.
If	both	hashes	are	equivalent,	the	message	arrived	intact;	if	the	hashes	are	not	equivalent,
then	somehow	the	data	was	modified	during	transit.

The	SslStream	object	also	has	the	ability	to	use	client	and/or	server	certificates	to
authenticate	the	client	and/or	the	server	as	well	as	allowing	the	client	to	pass	a	certificate
to	the	server	if	the	client	also	needs	to	prove	identity	to	the	server.	These	certificates	are
used	to	prove	the	identity	of	the	issuer.	For	example,	if	a	client	attaches	to	a	server	using
SSL,	the	server	must	provide	a	certificate	to	the	client	to	prove	that	the	server	is	who	it
says	it	is.	This	certificate	must	be	issued	by	a	trusted	authority.	All	trusted	certificates	are
stored	on	the	client	in	its	root	certificate	store.

To	ensure	that	the	TCP	server	and	client	can	communicate	successfully,	you	need	to	set	up
an	X.509	certificate	that	will	be	used	to	authenticate	the	TCP	server.	To	do	this,	you	set	up
a	test	certificate	using	the	makecert.exe	utility.	This	utility	is	installed	with	Visual	Studio
and	must	be	run	from	the	Admin	Visual	Studio	Command	Prompt.	The	syntax	for	creating
a	simple	certificate	is	as	follows:

makecert	-r	-pe	-n	"CN=CSharpCookBook.net"	-a	sha512	-len	4096

									-cy	authority	-sv	CSCBNet.pvk	CSCBNet.cer

The	options	are	defined	as	follows:
-r

The	certificate	will	be	self-signed.	Self-signed	certificates	are	often	created	and
signed	by	the	developer	of	a	website	to	facilitate	testing	of	that	site	before	it	is	moved
into	production.	Self-signed	certificates	offer	no	evidence	that	the	site	is	legitimate.

-pe

The	certificate’s	private	key	will	be	exportable	so	that	it	can	be	included	in	the
certificate.

-n	"CN=CSharpCookBook.net"

The	publisher’s	certificate	name.	The	name	follows	the	"CN="	text.
-a	sha512

The	algorithm	used	to	create	the	digital	signature.	sha512	is	the	strongest	available.
-len	4096

The	number	of	bits	in	the	length	of	the	key.
-cy	authority

The	type	of	this	certificate.	The	type	can	either	be	end	(end	entity)	or	authority	(cert
authority).

-sv	CSCBNet.pvk

The	name	of	the	private	key	file	that	will	be	generated	for	the	subject.

The	final	argument	to	the	makecert.exe	utility	is	the	output	filename,	in	this	case
CSCBNet.cer.	This	will	generate	the	certificate	in	this	file	in	the	current	working	directory
on	the	hard	drive.	Additionally,	a	second	file	is	generated	called	CSCBNet.pvk.	This	is	the
private	key	file.	Both	the	private	key	file	and	the	certificate	file	need	to	be	converted	to	a
personal	information	exchange	(.pfx)	file.	You	accomplish	this	by	running	the	Pvk2Pfx.exe
tool	from	the	Admin	Visual	Studio	Command	Prompt	as	follows:

pvk2pfx.exe	-pvk	CSCBNet.pvk	-spc	CSCBNet.cer	-pfx	CSCBNet.pfx	-po	CSCB

The	options	are	defined	as	follows:
-pvk

The	name	of	the	private	key	file.
-spc

The	name	of	the	certificate	file.
-pfx

The	name	of	the	generated	personal	information	exchange	file.
-po

The	new	password	for	the	generated	personal	information	exchange	file.

The	next	step	is	opening	Windows	Explorer	and	right-clicking	the	CSCBNet.cer	file.	This
will	display	a	pop-up	menu.	Click	the	Install	Certificate	menu	item,	and	a	wizard	will	start
up,	allowing	you	to	import	this	.cer	file	into	the	certificate	store.	The	first	dialog	box	of
the	wizard	is	shown	in	Figure	11-1.	Click	Next.

Figure	11-1.	The	first	step	of	the	Certificate	Import	wizard

The	next	step	in	the	wizard	allows	you	to	choose	the	certificate	store	in	which	you	want	to
install	your	certificate.	This	dialog	is	shown	in	Figure	11-2.	Keep	the	defaults	and	click
Next.

The	final	step	in	the	wizard	is	shown	in	Figure	11-3.	On	this	dialog,	click	Finish.

After	you	click	Finish,	you’ll	see	the	message	box	in	Figure	11-4,	indicating	that	the
import	was	successful.

Once	the	certificate	file	is	successfully	imported,	you	need	to	import	the	.pfx	file	using	the
Certificate	Import	wizard.	Right-click	the	CSCBNet.pfx	file.	A	pop-up	menu	is	displayed.
Click	the	Install	PFX	menu	item	and	the	wizard	will	start.	The	first	dialog	box	of	the
wizard	is	shown	in	Figure	11-5.	Keep	the	default	settings	and	click	Next.

Figure	11-2.	Specifying	a	certificate	store	in	the	Certificate	Import	wizard

The	next	step	in	this	wizard,	shown	in	Figure	11-6,	asks	you	to	choose	a	.pfx	file	to	import.
Browse	to	the	file	using	the	Browse	button	and	then	click	Next.

The	next	step,	shown	in	Figure	11-7,	asks	for	the	password	used	to	create	this	.pfx	file.
Note	that	this	password	was	the	one	we	used	in	the	Pvk2Pfx.exe	command-line	tool.	The
actual	password	was	passed	in	to	this	tool	through	the	–po	switch.	For	our	example,	we
use	the	text	CSCB	as	the	password.	Type	this	into	the	text	box	on	this	page	of	the	wizard
and	click	Next.

This	next	step,	shown	in	Figure	11-8,	asks	you	to	choose	the	certificate	store	in	which	to
store	this	.pfx	information.	Keep	the	defaults	and	click	Next.

Figure	11-3.	The	last	step	of	the	Certificate	Import	wizard

Figure	11-4.	The	Certificate	Import	Successful	message

Figure	11-5.	Specifying	a	private	key	store	in	the	Certificate	Import	wizard

Figure	11-6.	Specifying	the	personal	information	exchange	file	to	be	imported	into	the	certificate	store

Figure	11-7.	Entering	in	the	password	of	the	personal	information	exchange	file

Figure	11-8.	Specifying	a	certificate	store	for	the	personal	information	exchange	file	in	the	Certificate	Import	wizard

The	final	step	in	the	wizard,	shown	in	Figure	11-9,	simply	shows	the	information	you
specified	on	the	previous	pages	of	the	wizard.	Click	Finish	to	complete	the	import.	After
you	click	the	Finish	button,	you’ll	see	the	message	box	in	Figure	11-4,	indicating	that	the
import	was	successful.

At	this	point,	you	can	run	the	TCP	server	and	client,	and	they	should	communicate
successfully.

To	use	the	SslStream	in	the	TCP	server	project,	you	need	to	create	a	new	SslStream
object	to	wrap	the	TcpClient	object:

SslStream	SslStream	=	new	SslStream(newClient.GetStream());

Before	you	can	use	this	new	stream	object,	you	must	authenticate	the	server	using	the
following	line	of	code:

SslStream.AuthenticateAsServer(GetServerCert("MyTestCert2"),

																											false,	SslProtocols.Default,	true);

Figure	11-9.	The	personal	information	exchange	File	Import	Successful	message

The	GetServerCert	method	finds	the	server	certificate	used	to	authenticate	the	server.
Notice	the	name	passed	in	to	this	method;	it	is	the	same	as	the	publisher’s	certificate	name
switch	used	with	the	makecert.exe	utility	(see	the	–n	switch).	This	certificate	is	returned
from	the	GetServerCert	method	as	an	X509Certificate	object.	The	next	argument	to	the
AuthenticateAsServer	method	is	false,	indicating	that	a	client	certificate	is	not	required.
The	SslProtocols.Default	argument	indicates	that	the	authentication	mechanism	(SSL
2.0,	SSL	3.0,	TLS	1.0,	or	PCT	1.0)	is	chosen	based	on	what	is	available	to	the	client	and
server.	The	final	argument	indicates	that	the	certificate	will	be	checked	to	see	whether	it
has	been	revoked.

To	use	the	SslStream	in	the	TCP	client	project,	you	create	a	new	SslStream	object,	a	bit
differently	from	how	it	was	created	in	the	TCP	server	project:

SslStream	SslStream	=	new	SslStream(_client.GetStream(),	false,

								new	RemoteCertificateValidationCallback(CertificateValidationCallback));

This	constructor	accepts	a	stream	from	the	_client	field,	a	false	indicating	that	the
stream	associated	with	the	_client	field	will	be	closed	when	the	Close	method	of	the
SslStream	object	is	called,	and	a	delegate	that	validates	the	server	certificate.	The
CertificateValidationCallback	method	is	called	whenever	a	server	certificate	needs	to
be	validated.	The	server	certificate	is	checked,	and	any	errors	are	passed	into	this	delegate
method	to	allow	you	to	handle	them	as	you	wish.

The	AuthenticateAsClient	method	is	called	next	to	authenticate	the	server:

SslStream.AuthenticateAsClient("MyTestCert2");

As	you	can	see,	with	a	little	extra	work,	you	can	replace	the	current	stream	type	you	are
using	with	the	SslStream	to	gain	the	benefits	of	the	SSL	protocol.

See	Also
The	“SslStream	Class”	topic	in	the	MSDN	documentation.

11.12	Encrypting	web.config	Information

Problem
You	need	to	encrypt	data	within	a	web.config	file	programmatically.

Solution
To	encrypt	data	within	a	web.config	file	section,	use	the	following	method:

public	static	void	EncryptWebConfigData(string	appPath,

																																								string	protectedSection,

																																								string	dataProtectionProvider)

{

				System.Configuration.Configuration	webConfig	=

																WebConfigurationManager.OpenWebConfiguration(appPath);

				ConfigurationSection	webConfigSection	=

																webConfig.GetSection(protectedSection);

				if	(!webConfigSection.SectionInformation.IsProtected)

				{

								webConfigSection.SectionInformation.ProtectSection(

																																															dataProtectionProvider);

								webConfig.Save();

				}

}

To	decrypt	data	within	a	web.config	file	section,	use	the	following	method:

public	static	void	DecryptWebConfigData(string	appPath,	string	protectedSection)

{

				System.Configuration.Configuration	webConfig	=

																WebConfigurationManager.OpenWebConfiguration(appPath);

				ConfigurationSection	webConfigSection	=

																	webConfig.GetSection(protectedSection);

				if	(webConfigSection.Section	Information.IsProtected)

				{

								webConfigSection.SectionInformation.UnprotectSection();

								webConfig.Save();

				}

}

You	will	need	to	add	the	System.Web	and	System.Configuration	DLLs	to	your	project
before	this	code	will	compile.

Discussion
To	encrypt	data,	you	can	call	the	EncryptWebConfigData	method	with	the	following
arguments:

EncryptWebConfigData("/WebApplication1",	"appSettings",

																					"DataProtectionConfigurationProvider");

The	first	argument	is	the	virtual	path	to	the	web	application,	the	second	argument	is	the
section	that	you	want	to	encrypt,	and	the	last	argument	is	the	data	protection	provider	that
you	want	to	use	to	decrypt	the	data.

The	EncryptWebConfigData	method	uses	the	virtual	path	passed	into	it	to	open	the
web.config	file.	You	do	this	using	the	OpenWebConfiguration	static	method	of	the
WebConfigurationManager	class:

System.Configuration.Configuration	webConfig	=

				WebConfigurationManager.OpenWebConfiguration(appPath);

This	method	returns	a	System.Configuration.Configuration	object,	which	you	use	to
get	the	section	of	the	web.config	file	that	you	wish	to	encrypt.	You	accomplish	this
through	the	GetSection	method:

ConfigurationSection	webConfigSection	=	webConfig.GetSection(protectedSection);

This	method	returns	a	ConfigurationSection	object	that	you	can	use	to	encrypt	the
section.	This	is	done	through	a	call	to	the	ProtectSection	method:

webConfigSection.SectionInformation.ProtectSection(dataProtectionProvider);

The	dataProtectionProvider	argument	is	a	string	identifying	which	data	protection
provider	you	want	to	use	to	encrypt	the	section	information.	The	two	available	providers
are	DpapiProtectedConfigurationProvider	and	RsaProtectedConfigurationProvider.
The	DpapiProtectedConfigurationProvider	class	makes	use	of	the	Data	Protection	API
(DPAPI)	to	encrypt	and	decrypt	data.	The	RsaProtectedConfigurationProvider	class
makes	use	of	the	RsaCryptoServiceProvider	class	in	the	.NET	Framework	to	encrypt
and	decrypt	data.

The	final	step	to	encrypting	the	section	information	is	to	call	the	Save	method	of	the
System.Configuration.Configuration	object.	This	saves	the	changes	to	the	web.config
file.	If	this	method	is	not	called,	the	encrypted	data	will	not	be	saved.

To	decrypt	data	within	a	web.config	file,	you	can	call	the	DecryptWebConfigData	method
with	the	following	parameters:

DecryptWebConfigData("/WebApplication1",	"appSettings");

The	first	argument	is	the	virtual	path	to	the	web	application;	the	second	argument	is	the
section	that	you	want	to	encrypt.

The	DecryptWebConfigData	method	operates	very	similarly	to	the
EncryptWebConfigData	method,	except	that	it	calls	the	UnprotectSection	method	to
decrypt	the	encrypted	data	in	the	web.config	file:

webConfigSection.SectionInformation.UnprotectSection();

If	you	encrypt	data	in	the	web.config	file	using	this	technique,	the	data	will	automatically
be	decrypted	when	the	web	application	accesses	the	encrypted	data	in	the	web.config	file.

See	Also
The	“System.Configuration.Configuration	Class”	topic	in	the	MSDN	documentation.

11.13	Obtaining	a	Safer	File	Handle

Problem
You	want	more	security	when	manipulating	an	unmanaged	file	handle	than	a	simple
IntPtr	can	provide.

Solution
Use	the	Microsoft.Win32.SafeHandles.SafeFileHandle	object	to	wrap	an	existing
unmanaged	file	handle:

public	static	void	WriteToFileHandle(IntPtr	hFile)

{

				//	Wrap	our	file	handle	in	a	safe	handle	wrapper	object.

				using	(Microsoft.Win32.SafeHandles.SafeFileHandle	safeHFile	=

								new	Microsoft.Win32.SafeHandles.SafeFileHandle(hFile,	true))

				{

								//	Open	a	FileStream	object	using	the	passed-in	safe	file	handle.

								using	(FileStream	fileStream	=	new	FileStream(safeHFile,

															FileAccess.ReadWrite))

								{

											//	Flush	before	we	start	to	clear	any	pending	unmanaged	actions.

											fileStream.Flush();

											//	Operate	on	file	here.

											string	line	=	"Using	a	safe	file	handle	object";

											//	Write	to	the	file.

											byte[]	bytes	=	Encoding.ASCII.GetBytes(line);

											fileStream.Write(bytes,0,bytes.Length);

								}

				}

				//	Note	that	the	hFile	handle	is	invalid	at	this	point.

}

The	SafeFileHandle	constructor	takes	two	arguments.	The	first	is	an	IntPtr	that	contains
a	handle	to	an	unmanaged	resource.	The	second	argument	is	a	Boolean	value,	where	true
indicates	that	the	handle	will	always	be	released	during	finalization,	and	false	indicates
that	the	safeguards	that	force	the	handle	to	be	released	during	finalization	are	turned	off.
Unless	you	have	an	extremely	good	reason	to	turn	off	these	safeguards,	it	is	recommended
that	you	always	set	this	Boolean	value	to	true.

Discussion
A	SafeFileHandle	object	contains	a	single	handle	to	an	unmanaged	file	resource.	This
class	has	two	major	benefits	over	using	an	IntPtr	to	store	a	handle	—	critical	finalization
and	prevention	of	handle	recycling	attacks.	The	SafeFileHandle	is	seen	by	the	garbage
collector	as	a	critical	finalizer,	due	to	the	fact	that	one	of	the	SafeFileHandle’s	base
classes	is	CriticalFinalizerObject.	The	garbage	collector	separates	finalizers	into	two
categories:	critical	and	noncritical.	The	noncritical	finalizers	are	run	first,	followed	by	the
critical	finalizers.	If	a	FileStream’s	finalizer	flushes	any	data,	it	can	assume	that	the
SafeFileHandle	object	is	still	valid,	because	the	SafeFileHandle	finalizer	is	guaranteed
to	run	after	the	FileStream’s.

NOTE
The	Close	method	on	the	FileStream	object	will	also	close	its	underlying	SafeFileHandle	object.

Since	the	SafeFileHandle	falls	under	critical	finalization,	it	means	that	the	underlying
unmanaged	handle	is	always	released	(i.e.,	the	SafeFileHandle.ReleaseHandle	method
is	always	called),	even	in	situations	in	which	the	AppDomain	is	corrupted	and/or	shutting
down	or	the	thread	is	being	aborted.	This	will	prevent	resource	handle	leaks.

The	SafeFileHandle	object	also	helps	to	prevent	handle	recycling	attacks.	The	operating
system	aggressively	tries	to	recycle	handles,	so	it	is	possible	to	close	one	handle	and	open
another	soon	afterward	and	get	the	same	value	for	the	new	handle.	One	way	an	attacker
will	take	advantage	of	this	is	by	forcing	an	accessible	handle	to	close	on	one	thread	while
it’s	possibly	still	being	used	on	another,	in	the	hope	that	the	handle	will	be	recycled
quickly	and	used	as	a	handle	to	a	new	resource,	perhaps	one	that	the	attacker	does	not
have	permission	to	access.	If	the	application	still	has	this	original	handle	and	is	actively
using	it,	data	corruption	could	be	an	issue.

Since	this	class	inherits	from	the	SafeHandleZeroOrMinusOneIsInvalid	class,	a	handle
value	of	0	or	–1	is	considered	an	invalid	handle.

See	Also
The	“Microsoft.Win32.SafeHandles.SafeFileHandle	Class”	topic	in	the	MSDN
documentation.

11.14	Storing	Passwords

Problem
You	need	to	store	passwords	for	users	of	your	application	in	a	safe	and	secure	manner.
However,	you	do	not	want	to	allow	anyone	with	elevated	privileges,	such	as	an
administrator	of	the	system,	to	have	any	way	to	decrypt	the	stored	passwords.
Additionally,	if	this	information	is	stolen	by	an	attacker,	you	want	to	make	it	as	difficult	as
possible	for	her	to	uncover	the	original	passwords.

Solution
Rather	than	using	a	two-way	encryption	algorithm	to	encrypt	the	passwords,	which	can
also	be	used	to	decrypt	the	passwords	with	the	right	key,	we	will	use	a	one-way	hashing
algorithm	with	a	salt	value	to	store	the	passwords	in	a	more	secure	manner.	Rather	than
comparing	clear-text	passwords	we	will	compare	hash	values,	thereby	hiding	the	real
password	from	prying	eyes.

NOTE
This	recipe	uses	methods	from	Recipe	11.10	—	most	notably	the	CreateSecureString	and
ReadSecureString	methods.

We’ll	start	out	by	creating	the	method	that	accepts	a	clear-text	password	and	returns	both	a
unique	salt	value	(as	an	out	parameter)	and	the	hashed	and	salted	password	(as	the	return
value):

const	int	HASH_ITERATIONS	=	43;

const	string	HASH_ALGORITHM	=	"SHA-512";

const	int	SALT_LENGTH	=	64;

public	static	SecureString	GeneratePasswordHashAndSalt(SecureString	passwd,

																																																							out	SecureString	salt)

{

				//	First	generate	the	unique	salt	we	will	use	to	hash	with

				salt	=	GenerateSalt();

				//	Create	salted	hash

				string	hashedPwd	=	GenerateHash(passwd,	salt);

				return	CreateSecureString(hashedPwd);

}

Next	we’ll	write	the	method	that	generates	a	cryptographically	strong	random	number,
which	we	will	use	as	the	salt	value:

private	static	SecureString	GenerateSalt()

{

				RNGCryptoServiceProvider	rng	=	new	RNGCryptoServiceProvider();

				byte[]	salt	=	new	byte[SALT_LENGTH];

				rng.GetBytes(salt);

				return	CreateSecureString(Convert.ToBase64String(salt));

}

And,	of	course,	we’ll	need	a	method	that	accepts	both	the	unhashed	password	as	well	as
our	salt	value,	created	in	the	previous	method	GenerateSalt,	and	then	returns	the	final
hashed	password/salt	combination:

private	static	string	GenerateHash(SecureString	clearTextData,	SecureString	salt)

{

				if	(salt?.Length	>	0)

				{

								//	Combine	password	and	salt	before	hashing

								byte[]	clearTextDataArray	=

																		Encoding.UTF8.GetBytes(ReadSecureString(clearTextData));

								byte[]	clearTextSaltArray	=	

												Convert.FromBase64String(ReadSecureString(salt));

								byte[]	clearTextDataSaltArray	=	new	byte[clearTextDataArray.Length	+

																																																	clearTextSaltArray.Length];

								Array.Copy(clearTextDataArray,	0,	clearTextDataSaltArray,

																			0,	clearTextDataArray.Length);

								Array.Copy(clearTextSaltArray,	0,	clearTextDataSaltArray,

																			clearTextDataArray.Length,	clearTextSaltArray.Length);

								//	Use	a	secure	hashing	algorithm

								HashAlgorithm	alg	=	HashAlgorithm.Create(HASH_ALGORITHM);

								byte[]	hashedPwd	=	null;

								for	(int	index	=	0;	index	<	HASH_ITERATIONS;	index++)

								{

												if	(hashedPwd	==	null)

												{

																//	Initial	hash	of	the	cleartext	password

																hashedPwd	=	alg.ComputeHash(clearTextDataSaltArray);

												}

												else

												{

																//	Re-hash	the	hash	for	added	entropy

																hashedPwd	=	alg.ComputeHash(hashedPwd);

												}

								}

								return	Convert.ToBase64String(hashedPwd);

				}

				else

				{

								throw	new	ArgumentException(

									$"Salt	parameter	{nameof(salt)}	cannot	be	empty	or	null.	"	+

										"This	is	a	security	violation.");

				}

}

This	GenerateHash	method	simply	combines	both	the	password	and	salt	values	into	a
single	byte[]	and	then	computes	the	hash	for	this	combined	value.	For	additional	security,
the	resulting	hash	value	is	rehashed	many	times	over.	The	number	of	hashing	iterations	is
controlled	by	the	HASH_ITERATIONS	constant.

Once	this	final	hashed/salted	password	value	is	created,	we	need	to	store	both	this	value	as
well	as	the	unique	salt	value	for	this	user	in	a	data	store.	This	pseudocode	gives	you	the
general	idea.	You	can	modify	this	to	work	with	whatever	data	store	you	are	using:

public	static	void	SaveHashedPassword(string	userName,	SecureString	pwdHash,

																																						SecureString	salt)

{

				string	base64PwdHash	=	ReadSecureString(pwdHash);

				string	base64Salt	=	ReadSecureString(salt);

				//	Store	in	DB

				//	INSERT	users	('user',	'pwd',	'salt',	...)

				//																(userName,	base64PwdHash,	base64Salt,	...)}

The	pwdHash	and	salt	parameters	should	be	fed	from	the	return	value	and	out	parameter
of	the	GeneratePasswordHashAndSalt	method,	respectively.

Now	that	we	can	create	our	hashed/salted	password,	we	need	a	way	to	compare	what	the
user	enters	into	the	password	text	box	on	the	login	form	of	his	application	to	the	hash	that
is	stored	in	the	data	store.	The	following	method	will	salt	and	hash	the	password	entered
by	the	user	and	then	compare	that	value	to	what	is	stored	in	the	data	store	for	that	same
user	(i.e.,	the	original	hashed/salted	password	the	user	created):

public	static	bool	ComparePasswords(SecureString	storedHashedPwd,

																																				SecureString	storedSalt,

																																				SecureString	clearTextPwd)

{

				try

				{

								//	First	hash	the	clear	text	pwd	using	the	same	technique

								byte[]	userEnteredHashedPwd	=

																	Convert.FromBase64String(GenerateHash(clearTextPwd,	

																					storedSalt));

								//	Get	the	stored	hashed	pwd/salt

								byte[]originalHashedPwd	=

																	Convert.FromBase64String(ReadSecureString(storedHashedPwd));

								//	Now	compare	the	two	hashes

								//	If	true,	the	user	entered	password	is	correct

								if	(userEnteredHashedPwd.SequenceEqual(originalHashedPwd))

												return	true;

				}

				catch(ArgumentException	ae)

				{

								//	You	should	log	this	error	and	return	false	here

								Console.WriteLine(ae.Message);

								return	false;

				}

				return	false;

}

When	calling	this	method,	you	must	retrieve	the	storedHashedPwd	and	salt	arguments
from	the	data	store	where	they	were	initially	stored.	Originally,	we	had	saved	these	values
using	the	pseudocode	in	the	SaveHashedPassword	method.	Here	is	another	pseudocode
method	to	retrieve	those	values:

public	static	void	RetrieveHashedPasswordAndSalt(string	userName,

																																																	out	SecureString	

																																																					storedHashedPwd,

																																																	out	SecureString	storedSalt)

{

				//	Get	from	DB

				//	SELECT	pwd,	salt	FROM	users	WHERE	user	=	?

				//	SetString(userName);

				storedHashedPwd	=	CreateSecureString(getFromResultSet("pwd"));

				storedSalt	=	CreateSecureString(getFromResultSet	("salt"));

}

Again,	you	should	modify	this	pseudocode	to	handle	your	particular	data	store.

Discussion
Before	getting	into	the	details	of	how	to	use	this	code,	let’s	discuss	the	constant	values
used	in	this	code:

const	int	HASH_ITERATIONS	=	43;

const	string	HASH_ALGORITHM	=	"SHA-512";

const	int	SALT_LENGTH	=	64;

First,	the	HASH_ITERATIONS	value	simply	defines	how	many	times	the	clear-text
password/salt	combination	will	be	hashed.	In	this	case	the	password/salt	value	is	hashed,
the	resulting	hash	is	again	hashed,	and	so	on,	for	a	total	of	43	times.	If	you	require	more
entropy	in	the	hash,	you	should	increase	this	value;	it	could	easily	be	increased	to	100,
200,	500,	or	even	1,000.	However,	keep	in	mind	that	it	requires	processing	power	to	create
these	hashes,	and	an	attacker	(presumably	with	a	bot	net)	could	forcibly	cause	many
hashes	to	be	generated,	resulting	in	a	denial	of	service	to	your	application.

NOTE
Displaying	a	CAPTCHA	when	prompting	a	user	to	register	and	log	in	and	locking	a	user	out	after	several
unsuccessful	login	attempts	are	measures	you	can	use	to	prevent	or	deter	denial-of-service	attacks	that	are
focused	on	keeping	your	servers	busy	generating	hash	values.

The	HASH_ALGORITHM	value	defines	the	hashing	algorithm	to	use.	It	is	safe	to	use	either
SHA-256	or	SHA-512,	although	SHA-512	is	safer	to	use.	Do	not	use	easily	broken
hashing	algorithms,	such	as	MD5	or	SHA-1,	as	they	will	significantly	reduce	the	amount
of	time	it	takes	an	attacker	to	crack	your	hashes.	In	fact,	do	not	use	anything	weaker	than
the	SHA-256	algorithm.

Finally,	the	SALT_LENGTH	value	is	the	number	of	bytes	that	will	make	up	the	salt	value.
These	bytes	are	generated	from	a	cryptographically	strong	random-number	generator.	A
salt	length	of	64	bytes	was	chosen	here,	but	a	smaller	or	larger	size	could	also	be	used.	We
chose	64	because	it’s	the	same	size	as	the	hashed	password/salt,	which	forces	an	attacker
to	determine	which	one	is	the	salt	value	and	which	one	is	the	hashed	value	before	he	can
use	rainbow	tables	or	reverse	lookups	on	the	hashes.	If	you	decide	to	use	SHA-256,	then
you	can	reduce	the	SALT_LENGTH	to	32	bytes	to	be	equivalent	in	size	to	the	hash	value.

Moving	on	to	implementing	this	code	in	your	application,	there	are	two	places	where	this
code	should	be	used	—	in	the	user	registration	and	login	forms	on	your	site.	First,	we’ll
step	through	the	registration	process:

1.	 The	user	chooses	to	register	a	username	and	password	for	this	site.

2.	 The	site	asks	the	user	to	enter	in	a	username	and	password,	which	is	then	passed	into
the	GeneratePasswordHashAndSalt	method,	producing	both	a	unique	salt	value	and
a	hashed/salted	password	for	this	user.

3.	 The	username	entered	by	the	user	is	verified	against	the	data	store	to	determine	if	an
existing	user	exists.

4.	 If	no	previously	entered	username	exists,	the	username,	hashed/salted	password,	and
unique	salt	value	are	stored	in	the	data	store.

NOTE
For	this	recipe,	we	assume	the	use	of	the	System.Windows.Controls.PasswordBox	control	on	both	the
registration	and	login	forms.	This	control	can	be	found	in	the	PresentationFramework.dll.	This	control	has
a	built-in	property,	SecurePassword,	that	allows	us	to	retrieve	a	password	already	stored	in	a	SecureString
object	as	opposed	to	a	normal	String	object.

The	code	will	look	something	like	this:

public	bool	Register()

{

				try

				{

								...

								SecureString	salt;

								SecureString	pwdHash	=

										GeneratePasswordHashAndSalt(myRegPasswordTextBox.SecurePassword,

														out	salt);

								//	Test	to	make	sure	this	user	is	available	to	be	registered

								if	(UserDoesNotExist(myRegUserNameTextBox.Text))

								{

												SaveHashedPassword(userName,	pwdHash,	salt);

												return	true;

								}

								else

								{

												return	false;

								}

				}

				catch(Exception	e)

				{

								//	An	error	occurred,	login	failure!

								return	false;

				}

}

The	first	method	that	we	call	is	GeneratePasswordHashAndSalt,	in	order	to	generate	a
new	unique	salt	value	for	this	user	and	to	salt	and	hash	the	password	the	user	registered
with.

WARNING
It	is	important	that	a	unique	salt	value	is	generated	for	each	user.	Using	the	same	salt	for	each	user	is
insecure,	since	it	makes	it	easier	for	the	attacker	to	uncover	all	hashed	passwords.	All	the	attacker	has	to	do
is	determine	the	one	salt	value	and	apply	it	to	each	hash	value	that	she	generates.

The	last	thing	we	do	in	this	method	is	test	to	make	sure	that	this	username	does	not
already	exist	in	the	data	store.	If	it	does	not	exist,	we	continue	on	to	store	this	username,
the	hashed/salted	password,	and	the	unique	salt	in	the	data	store	using	the
SaveHashedPassword	method.	Otherwise,	the	registration	process	is	halted	and	the	user
must	enter	a	different	username.

This	is	the	process	when	the	user	returns	to	the	site	and	attempts	to	log	in	with	her
credentials:

1.	 The	user	enters	her	username	and	password.

2.	 The	unique	salt	value	and	the	originally	hashed/salted	password	for	this	user	is
obtained	from	the	data	store.

3.	 The	password	the	user	entered	into	the	site	(obtained	in	step	#1)	and	the	unique	salt
value	for	this	user	(obtained	in	step	#2)	as	well	as	the	hashed/salted	password	(also
obtained	in	step	#2)	are	passed	into	the	ComparePasswords	method.

4.	 The	ComparePasswords	method	simply	salts	and	hashes	the	user’s	password	using
the	original	salt	value	stored	for	this	particular	user	and	then	compares	that	resulting
hash	to	the	original	hash	stored	for	the	user.

5.	 If	the	hashes	are	exactly	the	same,	the	user	can	continue	authenticating;	otherwise,
the	user	is	prevented	from	authenticating.

The	code	will	look	something	like	this:

public	bool	Login()

{

				try

				{

								...

								string	userName	=	myLoginUserNameTextBox.Text;

								SecureString	storedHashedPwd;

								SecureString	storedSalt;

								RetrieveHashedPasswordAndSalt(userName,	out	storedHashedPwd,	

												out	storedSalt);

								if	(ComparePasswords(storedHashedPwd,	storedSalt,

																													myLoginPwdTextBox.SecurePassword))

								{

												//	Password	hashes	match

												return	true;

								}

								else

								{

												//	Password	hashes	do	not	match,	login	failure!

												return	false;

								}

				}

				catch(Exception	e)

				{

								//	An	error	occurred,	login	failure!

								return	false;

				}

}

First,	this	code	uses	the	username	entered	by	the	user	to	retrieve	both	the	hashed/salted
password	and	the	user’s	unique	salt	value	from	the	data	store	using	the
RetrieveHashedPasswordAndSalt	method.	These	two	values,	along	with	the	password
entered	by	the	user	in	the	login	form,	are	passed	into	the	ComparePasswords	method.	This
method	hashes	and	salts	the	password	that	the	user	entered	in	the	login	form	using	the
same	salt	value	returned	by	the	RetrieveHashedPasswordAndSalt	method.	If	the
hashed/salted	password	that	the	user	entered	in	the	login	form	is	the	same	as	the

hashed/salted	password	stored	in	the	data	store,	then	the	passwords	match	and	the
authentication	process	is	allowed	to	continue.	Otherwise,	the	authentication	fails.

See	Also
The	“System.Windows.Controls.PasswordBox	Class,”
“System.Security.Cryptography.RNGCryptoServiceProvider	Class,”	and
“System.Security.SecureString	Class”	topics	in	the	MSDN	documentation.

Chapter	12.	Threading,	Synchronization,
and	Concurrency

12.0	Introduction
A	thread	represents	a	single	flow	of	execution	logic	in	a	program.	Some	programs	never
need	more	than	a	single	thread	to	execute	efficiently,	but	many	do,	and	that	is	what	this
chapter	is	about.	Threading	in	.NET	allows	you	to	build	responsive	and	efficient
applications.	Many	applications	need	to	perform	multiple	actions	at	the	same	time	(such	as
user	interface	interaction	and	data	processing),	and	threading	provides	the	capability	to
achieve	this.	Being	able	to	have	your	application	perform	multiple	tasks	is	a	very
liberating	and	yet	complicating	factor	in	your	application	design.	Once	you	have	multiple
threads	of	execution	in	your	application,	you	need	to	start	thinking	about	what	data	in	your
application	needs	to	be	protected	from	multiple	accesses,	what	data	could	cause	threads	to
develop	an	interdependency	that	could	lead	to	deadlocking	(Thread	A	has	a	resource	that
Thread	B	is	waiting	for,	and	Thread	B	has	a	resource	that	Thread	A	is	waiting	for),	and
how	to	store	data	you	want	to	associate	with	the	individual	threads.	You	will	also	want	to
consider	race	conditions	when	dealing	with	threads.	A	race	condition	occurs	when	two
threads	access	a	shared	variable	at	the	same	time.	Both	threads	read	the	variable	and	get
the	same	value	and	then	race	to	see	which	thread	can	write	the	value	last	to	the	shared
variable.	The	last	thread	to	write	to	the	variable	“wins,”	as	it	is	writing	over	the	value	that
the	first	thread	wrote.	You	will	explore	some	of	these	issues	to	help	you	take	advantage	of
this	wonderful	capability	of	the	.NET	Framework.	You	will	also	see	the	areas	where	you
need	to	be	careful	and	items	to	keep	in	mind	while	designing	and	creating	your
multithreaded	application.

Synchronization	is	about	coordinating	activities	between	threads	or	processes	while
making	sure	that	data	being	accessed	by	multiple	threads	or	processes	stays	valid.
Synchronization	allows	threads	and	processes	to	operate	in	unison.	Understanding	the
constructs	that	allow	you	to	have	multiple	threads	executing	in	your	program	gives	you
the	power	to	create	more	scalable	applications	that	can	better	utilize	available	resources.

Concurrency	is	about	various	aspects	of	your	program	cooperating	and	working	in	tandem
to	achieve	goals.	When	operations	are	running	concurrently	in	your	application,	you	have
multiple	actions	occurring	at	the	same	time.	Concurrency	is	fostered	by	synchronization	of
threads.

12.1	Creating	Per-Thread	Static	Fields

Problem
Static	fields,	by	default,	are	shared	between	threads	within	an	application	domain.	You
need	to	allow	each	thread	to	have	its	own	nonshared	copy	of	a	static	field,	so	that	this
static	field	can	be	updated	on	a	per-thread	basis.

Solution
Use	ThreadStaticAttribute	to	mark	any	static	fields	as	not	shareable	between	threads:

public	class	Foo

{

				[ThreadStaticAttribute()]

				public	static	string	bar	=	"Initialized	string";

}

Discussion
By	default,	static	fields	are	shared	between	all	threads	that	access	these	fields	in	the	same
application	domain.	To	see	this,	you’ll	create	a	class	with	a	static	field	called	bar	and	a
static	method	to	access	and	display	the	value	contained	in	this	field:

private	class	ThreadStaticField

{

				[ThreadStaticAttribute()]

				public	static	string	bar	=	"Initialized	string";

				public	static	void	DisplayStaticFieldValue()

				{

								string	msg	=	$"{Thread.CurrentThread.GetHashCode()}"	+

												$"{	contains	static	field	value	of:	{ThreadStaticField.bar}	";

								Console.WriteLine(msg);

				}

}

Next,	create	a	test	method	that	accesses	this	static	field	both	on	the	current	thread	and	on	a
newly	spawned	thread:

private	static	void	TestStaticField()

{

				ThreadStaticField.DisplayStaticFieldValue();

				Thread	newStaticFieldThread	=

								new	Thread(ThreadStaticField.DisplayStaticFieldValue);

				newStaticFieldThread.Start();

				ThreadStaticField.DisplayStaticFieldValue();

}

This	code	displays	output	that	resembles	the	following:

9	contains	static	field	value	of:	Initialized	string

10	contains	static	field	value	of:	Initialized	string

9	contains	static	field	value	of:	Initialized	string

In	the	preceding	example,	the	current	thread’s	hash	value	is	9,	and	the	new	thread’s	hash
value	is	10.	These	values	will	vary	from	system	to	system.	Notice	that	both	threads	are
accessing	the	same	static	bar	field.	Next,	add	the	ThreadStaticAttribute	to	the	static
field:

private	class	ThreadStaticField

{

				[ThreadStaticAttribute()]

				public	static	string	bar	=	"Initialized	string";

				public	static	void	DisplayStaticFieldValue()

				{

								string	msg	=	$"{Thread.CurrentThread.GetHashCode()}"	+

												$"{	contains	static	field	value	of:	{ThreadStaticField.bar}	";

								Console.WriteLine(msg);

				}

}

Now,	output	resembling	the	following	is	displayed:

9	contains	static	field	value	of:	Initialized	string

10	contains	static	field	value	of:

9	contains	static	field	value	of:	Initialized	string

Notice	that	the	new	thread	returns	a	null	for	the	value	of	the	static	bar	field.	This	is	the
expected	behavior.	The	bar	field	is	initialized	only	in	the	first	thread	that	accesses	it.	In	all
other	threads,	this	field	is	initialized	to	null.	Therefore,	it	is	imperative	that	you	initialize
the	bar	field	in	all	threads	before	it	is	used.

NOTE
Remember	to	initialize	any	static	field	that	is	marked	with	ThreadStaticAttribute	before	it	is	used	in	any
thread;	that	is,	this	field	should	be	initialized	in	the	method	passed	in	to	the	ThreadStart	delegate.	You
should	make	sure	to	not	initialize	the	static	field	using	a	field	initializer	as	shown	in	the	prior	code,	since
only	one	thread	gets	to	see	that	initial	value.

The	bar	field	is	initialized	to	the	"Initialized	string"	string	literal	before	it	is	used	in
the	first	thread	that	accesses	this	field.	In	the	previous	test	code,	the	bar	field	was	accessed
first,	and,	therefore,	it	was	initialized	in	the	current	thread.	Suppose	you	were	to	remove
the	first	line	of	the	TestStaticField	method,	as	shown	here:

private	static	void	TestStaticField()

{

				//ThreadStaticField.DisplayStaticFieldValue();

				Thread	newStaticFieldThread	=

								new	Thread(ThreadStaticField.DisplayStaticFieldValue);

				newStaticFieldThread.Start();

				ThreadStaticField.DisplayStaticFieldValue();

}

This	code	now	displays	similar	output	to	the	following:

10	contains	static	field	value	of:	Initialized	string

9	contains	static	field	value	of:

The	current	thread	does	not	access	the	bar	field	first	and	therefore	does	not	initialize	it.
However,	when	the	new	thread	accesses	it	first,	it	does	initialize	it.

Note	that	adding	a	static	constructor	to	initialize	the	static	field	marked	with	this	attribute
will	still	follow	the	same	behavior.	Static	constructors	are	executed	only	one	time	per
application	domain.

See	Also
The	“ThreadStaticAttribute	Attribute”	and	“Static	Modifier	(C#)”	topics	in	the	MSDN
documentation.

12.2	Providing	Thread-Safe	Access	to	Class	Members

Problem
You	need	to	provide	thread-safe	access	through	accessor	functions	to	an	internal	member
variable.

The	following	NoSafeMemberAccess	class	shows	three	methods:	ReadNumericField,
IncrementNumericField,	and	ModifyNumericField.	While	all	of	these	methods	access
the	internal	numericField	member,	the	access	is	currently	not	safe	for	multithreaded
access:

public	static	class	NoSafeMemberAccess

{

				private	static	int	numericField	=	1;

				public	static	void	IncrementNumericField()

				{

								++numericField;

				}

				public	static	void	ModifyNumericField(int	newValue)

				{

								numericField	=	newValue;

				}

				public	static	int	ReadNumericField()	=>	(numericField);

}

Solution
NoSafeMemberAccess	could	be	used	in	a	multithreaded	application,	and	therefore	it	must
be	made	thread-safe.	Consider	what	would	occur	if	multiple	threads	were	calling	the
IncrementNumericField	method	at	the	same	time.	It	is	possible	that	two	calls	could	occur
to	IncrementNumericField	while	the	numericField	is	updated	only	once.	To	protect
against	this,	you	will	modify	this	class	by	creating	an	object	that	you	can	lock	against	in
critical	sections	of	the	code:

public	static	class	SaferMemberAccess

{

				private	static	int	numericField	=	1;

				private	static	object	syncObj	=	new	object();

				public	static	void	IncrementNumericField()

				{

								lock(syncObj)

								{

												++numericField;

								}

				}

				public	static	void	ModifyNumericField(int	newValue)

				{

								lock	(syncObj)

								{

												numericField	=	newValue;

								}

				}

				public	static	int	ReadNumericField()

				{

								lock	(syncObj)

								{

												return	(numericField);

								}

				}

}

Using	the	lock	statement	on	the	syncObj	object	lets	you	synchronize	access	to	the
numericField	member.	This	now	makes	all	three	methods	safe	for	multithreaded	access.

Discussion
To	mark	a	block	of	code	as	a	critical	section,	you	use	the	lock	keyword.	The	lock
keyword	should	not	be	used	on	a	public	type	or	on	an	instance	out	of	the	control	of	the
program,	as	this	can	contribute	to	deadlocks.	Examples	of	this	are	using	the	"this"
pointer,	the	type	object	for	a	class	(typeof(MyClass)),	or	a	string	literal	("MyLock").	If
you	are	attempting	to	protect	code	in	only	public	static	methods,	you	could	also	use	the
System.Runtime.CompilerServices.MethodImpl	attribute	for	this	purpose	with	the
MethodImplOption.Synchronized	value:

[MethodImpl	(MethodImplOptions.Synchronized)]

public	static	void	MySynchronizedMethod()

{

}

There	is	a	problem	with	synchronization	using	an	object	such	as	syncObj	in	the
SaferMemberAccess	example.	If	you	lock	an	object	or	type	that	can	be	accessed	by	other
objects	within	the	application,	other	objects	may	also	attempt	to	lock	this	same	object.

NOTE
A	deadlock	is	a	situation	in	which	two	programs	or	threads	of	execution	that	are	sharing	the	same	resources
are	effectively	preventing	each	other	from	accessing	the	resources,	resulting	in	both	being	blocked	and
stopping	execution.

A	quick	example	of	a	deadlock	is:

1.	 Thread	1	accesses	Resource	A	and	grabs	a	lock	on	it.

2.	 Thread	2	accesses	Resource	B	and	grabs	a	lock	on	it.

3.	 Thread	1	attempts	to	grab	Resource	B	but	is	waiting	for	Thread	2	to	let	go.

4.	 Thread	2	attempts	to	grab	Resource	A	but	is	waiting	for	Thread	1	to	let	go.

5.	 At	this	point	the	threads	are	deadlocked.

This	will	manifest	itself	in	poorly	written	code	that	locks	itself,	such	as	the	following
code:

public	class	DeadLock

{

				public	void	Method1()

				{

								lock(this)

								{

												//	Do	something.

								}

				}

}

When	Method1	is	called,	it	locks	the	current	deadLock	object.	Unfortunately,	any	object
that	has	access	to	the	DeadLock	class	may	also	lock	it,	as	shown	here:

public	class	AnotherCls

{

				public	void	DoSomething()

				{

								DeadLock	deadLock	=	new	DeadLock();

								lock(deadLock)

								{

												Thread	thread	=	new	Thread(deadLock.Method1);

												thread.Start();

												//	Do	some	time-consuming	task	here.

								}

					}

}

The	DoSomething	method	obtains	a	lock	on	the	deadLock	object	and	then	attempts	to	call
the	Method1	method	of	the	deadLock	object	on	another	thread,	after	which	a	very	long	task
is	executed.	While	the	long	task	is	executing,	the	lock	on	the	deadLock	object	prevents
Method1	from	being	called	on	the	other	thread.	Only	when	this	long	task	ends,	and
execution	exits	the	critical	section	of	the	DoSomething	method,	will	the	Method1	method
be	able	to	acquire	a	lock	on	this	object.	As	you	can	see,	this	can	become	a	major	headache
to	track	down	in	a	much	larger	application.

Jeffrey	Richter	came	up	with	a	relatively	simple	method	to	remedy	this	situation,	which	he
details	quite	clearly	in	the	article	“Safe	Thread	Synchronization”	in	the	January	2003	issue
of	MSDN	Magazine.	His	solution	is	to	create	a	private	field	within	the	class	on	which	to
synchronize.	Only	the	object	itself	can	acquire	this	private	field;	no	outside	object	or	type
may	acquire	it.	This	solution	is	also	now	the	recommended	practice	in	the	MSDN
documentation	for	the	lock	keyword.	The	DeadLock	class	can	be	rewritten	as	follows	to
fix	this	problem:

public	class	DeadLock

{

				private	object	syncObj	=	new	object();

				public	void	Method1()

				{

								lock(syncObj)

								{

												//	Do	something.

								}

				}

}

Now	in	the	DeadLock	class,	you	are	locking	on	the	internal	syncObj,	while	the
DoSomething	method	locks	on	the	DeadLock	class	instance.	This	resolves	the	deadlock
condition,	but	the	DoSomething	method	still	should	not	lock	on	a	public	type.	Therefore,
change	the	AnotherCls	class	like	so:

public	class	AnotherCls

{

				private	object	deadLockSyncObj	=	new	object();

				public	void	DoSomething()

				{

								DeadLock	deadLock	=	new	DeadLock();

								lock(deadLockSyncObj)

								{

												Thread	thread	=	new	Thread(deadLock.Method1);

												thread.Start();

												//	Do	some	time-consuming	task	here.

								}

				}

}

Now	the	AnotherCls	class	has	an	object	of	its	own	to	protect	access	to	the	DeadLock	class
instance	in	DoSomething	instead	of	locking	on	the	public	type.

To	clean	up	your	code,	you	should	stop	locking	any	objects	or	types	except	for	the
synchronization	objects	that	are	private	to	your	type	or	object,	such	as	the	syncObj	in	the
fixed	DeadLock	class.	This	recipe	makes	use	of	this	pattern	by	creating	a	static	syncObj
object	within	the	SaferMemberAccess	class.	The	IncrementNumericField,
ModifyNumericField,	and	ReadNumericField	methods	use	this	syncObj	to	synchronize
access	to	the	numericField	field.	Note	that	if	you	do	not	need	a	lock	while	the
numericField	is	being	read	in	the	ReadNumericField	method,	you	can	remove	this	lock
block	and	simply	return	the	value	contained	in	the	numericField	field.

NOTE
Minimizing	the	number	of	critical	sections	within	your	code	can	significantly	improve	performance.	Use
what	you	need	to	secure	resource	access,	but	no	more.

If	you	require	more	control	over	locking	and	unlocking	of	critical	sections,	you	might
want	to	try	using	the	overloaded	static	Monitor.TryEnter	methods.	These	methods	allow
more	flexibility	by	introducing	a	timeout	value.	The	lock	keyword	will	attempt	to	acquire
a	lock	on	a	critical	section	indefinitely.	However,	with	the	TryEnter	method,	you	can
specify	a	timeout	value	in	milliseconds	(as	an	integer)	or	as	a	TimeSpan	structure.	The
TryEnter	methods	return	true	if	a	lock	was	acquired	and	false	if	it	was	not.	Note	that	the
overload	of	the	TryEnter	method	that	accepts	only	a	single	parameter	does	not	block	for
any	amount	of	time.	This	method	returns	immediately,	regardless	of	whether	the	lock	was
acquired.

The	updated	class	using	the	Monitor	methods	is	shown	in	Example	12-1.

Example	12-1.	Using	Monitor	methods
public	static	class	MonitorMethodAccess

{

				private	static	int	numericField	=	1;

				private	static	object	syncObj	=	new	object();

				public	static	object	SyncRoot	=>	syncObj;

				public	static	void	IncrementNumericField()

				{

								if	(Monitor.TryEnter(syncObj,	250))

								{

												try

												{

																++numericField;

												}

												finally

												{

																Monitor.Exit(syncObj);

												}

								}

				}

				public	static	void	ModifyNumericField(int	newValue)

				{

								if	(Monitor.TryEnter(syncObj,	250))

								{

												try

												{

																numericField	=	newValue;

												}

												finally

												{

																Monitor.Exit(syncObj);

												}

								}

				}

				public	static	int	ReadNumericField()

				{

								if	(Monitor.TryEnter(syncObj,	250))

								{

												try

												{

																return	(numericField);

												}

												finally

												{

																Monitor.Exit(syncObj);

												}

								}

								return	(-1);

				}

				[MethodImpl	(MethodImplOptions.Synchronized)]

				public	static	void	MySynchronizedMethod()

				{

				}

}

Note	that	with	the	TryEnter	methods,	you	should	always	check	to	see	whether	the	lock
was	in	fact	acquired.	If	not,	your	code	should	wait	and	try	again	or	return	to	the	caller.

You	might	think	at	this	point	that	all	of	the	methods	are	thread-safe.	Individually,	they	are,
but	what	if	you	are	trying	to	call	them	and	you	expect	synchronized	access	between	two	of
the	methods?	If	ModifyNumericField	and	ReadNumericField	are	used	one	after	the	other
by	Class	1	on	Thread	1	at	the	same	time	Class	2	is	using	these	methods	on	Thread	2,
locking	or	Monitor	calls	will	not	prevent	Class	2	from	modifying	the	value	before	Thread
1	reads	it.	Here	is	a	series	of	actions	that	demonstrates	this:

Class	1,	Thread	1

Calls	ModifyNumericField	with	10

Class	2,	Thread	2

Calls	ModifyNumericField	with	15

Class	1,	Thread	1

Calls	ReadNumericField	and	gets	15,	not	10

Class	2,	Thread	2

Calls	ReadNumericField	and	gets	15,	which	it	expected

To	solve	this	problem	of	synchronizing	reads	and	writes,	the	calling	class	needs	to	manage
the	interaction.	The	external	class	can	accomplish	this	by	using	the	Monitor	class	to

establish	a	lock	on	the	exposed	synchronization	object	SyncRoot	from
MonitorMethodAccess,	as	shown	here:

int	num	=	0;

if(Monitor.TryEnter(MonitorMethodAccess.SyncRoot,250))

{

				MonitorMethodAccess.ModifyNumericField(10);

				num	=	MonitorMethodAccess.ReadNumericField();

				Monitor.Exit(MonitorMethodAccess.SyncRoot);

}

Console.WriteLine(num);

When	you	are	learning	to	code	for	thread-safe	access,	it	is	helpful	to	brush	up	on	deadlock
prevention	algorithms,	such	as	the	Banker’s	Algorithm	by	Edsger	Dijkstra,	and	operating
system	books	to	help	you	think	your	way	through	the	code	you	are	creating	and	how	it
will	react.

See	Also
The	“Lock	Statement,”	“Thread	Class,”	and	“Monitor	Class”	topics	in	the	MSDN
documentation;	the	“Safe	Thread	Synchronization”	article	in	the	January	2003	issue	of
MSDN	Magazine;	the	Wikipedia	articles	“Banker’s	algorithm”	and	“Deadlock	Prevention
algorithms”.

http://bit.ly/1LxeiRy
http://bit.ly/1NNbvnM

12.3	Preventing	Silent	Thread	Termination

Problem
An	exception	thrown	in	a	spawned	worker	thread	will	cause	this	thread	to	be	silently
terminated	if	the	exception	is	unhandled.	You	need	to	make	sure	all	exceptions	are	handled
in	all	threads.	If	an	exception	happens	in	this	new	thread,	you	want	to	handle	it	and	be
notified	of	its	occurrence.

Solution
You	must	add	exception	handling	to	the	method	that	you	pass	to	the	ThreadStart	delegate
with	a	try-catch,	try-finally,	or	try-catch-finally	block.	The	code	to	do	this	is
shown	in	Example	12-2	in	bold.

Example	12-2.	Preventing	silent	thread	termination
public	class	MainThread

{

				public	void	CreateNewThread()

				{

								//	Spawn	new	thread	to	do	concurrent	work

								Thread	newWorkerThread	=	new	Thread(Worker.DoWork);

								newWorkerThread.Start();

				}

}

public	class	Worker

{

				//	Method	called	by	ThreadStart	delegate	to	do	concurrent	work

				public	static	void	DoWork	()

				{

								try

								{

												//	Do	thread	work	here

												throw	new	Exception("Boom!");

								}

								catch(Exception	e)

								{

												//	Handle	thread	exception	here

												Console.WriteLine(e.ToString());

												//	Do	not	rethrow	exception

								}

								finally

								{

												//	Do	thread	cleanup	here

								}

				}

}

Discussion
If	an	unhandled	exception	occurs	in	the	main	thread	of	an	application,	the	main	thread
terminates,	along	with	your	entire	application.	An	unhandled	exception	in	a	spawned
worker	thread,	however,	will	terminate	only	that	thread.	This	will	happen	without	any
visible	warnings,	and	your	application	will	continue	to	run	as	if	nothing	happened,	or
worse,	may	start	to	act	strangely	due	to	corrupted	data	or	improper	execution	and
interaction	of	the	worker	threads.

Simply	wrapping	an	exception	handler	around	the	Start	method	of	the	Thread	class	will
not	catch	the	exception	on	the	newly	created	thread.	The	Start	method	is	called	within	the
context	of	the	current	thread,	not	the	newly	created	thread.	It	also	returns	immediately
once	the	thread	is	launched,	so	it	isn’t	going	to	wait	around	for	the	thread	to	finish.
Therefore,	the	exception	thrown	in	the	new	thread	will	not	be	caught	since	it	is	not	visible
to	any	other	threads.

If	the	exception	is	rethrown	from	the	catch	block,	the	finally	block	of	this	structured
exception	handler	will	still	execute.	However,	after	the	finally	block	is	finished,	the
rethrown	exception	is,	at	that	point,	rethrown.	The	rethrown	exception	cannot	be	handled
and	the	thread	terminates.	If	there	is	any	code	after	the	finally	block,	it	will	not	be
executed,	since	an	unhandled	exception	occurred.

NOTE
Never	rethrow	an	exception	at	the	highest	point	in	the	exception-handling	hierarchy	within	a	thread.	Since
no	exception	handlers	can	catch	this	rethrown	exception,	it	will	be	considered	unhandled,	and	the	thread
will	terminate	after	all	finally	blocks	have	been	executed.

What	if	you	use	the	ThreadPool	and	QueueUserWorkItem?	This	method	will	still	help	you
because	you	added	the	handling	code	that	will	execute	inside	the	thread.	Just	make	sure
you	have	the	finally	block	set	up	so	that	you	can	notify	yourself	of	exceptions	and	clean
up	any	outstanding	resources	in	other	threads	as	shown	earlier.

To	provide	a	last-chance	exception	handler	for	your	WinForms	application,	you	need	to
hook	up	to	two	separate	events.	The	first	event	is
System.AppDomain.CurrentDomain.UnhandledException,	which	will	catch	all	unhandled
exceptions	in	the	current	AppDomain	on	worker	threads;	it	will	not	catch	exceptions	that
occur	on	the	main	UI	thread	of	a	WinForms	application.	See	Recipe	5.8	for	more
information	on	the	System.AppDomain.UnhandledException	event.	To	catch	those,	you
need	to	hook	up	to	the	second	event,
System.Windows.Forms.Application.ThreadException,	which	will	catch	unhandled
exceptions	in	the	main	UI	thread.	Also	see	Recipe	5.7	for	more	information	about	the
ThreadException	event.

See	Also
The	“Thread	Class”	and	“Exception	Class”	topics	in	the	MSDN	documentation.

12.4	Being	Notified	of	the	Completion	of	an	Asynchronous
Delegate

Problem
You	need	a	way	of	receiving	notification	from	an	asynchronously	invoked	delegate	that	it
has	finished.	This	scheme	must	allow	your	code	to	continue	processing	without	having	to
constantly	call	IsCompleted	in	a	loop	or	to	rely	on	the	WaitOne	method.	Since	the
asynchronous	delegate	will	return	a	value,	you	must	be	able	to	pass	this	return	value	back
to	the	invoking	thread.

Solution
Use	the	BeginInvoke	method	to	start	the	asynchronous	delegate,	but	use	the	first
parameter	to	pass	a	callback	delegate	to	the	asynchronous	delegate,	as	shown	in
Example	12-3.

Example	12-3.	Getting	notification	on	completion	of	an	anonymous	delegate
public	class	AsyncAction2

{

				public	void	CallbackAsyncDelegate()

				{

								AsyncCallback	callBack	=	DelegateCallback;

								AsyncInvoke	method1	=	TestAsyncInvoke.Method1;

								Console.WriteLine(

												$"Calling	BeginInvoke	on	Thread	{Thread.CurrentThread.ManagedThreadId}");

								IAsyncResult	asyncResult	=	method1.BeginInvoke(callBack,	method1);

								//	No	need	to	poll	or	use	the	WaitOne	method	here,	so	return	to	the	calling

								//	method.

								return;

				}

				private	static	void	DelegateCallback(IAsyncResult	iresult)

				{

								Console.WriteLine(

												$"Getting	callback	on	Thread	{Thread.CurrentThread.ManagedThreadId});

								AsyncResult	asyncResult	=	(AsyncResult)iresult;

								AsyncInvoke	method1	=	(AsyncInvoke)asyncResult.AsyncDelegate;

								int	retVal	=	method1.EndInvoke(asyncResult);

								Console.WriteLine($"retVal	(Callback):	{retVal}");

				}

}

This	callback	delegate	will	call	the	DelegateCallback	method	on	the	thread	on	which	the
method	was	invoked	when	the	asynchronous	delegate	is	finished	processing.	If	the	thread
is	currently	executing	other	code,	the	callback	will	wait	until	the	thread	is	free.	The	thread
will	continue	to	exist,	as	the	system	knows	that	a	callback	is	pending,	so	you	do	not	have
to	account	for	the	thread	not	being	there	when	the	callback	is	ready	to	be	invoked.

The	following	code	defines	the	AsyncInvoke	delegate	and	the	asynchronously	invoked
static	method	TestAsyncInvoke.Method1:

public	delegate	int	AsyncInvoke2();

public	class	TestAsyncInvoke2

{

				public	static	int	Method1()

				{

								Console.WriteLine(

												$"Invoked	Method1	on	Thread	{Thread.CurrentThread.ManagedThreadId}");

								return	(1);

				}

}

To	run	the	asynchronous	invocation,	create	an	instance	of	the	AsyncAction	class	and	call
the	CallbackAsyncDelegate	method	like	so:

AsyncAction2	aa2	=	new	AsyncAction2();

aa2.CallbackAsyncDelegate();

The	output	for	this	code	is	shown	next.	Note	that	the	thread	ID	for	Method1	is	different:

Calling	BeginInvoke	on	Thread	9

Invoked	Method1	on	Thread	10

Getting	callback	on	Thread	10

retVal	(Callback):	1

Discussion
The	asynchronous	delegates	in	this	recipe	are	created	and	invoked	in	the	same	fashion	as
the	asynchronous	delegate	in	Recipe	12.3.	Instead	of	using	the	IsCompleted	property	to
determine	when	the	asynchronous	delegate	is	finished	processing	(or	using	the	WaitOne
method	to	block	for	a	specified	time	while	the	asynchronous	delegate	continues
processing),	this	recipe	uses	a	callback	to	indicate	to	the	calling	thread	that	the
asynchronous	delegate	has	finished	processing	and	that	its	return	value,	ref	parameter
values,	and	out	parameter	values	are	available.

Invoking	a	delegate	in	this	manner	is	much	more	flexible	and	efficient	than	simply	polling
the	IsCompleted	property	to	determine	when	a	delegate	finishes	processing.	When	polling
this	property	in	a	loop,	the	polling	method	cannot	return	and	allow	the	application	to
continue	processing.	A	callback	is	also	better	than	using	a	WaitOne	method,	since	the
WaitOne	method	will	block	the	calling	thread	and	prevent	processing	from	occurring.

The	CallbackAsyncDelegate	method	in	this	recipe	makes	use	of	the	first	parameter	to	the
BeginInvoke	method	of	the	asynchronous	delegate	to	pass	in	another	delegate.	This
contains	a	callback	method	to	be	called	when	the	asynchronous	delegate	finishes
processing.	After	calling	BeginInvoke,	this	method	can	now	return,	and	the	application
can	continue	processing;	it	does	not	have	to	wait	in	a	polling	loop	or	be	blocked	while	the
asynchronous	delegate	is	running.

The	AsyncInvoke	delegate	that	is	passed	into	the	first	parameter	of	the	BeginInvoke
method	is	defined	as	follows:

public	delegate	void	AsyncCallback(IAsyncResult	ar)

When	this	delegate	is	created,	as	shown	here,	the	callback	method	passed	in,
DelegateCallback,	will	be	called	as	soon	as	the	asynchronous	delegate	completes:

AsyncCallback	callBack	=	new	AsyncCallback(DelegateCallback);

DelegateCallback	will	not	run	on	the	same	thread	as	BeginInvoke	but	rather	on	a	Thread
from	the	ThreadPool.	This	callback	method	accepts	a	parameter	of	type	IAsyncResult.
You	can	cast	this	parameter	to	an	AsyncResult	object	within	the	method	and	use	it	to
obtain	information	about	the	completed	asynchronous	delegate,	such	as	its	return	value,
any	ref	parameter	values,	and	any	out	parameter	values.	If	the	delegate	instance	that	was
used	to	call	BeginInvoke	is	still	in	scope,	you	can	just	pass	the	IAsyncResult	to	the
EndInvoke	method.	In	addition,	this	object	can	obtain	any	state	information	passed	into
the	second	parameter	of	the	BeginInvoke	method.	This	state	information	can	be	any
object	type.

The	DelegateCallback	method	casts	the	IAsyncResult	parameter	to	an	AsyncResult

object	and	obtains	the	asynchronous	delegate	that	was	originally	called.	The	EndInvoke
method	of	this	asynchronous	delegate	is	called	to	process	any	return	value,	ref
parameters,	or	out	parameters.	If	any	state	object	was	passed	in	to	the	BeginInvoke
method’s	second	parameter,	it	can	be	obtained	here	through	the	following	line	of	code:

object	state	=	asyncResult.AsyncState;

See	Also
The	“AsyncCallback	Delegate”	topic	in	the	MSDN	documentation.

12.5	Storing	Thread-Specific	Data	Privately

Problem
You	want	to	store	thread-specific	data	discovered	at	runtime.	This	data	should	be
accessible	only	to	code	running	within	that	thread.

Solution
Use	the	AllocateDataSlot,	AllocateNamedDataSlot,	or	GetNamedDataSlot	method	on
the	Thread	class	to	reserve	a	thread	local	storage	(TLS)	slot.	Using	TLS,	you	can	store	a
large	object	in	a	data	slot	on	a	thread	and	use	it	in	many	different	methods	—	without
having	to	pass	the	structure	as	a	parameter.

For	this	example,	a	class	called	ApplicationData	represents	a	set	of	data	that	can	grow	to
be	very	large:

public	class	ApplicationData

{

				//	Application	data	is	stored	here.

}

Before	you	can	use	this	structure,	there	must	be	a	data	slot	in	TLS	to	store	the	class.	First,
GetNamedDataSlot	is	called	to	get	the	appDataSlot.	Since	appDataSlot	doesn’t	exist,	by
default	GetNamedDataSlot	creates	it.	The	following	code	creates	an	instance	of	the
ApplicationData	class	and	stores	it	in	the	data	slot	named	appDataSlot:

ApplicationData	appData	=	new	ApplicationData();

Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"),	appData);

Whenever	you	need	this	class,	you	can	retrieve	it	with	a	call	to	Thread.GetData.	The
following	line	of	code	gets	the	appData	structure	from	the	data	slot	named	appDataSlot:

ApplicationData	storedAppData	=	(ApplicationData)Thread.GetData(

				Thread.GetNamedDataSlot("appDataSlot"));

At	this	point,	the	storedAppData	structure	can	be	read	or	modified.	After	the	action	has
been	performed	on	storedAppData,	it	must	be	placed	back	into	the	data	slot	named
appDataSlot:

Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"),	storedAppData);

Once	the	application	is	finished	using	this	data,	you	can	release	the	data	slot	from	memory
using	the	following	method	call:

Thread.FreeNamedDataSlot("appDataSlot");

The	HandleClass	class	in	Example	12-4	shows	how	TLS	can	be	used	to	store	a	structure.

Example	12-4.	Using	TLS	to	store	a	structure
public	class	HandleClass

{

				public	static	void	Run()

				{

								//	Create	structure	instance	and	store	it	in	the	named	data	slot

								ApplicationData	appData	=	new	ApplicationData();

								Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"),	appData);

								//	Call	another	method	that	will	use	this	structure

								HandleClass.MethodB();

								//	When	done,	free	this	data	slot

								Thread.FreeNamedDataSlot("appDataSlot");

				}

				public	static	void	MethodB()

				{

								//	Get	the	instance	from	the	named	data	slot

								ApplicationData	storedAppData	=	(ApplicationData)Thread.GetData(

												Thread.GetNamedDataSlot("appDataSlot"));

								//	Modify	the	ApplicationData

								//	When	finished	modifying	this	data,	store	the	changes	back	into

								//	into	the	named	data	slot

								Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"),

												storedAppData);

								//	Call	another	method	that	will	use	this	structure

								HandleClass.MethodC();

				}

				public	static	void	MethodC()

				{

								//	Get	the	instance	from	the	named	data	slot

								ApplicationData	storedAppData	=

												(ApplicationData)Thread.GetData(Thread.GetNamedDataSlot("appDataSlot"));

								//	Modify	the	data

								//	When	finished	modifying	this	data,	store	the	changes	back	into

								//	the	named	data	slot

								Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"),	storedAppData);

				}

}

Discussion
Thread	local	storage	is	a	convenient	way	to	store	data	that	is	usable	across	method	calls
without	the	user	having	to	pass	the	structure	to	the	method	or	even	knowing	where	the
structure	was	actually	created.

Data	stored	in	a	named	TLS	data	slot	is	available	only	to	that	thread;	no	other	thread	can
access	a	named	data	slot	of	another	thread.	The	data	stored	in	this	data	slot	is	accessible
from	anywhere	within	the	thread.	This	setup	essentially	makes	this	data	global	to	the
thread.	You	should	be	aware	that	TLS	slots	are	a	limited	resource	and	can	vary	based	on
platform.

To	create	a	named	data	slot,	use	the	static	Thread.GetNamedDataSlot	method.	This
method	accepts	a	single	parameter,	name,	that	defines	the	name	of	the	data	slot.	This	name
should	be	unique;	if	a	data	slot	with	the	same	name	exists,	then	the	contents	of	that	data
slot	will	be	returned,	and	a	new	data	slot	will	not	be	created.	This	action	occurs	silently;
there	is	no	exception	thrown	or	error	code	to	inform	you	that	you	are	using	a	data	slot
someone	else	created.	To	be	sure	that	you	are	using	a	unique	data	slot,	use	the
Thread.AllocateNamedDataSlot	method.	This	method	throws	a
System.ArgumentException	if	a	data	slot	already	exists	with	the	same	name.	Otherwise,	it
operates	similarly	to	the	GetNamedDataSlot	method.

Note	that	this	named	data	slot	is	created	on	every	thread	in	the	process,	not	just	the	thread
that	called	this	method.	This	fact	should	not	be	much	more	than	an	inconvenience	to	you,
though,	since	the	data	in	each	data	slot	can	be	accessed	only	by	the	thread	that	contains	it.
In	addition,	if	a	data	slot	with	the	same	name	was	created	on	a	separate	thread	and	you	call
GetNamedDataSlot	on	the	current	thread	with	this	name,	none	of	the	data	in	any	data	slot
on	any	thread	will	be	destroyed.

GetNamedDataSlot	returns	a	LocalDataStoreSlot	object	that	is	used	to	access	the	data
slot.	Note	that	you	can’t	create	this	class	using	the	new	keyword;	you	must	create	it
through	one	of	the	AllocateDataSlot	or	AllocateNamedDataSlot	methods	on	the	Thread
class.

To	store	data	in	this	data	slot,	use	the	static	Thread.SetData	method.	This	method	takes
the	object	passed	in	to	the	data	parameter	and	stores	it	in	the	data	slot	defined	by	the
dataSlot	parameter.

The	static	Thread.GetData	method	retrieves	the	object	stored	in	a	data	slot.	This	method
retrieves	a	LocalDataStoreSlot	object	that	is	created	through	the
Thread.GetNamedDataSlot	method.	The	GetData	method	then	returns	the	object	that	was
stored	in	that	particular	data	slot.	Note	that	the	object	returned	might	have	to	be	cast	to	its
original	type	before	it	can	be	used.

The	static	method	Thread.FreeNamedDataSlot	will	free	the	memory	associated	with	a
named	data	slot.	This	method	accepts	the	name	of	the	data	slot	as	a	string	and,	in	turn,

frees	the	memory	associated	with	that	data	slot.	Remember	that	when	a	data	slot	is	created
with	GetNamedDataSlot,	a	named	data	slot	is	also	created	on	all	of	the	other	threads
running	in	that	process.	This	is	not	really	a	problem	when	you’re	creating	data	slots	with
the	GetNamedDataSlot	method	because,	if	a	data	slot	exists	with	this	name,	a
LocalDataStoreSlot	object	that	refers	to	that	data	slot	is	returned,	a	new	data	slot	is	not
created,	and	the	original	data	in	that	data	slot	is	not	destroyed.

This	situation	becomes	more	of	a	problem	when	you’re	using	the	FreeNamedDataSlot
method.	This	method	will	free	the	memory	associated	with	the	data	slot	name	passed	in	to
it	for	all	threads,	not	just	the	thread	that	it	was	called	on.	Freeing	a	data	slot	before	all
threads	have	finished	using	the	data	within	that	data	slot	can	be	disastrous	to	your
application.

A	way	to	work	around	this	problem	is	to	not	call	the	FreeNamedDataSlot	method	at	all.
When	a	thread	terminates,	all	of	its	data	slots	in	TLS	are	freed	automatically.	The	side
effect	of	not	calling	FreeNamedDataSlot	is	that	the	slot	is	taken	up	until	the	garbage
collector	determines	that	the	thread	on	which	the	slot	was	created	has	finished	and	the	slot
can	be	freed.

If	you	know	the	number	of	TLS	slots	you	need	for	your	code	at	compile	time,	consider
using	the	ThreadStaticAttribute	on	a	static	field	of	your	class	to	set	up	TLS-like
storage.

See	Also
The	“Thread	Local	Storage	and	Thread	Relative	Static	Fields,”	“ThreadStaticAttribute
Attribute,”	and	“Thread	Class”	topics	in	the	MSDN	documentation.

12.6	Granting	Multiple	Access	to	Resources	with	a
Semaphore

Problem
You	have	a	resource	you	want	only	a	certain	number	of	clients	to	access	at	a	given	time.

Solution
Use	a	semaphore	to	enable	resource-counted	access	to	the	resource.	For	example,	if	you
have	an	Xbox	One	and	a	copy	of	Halo	5	(the	resource)	and	a	development	staff	eager	to
blow	off	some	steam	(the	clients),	you	have	to	synchronize	access	to	the	Xbox	One.	Since
the	Xbox	One	has	up	to	eight	controllers,	up	to	eight	clients	can	be	playing	at	any	given
time.	The	rules	of	the	house	are	that	when	you	die,	you	give	up	your	controller.

To	accomplish	this,	create	a	class	called	Halo5Session	with	a	Semaphore	called	_XboxOne
like	this:

public	class	Halo5Session

{

				//	A	semaphore	that	simulates	a	limited	resource	pool.

				private	static	Semaphore	_XboxOne;

To	get	things	rolling,	you	need	to	call	the	Play	method,	as	shown	in	Example	12-5,	on	the
Halo5Session	class.

Example	12-5.	Play	method
				public	static	void	Play()

				{

								//	An	XboxOne	has	8	controller	ports	so	8	people	can	play	at	a	time

								//	We	use	8	as	the	max	and	zero	to	start	with	as	we	want	Players

								//	to	queue	up	at	first	until	the	XboxOne	boots	and	loads	the	game

								//

								using	(_XboxOne	=	new	Semaphore(0,	8,	"XboxOne"))

								{

												using	(ManualResetEvent	GameOver	=

																new	ManualResetEvent(false))

												{

																//

																//	13	Players	log	in	to	play

																//

																List<XboxOnePlayer.PlayerInfo>	players	=

																				new	List<XboxOnePlayer.PlayerInfo>()	{

																								new	XboxOnePlayer.PlayerInfo	{	Name="Igor",Dead=GameOver},

																								new	XboxOnePlayer.PlayerInfo	{	Name="AxeMan",Dead=GameOver},

																								new	XboxOnePlayer.PlayerInfo	{	Name="Dr.	Death",

																												Dead=GameOver},

																								new	XboxOnePlayer.PlayerInfo	{	Name="HaPpyCaMpEr",

																												Dead=GameOver},

																								new	XboxOnePlayer.PlayerInfo	{	Name="Executioner",

																												Dead=GameOver},

																								new	XboxOnePlayer.PlayerInfo	{	Name="FragMan",Dead=GameOver},

																								new	XboxOnePlayer.PlayerInfo	{	Name="Beatdown",

																												Dead=GameOver},

																								new	XboxOnePlayer.PlayerInfo	{	Name="Stoney",Dead=GameOver},

																								new	XboxOnePlayer.PlayerInfo	{	Name="Pwned",Dead=GameOver},

																								new	XboxOnePlayer.PlayerInfo	{	Name="Big	Dawg",

																												Dead=GameOver},

																								new	XboxOnePlayer.PlayerInfo	{	Name="Playa",Dead=GameOver},

																								new	XboxOnePlayer.PlayerInfo	{	Name="BOOM",Dead=GameOver},

																								new	XboxOnePlayer.PlayerInfo	{	Name="Mr.	Mxylplyx",

																												Dead=GameOver}

																								};

																foreach	(XboxOnePlayer.PlayerInfo	player	in	players)

																{

																				Thread	t	=	new	Thread(XboxOnePlayer.JoinIn);

																				//	put	a	name	on	the	thread

																				t.Name	=	player.Name;

																				//	fire	up	the	player

																				t.Start(player);

																}

																//	Wait	for	the	XboxOne	to	spin	up	and	load	Halo5	(3	seconds)

																Console.WriteLine("XboxOne	initializing…");

																Thread.Sleep(3000);

																Console.WriteLine(

																				"Halo	5	loaded	&	ready,	allowing	8	players	in	now…");

																//	The	XboxOne	has	the	whole	semaphore	count.		We	call

																//	Release(8)	to	open	up	8	slots	and

																//	allows	the	waiting	players	to	enter	the	XboxOne(semaphore)

																//	up	to	eight	at	a	time.

																//

																_XboxOne.Release(8);

																//	wait	for	the	game	to	end…

																GameOver.WaitOne();

												}

								}

				}

}

The	first	thing	the	Play	method	does	is	to	create	a	new	semaphore	that	has	a	maximum
resource	count	of	8	and	a	name	of	_XboxOne.	This	is	the	semaphore	that	will	be	used	by	all
of	the	player	threads	to	gain	access	to	the	game.	A	ManualResetEvent	called	GameOver	is
created	to	track	when	the	game	has	ended.

To	simulate	the	developers,	you	create	a	thread	for	each	with	its	own
XboxOnePlayer.PlayerInfo	class	instance	to	contain	the	player	name	and	a	reference	to
the	original	GameOver.ManualResetEvent	held	in	the	Dead	event	on	the	PlayerInfo,
which	indicates	the	player	has	died.	To	create	the	thread	you	use	the
ParameterizedThreadStart	delegate,	which	takes	the	method	to	execute	on	the	new
thread	in	the	constructor,	but	also	allows	you	to	pass	the	data	object	directly	to	a	new
overload	of	the	Thread.Start	method.

Once	the	players	are	in	motion,	the	Xbox	One	“initializes”	and	then	calls	Release	on	the
semaphore	to	open	eight	slots	for	player	threads	to	grab	on	to,	and	then	waits	until	it
detects	that	the	game	is	over	from	the	firing	of	the	Dead	event	for	the	player.

The	players	initialize	on	separate	threads	and	run	the	JoinIn	method,	as	shown	in
Example	12-6.	First	they	open	the	Xbox	One	semaphore	by	name	and	get	the	data	that	was
passed	to	the	thread.	Once	they	have	the	semaphore,	they	call	WaitOne	to	queue	up	to	play.
Once	the	initial	eight	slots	are	opened	or	another	player	“dies,”	then	the	call	to	WaitOne
unblocks	and	the	player	“plays”	for	a	random	amount	of	time	and	then	dies.	Once	the
players	are	dead,	they	call	Release	on	the	semaphore	to	indicate	their	slot	is	now	open.	If
the	semaphore	reaches	its	maximum	resource	count,	the	GameOver	event	is	set.

Example	12-6.	JoinIn	method
public	class	XboxOnePlayer

{

				public	class	PlayerInfo

				{

								public	ManualResetEvent	Dead	{get;	set;}

								public	string	Name	{get;	set;}

				}

				//	Death	Modes	for	Players

				private	static	string[]	_deaths	=	new	string[7]{"bought	the	farm",

																								"choked	on	a	rocket",

																								"shot	their	own	foot",

																								"been	captured",

																								"fallen	to	their	death",

																								"died	of	lead	poisoning",

																								"failed	to	dodge	a	grenade",

																								};

				///	<summary>

				///	Thread	function

				///	</summary>

				///	<param	name="info">PlayerInfo	item</param>

				public	static	void	JoinIn(object	info)

				{

								//	open	up	the	semaphore	by	name	so	we	can	act	on	it

								using	(Semaphore	XboxOne	=	Semaphore.OpenExisting("XboxOne"))

								{

												//	get	the	data	object

												PlayerInfo	player	=	(PlayerInfo)info;

												//	Each	player	notifies	the	XboxOne	they	want	to	play

												Console.WriteLine($"{player.Name}	is	waiting	to	play!");

												//	they	wait	on	the	XboxOne	(semaphore)	until	it	lets	them

												//	have	a	controller

												XboxOne.WaitOne();

												//	The	XboxOne	has	chosen	the	player!	(or	the	semaphore	has

												//	allowed	access	to	the	resource…)

												Console.WriteLine($"{player.Name}	has	been	chosen	to	play.	"	+

																$"Welcome	to	your	doom	{player.Name}.	>:)");

												//	figure	out	a	random	value	for	how	long	the	player	lasts

												System.Random	rand	=	new	Random(500);

												int	timeTillDeath	=	rand.Next(100,	1000);

												//	simulate	the	player	is	busy	playing	till	they	die

												Thread.Sleep(timeTillDeath);

												//	figure	out	how	they	died

												rand	=	new	Random();

												int	deathIndex	=	rand.Next(6);

												//	notify	of	the	player's	passing

												Console.WriteLine($"{player.Name}	has	{_deaths[deathIndex]}	"	+

												"and	gives	way	to	another	player");

												//	if	all	ports	are	open,	everyone	has	played	and	the	game	is	over

												int	semaphoreCount	=	XboxOne.Release();

												if	(semaphoreCount	==	3)

												{

																Console.WriteLine("Thank	you	for	playing,	the	game	has	ended.");

																//	set	the	Dead	event	for	the	player

																player.Dead.Set();

												}

								}

				}

}

When	the	Play	method	is	run,	output	similar	to	the	following	is	generated:

Igor	is	waiting	to	play!

AxeMan	is	waiting	to	play!

Dr.	Death	is	waiting	to	play!

HaPpyCaMpEr	is	waiting	to	play!

Executioner	is	waiting	to	play!

FragMan	is	waiting	to	play!

Beatdown	is	waiting	to	play!

Stoney	is	waiting	to	play!

Pwned	is	waiting	to	play!

Big	Dawg	is	waiting	to	play!

Playa	is	waiting	to	play!

XboxOne	initializing…

BOOM	is	waiting	to	play!

Mr.	Mxylplyx	is	waiting	to	play!

Halo	5	loaded	&	ready,	allowing	8	players	in	now…

Stoney	has	been	chosen	to	play.	Welcome	to	your	doom	Stoney.	>:)

Executioner	has	been	chosen	to	play.	Welcome	to	your	doom	Executioner.	>:)

Beatdown	has	been	chosen	to	play.	Welcome	to	your	doom	Beatdown.	>:)

Pwned	has	been	chosen	to	play.	Welcome	to	your	doom	Pwned.	>:)

Playa	has	been	chosen	to	play.	Welcome	to	your	doom	Playa.	>:)

HaPpyCaMpEr	has	been	chosen	to	play.	Welcome	to	your	doom	HaPpyCaMpEr.	>:)

Big	Dawg	has	been	chosen	to	play.	Welcome	to	your	doom	Big	Dawg.	>:)

FragMan	has	been	chosen	to	play.	Welcome	to	your	doom	FragMan.	>:)

Playa	has	been	captured	and	gives	way	to	another	player

Stoney	has	been	captured	and	gives	way	to	another	player

Pwned	has	been	captured	and	gives	way	to	another	player

Big	Dawg	has	been	captured	and	gives	way	to	another	player

Mr.	Mxylplyx	has	been	chosen	to	play.	Welcome	to	your	doom	Mr.	Mxylplyx.	>:)

BOOM	has	been	chosen	to	play.	Welcome	to	your	doom	BOOM.	>:)

FragMan	has	was	captured	and	gives	way	to	another	player

Dr.	Death	has	been	chosen	to	play.	Welcome	to	your	doom	Dr.	Death.	>:)

HaPpyCaMpEr	has	been	captured	and	gives	way	to	another	player

Igor	has	been	chosen	to	play.	Welcome	to	your	doom	Igor.	>:)

Beatdown	has	been	captured	and	gives	way	to	another	player

Executioner	has	been	captured	and	gives	way	to	another	player

AxeMan	has	been	chosen	to	play.	Welcome	to	your	doom	AxeMan.	>:)

BOOM	has	died	of	lead	poisoning	and	gives	way	to	another	player

Thank	you	for	playing,	the	game	has	ended.

Mr.	Mxylplyx	has	died	of	lead	poisoning	and	gives	way	to	another	player

Discussion
Semaphores	are	used	primarily	for	resource	counting	and	are	available	cross-process	when
named	(as	they	are	based	on	the	underlying	kernel	semaphore	object).	Cross-process	may
not	sound	too	exciting	to	many	.NET	developers	until	they	realize	that	it	also	means	cross-
AppDomain.	Say	you	are	creating	additional	AppDomains	to	hold	assemblies	you	are	loading
dynamically	that	you	don’t	want	to	stick	around	for	the	whole	life	of	your	main
AppDomain;	the	semaphore	can	help	you	keep	track	of	how	many	are	loaded	at	a	time.
Being	able	to	control	access	up	to	a	certain	number	of	users	can	be	useful	in	many
scenarios	(socket	programming,	custom	thread	pools,	etc.).

See	Also
The	“Semaphore,”	“ManualResetEvent,”	and	“ParameterizedThreadStart”	topics	in	the
MSDN	documentation.

12.7	Synchronizing	Multiple	Processes	with	the	Mutex

Problem
You	have	two	processes	or	AppDomains	that	are	running	code	with	actions	that	you	need	to
coordinate.

Solution
Use	a	named	Mutex	as	a	common	signaling	mechanism	to	do	the	coordination.	A	named
Mutex	can	be	accessed	from	both	pieces	of	code	even	when	running	in	different	processes
or	AppDomains.

One	situation	in	which	this	can	be	useful	is	when	you	are	using	shared	memory	to
communicate	between	processes.	The	SharedMemoryManager	class	presented	in	this	recipe
will	show	the	named	Mutex	in	action	by	setting	up	a	section	of	shared	memory	that	can	be
used	to	pass	serializable	objects	between	processes.	The	“server”	process	creates	a
SharedMemoryManager	instance,	which	sets	up	the	shared	memory	and	then	creates	the
Mutex	as	the	initial	owner.	The	“client”	process	then	also	creates	a	SharedMemoryManager
instance	that	finds	the	shared	memory	and	hooks	up	to	it.	Once	this	connection	is
established,	the	“client”	process	then	sets	up	to	receive	the	serialized	objects	and	waits
until	one	is	sent	by	waiting	on	the	Mutex	the	“server”	process	created.	The	“server”
process	then	takes	a	serializable	object,	serializes	it	into	the	shared	memory,	and	releases
the	Mutex.	It	then	waits	on	it	again	so	that	when	the	“client”	has	received	the	object,	it	can
release	the	Mutex	and	give	control	back	to	the	“server.”	The	“client”	process	that	was
waiting	on	the	Mutex	then	deserializes	the	object	from	the	shared	memory	and	releases	the
Mutex.

In	the	example,	you	will	send	the	Contact	structure,	which	looks	like	this:

[StructLayout(LayoutKind.Sequential)]

[Serializable()]

public	struct	Contact

{

				public	string	_name;

				public	int	_age;

}

The	“server”	process	code	to	send	the	Contact	looks	like	this:

//	create	the	initial	shared	memory	manager	to	get	things	set	up

using(SharedMemoryManager<Contact>	sm	=

				new	SharedMemoryManager<Contact>("Contacts",8092))

{

				//	this	is	the	sender	process

				//	launch	the	second	process	to	get	going

				string	processName	=	Process.GetCurrentProcess().MainModule.FileName;

				int	index	=	processName.IndexOf("vshost");

				if	(index	!=	-1)

				{

								string	first	=	processName.Substring(0,	index);

								int	numChars	=	processName.Length	-	(index	+	7);

								string	second	=	processName.Substring(index	+	7,	numChars);

								processName	=	first	+	second;

				}

				Process	receiver	=	Process.Start(

								new	ProcessStartInfo(

												processName,

												"Receiver"));

				//	give	it	5	seconds	to	spin	up

				Thread.Sleep(5000);

				//	make	up	a	contact

				Contact	man;

				man._age	=	23;

				man._name	=	"Dirk	Daring";

				//	send	it	to	the	other	process	via	shared	memory

				sm.SendObject(man);

}

The	“client”	process	code	to	receive	the	Contact	looks	like	this:

//	create	the	initial	shared	memory	manager	to	get	things	set	up

using(SharedMemoryManager<Contact>	sm	=

				new	SharedMemoryManager<Contact>("Contacts",8092))

{

				//	get	the	contact	once	it	has	been	sent

				Contact	c	=	(Contact)sm.ReceiveObject();

				//	Write	it	out	(or	to	a	database…)

				Console.WriteLine("Contact	{0}	is	{1}	years	old.",

																								c._name,	c._age);

				//	show	for	5	seconds

				Thread.Sleep(5000);

}

The	way	this	usually	works	is	that	one	process	creates	a	section	of	shared	memory	backed
by	the	paging	file	using	the	System.IO.MemoryMappedFiles.MemoryMappedFile.	You	can
see	in	Example	12-7	where	the	MemoryMappedFile	is	set	up	in	the	constructor	code	for	the
SharedMemoryManager	and	the	private	SetupSharedMemory	method.	The	constructor	takes
a	name	to	use	as	part	of	the	shared	memory	name	and	the	base	size	of	the	shared	memory
block	to	allocate.	It	is	the	base	size	because	the	SharedMemoryManager	has	to	allocate	a	bit
extra	for	keeping	track	of	the	data	moving	through	the	buffer.

Example	12-7.	Constructor	and	SetupSharedMemory	private	method
public	SharedMemoryManager(string	name,int	sharedMemoryBaseSize)

{

				//	can	only	be	built	for	serializable	objects

				if	(!typeof(TransferItemType).IsSerializable)

								throw	new	ArgumentException(

												$"Object	{typeof(TransferItemType)}	is	not	serializeable.");

				if	(string.IsNullOrEmpty(name))

								throw	new	ArgumentNullException(nameof(name));

				if	(sharedMemoryBaseSize	<=	0)

								throw	new	ArgumentOutOfRangeException(nameof(sharedMemoryBaseSize),

												"Shared	Memory	Base	Size	must	be	a	value	greater	than	zero");

				//	set	name	of	the	region

				Name	=	name;

				//	save	base	size

				SharedMemoryBaseSize	=	sharedMemoryBaseSize;

				//	set	up	the	shared	memory	region

				MemMappedFile	=	MemoryMappedFile.CreateOrOpen(Name,	MemoryRegionSize);

				//	set	up	the	mutex

				MutexForSharedMem	=	new	Mutex(true,	MutexName);

}

The	code	to	send	an	object	through	the	shared	memory	is	contained	in	the	SendObject

method,	as	shown	in	Example	12-8.	First,	it	checks	to	see	if	the	object	being	sent	is	indeed
serializable	by	checking	the	IsSerializable	property	on	the	type	of	the	object.	If	the
object	is	serializable,	an	integer	with	the	size	of	the	serialized	object	and	the	serialized
object	content	are	written	out	to	the	shared	memory	section.	Then,	the	Mutex	is	released	to
indicate	that	there	is	an	object	in	the	shared	memory.	It	then	waits	on	the	Mutex	again	to
wait	until	the	“client”	has	received	the	object.

Example	12-8.	SendObject	method
public	void	SendObject(TransferItemType	transferObject)

{

				//	create	a	memory	stream,	initialize	size

				using	(MemoryStream	ms	=	new	MemoryStream())

				{

								//	get	a	formatter	to	serialize	with

								BinaryFormatter	formatter	=	new	BinaryFormatter();

								try

								{

												//	serialize	the	object	to	the	stream

												formatter.Serialize(ms,	transferObject);

												//	get	the	bytes	for	the	serialized	object

												byte[]	bytes	=	ms.ToArray();

												//	check	that	this	object	will	fit

												if(bytes.Length	+	sizeof(Int32)		>	MemoryRegionSize)

												{

																string	msg	=

																				$"{typeof(TransferItemType)}	object	instance	serialized"	+

																				$"to	{bytes.Length}	bytes	which	is	too	large	for	the	shared	"	+

																				$"memory	region";

																throw	new	ArgumentException(msg,	nameof(transferObject));

												}

												//	write	to	the	shared	memory	region

												using	(MemoryMappedViewStream	stream	=

																MemMappedFile.CreateViewStream())

												{

																BinaryWriter	writer	=	new	BinaryWriter(stream);

																writer.Write(bytes.Length);	//	write	the	size

																writer.Write(bytes);	//	write	the	object

												}

								}

								finally

								{

												//	signal	the	other	process	using	the	mutex	to	tell	it

												//	to	do	receive	processing

												MutexForSharedMem.ReleaseMutex();

												//	wait	for	the	other	process	to	signal	it	has	received

												//	and	we	can	move	on

												MutexForSharedMem.WaitOne();

								}

				}

}

The	ReceiveObject	method	shown	in	Example	12-9	allows	the	client	to	wait	until	there	is
an	object	in	the	shared	memory	section	and	then	reads	the	size	of	the	serialized	object	and
deserializes	it	to	a	managed	object.	It	then	releases	the	Mutex	to	let	the	sender	know	to
continue.

Example	12-9.	ReceiveObject	method
public	TransferItemType	ReceiveObject()

{

				//	wait	on	the	mutex	for	an	object	to	be	queued	by	the	sender

				MutexForSharedMem.WaitOne();

				//	get	the	object	from	the	shared	memory

				byte[]	serializedObj	=	null;

				using	(MemoryMappedViewStream	stream	=

								MemMappedFile.CreateViewStream())

				{

								BinaryReader	reader	=	new	BinaryReader(stream);

								int	objectLength	=	reader.ReadInt32();

								serializedObj	=	reader.ReadBytes(objectLength);

				}

				//	set	up	the	memory	stream	with	the	object	bytes

				using	(MemoryStream	ms	=	new	MemoryStream(serializedObj))

				{

								//	set	up	a	binary	formatter

								BinaryFormatter	formatter	=	new	BinaryFormatter();

								//	get	the	object	to	return

								TransferItemType	item;

								try

								{

												item	=	(TransferItemType)formatter.Deserialize(ms);

								}

								finally

								{

												//	signal	that	we	received	the	object	using	the	mutex

												MutexForSharedMem.ReleaseMutex();

								}

								//	give	them	the	object

								return	item;

				}

}

Discussion
A	Mutex	is	designed	to	give	mutually	exclusive	(thus	the	name)	access	to	a	single
resource.	A	Mutex	can	be	thought	of	as	a	cross-process	named	Monitor,	which	“enters”	the
Mutex	by	waiting	on	it	and	becoming	the	owner,	then	“exits”	by	releasing	the	Mutex	for
the	next	thread	that	is	waiting	on	it.	If	a	thread	that	owns	a	Mutex	ends,	the	Mutex	is
released	automatically.

NOTE
Using	a	Mutex	is	slower	than	using	a	Monitor,	as	a	Monitor	is	a	purely	managed	construct,	whereas	a	Mutex
is	based	on	the	Mutex	kernel	object.	A	Mutex	cannot	be	“pulsed”	as	can	a	Monitor,	but	it	can	be	used	across
processes	while	a	Monitor	cannot.	Finally,	the	Mutex	is	based	on	WaitHandle,	so	it	can	be	waited	on	with
other	objects	derived	from	WaitHandle,	like	Semaphore	and	the	event	classes.

The	SharedMemoryManager	class	is	listed	in	its	entirety	in	Example	12-10.

Example	12-10.	SharedMemoryManager	classes
///	<summary>

///	Class	for	sending	objects	through	shared	memory	using	a	mutex

///	to	synchronize	access	to	the	shared	memory

///	</summary>

public	class	SharedMemoryManager<TransferItemType>	:	IDisposable

{

				#region	Private	members

				private	bool	disposed	=	false;

				#endregion

				#region	Construction	/	Cleanup

				public	SharedMemoryManager(string	name,int	sharedMemoryBaseSize)

				{

								//	can	only	be	built	for	serializable	objects

								if	(!typeof(TransferItemType).IsSerializable)

												throw	new	ArgumentException(

																$"Object	{typeof(TransferItemType)}	is	not	serializeable.");

								if	(string.IsNullOrEmpty(name))

												throw	new	ArgumentNullException(nameof(name));

								if	(sharedMemoryBaseSize	<=	0)

												throw	new	ArgumentOutOfRangeException("sharedMemoryBaseSize",

																"Shared	Memory	Base	Size	must	be	a	value	greater	than	zero");

								//	set	name	of	the	region

								Name	=	name;

								//	save	base	size

								SharedMemoryBaseSize	=	sharedMemoryBaseSize;

								//	set	up	the	shared	memory	region

								MemMappedFile	=	MemoryMappedFile.CreateOrOpen(Name,	MemoryRegionSize);

								//	set	up	the	mutex

								MutexForSharedMem	=	new	Mutex(true,	MutexName);

				}

				~SharedMemoryManager()

				{

								//	make	sure	we	close

								Dispose(false);

				}

				public	void	Dispose()

				{

								Dispose(true);

								GC.SuppressFinalize(this);

				}

				private	void	Dispose(bool	disposing)

				{

								//	Check	to	see	if	Dispose	has	already	been	called.

								if	(!this.disposed)

								{

												CloseSharedMemory();

								}

								disposed	=	true;

				}

				private	void	CloseSharedMemory()

				{

								if(MemMappedFile	!=	null)

												MemMappedFile.Dispose();

				}

				public	void	Close()

				{

								CloseSharedMemory();

				}

				#endregion

				#region	Properties

				///	<summary>

				///	How	big	of	a	memory	mapped	file	to	have

				///	</summary>

				public	int	SharedMemoryBaseSize	{	get;	protected	set;	}

				///	<summary>

				///	The	actual	size	of	the	memory	region	to	include	size	of	the

				///	object	being	transferred

				///	</summary>

				private	long	MemoryRegionSize	=>	(long)(SharedMemoryBaseSize	+	sizeof(Int32));

				///	<summary>

				///	Name	of	the	shared	memory	region

				///	</summary>

				private	string	Name	{	get;	}

				///	<summary>

				///	The	name	of	the	mutex	protecting	the	shared	region

				///	</summary>

				private	string	MutexName	=>	$"{typeof(TransferItemType)}mtx{Name}";

				///	<summary>

				///	The	mutex	protecting	the	shared	region

				///	</summary>

				private	Mutex	MutexForSharedMem	{	get;	}	=	null;

				///	<summary>

				///	The	MemoryMappedFile	used	to	transfer	objects

				///	</summary>

				private	MemoryMappedFile	MemMappedFile	{	get;	}	=	null;

				#endregion

				#region	Public	Methods

				///	<summary>

				///	Send	a	serializeable	object	through	the	shared	memory

				///	and	wait	for	it	to	be	picked	up

				///	</summary>

				///	<param	name="transferObject">	the	object	to	send</param>

				public	void	SendObject(TransferItemType	transferObject)

				{

								//	create	a	memory	stream,	initialize	size

								using	(MemoryStream	ms	=	new	MemoryStream())

								{

												//	get	a	formatter	to	serialize	with

												BinaryFormatter	formatter	=	new	BinaryFormatter();

												try

												{

																//	serialize	the	object	to	the	stream

																formatter.Serialize(ms,	transferObject);

																//	get	the	bytes	for	the	serialized	object

																byte[]	bytes	=	ms.ToArray();

																//	check	that	this	object	will	fit

																if(bytes.Length	+	sizeof(Int32)		>	MemoryRegionSize)

																{

																				string	msg	=

																								$"{typeof(TransferItemType)}	object	instance	serialized"	+

																								$"to	{bytes.Length}	bytes	which	is	too	large	for	the	"	+

																								$"shared	memory	region";

																				throw	new	ArgumentException(msg,	nameof(transferObject));

																}

																//	write	to	the	shared	memory	region

																using	(MemoryMappedViewStream	stream	=

																				MemMappedFile.CreateViewStream())

																{

																				BinaryWriter	writer	=	new	BinaryWriter(stream);

																				writer.Write(bytes.Length);	//	write	the	size

																				writer.Write(bytes);	//	write	the	object

																}

												}

												finally

												{

																//	signal	the	other	process	using	the	mutex	to	tell	it

																//	to	do	receive	processing

																MutexForSharedMem.ReleaseMutex();

																//	wait	for	the	other	process	to	signal	it	has	received

																//	and	we	can	move	on

																MutexForSharedMem.WaitOne();

												}

								}

				}

				///	<summary>

				///	Wait	for	an	object	to	hit	the	shared	memory	and	then	deserialize	it

				///	</summary>

				///	<returns>object	passed</returns>

				public	TransferItemType	ReceiveObject()

				{

								//	wait	on	the	mutex	for	an	object	to	be	queued	by	the	sender

								MutexForSharedMem.WaitOne();

								//	get	the	object	from	the	shared	memory

								byte[]	serializedObj	=	null;

								using	(MemoryMappedViewStream	stream	=

												MemMappedFile.CreateViewStream())

								{

												BinaryReader	reader	=	new	BinaryReader(stream);

												int	objectLength	=	reader.ReadInt32();

												serializedObj	=	reader.ReadBytes(objectLength);

								}

								//	set	up	the	memory	stream	with	the	object	bytes

								using	(MemoryStream	ms	=	new	MemoryStream(serializedObj))

								{

												//	set	up	a	binary	formatter

												BinaryFormatter	formatter	=	new	BinaryFormatter();

												//	get	the	object	to	return

												TransferItemType	item;

												try

												{

																item	=	(TransferItemType)formatter.Deserialize(ms);

												}

												finally

												{

																//	signal	that	we	received	the	object	using	the	mutex

																MutexForSharedMem.ReleaseMutex();

												}

												//	give	them	the	object

												return	item;

								}

				}

				#endregion

}

See	Also
The	“MemoryMappedFiles,”	“MemoryMappedFile	Class,”	“Mutex,”	and	“Mutex	Class”
topics	in	the	MSDN	documentation.

12.8	Using	Events	to	Make	Threads	Cooperate

Problem
You	have	multiple	threads	that	need	to	be	served	by	a	server,	but	only	one	can	be	served	at
a	time.

Solution
Use	an	AutoResetEvent	to	notify	each	thread	when	it	is	going	to	be	served.	For	example,
a	diner	has	a	cook	and	multiple	waitresses.	The	waitresses	can	keep	bringing	in	orders,	but
the	cook	can	serve	up	only	one	at	a	time.	You	can	simulate	this	with	the	Cook	class	shown
in	Example	12-11.

Example	12-11.	Using	events	to	make	threads	cooperate
public	class	Cook

{

				public	string	Name	{	get;	set;	}

				public	static	AutoResetEvent	OrderReady	=

								new	AutoResetEvent(false);

				public	void	CallWaitress()

				{

								//	we	call	Set	on	the	AutoResetEvent	and	don't	have	to

								//	call	Reset	like	we	would	with	ManualResetEvent	to	fire	it

								//	off	again.	This	sets	the	event	that	the	waitress	is	waiting	for

								//	in	GetInLine

								//	order	is	ready….

								Console.WriteLine($"{Name}	finished	order!");

								OrderReady.Set();

				}

}

The	Cook	class	has	an	AutoResetEvent	called	OrderReady	that	the	cook	will	use	to	tell	the
waiting	waitresses	that	an	order	is	ready.	Since	there	is	only	one	order	ready	at	a	time,	and
this	is	an	equal-opportunity	diner,	the	waitress	who	has	been	waiting	longest	gets	her	order
first.	The	AutoResetEvent	allows	for	just	signaling	the	single	thread	when	you	call	Set	on
the	OrderReady	event.

The	Waitress	class	has	the	PlaceOrder	method	that	is	executed	by	the	thread.
PlaceOrder	takes	an	object	parameter,	which	is	passed	in	from	the	call	to	t.Start	in	the
next	code	block.	The	Start	method	uses	a	ParameterizedThreadStart	delegate,	which
takes	an	object	parameter.	PlaceOrder	has	been	set	up	to	be	compatible	with	it.	It	takes
the	AutoResetEvent	passed	in	and	calls	WaitOne	to	wait	until	the	order	is	ready.	Once	the
Cook	fires	the	event	enough	times	that	this	waitress	is	at	the	head	of	the	line,	the	code
finishes:

public	class	Waitress

{

				public	static	void	PlaceOrder(string	waitressName,	AutoResetEvent	orderReady)

				{

								//	order	is	placed….

								Console.WriteLine($"Waitress	{waitressName}	placed	order!");

								//	wait	for	the	order…

								orderReady.WaitOne();

								//	order	is	ready….

								Console.WriteLine($"Waitress	{waitressName}	got	order!");

				}

}

The	code	to	run	the	“diner”	creates	a	Cook	and	spins	off	the	Waitress	threads,	and	then
calls	all	waitresses	when	their	orders	are	ready	by	calling	Set	on	the	AutoResetEvent:

//	We	have	a	diner	with	a	cook	who	can	only	serve	up	one	meal	at	a	time

Cook	Mel	=	new	Cook()	{	Name	=	"Mel"	};

string[]	waitressNames	=	{	"Flo",	"Alice",	"Vera",	"Jolene",	"Belle"	};

//	Have	waitresses	place	orders

foreach	(var	waitressName	in	waitressNames)

{

				Task.Run(()	=>

								{

												//	The	Waitress	places	the	order	and	then	waits	for	the	order

												Waitress.PlaceOrder(waitressName,	Cook.OrderReady);

								});

}

//	Have	the	cook	fill	the	orders

for	(int	i	=	0;	i	<	waitressNames.Length;	i++)

{

				//	make	the	waitresses	wait…

				Thread.Sleep(2000);

				//	ok,	next	waitress,	pickup!

				Mel.CallWaitress();

}

Discussion
There	are	two	types	of	events,	AutoResetEvent	and	ManualResetEvent.	There	are	two
main	differences	between	the	events.	The	first	is	that	AutoResetEvents	release	only	one	of
the	threads	that	are	waiting	on	the	event,	while	a	ManualResetEvent	will	release	all	of
them	when	Set	is	called.	The	second	difference	is	that	when	Set	is	called	on	an
AutoResetEvent,	it	is	automatically	reset	to	a	nonsignaled	state,	while	the
ManualResetEvent	is	left	in	a	signaled	state	until	the	Reset	method	is	called.

The	output	from	the	sample	code	looks	like	this:

Waitress	Alice	placed	order!

Waitress	Flo	placed	order!

Waitress	Vera	placed	order!

Waitress	Jolene	placed	order!

Mel	finished	order!

Waitress	Alice	got	order!

Waitress	Belle	placed	order!

Mel	finished	order!

Waitress	Jolene	got	order!

Mel	finished	order!

Waitress	Belle	got	order!

Mel	finished	order!

Waitress	Flo	got	order!

Mel	finished	order!

Waitress	Vera	got	order!

See	Also
The	“AutoResetEvent”	and	“ManualResetEvent”	topics	in	the	MSDN	documentation	and
Programming	Applications	for	Microsoft	Windows,	Fourth	Edition	(Microsoft	Press).

12.9	Performing	Atomic	Operations	Among	Threads

Problem
You	are	operating	on	data	from	multiple	threads	and	want	to	ensure	that	each	operation	is
carried	out	fully	before	performing	the	next	operation	from	a	different	thread.

Solution
Use	the	Interlocked	family	of	functions	to	ensure	atomic	access.	Interlocked	has
methods	to	increment	and	decrement	values,	add	a	specific	amount	to	a	given	value,
exchange	an	original	value	for	a	new	value,	compare	the	current	value	to	the	original
value,	and	exchange	the	original	value	for	a	new	value	if	it	is	equal	to	the	current	value.

To	increment	or	decrement	an	integer	value,	use	the	Increment	or	Decrement	methods,
respectively:

int	i	=	0;

long	l	=	0;

Interlocked.Increment(ref	i);	//	i	=	1

Interlocked.Decrement(ref	i);	//	i	=	0

Interlocked.Increment(ref	l);	//	l	=	1

Interlocked.Decrement(ref	i);	//	l	=	0

To	add	a	specific	amount	to	a	given	integer	value,	use	the	Add	method:

Interlocked.Add(ref	i,	10);	//	i	=	10;

Interlocked.Add(ref	l,	100);	//	l	=	100;

To	replace	an	existing	value,	use	the	Exchange	method:

string	name	=	"Mr.	Ed";

Interlocked.Exchange(ref	name,	"Barney");

To	check	if	another	thread	has	changed	a	value	out	from	under	the	existing	code	before
replacing	the	existing	value,	use	the	CompareExchange	method:

int	i	=	0;

double	runningTotal	=	0.0;

double	startingTotal	=	0.0;

double	calc	=	0.0;

for	(i	=	0;	i	<	10;	i++)

{

				do

				{

								//	store	of	the	original	total

								startingTotal	=	runningTotal;

								//	do	an	intense	calculation

								calc	=	runningTotal	+	i	*	Math.PI	*	2	/	Math.PI;

				}

				//	check	to	make	sure	runningTotal	wasn't	modified

				//	and	replace	it	with	calc	if	not.		If	it	was,

				//	run	through	the	loop	until	we	get	it	current

				while	(startingTotal	!=

								Interlocked.CompareExchange(

												ref	runningTotal,	calc,	startingTotal));

}

Discussion
In	an	operating	system	like	Microsoft	Windows,	with	its	ability	to	perform	preemptive
multitasking,	you	must	give	certain	considerations	to	data	integrity	when	working	with
multiple	threads.	There	are	many	synchronization	primitives	to	help	secure	sections	of
code,	as	well	as	signal	when	data	is	available	to	be	modified.	To	this	list	is	added	the
capability	to	perform	operations	that	are	guaranteed	to	be	atomic	in	nature.

If	there	has	not	been	much	threading	or	assembly	language	in	your	past,	you	might
wonder	what	the	big	deal	is	and	why	you	need	these	atomic	functions	at	all.	The	basic
reason	is	that	the	line	of	code	written	in	C#	ultimately	has	to	be	translated	down	to	a
machine	instruction,	and	along	the	way,	the	one	line	of	code	written	in	C#	can	turn	into
multiple	instructions	for	the	machine	to	execute.	If	the	machine	has	to	execute	multiple
instructions	to	perform	a	task	and	the	operating	system	allows	for	preemption,	it	is
possible	that	these	instructions	may	not	be	executed	as	a	unit.	They	could	be	interrupted
by	other	code	that	modifies	the	value	being	changed	by	the	original	line	of	C#	code	in	the
middle	of	the	C#	code	being	executed.	As	you	can	imagine,	this	could	lead	to	some	pretty
spectacular	errors,	or	it	might	just	round	off	the	lottery	number	that	keeps	a	certain	C#
programmer	from	winning	the	big	one.

Threading	is	a	powerful	tool,	but	like	most	“power”	tools,	you	have	to	understand	its
operation	to	use	it	effectively	and	safely.	Threading	bugs	are	notorious	for	being	some	of
the	most	difficult	to	debug,	as	the	runtime	behavior	is	not	constant.	Trying	to	reproduce
them	can	be	a	nightmare	and	adding	logging	can	change	the	behavior,	or	worse,	make	the
issue	disappear!	Recognizing	that	working	in	a	multithreaded	environment	imposes	a
certain	amount	of	forethought	about	protecting	data	access,	and	understanding	when	to	use
the	Interlocked	class,	will	go	a	long	way	toward	preventing	long,	frustrating	evenings
with	the	debugger.

See	Also
The	“Interlocked”	and	“Interlocked	Class”	topics	in	the	MSDN	documentation.

12.10	Optimizing	Read-Mostly	Access

Problem
You	are	operating	on	data	that	is	mostly	read	with	occasional	updates	and	want	to	perform
these	actions	in	a	thread-safe	but	efficient	manner.

Solution
Use	ReaderWriterLockSlim	to	give	multiple-read/single-write	access	with	the	capacity	to
upgrade	the	lock	from	read	to	write.	As	an	example,	say	a	developer	is	starting	a	new
project.	Unfortunately,	the	project	is	understaffed,	so	the	developer	has	to	respond	to	tasks
from	many	other	individuals	on	the	team.	Each	of	the	other	team	members	will	also	ask
the	developer	for	status	updates	on	their	tasks,	and	some	can	even	change	the	priority	of
the	tasks	the	developer	is	assigned.

The	developer	is	assigned	a	task	via	the	AddTask	method.	To	protect	the	DeveloperTasks
collection	we	use	a	write	lock	on	ReaderWriterLockSlim,	calling	EnterWriteLock	when
adding	the	task	to	the	DeveloperTasks	collection	and	ExitWriteLock	when	the	addition	is
complete:

public	void	AddTask(DeveloperTask	newTask)

{

				try

				{

								Lock.EnterWriteLock();

								//	if	we	already	have	this	task	(unique	by	name)

								//	then	just	accept	the	add	as	sometimes	people

								//	give	you	the	same	task	more	than	once	:)

								var	taskQuery	=	from	t	in	DeveloperTasks

																								where	t	==	newTask

																								select	t;

								if	(taskQuery.Count<DeveloperTask>()	==	0)

								{

												Console.WriteLine($"Task	{newTask.Name}	was	added	to	developer");

												DeveloperTasks.Add(newTask);

								}

				}

				finally

				{

								Lock.ExitWriteLock();

				}

}

When	a	project	team	member	needs	to	know	about	the	status	of	a	task,	they	call	the
IsTaskDone	method,	which	uses	a	read	lock	on	the	ReaderWriterLockSlim	by	calling
EnterReadLock	and	ExitReadLock:

public	bool	IsTaskDone(string	taskName)

{

				try

				{

								Lock.EnterReadLock();

								var	taskQuery	=	from	t	in	DeveloperTasks

																								where	t.Name	==	taskName

																								select	t;

								if	(taskQuery.Count<DeveloperTask>()	>	0)

								{

												DeveloperTask	task	=	taskQuery.First<DeveloperTask>();

												Console.WriteLine($"Task	{task.Name}	status	was	reported.");

												return	task.Status;

								}

				}

				finally

				{

								Lock.ExitReadLock();

				}

				return	false;

}

There	are	certain	managerial	members	of	the	team	who	have	the	right	to	increase	the
priority	of	the	tasks	they	assigned	to	the	developer.	They	accomplish	this	by	calling	the
IncreasePriority	method	on	the	Developer.	IncreasePriority	uses	an	upgradable	lock
on	ReaderWriterLockSlim	by	first	calling	the	EnterUpgradeableLock	method	to	acquire
a	read	lock,	and	then,	if	the	task	is	in	the	queue,	upgrading	to	a	write	lock	in	order	to
adjust	the	priority	of	the	task.	Once	the	priority	is	adjusted,	the	write	lock	is	released,
which	degrades	the	lock	back	to	a	read	lock,	and	that	lock	is	released	through	a	call	to
ExitUpgradeableReadLock:

public	void	IncreasePriority(string	taskName)

{

				try

				{

								Lock.EnterUpgradeableReadLock();

								var	taskQuery	=	from	t	in	DeveloperTasks

																								where	t.Name	==	taskName

																								select	t;

								if(taskQuery.Count<DeveloperTask>()>0)

								{

												DeveloperTask	task	=	taskQuery.First<DeveloperTask>();

												Lock.EnterWriteLock();

												task.Priority++;

												Console.WriteLine($"Task	{task.Name}"	+

																$"	priority	was	increased	to	{task.Priority}"	+

																"	for	developer");

												Lock.ExitWriteLock();

								}

				}

				finally

				{

								Lock.ExitUpgradeableReadLock();

				}

}

Discussion
The	ReaderWriterLockSlim	was	created	to	replace	the	existing	ReaderWriterLock	for	a
number	of	reasons:

ReaderWriterLock	was	more	than	five	times	slower	than	using	a	Monitor.

Recursion	semantics	of	ReaderWriterLock	were	not	standard	and	were	broken	in	some
thread	reentrancy	cases.

The	upgrade	lock	method	is	nonatomic	in	ReaderWriterLock.

While	the	ReaderWriterLockSlim	is	only	about	two	times	slower	than	the	Monitor,	it	is
more	flexible	and	prioritizes	writes,	so	in	“few	write,	many	read”	scenarios,	it	is	more
scalable	than	the	Monitor.	There	are	also	methods	to	determine	what	type	of	lock	is	held
as	well	as	how	many	threads	are	waiting	to	acquire	it.

By	default,	lock	acquisition	recursion	is	disallowed.	If	you	call	EnterReadLock	twice,	you
get	a	LockRecursionException.	You	can	enable	lock	recursion	by	passing	a
LockRecusionPolicy.SupportsRecursion	enumeration	value	to	the	constructor	overload
of	ReaderWriterLockSlim	that	accepts	it.	Even	though	it	is	possible	to	enable	lock
recursion,	it	is	generally	discouraged,	as	it	complicates	matters	and	creates	issues	that	are
not	fun	to	debug.

WARNING
There	are	some	scenarios	where	the	ReaderWriterLockSlim	is	not	appropriate	for	use,	although	most	of
these	are	not	applicable	to	everyday	development:

Due	to	the	incompatible	HostProtection	attributes,	ReaderWriterLockSlim	is	precluded	from	use	in
SQL	Server	CLR	scenarios.

Because	ReaderWriterLockSlim	doesn’t	mark	critical	regions,	hosts	that	use	thread	aborts	won’t	know
that	it	will	be	harmed	by	them,	so	issues	will	arise	in	the	hosted	AppDomains.

ReaderWriterLockSlim	cannot	handle	asynchronous	exceptions	(thread	aborts,	out	of	memory,	etc.)
and	could	end	up	with	a	corrupt	lock	state,	which	could	cause	deadlocks	or	other	issues.

ReaderWriterLockSlim	has	thread	affinity,	so	it	usually	cannot	be	used	with	async	and	await.	For
those	cases,	use	SemaphoreSlim.WaitAsync	instead.

The	entire	code	base	for	the	example	is	listed	here:

static	Developer	s_dev	=	null;

static	bool	s_end	=	false;

///	<summary>

///	</summary>

public	static	void	TestReaderWriterLockSlim()

{

				s_dev	=	new	Developer(15);

				LaunchTeam(s_dev);

				Thread.Sleep(10000);

}

private	static	void	LaunchTeam(Developer	dev)

{

				LaunchManager("CTO",	dev);

				LaunchManager("Director",	dev);

				LaunchManager("Project	Manager",	dev);

				LaunchDependent("Product	Manager",	dev);

				LaunchDependent("Test	Engineer",	dev);

				LaunchDependent("Technical	Communications	Professional",	dev);

				LaunchDependent("Operations	Staff",	dev);

				LaunchDependent("Support	Staff",	dev);

}

public	class	DeveloperTaskInfo

{

				public	string	Name	{	get;	set;	}

				public	Developer	Developer	{	get;	set;	}

}

private	static	void	LaunchManager(string	name,	Developer	dev)

{

				var	dti	=	new	DeveloperTaskInfo()	{	Name	=	name,	Developer	=	dev	};

				Task	manager	=	Task.Run(()	=>	{

								Console.WriteLine($"Added	{dti.Name}	to	the	project…");

								DeveloperTaskManager	mgr	=	new	DeveloperTaskManager(dti.Name,	

												dti.Developer);

				});

}

private	static	void	LaunchDependent(string	name,	Developer	dev)

{

				var	dti	=	new	DeveloperTaskInfo()	{	Name	=	name,	Developer	=	dev	};

				Task	manager	=	Task.Run(()	=>	{

								Console.WriteLine($"Added	{dti.Name}	to	the	project…");

								DeveloperTaskDependent	dep	=

											new	DeveloperTaskDependent(dti.Name,	dti.Developer);

				});

}

public	class	DeveloperTask

{

				public	DeveloperTask(string	name)

				{

								Name	=	name;

				}

				public	string	Name	{	get;	set;	}

				public	int	Priority	{	get;	set;	}

				public	bool	Status	{	get;	set;	}

				public	override	string	ToString()	=>	this.Name;

				public	override	bool	Equals(object	obj)

				{

								DeveloperTask	task	=	obj	as	DeveloperTask;

								return	this.Name	==	task?.Name;

				}

				public	override	int	GetHashCode()	=>	this.Name.GetHashCode();

}

public	class	Developer	:	IDisposable

{

				///	<summary>

				///	Dictionary	for	the	tasks

				///	</summary>

				private	List<DeveloperTask>	DeveloperTasks	{	get;	}	=	

								new	List<DeveloperTask>();

				private	ReaderWriterLockSlim	Lock	{	get;	set;	}	=	new	ReaderWriterLockSlim();

				private	System.Threading.Timer	Timer	{	get;	set;	}

				private	int	MaxTasks	{	get;	}

				public	Developer(int	maxTasks)

				{

								//	the	maximum	number	of	tasks	before	the	developer	quits

								MaxTasks	=	maxTasks;

								//	do	some	work	every	1/4	second

								Timer	=	new	Timer(new	TimerCallback(DoWork),	null,	1000,	250);

				}

				~Developer()

				{

								Dispose(true);

				}

				//	Execute	a	task

				protected	void	DoWork(Object	stateInfo)

				{

								ExecuteTask();

								try

								{

												Lock.EnterWriteLock();

												//	if	we	finished	all	tasks,	go	on	vacation!

												if	(DeveloperTasks.Count	==	0)

												{

																s_end	=	true;

																Console.WriteLine(

																				"Developer	finished	all	tasks,	go	on	vacation!");

																return;

												}

												if	(!s_end)

												{

																//	if	we	have	too	many	tasks	quit

																if	(DeveloperTasks.Count	>	MaxTasks)

																{

																				//	get	the	number	of	unfinished	tasks

																				var	query	=	from	t	in	DeveloperTasks

																																where	t.Status	==	false

																																select	t;

																				int	unfinishedTaskCount	=	query.Count<DeveloperTask>();

																				s_end	=	true;

																				Console.WriteLine(

																								"Developer	has	too	many	tasks,	quitting!	"	+

																								$"{unfinishedTaskCount}	tasks	left	unfinished.");

																}

												}

												else

																Timer.Dispose();

								}

								finally

								{

												Lock.ExitWriteLock();

								}

				}

				public	void	AddTask(DeveloperTask	newTask)

				{

								try

								{

												Lock.EnterWriteLock();

												//	if	we	already	have	this	task	(unique	by	name)

												//	then	just	accept	the	add	as	sometimes	people

												//	give	you	the	same	task	more	than	once	:)

												var	taskQuery	=	from	t	in	DeveloperTasks

																												where	t	==	newTask

																												select	t;

												if	(taskQuery.Count<DeveloperTask>()	==	0)

												{

																Console.WriteLine($"Task	{newTask.Name}	was	added	to	developer");

																DeveloperTasks.Add(newTask);

												}

								}

								finally

								{

												Lock.ExitWriteLock();

								}

				}

				///	<summary>

				///	Increase	the	priority	of	the	task

				///	</summary>

				///	<param	name="taskName">name	of	the	task</param>

				public	void	IncreasePriority(string	taskName)

				{

								try

								{

												Lock.EnterUpgradeableReadLock();

												var	taskQuery	=	from	t	in	DeveloperTasks

																												where	t.Name	==	taskName

																												select	t;

												if(taskQuery.Count<DeveloperTask>()>0)

												{

																DeveloperTask	task	=	taskQuery.First<DeveloperTask>();

																Lock.EnterWriteLock();

																task.Priority++;

																Console.WriteLine($"Task	{task.Name}"	+

																				$"	priority	was	increased	to	{task.Priority}"	+

																				"	for	developer");

																Lock.ExitWriteLock();

												}

								}

								finally

								{

												Lock.ExitUpgradeableReadLock();

								}

				}

				//	<summary>

				//	Allows	people	to	check	if	the	task	is	done

				//	</summary>

				//	<param	name="taskName">name	of	the	task</param>

				//	<returns>False	if	the	taks	is	undone	or	not	in	the	list,	

				//	true	if	done</returns>

				public	bool	IsTaskDone(string	taskName)

				{

								try

								{

												Lock.EnterReadLock();

												var	taskQuery	=	from	t	in	DeveloperTasks

																												where	t.Name	==	taskName

																												select	t;

												if	(taskQuery.Count<DeveloperTask>()	>	0)

												{

																DeveloperTask	task	=	taskQuery.First<DeveloperTask>();

																Console.WriteLine($"Task	{task.Name}	status	was	reported.");

																return	task.Status;

												}

								}

								finally

								{

												Lock.ExitReadLock();

								}

								return	false;

				}

				private	void	ExecuteTask()

				{

								//	look	over	the	tasks	and	do	the	highest	priority

								var	queryResult	=			from	t	in	DeveloperTasks

																												where	t.Status	==	false

																												orderby	t.Priority

																												select	t;

								if	(queryResult.Count<DeveloperTask>()	>	0)

								{

												//	do	the	task

												DeveloperTask	task	=	queryResult.First<DeveloperTask>();

												task.Status	=	true;

												task.Priority	=	-1;

												Console.WriteLine($"Task	{task.Name}	executed	by	developer.");

								}

				}

				#region	IDisposable	Support

				private	bool	disposedValue	=	false;	//	To	detect	redundant	calls

				protected	virtual	void	Dispose(bool	disposing)

				{

								if	(!disposedValue)

								{

												if	(disposing)

												{

																Lock?.Dispose();

																Lock	=	null;

																Timer?.Dispose();

																Timer	=	null;

												}

												disposedValue	=	true;

								}

				}

				public	void	Dispose()

				{

								Dispose(true);

				}

				#endregion

}

public	class	DeveloperTaskManager	:	DeveloperTaskDependent,	IDisposable

{

				private	System.Threading.Timer	ManagerTimer	{	get;	set;	}

				public	DeveloperTaskManager(string	name,	Developer	taskExecutor)	:

								base(name,	taskExecutor)

				{

								//	intervene	every	2	seconds

								ManagerTimer	=

												new	Timer(new	TimerCallback(Intervene),	null,	0,	2000);

				}

				~DeveloperTaskManager()

				{

								Dispose(true);

				}

				//	Intervene	in	the	plan

				protected	void	Intervene(Object	stateInfo)

				{

								ChangePriority();

								//	developer	ended,	kill	timer

								if	(s_end)

								{

												ManagerTimer.Dispose();

												TaskExecutor	=	null;

								}

				}

				public	void	ChangePriority()

				{

								if	(DeveloperTasks.Count	>	0)

								{

												int	taskIndex	=	_rnd.Next(0,	DeveloperTasks.Count	-	1);

												DeveloperTask	checkTask	=	DeveloperTasks[taskIndex];

												//	make	those	developers	work	faster	on	some	random	task!

												if	(TaskExecutor	!=	null)

												{

																TaskExecutor.IncreasePriority(checkTask.Name);

																Console.WriteLine(

																				$"{Name}	intervened	and	changed	priority	for	task

{checkTask.Name}");

												}

								}

				}

				#region	IDisposable	Support

				private	bool	disposedValue	=	false;	//	To	detect	redundant	calls

				protected	override	void	Dispose(bool	disposing)

				{

								if	(!disposedValue)

								{

												if	(disposing)

												{

																ManagerTimer?.Dispose();

																ManagerTimer	=	null;

																base.Dispose(disposing);

												}

												disposedValue	=	true;

								}

				}

				public	new	void	Dispose()

				{

								Dispose(true);

				}

				#endregion

}

public	class	DeveloperTaskDependent	:	IDisposable

{

				protected	List<DeveloperTask>	DeveloperTasks	{	get;	set;	}

								=	new	List<DeveloperTask>();

				protected	Developer	TaskExecutor	{	get;	set;	}

				protected	Random	_rnd	=	new	Random();

				private	Timer	TaskTimer	{	get;	set;	}

				private	Timer	StatusTimer	{	get;	set;	}

				public	DeveloperTaskDependent(string	name,	Developer	taskExecutor)

				{

								Name	=	name;

								TaskExecutor	=	taskExecutor;

								//	add	work	every	1	second

								TaskTimer	=	new	Timer(new	TimerCallback(AddWork),	null,	0,	1000);

								//	check	status	every	3	seconds

								StatusTimer	=	new	Timer(new	TimerCallback(CheckStatus),	null,	0,	3000);

				}

			~DeveloperTaskDependent()

				{

								Dispose();

				}

				//	Add	more	work	to	the	developer

				protected	void	AddWork(Object	stateInfo)

				{

								SubmitTask();

								//	developer	ended,	kill	timer

								if	(s_end)

								{

												TaskTimer.Dispose();

												TaskExecutor	=	null;

								}

				}

				//	Check	Status	of	work	with	the	developer

				protected	void	CheckStatus(Object	stateInfo)

				{

								CheckTaskStatus();

								//	developer	ended,	kill	timer

								if	(s_end)

								{

												StatusTimer.Dispose();

												TaskExecutor	=	null;

								}

				}

				public	string	Name	{	get;	set;	}

				public	void	SubmitTask()

				{

								int	taskId	=	_rnd.Next(10000);

								string	taskName	=	$"({taskId}	for	{Name})";

								DeveloperTask	newTask	=	new	DeveloperTask(taskName);

								if	(TaskExecutor	!=	null)

								{

												TaskExecutor.AddTask(newTask);

												DeveloperTasks.Add(newTask);

								}

				}

				public	void	CheckTaskStatus()

				{

								if	(DeveloperTasks.Count	>	0)

								{

												int	taskIndex	=	_rnd.Next(0,	DeveloperTasks.Count	-	1);

												DeveloperTask	checkTask	=	DeveloperTasks[taskIndex];

												if	(TaskExecutor	!=	null	&&

																TaskExecutor.IsTaskDone(checkTask.Name))

												{

																Console.WriteLine($"Task	{checkTask.Name}	is	done	for	{Name}");

																//	remove	it	from	the	todo	list

																DeveloperTasks.Remove(checkTask);

												}

								}

				}

				#region	IDisposable	Support

				private	bool	disposedValue	=	false;	//	To	detect	redundant	calls

				protected	virtual	void	Dispose(bool	disposing)

				{

								if	(!disposedValue)

								{

												if	(disposing)

												{

																TaskTimer?.Dispose();

																TaskTimer	=	null;

																StatusTimer?.Dispose();

																StatusTimer	=	null;

												}

												disposedValue	=	true;

								}

				}

				public	void	Dispose()

				{

								Dispose(true);

				}

				#endregion

}

You	can	see	the	series	of	events	in	the	project	in	the	output.	The	point	at	which	the
developer	has	had	enough	is	highlighted:

Added	CTO	to	the	project…

Added	Director	to	the	project…

Added	Project	Manager	to	the	project…

Added	Product	Manager	to	the	project…

Added	Test	Engineer	to	the	project…

Added	Technical	Communications	Professional	to	the	project…

Added	Operations	Staff	to	the	project…

Added	Support	Staff	to	the	project…

Task	(6267	for	CTO)	was	added	to	developer

Task	(6267	for	CTO)	status	was	reported.

Task	(6267	for	CTO)	priority	was	increased	to	1	for	developer

CTO	intervened	and	changed	priority	for	task	(6267	for	CTO)

Task	(6267	for	Director)	was	added	to	developer

Task	(6267	for	Director)	status	was	reported.

Task	(6267	for	Director)	priority	was	increased	to	1	for	developer

Director	intervened	and	changed	priority	for	task	(6267	for	Director)

Task	(6267	for	Project	Manager)	was	added	to	developer

Task	(6267	for	Project	Manager)	status	was	reported.

Task	(6267	for	Project	Manager)	priority	was	increased	to	1	for	developer

Project	Manager	intervened	and	changed	priority	for	task	(6267	for	Project	

Manager)

Task	(6267	for	Product	Manager)	was	added	to	developer

Task	(6267	for	Product	Manager)	status	was	reported.

Task	(6267	for	Technical	Communications	Professional)	was	added	to	developer

Task	(6267	for	Technical	Communications	Professional)	status	was	reported.

Task	(6267	for	Operations	Staff)	was	added	to	developer

Task	(6267	for	Operations	Staff)	status	was	reported.

Task	(6267	for	Support	Staff)	was	added	to	developer

Task	(6267	for	Support	Staff)	status	was	reported.

Task	(6267	for	Test	Engineer)	was	added	to	developer

Task	(5368	for	CTO)	was	added	to	developer

Task	(5368	for	Director)	was	added	to	developer

Task	(5368	for	Project	Manager)	was	added	to	developer

Task	(6153	for	Product	Manager)	was	added	to	developer

Task	(913	for	Test	Engineer)	was	added	to	developer

Task	(6153	for	Technical	Communications	Professional)	was	added	to	developer

Task	(6153	for	Operations	Staff)	was	added	to	developer

Task	(6153	for	Support	Staff)	was	added	to	developer

Task	(6267	for	Product	Manager)	executed	by	developer.

Task	(6267	for	Technical	Communications	Professional)	executed	by	developer.

Task	(6267	for	Operations	Staff)	executed	by	developer.

Task	(6267	for	Support	Staff)	executed	by	developer.

Task	(6267	for	CTO)	priority	was	increased	to	2	for	developer

CTO	intervened	and	changed	priority	for	task	(6267	for	CTO)

Task	(6267	for	Director)	priority	was	increased	to	2	for	developer

Director	intervened	and	changed	priority	for	task	(6267	for	Director)

Task	(6267	for	Project	Manager)	priority	was	increased	to	2	for	developer

Project	Manager	intervened	and	changed	priority	for	task	(6267	for	Project	

Manager)

Task	(6267	for	Test	Engineer)	executed	by	developer.

Task	(7167	for	CTO)	was	added	to	developer

Task	(7167	for	Director)	was	added	to	developer

Task	(7167	for	Project	Manager)	was	added	to	developer

Task	(5368	for	Product	Manager)	was	added	to	developer

Task	(6153	for	Test	Engineer)	was	added	to	developer

Task	(5368	for	Technical	Communications	Professional)	was	added	to	developer

Task	(5368	for	Operations	Staff)	was	added	to	developer

Task	(5368	for	Support	Staff)	was	added	to	developer

Task	(5368	for	CTO)	executed	by	developer.

Task	(5368	for	Director)	executed	by	developer.

Task	(5368	for	Project	Manager)	executed	by	developer.

Task	(6267	for	CTO)	status	was	reported.

Task	(6267	for	Director)	status	was	reported.

Task	(6267	for	Project	Manager)	status	was	reported.

Task	(913	for	Test	Engineer)	status	was	reported.

Task	(6267	for	Technical	Communications	Professional)	status	was	reported.

Task	(6267	for	Technical	Communications	Professional)	is	done	for	Technical

Communications	Professional

Task	(6267	for	Product	Manager)	status	was	reported.

Task	(6267	for	Product	Manager)	is	done	for	Product	Manager

Task	(6267	for	Operations	Staff)	status	was	reported.

Task	(6267	for	Operations	Staff)	is	done	for	Operations	Staff

Task	(6267	for	Support	Staff)	status	was	reported.

Task	(6267	for	Support	Staff)	is	done	for	Support	Staff

Task	(6153	for	Product	Manager)	executed	by	developer.

Task	(2987	for	CTO)	was	added	to	developer

Task	(2987	for	Director)	was	added	to	developer

Task	(2987	for	Project	Manager)	was	added	to	developer

Task	(7167	for	Product	Manager)	was	added	to	developer

Task	(4126	for	Test	Engineer)	was	added	to	developer

Task	(7167	for	Technical	Communications	Professional)	was	added	to	developer

Task	(7167	for	Support	Staff)	was	added	to	developer

Task	(7167	for	Operations	Staff)	was	added	to	developer

Task	(913	for	Test	Engineer)	executed	by	developer.

Task	(6153	for	Technical	Communications	Professional)	executed	by	developer.

Developer	has	too	many	tasks,	quitting!	21	tasks	left	unfinished.

Task	(6153	for	Operations	Staff)	executed	by	developer.

Task	(5368	for	CTO)	priority	was	increased	to	0	for	developer

CTO	intervened	and	changed	priority	for	task	(5368	for	CTO)

Task	(5368	for	Director)	priority	was	increased	to	0	for	developer

Director	intervened	and	changed	priority	for	task	(5368	for	Director)

Task	(5368	for	Project	Manager)	priority	was	increased	to	0	for	developer

Project	Manager	intervened	and	changed	priority	for	task	(5368	for	Project	

Manager)

Task	(6153	for	Support	Staff)	executed	by	developer.

Task	(4906	for	Product	Manager)	was	added	to	developer

Task	(7167	for	Test	Engineer)	was	added	to	developer

Task	(4906	for	Technical	Communications	Professional)	was	added	to	developer

Task	(4906	for	Operations	Staff)	was	added	to	developer

Task	(4906	for	Support	Staff)	was	added	to	developer

Task	(7167	for	CTO)	executed	by	developer.

Task	(7167	for	Director)	executed	by	developer.

Task	(7167	for	Project	Manager)	executed	by	developer.

Task	(5368	for	Product	Manager)	executed	by	developer.

Task	(6153	for	Test	Engineer)	executed	by	developer.

Task	(5368	for	Technical	Communications	Professional)	executed	by	developer.

Task	(5368	for	Operations	Staff)	executed	by	developer.

Task	(5368	for	Support	Staff)	executed	by	developer.

Task	(2987	for	CTO)	executed	by	developer.

Task	(2987	for	Director)	executed	by	developer.

Task	(2987	for	Project	Manager)	executed	by	developer.

Task	(7167	for	Product	Manager)	executed	by	developer.

Task	(4126	for	Test	Engineer)	executed	by	developer.

See	Also
The	“ReaderWriterLockSlim”	topic	in	the	MSDN	documentation.

12.11	Making	Your	Database	Requests	More	Scalable

Problem
You	want	to	make	your	database	calls	as	efficient	and	scalable	as	possible	from	a	caller’s
perspective.

Solution
Use	async,	await,	and	the	*Async	versions	of	the	database	calls	so	that	other	work	can	be
accomplished	with	threads	in	the	program	while	you	wait	for	the	database	I/O	to	complete.

NOTE
If	you	aren’t	familiar	with	async	and	await,	which	were	introduced	in	C#	5.0,	see	the	MSDN	topic
“Asynchronous	Programming	with	Async	and	Await”	for	more	details.

If	you	use	SqlConnection	and	SqlCommand,	you	would	use	the	SqlConnection.OpenAsync
and	the	SqlCommand.ExecuteReaderAsync	method	to	open	and	query	the	database
asynchronously:

using	(SqlConnection	conn	=

				new	SqlConnection(Settings.Default.NorthwindConnectionString))

{

				await	conn.OpenAsync();

				SqlCommand	cmd	=	new	SqlCommand("SELECT	*	FROM	CUSTOMERS",	conn);

				SqlDataReader	reader	=	await	cmd.ExecuteReaderAsync();

				while	(reader.Read())

				{

								Console.WriteLine($"Customer	{reader["ContactName"].ToString()}	"	+

												$"from	{reader["CompanyName"].ToString()}");

				}

}

If	you	use	Entity	Framework,	you	can	use	the	IQueryable<T>.ToListAsync	extension
method	to	open	the	connection	and	execute	the	query	asynchronously:

using	(var	efContext	=	new	NorthwindEntities())

{

				var	list	=	await	(from	cust	in	efContext.Customers

																select	cust).ToListAsync();

				foreach(var	cust	in	list)

				{

								Console.WriteLine($"Customer	{cust.ContactName}	"	+

												$"from	{cust.CompanyName}");

				}

If	you	wanted	to	write	a	new	record	using	EntityFramework	and	then	get	it	back	to	check
it,	you	would	use	the	System.Data.Entity.DbContext.SaveChangesAsync	method	after
adding	a	new	entity	to	the	context.	Then	you	could	use	the
IQueryable<T>.FirstOrDefaultAsync	extension	method	to	retrieve	just	the	first
matching	item	or	null:

				//	Make	a	new	customer	and	save	them

				Customer	c	=	new	Customer();

				c.CustomerID	=	"JENNA";

				c.ContactName	=	"Jenna	Roberts";

				c.CompanyName	=	"Flamingo	Industries";

				efContext.Customers.Add(c);

				await	efContext.SaveChangesAsync();

				var	jenna	=	await	efContext.Customers.Where(cu	=>

																								cu.ContactName	==	"Jenna	Roberts").FirstOrDefaultAsync();

				Console.WriteLine($"New	Customer	{jenna.ContactName}	"	+

												$"from	{jenna.CompanyName}");

}

Discussion
While	some	of	the	database	technologies	have	currently	implemented	async	support,	not
all	of	them	are	so	lucky.	LINQ	to	SQL	is	still	derived	from
System.Data.Linq.DataContext,	which	does	not	have	async	support.	While	you	can	still
use	LINQ	to	SQL	for	non-async	operations	like	so:

using	(var	l2sContext	=	new	NorthwindLinq2SqlDataContext())

{

				var	list	=	(from	cust	in	l2sContext.Customers

																select	cust);

				foreach	(var	cust	in	list)

				{

								Console.WriteLine($"Customer	{cust.ContactName}	"	+

												$"from	{cust.CompanyName}");

				}

}

if	you	tried	to	use	the	async	support	as	shown	here	with	LINQ	to	SQL,	you	will	get	this
error:

				var	list	=	await	(from	cust	in	l2sContext.Customers

																						select	cust).ToListAsync();

//	Additional	information:	The	source	IQueryable	doesn't	implement

//	IDbAsyncEnumerable<NorthwindLinq2Sql.Customer>.	Only	sources	that	implement

//	IDbAsyncEnumerable	can	be	used	for	Entity	Framework

If	you	want	async	support	for	your	database	actions,	you	need	to	either	use	the
System.Data.SqlClient	constructs	(like	SqlConnection,	SqlDataReader,	etc.)	or	use
Entity	Framework	6	or	above.

See	Also
See	the	“System.Data.SqlClient	namespace,”	“Asynchronous	Programming	with	Async
and	Await,”	and	“Entity	Framework	Async	Query	&	Save”	topics	in	the	MSDN
documentation.

12.12	Running	Tasks	in	Order

Problem
You	have	primary	tasks	that	need	to	complete	before	secondary	tasks	are	executed	in	your
application.

Solution
Use	Task.ContinueWith	to	execute	a	follow-on	task	once	a	primary	task	has	been
completed.

ContinueWith	allows	you	to	append	a	task	to	be	executed	asynchronously	upon	the
completion	of	an	original	task.	This	is	useful	in	instances	when	some	of	the	tasks	have	an
ordering	constraint	and	some	do	not.

As	an	example,	think	about	the	4	×	400	meter	relay	in	the	Olympics.	There	are	a	number
of	primary	tasks	(runners	who	run	the	first	leg	of	the	relay	for	each	country),	followed	by
tasks	that	depend	on	the	result	of	the	first	task	(the	runners	who	are	running	the	remaining
legs	of	the	relay).	None	of	the	dependent	tasks	can	start	until	the	previous	task	(the	passing
of	the	baton)	is	finished.

To	represent	each	of	the	runners	in	the	relay,	we	have	a	RelayRunner	class	that	contains
the	Country	the	runner	is	representing,	the	Leg	of	the	race	he	or	she	will	run,	if	he	or	she
has	the	baton	currently	(HasBaton),	and	how	long	it	took	him	or	her	to	run	the	leg	of	the
relay	(LegTime).	Finally,	we	have	a	method	to	make	the	RelayRunner	sprint	when	it	is	his
or	her	turn	(Sprint).

public	class	RelayRunner

{

				public	string	Country	{	get;	set;	}

				public	int	Leg	{	get;	set;	}

				public	bool	HasBaton	{	get;	set;	}

				public	TimeSpan	LegTime	{	get;	set;	}

				public	int	TotalLegs	{	get;	set;	}

				public	RelayRunner	Sprint()

				{

								Console.WriteLine(

												$"{Country}	for	Leg	{Leg}	has	the	baton	and	is	running!");

								Random	rnd	=	new	Random();

								int	ms	=	rnd.Next(100,	1000);

								Task.Delay(ms);

								//	finished….

								LegTime	=	new	TimeSpan(0,0,0,0,ms);

								if	(Leg	==	TotalLegs)

												Console.WriteLine($"{Country}	has	finished	the	race!");

								return	this;

				}

}

Now	that	we	have	runners,	we	need	to	set	up	the	countries	for	them	to	run	for
(countries),	and	some	tracking	about	who	is	running	for	each	team	(teams);	who	is	in	the
race	in	general	(runners);	and	who	are	the	first-leg	runners	(firstLegRunners):

//	Relay	race	in	the	olympics

string[]	countries	=	{	"Russia",	"France",	"England",	"United	States",

																							"India",	"Germany",	"China"	};

Task<RelayRunner>[,]	teams	=	new	Task<RelayRunner>[countries.Length,	4];

List<Task<RelayRunner>>	runners	=	new	List<Task<RelayRunner>>();

List<Task<RelayRunner>>	firstLegRunners	=	new	List<Task<RelayRunner>>();

We	will	populate	these	collections	with	the	runners	such	that	the	first-leg	runner	from	each

team	has	the	baton;	and	if	the	runner	is	not	the	first	runner	from	his	or	her	team,	his	or	her
start	is	subject	to	when	the	prior	runner	on	the	team	finishes	(ContinueWith):

for	(int	i	=	0;	i	<	countries.Length;	i++)

{

				for	(int	r	=	0;	r	<	4;	r++)

				{

								var	runner	=	new	RelayRunner()

								{

												Country	=	countries[i],

												Leg	=	r+1,

												HasBaton	=	r	==	0	?	true	:	false,

												TotalLegs	=	4

								};

								if	(r	==	0)	//	add	starting	leg	for	country

								{

												Func<RelayRunner>	funcRunner	=	runner.Sprint;

												teams[i,	r]	=	new	Task<RelayRunner>(funcRunner);

												firstLegRunners.Add(teams[i,	r]);

								}

								else	//	add	other	legs	for	country

								{

												teams[i,	r]	=	teams[i,	r	-	1].ContinueWith((lastRunnerRunning)	=>

																{

																				var	lastRunner	=	lastRunnerRunning.Result;

																				//	Handoff	the	baton

																				Console.WriteLine($"{lastRunner.Country}	hands	off	from	"	+

																								$"{lastRunner.Leg}	to	{runner.Leg}!");

																				Random	rnd	=	new	Random();

																				int	fumbleChance	=	rnd.Next(0,	10);

																				if	(fumbleChance	>	8)

																				{

																								Console.WriteLine(

																												$"Oh	no!	{lastRunner.Country}	for	Leg	"	+

																												$"{runner.Leg}	fumbled	the	hand	off	from	Leg	"	+

																												$"{lastRunner.Leg}!");

																								Thread.Sleep(1000);

																								Console.WriteLine($"{lastRunner.Country}	for	Leg	"	+

																												$"{runner.Leg}"	+

																												"	recovered	the	baton	and	is	running	again!");

																				}

																				lastRunner.HasBaton	=	false;

																				runner.HasBaton	=	true;

																				return	runner.Sprint();

																});

								}

								//	add	to	our	list	of	runners

								runners.Add(teams[i,	r]);

				}

}

To	simulate	the	starting	gun,	we	will	use	Parallel.ForEach	to	call	Start	on	each	of	the
first-leg-runner	tasks.	This	guarantees	a	more	random	start	than	if	we	had	done	a	simple
for	loop:

//Fire	the	gun	to	start	the	race!

Parallel.ForEach(firstLegRunners,	r	=>

{

				r.Start();

});

Finally,	we	use	the	list	of	all	of	the	Task<RelayRunner>	tasks	and	call	Task.WaitAll	in
order	to	wait	for	the	finish	of	the	race:

//	Wait	for	everyone	to	finish

Task.WaitAll(runners.ToArray());

Discussion
While	running	tasks	in	a	certain	order	goes	against	parallelism	in	general	—	as	it	would	be
best	for	scalability	to	be	able	to	run	a	set	of	tasks	independently	in	any	order	—	the	reality
is	that	most	tasks	do	have	an	order	and	being	able	to	represent	that	order	in	code	is	useful.
ContinueWith	provides	a	number	of	overloads	with	many	parameters	to	control	the	action
taken	after	the	initial	task	completes.	Table	12-1	lists	the	types	of	control	structures
available	as	parameters.

Table	12-1.	ContinueWith	parameters

Value Description
Action<Task> The	action	to	run	when	the	initial	task	completes.	This	will	be	passed	the	original	task	as	a

reference.
Func<Task,

TResult>
The	function	to	run	when	the	initial	task	completes.	This	will	be	passed	the	original	task	as	a
reference.

CancellationToken The	token	assigned	to	the	continuation	task	to	allow	for	cancelling	of	the	continuation.
TaskScheduler The	scheduler	to	use	for	this	task	(other	than	the	default	if	a	different	scheduling	algorithm	is

necessary	based	on	the	tasks).
Object A	state	object	to	pass	into	the	continuation.

To	display	the	standings	at	the	end	of	the	race,	we	used	the	following	code,	which	groups
the	runners	by	team	and	adds	together	their	times	(LegTime)	with	the	LINQ	Sum	extension
method:

Console.WriteLine("\r\nRace	standings:");

var	standings	=	from	r	in	runners

																group	r	by	r.Result.Country	into	countryTeams

																select	countryTeams;

string	winningCountry	=	string.Empty;

int	bestTime	=	int.MaxValue;

HashSet<Tuple<int,	string>>	place	=	new	HashSet<Tuple<int,	string>>();

foreach	(var	team	in	standings)

{

				var	time	=	team.Sum(r	=>	r.Result.LegTime.Milliseconds);

				if	(time	<	bestTime)

				{

								bestTime	=	time;

								winningCountry	=	team.Key;

				}

				place.Add(new	Tuple<int,	string>(time,	

								$"{team.Key}	with	a	time	of	{time}ms"));

}

int	p	=	1;

foreach(var	item	in	place.OrderBy(t	=>	t.Item1))

{

				Console.WriteLine($"{p}:	{item.Item2}");

				p++;

}

Console.WriteLine($"\n\nThe	winning	team	is	from	{winningCountry}");

The	output	from	the	race	will	look	similar	to	this:

France	for	Leg	1	has	the	baton	and	is	running!

United	States	for	Leg	1	has	the	baton	and	is	running!

Russia	for	Leg	1	has	the	baton	and	is	running!

England	for	Leg	1	has	the	baton	and	is	running!

France	hands	off	from	1	to	2!

England	hands	off	from	1	to	2!

Russia	hands	off	from	1	to	2!

United	States	hands	off	from	1	to	2!

Russia	for	Leg	2	has	the	baton	and	is	running!

Oh	no!	England	for	Leg	2	fumbled	the	hand	off	from	Leg	1!

Oh	no!	France	for	Leg	2	fumbled	the	hand	off	from	Leg	1!

United	States	for	Leg	2	has	the	baton	and	is	running!

Russia	hands	off	from	2	to	3!

United	States	hands	off	from	2	to	3!

Russia	for	Leg	3	has	the	baton	and	is	running!

Russia	hands	off	from	3	to	4!

United	States	for	Leg	3	has	the	baton	and	is	running!

Russia	for	Leg	4	has	the	baton	and	is	running!

United	States	hands	off	from	3	to	4!

United	States	for	Leg	4	has	the	baton	and	is	running!

United	States	has	finished	the	race!

Russia	has	finished	the	race!

Germany	for	Leg	1	has	the	baton	and	is	running!

Germany	hands	off	from	1	to	2!

Germany	for	Leg	2	has	the	baton	and	is	running!

Germany	hands	off	from	2	to	3!

Germany	for	Leg	3	has	the	baton	and	is	running!

India	for	Leg	1	has	the	baton	and	is	running!

India	hands	off	from	1	to	2!

India	for	Leg	2	has	the	baton	and	is	running!

Germany	hands	off	from	3	to	4!

Germany	for	Leg	4	has	the	baton	and	is	running!

India	hands	off	from	2	to	3!

India	for	Leg	3	has	the	baton	and	is	running!

India	hands	off	from	3	to	4!

India	for	Leg	4	has	the	baton	and	is	running!

India	has	finished	the	race!

China	for	Leg	1	has	the	baton	and	is	running!

Germany	has	finished	the	race!

China	hands	off	from	1	to	2!

China	for	Leg	2	has	the	baton	and	is	running!

China	hands	off	from	2	to	3!

China	for	Leg	3	has	the	baton	and	is	running!

China	hands	off	from	3	to	4!

China	for	Leg	4	has	the	baton	and	is	running!

China	has	finished	the	race!

France	for	Leg	2	recovered	the	baton	and	is	running	again!

France	for	Leg	2	has	the	baton	and	is	running!

France	hands	off	from	2	to	3!

France	for	Leg	3	has	the	baton	and	is	running!

France	hands	off	from	3	to	4!

France	for	Leg	4	has	the	baton	and	is	running!

France	has	finished	the	race!

England	for	Leg	2	recovered	the	baton	and	is	running	again!

England	for	Leg	2	has	the	baton	and	is	running!

England	hands	off	from	2	to	3!

England	for	Leg	3	has	the	baton	and	is	running!

England	hands	off	from	3	to	4!

England	for	Leg	4	has	the	baton	and	is	running!

England	has	finished	the	race!

Race	standings:

1:	India	with	a	time	of	696ms

2:	Germany	with	a	time	of	698ms

3:	China	with	a	time	of	699ms

4:	Russia	with	a	time	of	1510ms

5:	United	States	with	a	time	of	1540ms

6:	France	with	a	time	of	2659ms

7:	England	with	a	time	of	3625ms

The	winning	team	is	from	India

See	Also
The	“Task.ContinueWith,”	“Task.WaitAll,”	and	“Parallel.ForEach”	topics	in	the	MSDN
documentation	and	Concurrency	in	C#	Cookbook,	by	Stephen	Cleary	(O’Reilly).

http://shop.oreilly.com/product/0636920030171.do

Chapter	13.	Toolbox

13.0	Introduction
Every	programmer	has	a	certain	set	of	routines	that	he	refers	back	to	and	uses	over	and
over	again.	These	utility	functions	are	usually	bits	of	code	that	are	not	provided	by	any
particular	language	or	framework.	This	chapter	is	a	compilation	of	utility	routines	that	we
have	gathered	during	our	time	with	C#	and	the	.NET	Framework.	The	types	of	things	we
share	in	this	chapter	are:

Power	management	events

Determining	the	path	for	various	locations	in	the	operating	system

Interacting	with	services

Inspecting	the	Global	Assembly	Cache

Message	queuing

It	is	a	grab	bag	of	code	that	can	help	to	solve	a	specific	need	while	you	are	working	on	a
larger	set	of	functionality	in	your	application.

13.1	Dealing	with	Operating	System	Shutdown,	Power
Management,	or	User	Session	Changes

Problem
You	want	to	be	notified	whenever	the	operating	system	or	a	user	has	initiated	an	action
that	requires	your	application	to	shut	down	or	be	inactive	(user	logoff,	remote	session
disconnect,	system	shutdown,	hibernate/restore,	etc.).	This	notification	will	allow	you	to
have	your	application	respond	gracefully	to	the	changes.

Solution
Use	the	Microsoft.Win32.SystemEvents	class	to	get	notification	of	operating	system,
user	session	change,	and	power	management	events.	The	RegisterForSystemEvents
method	shown	next	hooks	up	the	five	event	handlers	necessary	to	capture	these	events	and
should	be	placed	in	the	initialization	section	for	your	code:

public	static	void	RegisterForSystemEvents()

{

				//	always	get	the	final	notification	when	the	event	thread	is	shutting	down

				//	so	we	can	unregister

				SystemEvents.EventsThreadShutdown	+=

								new	EventHandler(OnEventsThreadShutdown);

				SystemEvents.PowerModeChanged	+=

								new	PowerModeChangedEventHandler(OnPowerModeChanged);

				SystemEvents.SessionSwitch	+=

								new	SessionSwitchEventHandler(OnSessionSwitch);

				SystemEvents.SessionEnding	+=

								new	SessionEndingEventHandler(OnSessionEnding);

				SystemEvents.SessionEnded	+=

								new	SessionEndedEventHandler(OnSessionEnded);

}

The	EventsThreadShutdown	event	notifies	you	of	when	the	thread	that	is	distributing	the
events	from	the	SystemEvents	class	is	shutting	down	so	that	you	can	unregister	the	events
on	the	SystemEvents	class	if	you	have	not	already	done	so.	The	PowerModeChanged	event
triggers	when	the	user	suspends	or	resumes	the	system	from	a	suspended	state.	The
SessionSwitch	event	is	triggered	by	a	change	in	the	logged-on	user.	The	SessionEnding
event	is	triggered	when	the	user	is	trying	to	log	off	or	shut	down	the	system,	and	the
SessionEnded	event	is	triggered	when	the	user	is	actually	logging	off	or	shutting	down	the
system.

You	can	unregister	the	events	using	the	UnregisterFromSystemEvents	method.
UnregisterFromSystemEvents	should	be	called	from	the	termination	code	of	your
Windows	Form,	user	control,	or	any	other	class	that	may	come	and	go,	as	well	as	from	one
other	area	shown	later	in	the	recipe:

private	static	void	UnregisterFromSystemEvents()

{

				SystemEvents.EventsThreadShutdown	-=

								new	EventHandler(OnEventsThreadShutdown);

				SystemEvents.PowerModeChanged	-=

								new	PowerModeChangedEventHandler(OnPowerModeChanged);

				SystemEvents.SessionSwitch	-=

								new	SessionSwitchEventHandler(OnSessionSwitch);

				SystemEvents.SessionEnding	-=

								new	SessionEndingEventHandler(OnSessionEnding);

				SystemEvents.SessionEnded	-=

								new	SessionEndedEventHandler(OnSessionEnded);

}

NOTE
Since	the	events	exposed	by	SystemEvents	are	static,	if	you	are	using	them	in	a	section	of	code	that	could
be	invoked	multiple	times	(secondary	Windows	Form,	user	control,	monitoring	class,	etc.),	you	must
unregister	your	handlers,	or	you	will	cause	memory	leaks	in	the	application.

The	SystemEvents	handler	methods	are	the	individual	event	handlers	for	each	event	that
has	been	subscribed	to	in	RegisterForSystemEvents.	The	first	handler	to	cover	is	the
OnEventsThreadShutdown	handler.	It	is	essential	that	your	handlers	are	unregistered	if	this
event	fires,	as	the	notification	thread	for	the	SystemEvents	class	is	going	away,	and	the
class	may	be	gone	before	your	application	is.	If	you	haven’t	unregistered	before	that	point,
you	will	cause	memory	leaks,	so	add	a	call	to	UnregisterFromSystemEvents	into	this
handler	as	shown	here:

private	static	void	OnEventsThreadShutdown(object	sender,	EventArgs	e)

{

				Debug.WriteLine(

								"System	event	thread	is	shutting	down,	no	more	notifications.");

				//	Unregister	all	our	events	as	the	notification	thread	is	going	away

				UnregisterFromSystemEvents();

}

The	next	handler	to	explore	is	the	OnPowerModeChanged	method.	This	handler	can	report
the	type	of	power	management	event	through	the	Mode	property	of	the
PowerModeEventChangedArgs	parameter.	The	Mode	property	has	the	PowerMode
enumeration	type	and	specifies	the	event	type	through	the	enumeration	value	contained
therein:

private	static	void	OnPowerModeChanged(object	sender,	

				PowerModeChangedEventArgs	e)

{

				//	power	mode	is	changing

				switch	(e.Mode)

				{

								case	PowerModes.Resume:

												Debug.WriteLine("PowerMode:	OS	is	resuming	from	suspended	state");

												break;

								case	PowerModes.StatusChange:

												Debug.WriteLine(

																"PowerMode:	There	was	a	change	relating	to	the	power"	+

																"	supply	(weak	battery,	unplug,	etc..)");

												break;

								case	PowerModes.Suspend:

												Debug.WriteLine("PowerMode:	OS	is	about	to	be	suspended");

												break;

				}

}

The	next	three	handlers	all	deal	with	operating	system	session	states.	They	are
OnSessionSwitch,	OnSessionEnding,	and	OnSessionEnded.	Handling	all	three	of	these
events	covers	all	of	the	operating	system	session	state	transitions	that	your	application
may	need	to	worry	about.	In	OnSessionEnding,	there	is	a	SessionEndingEventArgs
parameter,	which	has	a	Cancel	member.	This	Cancel	member	allows	you	to	request	that
the	session	not	end	if	it	is	set	to	false.	Code	for	the	three	handlers	is	shown	in
Example	13-1.

Example	13-1.	OnSessionSwitch,	OnSessionEnding,	and	OnSessionEnded	handlers
private	static	void	OnSessionSwitch(object	sender,	SessionSwitchEventArgs	e)

{

				//	check	reason

				switch	(e.Reason)

				{

								case	SessionSwitchReason.ConsoleConnect:

												Debug.WriteLine("Session	connected	from	the	console");

												break;

								case	SessionSwitchReason.ConsoleDisconnect:

												Debug.WriteLine("Session	disconnected	from	the	console");

												break;

								case	SessionSwitchReason.RemoteConnect:

												Debug.WriteLine("Remote	session	connected");

												break;

								case	SessionSwitchReason.RemoteDisconnect:

												Debug.WriteLine("Remote	session	disconnected");

												break;

								case	SessionSwitchReason.SessionLock:

												Debug.WriteLine("Session	has	been	locked");

												break;

								case	SessionSwitchReason.SessionLogoff:

												Debug.WriteLine("User	was	logged	off	from	a	session");

												break;

								case	SessionSwitchReason.SessionLogon:

												Debug.WriteLine("User	has	logged	on	to	a	session");

												break;

								case	SessionSwitchReason.SessionRemoteControl:

												Debug.WriteLine("Session	changed	to	or	from	remote	status");

												break;

								case	SessionSwitchReason.SessionUnlock:

												Debug.WriteLine("Session	has	been	unlocked");

												break;

				}

}

private	static	void	OnSessionEnding(object	sender,	SessionEndingEventArgs	e)

{

				//	true	to	cancel	the	user	request	to	end	the	session,	false	otherwise

				e.Cancel	=	false;

				//	check	reason

				switch(e.Reason)

				{

								case	SessionEndReasons.Logoff:

												Debug.WriteLine("Session	ending	as	the	user	is	logging	off");

												break;

								case	SessionEndReasons.SystemShutdown:

												Debug.WriteLine("Session	ending	as	the	OS	is	shutting	down");

												break;

				}

}

private	static	void	OnSessionEnded(object	sender,	SessionEndedEventArgs	e)

{

				switch	(e.Reason)

				{

								case	SessionEndReasons.Logoff:

												Debug.WriteLine("Session	ended	as	the	user	is	logging	off");

												break;

								case	SessionEndReasons.SystemShutdown:

												Debug.WriteLine("Session	ended	as	the	OS	is	shutting	down");

												break;

				}

}

Discussion
The	.NET	Framework	provides	many	opportunities	to	get	feedback	from	the	system	when
there	are	changes	due	to	user	or	system	interactions.	The	SystemEvents	class	exposes
more	events	than	just	the	ones	used	in	this	recipe.	For	a	full	listing,	see	Table	13-1.

Table	13-1.	The	SystemEvents	events

Value Description
DisplaySettingsChanged User	changed	display	settings.
DisplaySettingsChanging Display	settings	are	changing.
EventsThreadShutdown Thread	listening	for	system	events	is	terminating.
InstalledFontsChanged User	added	or	removed	fonts.
PaletteChanged User	switched	to	an	application	with	a	different	palette.
PowerModeChanged User	suspended	or	resumed	the	system.
SessionEnded User	shut	down	the	system	or	logged	off.
SessionEnding User	is	attempting	to	shut	down	the	system	or	log	off.
SessionSwitch The	currently	logged-in	user	changed.
TimeChanged User	changed	system	time.
TimerElapsed A	Windows	timer	interval	expired.
UserPreferenceChanged User	changed	a	preference	in	the	system.
UserPreferenceChanging User	is	trying	to	change	a	preference	in	the	system.

NOTE
Keep	in	mind	that	these	are	system	events.	Therefore,	the	amount	of	work	done	in	the	handlers	should	be
kept	to	a	minimum,	so	the	system	can	move	on	to	the	next	task.

The	notifications	from	SystemEvents	come	on	a	dedicated	thread	for	raising	these	events.
In	a	UI	application,	you	will	need	to	get	back	onto	the	correct	user	interface	thread	before
updating	a	UI	with	any	of	this	information,	using	one	of	the	various	methods	for	doing	so
(Control.BeginInvoke,	Control.Invoke,	or	BackgroundWorker).

Note	that	.NET	Core	(the	open	source	version	of	.NET	for	cross-platform	coding)	does	not
include	a	Microsoft.Win32.SystemEvents	class	at	the	time	of	this	writing,	so	this	recipe
will	not	work	on	.NET	Core	(until	someone	adds	it!).

See	Also
The	“SystemEvents	Class,”	“PowerModeChangedEventArgs	Class,”
“SessionEndedEventArgs	Class,”	“SessionEndingEventArgs	Class,”	and
“SessionSwitchEventArgs	Class”	topics	in	the	MSDN	documentation.

13.2	Controlling	a	Service

Problem
You	need	to	programmatically	manipulate	a	service	that	your	application	interacts	with.

Solution
Use	the	System.ServiceProcess.ServiceController	class	to	control	the	service.
ServiceController	allows	you	to	interact	with	an	existing	service	and	to	read	and	change
its	properties.	In	the	example,	it	will	be	used	to	manipulate	the	ASP.NET	State	Service.
The	name,	the	service	type,	and	the	display	name	are	easily	available	from	the
ServiceName,	ServiceType,	and	DisplayName	properties:

ServiceController	scStateService	=	new	ServiceController("COM+	Event	System");

Console.WriteLine($"Service	Type:	{scStateService.ServiceType.ToString()}");

Console.WriteLine($"Service	Name:	{scStateService.ServiceName}");

Console.WriteLine($"Display	Name:	{scStateService.DisplayName}");

The	ServiceType	enumeration	has	a	number	of	values,	as	shown	in	Table	13-2.

Table	13-2.	The	ServiceType	enumeration	values

Value Description
Adapter Service	that	serves	a	hardware	device
FileSystemDriver Driver	for	the	filesystem	(kernel	level)
InteractiveProcess Service	that	communicates	with	the	desktop
KernelDriver Low-level	hardware	device	driver
RecognizerDriver Driver	for	identifying	filesystems	on	startup
Win32OwnProcess Win32	program	that	runs	as	a	service	in	its	own	process
Win32ShareProcess Win32	program	that	runs	as	a	service	in	a	shared	process	such	as	SvcHost

One	useful	task	is	to	determine	a	service’s	dependents.	The	services	that	depend	on	the
current	service	are	accessed	through	the	DependentServices	property,	an	array	of
ServiceController	instances	(one	for	each	dependent	service):

foreach	(ServiceController	sc	in	scStateService.DependentServices)

				Console.WriteLine($"{scStateService.DisplayName}	is	depended	on	by:	"	+

																												$"	{sc.DisplayName}");

By	contrast,	the	ServicesDependedOn	array	contains	ServiceController	instances	for
each	of	the	services	the	current	service	depends	on:

foreach	(ServiceController	sc	in	scStateService.ServicesDependedOn)

				Console.WriteLine(

								$"{scStateService.DisplayName}	depends	on:	{sc.DisplayName}");

One	of	the	most	important	things	about	services	is	what	state	they	are	in.	A	service	doesn’t
do	much	good	if	it	is	supposed	to	be	running	and	it	isn’t	—	or	worse	yet,	if	it	is	supposed
to	be	disabled	(perhaps	as	a	security	risk)	and	isn’t.	To	find	out	the	current	status	of	the
service,	check	the	Status	property.	For	this	example,	the	original	state	of	the	service	will
be	saved,	so	it	can	be	restored	later	in	the	originalState	variable:

Console.WriteLine($"Status:	{scStateService.Status}");

//	save	original	state

ServiceControllerStatus	originalState	=	scStateService.Status;

Now	that	we	have	set	up	the	proper	access,	we	can	start	to	work	with	the	service	methods.
If	a	service	is	stopped,	it	can	be	started	with	the	Start	method.	First,	check	if	the	service
is	stopped,	and	then,	once	Start	has	been	called	on	the	ServiceController	instance,	call
the	WaitForStatus	method	to	make	sure	that	the	service	started.	WaitForStatus	can	take
a	timeout	value	so	that	the	application	is	not	waiting	forever	for	the	service	to	start	in	the
case	of	a	problem:

TimeSpan	serviceTimeout	=	TimeSpan.FromSeconds(60);

//	if	it	is	stopped,	start	it

if	(scStateService.Status	==	ServiceControllerStatus.Stopped)

{

				scStateService.Start();

				//	wait	up	to	60	seconds	for	start

				scStateService.WaitForStatus(ServiceControllerStatus.Running,	

								serviceTimeout);

}

Console.WriteLine($"Status:	{scStateService.Status}");

Services	can	also	be	paused.	If	the	service	is	paused,	the	application	needs	to	determine	if
it	can	be	continued	by	checking	the	CanPauseAndContinue	property.	If	so,	the	Continue
method	will	get	the	service	going	again,	and	the	WaitForStatus	method	should	be	called
to	wait	until	it	does:

//	if	it	is	paused,	continue

if	(scStateService.Status	==	ServiceControllerStatus.Paused)

{

				if	(scStateService.CanPauseAndContinue)

				{

								scStateService.Continue();

								//	wait	up	to	60	seconds	for	start

								scStateService.WaitForStatus(ServiceControllerStatus.Running,	

												serviceTimeout);

				}

}

Console.WriteLine($"Status:	{scStateService.Status}");

//	Should	be	running	at	this	point.

To	determine	if	a	service	can	be	stopped,	you	use	the	CanStop	property.	If	it	can	be
stopped,	then	stopping	it	is	a	matter	of	calling	the	Stop	method	followed	by
WaitForStatus:

//	can	we	stop	it?

if	(scStateService.CanStop)

{

				scStateService.Stop();

				//	wait	up	to	60	seconds	for	stop

				scStateService.WaitForStatus(ServiceControllerStatus.Stopped,	

								serviceTimeout);

}

Console.WriteLine($"Status:	{scStateService.Status}");

Even	though	CanStop	could	have	returned	true,	if	we	are	not	running	under	an

administrative	context,	we	would	have	gotten	this	exception	when	trying	to	stop	the
service:

A	first	chance	exception	of	type	'System.InvalidOperationException'	occurred	in

System.ServiceProcess.dll

Additional	information:	Cannot	open	EventSystem	service	on	computer	'.'.

See	the	Discussion	section	for	how	to	set	up	proper	security	access	for	the	code.

Now	it	is	time	to	set	the	service	back	to	how	you	found	it.	The	originalState	variable
has	the	original	state,	and	the	switch	statement	holds	actions	for	taking	the	service	from
the	current	stopped	state	to	its	original	state:

//	set	it	back	to	the	original	state

switch	(originalState)

{

				case	ServiceControllerStatus.Stopped:

								if	(scStateService.CanStop)

												scStateService.Stop();

								break;

				case	ServiceControllerStatus.Running:

								scStateService.Start();

								//	wait	up	to	60	seconds	for	start

								scStateService.WaitForStatus(ServiceControllerStatus.Running,	

												serviceTimeout);

								break;

				case	ServiceControllerStatus.Paused:

								//	if	it	was	paused	and	is	stopped,	need	to	restart	so	we	can	pause

								if	(scStateService.Status	==	ServiceControllerStatus.Stopped)

								{

												scStateService.Start();

												//	wait	up	to	60	seconds	for	start

												scStateService.WaitForStatus(ServiceControllerStatus.Running,

																serviceTimeout);

								}

								//	now	pause

								if	(scStateService.CanPauseAndContinue)

								{

												scStateService.Pause();

												//	wait	up	to	60	seconds	for	paused

												scStateService.WaitForStatus(ServiceControllerStatus.Paused,

																serviceTimeout);

								}

								break;

}

To	be	sure	that	the	Status	property	is	correct	on	the	service,	the	application	should	call
Refresh	to	update	it	before	testing	the	value	of	the	Status	property.	Once	the	application
is	done	with	the	service,	call	the	Close	method:

scStateService.Refresh();

Console.WriteLine($"Status:	{scStateService.Status.ToString()}");

//	close	it

scStateService.Close();

Discussion
Services	run	many	of	the	operating	system	functions	today.	They	usually	run	under	a
system	account	(LocalSystem,	NetworkService,	LocalService)	or	a	specific	user	account
that	has	been	granted	specific	permissions	and	rights.	If	your	application	uses	a	service,
this	is	a	good	way	to	determine	if	everything	for	the	service	to	run	is	set	up	and	configured
properly	before	your	application	attempts	to	use	it.	Not	all	applications	depend	on	services
directly.	But	if	your	application	does,	or	you	have	written	a	service	as	part	of	your
application,	it	can	be	handy	to	have	an	easy	way	to	check	the	status	of	your	service	and
possibly	correct	the	situation.

When	you	are	manipulating	services,	the	question	of	access	comes	into	play.	While	in
earlier	Microsoft	operating	systems	(pre–Windows	7)	you	could	call	the
ServiceController	APIs	without	any	special	privileges,	with	the	introduction	of	User
Account	Control	you	now	have	to	be	in	an	administrative	context	to	access	methods	that
affect	the	service	operation.	You	can	still	inspect	the	properties	of	the	service	without	this
level	of	access,	but	if	you	want	to	Start,	Stop,	and	so	on,	you	need	to	have	elevated
privileges.

To	accomplish	this	in	code,	you	would	add	an	app.manifest	file	to	your	application	by
right-clicking	the	project	and	selecting	Add*New	Item	and	selecting	the	Application
Manifest	File,	as	shown	in	Figure	13-1.

Figure	13-1.	The	Application	Manifest	File	creation	window

In	the	asmv1:assembly\trustinfo\security\requestedPrivileges	section	of	the	file	the	default
requested	execution	level	is	to	run	as	the	person	invoking	the	code:

<requestedExecutionLevel	level="asInvoker"	uiAccess="false"	/>

To	allow	access	to	the	service	methods,	we	will	change	this	so	our	code	requires	an
administrative	context	by	setting	the	level	attribute	to	requireAdministrator:

<!--	Necessary	for	service	interaction	in	Recipe	13.2	Controlling	a	Service	-->

<requestedExecutionLevel	level="requireAdministrator"	uiAccess="false"/>

This	will	ensure	that	when	the	code	is	run,	it	requires	the	user	to	have	enough	rights	to
perform	the	actions	we	are	requesting.

See	Also
The	“ServiceController	Class”	and	“ServiceControllerStatus	Enumeration”	topics	in	the
MSDN	documentation.

13.3	List	What	Processes	an	Assembly	Is	Loaded	In

Problem
You	want	to	know	what	current	processes	have	a	given	assembly	loaded.

Solution
Use	the	GetProcessesAssemblyIsLoadedIn	method	that	we’ve	created	for	this	purpose	to
return	a	list	of	processes	that	contain	a	given	assembly.
GetProcessesAssemblyIsLoadedIn	takes	the	filename	of	the	assembly	to	look	for	(such
as	mscoree.dll)	and	then	gets	a	list	of	the	currently	running	processes	on	the	machine	by
calling	Process.GetProcesses.	It	then	searches	the	processes	to	see	if	the	assembly	is
loaded	into	any	of	them.	When	found	in	a	process,	that	Process	object	is	projected	into	an
enumerable	set	of	Process	objects.	The	iterator	for	the	set	of	processes	found	is	returned
from	the	query:

public	static	IEnumerable<Process>	GetProcessesAssemblyIsLoadedIn(

				string	assemblyFileName)

{

				//	System	and	Idle	are	not	actually	processes,	so	there	are	no	modules

				//	associated	and	we	skip	them.

				var	processes	=	from	process	in	Process.GetProcesses()

																				where	process.ProcessName	!=	"System"	&&

																												process.ProcessName	!=	"Idle"

																				from	ProcessModule	processModule	in	process.SafeGetModules()

																				where	processModule.ModuleName.Equals(assemblyFileName,

																									StringComparison.OrdinalIgnoreCase)

																				select	process;

				return	processes;

}

The	Process.GetSafeModules	extension	method	gets	a	list	of	the	modules	that	the	caller
is	authorized	to	see	for	the	process.	If	we	just	accessed	the	Modules	property	directly,	we
would	get	a	series	of	different	access	errors	depending	on	the	caller’s	security	context:

public	static	ProcessModuleCollection	SafeGetModules(this	Process	process)

{

				List<ProcessModule>	listModules	=	new	List<ProcessModule>();

				ProcessModuleCollection	modules	=

													new	ProcessModuleCollection(listModules.ToArray());

				try

				{

								modules	=	process.Modules;

				}

				catch	(InvalidOperationException)	{	}

				catch	(PlatformNotSupportedException)	{	}

				catch	(NotSupportedException)	{	}

				catch	(Win32Exception	wex)

				{

								Console.WriteLine($"Couldn't	get	modules	for	{process.ProcessName}:	"	+

																												$"{wex.Message}");

				}

				//	return	either	the	modules	or	an	empty	collection

				return	modules;

}

Discussion
In	some	circumstances,	such	as	when	you	are	uninstalling	software	or	debugging	version
conflicts,	it	is	beneficial	to	know	if	an	assembly	is	loaded	into	more	than	one	process.	By
quickly	getting	a	list	of	the	Process	objects	that	the	assembly	is	loaded	in,	you	can	narrow
the	scope	of	your	investigation.

The	following	code	uses	this	routine	to	look	for	.NET	4	processes:

string	searchAssm	=	"mscoree.dll";

var	processes	=	GetProcessesAssemblyIsLoadedIn(searchAssm);

foreach	(Process	p	in	processes)

				Console.WriteLine($"Found	{searchAssm}	in	{p.MainModule.ModuleName}");

When	you’re	running	the	GetProcessesAssemblyIsLoadedIn	method,	the	user’s	security
context	plays	a	large	role	in	how	much	the	code	can	discover.	If	the	caller	is	a	normal
Windows	user	not	running	in	the	administrative	context	(which	must	be	entered	into
explicitly),	you	would	see	a	number	of	processes	reported	that	cannot	have	their	modules
examined,	as	shown	in	Example	13-2.

Example	13-2.	Normal	user	security	context	output	example
Couldn't	get	modules	for	dasHost:	Access	is	denied

Couldn't	get	modules	for	WUDFHost:	Access	is	denied

Couldn't	get	modules	for	StandardCollector.Service:	Access	is	denied

Couldn't	get	modules	for	winlogon:	Access	is	denied

Couldn't	get	modules	for	svchost:	Access	is	denied

Couldn't	get	modules	for	FcsSas:	Access	is	denied

Couldn't	get	modules	for	VBCSCompiler:	Access	is	denied

Couldn't	get	modules	for	svchost:	Access	is	denied

Couldn't	get	modules	for	coherence:	Access	is	denied

Couldn't	get	modules	for	coherence:	Access	is	denied

Couldn't	get	modules	for	svchost:	Access	is	denied

Couldn't	get	modules	for	MOMService:	Access	is	denied

Couldn't	get	modules	for	svchost:	Access	is	denied

Couldn't	get	modules	for	csrss:	Access	is	denied

Couldn't	get	modules	for	svchost:	Access	is	denied

Couldn't	get	modules	for	vmms:	Access	is	denied

Couldn't	get	modules	for	dwm:	Access	is	denied

Found	mscoree.dll	in	Microsoft.VsHub.Server.HttpHostx64.exe

Couldn't	get	modules	for	wininit:	Access	is	denied

Couldn't	get	modules	for	svchost:	Access	is	denied

Couldn't	get	modules	for	prl_tools:	Access	is	denied

Couldn't	get	modules	for	coherence:	Access	is	denied

Couldn't	get	modules	for	MpCmdRun:	Access	is	denied

Couldn't	get	modules	for	svchost:	Access	is	denied

Couldn't	get	modules	for	svchost:	Access	is	denied

Couldn't	get	modules	for	audiodg:	Access	is	denied

Couldn't	get	modules	for	mqsvc:	Access	is	denied

Couldn't	get	modules	for	WmiApSrv:	Access	is	denied

Couldn't	get	modules	for	conhost:	Access	is	denied

Couldn't	get	modules	for	sqlwriter:	Access	is	denied

Couldn't	get	modules	for	svchost:	Access	is	denied

Couldn't	get	modules	for	svchost:	Access	is	denied

Found	mscoree.dll	in	CSharpRecipes.exe

Couldn't	get	modules	for	WmiPrvSE:	Access	is	denied

Couldn't	get	modules	for	spoolsv:	Access	is	denied

Couldn't	get	modules	for	svchost:	Access	is	denied

Couldn't	get	modules	for	WmiPrvSE:	Access	is	denied

Couldn't	get	modules	for	svchost:	Access	is	denied

Found	mscoree.dll	in	msvsmon.exe

Couldn't	get	modules	for	csrss:	Access	is	denied

Couldn't	get	modules	for	dllhost:	Access	is	denied

Couldn't	get	modules	for	svchost:	Access	is	denied

Couldn't	get	modules	for	SearchIndexer:	Access	is	denied

Couldn't	get	modules	for	WmiPrvSE:	Access	is	denied

Found	mscoree.dll	in	VBCSCompiler.exe

Couldn't	get	modules	for	svchost:	Access	is	denied

Couldn't	get	modules	for	OSPPSVC:	Access	is	denied

Couldn't	get	modules	for	WmiPrvSE:	Access	is	denied

Couldn't	get	modules	for	smss:	Access	is	denied

Couldn't	get	modules	for	IpOverUsbSvc:	Access	is	denied

Couldn't	get	modules	for	lsass:	Access	is	denied

Couldn't	get	modules	for	services:	Access	is	denied

Couldn't	get	modules	for	MsMpEng:	Access	is	denied

Couldn't	get	modules	for	msdtc:	Access	is	denied

Couldn't	get	modules	for	prl_tools_service:	Access	is	denied

Couldn't	get	modules	for	inetinfo:	Access	is	denied

Couldn't	get	modules	for	sppsvc:	Access	is	denied

When	we	run	the	same	call	to	the	GetProcessesAssemblyIsLoadedIn	method	under	an
administrative	context,	we	get	output	similar	to	Example	13-3.

Example	13-3.	Administrative	user	security	context	output	example
Found	mscoree.dll	in	VBCSCompiler.exe

Found	mscoree.dll	in	Microsoft.VsHub.Server.HttpHostx64.exe

Found	mscoree.dll	in	msvsmon.exe

Found	mscoree.dll	in	VBCSCompiler.exe

Couldn't	get	modules	for	audiodg:	Access	is	denied

Found	mscoree.dll	in	ElevatedPrivilegeActions.vshost.exe

Couldn't	get	modules	for	sppsvc:	Access	is	denied

Since	this	is	a	diagnostic	function,	you	will	need	FullTrust	security	access	to	use	this
method.

Note	that	the	query	skips	inspection	for	the	System	and	Idle	processes:

var	processes	=	from	process	in	Process.GetProcesses()

																where	process.ProcessName	!=	"System"	&&

																								process.ProcessName	!=	"Idle"

																from	ProcessModule	processModule	in	process.SafeGetModules()

																where	processModule.ModuleName.Equals(assemblyFileName,

																					StringComparison.OrdinalIgnoreCase)

																select	process;

The	Modules	collection	can’t	be	used	to	examine	these	two	processes,	so	it	throws	a
Win32Exception.	There	are	two	other	processes	you	might	see	access	denied	for:	audiodg
and	sppsvc:

audiodg	is	a	DRM-protected	process	used	to	host	audio	drivers	so	that	they	can	be	run
in	login	sessions	isolated	from	locally	logged-in	users.

sppsvc	is	a	Microsoft	software	protection	platform	service	that	can	be	used	to	prevent
the	use	of	software	without	a	license.

Since	both	of	those	services	are	sensitive	in	the	operating	system,	you	can	see	why	they
would	not	be	accessible	through	Process	enumeration.

See	Also
The	“Process	Class,”	“ProcessModule	Class,”	and	“GetProcesses	Method”	topics	in	the
MSDN	documentation.

13.4	Using	Message	Queues	on	a	Local	Workstation

Problem
You	need	a	way	to	disconnect	two	components	of	your	application	(such	as	a	web	service
endpoint	and	the	processing	logic)	such	that	the	first	component	only	has	to	worry	about
formatting	the	instructions.	The	bulk	of	the	processing	can	then	occur	in	the	second
component.

Solution
Use	message	queues	to	separate	this	work,	and	use	the	MQWorker	class	shown	here	in	both
the	first	and	second	components	to	write	and	read	messages	to	and	from	the	associated
message	queue.

NOTE
Message	queues	provide	an	asynchronous	communications	protocol	between	parties,	meaning	that	the
sender	and	receiver	of	the	message	do	not	need	to	interact	with	the	message	queue	at	the	same	time.
Messages	placed	onto	the	queue	are	stored	until	the	recipient	retrieves	them.	They	allow	you	to	ensure
messages	don’t	get	lost,	keep	the	work	segmented,	handle	inconsistent	loads,	and	scale	your	application	by
having	multiple	workers	that	can	read	from	a	queue.

MQWorker	uses	the	local	message-queuing	services	to	store	and	retrieve	messages.	The
queue	pathname	is	supplied	in	the	constructor,	and	the	existence	of	the	queue	is	checked	in
the	SetUpQueue	method:

class	MQWorker	:	IDisposable

{

				private	bool	_disposed;

				private	string	_mqPathName;

				MessageQueue	_queue;

				public	MQWorker(string	queuePathName)

				{

								if	(string.IsNullOrEmpty(queuePathName))

												throw	new	ArgumentNullException(nameof(queuePathName));

								_mqPathName	=	queuePathName;

								SetUpQueue();

				}

SetUpQueue	creates	a	message	queue	of	the	supplied	name	using	the	MessageQueue	class	if
none	exists.	It	accounts	for	the	scenario	in	which	the	message-queuing	services	are
running	on	a	workstation	computer.	In	that	situation,	it	makes	the	queue	private,	as	that	is
the	only	type	of	queue	allowed	on	a	workstation:

private	void	SetUpQueue()

{

				//	See	if	the	queue	exists,	create	it	if	not

				if	(!MessageQueue.Exists(_mqPathName))

				{

								try

								{

												_queue	=	MessageQueue.Create(_mqPathName);

								}

								catch	(MessageQueueException	mqex)

								{

												//	see	if	we	are	running	on	a	workgroup	computer

												if	(mqex.MessageQueueErrorCode	==

																			MessageQueueErrorCode.UnsupportedOperation)

												{

																string	origPath	=	_mqPathName;

																//	must	be	a	private	queue	in	workstation	mode

																int	index	=	_mqPathName.ToLowerInvariant().

																																IndexOf("private$",	

																																				StringComparison.OrdinalIgnoreCase);

																if	(index	==	-1)

																{

																				//	get	the	first	\

																				index	=	_mqPathName.IndexOf(@"\",

																																StringComparison.OrdinalIgnoreCase);

																				//	insert	private$\	after	server	entry

																				_mqPathName	=	_mqPathName.Insert(index	+	1,	@"private$\");

																				//	try	try	again

																				try

																				{

																								if	(!MessageQueue.Exists(_mqPathName))

																												_queue	=	MessageQueue.Create(_mqPathName);

																								else

																												_queue	=	new	MessageQueue(_mqPathName);

																				}

																				catch	(Exception)

																				{

																								//	set	original	as	inner	exception

																								throw	new	Exception(

																												$"Failed	to	create	message	queue	with	{origPath}"	+

																												$"	or	{_mqPathName}",	mqex);

																				}

																}

												}

								}

				}

				else

				{

								_queue	=	new	MessageQueue(_mqPathName);

				}

}

The	SendMessage	method	sends	a	message	to	the	queue	to	set	up	in	the	constructor.	The
body	of	the	message	is	supplied	in	the	body	parameter,	and	then	an	instance	of
System.Messaging.Message	is	created	and	populated.	The	BinaryMessageFormatter	is
used	to	format	the	message,	as	it	enables	larger	volumes	of	messages	to	be	sent	with	fewer
resources	than	does	the	default	XmlMessageFormatter.	To	make	messages	persistent	(so
that	they	stick	around	until	they	are	processed	and	are	not	lost	if	the	machine	loses	power),
it	sets	the	Recoverable	property	to	true.	Finally,	the	Body	is	set,	and	the	message	is	sent:

public	void	SendMessage(string	label,	string	body)

{

				Message	msg	=	new	Message();

				//	label	our	message

				msg.Label	=	label;

				//	override	the	default	XML	formatting	with	binary

				//	as	it	is	faster	(at	the	expense	of	legibility	while	debugging)

				msg.Formatter	=	new	BinaryMessageFormatter();

				//	make	this	message	persist	(causes	message	to	be	written

				//	to	disk)

				msg.Recoverable	=	true;

				msg.Body	=	body;

				_queue?.Send(msg);

}

The	ReadMessage	method	reads	messages	from	the	queue	set	up	in	the	constructor	by
creating	a	Message	object	and	calling	its	Receive	method.	The	message	formatter	is	set	to
the	BinaryMessageFormatter	for	the	Message,	since	that	is	how	we	write	to	the	queue.
Finally,	the	body	of	the	message	is	returned	from	the	method:

				public	string	ReadMessage()

				{

								Message	msg	=	null;

								msg	=	_queue.Receive();

								msg.Formatter	=	new	BinaryMessageFormatter();

								return	(string)msg.Body;

				}

				#region	IDisposable	Members

				public	void	Dispose()

				{

								Dispose(true);

								GC.SuppressFinalize(this);

				}

				private	void	Dispose(bool	disposing)

				{

								if	(!this._disposed)

								{

												if	(disposing)

																_queue.Dispose();

												_disposed	=	true;

								}

				}

				#endregion

}

To	show	how	the	MQWorker	class	is	used,	the	following	example	creates	an	MQWorker.	It
then	sends	a	message	(a	small	blob	of	XML)	using	SendMessage	and	retrieves	it	using
ReadMessage:

//	NOTE:	Message	Queue	services	must	be	set	up	for	this	to	work.

//	This	can	be	added	in	Add/Remove	Windows	Components.

using	(MQWorker	mqw	=	new	MQWorker(@".\MQWorkerQ"))	{

				string	xml	=	"<MyXml><InnerXml	location=\"inside\"/></MyXml>";

				Console.WriteLine("Sending	message	to	message	queue:	"	+	xml);

				mqw.SendMessage("Label	for	message",	xml);

				string	retXml	=	mqw.ReadMessage();

				Console.WriteLine("Read	message	from	message	queue:	"	+	retXml);

}

Discussion
Message	queues	are	very	useful	when	you	are	attempting	to	distribute	the	processing	load
for	scalability	purposes.	Without	question,	using	a	message	queue	adds	overhead	to	the
processing	because	the	messages	must	travel	through	the	infrastructure	of	MSMQ.	One
benefit,	however,	is	that	MSMQ	allows	your	application	to	spread	out	across	multiple
machines,	so	there	can	be	a	net	gain	in	processing.	Another	advantage	is	that	message
queuing	supports	reliable	asynchronous	handling	of	the	messages	so	that	the	sending	side
can	be	confident	that	the	receiving	side	will	get	the	message	without	the	sender	having	to
wait	for	confirmation.	The	message	queue	services	are	not	installed	by	default,	but	can	be
installed	through	the	Add/Remove	Windows	Components	applet	in	Control	Panel.

Using	a	message	queue	to	buffer	your	processing	logic	from	high	volumes	of	requests
(such	as	in	the	web	service	scenario	presented	earlier)	can	lead	to	more	stability	and
ultimately	produce	more	throughput	for	your	application	by	using	multiple	reader
processes	on	multiple	machines.

See	Also
The	“Message	Class”	and	“MessageQueue	Class”	topics	in	the	MSDN	documentation.

13.5	Capturing	Output	from	the	Standard	Output	Stream

Problem
You	want	to	capture	output	that	is	going	to	the	standard	output	stream	from	within	your
C#	program.

Solution
Use	the	Console.SetOut	method	to	capture	and	release	the	standard	output	stream.
SetOut	sets	the	standard	output	stream	to	whatever	System.IO.TextWriter-based	stream
it	is	handed.	To	capture	the	output	to	a	file,	create	a	StreamWriter	to	write	to	it,	and	set
that	writer	using	SetOut.	We	use	Path.GetTempFileName	to	get	a	location	to	write	our	log
to	that	is	accessible	by	the	identity	calling	the	code.

Now	when	Console.WriteLine	is	called,	the	output	goes	to	the	StreamWriter,	not	to
stdout,	as	shown	here:

try

{

				Console.WriteLine("Stealing	standard	output!");

				string	logfile	=	Path.GetTempFileName();

				Console.WriteLine($"Logging	to:	{logfile}");

				using	(StreamWriter	writer	=	new	StreamWriter(logfile))

				{

								//	steal	stdout	for	our	own	purposes…

								Console.SetOut(writer);

								Console.WriteLine("Writing	to	the	console…	NOT!");

								for	(int	i	=	0;	i	<	10;	i++)

												Console.WriteLine(i);

				}

}

catch(IOException	e)

{

				Debug.WriteLine(e.ToString());

				return	;

}

To	restore	writing	to	the	standard	output	stream,	create	another	StreamWriter.	This	time,
call	the	Console.OpenStandardOutput	method	to	acquire	the	standard	output	stream	and
use	SetOut	to	set	it	once	again.	Now	calls	to	Console.WriteLine	appear	on	the	console
again:

//	Recover	the	standard	output	stream	so	that	a

//	completion	message	can	be	displayed.

StreamWriter	standardOutput	=	new	StreamWriter(Console.OpenStandardOutput());

standardOutput.AutoFlush	=	true;

Console.SetOut(standardOutput);

Console.WriteLine("Back	to	standard	output!");

The	console	output	from	this	code	looks	similar	to	this:

Stealing	standard	output!

Logging	to:	C:\Users\user\AppData\Local\Temp\tmpFE7C.tmp

Back	to	standard	output!

The	logfile	we	created	contains	the	following	after	the	code	is	executed:

Writing	to	the	console…	NOT!

0

1

2

3

4

5

6

7

8

9

Discussion
Redirecting	the	standard	output	stream	inside	of	the	program	may	seem	a	bit	antiquated.
But	consider	the	situation	when	you’re	using	another	class	that	writes	information	to	this
stream.	You	don’t	want	the	output	to	appear	in	your	application,	but	you	have	to	use	the
class.	This	could	also	be	useful	if	you	create	a	small	launcher	application	to	capture	output
from	a	console	application	or	if	you	are	using	a	third-party	assembly	that	insists	on
outputting	lots	of	verbose	messages	that	would	be	confusing	to	your	user.

See	Also
The	“Console.SetOut	Method,”	“Console.OpenStandardOutput	Method,”
“Path.GetTempFilePath	Method,”	and	“StreamWriter	Class”	topics	in	the	MSDN
documentation.

13.6	Capturing	Standard	Output	for	a	Process

Problem
You	need	to	be	able	to	capture	standard	output	for	a	process	you	are	launching.

Solution
Use	the	RedirectStandardOutput	property	of	the	Process.StartInfo	class	to	capture	the
output	from	the	process.	By	redirecting	the	standard	output	stream	of	the	process,	you	read
it	when	the	process	terminates.	UseShellExecute	is	a	property	on	the	ProcessInfo	class
that	tells	the	runtime	whether	or	not	to	use	the	Windows	shell	to	start	the	process.	By
default,	it	is	turned	on	(true)	and	the	shell	runs	the	program,	which	means	that	the	output
cannot	be	redirected.	UseShellExecute	needs	to	be	turned	off	(set	to	false)	so	the
redirection	can	occur.

In	this	example,	a	Process	object	for	cmd.exe	is	set	up	with	arguments	to	perform	a
directory	listing,	and	then	the	output	is	redirected.	A	logfile	is	created	to	hold	the	resulting
output,	and	the	Process.Start	method	is	called:

Process	application	=	new	Process();

//	run	the	command	shell

application.StartInfo.FileName	=	@"cmd.exe";

//	get	a	directory	listing	from	the	current	directory

application.StartInfo.Arguments	=	@"/Cdir	"	+	Environment.CurrentDirectory;

Console.WriteLine($"Running	cmd.exe	with	arguments:"	+

				$"{application.StartInfo.Arguments}");

//	redirect	standard	output	so	we	can	read	it

application.StartInfo.RedirectStandardOutput	=	true;

application.StartInfo.UseShellExecute	=	false;

//	Create	a	log	file	to	hold	the	results	in	the	current	EXE	directory

string	logfile	=	Path.GetTempFileName();

Console.WriteLine($"Logging	to:	{logfile}");

using	(StreamWriter	logger	=	new	StreamWriter(logfile))

{

				//	start	it	up

				application.Start();

Once	the	process	is	started,	the	StandardOutput	stream	can	be	accessed	and	a	reference	to
it	held.	Once	the	application	finishes,	the	code	then	reads	in	the	information	from	the
output	stream	that	was	written	while	the	application	ran	and	writes	it	to	the	logfile	that
was	set	up	previously.	Finally,	the	logfile	is	closed	and	then	the	Process	object	is	closed:

				application.WaitForExit();

				string	output	=	application.StandardOutput.ReadToEnd();

				logger.Write(output);

}

//	close	the	process	object

application.Close();

The	temporary	logfile	we	created	using	Path.GetTempPathFile	holds	information	similar
to	the	following	output:

Volume	in	drive	C	has	no	label.

Volume	Serial	Number	is	DDDD-FFFF

Directory	of	C:\CS60_Cookbook\CSCB6\CSharpRecipes\bin\Debug

04/11/2015		04:27	PM				<DIR>										.

04/11/2015		04:27	PM				<DIR>										..

02/05/2015		10:06	PM															724	BigSpenders.xml

02/05/2015		10:05	PM															719	Categories.xml

02/05/2015		04:04	PM												64,566	CSCBCover.bmp

12/31/2014		05:23	PM											489,269	CSharpCookbook.zip

04/11/2015		04:27	PM											495,616	CSharpRecipes.exe

04/11/2015		04:27	PM												31,154	CSharpRecipes.exe.CodeAnalysisLog.xml

02/05/2015		09:53	PM													3,075	CSharpRecipes.exe.config

04/11/2015		04:27	PM																	0	

CSharpRecipes.exe.lastcodeanalysissucceeded

04/11/2015		04:27	PM											775,680	CSharpRecipes.pdb

02/05/2015		04:04	PM									5,190,856	EntityFramework.dll

02/05/2015		04:04	PM											620,232	EntityFramework.SqlServer.dll

02/05/2015		04:04	PM											154,645	EntityFramework.SqlServer.xml

02/05/2015		04:04	PM									3,645,119	EntityFramework.xml

03/09/2015		02:51	PM													6,569	IngredientList.txt

04/04/2015		09:55	AM											513,536	Newtonsoft.Json.dll

04/04/2015		09:55	AM											494,336	Newtonsoft.Json.xml

03/09/2015		02:51	PM									4,390,912	Northwind.mdf

04/06/2015		04:11	PM												51,712	NorthwindLinq2Sql.dll

04/06/2015		04:11	PM											128,512	NorthwindLinq2Sql.pdb

04/11/2015		01:18	PM											573,440	Northwind_log.ldf

03/09/2015		02:51	PM																80	RecipeChapters.txt

04/06/2015		04:11	PM												16,384	SampleClassLibrary.dll

04/06/2015		04:11	PM													1,283	SampleClassLibrary.dll.CodeAnalysisLog.xml

04/06/2015		04:11	PM																	0	

SampleClassLibrary.dll.lastcodeanalysissucceeded

04/06/2015		04:11	PM												11,776	SampleClassLibrary.pdb

12/02/2014		03:35	PM															387	SampleClassLibraryTests.xml

04/11/2015		03:48	PM													8,704	SharedCode.dll

04/11/2015		03:48	PM												15,872	SharedCode.pdb

														28	File(s)					17,685,158	bytes

															2	Dir(s)		67,929,718,784	bytes	free

Discussion
Redirecting	standard	output	can	be	of	great	use	for	tasks	like	automated	build	scenarios	or
test	harnesses.	While	not	quite	as	easy	as	simply	placing	>	after	the	command	line	for	a
process	at	the	command	prompt,	this	approach	is	more	flexible,	as	the	stream	output	can
be	reformatted	to	XML	or	HTML	for	posting	to	a	website.	It	also	provides	the	opportunity
to	send	the	data	to	multiple	locations	at	once,	which	the	simple	command-line	redirect
function	in	Windows	can’t	do.

Waiting	to	read	from	the	stream	until	the	application	has	finished	ensures	that	there	will	be
no	deadlock	issues.	If	the	stream	is	accessed	synchronously	before	this	time,	then	it’s
possible	for	the	parent	to	block	the	child.	At	a	minimum,	the	child	will	wait	until	the
parent	has	finished	reading	from	the	stream	before	it	continues	writing	to	it.	So,	by
postponing	the	read	until	the	end,	you	save	the	child	some	performance	degradation	at	the
cost	of	some	additional	time	at	the	end.

See	Also
The	“ProcessStartInfo.RedirectStandardOutput	Property”	and
“ProcessStartInfo.UseShellExecute	Property”	topics	in	the	MSDN	documentation.

13.7	Running	Code	in	Its	Own	AppDomain

Problem
You	want	to	run	code	isolated	from	the	main	part	of	your	application.

Solution
Create	a	separate	AppDomain	to	run	the	code	using	the	AppDomain.CreateDomain	method.
CreateDomain	allows	the	application	to	control	many	aspects	of	the	AppDomain	being
created,	like	the	security	environment,	AppDomain	settings,	and	base	paths	for	the
AppDomain.	To	demonstrate	this,	the	following	code	creates	an	instance	of	the	RunMe	class
(shown	in	full	later	in	this	recipe)	and	calls	the	PrintCurrentAppDomainName	method.
This	prints	the	name	of	the	AppDomain	where	the	code	is	running:

AppDomain	myOwnAppDomain	=	AppDomain.CreateDomain("MyOwnAppDomain");

//	print	out	our	current	AppDomain	name

RunMe	rm	=	new	RunMe();

rm.PrintCurrentAppDomainName();

Now,	you	create	an	instance	of	the	RunMe	class	in	the	"MyOwnAppDomain"	AppDomain	by
calling	CreateInstance	on	the	AppDomain.	We	pass	CreateInstance	the	module	and	type
information	necessary	for	constructing	the	type,	and	it	returns	an	ObjectHandle.

We	can	then	retrieve	a	proxy	to	the	instance	running	in	the	AppDomain	by	taking	the
returned	ObjectHandle	and	casting	it	to	a	RunMe	reference	using	the	Unwrap	method:

//	Create	our	RunMe	class	in	the	new	appdomain

Type	adType	=	typeof(RunMe);

ObjectHandle	objHdl	=

				myOwnAppDomain.CreateInstance(adType.Module.Assembly.FullName,	

								adType.FullName);

//	unwrap	the	reference

RunMe	adRunMe	=	(RunMe)objHdl.Unwrap();

The	PrintCurrentAppDomainName	method	is	called	on	the	RunMe	instance	in	the
"MyOwnAppDomain"	AppDomain,	and	it	prints	out	"Hello	from	MyOwnAppDomain!".	The
AppDomain	is	unloaded	via	AppDomain.Unload	and	the	program	terminates:

//	make	a	call	on	the	toolbox

adRunMe.PrintCurrentAppDomainName();

//	now	unload	the	appdomain

AppDomain.Unload(myOwnAppDomain);

The	RunMe	class	is	defined	here.	It	inherits	from	MarshalByRefObject,	as	that	allows	you
to	retrieve	the	proxy	reference	when	you	call	Unwrap	on	the	ObjectHandle	and	have	the
calls	on	the	class	remoted	into	the	new	AppDomain.	The	PrintCurrentApp-DomainName
method	simply	accesses	the	FriendlyName	property	on	the	current	AppDomain	and	prints
out	the	“Hello	from	{AppDomain}!”	message:

public	class	RunMe	:	MarshalByRefObject

{

				public	RunMe()

				{

								PrintCurrentAppDomainName();

				}

				public	void	PrintCurrentAppDomainName()

				{

								string	name	=	AppDomain.CurrentDomain.FriendlyName;

								Console.WriteLine($"Hello	from	{name}!");

				}

}

The	output	from	this	example	is	shown	here:

Hello	from	CSharpRecipes.exe!

Hello	from	CSharpRecipes.exe!

Hello	from	MyOwnAppDomain!

Hello	from	MyOwnAppDomain!

Discussion
Isolating	code	in	a	separate	AppDomain	is	overkill	for	something	as	trivial	as	this	example,
but	it	demonstrates	that	code	can	be	executed	remotely	in	an	AppDomain	created	by	your
application.	There	are	six	overloads	for	the	CreateDomain	method,	and	each	adds	a	bit
more	complexity	to	the	AppDomain	creation.	In	situations	in	which	the	isolation	or
configuration	benefits	outweigh	the	complexities	of	not	only	setting	up	a	separate
AppDomain	but	debugging	code	in	it	as	well,	it	is	a	useful	tool.	A	good	real-world	example
is	hosting	a	separate	AppDomain	to	run	ASP.NET	pages	outside	of	the	normal	ASP.NET
environment	(though	this	is	truly	a	nontrivial	usage)	or	loading	third-party	code	into	a
secondary	AppDomain	for	isolation.

See	Also
The	“AppDomain	Class,”	“AppDomain.CreateDomain	Method,”	and	“ObjectHandle
Class”	topics	in	the	MSDN	documentation.

13.8	Determining	the	Operating	System	and	Service	Pack
Version	of	the	Current	Operating	System

Problem
You	want	to	know	the	current	operating	system	and	service	pack.

Solution
Use	the	GetOSAndServicePack	method	shown	in	Example	13-4	to	get	a	string	representing
the	current	operating	system	and	service	pack.	GetOSAndServicePack	uses	the
Environment.OSVersion	property	to	get	the	version	information	for	the	operating	system
and	checks	the	registry	for	the	“official”	name	of	the	OS.	The	OperatingSystem	class
retrieved	from	Environment.OSVersion	has	a	property	for	the	service	pack,	called
ServicePack.	These	values	are	all	returned	as	the	operating	system	name,	version,	and
service	pack	string.

Example	13-4.	GetOSAndServicePack	method
public	static	string	GetOSAndServicePack()

{

				//	Get	the	current	OS	info

				OperatingSystem	os	=	Environment.OSVersion;

				RegistryKey	rk	=

								Registry.LocalMachine.OpenSubKey(

												@"SOFTWARE\Microsoft\Windows	NT\CurrentVersion");

				string	osText	=	(string)rk?.GetValue("ProductName");

				if	(string.IsNullOrWhiteSpace(osText))

								osText	=	os.VersionString;

				else

								osText	=	(

												$"{osText}	{os.Version.Major}.{os.Version.Minor}.{os.Version.Build}");

				if	(!string.IsNullOrWhiteSpace(os.ServicePack))

								osText	=	$"{osText}	{os.ServicePack}";

				return	osText;

}

Discussion
Enabling	your	application	to	know	the	current	operating	system	and	service	pack	allows
you	to	include	that	information	in	debugging	reports	and	in	the	About	box	(if	you	have
one)	for	your	application.	This	simple	knowledge,	transmitted	through	your	support
department,	can	save	you	hours	in	debugging	time.	It	is	well	worth	making	this
information	available	so	your	support	department	can	easily	direct	your	clients	to	it	if	they
cannot	otherwise	locate	it.

See	Also
The	“Environment.OSVersion	Property”	and	“OperatingSystem	Class”	topics	in	the
MSDN	documentation.

Index

Symbols

”	(double	quotes),	Discussion,	Problem,	Discussion

$	character,	Discussion

&	(AND	operator),	Discussion

&	character,	Problem

‘	(single	quotes),	Discussion,	Problem

*	(wildcard	character),	Method	name

+	operator,	Nested	types

-	(dash),	Discussion

.NET	Framework

assemble	inspection	system	in,	Introduction

building	cloneable	classes,	Problem

cloning	implementation,	Discussion

collections	in,	Introduction

configuration	files	in,	Discussion

current	version,	Platform	Notes

exception	handling	in,	Introduction

feedback	systems	offered	by,	Discussion

filesystem	I/O,	Introduction

generic	vs.	regular	types,	Problem

managed	access	to	named	pipes	in,	Discussion

networking	functionality	provided	by,	Introduction

preferred	performance	telemetry	mechanisms,	Introduction

security,	Introduction

threading	in,	Introduction

XML	data	handling,	Introduction

.NET	Framework	Class	Library	(.NET	FCL),	Introduction,	Introduction,
Introduction

=>	operator,	Solution

?	(wildcard	character),	Method	name,	Solution

?:	(ternary	operator),	Discussion

|	(OR	operator),	Solution,	Discussion

A

access,	granting/revoking,	Problem,	Problem

accessor	functions,	Problem

*AccessRule	objects,	Discussion

Active	Directory	programming,	Discussion

Add	method,	Discussion,	Discussion

AddProxyInfoToRequest	method,	Solution

algorithms

Rigndael,	Discussion

Rijndael,	Discussion

rounding,	Problem

SHA-256/SHA-512,	Discussion

AllocateDataSlot	method,	Problem

AllocateNamedDataSlot	method,	Problem

AllowPartiallyTrustedCallers	attribute,	Discussion

AND	operator	(&),	Discussion

AntiTamper	class,	Solution

App.xaml	file,	Problem

appdomain	notification	events,	Discussion

AppDomain.CreateDomain	method,	Problem

appdomain.UnhandledException	event,	Discussion

AppDomain.UnhandledException	handler,	Discussion

AppEvents	class,	Solution

application	information,	persisting,	Problem

Application.ThreadException,	Discussion

Application_DispatcherUnhandledException	method,	Solution

Argument	class,	Solution

ArgumentDefinition	class,	Solution

arguments

constraining	type,	Problem

memberName,	Method	name

ArgumentSemanticAnalyzer	class,	Solution

arrays

creating	fixed-size,	Introduction

custom	sorting	of,	Problem

jagged,	Introduction

multidimensional,	Introduction

subscripting	with	regular	expressions,	Problem

testing	elements	in,	Problem

ASCII	Encoding	class,	Solution

ASCII	values

converting	strings	to,	Problem

converting	to	strings,	Solution

ASP.NET	websites,	Problem

assemblies

determining	type	characteristics	in,	Problem

dynamically	loading,	Discussion

listing	current	processes,	Problem

listing	referenced,	Problem

loading	for	inspection,	Discussion

minimizing	attack	surface	of,	Problem

verifying	specific	permissions,	Problem

Assembly.GetReferencedAssemblies	method,	Problem

AssemblyName	objects,	Discussion

Assert,	Problem

assignment	operator	(=>),	Solution

asymmetric	public	key	cryptography,	Discussion

*Async	methods,	Problem

async	operator,	Problem,	Introduction,	Solution,	Discussion,	Problem

asynchronous	communications	protocol,	Solution

atomic	operations,	Problem

Attack	Surface,	Problem

attributes

AllowPartiallyTrustedCallers,	Discussion

Caller	Info,	Problem

CallerFilePath,	Problem

CallerLineNumber,	Problem

CallerMemberName,	Problem

DebuggerDisplay,	Problem

FieldOffset,	Discussion

Flags,	Problem,	Discussion

Serializable,	Discussion,	Serializable	types

StructLayout,	Solution

ThreadStatic,	Problem

audit	information,	obtaining,	Problem

automatically	implemented	properties,	Solution

AutoResetEvent,	Problem

AvailableFreeSpace	property,	Solution

await	operator,	Problem,	Introduction,	Solution,	Discussion,	Problem

B

backslash	(\),	Discussion

backtracking,	Discussion

base	class	methods,	Solution

base64	representation

decoding	to	binary,	Problem

encoding	binary	data	as,	Problem

BCL	(base	class	library),	Discussion

BeginInvoke	method,	Problem

big-endian	encoding,	Discussion

binary	data

decoding	from	base64,	Problem

encoding	as	base64,	Problem

binary	functions,	Discussion

binary	predicates,	Discussion

BinaryFormatter,	Discussion

BinarySearch	method,	Problem,	Problem

BinarySearchCountAll	method,	Solution

BinarySearchGetAll	method,	Solution

BindGenericParameters	method,	Problem

bit	flags,	Problem

bit	masks,	Problem

bool	data	types,	Introduction

boxing

defined,	Introduction

drawbacks	of,	Introduction

BuildDependentAssemblyList	method,	Discussion

BuildManager	class,	Discussion

byte	arrays

converting	to	strings,	Problem

methods	requiring,	Problem

C

C#	6.0

benefits	of,	Preface

checked	vs.	unchecked	context,	Discussion

exception	handling	in,	Introduction

latest	innovations	in,	Preface

multicast	support	in,	Solution

null-conditional	operators	in,	Problem

obtaining	correct	offset,	Discussion

overloaded	constructors	in,	Discussion

using	closures	in,	Problem

Caller	Info	attributes,	Problem

CallerFilePath	attribute,	Problem

CallerLineNumber	attribute,	Problem

CallerMemberName	attribute,	Problem

CallTheDatabase	method,	Solution

CAPTCHA,	Discussion

Cast<T>	method,	Problem

catch	blocks,	Discussion,	Introduction,	Solution

CategorizeResponse	method,	Solution

CDATA	node,	Discussion

certificates,	creating,	Discussion

changes,	detecting,	Problem

ChapterConfigurationElement	class,	Discussion

characters,	escaping,	Problem,	Problem

checked	keyword,	Problem

CheckLanguageEnumValue	method,	Solution

chunking	routines,	Problem

classes

adding	foreach	support	to,	Problem

advantages	of,	Introduction

AntiTamper,	Solution

AppEvents,	Solution

appropriate	use	of,	Introduction

Argument,	Solution

ArgumentDefinition,	Solution

ArgumentSemanticAnalyzer,	Solution

ASCII	Encoding,	Solution

BuildManager,	Discussion

ChapterConfigurationElement,	Discussion

ClientBuildManagerParameter,	Solution

cloneable,	Problem

CollectionsUtil,	Introduction

ConfigurationElementCollection,	Discussion

Container<T>,	Solution

Convert,	Problem,	Problem

creating	new	exception,	Problem

CryptoString,	Problem

CultureStringComparer,	Discussion

Debug,	Introduction

Dictionary<T,U>,	Discussion

Directory,	Solution

DirectoryEntry,	Solution

DisposableList,	Solution

DriveInfo,	Problem

DynamicBase<T>,	Problem

Encoding,	Solution

Enum,	Discussion

EnumerableMessageQueue,	Problem

Exception,	Discussion

File,	Problem

FileStream,	Problem

FileSystemWatcher,	Problem

FileVersionInfo,	Discussion

for	obtaining	diagnostic	information,	Introduction

GlobalProxySelection,	Solution

Hashtable,	Introduction

HttpWebRequest,	Problem

HttpWebResponse,	Solution

HybridDictionary,	Introduction

Immutable,	Discussion

InternetSettingsReader,	Solution

List<T>,	Discussion,	Problem,	Problem

ListDictionary,	Introduction

MethodBody,	Problem

Microsoft.Win32.SystemEvents,	Problem

MinMaxValueDictionary,	Solution

MQWorker,	Problem

MyClientBuildManagerCallback,	Solution

MyTcpClient,	Problem

MyTcpServer,	Solution

NamedPipeClientStream,	Problem

NamedPipeServerStream,	Problem

NameValueCollection,	Introduction

nested	lists	in,	Problem

NetworkStream,	Problem

NoSafeMemberAccess,	Problem

partial,	Discussion

Path,	Problem

Process,	Problem

Process.StartInfo,	Problem

Reflect,	Discussion

Regex,	Problem

ServiceController,	Problem

SortedDictionary<T,U>,	Discussion

SortedList,	Problem

SortedList<T>,	Problem,	Discussion

SslStream,	Problem

StringCollection,	Introduction

StringDictionary,	Introduction

SymmetricAlgorithm,	Problem

System.	Collections.Generic,	Introduction

System.Array,	Discussion

System.Collections,	Introduction

System.Collections.IEnumerable,	Introduction

System.Collections.IEnumerator,	Introduction

System.Collections.Specialized,	Introduction

System.DirectoryServices.DirectoryEntry,	Solution

System.IO.Compression.DeflateStream,	Problem

System.IO.Compression.GZipStream,	Problem

System.Linq.Enumerable,	Discussion

System.Linq.Extensions,	Discussion

System.Net.FtpWebRequest,	Solution

System.Net.NetworkInformation.Ping,	Solution

System.Net.TcpClient,	Solution

System.Net.WebClient,	Problem

System.Reflection.Assembly,	Discussion

System.Security.Cryptography.RijndaelManaged,	Discussion

System.Security.Cryptography.SymmetricAlgorithm,	Problem

System.ServiceProcess.ServiceController,	Problem

System.Windows.Application,	Discussion

System.Windows.Forms.WebBrowser,	Problem

SystemEvents,	Solution

TCPServer,	Discussion

Thread,	Problem

thread-safe	access	to,	Problem

Trace,	Introduction

Type,	Problem,	Problem

Unicode	Encoding,	Solution

vs.	structures,	Introduction

WebBrowserNavigatedEventArgs,	Solution

WebClient,	Discussion

WebRequest,	Problem

WebResponse,	Discussion

XDocument,	Introduction,	Problem

XElement,	Discussion,	Introduction,	Solution

XmlReader,	Problem

XmlSchemaInference,	Problem

XmlSecureResolver,	Discussion

XmlWriter,	Solution

Clear	method,	Solution

ClientBuildManager,	Problem

ClientBuildManagerParameter	class,	Solution

Clone	method,	Discussion

cloneable	classes,	Problem

closures

defined,	Discussion

using	in	C#,	Problem

code

avoiding	duplicated,	Problem

locking	down	with	RequestRefuse,	Discussion

marking	sections	as	critical,	Discussion

passing	data	between	managed	and	unmanaged,	Solution

reusing,	Discussion

running	isolated,	Problem

sample	code,	Who	This	Book	Is	For

Code	Access	Security	(CAS),	Introduction,	Introduction

“code	bloat”,	Solution

collections

defined,	Introduction

examining	values	in,	Introduction

locked,	Discussion

namespaces	for,	Introduction,	Discussion

supporting	nongeneric	interfaces,	Problem

types	of,	Introduction

using	functional	extensions	with	LINQ,	Problem

using	set	semantics	with,	Problem

collections,	persisting	between	sessions,	Problem

CollectionsUtil	class,	Introduction

comma-delimited	format,	Problem

command-line	parameters,	parsing,	Problem

Common	Language	Specification	(CLS),	Introduction

Compare	method,	Discussion

CompareFileVersions	method,	Solution

CompareTo	method,	Discussion,	Discussion

CompiledQuery.Compile	method,	Problem

CompressFileAsync	method,	Solution

computation,	lazy	vs.	eager,	Introduction

concurrent	access,	Problem,	Introduction

(see	also	threading)

ConcurrentDictionary<TKey,	TValue>,	Solution

configuration	files,	querying	with	LINQ,	Problem

ConfigurationElementCollection	class,	Discussion

connection	settings,	using	current,	Problem

console	utilities,	interacting	with,	Problem

Console.SetOut	method,	Problem

const	fields,	Problem

constant	fields,	Problem

constraints,	Problem

Container<T>	class,	Solution

ContainsKey	method,	Discussion

ContainsValue	method,	Discussion

ContinueWith	method,	Problem

conversions,	narrowing,	Discussion

Convert	class,	Problem,	Problem

Convert.FromBase64String	method,	Problem

Convert.ToBase64String	method,	Problem

copying

deep,	Solution

shallow,	Solution

Count	property,	Discussion

CountAll	method,	Solution

Create	method,	Discussion

CreateDomain	method,	Problem

CreateLockedFileAsync	method,	Solution

CreateNestedObjects	method,	Discussion

CreateSimpleCounter	method,	Problem

credit	card	numbers,	Discussion

cross-AppDomain,	Discussion

cross-process,	Discussion

cryptography	information,	cleaning	up,	Problem

CryptoString	class,	Problem

CultureStringComparer	class,	Discussion

custom	error	pages,	Problem

cyclic	redundancy	check	(CRC),	Discussion

D

dash	(-),	Discussion

data

creating	XML	from	databases,	Problem

decoding	base64	to	binary,	Problem

encoding	binary	as	base64,	Problem

encrypting	within	web.config	files,	Problem

encrypting/decrypting,	Discussion

escaping/unescaping	for	the	Web,	Problem

integrity	of	in	threads,	Discussion

manipulating	XML,	Problem-Discussion

optimizing	read-mostly	access	to,	Problem

passing	between	managed	and	unmanaged	code,	Solution

“point-in-time”	snapshot	of,	Discussion

protecting	during	encryption,	Problem

protecting	sensitive,	Problem

querying	and	joining,	Problem

securing	stream	data,	Problem

sorting	thread-specific	privately,	Problem

thread	local	storage	for,	Discussion

transferring	via	HTTP,	Problem

uploading	in	name/value	pair	format,	Discussion

using	set	semantics	with,	Problem

Data	property,	Problem

data	types

bool,	Introduction

custom	sorting	of,	Problem

decimal,	Introduction

floating-point,	Introduction

fully	qualified	vs.	alias	names,	Introduction

numeric,	Introduction

simple,	Introduction

databases

improving	scalability	of,	Problem

rapid	development	of,	Discussion

dataFile	parameter,	Discussion

deadlocking,	Introduction,	Discussion

Debug	class,	Introduction

DebuggerDisplay	attribute,	Problem

debugging

custom	displays	for,	Problem

(see	also	exception	handling)

determining	current	OS/service	pack	for,	Discussion

listing	processes	by	assembly,	Discussion

decimal	data	types,	Introduction,	Problem

Decompress	methods,	Solution

DecompressFileAsync	method,	Solution

decryption

cleanup	following,	Problem

of	files,	Problem

of	strings,	Problem

deep	copying,	Solution

default	keyword,	Problem,	Discussion

Delegate	objects,	Problem

delegates

asynchronous,	Problem,	Problem

controling	firing	of,	Problem

delegate	inference,	Solution

generic,	Solution

MatchEvaluator,	Problem

original	use	of,	Solution

ThreadStart,	Problem

using	modifiers	with,	Solution

with	lambda	expressions,	Solution

DeleteSorted	method,	Solution

Demand,	Problem

denial-of-service	attacks,	Discussion

depedencies,	determining	between	assemblies,	Discussion

descending,	Solution

Deserialize	method,	Discussion

DeserializeFromFile<T>	method,	Discussion

DetectXMLChanges	method,	Solution

dictionaries

creating	with	Min/Max	value	boundaries,	Problem

defined,	Introduction

examples,	Introduction

sorting	keys/values	in,	Problem

thread-safe,	Problem

Dictionary<T,U>	class,	Discussion

Dictionary<T,U>	objects,	Solution

digital	signatures,	Problem

directories

notifications	of	actions	on,	Problem

obtaining	directory	trees,	Problem

searching	for	using	wildcards,	Problem

Directory	class,	Solution

DirectoryEntry	class,	Solution

DirectoryInfo	object,	Solution

Discretionary	Access	Control	List	(DACL),	Discussion

DispatcherUnhandledException	event,	Discussion

DisplayInheritanceChain	methods,	Inheritance	hierarchy

DisplayPingReplyInfo	method,	Solution

DisposableList	class,	Solution

Dispose	method,	Solution

distinct	set	operation,	Solution

Document	Object	Model	(DOM),	Introduction

document	type	definition	(DTD),	Problem

documentation,	using	enumerations,	Introduction

dot	operator,	Nested	types

double	quotes	(“),	Discussion,	Problem,	Discussion

DownloadFileTaskAsync,	Solution

DriveInfo	class,	Problem

drives,	querying,	Problem

DriveType	enumeration,	Discussion

duplicates,	discovering	in	lists,	Problem

dynamic	keyword

uses	for,	Introduction

vs.	object,	Problem

Dynamic	Language	Runtime	(DLR),	Introduction

dynamic	programming

building	objects	dynamically,	Problem

invoking	members	using	reflection,	Problem

main	constructs	provided,	Introduction

DynamicBase<T>	class,	Problem

DynamicObject,	Problem

E

eager	computation,	Introduction

elements

defined,	Introduction

examples,	Introduction

iterating	over,	Discussion

testing	in	arrays/lists,	Problem

EncodeBitmapToString	method,	Discussion

Encoding	class,	Solution

encryption

cleanup	following,	Problem

of	files,	Problem

of	passwords,	Problem

of	stream	data,	Problem

of	strings,	Problem,	Discussion

within	web.config	files,	Problem

EncryptWebConfigData	method,	Discussion

EndInvoke	method,	Problem

Enum	class,	Discussion

EnumerableMessageQueue	class,	Problem

enumerations

checking	for	valid	values,	Problem

code	documenting	with,	Introduction

creating	combination	of	values	in,	Problem

determining	flags	contained	in,	Problem

DriveType,	Discussion

FileComparison,	Solution

HttpStatusCode,	Discussion

inheritance	and,	Introduction

PipeOptions,	Discussion

PrecompilationFlags,	Solution

ResponseCategories,	Solution

SecurityAction.RequestRefuse,	Problem

ServiceType,	Solution

XmlNodeType,	Discussion

enumerators

creating	custom,	Problem

defined,	Introduction

old-style,	Discussion

error	handling,	About	the	Code,	Introduction,	Problem

even	numbers,	Problem

event	logs

using,	Problem

watching	for	specific	entries,	Problem

Event	Tracing	for	Windows	(ETW),	Introduction

EventSource,	Introduction

EveryNthItem	method,	Discussion

EveryOther	method,	Solution

Everything	permission,	Introduction

except	set	operation,	Solution

Exception	class,	Discussion

exception	handling

classes	for,	Introduction

creating	new	exception	types,	Problem

custom	debugging	displays,	Problem

determining	process	status,	Problem

exception	types,	Introduction

exceptions	vs.	error	codes,	Introduction

external	vs.	invalid,	Introduction

fine-	vs.	coarse-grained	approaches,	Introduction

fine-grained,	Discussion

flexibility	in	C#,	Introduction

for	exceptions	invoked	via	reflection,	Problem

forcing	breaking	on	first-chance	exceptions,	Problem

in	asynchronous	scenarios,	Problem

in	WinForms	applications,	Problem

in	WPF-based	applications,	Problem

monitoring	event	logs,	Problem

performance	counter	implementation,	Problem

sending	additional	information,	Problem

specific	vs.	general	exceptions,	Introduction

structuring,	Introduction

system	design,	Introduction

in	threading,	Problem

timing	of	exception	catching/rethrowing,	Problem,	Discussion

tracking	exception	source,	Problem

try,	try-catch,	and	try-catch-finally	blocks	in,	Introduction

unhandled	exceptions,	Discussion,	Problem,	Discussion

using	event	logs,	Problem

using	exception	filters,	Problem

with	asynchronous	delegates,	Problem

Exception.Data	object,	Discussion

Exceptions	Settings	tool	window,	Solution

executable	modules,	comparing,	Problem

ExpandoObject,	Problem,	Discussion

explicit	dot	notation	syntax,	Discussion

exported	types,	Exported	types

expression	trees,	Problem

extension	methods

BinarySearchCountAll,	Solution

BinarySearchGetAll,	Solution

Cast<T>,	Problem

CountAll,	Solution

Distinct,	Discussion

EveryNthItem,	Discussion

EveryOther,	Solution

GetAll,	Solution

GetInheritanceChain,	Solution

GetMembersInAssembly,	Solution

GetMethodOverrides,	Solution

GetNestedTypes,	Nested	types

for	LINQ,	Problem

OfType<T>,	Problem

Reverse,	Solution

SkipWhile,	Solution

TakeWhile,	Solution

(see	also	methods)

extension	objects,	Solution

ExternalException,	Introduction

ExtractGroupings	method,	Solution

F

FieldOffSetAttribute,	Solution-Discussion

fields

const,	Problem

controlling	struct	initialization,	Problem

initializing	constant	at	runtime,	Problem

instance,	Discussion

MaxValue,	Solution

MinValue,	Solution

readonly,	Problem

starting	at	correct	offset,	Discussion

static,	Discussion,	Discussion,	Problem

File	class,	Problem

FileComparison	enumeration,	Solution

files

comparing,	Problem

compressing	and	decompressing,	Problem

downloading,	Solution

encrypting/decrypting,	Problem

granting/revoking	access	to,	Problem

locking	subsections	of,	Problem

notification	of	actions	on,	Problem

obtaining	safer	file	handles,	Problem

obtaining	security	rights/audit	information	for,	Problem

obtaining	tree	representations	of,	Problem

querying	configuration	with	LINQ,	Problem

searching	for	using	wildcards,	Problem

serializing/deserializing	objects,	Solution

transferring	via	FTP,	Problem

uploading,	Solution

web.config,	Problem

FileSecurity	object,	Problem

FileShare	parameter,	Discussion

FileStream	class,	Problem

FileSystemWatcher	class,	Problem

FileVersionInfo	class,	Discussion

finally	blocks

controlling	execution	of,	Problem

in	resource	cleanup,	Introduction

FindEachOccurrenceOf	method,	Discussion

FindOccurrenceOf	method,	Discussion

fixed	keyword,	Discussion

FixedSizeCollection	type,	Solution

FixedSizeCollection<T>	type,	Solution

Flags	attribute,	Problem,	Discussion

floating-point	data	types

matching	with	regular	expressions,	Solution

overview	of,	Introduction

rounding,	Problem

rounding	to	whole,	Problem

follow-on	tasks,	Problem

for	loops,	Problem,	Discussion

foreach	loops,	Discussion,	Problem,	Introduction,	Problem,	Solution,	Problem

formatted	lists,	Problem

Formatter	property,	Discussion

forms,	simulating	execution	of,	Problem

from	keyword,	Discussion,	Discussion

FromBase64String	method,	Discussion

FTP	(File	Transfer	Protocol)

interaction	via	WinInet	API,	Discussion

transferring	files	via,	Problem

FullTrust	permission,	Introduction

functors	(function	objects)

transforming	collections	with,	Problem

types	of,	Discussion

G

garbage	collection

automatic	vs.	method	calls,	Introduction

using	statement,	Problem

generated	entities,	adding	hooks	to,	Problem

generator	functions,	Discussion

generics

appropriate	use	of,	Problem

benefits	of,	Introduction,	Discussion

constraining	type	arguments,	Problem

creating	using	reflection,	Problem

initializing	variables	to	default	value,	Problem

type	parameters	in,	Discussion

vs.	regular	.NET	types,	Problem

GET	method,	Solution

GetAccessControl	method,	Problem

GetAll	method,	Solution

GetBaseDefinition	method,	Base	class	methods	that	are	overridden

GetBaseTypes	method,	Solution

GetBytes	method,	Problem

GetDirectories	method,	Solution

GetDirectoryName	method,	Discussion

GetEnumerator	method,	Discussion,	Discussion

GetExportedTypes	method,	Exported	types

GetExtension	method,	Discussion

GetFileName	method,	Discussion

GetFileNameWithoutExtension	method,	Discussion

GetFiles	method,	Solution

GetFileSystemEntries	method,	Solution

GetFileSystemInfos	method,	Solution,	Problem

GetForwardStepEnumerator	method,	Discussion

GetHtmlFromUrlAsync	method,	Discussion

GetInheritanceChain	method,	Solution

GetInterface	method,	Solution

GetInternetConnectionOption	method,	Solution

GetInvocationList	method,	Problem

GetLines	method,	Solution

GetLocalVars	method,	Solution

GetMember	method,	Method	name

GetMembersInAssembly	method,	Solution

GetMethodOverrides	method,	Solution

GetNamedDataSlot	method,	Problem

GetNestedTypes	method,	Nested	types

GetOSAndServicePack	method,	Problem

GetPathRoot	method,	Discussion

GetProcessesAssemblyIsLoadedIn	method,	Problem

GetProcessState	method,	Problem

GetProperty(“Field”)	syntax,	Discussion

GetReferencedAssemblies	method,	Discussion

GetResponse	method,	Solution

GetResponseStream	method,	Discussion

GetReverseOrderEnumerator	method,	Discussion

GetString	method,	Solution

GetType	methods,	Nested	types

Global	Assembly	Cache	(GAC),	Solution

globalization,	Problem

GlobalProxySelection	class,	Solution

Gopher	protocol,	Discussion

GroupJoin	method,	Discussion

groups

defining	in	regular	expressions,	Discussion

named	capture,	Problem

storing	in	keyed	collections,	Problem

unnamed,	Discussion

H

HandleEnum	method,	Discussion

hash	values,	Problem,	Problem

Hashtable	class,	Introduction

hierarchy	objects,	Discussion

hooks,	adding	to	generated	entities,	Problem

HTML-based	content,	Problem

HTTP

codes	on	custom	error	pages,	Problem

interaction	via	WinInet	API,	Discussion

methods,	Solution

status	code	categories,	Discussion

transferring	data	via,	Problem

HttpStatusCode	enumeration,	Discussion

HttpWebRequest	class,	Problem

HttpWebResponse	class,	Solution

HttpWebResponse	object,	Solution

HybridDictionary	class,	Introduction

I

ICloneable	interface,	Problem

ICollection	objects,	Solution

IComparable<T>	interface,	Solution,	Solution

IComparable<T>.CompareTo	method,	Discussion

IComparer<T>	interface,	Solution

IComparer<T>	method,	Discussion

IDeepCopy<T>	interface,	Problem

IDictionary	interface,	Discussion

IDisposable	interface,	Solution

IEnumerable	interface,	Discussion,	Discussion

IEnumerable<T>	interface,	Solution,	Introduction,	Discussion,	Solution,	Discussion

IEnumerator<T>	interface,	Discussion

if-then	statements,	Problem

image	files,	converting,	Discussion

Immutable	classes,	Discussion

ImmutableDictionary<TKey,TValue>,	Discussion

imported	types,	obtaining,	Discussion

IncrementNumericField	method,	Problem

inheritance

determining	characteristics,	Problem

enumerations	and,	Introduction

initialization	vector	(IV),	Discussion

InnerException	property,	Problem

INotifyPropertyChanged,	Discussion,	Discussion

INotifyPropertyChanging,	Discussion

Install	Certificate	menu,	Discussion

instance	fields,	Discussion

instance	methods.	dynamically	invoking,	Discussion

interfaces

advanced	searches	of,	Problem

determining	public,	Exported	types

ICloneable,	Problem

IComparable<T>,	Solution,	Solution

IComparer<T>,	Solution

IDeepCopy<T>,	Problem

IDictionary,	Discussion

IDisposable,	Solution

IEnumerable,	Discussion,	Discussion

IEnumerable<T>,	Solution,	Introduction,	Discussion,	Solution,	Discussion

IEnumerator<T>,	Discussion

IShallowCopy<T>,	Problem

support	for	nongeneric,	Problem

System.Collections.Generic.IEnumerable<T>,	Introduction

System.Collections.Generic.IEnumerator<T>,	Introduction

Interlocked	functions,	Problem

internalList,	Solution

Internet	connection	settings,	using	current,	Problem

Internet	Control	Message	Protocol	(ICMP),	Discussion

Internet	Information	Server	(IIS),	Problem

Internet	Protocol	(IP),	Discussion

InternetSettingsReader	class,	Solution

intersect	set	operation,	Solution

IntPtr,	Problem

invalid	characters,	Problem

InvalidCastException,	Discussion

InvalidOperationException,	Introduction

invocation	lists,	Discussion

IsDefined	method,	Discussion

IShallowCopy<T>	interface,	Problem

IsReady	property,	Solution

IsSubclassOf	method,	Subclasses	of	a	type

IsSubsetOf	method,	Discussion

Items	array	property,	Solution

iterative	iterators,	Discussion

iterators

benefits	of,	Introduction,	Discussion

choices	available,	Discussion

dealing	with	finally	Blocks	in,	Problem

defined,	Introduction

recursive	vs.	iterative,	Discussion

J

joining,	across	data	repositories,	Problem

K

Keys	property,	Discussion,	Discussion

keys,	sorting	in	dictionaries,	Problem

keywords

checked,	Problem

default,	Problem,	Discussion

Dynamic,	Introduction

dynamic,	Problem

fixed,	Discussion

from,	Discussion,	Discussion

in	LINQ,	Discussion

lock,	Discussion

new,	Discussion

orderby,	Discussion,	Problem

out,	Problem

select,	Discussion

this,	Discussion

throw,	Solution

var,	Discussion

where,	Discussion,	Discussion

L

lambda	expressions

defined,	Introduction

example	of,	Introduction

filtering	with,	Discussion

implementing	closures	with,	Problem

outer	variables	and,	Discussion

using,	Problem

using	different	parameter	modifies	in,	Problem

Language	enumeration,	Solution

LayoutKind.Explicit	layout	kind,	Solution

lazy	computation,	Introduction

lexers,	Problem

line	break	characters,	Discussion

LINQ	(Language	Integrated	Query)

benefits	of,	Introduction,	Solution

bridging	disparate	data	domains	with,	Problem

data	domains	encompassed,	Introduction

finding	custom	error	pages	with,	Solution

functional	extensions	for,	Problem

keywords	in,	Discussion,	Discussion

LINQ	expression,	Discussion

LINQ	queries,	Discussion,	Solution

LINQ	Select,	Discussion

LINQ	to	ADO.NET,	Discussion

LINQ	to	Entities,	Problem

LINQ	to	Objects,	Problem,	Introduction

LINQ	to	XML,	Problem,	Introduction,	Discussion,	Solution,	Solution,	Problem,
Problem

PLINQ	(Parallel	LINQ),	Problem

querying	configuration	files	with,	Problem

querying	type	interface	information	with,	Problem

set	operators	in,	Discussion

speeding	operations	with	parallelism,	Problem

tasks	handled	by,	Introduction

to	SQL,	Problem,	Discussion

using	without	IEnumerable<T>	support,	Problem

List<T>	class,	Discussion,	Problem,	Problem

List<T>.Sort	method,	Problem

ListDictionary	class,	Introduction

lists

finding	duplicates	in,	Problem

invocation,	Discussion

maintaining	order	of,	Problem

nested,	Problem

performing	multiple	operations	on,	Problem

reversing	contents	of	sorted,	Problem

testing	elements	in,	Problem

transforming	XML	data	into,	Problem

little-endian	encoding,	Discussion

local	message-queuing	services,	Solution

local	variables,	accessing,	Problem

LocalIntranet	permission,	Introduction

localization,	Problem

LocalVariableInfo	object,	Discussion

LocalVariables	property,	Problem

lock	keyword,	Discussion

Lock	method,	Problem

lock	statements,	Discussion,	Discussion

M

MailMessage	constructor,	Solution

MakeBase64EncodedStringForMime	method,	Discussion

makecert.exe	utility,	Discussion

Man-in-the-Middle	attack,	Discussion

manual	locking,	avoiding,	Problem

ManualResetEvent,	Discussion

marshaling,	Solution

Match	instance	method,	Introduction

MatchEvaluator	delegate,	Problem

Math.Floor	method,	Problem,	Discussion

Math.Round	method,	Problem,	Problem,	Discussion

maximum	value,	Problem

MaxValue	field,	Solution

MediaTypeNames.Attachment	values,	Discussion

MemberAccess	privilege,	Introduction

memberName	argument,	Method	name

MemberwiseClone	method,	Discussion

memory,	shared,	Solution

message	queues,	Problem,	Problem

MessageQueue,	Solution

MethodBody	class,	Problem

MethodInfo.GetBaseDefinition	method,	Solution

methods

*Async	methods,	Problem

accessed	via	reflection,	Problem

accessing	local	variables	within,	Problem

Add,	Discussion,	Discussion

AddProxyInfoToRequest,	Solution

AllocateDataSlot,	Problem

AllocateNamedDataSlot,	Problem

AppDomain.CreateDomain,	Problem

Application_DispatcherUnhandledException,	Solution

Assembly.GetReferencedAssemblies,	Problem

asynchronous,	Problem

BeginInvoke,	Problem

BinarySearch,	Problem,	Problem

BindGenericParameters,	Problem

BuildDependentAssemblyList,	Discussion

CallTheDatabase,	Solution

CategorizeResponse,	Solution

CheckLanguageEnumValue,	Solution

Clear	method,	Solution

Clone,	Discussion

Compare,	Discussion

CompareFileVersions,	Solution

CompareTo,	Discussion,	Discussion

CompiledQuery.Compile,	Problem

CompressFileAsync	method,	Solution

Console.SetOut,	Problem

ContainsKey,	Discussion

ContainsValue,	Discussion

ContinueWith,	Problem

Convert.FromBase64String,	Problem

Convert.ToBase64String,	Problem

Create,	Discussion

CreateDomain,	Problem

CreateLockedFileAsync,	Solution

CreateNestedObjects,	Discussion

CreateSimpleCounter,	Problem

Decompress,	Solution

DecompressFileAsync,	Solution

DeletSorted,	Solution

Deserialize,	Discussion

DeserializeFromFile<T>,	Discussion

DetectXMLChanges,	Solution

DisplayInheritanceChain,	Inheritance	hierarchy

DisplayPingReplyInfo,	Solution

EncodeBitmapToString,	Discussion

EncryptWebConfigData,	Discussion

EndInvoke,	Problem

ExtractGroupings,	Solution

FindEachOccurrenceOf,	Discussion

FindOccurrenceOf,	Discussion

FromBase64String,	Discussion

GetAccessControl,	Problem

GetBaseDefinition,	Base	class	methods	that	are	overridden

GetBaseTypes,	Solution

GetBytes,	Problem

GetEnumerator,	Discussion,	Discussion

GetExportedTypes,	Exported	types

GetFileSystemInfos,	Solution,	Problem

GetForwardStepEnumerator,	Discussion

GetHtmlFromUrlAsync,	Discussion

GetInterface,	Solution

GetInternetConnectionOption,	Solution

GetInvocationList,	Problem

GetLines,	Solution

GetLocalVars,	Solution

GetMember,	Method	name

GetNamedDataSlot,	Problem

GetOSAndServicePack,	Problem

GetProcessesAssemblyIsLoadedIn,	Problem

GetProcessState,	Problem

GetReferencedAssemblies,	Discussion

GetResponse,	Solution

GetResponseStream,	Discussion

GetReverseOrderEnumerator,	Discussion

GetString,	Solution

GroupJoin,	Discussion

HandleEnum,	Discussion

HTTP,	Solution

IComparable<T>.CompareTo,	Discussion

IComparer<T>,	Discussion

IncrementNumericField,	Problem

invoking	using	reflection,	Problem

IsSubclassOf,	Subclasses	of	a	type

IsSubsetOf,	Discussion

List<T>.Sort,	Problem

Lock,	Problem

MakeBase64EncodedStringForMime,	Discussion

Math.Floor,	Discussion

Math.Round,	Discussion

MemberwiseClone,	Discussion

MethodInfo.GetBaseDefinition,	Solution

ModifyNumericField,	Problem

ModifySorted,	Discussion

MyTcpClient.ConnectToServerAsync,	Discussion

OfType<ChapterConfigurationElement>,	Discussion

OpenReadTaskAsync,	Discussion

partial,	Problem

PermissionSet.IsSubsetOf,	Problem

PrecompileApplication,	Solution

ProtectedCallTheDatabase,	Solution

providing	byte	stream	services,	Problem

Read,	Problem

ReadLine,	Discussion

ReadNumericField,	Problem

ReflectionException,	Discussion

ReflectionInvoke,	Problem

ReflectionOnlyLoad*,	Discussion

Regex.IsMatch,	Introduction

Regex.Match,	Discussion

RegisterForSystemEvents,	Problem

Replace,	Problem

requiring	byte	arrays,	Problem

returning	multiple	items	from,	Problem

Round,	Discussion

SendPingAsync,	Solution

SerializeToFile<T>,	Discussion

ShallowCopy,	Discussion

SignString,	Solution

Skip,	Discussion

SortedList<K,V>,	Problem

Split,	Problem

StreamReader.ReadLine,	Problem

Take,	Discussion

Task.ContinueWith,	Problem

TestIndividualInvokesExceptions,	Discussion

TestIndividualInvokesReturnValue,	Discussion

TestPing,	Solution

TestReflectionInvocation,	Problem

ToArray,	Discussion,	Discussion

ToList,	Discussion

ToShortDisplayString,	Discussion

ToString,	Discussion

ToString(“F”),	Discussion

ToString(“G”),	Discussion

TrueForAll,	Problem

TryParse,	Problem

UploadValues,	Problem

VerifyRegEx,	Problem

VerifySignedString,	Solution

WaitForChanged,	Problem

WebClient.DownloadDataTaskAsync,	Problem

WebClient.UploadDataTaskAsync,	Problem

WriteElementInfo,	Solution

XDocument.Validate,	Problem,	Problem

XmlElement.InnerText,	Solution

XPath,	Solution

(see	also	extension	methods;	static	methods)

Microsoft.Bcl.Immutable	NuGet	package,	Discussion

Microsoft.Win32.SafeHandles.SafeFileHandle	object,	Problem

Microsoft.Win32.SystemEvents	class,	Problem

MIME	standard,	Discussion

minimum	value,	Problem

MinMaxValueDictionary	class,	Solution

MinValue	field,	Solution

ModifyNumericField	method,	Problem

ModifySorted	method,	Discussion

MQWorker	class,	Problem

MSMQ	infrastructure,	Discussion

multi-threading,	Problem,	Problem

(see	also	threading)

multicast	delegates,	controlling	delegate	firing	in,	Problem

multitasking,	Discussion

Mutex	signaling	mechanism,	Problem

MyClientBuildManagerCallback	class,	Solution

MyTcpClient	class,	Problem

MyTcpClient.ConnectToServerAsync	method,	Discussion

MyTcpServer	class,	Solution

N

named	capture	groups,	Problem

NamedPipeClientStream	class,	Problem

NamedPipeServerStream	class,	Problem

Names	array,	Solution

NameValueCollection	class,	Introduction

narrowing	conversions,	Discussion

narrowing	numeric	casts,	Problem

Navigated	event,	Solution

nested	types,	Nested	types

nesting,	Problem

networking

.NET	Framework	functionality	for,	Introduction

escaping/unescaping	data	for	the	Web,	Problem

obtaining	HTML	from	URLs,	Problem

pinging	programmatically,	Problem

prebuilding	ASP.NET	websites,	Problem

scanning	for	open	ports,	Problem

sending	SMTP	mail,	Problem

simulating	form	execution,	Problem

through	proxy	servers,	Problem

transferring	data	via	HTTP,	Problem

transferring	files	via	FTP,	Problem

using	current	Internet	connection	settings,	Problem

using	named	pipes,	Problem

using	web	browser	control,	Problem

web	server	communications,	Problem

web	server	custom	error	pages,	Problem

web	server	error	handling,	Problem

writing	TCP	clients,	Problem

writing	TCP	servers,	Problem

NetworkStream	class,	Problem

new	keyword,	Discussion

NoSafeMemberAccess	class,	Problem

NotifyFilters	enumeration,	Discussion

null

checking	for	concisely,	Problem

checking	for	in	arrays/lists,	Discussion

null-conditional	operators,	Problem

nullable	types,	Discussion

numbers,	rounding	to	whole,	Problem,	Problem

numeric	casts,	narrowing,	Problem

numeric	data	types,	Introduction

O

object	serialization,	Discussion,	Solution

object-oriented	programming

benefits	of	LINQ	in,	Introduction

classes,	structures,	and	generics,	Introduction

objects

*AccessRule,	Discussion

*Security,	Discussion

AssemblyName,	Discussion

building	dynamically,	Problem

DirectoryInfo,	Solution

ensuring	disposal	of,	Problem

HttpWebResponse,	Solution

LocalVariableInfo,	Discussion

making	extensible,	Problem

Microsoft.Win32.SafeHandles.SafeFileHandle,	Problem

Regex,	Introduction

SecureString,	Problem

System.Security.AccessControl.FileSecurity,	Problem

WebProxy,	Solution

XCData,	Solution

offsets,	starting	at	correct,	Discussion

OfType<ChapterConfigurationElement>	method,	Discussion

OfType<T>	method,	Problem

OpenReadTaskAsync	method,	Discussion

operating	system,	determining	current,	Problem

optional	permissions,	Problem

OR	operator	(|),	Solution,	Discussion

orderby	clause,	Discussion

orderby	keyword,	Discussion,	Problem

out	keyword,	Problem

out	parameter	modifier,	Solution

outer	variables,	Discussion

output	steam,	capturing,	Problem,	Problem

OWASP	(Open	Web	Application	Security	Project),	Solution

P

parallelism,	Problem,	Discussion

parameter	modifiers,	Problem

parameters

dataFile,	Discussion

FileShare,	Discussion

generic	type	parameters,	Discussion

out,	Discussion

parsing	command-line,	Problem

return,	Problem

params	parameter	modifier,	Solution

partial	classes,	Discussion

partial	methods,	Problem

passwords,	Problem,	Discussion,	Problem

Path	class,	Problem

paths,	parsing,	Problem

pattern	matching	(see	regular	expressions)

performance	counters,	Problem

permissions

asserting	safety	of,	Problem

using	RequestRefuse	with,	Discussion

verifying	specific,	Problem

PermissionSet.IsSubsetOf	method,	Problem

PIN	numbers,	Discussion

pinging,	Problem

PipeOptions	enumeration,	Discussion

Platform	Invoke	(P/Invoke),	Introduction,	Solution

PLINQ	(Parallel	LINQ),	Problem

“point	in	time”	snapshot,	Discussion

ports,	scanning	for	open,	Problem

POST	method,	Solution

power	management	events,	Problem

PrecompilationFlags	enumeration,	Solution

PrecompileApplication	method,	Solution

predicates,	Discussion

Pretty	Good	Privacy	(PGP),	Solution

primary	tasks,	Problem

private	keys,	Discussion

Process	class,	Problem

Process.StartInfo	class,	Problem

processes

capturing	standard	output	steam	for,	Problem

determining	status	of,	Problem

listing	current,	Problem

synchronizing	multiple,	Problem

ProcessRespondingState,	Problem

projections,	Introduction

properties

automatically	implemented,	Solution

AvailableFreeSpace,	Solution

Count,	Discussion

Data,	Problem

Formatter,	Discussion

InnerException,	Problem

IsReady,	Solution

Items	array,	Solution

Keys,	Discussion,	Discussion

LocalVariables,	Problem

RedirectStandardOutput,	Problem

ResponseStream,	Solution

StartInfo,	Problem

StatusCode,	Solution

TotalFreeSpace,	Discussion

Value,	Discussion

Values,	Discussion

XmlReader.Settings,	Problem

PropertyChanged	event,	Discussion

PropertyChanging	event,	Discussion

ProtectedCallTheDatabase	method,	Solution

proxies,	Problem

public	interfaces,	determining,	Exported	types

public	keys,	Problem

Pvk2Pfx.exe	tool,	Discussion

Q

querying

advanced	interface	search,	Problem

all	drives	on	system,	Problem

and	joining	across	repositories,	Problem

configuration	files	with	LINQ,	Problem

contents	of	XML	documents,	Problem

culture-sensitive	sort	order	for,	Problem

dynamic	subsets	of	query	results,	Problem

explicit	dot	notation	syntax,	Discussion

message	queues,	Problem

reusing	parameterized	queries,	Problem

standard	query	operators,	Problem

R

race	conditions,	Introduction

Read	method,	Problem

read/write	permissions,	Problem,	Problem,	Problem

ReaderWriterLock,	Discussion

ReaderWriterLockSlim,	Solution

ReadLine	method,	Discussion

ReadNumericField	method,	Problem

readonly	fields,	Problem

recursive	iterators,	Discussion

RedirectStandardOutput	property,	Problem

ref	parameter	modifier,	Solution

reference	types,	vs.	structures,	Introduction

Reflect	class,	Discussion

reflection

benefits	of,	Introduction

creating	generic	types	with,	Problem

defined,	Introduction

enumerating	assembly	types	with,	Solution

enumerating	inheritance	chains	with,	Solution

granting	permission	for,	Introduction

invoking	members	using,	Problem

rethrowing	exceptions	with,	Problem

ReflectionEmit	privilege,	Introduction

ReflectionException	method,	Discussion

ReflectionInvoke	method,	Problem

ReflectionOnlyLoad*	methods,	Discussion

ReflectionPermission,	Introduction

Regex	class,	Problem

Regex	object,	Introduction

Regex.IsMatch	method,	Introduction

Regex.Match	method,	Discussion

Regex.MatchCollection,	Problem

RegexMatchTimeoutException,	Discussion

RegexOptions,	Discussion

RegisterForSystemEvents	method,	Problem

registry	keys

granting/revoking	access	to,	Problem

obtaining	security/audit	information	for,	Problem

regular	expressions

augmenting	basic	string	replacement,	Problem

backtracking	in,	Discussion

basics	of,	Introduction

benefits	of,	Introduction

defining	groups	in,	Discussion

delimiters	in,	Solution

discovering	malicious	characters,	Solution

extracting	comment	lines	from	code,	Solution

extracting	groups	from	a	MatchCollection,	Problem

extracting	tags	from	stings,	Solution

finding	particular	match	occurrences,	Problem

improved	tokenizer	for,	Problem

matching	alphanumeric	characters,	Solution

matching	dates,	Solution

matching	floating-point	numbers,	Solution

matching	IPv4	addresses,	Solution

matching	phone	numbers,	Solution

matching	positive/negative	integers,	Solution

matching	proper	names,	Solution

matching	zip	codes,	Solution

resources	for	learning,	Introduction,	See	Also

returning	lines	containing	matches,	Problem

steps	for	execution,	Introduction

uses	for,	Discussion

using	common	patterns,	Problem

verifying	credit	card	number	format,	Solution

verifying	email	address	format,	Solution

verifying	password	format,	Solution

verifying	Social	Security	number	format,	Solution

verifying	syntax	of,	Problem

verifying	URL	protocol,	Solution

Replace	method,	Problem

resource-counted	access,	Problem

response	codes,	hadling,	Problem

ResponseCategories	enumeration,	Solution

ResponseStream	property,	Solution

return	parameters,	Problem

Reverse	method,	Solution

RFC	2396,	Problem

RFC	2616,	Discussion

RFC	2821,	Discussion

RFC	3986,	Solution

RFC	4180,	Solution

RFC	792,	Discussion

RFC	959,	Discussion

Richter,	Jeffrey,	Discussion

Rijndael	algorithm,	Discussion,	Discussion

Round	method,	Discussion

rounding

choosing	rounding	algorithms,	Problem

to	whole	numbers,	Problem

RSA	public	key,	Solution

S

“Safe	Thread	Synchronization”	(Richter),	Discussion

SafeFileHandle	constructor,	Solution

salt	values,	Solution

sample	code

notes	on,	About	the	Code

obtaining,	Who	This	Book	Is	For

platform	notes,	Platform	Notes

requirements	to	run,	What	You	Need	to	Use	This	Book

schemas

conforming	to,	Problem

infering,	Problem

searches,	customizing,	Problem

secondary	tasks,	Problem

SecureFunction	function,	Discussion

SecureString	object,	Problem

security

cleaning	up	cryptography	information,	Problem

encrypting	within	web.config	files,	Problem

encrypting/decrypting	files,	Problem

encrypting/decrypting	strings,	Problem

file	uploads,	Solution

granting/revoking	access,	Problem

making	security	asserts	safe,	Problem

malicious	XML,	Discussion

minimizing	assembly	attack	surface,	Problem

obtaining	safer	file	handles,	Problem

obtaining	security/audit	information,	Problem

preventing	string	tampering,	Problem

protecting	string	data,	Problem

securing	stream	data,	Problem

storing	passwords,	Problem

through	regular	expressions,	Problem

verifying	specific	permissions,	Problem

*Security	objects,	Discussion

SecurityAction.RequestMinimum,	Solution

SecurityAction.RequestOptional	flag,	Problem

SecurityAction.RequestRefuse	enumeration,	Problem

select	keyword,	Discussion

Select	method,	Solution

self-signed	certificates,	Discussion

semaphores,	Problem

SendPingAsync	method,	Solution

Serializable	attribute,	Discussion

serializable	types,	Serializable	types

SerializableAttribute	attribute,	Serializable	types

SerializeToFile<T>	method,	Discussion

service	packs,	determining	current,	Problem

ServiceController	class,	Problem

services,	controlling,	Problem

ServiceType	enumeration,	Solution

session	changes,	notification	of,	Problem

sessions,	persisting	collections	between,	Problem

set	operations,	Problem

SHA-256/SHA-512	algorithms,	Discussion

shallow	copying,	Solution

ShallowCopy	method,	Discussion

shared	memory,	Solution

signatures,	digital,	Problem

signed	numeric	values,	storing,	Solution

SignedNumber	structures,	Discussion

SignString	method,	Solution

simple	data	types,	Introduction

Simple	Public	Key	Infrastructure	(SPKI),	Solution

single	quotes	(‘),	Discussion,	Problem

Skip	method,	Discussion

SkipWhile	method,	Solution

SMTP	(Simple	Mail	Transfer	Protocol)	mail,	Problem

Social	Security	numbers,	Problem

sockets,	Discussion,	Problem

software	keys,	Problem

SortedDictionary<T,U>	class,	Discussion

SortedList	class,	Discussion,	Problem

SortedList	collections,	Problem

SortedList<K,V>	method,	Problem

SortedList<T>	class,	Problem,	Discussion

SortedList<TKey,	TValue>,	Problem

sorting

application-specific	cultures	and,	Problem

custom,	Problem

keys/values	in	dictionaries,	Problem

maintaining	sort	order,	Problem

reversing	sort	order,	Problem

thread-specific	data	privately,	Problem

special	characters,	escaping,	Problem,	Problem

Split	method,	Problem

SQL,	Problem,	Solution,	Discussion

SSL	(Secure	Sockets	Layer),	Solution

SslPolicyErrors,	Problem,	Problem,	Solution

SslStream	class,	Problem

standard	output	stream,	Problem,	Problem

StartInfo	property,	Problem

Startup	event	handler,	Discussion

statements

if-then,	Problem

lock,	Discussion,	Discussion

switch,	Discussion,	Solution

using,	Problem,	Introduction

where,	Discussion

yield,	Introduction,	Discussion

yield	break,	Discussion

static	fields,	Discussion,	Discussion,	Problem

static	methods

dynamically	invoking,	Discussion

GetDirectories,	Solution

GetDirectoryName,	Discussion

GetExtension,	Discussion

GetFileName,	Discussion

GetFileNameWithoutExtension,	Discussion

GetFiles,	Solution

GetFileSystemEntries,	Solution

GetPathRoot,	Discussion

GetType,	Nested	types

IsDefined,	Discussion

Math.Floor,	Problem

Math.Round,	Problem,	Problem

of	Path	class,	Problem

Select,	Solution

TestInvoke,	Discussion

Uri.EscapeDataString,	Solution

Uri.EscapeUriString,	Solution

Uri.UnescapeDataString,	Solution

(see	also	methods)

status	codes,	Discussion

StatusCode	property,	Solution

stream	data,	securing,	Problem

StreamReader.ReadLine	method,	Problem

StringCollection	class,	Introduction

StringDictionary	class,	Introduction

strings

converting	to	byte	arrays,	Problem

determining	valid	numbers	in,	Problem

encrypting/decrypting,	Problem

finding	particular	matches	in,	Problem

preventing	tampering	with,	Problem

protecting	string	data,	Problem

StructLayoutAttribute,	Solution-Discussion

structs

controlling	initialization	of,	Problem

default	initialization	of,	Solution

structures

appropriate	use	of,	Introduction

creating	union-type,	Problem

drawbacks	of,	Introduction

passing,	Introduction

vs.	classes,	Introduction

vs.	reference	types,	Introduction

stylesheets,	adding	code	to,	Discussion

subclasses,	Subclasses	of	a	type

switch	statements,	Discussion,	Solution

SymmetricAlgorithm	class,	Problem

synchronization,	Introduction

(see	also	threading)

SynchronizationContext,	Discussion

System.	Collections.Generic	class,	Introduction

System.Appdomain.UnhandledException	event,	Solution

System.ArgumentOutOfRangeException,	Solution

System.Array	class,	Discussion

System.Collections	class,	Introduction

System.Collections.ArrayList	type,	Solution

System.Collections.Concurrent	namespace,	Discussion

System.Collections.Generic.IEnumerable<T>	interface,	Introduction

System.Collections.Generic.IEnumerator<T>	interface,	Introduction

System.Collections.IEnumerable	class,	Introduction

System.Collections.IEnumerator	class,	Introduction

System.Collections.Immutable	assembly,	Discussion

System.Collections.Specialized	class,	Introduction

System.Configuration	assembly,	Discussion

System.Diagnostics	namespace,	Introduction

System.DirectoryServices.DirectoryEntry	class,	Solution

System.Dynamic	namespace,	Introduction

System.Exception	object,	Problem

System.Globalization	namespace,	Discussion

System.IO.Compression.DeflateStream	class,	Problem

System.IO.Compression.GZipStream	class,	Problem

System.Linq.Enumerable	class,	Discussion

System.Linq.Extensions	class,	Discussion

System.Messaging.MessageQueue,	Problem

System.Net.FtpWebRequest	class,	Solution

System.Net.Mail	namespace,	Solution

System.Net.NetworkInformation.Ping	class,	Solution

System.Net.TcpClient	class,	Solution

System.Net.WebClient	class,	Problem

System.Reflection.Assembly	class,	Discussion

System.Reflection.MethodInfo	type,	Base	class	methods	that	are	overridden

System.Runtime.CompilerServices	namespace,	Problem

System.Security.AccessControl.FileSecurity	object,	Problem

System.Security.Cryptography.RijndaelManaged	class,	Discussion

System.Security.Cryptography.SymmetricAlgorithm	class,	Problem

System.ServiceProcess.ServiceController	class,	Problem

System.Text	namespace,	Discussion,	Discussion

System.Windows.Application	class,	Discussion

System.Windows.Forms.Application.ThreadException,	Solution

System.Windows.Forms.WebBrowser	class,	Problem

System.Xml.XPath	namespace,	Solution

SystemEvents	class,	Solution

T

Take	method,	Discussion

TakeWhile	method,	Solution

TargetInvocationException,	Problem

Task.ContinueWith	method,	Problem

tasks,	running	in	order,	Problem

TaskScheduler,	Discussion

TCP	clients,	writing,	Problem,	Problem

TCP	servers,	writing,	Problem,	Problem

TCPServer	class,	Discussion

ternary	operator	(?:),	Discussion

TestIndividualInvokesExceptions	method,	Discussion

TestIndividualInvokesReturnValue	method,	Discussion

TestInvoke	method,	Discussion

TestPing	method,	Solution

TestReflectionInvocation	method,	Problem

this	keyword,	Discussion

Thread	class,	Problem

thread	exceptions,	Problem,	Problem

thread	local	storage	(TLS),	Problem

thread-safe	dictionaries,	Problem

threading

atomic	operations	among,	Problem

benefits	of,	Introduction

coordinating	with	events,	Problem

creating	per-thread	static	fields,	Problem

deadlocking,	Introduction,	Discussion

granting	multiple	access	to	resources,	Problem

making	database	requests	more	scalable,	Problem

notification	of	asynchronous	delegates,	Problem

optimizing	read-mostly	access,	Problem

preventing	silent	thread	termination,	Problem

providing	thread-safe	access	to	class	members,	Problem

race	conditions,	Introduction

running	tasks	in	order,	Problem

sorting	thread-specific	data	privately,	Problem

synchronizing	multiple	processes,	Problem

ThreadStart	delegate,	Problem

ThreadStaticAttribute	attribute,	Problem

throw	keyword,	Solution

ToArray	method,	Discussion,	Discussion

tokenizers,	Problem

ToList	method,	Discussion

toolbox	(see	utility	routines)

ToShortDisplayString	method,	Discussion

ToString	method,	Discussion

ToString(“F”)	method,	Discussion

ToString(“G”)	method,	Discussion

TotalFreeSpace	property,	Discussion

Trace	class,	Introduction

track	changes,	Problem

transformations

extending,	Problem

passing	parameters	to,	Problem

raw	XML	to	formatted,	Problem

with	functors,	Problem

Transmission	Control	Protocol	(TCP),	Discussion

TripleDES	encryption	scheme,	Discussion

TrueForAll	method,	Problem

try	blocks,	Problem

try-catch	blocks,	Introduction,	Problem,	Problem

try-catch-finally	blocks,	Introduction,	Problem

try-finally	blocks,	Problem,	Problem

TryInvokeMember,	Discussion

TryParse	method,	Problem

Tuple	objects

returning,	Solution

type	arguments,	constraining,	Problem

Type	class,	Problem,	Problem

type	inference,	Introduction

types

custom	searching	of,	Problem

custom	sorting	of,	Problem

determining	characteristics	in	assemblies,	Problem

determining	inheritance	characteristics,	Problem

dynamic,	Discussion

exported,	Exported	types

generic,	Problem,	Problem

nested,	Nested	types

serializable,	Serializable	types

subclasses	of,	Subclasses	of	a	type

U

UI	thread	exceptions,	Solution,	Discussion

UML	(Unified	Modeling	Language),	Solution

unary	function,	Discussion

unhandled	exceptions,	Discussion,	Problem,	Discussion

Unicode	Encoding	class,	Solution

Unicode	values

converting	strings	to,	Solution

converting	to	strings,	Solution

Uniform	Resource	Identifiers	(URI),	Solution,	Problem

union	set	operation,	Solution

union-type	structures,	creating,	Problem

unnamed	groups,	Discussion

Unrestricted	File	Upload	vulnerability,	Solution

UploadFileTaskAsync,	Solution

UploadValues	method,	Problem

Uri.EscapeDataString	method,	Solution

Uri.EscapeUriString	method,	Solution

Uri.UnescapeDataString	method,	Solution

URLs,	obtaining	HTML	from,	Problem

User	Account	Control,	Discussion

user	session	changes,	Problem

using	directive,	Discussion

using	statement,	Problem,	Introduction

utility	routines

capturing	output	from	standard	output	stream,	Problem

capturing	standard	output	for	processes,	Problem

controlling	services,	Problem

determining	current	OS/service	pack,	Problem

listing	current	processes,	Problem

makecert.exe,	Discussion

notification	of	shutdowns/session	changes,	Problem

running	code	in	its	own	AppDomain,	Problem

using	message	queues	on	local	workstations,	Problem

V

values

casting	from	larger	to	smaller,	Problem

checking	for	valid	enumeration,	Problem

examining	in	collections,	Introduction

minimum/maximum	boundaries,	Problem

returning	multiple,	Problem

rounding,	Problem,	Problem

sorting	in	dictionaries,	Problem

Values	property,	Discussion,	Discussion

var	keyword,	Discussion

variables

accessing	local,	Problem

initializing	to	default	value,	Problem

outer,	Discussion

VerifyRegEx	method,	Solution

VerifySignedString	method,	Solution

Visual	C#	.NET	language	compiler,	Discussion

W

WaitForChanged	method,	Problem

WaitForChangedResult	structure,	Discussion

web	browser	control,	Problem

web	proxies,	Problem

web	servers

communicating	with,	Problem

communicating	with	TCP-based,	Solution

custom	error	pages,	Problem

error	handling,	Problem

proxies,	Problem

TCP,	Problem

web.config	files,	Problem

WebBrowserNavigatedEventArgs	class,	Solution

WebClient	class,	Discussion

WebClient.DownloadDataTaskAsync	method,	Problem

WebClient.UploadDataTaskAsync	method,	Problem

WebProxy	objects,	Solution

WebRequest	class,	Problem

WebResponse	class,	Discussion

websites,	prebuilding	ASP.NET,	Problem

where	keyword,	Discussion,	Discussion

where	statements,	Discussion

whitespace,	Discussion

whole	numbers,	rounding	to,	Problem,	Problem

wildcard	character	(*),	Method	name

wildcard	character	(?),	Method	name,	Solution

wildcard	characters,	Problem

Win32	API,	Discussion

Windows	Communication	Foundation	(WCF),	Discussion

Windows	Firewall,	Discussion

Windows	Presentation	Foundation	(WPF),	Problem

WinForms-based	applications,	Problem,	Problem

WinINet	(WinInet	Windows	Internet)	API,	Solution

World	Wide	Web	(see	networking)

WPF-based	applications,	Problem

WriteElementInfo	method,	Solution

X

X.509	certificate,	Solution,	Discussion

XCData	object,	Solution

XDocument	class,	Introduction,	Problem

XDocument.Validate	method,	Problem,	Problem

XElement	class,	Discussion,	Introduction,	Discussion

XML	(Extensible	Markup	Language),	Introduction

XML	data

combining	with	SQL	data,	Solution

creating	from	databases,	Problem

detecting	changes	to,	Problem

extending	transformations,	Problem

getting	schemas	in	bulk	from	existing	files,	Problem

handling	invalid	characters,	Problem

passing	parameters	to	transformations,	Problem

querying,	Problem

reading/accessing	in	document	order,	Problem

transforming,	Problem

validating,	Problem

validating	without	reloading,	Problem

XmlDocument,	Discussion

XmlElement.InnerText	method,	Solution

XmlNodeType	enumeration	values,	Discussion

XmlReader	class,	Problem

XmlReader.Settings	property,	Problem

XmlSchemaInference	class,	Problem

XmlSecureResolver	class,	Discussion

XmlWriter	class,	Solution

XPath	methods,	Solution

XSLT,	Discussion

Y

yield	break	statements,	Discussion

yield	statements,	Introduction,	Discussion

Z

zip	files,	Problem

About	the	Authors

Jay	Hilyard	has	been	developing	applications	for	the	Windows	platform	for	over	20	years
and	for	.NET	for	more	than	15	of	those.	He	has	published	numerous	articles	in	MSDN
Magazine	and	currently	works	at	Newmarket	(an	Amadeus	company)	in	Portsmouth,	NH.

Stephen	Teilhet	started	working	with	the	pre-alpha	version	of	the	.NET	platform	and	has
been	using	it	ever	since.	At	IBM,	he	works	as	the	lead	security	researcher	on	their	static
source	code	security	analysis	tool,	which	is	used	to	find	vulnerabilities	in	many	different
languages	including	C#	and	Visual	Basic.

Colophon

The	animal	on	the	cover	of	C#	6.0	Cookbook,	Fourth	Edition,	is	a	garter	snake
(Thamnophis	sirtalis).	Named	because	their	longitudinal	stripes	resemble	those	on	garters
once	used	to	hold	up	men’s	socks,	garter	snakes	are	easily	identified	by	their	distinctive
stripes:	a	narrow	stripe	down	the	middle	of	the	back	with	a	broad	stripe	on	each	side	of	it.
Color	and	pattern	variations	enable	them	to	blend	into	their	native	environments,	helping
them	evade	predators.	They	are	the	most	common	snake	in	North	America	and	the	only
species	of	snake	found	in	Alaska.

Garter	snakes	have	keeled	scales	—	one	or	more	ridges	down	the	central	axis	of	the	scales
—	giving	them	a	rough	texture	and	lackluster	appearance.	Adult	garter	snakes	generally
range	in	length	between	46	and	130	centimeters	(one	and	a	half	feet	to	over	four	feet).
Females	are	usually	larger	than	males,	with	shorter	tails	and	a	bulge	where	the	body	and
tail	meet.

Female	garter	sare	ovoviviparous,	meaning	they	deliver	“live”	young	that	have	gestated	in
soft	eggs.	Upon	delivery,	most	of	the	eggs	and	mucous	membranes	have	broken,	which
makes	their	births	appear	live.	Occasionally,	a	baby	will	be	born	still	inside	its	soft	shell.	A
female	will	usually	deliver	10	to	40	babies:	the	largest	recorded	number	of	live	babies
birthed	by	a	garter	snake	is	98.	Once	emerging	from	their	mothers,	baby	garters	are
completely	independent	and	must	begin	fending	for	themselves.	During	this	time	they	are
most	susceptible	to	predation,	and	over	half	of	all	baby	garters	die	before	they	are	one	year
old.

Garter	snakes	are	one	of	the	few	animals	able	to	eat	toads,	newts,	and	other	amphibians
with	strong	chemical	defenses.	Although	diets	vary	depending	on	their	environments,
garter	snakes	mostly	eat	earthworms	and	amphibians;	however,	they	occasionally	dine	on
baby	birds,	fish,	and	small	rodents.	Garter	snakes	have	toxic	saliva	(harmless	to	humans),
which	they	use	to	stun	or	kill	their	prey	before	swallowing	them	whole.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the
world.	To	learn	more	about	how	you	can	help,	go	to	animals.oreilly.com.

The	cover	image	is	from	a	19th-century	engraving	from	the	Dover	Pictorial	Archive.	The
cover	fonts	are	URW	Typewriter	and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;
the	heading	font	is	Adobe	Myriad	Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu
Mono.

http://animals.oreilly.com

Preface
Who	This	Book	Is	For

What	You	Need	to	Use	This	Book

Platform	Notes

How	This	Book	Is	Organized

What	Was	Left	Out

Conventions	Used	in	This	Book

About	the	Code

Using	Code	Examples

Safari®	Books	Online

How	to	Contact	Us

Acknowledgments

Classes	and	Generics
1.0.	Introduction

1.1.	Creating	Union-Type	Structures

1.2.	Making	a	Type	Sortable

1.3.	Making	a	Type	Searchable

1.4.	Returning	Multiple	Items	from	a	Method

1.5.	Parsing	Command-Line	Parameters

1.6.	Initializing	a	Constant	Field	at	Runtime

1.7.	Building	Cloneable	Classes

1.8.	Ensuring	an	Object’s	Disposal

1.9.	Deciding	When	and	Where	to	Use	Generics

1.10.	Understanding	Generic	Types

1.11.	Reversing	the	Contents	of	a	Sorted	List

1.12.	Constraining	Type	Arguments

1.13.	Initializing	Generic	Variables	to	Their	Default	Values

1.14.	Adding	Hooks	to	Generated	Entities

1.15.	Controlling	How	a	Delegate	Fires	Within	a	Multicast	Delegate

1.16.	Using	Closures	in	C#

1.17.	Performing	Multiple	Operations	on	a	List	Using	Functors

1.18.	Controlling	Struct	Field	Initialization

1.19.	Checking	for	null	in	a	More	Concise	Way

Collections,	Enumerators,	and	Iterators
2.0.	Introduction

2.1.	Looking	for	Duplicate	Items	in	a	List<T>

2.2.	Keeping	Your	List<T>	Sorted

2.3.	Sorting	a	Dictionary’s	Keys	and/or	Values

2.4.	Creating	a	Dictionary	with	Min	and	Max	Value	Boundaries

2.5.	Persisting	a	Collection	Between	Application	Sessions

2.6.	Testing	Every	Element	in	an	Array	or	List<T>

2.7.	Creating	Custom	Enumerators

2.8.	Dealing	with	finally	Blocks	and	Iterators

2.9.	Implementing	Nested	foreach	Functionality	in	a	Class

2.10.	Using	a	Thread-Safe	Dictionary	for	Concurrent	Access	Without	Manual
Locking

Data	Types
3.0.	Introduction

3.1.	Encoding	Binary	Data	as	Base64

3.2.	Decoding	a	Base64-Encoded	Binary

3.3.	Converting	a	String	Returned	as	a	Byte[]	Back	into	a	String

3.4.	Passing	a	String	to	a	Method	That	Accepts	Only	a	Byte[]

3.5.	Determining	Whether	a	String	Is	a	Valid	Number

3.6.	Rounding	a	Floating-Point	Value

3.7.	Choosing	a	Rounding	Algorithm

3.8.	Safely	Performing	a	Narrowing	Numeric	Cast

3.9.	Testing	for	a	Valid	Enumeration	Value

3.10.	Using	Enumerated	Members	in	a	Bit	Mask

3.11.	Determining	Whether	One	or	More	Enumeration	Flags	Are	Set

Language	Integrated	Query	(LINQ)	and	Lambda	Expressions
4.0.	Introduction

4.1.	Querying	a	Message	Queue

4.2.	Using	Set	Semantics	with	Data

4.3.	Reusing	Parameterized	Queries	with	LINQ	to	SQL

4.4.	Sorting	Results	in	a	Culture-Sensitive	Manner

4.5.	Adding	Functional	Extensions	for	Use	with	LINQ

4.6.	Querying	and	Joining	Across	Data	Repositories

4.7.	Querying	Configuration	Files	with	LINQ

4.8.	Creating	XML	Straight	from	a	Database

4.9.	Being	Selective	About	Your	Query	Results

4.10.	Using	LINQ	with	Collections	That	Don’t	Support	IEnumerable<T>

4.11.	Performing	an	Advanced	Interface	Search

4.12.	Using	Lambda	Expressions

4.13.	Using	Different	Parameter	Modifiers	in	Lambda	Expressions

4.14.	Speeding	Up	LINQ	Operations	with	Parallelism

Debugging	and	Exception	Handling

5.0.	Introduction

5.1.	Knowing	When	to	Catch	and	Rethrow	Exceptions

5.2.	Handling	Exceptions	Thrown	from	Methods	Invoked	via	Reflection

5.3.	Creating	a	New	Exception	Type

5.4.	Breaking	on	a	First-Chance	Exception

5.5.	Handling	Exceptions	Thrown	from	an	Asynchronous	Delegate

5.6.	Giving	Exceptions	the	Extra	Info	They	Need	with	Exception.Data

5.7.	Dealing	with	Unhandled	Exceptions	in	WinForms	Applications

5.8.	Dealing	with	Unhandled	Exceptions	in	WPF	Applications

5.9.	Determining	Whether	a	Process	Has	Stopped	Responding

5.10.	Using	Event	Logs	in	Your	Application

5.11.	Watching	the	Event	Log	for	a	Specific	Entry

5.12.	Implementing	a	Simple	Performance	Counter

5.13.	Creating	Custom	Debugging	Displays	for	Your	Classes

5.14.	Tracking	Where	Exceptions	Come	From

5.15.	Handling	Exceptions	in	Asynchronous	Scenarios

5.16.	Being	Selective	About	Exception	Processing

Reflection	and	Dynamic	Programming
6.0.	Introduction

6.1.	Listing	Referenced	Assemblies

6.2.	Determining	Type	Characteristics	in	Assemblies

6.3.	Determining	Inheritance	Characteristics

6.4.	Invoking	Members	Using	Reflection

6.5.	Accessing	Local	Variable	Information

6.6.	Creating	a	Generic	Type

6.7.	Using	dynamic	Versus	object

6.8.	Building	Objects	Dynamically

6.9.	Make	Your	Objects	Extensible

Regular	Expressions
7.0.	Introduction

7.1.	Extracting	Groups	from	a	MatchCollection

7.2.	Verifying	the	Syntax	of	a	Regular	Expression

7.3.	Augmenting	the	Basic	String	Replacement	Function

7.4.	Implementing	a	Better	Tokenizer

7.5.	Returning	the	Entire	Line	in	Which	a	Match	Is	Found

7.6.	Finding	a	Particular	Occurrence	of	a	Match

7.7.	Using	Common	Patterns

Filesystem	I/O
8.0.	Introduction

8.1.	Searching	for	Directories	or	Files	Using	Wildcards

8.2.	Obtaining	the	Directory	Tree

8.3.	Parsing	a	Path

8.4.	Launching	and	Interacting	with	Console	Utilities

8.5.	Locking	Subsections	of	a	File

8.6.	Waiting	for	an	Action	to	Occur	in	the	Filesystem

8.7.	Comparing	Version	Information	of	Two	Executable	Modules

8.8.	Querying	Information	for	All	Drives	on	a	System

8.9.	Compressing	and	Decompressing	Your	Files

Networking	and	Web
9.0.	Introduction

9.1.	Handling	Web	Server	Errors

9.2.	Communicating	with	a	Web	Server

9.3.	Going	Through	a	Proxy

9.4.	Obtaining	the	HTML	from	a	URL

9.5.	Using	the	Web	Browser	Control

9.6.	Prebuilding	an	ASP.NET	Website	Programmatically

9.7.	Escaping	and	Unescaping	Data	for	the	Web

9.8.	Checking	Out	a	Web	Server’s	Custom	Error	Pages

9.9.	Writing	a	TCP	Server

9.10.	Writing	a	TCP	Client

9.11.	Simulating	Form	Execution

9.12.	Transferring	Data	via	HTTP

9.13.	Using	Named	Pipes	to	Communicate

9.14.	Pinging	Programmatically

9.15.	Sending	SMTP	Mail	Using	the	SMTP	Service

9.16.	Using	Sockets	to	Scan	the	Ports	on	a	Machine

9.17.	Using	the	Current	Internet	Connection	Settings

9.18.	Transferring	Files	Using	FTP

XML
10.0.	Introduction

10.1.	Reading	and	Accessing	XML	Data	in	Document	Order

10.2.	Querying	the	Contents	of	an	XML	Document

10.3.	Validating	XML

10.4.	Detecting	Changes	to	an	XML	Document

10.5.	Handling	Invalid	Characters	in	an	XML	String

10.6.	Transforming	XML

10.7.	Validating	Modified	XML	Documents	Without	Reloading

10.8.	Extending	Transformations

10.9.	Getting	Your	Schemas	in	Bulk	from	Existing	XML	Files

10.10.	Passing	Parameters	to	Transformations

Security
11.0.	Introduction

11.1.	Encrypting	and	Decrypting	a	String

11.2.	Encrypting	and	Decrypting	a	File

11.3.	Cleaning	Up	Cryptography	Information

11.4.	Preventing	String	Tampering	in	Transit	or	at	Rest

11.5.	Making	a	Security	Assert	Safe

11.6.	Verifying	That	an	Assembly	Has	Been	Granted	Specific	Permissions

11.7.	Minimizing	the	Attack	Surface	of	an	Assembly

11.8.	Obtaining	Security	and/or	Audit	Information

11.9.	Granting	or	Revoking	Access	to	a	File	or	Registry	Key

11.10.	Protecting	String	Data	with	Secure	Strings

11.11.	Securing	Stream	Data

11.12.	Encrypting	web.config	Information

11.13.	Obtaining	a	Safer	File	Handle

11.14.	Storing	Passwords

Threading,	Synchronization,	and	Concurrency
12.0.	Introduction

12.1.	Creating	Per-Thread	Static	Fields

12.2.	Providing	Thread-Safe	Access	to	Class	Members

12.3.	Preventing	Silent	Thread	Termination

12.4.	Being	Notified	of	the	Completion	of	an	Asynchronous	Delegate

12.5.	Storing	Thread-Specific	Data	Privately

12.6.	Granting	Multiple	Access	to	Resources	with	a	Semaphore

12.7.	Synchronizing	Multiple	Processes	with	the	Mutex

12.8.	Using	Events	to	Make	Threads	Cooperate

12.9.	Performing	Atomic	Operations	Among	Threads

12.10.	Optimizing	Read-Mostly	Access

12.11.	Making	Your	Database	Requests	More	Scalable

12.12.	Running	Tasks	in	Order

Toolbox
13.0.	Introduction

13.1.	Dealing	with	Operating	System	Shutdown,	Power	Management,	or	User
Session	Changes

13.2.	Controlling	a	Service

13.3.	List	What	Processes	an	Assembly	Is	Loaded	In

13.4.	Using	Message	Queues	on	a	Local	Workstation

13.5.	Capturing	Output	from	the	Standard	Output	Stream

13.6.	Capturing	Standard	Output	for	a	Process

13.7.	Running	Code	in	Its	Own	AppDomain

13.8.	Determining	the	Operating	System	and	Service	Pack	Version	of	the
Current	Operating	System

Index

	Preface
	Who This Book Is For
	What You Need to Use This Book
	Platform Notes
	How This Book Is Organized
	What Was Left Out
	Conventions Used in This Book
	About the Code
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	1. Classes and Generics
	1.0. Introduction
	1.1. Creating Union-Type Structures
	1.2. Making a Type Sortable
	1.3. Making a Type Searchable
	1.4. Returning Multiple Items from a Method
	1.5. Parsing Command-Line Parameters
	1.6. Initializing a Constant Field at Runtime
	1.7. Building Cloneable Classes
	1.8. Ensuring an Object’s Disposal
	1.9. Deciding When and Where to Use Generics
	1.10. Understanding Generic Types
	1.11. Reversing the Contents of a Sorted List
	1.12. Constraining Type Arguments
	1.13. Initializing Generic Variables to Their Default Values
	1.14. Adding Hooks to Generated Entities
	1.15. Controlling How a Delegate Fires Within a Multicast Delegate
	1.16. Using Closures in C#
	1.17. Performing Multiple Operations on a List Using Functors
	1.18. Controlling Struct Field Initialization
	1.19. Checking for null in a More Concise Way

	2. Collections, Enumerators, and Iterators
	2.0. Introduction
	2.1. Looking for Duplicate Items in a List<T>
	2.2. Keeping Your List<T> Sorted
	2.3. Sorting a Dictionary’s Keys and/or Values
	2.4. Creating a Dictionary with Min and Max Value Boundaries
	2.5. Persisting a Collection Between Application Sessions
	2.6. Testing Every Element in an Array or List<T>
	2.7. Creating Custom Enumerators
	2.8. Dealing with finally Blocks and Iterators
	2.9. Implementing Nested foreach Functionality in a Class
	2.10. Using a Thread-Safe Dictionary for Concurrent Access Without Manual Locking

	3. Data Types
	3.0. Introduction
	3.1. Encoding Binary Data as Base64
	3.2. Decoding a Base64-Encoded Binary
	3.3. Converting a String Returned as a Byte[] Back into a String
	3.4. Passing a String to a Method That Accepts Only a Byte[]
	3.5. Determining Whether a String Is a Valid Number
	3.6. Rounding a Floating-Point Value
	3.7. Choosing a Rounding Algorithm
	3.8. Safely Performing a Narrowing Numeric Cast
	3.9. Testing for a Valid Enumeration Value
	3.10. Using Enumerated Members in a Bit Mask
	3.11. Determining Whether One or More Enumeration Flags Are Set

	4. Language Integrated Query (LINQ) and Lambda Expressions
	4.0. Introduction
	4.1. Querying a Message Queue
	4.2. Using Set Semantics with Data
	4.3. Reusing Parameterized Queries with LINQ to SQL
	4.4. Sorting Results in a Culture-Sensitive Manner
	4.5. Adding Functional Extensions for Use with LINQ
	4.6. Querying and Joining Across Data Repositories
	4.7. Querying Configuration Files with LINQ
	4.8. Creating XML Straight from a Database
	4.9. Being Selective About Your Query Results
	4.10. Using LINQ with Collections That Don’t Support IEnumerable<T>
	4.11. Performing an Advanced Interface Search
	4.12. Using Lambda Expressions
	4.13. Using Different Parameter Modifiers in Lambda Expressions
	4.14. Speeding Up LINQ Operations with Parallelism

	5. Debugging and Exception Handling
	5.0. Introduction
	5.1. Knowing When to Catch and Rethrow Exceptions
	5.2. Handling Exceptions Thrown from Methods Invoked via Reflection
	5.3. Creating a New Exception Type
	5.4. Breaking on a First-Chance Exception
	5.5. Handling Exceptions Thrown from an Asynchronous Delegate
	5.6. Giving Exceptions the Extra Info They Need with Exception.Data
	5.7. Dealing with Unhandled Exceptions in WinForms Applications
	5.8. Dealing with Unhandled Exceptions in WPF Applications
	5.9. Determining Whether a Process Has Stopped Responding
	5.10. Using Event Logs in Your Application
	5.11. Watching the Event Log for a Specific Entry
	5.12. Implementing a Simple Performance Counter
	5.13. Creating Custom Debugging Displays for Your Classes
	5.14. Tracking Where Exceptions Come From
	5.15. Handling Exceptions in Asynchronous Scenarios
	5.16. Being Selective About Exception Processing

	6. Reflection and Dynamic Programming
	6.0. Introduction
	6.1. Listing Referenced Assemblies
	6.2. Determining Type Characteristics in Assemblies
	6.3. Determining Inheritance Characteristics
	6.4. Invoking Members Using Reflection
	6.5. Accessing Local Variable Information
	6.6. Creating a Generic Type
	6.7. Using dynamic Versus object
	6.8. Building Objects Dynamically
	6.9. Make Your Objects Extensible

	7. Regular Expressions
	7.0. Introduction
	7.1. Extracting Groups from a MatchCollection
	7.2. Verifying the Syntax of a Regular Expression
	7.3. Augmenting the Basic String Replacement Function
	7.4. Implementing a Better Tokenizer
	7.5. Returning the Entire Line in Which a Match Is Found
	7.6. Finding a Particular Occurrence of a Match
	7.7. Using Common Patterns

	8. Filesystem I/O
	8.0. Introduction
	8.1. Searching for Directories or Files Using Wildcards
	8.2. Obtaining the Directory Tree
	8.3. Parsing a Path
	8.4. Launching and Interacting with Console Utilities
	8.5. Locking Subsections of a File
	8.6. Waiting for an Action to Occur in the Filesystem
	8.7. Comparing Version Information of Two Executable Modules
	8.8. Querying Information for All Drives on a System
	8.9. Compressing and Decompressing Your Files

	9. Networking and Web
	9.0. Introduction
	9.1. Handling Web Server Errors
	9.2. Communicating with a Web Server
	9.3. Going Through a Proxy
	9.4. Obtaining the HTML from a URL
	9.5. Using the Web Browser Control
	9.6. Prebuilding an ASP.NET Website Programmatically
	9.7. Escaping and Unescaping Data for the Web
	9.8. Checking Out a Web Server’s Custom Error Pages
	9.9. Writing a TCP Server
	9.10. Writing a TCP Client
	9.11. Simulating Form Execution
	9.12. Transferring Data via HTTP
	9.13. Using Named Pipes to Communicate
	9.14. Pinging Programmatically
	9.15. Sending SMTP Mail Using the SMTP Service
	9.16. Using Sockets to Scan the Ports on a Machine
	9.17. Using the Current Internet Connection Settings
	9.18. Transferring Files Using FTP

	10. XML
	10.0. Introduction
	10.1. Reading and Accessing XML Data in Document Order
	10.2. Querying the Contents of an XML Document
	10.3. Validating XML
	10.4. Detecting Changes to an XML Document
	10.5. Handling Invalid Characters in an XML String
	10.6. Transforming XML
	10.7. Validating Modified XML Documents Without Reloading
	10.8. Extending Transformations
	10.9. Getting Your Schemas in Bulk from Existing XML Files
	10.10. Passing Parameters to Transformations

	11. Security
	11.0. Introduction
	11.1. Encrypting and Decrypting a String
	11.2. Encrypting and Decrypting a File
	11.3. Cleaning Up Cryptography Information
	11.4. Preventing String Tampering in Transit or at Rest
	11.5. Making a Security Assert Safe
	11.6. Verifying That an Assembly Has Been Granted Specific Permissions
	11.7. Minimizing the Attack Surface of an Assembly
	11.8. Obtaining Security and/or Audit Information
	11.9. Granting or Revoking Access to a File or Registry Key
	11.10. Protecting String Data with Secure Strings
	11.11. Securing Stream Data
	11.12. Encrypting web.config Information
	11.13. Obtaining a Safer File Handle
	11.14. Storing Passwords

	12. Threading, Synchronization, and Concurrency
	12.0. Introduction
	12.1. Creating Per-Thread Static Fields
	12.2. Providing Thread-Safe Access to Class Members
	12.3. Preventing Silent Thread Termination
	12.4. Being Notified of the Completion of an Asynchronous Delegate
	12.5. Storing Thread-Specific Data Privately
	12.6. Granting Multiple Access to Resources with a Semaphore
	12.7. Synchronizing Multiple Processes with the Mutex
	12.8. Using Events to Make Threads Cooperate
	12.9. Performing Atomic Operations Among Threads
	12.10. Optimizing Read-Mostly Access
	12.11. Making Your Database Requests More Scalable
	12.12. Running Tasks in Order

	13. Toolbox
	13.0. Introduction
	13.1. Dealing with Operating System Shutdown, Power Management, or User Session Changes
	13.2. Controlling a Service
	13.3. List What Processes an Assembly Is Loaded In
	13.4. Using Message Queues on a Local Workstation
	13.5. Capturing Output from the Standard Output Stream
	13.6. Capturing Standard Output for a Process
	13.7. Running Code in Its Own AppDomain
	13.8. Determining the Operating System and Service Pack Version of the Current Operating System

	Index

