

C#

For Beginners

The tactical guidebook

Learn by coding

C# For Beginners - The Tactical Guide Book

All rights reserved. The content is presented as is and the publisher and author assume no

responsibility for errors or omissions. Nor is any liability assumed for damages resulting from

the use of the information in the book or the accompanying source code.

It is strictly prohibited to reproduce or transmit the whole book, or any part of the book, in

any form or by any means without the written permission of the author.

You can reach the author at: info@csharpschool.com.

ISBN-13: 978-1518877551, ISBN-10: 1518877559

Copyright © 2013 by Jonas Fagerberg, All rights reserved.

Source code

The source code accompanying this book is shared under the MIT License and can be down-

loaded here after registering with the site http://www.csharpschool.com using the code cfb

or by emailing the author.

About the author

Jonas started a company back in 1994 focusing on education in Microsoft Office and the

Microsoft operating systems. While still studying at the university in 1995, he wrote his first

book about Widows 95 as well as a number of course materials.

In the year 2000, after working as a Microsoft Office developer consultant for a couple of

years, he wrote his second book about Visual Basic 6.0.

Between 2000 and 2004 he worked as a Microsoft instructor with two of the largest

educational companies in Sweden. First teaching Visual Basic 6.0, and when Visual Basic.NET

and C# were released he started teaching these languages as well as the .NET Framework.

Teaching classes on all levels for beginner to advanced developers.

From the year 2005, Jonas shifted his career towards consulting once again, working hands

on with the languages and framework he taught.

Jonas wrote his third book C# programming aimed at beginners to intermediate developers

in 2013 and now in 2015 his fourth book C# for beginners - The Tactical Guide was published.

C# For Beginners

Contents

PART 1 - THE C# LANGUAGE ... 1

1. Introduction To C# ... 1

Who is this book for? ... 1

Disclaimer .. 1

Introduction ... 2

What is a program? ... 2

The language of a computer .. 3

Bits and bytes .. 5

Number bases .. 6

Decimal to binary... 6

Binary to decimal ... 7

Decimal to hexadecimal .. 7

Hexadecimal to decimal .. 7

Project templates used in this book .. 8

Console Application ... 8

Windows Forms Application .. 8

Class Library ... 8

The Console Application .. 9

Compiling (building) a Console Application ... 11

How to create a Console Application .. 12

Interacting with the Console Window ... 13

Writing to the Console window ... 13

Reading user input from the Console window .. 14

Keeping the Console window open when debugging ... 15

i

C# For Beginners

Exercise: Create your first Console Application .. 15

Creating the solution ... 16

Keeping the Console window open ... 17

Ask for the user's name ... 18

Ask for the user's age .. 19

Namespace and using .. 21

Regions .. 22

Exercise: Adding regions to the application .. 23

A first look at Windows Forms .. 25

Creating the solution ... 26

The project content ... 26

Adding controls to the form .. 28

Naming a control ... 29

Where to write the code ... 29

Code accessibility... 30

Exercise: Creating your first Window Forms Application .. 32

Create the form and add controls ... 32

Add code to the button ... 33

2. Conditional Logic ... 37

Introduction ... 37

If ... 37

If statement ... 38

If…else statement .. 38

If…else if statement ... 38

If statement inside another if statement .. 38

Switch .. 39

ii

C# For Beginners

Exercise: Conditional logic ... 40

If/else logic .. 41

Adding the controls ... 41

Enable/disable the controls ... 42

Clicking the button .. 43

Switch logic .. 45

Adding the controls ... 45

Adding the countries to the combo box .. 45

3. Variables .. 49

Introduction ... 49

Value type vs. reference type .. 49

Data types .. 51

Arithmetic operators ... 52

Naming rules for variables ... 53

Casting ... 54

Implicit casting ... 54

Explicit casting ... 54

The System.Convert class .. 55

The TryParse method .. 55

Numeric variables .. 56

Exercise: Simple order form .. 56

Creating the order form .. 58

Adding the Product textbox .. 58

Adding the Price textbox ... 59

Adding the Units numericUpDown control ... 60

Adding the Line Total textbox ... 60

iii

C# For Beginners

Duplicating the order row ... 61

Adding the Discount textbox ... 61

Adding the VAT textboxes ... 61

Adding the Total textbox ... 62

Adding the Calculate button .. 62

Restricting the input to numerical values ... 62

Adding the KeyPress event .. 66

Calculate the line total... 68

Calculate the order total ... 70

String variables .. 72

String concatenation ... 72

String validation ... 73

Exercise: StringBuilder and Regex ... 73

Creating the solution ... 75

Adding the form controls .. 75

Adding the regular expression constant and StringBuilder variable 75

Arrays ... 78

One dimensional arrays ... 79

Two dimensional arrays ... 80

Looping over values in an array ... 80

Exercise: Building a calculator ... 81

The use case .. 81

The solution ... 84

The value labels ... 84

The buttons ... 85

The math function label (the blue one) ... 85

iv

C# For Beginners

The numerical buttons .. 86

The Delete button ... 88

The Clear button .. 89

The Memory button .. 90

The Memory Recall button .. 90

The Decimal button ... 91

The Arithmetic buttons ... 92

The Sign button ... 93

The Square Root button .. 94

The Equals button .. 96

4. Loops and Iterations .. 101

Introduction ... 101

For .. 101

Foreach .. 102

While.. 103

Do .. 103

Exercise: Loops .. 103

Adding the controls ... 104

Adding values to the lstCars list box .. 104

Moving the selected values to the lstSelectedCars list box with a foreach loop 105

Moving the selected values to the lstSelectedCars list box with a while loop 106

5. Debugging .. 109

Introduction ... 109

Breakpoints and windows ... 109

Exercise: Debugging the calculator ... 112

Exercise: Debugging the order form .. 113

v

C# For Beginners

6. Simple Types .. 115

Introduction ... 115

Enum .. 115

Exercise: Weekdays (part 1) .. 117

Struct ... 120

Properties .. 121

Exercise: Weekdays (part 2) .. 123

Creating the Day struct .. 126

The Form_Load event .. 128

The Weekdays_SelectedIndexChanged Event .. 130

7. Methods .. 133

Introduction ... 133

Creating methods .. 133

Naming methods ... 133

The method body .. 134

Method without parameters ... 134

Method with parameters .. 135

Method with reference parameters .. 137

Method with out parameters .. 138

Method with a return type .. 139

Calling methods ... 141

Overload methods ... 141

Optional method parameters .. 142

Named method arguments ... 144

Debugging methods .. 144

Step into .. 145

vi

C# For Beginners

Step over .. 145

Step out ... 145

Exception handling .. 145

Try/Catch block .. 146

Finally block ... 147

Throwing exceptions ... 148

Exercise: Refactoring the calculator application ... 150

Adding regions ... 152

The AddDigit method .. 152

The btnNumber_Click event .. 153

The DeleteDigit method .. 154

The btnDelete_Click event .. 154

The AddDecimal method ... 155

The btnDecimal_Click event .. 155

The ToggleSign method ... 156

The btnSign_Click event .. 156

The CanCalculate method ... 156

The EndWithDecimalSign method ... 157

The Calculate method.. 158

The btnEquals_Click event... 159

The btnSqrt_Click event .. 160

8. Collections ... 161

Introduction ... 161

List ... 161

Exercise: Map coordinates .. 163

Adding the controls ... 164

vii

C# For Beginners

Adding the MapPoint struct .. 164

The Form_Load event .. 166

The Add button .. 166

The Delete button ... 168

Dictionary .. 169

Exercise: Book dictionary... 171

Adding the Controls ... 174

Adding Book struct .. 174

Adding books to the books collection ... 176

Adding Books to the list view .. 176

The Add button .. 177

The Delete button ... 179

Queue .. 180

Exercise: Order form .. 180

Adding the controls ... 180

Adding the Order struct ... 181

The Form_load event .. 182

The Add button .. 182

The Get button .. 183

Stack .. 184

Exercise: Deck of cards .. 184

Adding the controls ... 185

Adding the enums ... 185

Adding the Card struct ... 185

Adding the playing cards to the stack ... 186

The Draw button.. 187

viii

C# For Beginners

Introduction to LINQ.. 188

Order example ... 188

Query syntax .. 190

Fetch all items .. 190

Fetch a specific item .. 191

Sorting the fetched items .. 192

Joining two collections (anonymous object) ... 192

Joining two collections using an existing class or struct ... 193

Exercise: Order form .. 194

Adding the controls ... 196

Adding the Order struct ... 197

Adding the Customer struct .. 198

Adding the collections ... 199

Adding ShowCustomerOrder method ... 200

The cboCustomers_SelectedIndexChanged event .. 202

The tab control's SelectedIndexChanged event .. 203

The Add Order button ... 204

The Peek On Next Order button .. 205

The Process Next Order button ... 206

The List Orders button ... 207

The Close button ... 209

Mini Use Case: Poker application .. 210

Description .. 210

The GUI .. 210

The card ... 211

The hand .. 211

ix

C# For Beginners

The Code-behind (form code) ... 212

Evaluating the hand ... 213

How to create a struct in a separate file ... 213

How to add controls dynamically .. 213

How to implement the IComparable interface ... 214

Implementation ... 215

The GUI .. 215

The Card struct .. 216

The Hand struct ... 220

The form variables ... 221

The Initialize method ... 222

The ShuffleDeck method ... 224

The DealCards method .. 226

The EvaluateHand method .. 228

The CompareCards method... 240

The CompareHands method ... 241

The CreateCard method .. 247

The RevealCards method ... 247

The button's Click event .. 250

9. Classes ... 251

Introduction ... 251

Adding a class .. 251

Access modifiers .. 252

Adding members ... 253

Instantiating classes... 254

Constructor .. 254

x

C# For Beginners

Calling an overloaded constructor .. 255

Exercise: Customer data .. 256

The GUI .. 258

The Customer class .. 258

Binding the data source ... 260

The Add button .. 261

The Update button .. 261

The Remove button ... 262

Class libraries ... 263

Create a class library .. 263

Reference a class library .. 263

Mini Use Case: Create a class library ... 264

Crating the projects ... 266

The Order class .. 267

The OrderRow class ... 268

Creating the Data class .. 269

The GUI (the main form) ... 271

The GUI (the add order row form) .. 271

Binding the controls in the main form .. 272

The ContainsOrder method ... 274

The btnAddOrder_Click event ... 275

The UpdateOrder method ... 277

The btnUpdateOrder_Click event.. 278

The RemoveOrder method .. 279

The GetOrderRows method .. 279

The UpdateOrderRowBinding method in the main form .. 280

xi

C# For Beginners

The btnRemoveOrder_Click event .. 281

The frmAddOrderRow form's constructor .. 282

The OK button in the frmAddOrderRow form ... 282

The Cancel button in the frmAddOrderRow form ... 283

The EmptyOrderRow method ... 284

The AddOrderRow method ... 284

The ShowAddOrderRowForm method in the main form .. 285

The Add Order Row button in the main form ... 286

Binding the combo box's SelectedindexChanged event ... 288

The RemoveOrderRow method ... 288

Remove an order row .. 289

Update the data in an order row ... 289

Reference types vs. value types .. 289

Boxing and unboxing ... 290

Static classes .. 291

Static members .. 291

Exercise: Calculator with static class and class library .. 291

Create the class library project .. 292

Move the constants and methods ... 292

10. Interfaces ... 295

Introduction ... 295

Interface declaration ... 295

Implicit interface implementation ... 296

Creating an instance from an implicit interface .. 297

Explicit interface implementation ... 297

Creating an instance from an explicit interface .. 298

xii

C# For Beginners

Exercise: Employee class with two interfaces ... 298

The IPerson interface .. 299

The IEmployee interface .. 299

The Employee class.. 300

The GUI .. 301

Interface polymorphism .. 303

Exercise: Interface polymorphism ... 306

The IAnimal interface .. 307

The classes ... 307

The Dog class ... 308

The Dinosaur class ... 308

The GUI .. 308

The IComparable interface .. 310

Implementing the IComparable interface ... 310

The Book Class ... 310

Sorting a book list .. 311

The IComparer interface ... 312

The Book Class ... 312

The BookComparer Class Implementing the IComparer Interface 312

Sorting a book list .. 313

11. Events .. 315

Introduction ... 315

Defining an event .. 315

Raising an event ... 316

Subscribing to an event ... 316

Event example ... 317

xiii

C# For Beginners

The Product class ... 318

The OrderRow class ... 318

The Order class (event publisher).. 319

The client (event subscriber) ... 320

Exercise: Video rental with events .. 322

The GUI .. 323

The Video class .. 324

The VideoComparer class .. 324

The VideoRental class (event publisher) ... 325

Events and Video collection .. 325

The GetVideos method .. 326

The AddVideoToList method ... 326

The RentVideo method ... 327

The ReturnVideo method .. 328

The Form class (event subscriber) ... 329

The Rent button's click event .. 330

The AllCopiesRentedOut event method .. 330

The VideoInfo event method... 331

The Return button's Click event .. 331

The VideoReturned Event Method .. 332

12. Inheritance... 333

Introduction ... 333

Base class: FlyingMachine ... 334

More specialized classes: Plane and Saucer .. 334

Even more specialized classes: Jet and UFO.. 335

Using the classes .. 335

xiv

C# For Beginners

Base classes ... 336

Abstract ... 336

Creating an Abstract Class ... 337

Using an Abstract class .. 337

Sealed .. 338

Creating a Sealed class .. 338

Using a Sealed class ... 339

Base class members... 339

New vs. Override ... 340

The base class .. 341

The Deriving class .. 341

Casting the Deriving class as the base class .. 342

Sealing overridden members .. 343

Access modifiers .. 344

Example: Access modifiers (The Godfather) ... 344

Assemblies, classes and inheritance .. 345

The Corleone class ... 346

The Don class ... 346

The Joe class .. 348

The KillerCodex class ... 349

The Minion class .. 350

The Constable class ... 350

The base keyword .. 351

The base class .. 352

The deriving class .. 352

Exercise: Inheritance and access modifiers (Jedi vs. Sith) ... 353

xv

C# For Beginners

Creating the assemblies .. 356

The Common Traits assembly ... 356

The Races and Force enumerations .. 356

The TheForce class... 357

The Being class... 359

The Jedis assembly .. 361

The Jedi class ... 362

The Siths assembly .. 364

The Sith class ... 364

The JediVsSith assembly .. 368

The PrintBeing method .. 368

The PrintQuestions method .. 369

The Main method .. 371

Mini Use Case: Car rental .. 375

Tightly coupled vs. loosely coupled design ... 375

Specification for the Car rental application ... 376

Prices ... 376

Rental ... 376

Specification .. 377

Three assemblies ... 378

The Application structure .. 378

The application GUI ... 379

The business layer structure.. 381

The data layer structure .. 382

Implementation of the Car rental application ... 385

The assemblies .. 385

xvi

C# For Beginners

The Entity interfaces and classes ... 385

The Customer interface and class ... 386

The Booking interface and class .. 387

The VehicleType interface and class ... 388

The Vehicle interface and class ... 390

The Car class .. 393

The data source (the test data) ... 393

The IDataLayer interface and DataLayer class .. 397

The IBookingProcessor interface and BookingProcessor class 398

The GUI .. 400

Rent Vehicle: List customers ... 402

The IRentalBase interface .. 403

The CollectionDataLayer class ... 404

The BookingProcessor class ... 405

The ComboCustomer class .. 406

Filling the combo box .. 407

Rent Vehicle: List available vehicles .. 408

The VehicleSatus enumeration.. 409

The IRentalBase interface .. 410

The CollectionDataLayer class ... 411

The BookingProcessor class ... 413

The GetVehicles ListViewItem conversion method ... 415

Filling the list view ... 416

Rent Vehicle: Rent a vehicle .. 417

The IRentalBase interface .. 417

The CollectionDataLayer class ... 418

xvii

C# For Beginners

The BookingProcessor class ... 420

Renting a vehicle ... 421

Return Vehicle: Fill the booked vehicles list box ... 425

Filling the list view ... 425

Return Vehicle: Return a vehicle ... 426

The BookingsException, VehicleException and CustomerException classes 428

The IDataLayer interface ... 429

The RentalDuration method .. 430

The CalcualtePrice method ... 431

The IRentalBase interface .. 433

The ReturnVehicle method in the CollectionDataLayer class 434

The ReturnVehicle method in the BookingProcessor class 437

The GetBookings method in the CollectionDataLayer class 438

The IBookingProcessor interface ... 439

The GetBooking method in the BookingProcessor class ... 440

The IsNumeric method .. 442

Returning a vehicle .. 443

Bookings: List bookings ... 447

The ListViewBooking class ... 448

Filling the list view ... 449

Add Data: List vehicle types ... 452

The IRentalBase interface .. 452

The CollectionDataLayer class ... 453

The BookingProcessor class ... 454

Filling the combo box .. 455

Add Data: Add a new vehicle ... 457

xviii

C# For Beginners

The IRentalBase interface .. 457

The CollectionDataLayer class ... 458

The BookingProcessor class ... 460

Adding a vehicle... 462

Add Data: Add a new customer ... 466

The IRentalBase interface .. 467

The CollectionDataLayer class ... 468

The IBookingProcessor interface ... 469

The BookingProcessor class ... 470

Adding a customer ... 472

PART 2 - .NET FRAMEWORK ... 478

13. Using Streams .. 479

Introduction ... 479

Streams and binary data.. 480

Writing binary data .. 480

Example: Writing a byte array to a file using a BinaryWriter 480

Reading binary data ... 480

Example: Reading a whole file with a BinaryReader ... 481

Example: Reading from a BinaryReader with a while loop 481

Example: Reading from a BinaryReader with a for loop ... 482

Streams and text data ... 482

Writing text data.. 482

Example: Writing with a StreamWriter ... 483

Reading text data... 483

Example: Reading characters with a StreamReader ... 483

Example: Reading a whole text file with a StreamReader .. 484

xix

C# For Beginners

Exercise: Reading/writing data to binary and text files .. 484

The IO class .. 485

The GUI .. 488

Saving binary data ... 491

Reading binary data ... 492

Saving text data ... 493

Reading text data... 494

Exercise: Car Rental - Saving customers to a file .. 495

Adding the WriteToFile method .. 495

Saving the customers .. 497

14. Serialization ... 499

Introduction ... 499

Serializing and deserializing ... 500

Binary serialization .. 501

Binary deserialization .. 501

XML serialization ... 502

XML deserialization ... 502

JSON serialization .. 503

JSON deserialization .. 503

Exercise: Car Rental - Persisting data .. 503

Adding the ISerialize interface ... 504

Implementing the ISerialize interface ... 505

Implementing the four deserialize methods ... 506

Implementing the Seed method .. 507

Implementing the FormClosing event ... 507

15. Reflection ... 509

xx

C# For Beginners

Introduction ... 509

Loading assemblies .. 510

Examining types ... 511

GetType/GetTypes ... 512

GetConstructors .. 512

GetFields .. 513

GetProperties .. 513

GetMethods ... 514

Invoking members ... 514

Creating an instance of a type ... 515

Calling methods ... 516

Setting property values ... 517

Getting Property Values .. 518

Exercise: Reflection ... 519

The solution setup ... 520

The GUI .. 520

Loading the assembly type .. 521

The LoadAssembly class .. 521

The Members class .. 522

The form's Load event ... 522

Fetching the constructors in the type ... 524

The GetType method ... 524

The GetConstructors method .. 525

The SelectedIndexChanged event ... 527

Fetching the fields in the type ... 528

The GetFields method ... 529

xxi

C# For Beginners

The SelectedIndexChanged event ... 530

Fetching the properties in the type ... 531

The GetProperties method .. 531

The SelectedIndexChanged event ... 532

Fetching the methods in the type ... 533

The GetMethods method .. 534

The SelectedIndexChanged event ... 536

Calling a method in the type ... 537

The LoadExecutable method ... 538

The CreateWithSpecificConstructor method .. 539

The ExecuteMethod method ... 540

The Call Method button Click event .. 542

Saving and reading a value from a property ... 543

The SetProperty and GetProperty methods ... 544

The CreateWithDefaultConstructor method ... 546

The Set Property button's Click event ... 548

The Get Property button's Click event .. 549

16. Generics ... 551

Why use generics? ... 551

Collections ... 552

Constraining a collection ... 552

Creating a specialized collection using generics .. 553

Exercise: Generic collections ... 555

Using a collection ... 555

The interface solution .. 557

The generic solution .. 558

xxii

C# For Beginners

Constraining generics .. 560

Constraints ... 560

Must be a class .. 560

Must derive from a specific base class .. 561

Must have a default constructor ... 562

Must implement a specific interface ... 562

Exercise: Creating a specialized collection .. 563

Create and implement the IRegisterable interface ... 563

Create the Repository class ... 564

Create the Add and Get methods in the Repository class .. 565

The GUI .. 566

Testing the Repository with the Motorcycle class .. 568

Constrain with class and default constructor .. 569

Extension methods .. 571

Example: Extension method .. 571

Chaining extension methods ... 572

Example: Chaining extension methods ... 572

Generic methods ... 573

Example: Generic extension methods ... 573

Exercise: Generic extension methods ... 575

Creating the Search extension method ... 575

The GUI .. 579

Calling the Search extension method .. 579

Delegates and generics .. 581

Example: Outputting data without a delegate using a generic approach 581

Example: Using a delegate .. 581

xxiii

C# For Beginners

Example: Using a generic delegate .. 583

Action/Func/Predicate delegates .. 584

Action Delegate ... 584

Example: Replacing a delegate .. 584

Example: Inline delegate ... 585

Example: Using Lambda... 585

Func delegate .. 586

Example: Calling a Func ... 586

Predicate delegate ... 586

Example: Calling a predicate ... 586

Exercise: Action/Func/Predicate delegates ... 587

The GUI .. 587

Adding an Action ... 588

Using the Action .. 588

Using a Func ... 590

Using a Predicate ... 591

Events and generics ... 592

Example: Generic event ... 593

Mini Use Case: Car rental - Generic business rules engine ... 595

The BusinessRule<T> class ... 598

The RuleComparer class .. 599

The Compare method .. 599

The EvaluateRules<T> method .. 600

Adding and testing rules .. 604

Mini Use Case: Car rental - Generic reflection data layer ... 607

Creating the interfaces and classes ... 608

xxiv

C# For Beginners

The generic Get method .. 609

Adding the Get method to the IGenericBase interface ... 610

Implementing the Get method in the GenericProcessor class.................................. 610

Implementing the Get method in the GenericDataLayer class 611

Replacing the Get method calls in the form .. 612

Refactoring the GetVehicles method .. 614

Refactoring the GetVehicleTypes method .. 616

The Refactored IGenericBase interface ... 617

The Refactored IGenericProcessor interface... 618

The generic Add method ... 618

The IGenericDataLayer interface ... 618

Implementing the Add method in the GenericDataLayer class 619

The IGenericProcessor interface ... 621

Implementing the Add method in the GenericProcessor class 622

Altering the AddVehicle method in the form's code-behind 623

Altering the AddCustomer method in the form's code-behind 624

17. Multithreading ... 627

Introduction ... 627

Tasks .. 627

Example: Use an Action delegate to perform a Task: ... 627

Example: Using an anonymous delegate to perform a Task ... 628

Creating tasks using Lambda expressions ... 628

Example: Task and Lambda expression with an implemented function 629

Example: Task and Lambda expression with an Anonymous delegate 629

Controlling Task execution .. 630

Example: Three ways to start a Task ... 630

xxv

C# For Beginners

Waiting on Tasks .. 630

Example: "Wait On One" Task ... 631

Example: "Wait On Any" Task ... 632

Example: "Wait On All" Tasks .. 632

Return a value from a Task .. 633

Example: Return a value from a Task .. 633

Cancel a Task ... 634

Example: Cancel a Task without throwing an exception ... 634

Example: Cancel a Task throwing an exception .. 635

Parallel Tasks ... 636

Example: A fixed set of Tasks .. 636

Parallel iterations ... 637

Example: Parallel For ... 637

Example: Parallel Foreach ... 638

Parallel LINQ .. 639

Handling Task exceptions .. 639

Concurrent collections .. 641

Thread-safe collections.. 641

Example: Thread-safe ConcurrentQueue and ConcurrentBag 641

The Order class .. 642

The Form .. 642

Exercise: Restaurant .. 644

The Dish class... 646

The Order class .. 646

The GUI .. 647

The PlaceOrders method ... 648

xxvi

C# For Beginners

The ProcessOrders method ... 649

The OpenRestaurant method .. 651

The btnStart_Click event ... 652

The btnCancel_Click event .. 652

18. Async .. 653

Introduction ... 653

async and await ... 653

Blocked GUI thread .. 653

Suspend execution .. 654

Awaitable methods ... 654

Callback methods .. 656

Synchronizing concurrent data access .. 657

Lock block .. 658

Example: Class with a method using lock .. 658

Example: Calling method using a lock ... 659

Exercise: Stock history ... 660

The Stock class ... 661

The GUI - Part 1 ... 664

The StockFactory class ... 666

Constants, properties and constructor ... 666

The ParsePrices method .. 669

The GetStockAsync method .. 671

The GetStockData method .. 674

The GUI - Part 2 ... 679

The GetData method ... 679

The GetData method ... 680

xxvii

C# For Beginners

xxviii

C# For Beginners

PART 1 - THE C# LANGUAGE

C# For Beginners

C# For Beginners

1. Introduction To C#

Who is this book for?

This book is primarily aimed towards developers who are new to C# and have none or very

limited prior experience with C# and are up for a challenge. The book does not presuppose

that you have any prior C# knowledge since the purpose of the book is to teach you just

that. Even if you already have created a couple of small C# projects on your own or have

been developing applications for a while you might find the content in this book useful as a

refresher.

Disclaimer

 If you prefer encyclopaedic books describing everything in minute detail with short exam-

 ples, then this book is NOT for you. To get the most benefit from the content and learn as

 much as possible as fast as possible you should read the text and then read through and

 implement the exercises provided for you.

It's important to mention that this book is not meant to be encyclopaedic, it's a practical and

tactical book where you will learn as you progress through the examples and build a couple

of real applications in the process. Because I personally dislike having to read hundreds upon

hundreds of pages of fluff (filler material) that is not relevant to the task at hand, and view it

as a disservice to the readers, I will assume that we are of a same mind when it comes to this

and will therefore only include important information pertinent to the tasks at hand and

thus saving you time and effort in the process. Don't get me wrong, I will describe the

important things in great detail, leaving out only the things which are not directly relevant to

your first experience with C#. The goal is for you to have created many small and a couple of

larger applications with C# using Windows Forms upon finishing this book. You can always

look into details at a later time when you have a few projects under your belt .

The examples in this book are presented using Visual Studio 2013 Professional Update 4 but

the free express version should do fine if you want to follow along and implement them

yourself. Most of the examples and exercises can be implemented with earlier versions of

Visual Studio.

1

C# For Beginners

 The book presupposes that you already have Visual Studio installed on your computer.

Introduction

At the end of this chapter you will have an understanding of what an application is and the

parts that make up an application.

What is a program?

An application or a program as it also is called can refer to many different things. It can be a

desktop application which runs on Windows or Mac OSX like the calculator, a word process-

or or a spread sheet, but it can also be a web site or even something smaller like the applica-

tion built in to a kitchen appliance.

In its simplest form a program is comprised of algorithms that will process data which either

is fetched from a data store, such as a database, a file or user input.

Fetched data whether from a data store or user input can then be run through one or more

algorithms to reach the goal set up for that algorithm sequence, such as display order data

to a customer, calculate the total price for the items in an online shopping cart, or save data

back to the data store.

An algorithm is code that describes how data will be entered/fetched from a data store, a

keyboard or other types of input devices and subsequently manipulated, calculated, display-

ed and/or saved back to a data store.

To boil it down: in-data is processed by one or more algorithms that produces a result (out-

data).

2

C# For Beginners

When implementing code using a modern programming language algorithms are often

placed in what is known as methods or functions for easier reuse. Though there arguably can

be differences between methods and functions in some languages the names will be used

interchangeably in this book.

The language of a computer

The core (brain) of a computer is its processor (CPU) which does all the calculations and runs

all the algorithms. As of the writing of this book it is very common with multi-core

processors meaning that they can execute multiple requests at the same time making the

computer work faster. A 4-core processor can run 4 algorithms in parallel and although you

in reality can run many more algorithms seemingly at the same time this is achieved by a

cleaver use of what is known as threads. Threads are given short time slots in a rotating

schedule for one or more of the processor cores.

The processor work with low-level instructions which is specific to certain types of

processors. This mean that a program you write for a PC might not work on another perso-

nal computer. The low-level instructions are interpreted differently depending on what

operating system the application was created for, this means that a program compiled (built)

for the Windows operating system cannot be executed on for instance Mac OSX. On more

modern Mac computers you can run what is called dual boot where you actually can install

Windows on the computer enabling you to run the PC application provided the Mac is boot-

ed with Windows.

All instructions sent to the processor is in binary format 0's and 1's. This means that your C#

code must be converted into binary machine code somehow. For .NET applications this is a

two stage rocket where the C# code first is compiled by Visual Studio into what is known as

IL/MSIL (Intermediate language). The IL code can be viewed as C# code which has been

turned into intermediate instructions which the .NET framework Just-in-time (JIT) compiler

then can turn into low-level machine code (0's and 1's) when the application is run. The JIT

compiler is even smart enough to only compile the code that is needed for the task at hand

and to cache methods that already have been executed speeding up the execution for

subsequent calls.

In short, data and instructions are transferred as binary data, 0’s and 1's, which the

processor can understand.

3

C# For Beginners

High-level languages such as C# and VB.NET has a semantic much like a human readable

language which means that it cannot be run directly by a CPU. It first has to be converted

into machine code.

Example: C# code  Is compiled to Intermediate Language (IL) in Visual Studio using the

Common Type System  The Just-in-time (JIT) Compiler compiles the IL code to machine

code  The CPU executes the code.

You can view the MSIL code for an application by opening a Console window with Visual

Studio paths and type in ILDASM followed by a space and the path and name of the applica-

tion. The full name of the ILDASM tool is Intermediate Language Disassembler.

The processor works tightly with the internal memory (RAM) to store instructions between

cycles or finished results which will be displayed to the user or saved to a permanent data

store.

As an example when the 'A' key is pressed on the keyboard a binary instruction is sent to the

processor which will process the request using the RAM memory before displaying the 'A' as

output to the user.

4

C# For Beginners

Bits and bytes

 Bit stands for binary digit which is the smallest data unit capable of storing a value of 1 or 0

which often represent true or false. Bits are used to store and process data. To be able to

work more effectively with data bits are chunked together into bytes where each byte is

made up of 8 bits. Each byte can have a value of 0 to 255 which can represent a number,

character or a data instruction. Several bytes can be used to store a single value, if more

than one byte is used then the subsequent bytes are appended to the left side of the first

byte. You always read a binary value from right to left. Because you add a full byte at a time

you get the tuples 256, 512, 1024, 2048 and so on.

The following image shows the bit values for one byte, in this case the capital letter A which

has a value of 65.

A binary value can be interpreted as an instruction, a memory reference or data depending

on the context it is used. If it is a program the CPU will interpret the binary data as instruc-

5

C# For Beginners

tions and run it, if it is a memory address it will fetch or update data in the memory and if it

is in the form of data the data is used with the processor instructions to complete a specific

task, such as calculating a value.

Number bases

When creating an application there are three number bases which are frequently used. The

number base used daily by most people is the decimal base which has a base of 10 hence

the name, this is regularly used for measurements, currency and equations. The second

number base is the binary base with a base of 2. In programming it is regularly used for

describing bits which is the smallest storage of data represented by a 0 or a 1 where 1 means

that it should be used and 0 that it should be ignored. The third is the hexadecimal base with

a base of 16 and is regularly used when working with colors. In order to represent values

over 9 the first letters of the alphabet is used to describe 10-15 (A-F).

To distinguish between the different bases when presenting values you use subscript to

state the base after the value like 5310 for the decimal value 53, and 1101012 for the binary

value 53, and 3516 for the hexadecimal value 53.

Let's have a look at how you can convert one base to another. You can use the calculator in

 Programmer mode when converting between bases.

Decimal to binary

Let's convert the decimal number 53 into binary code. Looking at the number 53 you can see

that it is smaller than 64 and larger than 32 which tells you that you should start with the

binary value for decimal 32.

Can 32 (25) be subtracted from 53?

Yes

1

53 - 32 = 21

Can 16 (24) be subtracted from 21?

Yes

1

21 - 16 = 5

Can 8 (23) be subtracted from 5?

No

0

Can 4 (22) be subtracted from 5?

Yes

1

5 - 4 = 1

Can 2 (21) be subtracted from 1?

No

0

Can 1 be subtracted from 1?

Yes

1

1 - 1 = 0

If you now take the binary 1's and 0's and tip them to the left you get the result 1101012

which is the decimal value 53 represented in binary code.

6

C# For Beginners

Binary to decimal

Let's convert the binary number 1101012 into a decimal number. When converting a binary

number you always start from the left and move to the right where the right most bit

represent 1 and the subsequent values to the left are multiples of 2. This means that you

end up with a range of decimal values of 1, 2, 4, 8, 16, 32, 64, 128, 256, 1024, 2048 and so on

from the left.

If you look at the number and figure out which multiple of 2 is the largest that can be

subtracted from the number then working towards the smallest value to the right adding up

the decimal values where a 1 is present in the binary value.

Or if you prefer you can write it as: 1101012 = 1x25 + 1x24 + 0x23 + 1x22 + 0x21 + 1 = 5310

Decimal to hexadecimal

Let's convert the decimal number 119304610 into a hexadecimal number which has a base of

16. The first thing you need to know is what the largest multiple of 16 that can be subtracted

from the decimal value is, that will be your starting point. For the example value it is 165 =

104857610.

To get the hexadecimal value you simply tip the values in the middle column to the left and

read them. (119304610)16 = 12345616.

Hexadecimal to decimal

Let's convert the hexadecimal number 12345616 into a decimal number which has a base of

10. You take one character (0-F) from the left at a time and multiply it by its multiple of 16

7

C# For Beginners

and sum up the values. Moving from right to left among the characters of the value you have

0-15, 161 = 16, 162 = 256, 163 = 4096, 164 = 65536, 165 = 1048576.

Project templates used in this book

When starting a new project, Visual Studio makes it easy by providing templates for the

most common scenarios. The templates contain starter code which you can build on when

creating your application. Relevant components, controls and references to necessary

assemblies (class libraries) for the chosen template are included from the start.

The IDE will be configured according to the template. Below is a brief description of the

templates used in this book.

Console Application

The Console Application has no graphical user interface (GUI) instead it is run in a Console

window using a command-line interface; as such, it is considered to be very lightweight.

Windows Forms Application

Windows Forms Applications can be used to create desktop forms applications which run

directly on top of the Windows operating system, not in a browser.

Class Library

Building a class library will result in a .dll assembly. This is a good way to reuse code and to

share it among many applications. All you need to do to reuse the .dll is to reference its

assembly.

8

C# For Beginners

The Console Application

If you want to create a very light weight application which does not need a graphical user

interface (GUI) then the Console Application template in Visual Studio could be the way to

go.

The Console application user interface (UI) is completely text based and therefore not very

user friendly. One scenario where you might opt for a Console application is when creating

server side applications where an administrator need a quick way to enter data or perform

some other administrative task.

You will not spend a lot of time learning about every feature of the Console in this book

since you most likely won't use it that often, instead you will learn about Windows Forms

applications which have a rich user interface for desktop applications.

As the name eludes to the Console application runs in the big black void also known as a

Console window. In Visual Studio there are not many windows you need to use when

creating a Console application, the Solution Explorer is usually sufficient and sometimes you

might want to use debug tools available in other windows (debugging will be covered later in

the book).

The Solution Explorer is displayed along the right side of the development environment if

you have the default C# language settings in Visual Studio. You can bring up the window

again if it is hidden by selecting View-Solution Explorer in the main menu or hold down the

Ctrl key and press W followed by S on the keyboard (Ctrl+W, S).

The Solution Explorer displays the project folders and files in a tree where the folders can be

collapsed and expanded as needed. The main file in a Console application is called

Program.cs and it contains a class called Program which is the application container.

The Program class contain a method called Main which is the application entry point, this is

where the execution begin when the user start the application. It is in this method you write

the application code you want to execute when the application is started. As you will learn

later in the book you are encouraged to split your code into more manageable units called

methods and store them in containers called classes for better reuse and to encapsulate the

data. But for now you will write the code directly inside the Main method when creating

your Console applications.

9

C# For Beginners

The Main method in a Console application has to be declared as static so that it can be

executed without first having to create an object (instance) of the Program class. If you were

forced to create an object of the Program class it would not be possible to execute the

application directly in a Console window. The Main method is also not allowed to return a

value because a return value cannot be handled after the application ends at the end of the

Main method.

The images below describe important parts of the development environment and the Main

method in the Program.cs file relating to Console applications.

10

C# For Beginners

Compiling (building) a Console Application

You will want to continuously build (compile) your application when developing to catch any

errors as soon as possible and fix them. You can build the solution by pressing Ctrl + Shift + B

on the keyboard, the application is also built automatically when you run it by pressing F5 of

Ctrl + F5 (run without debugging) on the keyboard. If errors are present they will be listed in

a window called Error List which can be opened by selecting View-Error List in the main

menu should it be closed. The error list is also reachable through a tab at the bottom of the

development environment once it has been opened. You can usually reach the erroneous

code by double clicking on the error in the list.

11

C# For Beginners

How to create a Console Application

1. Open Visual Studio.

2. Select File-New Project in the menu.

3. Select Visual C# in the left tree menu in the dialog.

4. Select Console Application in the list of templates.

5. Give the project a name in the Name field.

6. Make sure that the Create directory for solution checkbox is checked.

7. Click on the OK button to have Visual Studio set up the project with the necessary

files, folders and references.

12

C# For Beginners

Interacting with the Console Window

The four most commonly used methods when interacting with the Console window are

Write, WriteLine, ReadLine and ReadKey.

Writing to the Console window

Apart from using the predefined methods of the Console you can also format the output

using string commands. You call the Write method for outputting text without a line break

or the WriteLine method which adds a line break at the end of the text. Formatting can be

added to the output string using for instance \n for an extra line break and \t for a tab, this

can save you many lines of code not having to add empty WriteLine method calls when you

desire a line break.

The following examples show how you can write text to the Console window. You can use

either the Write or the WriteLine methods depending on if you want a line break after the

text or not.

13

C# For Beginners

Note that you can add comments to the code which are ignored when the application is built

by starting a code line with two slashes (//) or if it is a longer comment you can surround it

with slash asterisk-asterisk slash (/* this is a comment */).

// Add a line break

Console.WriteLine();

// Writes A line of text to the Console without a line break

Console.Write("A line of text");

// Writes the text on a new line using the \n command

Console.WriteLine("\nAnother line of text");

// Writes the text in two columns using \t

Console.WriteLine("\tName\tAge");

/* Formats the string by inserting the name into the string. You can insert

many strings by adding more curly braces and incrementing the index number

and adding the values as a comma separated list. */

Console.WriteLine("Welcome {0}!", "Jonas");

// Create fixed length columns

Console.WriteLine("{0,20}{1,4}yo", "Jonas", 45);

Reading user input from the Console window

When reading user input from the Console you might want to store the value for later use.

The easiest way to store a value is to use the var keyword followed by a variable name

through which you can gain access to the stored value (you will learn more about variables

in an upcoming chapter).

// Prompt the user to enter their name

Console.Write("Enter your name: ");

// Store the name in a variable for later use

var name = Console.ReadLine();

// Writes: Welcome Jonas! to the Console if the name Jonas is entered by

the user

Console.WriteLine("Welcome {0}!", name);

14

C# For Beginners

Keeping the Console window open when debugging

You can call the ReadKey method to keep the Console window open after the last line has

been output. The value true passed in to the method stop the character from being output

to the Console.

Console.WriteLine("\nPress any key to exit");

Console.ReadKey(true);

Exercise: Create your first Console Application

In this exercise you will create a new Console application which will prompt the user for his

or her name with the text "Enter your name: " and store the entered name in a variable

called name. Then you will use the value stored in the variable to write the text "Welcome

 the entered name!" where the entered name represents the actual name stored in the name

variable, for instance Welcome Jonas! if they entered Jonas. The name should be entered on

the same line as the text.

Then you will add a line break (\n) to the beginning of the text "Enter your age: " and let the

user enter their age on the same line as the text, no line break should be added after the

text. The age input by the user should be stored in a variable called age.

Use a tab (\t) to push the text to the right and then output a heading reading "Name Age"

with a tab between the words. Then present the name and age on a separate line below the

heading.

Next you will use fixed length columns using the {0, 20} syntax where the 0 is the index

representing the place where the variable value will be inserted and 20 is the fixed number

of characters in the column. Use fixed length columns to display the name and the age

stored in the variables.

Lastly you will prompt the user to press any key to exit the application and after the text use

the ReadKey method to wait for the user to press a keyboard key.

15

C# For Beginners

Creating the solution

1. Open Visual Studio

2. Click on the New Project link or select File-New Project in the main menu.

16

C# For Beginners

3. Click on Visual C# in the tree view on the left side in the New Project dialog.

4. Select Console Application in the project template list in the middle of the dialog.

5. Name the project My First Application in the Name text field.

6. Click on the OK button.

7. Locate the Main method in the Program.cs file where you will write your program

code.

static void Main(string[] args)

{

// Write your code here

}

Keeping the Console window open

The first thing on your to-do list is to make sure that the Console window stays open after

the output and user input has finished. If you don't keep the window open it will close as

soon as the last line of code has been executed when running it from within Visual Studio.

The output to the Console window should look like this:

1. Create a new line between the curly braces by placing the cursor to the right of the

upper curly brace in the Main method and press Enter on the keyboard.

2. Write the message “Press any key to exit” using the WriteLine method. Add a line

break at the beginning of the string using the \n command to move the text down a

line so that it isn’t flush against the top border of the window.

Console.WriteLine("\nPress any key to exit");

3. Add a new empty line to your code after the previous code line and add a call to the

ReadKey method passing in true in between the parenthesis to stop the keystroke

from being written to the Console window.

Console.ReadKey(true);

17

C# For Beginners

4. Run the application by pressing the F5 key on the keyboard or click on the Start

button in the toolbar below the main menu.

The complete code so far looks like this:

static void Main(string[] args)

{

Console.WriteLine("\nPress any key to exit");

Console.ReadKey(true);

}

Ask for the user's name

Now it's time to ask the user for some input and relate the result back to the user by writing

text to the console.

The output to the Console window should look similar to this:

1. Add an empty line above the Console.WriteLine method call you added in the

previous exercise.

2. Write the text Enter your name: to the Console without adding a line break after the

text, you can achieve this by calling the Write method.

Console.Write("Enter your name: ");

3. Collect the name the user enters in a variable called name using the var keyword.

Call the ReadLine method to allow the user to enter their name.

var name = Console.ReadLine();

4. Write the text Welcome followed by the name the user enters and end the text with

an exclamation mark. The easiest way to achieve this is to use a formatted string.

The curly brace with the index inside will be replaced by the text after the comma in

the WriteLine method's parenthesis. Note that you can use a constant string value if

18

C# For Beginners

needed by writing the text between cotes ("the text") or you can use a variable like

in the code below.

Console.WriteLine("Welcome {0}!", name);

5. Run the application, enter your name and press Enter on the keyboard. You should

end up with an output similar to the one in the image above.

The complete code so far looks like this:

static void Main(string[] args)

{

Console.Write("Enter your name: ");

var name = Console.ReadLine();

Console.WriteLine("Welcome {0}!", name);

Console.WriteLine("\nPress any key to exit");

Console.ReadKey(true);

}

Ask for the user's age

Now let's ask the user for his or her age and display the result using tabular output.

The output to the Console window should look similar to this:

1. Add a new line below the Welcome message you added in the previous exercise.

19

C# For Beginners

2. Write the message Enter your age: without adding a line break after the text using

the Write method. Add a line break at the beginning of the string using the \n

command.

Console.Write("\nEnter your age: ");

3. Store the age entered by the user in a variable called age using the var keyword.

Read the value using the ReadLine method.

var age = Console.ReadLine();

4. Write the name and age header to the Console and push it in using a tab (\t) also

use a tab between the words to create the effect of columns. Add a line break (\n) at

the beginning of the string to push the text down one line creating a space above

the text.

Console.WriteLine("\n\tName\tAge");

5. Write the name and age stored in the variables using a formatted string containing

two tabs, to achieve this you have to add two curly braces with indices 0 and 1 and

then list the variables in a comma separated list.

Console.WriteLine("\t{0}\t{1}", name, age);

6. Run the application and make sure that the output is similar to the image above.

The complete code looks like this:

static void Main(string[] args)

{

Console.Write("Enter your name: ");

var name = Console.ReadLine();

Console.WriteLine("Welcome {0}!", name);

Console.Write("\nEnter your age: ");

var age = Console.ReadLine();

Console.WriteLine("\n\tName\tAge");

Console.WriteLine("\t{0}\t{1}", name, age);

Console.WriteLine("\nPress any key to exit");

Console.ReadKey(true);

}

20

C# For Beginners

Namespace and using

Namespaces are a way to physically group classes that belong together and have something

in common. To access the classes in a namespace you can either add a using statement at

the top of the .cs file you want to access the classes from or you can give the full namespace

and class name in the code when using the classes. The latter method of using namespaces

is not the recommended way because it adds a lot of extra code which will clutter it up and

make it hard to read.

Let's say that you want to calculate the square root of a number, to achieve this you can use

a math method called Sqrt in a predefined .NET Framework Math class. Below are the two

ways you can implement it, the namespace paths are usually much longer than the one in

the example. You can also note that your Program class automatically was placed in a

namespace when the project was created.

Implement the calculation using the namespace directly in the code. Note that you have to

use the full namespace path every time you make a call to the Sqrt method. It might not

seem like a lot of extra code to write the namespace path on each line but keep in mind that

this is one of the shortest namespace paths in the .NET Framework library, usually they are

several levels deep.

namespace MyConsoleApplication

{

class Program

{

static void Main(string[] args)

{

var result1 = System.Math.Sqrt(5);

var result2 = System.Math.Sqrt(10);

var result3 = System.Math.Sqrt(15);

}

}

}

Implement the code with a using statement to declare the namespace and then call the

method. Note that you only declare the namespace path once to be able to call the Sqrt

method directly on the Math class as many times as needed.

using System;

21

C# For Beginners

namespace MyConsoleApplication

{

class Program

{

static void Main(string[] args)

{

var result1 = Math.Sqrt(5);

var result2 = Math.Sqrt(10);

var result3 = Math.Sqrt(15);

}

}

}

Regions

A region is a way to logically group code and not affecting the program flow, it is only used

to make the code more readable and easy to follow. A region is a collapsible section of code

which hides the code and displays a descriptive text in its place. When the code need to be

altered or viewed the region can be expanded again. You collapse and expand a region by

clicking on its plus/minus sign in the left margin.

To create a region you add the #region keyword followed by the description on the line

above the first code line you want to include in the region and add the #endregion keyword

after the last line of code you want to be part of the region.

If you want to add a region around the mathematical calculations in the previous example

the code would look like this:

static void Main(string[] args)

{

#region Math Calculations

var result1 = System.Math.Sqrt(5);

var result2 = System.Math.Sqrt(10);

var result3 = System.Math.Sqrt(15);

#endregion

}

When collapsed the code would only display the heading Math Calculations.

22

C# For Beginners

When writing a program I usually end up with the following main regions in my classes or

structs, you will learn about structs and classes in upcoming chapters, here I just want to

show you the logical sections I often create using regions. If there are terms unknown to you

in the region descriptions just make a mental note of them and keep them in mind when

reading the upcoming chapters. You can always come back to this section if you feel that you

need to refresh your knowledge about regions. In some applications I don't need all regions

and in some I need to be more granular and create sub-regions.

public class MyClass

{

#region Delegates and Events

#endregion

#region Constants

#endregion

#region Fields/Variables

#endregion

#region Properties

#endregion

#region Constructors

#endregion

#region Methods

#endregion

#region Control Events

#endregion

}

Exercise: Adding regions to the application

Open the application you created in the previous exercise and surround the code fetching

and displaying the name with a region which has the description Fetch user name. Next

place a region around the code that fetches and displays the users age and give it the

description Fetch user's age. Place a third region around the code that keep the Console

window open and give it the description Exit code.

23

C# For Beginners

Once the regions are in place test them by collapsing and expanding them with the

plus/minus signs in the left margin of the code window.

Run the application to make sure that the regions does not affect the program flow and that

it still works as before.

1. Open the My First Application project in Visual Studio.

2. Add a #region command above the first Write method call and give it the descrip-

tion Fetch user name.

#region Fetch user name

Console.Write("Enter your name: ");

3. Add a #endregion command below the WriteLine method call writing the Welcome

message.

Console.WriteLine("Welcome {0}!", name);

#endregion

4. Add a #region command above the Write method call asking the user for his or her

age and give it the description Fetch user's age.

#region Fetch user's age

Console.Write("\nEnter your age: ");

5. Add a #endregion command below the WriteLine method call writing the name and

age to the Console window.

Console.WriteLine("\t{0}\t{1}", name, age);

#endregion

6. Add a #region command above the WriteLine method call asking the user to press

any key to exit.

#region Exit code

Console.Write("\nPress any key to exit");

7. Add a #endregion command below the ReadKey method call.

Console.ReadKey(true);

#endregion

8. Now that the regions are in place close them by clicking on the minus sign in the left

margin of the code window.

9. Click on the plus signs in the margin to open them again.

24

C# For Beginners

10. Now let's collapse all outlines with one command by right clicking in the code

window and select Outlining-Collapse to Definitions (Ctrl+M,O). This will collapse all

regions and methods in the active code window.

11. Expand the Main method by clicking on its plus sign in the margin. This should reveal

the method content which should be collapsed and only reveal the region descrip-

tions.

12. Expand all the regions again by right clicking in the code window and selecting

Outlining-Toggle all Outlining (Ctrl+M,L) or by clicking on their individual plus signs

in the margin.

13. Run the application by pressing F5 on the keyboard or on the Play button in the

toolbar below the main menu. Make sure that the application is working like it did

before the regions were added and that they have not changed the program flow.

14. Close the application.

A first look at Windows Forms

You have just been acquainted with the Console Application which has its limited uses. Now

you will have a look at the much more versatile Windows Forms Application project with

which you can create fully fledged systems for Windows desktop use. This project type has a

Graphical User Interface (GUI) with which the user can interact through the controls you add

to it. You can add many types of predefined controls ranging from buttons and text fields to

tree view controls and menus.

25

C# For Beginners

Creating the solution

1. Open Visual Studio

2. Click on the New Project link or select File-New Project in the main menu.

3. Click on Visual C# in the tree view on the left side of the New Project dialog.

4. Select Windows Forms Application in the project template list in the middle of the

dialog.

5. Name the project My First Forms Application by typing it in the Name text field.

6. Click on the OK button.

The project content

As you can see the project content is different from what you would find in a Console

Application. For starters a gray form is displayed instead of a code window this is deliberate

because you have to add controls to the form in order to do anything useful with it, even if

it's only a button. The form is the application surface with which the user interacts. To give

the user a pleasant experience you want to align the added controls in straight lines and not

26

C# For Beginners

scatter them around the surface in a chaotic fashion, you also want to use labels to describe

the purpose of the controls. If the user is supposed to enter a name in a textbox then you

should add a label either above or to the left of the control depending on the layout you

have decided to use. You add controls from the Toolbox window described in the next

section.

All open files are displayed as tabs above the design surface. If you need to open a closed

form or other file you can find it in the Solution Explorer. Clicking on the file will open it

temporarily and its tab will be replaced by the next file you click on. While double clicking on

a file will open it permanently and it will be open the next time you open the solution when

it has been closed. You can close a file tab by clicking on its x-button.

You might have noticed that there is a Program.cs file in this project like in the Console

Application project, but in a Windows Forms Application it is only used to start the

application and display the main form to the user. You very seldom write any code in this

file, the code is instead written in what is known as a code-behind file which is linked to a

specific form. The easiest way to open a form’s code-behind file is to double click on the its

gray background area or expand the form node in the Solution Explorer and click on the sub-

node with the same name as the form name. You will learn where to write code in the code-

behind throughout the book and new controls will be introduced as needed for the exer-

cises.

The image below show the development environment displaying the Toolbox and the form’s

design surface.

27

C# For Beginners

Note that the Toolbox is empty when the code-behind is open because it is impossible to

add graphical controls to a code file using the Toolbox. The code-behind is opened in a

second tab and the GUI is in the tab with [Design] after the name. You can click on the tabs

to toggle between the code-behind and the design view or other open windows.

You run the application by pressing F5 or Ctrl+F5 on the keyboard or clicking on the Start

button, the same as for Console Applications. When you run the application the main form is

displayed to the user. It will behave as any other standard Windows form you are used to

and has the same minimize, maximize and close buttons in the title bar. The form is empty

right now, but you will soon add some controls to it.

Adding controls to the form

You find the predefined controls you can add to a form in the Toolbox window which can be

minimized to a tab or a window along the left side of the Visual Studio developer environ-

ment. The toolbox can always be opened by selecting View-Toolbox in the main menu

should you be unable to find it in the development environment.

28

C# For Beginners

When working with controls adding them to the form surface it can save time to pin the

Toolbox window to the developer environment to keep it open, you pin it by clicking on the

pin icon in the top right corner of the Toolbox window. You can unpin it at any time by click-

ing on the pin button again.

You can add controls to the form in many ways the most common are to either double click

on the control in the Toolbox or to hold down the left mouse button while pointing to the

control and drag the control to the form surface.

To design the form well you might need to change the size of the controls you add to its

surface, you do this by selecting the control (clicking on it once) and using the control's

square sizing handles.

Naming a control

When adding a control to the form you often want to name it (labels can be an exception).

To name a control you select it and change the default name in the Name property in the

Properties window which is displayed below the Solution Explorer by default.

You can follow the same instructions when naming a form with the difference that you

select the form instead of a control.

1. Open the Properties window with View-Properties Window in the main menu if it is

closed.

2. Select the control in the form you wish to name by clicking on it once.

3. Go to the Properties window and scroll to the top where you will find the (Name)

field.

4. Double click on the (Name) label to select all text in it.

5. Write the new name and press Enter on the keyboard.

Where to write the code

You add functionality to the form by writing code that will be reachable and executed at

different stages depending on where you write the code. The form itself is a class which will

be used by the run-time to create a form object on the Heap (the slow memory) which then

will be displayed to the user.

29

C# For Beginners

As you can see in the code below the Form class has a section of code called Form1() (the

name you have given the form) which is a special method known as a Constructor. The code

written in the Constructor will be executed as the form object is created on the Heap, you

can use this method to initialize variable values before the form, or even its controls, are

visible. This is very useful to give the form the correct state before it is accessible by the

user.

Below the Constructor is another section called Form1_Load (YourFormName _Load) which

is a special type of method called an event. An event is triggered and executed when the

system or a user is interacting with the form or its controls, like clicking on a button, writing

in a textbox or when a control or form is loaded or modified. The predefined Load event will

be executed as the form is loaded into memory after the form object has been created on

the Heap and before it is displayed to the user. This event can be used to fill form controls

with default values or values fetched from a data store such as a database or a file.

public partial class Form1 : Form

{

public Form1()

{

InitializeComponent();

// Code to initialize the Form object

}

private void Form1_Load(object sender, EventArgs e)

{

// Code to execute before the form is displayed

}

}

Code accessibility

If you declare a variable outside the two previously mentioned methods but inside curly

braces of the Form class it will be reachable from all methods inside the Form class.

Declaring a variable inside a method will narrow its availability to code inside that particular

method and it will not be reachable from other methods. In other words, if you declare a

variable inside the Constructor method that variable can only be used inside the Constructor

and in no other method.

30

C# For Beginners

As you will learn in later chapters there are different types of code blocks which can be

declared inside a method. If you declare a variable inside such a block the variable will only

be reachable within that block and therefore not in the rest of the method. One example is

the if-block used to alter the program flow.

The following example code demonstrates the accessibility using three variables. The total

variable is declared on class level which mean that it can be used throughout the class. The

result variable is declare inside the Form1_Load event method and is therefore only access-

ible from within that method. The sum variable is declared inside the if-block and is there-

fore only accessible inside that block, if you want to use the value in the sum value you can

assign it to a variable with greater accessibility.

The total variable is assigned the value 0 inside the Constructor method before the form or

its controls have been rendered to the screen. The result variable is declared and assigned

the value 10 inside the Load event and is then used in the if-statement (more on if in a later

chapter) and as part of a calculation inside the if-block. The sum variable is declared and

used to store the result of the calculation inside the if-block and its value is then assigned to

the class level variable total making the value available throughout the class.

public partial class Form1 : Form

{

// Available in all methods of the Form class

int total;

public Form1()

{

// Assign a value to the total variable

total = 0;

InitializeComponent();

}

private void Form1_Load(object sender, EventArgs e)

{

// result available inside the method and the if block

var result = 10;

if (result > 0)

{

// sum only available inside the block

31

C# For Beginners

var sum = result * 100;

// Assign the sum variable's value to the total variable

total = sum;

}

}

}

Exercise: Creating your first Window Forms Application

In this exercise you will implement the same scenario as in the Console Application you

crated earlier. You will create a user interface (a form) asking the user for his or her name

and age and then display the formatted result in a pop-up dialog box. To achieve this you

will need to add two labels with the text Name and Age respectively and place textboxes

which will collect the user input below the labels and lastly you will add a button which will

display the dialog box when clicked.

If you haven't already created the Windows Forms Application called My First Forms Applica-

 tion described in the section Creating the solution, then do so now.

This is what the form will look like when finished:

Create the form and add controls

1. Open the Form1 [Design] tab. If you have closed it you can open it by double clicking

on the Form1 node in the Solution Explorer.

2. Open the Toolbox window (View-Toolbox) if it's not already open.

3. Double click on the Label icon in the Toolbox to add a Label control to the form and

then reposition it on the form surface.

4. Change the text of the label to Name in its Text property in the Properties window.

32

C# For Beginners

5. Add a textbox control to the form below the label by double clicking on the textbox

icon in the Toolbox.

6. Rename the textbox txtName in the Name field in the Properties window.

7. Resize the textbox to make it wider.

8. Add another label below the name textbox and change its text to Age.

9. Add another textbox below the Age label and change the textbox name to txtAge.

10. Add a Button control below the age textbox and rename it btnDisplayData.

11. Change the text on the Button to Display data.

12. Resize the form by clicking once on its gray surface and drag the middle bottom

square handle upwards and the middle right handle left.

13. Start the application by pressing F5 on the keyboard.

14. The form is displayed with empty text fields and nothing will happen if you click on

the button.

15. Close the application by clicking on the red x-button in the upper right corner of the

form or click on the Stop button (the button with the red square) in the developer

environment.

Add code to the button

To make the button perform a task you have to add its Click event method in the form code-

behind window. The easiest way to add the Click event is to double click on the button

which will add the event method and take you straight to it in the code window.

The final piece of the puzzle is to make the form display a message in a dialog box when the

button is clicked. You can use the Show method on the MessageBox class to display the

dialog box.

1. Double click on the button in the form designer.

2. A Click event method with the same name as the button is automatically added to

the code-behind window.

private void btnDisplayData_Click(object sender, EventArgs e)

{

// Your code goes here

}

3. Let's start by adding the message box dialog with some static text. Add the following

code to the Click event.

33

C# For Beginners

MessageBox.Show("This is my first dialog box");

4. Start the application and click on the button to display the dialog box.

5. Close the dialog box and application.

6. Now let's up the ante to display the text from the txtName textbox. Delete the text

and quotes (inside the Show method parenthesis) and add code that fetch the value

form the textbox using its Text property. Change the code to this.

MessageBox.Show(txtName.Text);

7. Start the application and write your name in the Name textbox before clicking on

the button. The dialog box should display your name.

8. Close the application.

9. Now let's up the stakes again by formatting the output string to display name and

age from both textboxes and some descriptive text. You can format the string out-

put using the same string formatting technique you used in the Console Application

with the difference that you format the string using the Format method on String

class instead of Console.WriteLine.

MessageBox.Show(String.Format("{0} is {1} years old.", txtName.Text,

txtAge.Text));

10. Start the application and enter your name and age in the textboxes and then click

the button. The dialog should look similar to this.

34

C# For Beginners

11. Close the application.

35

C# For Beginners

36

C# For Beginners

2. Conditional Logic

Introduction

Conditional statements are used to determine the flow of the application. For instance, you

might pose a question to the user and determine the application flow based on that answer.

Although you will use conditional logic to determine the application flow using form controls

such as radio buttons and a combo box in this chapter, conditional logic can also be used

with constants, variables and even hard coded values. The difference between using controls

and the other methods of using conditional logic is that you will use properties of the control

instead of declared variables, constants or other values in the if- or switch-expression.

If

An if-statement is used to evaluate if a condition is true or false and, based on the result, do

one of two things or in conjunction with one or more else-block or else if-blocks to handle

multiple scenarios.

If the condition in the if-statement evaluates to true, the if-block is executed; otherwise, the

else block is executed if one exists.

If else if-blocks are defined then the execution will be propagated to the next else if state-

ment in line until a statement evaluates to true or there are no more else if-statements left.

IMPORTANT: By using two equal signs (==) in an expression you can check if the two values

 of a condition are equal to one another: if (value == otherValue). or you can use the

 Equals method to achieve the same result: if (value.Equals(otherValue)).

IMPORTANT: By using a not equals (!=) expression you can check if the two values of a

 condition differ from one another: if (value != otherValue). or you can use the Equals

 method in conjunction with a negating exclamation mark to achieve the same result: if

 (!value.Equals(otherValue)).

37

C# For Beginners

If statement

if (valueToEvaluate == true)

{

// This code will be executed if the condition

// evaluates to true

}

If…else statement

if (valueToEvaluate == true)

{

// This code will be executed if the condition

// evaluates to true

}

else

{

// This code will be executed if the condition

// evaluates to false

}

If…else if statement

var someStringValue = "Some text";

if (someStringValue == "Some value")

{

// This code will be executed if the if

// condition evaluates to true

}

else if (someStringValue == "Some other value")

{

// This code will be executed if the else if

// condition evaluates to true

}

else

{

// else this code will be executed

}

If statement inside another if statement

var someStringValue = "Some text";

var someBooleanValue = false;

38

C# For Beginners

if (someStringValue == "Some value")

{

if (someBooleanValue == true)

{

// This code will be executed if the if

// condition evaluates to true

}

else

{

// else this code will be executed

}

}

else

{

}

Switch

When writing conditional statements, you should not have too many if/else clauses because

it makes the code harder to read and understand; instead, you should consider using switch

statements. A switch block is essentially a more compact and more readable way to write

if/else clauses.

The case choices in a switch are defined using constant values.

Each case statement ends with a break or return command which forces the execution to

either jump to the end of the switch block or exit the current method or event completely

without executing any remaining code.

You can have a default block in the switch, which essentially is the same as an ending else

clause in an if/else statement. This block will be executed if no case block is matched.

var valueToCheck = "The current value";

switch (valueToCheck)

{

case "Some value":

// Do something

39

C# For Beginners

break;

case "Some other value":

// Do something else

break;

default:

// Execute if no case is matched

break;

}

Additional reading: “Selection Statements (C# Reference)”

Exercise: Conditional logic

In the first part of this exercise you will implement if/else and if/else if/else scenarios. In the

if/else scenario the user will determine the program flow by checking a checkbox which will

enable or disable some other controls. If the checkbox is selected the user can then select a

gender with radio buttons taking them into the if/else if/else program flow, here the messa-

ge in the label will be changed when the button is clicked depending on if they have selected

any radio button or which radio button has been selected.

In the second part of this exercise you will use a switch to control the program flow

depending on what country has been selected in the combo box. In the switch the primary

language of the selected country will be displayed in the label which also will change back-

ground color depending on the selected country. You will add the following countries

Sweden (Swedish, light green), Norway (Norwegian, LightSkyBlue), Finland (Finnish,

LightYellow), Great Britain and USA (English, LightSalmon) and finally Unknown (Unspecified,

LightPink). Feel free to add other countries of your choice.

40

C# For Beginners

If/else logic

Let's start by adding the controls and then progress to the logic in the code-behind file.

You will need to add a group box control (located in the All Windows Forms section of the

toolbox) to which you add all the other controls except the checkbox which you will place on

top of the group box border (see image above). The reason you need to add a group box is

that radio buttons must be placed in a group box to work as a unit, this is especially

important if you have several radio button sections which should work independently from

one another. If you don’t use group boxes for the radio buttons and instead place them on

the form directly all radio buttons will be in the same radio button group which will be

provided by the form.

Inside the group box you place two radio buttons called rbnMale and rbnFemale with the

text "Male" and "Female" respectively. Below the radio buttons you add a button called

 btnCheckGender with the text "Check Gender" and a label called lblMessage with the text

"Message place holder".

Lastly you add a checkbox called chkActivate with the text "Activate Controls" which will

enable or disable the controls in the group box depending on if the checkbox is selected or

not. Select the form before adding the checkbox to avoid it being placed inside the group

box and then drag it on top of the group box after having removed the group box header

text.

Adding the controls

1. Open the form designer.

2. Expand the All Windows Forms section of the toolbox.

3. Drag a group box onto the form surface.

4. Clear the text from its Text property.

5. Drag a radio button into the group box, change the name to rbnMale, its text to

"Male" and its Enabled property to false.

6. Drag a second radio button into the group box, change the name to rbnFemale, its

text to "Female" and its Enabled property to false.

7. Position the "Female" radio button below the "Male" radio button.

8. Add a button to the group box, change the name to btnCheckGender, its text to

"Check Gender" and its Enabled property to false.

41

C# For Beginners

9. Add a label to the group box and change the name to lblMessage and its text to

"Message place holder".

10. Select the form by clicking on it once.

11. Drag a checkbox to the form surface not inside the group box and change the name

to chkActivate and its text to "Activate Controls".

12. Move the checkbox on top of the group box where its header used to be displayed

making it the checkbox the group box header of sorts.

Enable/disable the controls

1. Select the checkbox control by clicking once on it.

2. Go to the Properties window and click on the Events button (the one with the flash

icon).

3. Locate the CheckStateChanged event and double click on its description this will

create the event in the form's code-behind file and take you to it. The event will be

triggered when the state of the checkbox is changed (checked or unchecked).

private void chkActivate_CheckStateChanged(object sender,

EventArgs e)

{

}

4. Add an if-statement checking if the checkbox is checked using its Checked property.

When the property or variable used in an if-statement is Boolean you don’t have to

explicitly check if it is equal to true or false that will be done automatically for you

by just stating the property or variable name.

if (chkActivate.Checked)

{

}

5. Inside the if-block curly braces you want to enable the radio buttons and the button

because a checked checkbox means that the controls should be enabled. You enable

the controls by assigning true to their Enabled properties.

btnCheckGender.Enabled = true;

rbnMale.Enabled = true;

rbnFemale.Enabled = true;

6. Add an else-block below the if-block in which you disable the controls by assigning

false to their Enabled properties.

btnCheckGender.Enabled = false;

42

C# For Beginners

rbnMale.Enabled = false;

rbnFemale.Enabled = false;

7. Run the application and check and uncheck the checkbox to make sure that the

controls are enabled and disabled.

The complete code for the CheckStateChanged event looks like this:

private void chkActivate_CheckStateChanged(object sender, EventArgs e)

{

if (chkActivate.Checked)

{

btnCheckGender.Enabled = true;

rbnMale.Enabled = true;

rbnFemale.Enabled = true;

}

else

{

btnCheckGender.Enabled = false;

rbnMale.Enabled = false;

rbnFemale.Enabled = false;

}

}

Clicking the button

Although you could have one of the radio buttons checked on startup by assigning true to its

Checked property in the Properties window they are both unchecked in this exercise

because you will implement an else-block handling that particular scenario.

The first thing you will add to the button's Click event is an if-block which will be executed if

the rbnMale radio button is checked and assign the string "Selected value: Male" to the

label lblMessage if it is. Then you will add an else if-block which will be executed if the

 rbnFemale is checked and assign the string "Selected value: Female" to the label lblMessage

if it is. The third scenario involves the user clicking on the button when no radio button is

checked which will be handled by implementing an else-block where you assign the string

"No gender selected" to the label lblMessage.

1. Double click on the button in the form designer.

2. Add an if-statement checking if the Checked property of the rbnMale radio button is

true (checked). Remember that you only have to enter the property in the if-state-

43

C# For Beginners

ment to check a Boolean value, in other words you don’t have to compare the

property value to true using == or the Equals method.

if (rbnMale.Checked)

{

lblMessage.Text = "Selected value: Male";

}

3. Next you will check if the value of the rbnFemale radio button is true using an else

if-statement.

else if (rbnFemale.Checked)

{

lblMessage.Text = "Selected value: Female";

}

4. The last piece of logic you will add is an else-block handling all other eventualities

such as when no radio buttons are selected.

else

{

lblMessage.Text = "No gender selected";

}

5. Run the application and check the checkbox enabling the other controls in the group

box.

6. Click the button without selecting any radio button and read the text in the label.

7. Select one of the radio buttons and click the button and read the text in the label.

8. Select the other radio button and click the button and read the text in the label.

9. Uncheck the checkbox to makes sure that the controls in the group box are disabled.

10. Close the application.

The complete code for the btnCheckGender_Click event looks like this:

private void btnCheckGender_Click(object sender, EventArgs e)

{

if (rbnMale.Checked)

{

lblMessage.Text = "Selected value: Male";

}

else if (rbnFemale.Checked)

{

lblMessage.Text = "Selected value: Female";

}

else

44

C# For Beginners

{

lblMessage.Text = "No gender selected";

}

}

Switch logic

In this part of the exercise you will implement a switch to handle the selected country in a

combo box control and display the language associated with that country. You will also

change the background color of the label displaying the information about the country

based on what language is spoken in the selected country.

Add a combo box called cboCountry to the form and add some countries to it in the form's

Form_Load event. Add at least the following countries Sweden, Norway, Finland, Great

Britain and USA; you can add additional countries if you like.

Add a switch which checks the SelectedIndex property of the combo box in the combo box's

SelectedIndexChanged event. Change the label's text and background color in the switch

case-blocks as per the instructions at the beginning of the exercise.

Adding the controls

1. Drag a label to the form and place it to the right of the group box (see image above).

2. Change the text of the label to "Countries".

3. Add a combo box below the label and name it cboCountry.

4. Add a label below the combo box, name it lblLanguage and change its text to

"Select a country"

Adding the countries to the combo box

1. Double click on the form.

2. use the Add method of the combo box to add the countries.

private void Form1_Load(object sender, EventArgs e)

{

cboCountry.Items.Add("Unknown");

cboCountry.Items.Add("Sweden");

cboCountry.Items.Add("Norway");

cboCountry.Items.Add("Finland");

cboCountry.Items.Add("Great Britain");

cboCountry.Items.Add("USA");

}

45

C# For Beginners

3. Go to the form designer and double click on the combo box to add its Selected-

IndexChanged event to the code-behind.

4. Add a switch block to the event checking the SelectedIndex property of the combo

box, this index correspond to the item selected in the combo box. The index is zero

based meaning that the first item added to the combo box in the Form_Load event

will have the index 0.

switch (cboCountry.SelectedIndex)

{

}

5. Add case-blocks for the different country scenarios. Remember that each case has

to be terminated by a break statement to avoid falling through to the next case. The

case implementation for index 4 and 5 are the same so you can let the case for index

4 fall through to the index 5 case by not adding any code for it except the case.

Below is a sample implementation of the first case.

case 1:

lblLanguage.Text = "Language: Swedish";

lblLanguage.BackColor = Color.LightGreen;

break;

6. Use the default-block at the end of the switch to implement a fallback for all

eventualities not handled by any case.

default:

lblLanguage.Text = "Language: Unspecified";

lblLanguage.BackColor = Color.LightPink;

break;

7. Run the application and select different countries in the combo box and see how the

background color and the text of the label below the combo box changes.

8. Close the application.

The complete code for the SelectedIndexChanged event looks like this:

private void cboCountry_SelectedIndexChanged(object sender, EventArgs e)

{

switch (cboCountry.SelectedIndex)

{

case 1:

lblLanguage.Text = "Language: Swedish";

lblLanguage.BackColor = Color.LightGreen;

break;

46

C# For Beginners

case 2:

lblLanguage.Text = "Language: Norwegian";

lblLanguage.BackColor = Color.LightSkyBlue;

break;

case 3:

lblLanguage.Text = "Language: Finnish";

lblLanguage.BackColor = Color.LightYellow;

break;

case 4: // Index 4 will fall through to Index 5

case 5:

lblLanguage.Text = "Language: English";

lblLanguage.BackColor = Color.LightSalmon;

break;

default:

lblLanguage.Text = "Language: Unspecified";

lblLanguage.BackColor = Color.LightPink;

break;

}

}

47

C# For Beginners

48

C# For Beginners

3. Variables

Introduction

A variable is a friendly name (a handle) for a small area in the RAM memory (Random Access

Memory) which is used by the computer to store information while executing algorithms; a

variable value can be stored for a long time if needed. The RAM used by an application is

cleared at the very latest when the application ends but parts of the memory usually is

cleared as soon as it's no longer in use.

Data stored in memory can be persisted to a permanent storage such as a hard drive, USB or

disc as you will learn in a later chapter.

When declaring a variable you have an option to declare it explicitly using the name of the

data type such as int, string or bool, or you can declare it implicitly using the var keyword

deferring the type evaluation until compile-time.

In many cases, the code will be cleaner and easier to read when using the var keyword.

IMPORTANT: Variable names are case sensitive. The variable name myValue is not the same

 as myvalue because the first name has a capital letter V where the second variable does not.

Both of the declarations below will store the result as integers. The first variable is declared

explicitly with the int data type and the second implicitly having the .NET Framework assign

the data type at compile-time.

int myExplicitNumber = 100;

var myImplicitNumber = 200;

In C# you must assign a variable before using it. C# is implemented this way to avoid using

variables with random values which was a source of problems in C and C++.

Value type vs. reference type

There are two variable types value type and reference type. Value types also called primitive

types are stored in a fast part of the RAM memory called the Stack whereas reference types

are stored on a larger and slower memory area called the Heap. The reason the Heap is

49

C# For Beginners

slower is that it handles large objects which require certain finesse when being removed to

ensure that it is done in a safe manner. On the Stack however the value can be removed

immediately making space for another value.

You can create both user defined value types and reference types using a struct when

creating a value type and a class when creating a reference type. You will learn about this in

later chapters.

To put it into a real world context you could view the Stack as the shelves in a shop where

you store small items and boxes and the Heap as the large storage area at the back of the

shop where you keep big items and crates that does not fit on the store shelves. You want

the customers to have easy and fast access to the small items (the Stack) but if they are

interested in larger items such as lawnmowers, fancy outdoor grills or patio furniture you

will direct them to your large show room or storage area (the Heap).

If you for instance declare a value type variable called myValueType then its value will be

stored on the Stack. It's like pulling out a neatly sized box with just enough room to fit the

value of the specified data type, placing the value inside the box and attaching a label with

the variable name on the outside. When you later need to retrieve the value stored for that

particular variable you specify the variable (label) name and get the value back lightning fast.

If you on the other hand use a class to create a reference type which is then used to declare

an object associated with a variable name then it will be too large to fit on the Stack and will

be created on the Heap with a reference pointer on the Stack. In the previous example you

placed the value directly inside the box but now you now place a note with directions to

where the actual object is stored, the object is referenced. With that reference you can then

go on a treasure hunt among all the objects in the large storage area to find the actual item

which off course takes time.

The same goes for destroying or removing a variable. If it is a small item on a shelf (on the

 Stack) you can just toss it in the trash and be done with it but if it is a large object (on the

heap) you will first have to dismantle it safely and have the staff (the Garbage Collector) toss

it in the container out back to be collected by a large garbage truck that eventually will

dump it on a land fill, which of course takes more time and resources than throwing a small

item it in the trash can.

50

C# For Beginners

When an object on the Heap is destroyed it cannot be removed directly from memory

instead it is given to a Garbage Collector called GC which then safely removes it from

memory, much like in the example above.

The lifespan of a variable differs depending on where it has been declared. If you for

instance declare a variable directly in a class its value will be available through its object

reference (variable name) for as long as the object is still on the Heap. A variable declared in

a subroutine (method) will be available throughout that method (until the end curly brace or

a return statement is reached). If the variable is declared in a block of code like an if-state-

ment then it will only be reachable inside that code block and removed when the end of the

code block is reached.

Data types

All applications use data from different sources such as user interfaces, databases, network

services or other sources. Variables are the way to go when storing values and operators and

expressions are used to manipulate those values.

Variables are declared as specific data types and because C# is a type-safe language, the

compiler guarantees that the value stored in a variable is the correct type. The table below

shows the most commonly used data types and their corresponding system name which is

used by the common type system when compiling the solution interpreting the high-level C#

code converting it into MSIL code.

51

C# For Beginners

Arithmetic operators

When calculating values it is paramount to know which order the operators are calculated,

the list below shows the order of execution.

*

Multiplication

/

Division

%

Remainder (modulo)

+

Addition

-

Subtraction

=

Assignment

Below is a list of assignment and incremental operators you can use to shorten your code.

You will use them throughout this book.

++

Increase variable value with 1

--

Decrease variable value with 1

*=

Assignment after multiplication

52

C# For Beginners

/=

Assignment after division

%=

Assignment after modulo

+=

Assignment after addition

-=

Assignment after subtraction

Naming rules for variables

When naming variables there are rules to which you must adhere.

Rule 1: An identifier can only contain letters, digits and underscore characters.

Rule 2: An identifier must start with a letter or an underscore character.

Rule 3: The identifier cannot be the same as a reserved C# keyword.

IMPORTANT: C# is case sensitive which means that you potentially could use the same varia-

 ble name only changing the casing. The names myVariable and MyVariable would be two

 different variables. One instance when you might consider using this to your advantage is

 when naming a property that stores its value in a backing variable.

There are different naming conventions, use one convention and stick to it.

You can declare multiple variables on the same line separating them with commas; all

variables declared this way will have the same type.

Declaring a variable

int amount;

int vat;

// or

int amount, vat;

Assigning a variable

int amount;

amount = 100;

Declaring and assigning a variable

double discount = 0.5;

53

C# For Beginners

Casting

In an application, it is common to convert a value from one data type to another; one

example is when you want to use a value from a text box, or other user interface control,

and want to store the value in a variable or use the value in a calculation.

Changing a value form one type to another is called casting. There are two types of casting:

implicit and explicit.

Implicit casting

Implicit conversion can be made automatically by the CLR as long as no information is lost

during the cast; however, this process allows loss of precision.

Widening conversions is allowed; that is going from a smaller data type to a larger data type,

for instance casting an int to a long. The other way around (long to int) is not permitted be-

cause loss of data is possible.

int x = 100;

long y;

y = x; // Implicit casting from int to long

The following table shows the allowed implicit conversions.

Explicit casting

An explicit cast require you to write code to perform the cast. This is done when a cast must

be made and information potentially could be lost or produce an error. Beware that an expli-

cit cast can produce an unexpected result.

54

C# For Beginners

This type of casting can be performed only where it makes sense, such as converting from a

long to an int. You cannot use it to convert from a string to an int where the format of the

data has to physically change.

int x;

long y = 1000;

x = (int) y; // Explicit casting from long to int

The System.Convert class

You can do explicit conversions using the System.Convert class in cases where implicit or

explicit casting isn’t possible. The class contains conversion functions such as ToDecimal,

ToInt32 and ToString.

string myIntString = "1234";

// Conversion from string to int

int myInt = Convert.ToInt32(myIntString);

The TryParse method

You can use the TryParse method on the data type to try and see if a conversion is possible.

The function takes two parameters; the first is the value to parse and the second is a varia-

ble that will contain the parsed value if the conversion succeeds. The second parameter

must be passed as an out parameter which means that it only can pass a value out from the

method.

string parseValue = "1234";

int parsedInt = 0;

if (int.TryParse(parseValue, out parsedInt))

{

// On success

}

else

{

// On failed parse

}

Additional reading: “Casting and Type Conversions (C# Programming Guide)”

55

C# For Beginners

Numeric variables

Numeric variables comes in two different flavors whole number and floating point numbers.

Whole number variables such as short, int and long can be used as counters and identifiers

in data sources such as unique primary and foreign keys in database tables. Floating point

variables such as float, double and decimal are often used when doing mathematical calcu-

lations where precision is needed. To play around with these type of variables you will now

build a simple order form using a Windows Forms Application project.

Exercise: Simple order form

In this exercise you will hone in your skills working with numerical variables by creating a

simple order form with a maximum of 5 different products. Values for specific products are

entered with controls on horizontal rows and each of the five products use the same type of

controls to enter their values. The first control is a textbox for the product name, the second

is a textbox for the product price, the third is a numeric up/down control for the number of

units ordered of the product and the fourth is a textbox for the line total.

The Product name should have a maximum of 30 characters which you can set using the

MaxLength property in the Properties window. Name the textboxes txtProduct1-

 txtProduct5 using the Name property.

56

C# For Beginners

The Price textbox should only allow numerical values and a decimal point (comma or period

depending on Windows culture settings) which you can achieve using the KeyPress event

method. The text should also be right aligned which you can set using the TextAlign proper-

ty. The default text in the textbox should be zero (0). The text should be bold which you can

set using the Font property. Name the textboxes txtPrice1- txtPrice5.

The number of units ordered will be represented by a NumericUpDown control with a maxi-

mum of 10 units per product which you set using the Maximum property. The value should

be right aligned and displayed in bold. Name the controls numUnits1- numUnits5. When the

up or down button in the control is clicked the cost of the ordered product (price * units)

should be displayed automatically in the Line Total textbox, to achieve this you have to add

the ValueChange event method which you can do by double clicking on the NumericUp-

Down control.

The line total will be calculated when the NumericUpDown control is used for a specific

product; the control can therefore be read only which can be set using its ReadOnly proper-

ty. The background should be yellow to signal that it is a calculated field, it can be set using

the BackColor property. The text should be displayed in a bold font and be right aligned.

Name the controls txtLineTotal1- txtLineTotal5.

The easiest way to implement the subsequent product order rows is to select the controls

added for the first order row (product), copy them and change their names. You can select

the controls holding down the Ctrl key on the keyboard and click on the desired controls, or

you can point with the mouse on the form surface to the left of the controls, hold down the

left mouse button and drag over the desired controls.

The text in the discount textbox should be right aligned and displayed with a bold font. The

value will be deducted from the sum of all the line totals before the VAT is calculated. Name

the textbox txtDiscount.

VAT has two textboxes one for the VAT percentage and one for the calculated VAT amount.

Name the VAT textbox for the percentage txtVAT and right align its text and make it bold.

The VAT percentage should be editable. Name the textbox for the calculated VAT amount

 txtVATAmt, its text should be right aligned and bold as well as have a blue text color which

can be set using the ForeColor property. The background should be yellow to indicate that it

57

C# For Beginners

is a calculated field and as such it should be read only. The VAT amount is calculated by

adding the line totals together, subtracting the discount and finally multiplying the result

with the VAT percentage divided by 100. You can do the calculation by first parsing the text-

box values using the Double.TryParse method and store the resulting values in variables of

the double data type which you then use in the calculation.

 VatAmt = (lineTotal1 + lineTotal2 + lineTotal3 + lineTotal4 + lineTotal5 - discount) * (vat /

 100)

The example below show how you can parse the value in the discount textbox. Note that the

discount variable has to be passed in to the TryParse method using the out keyword. The

out keyword can be used to pass out a value from a method as you will learn more about in

the chapter on methods. The TryParse method will in this case return the string from the

textbox converted to a double value stored in the discount variable. If the conversion fails

(the string in the textbox cannot be converted to a double value) then 0 will be stored in the

discount variable. With this example as a template you should be able to parse the values in

the other textboxes.

double discount;

Double.TryParse(txtDiscount.Text, out discount);

The total cost should be displayed in a textbox called txtTotal when the Calculate button

(btnCalculate) is clicked. The textbox should be read only, have a blue background, white

right aligned text displayed with a bold font and the default text should be 0.

Creating the order form

1. Open Visual Studio.

2. Select New-Project in the File menu.

3. Select the Windows Forms Application project template.

4. Name the project Order Form in the Name field and click the OK button.

5. The Form design surface should now be visible.

Adding the Product textbox

1. Open the Toolbox and pin it (if not already pinned) by clicking on the small pin icon

in the top right corner of the Toolbox.

2. Double click on the Label icon in the Toolbox to add a label to the form.

58

C# For Beginners

3. Point to the label in the form, hold down the left mouse key and drag the label to

reposition it according to the image above. Since the label will not be used to display

dynamic data you don't have to name it.

4. Open the Properties window if it is closed (View-Properties Window). It should be

displayed below the Solution Explorer along the left border of the development en-

vironment.

5. Make sure that the label is selected, if not click on it once to select it.

6. Go to the Properties window and locate the Text property and change the text to

 Product.

7. Add a textbox to the form using the textbox icon in the Toolbox.

8. Reposition it to be displayed below the label you just added (see image above).

9. Select the textbox and rename txtProduct1 it using the Name property in the

Properties window.

10. While still in the Properties window limit the number of allowed characters by

changing the MaxLength property to 30.

11. Make the textbox wider to accommodate all the 30 characters 197px should do the

trick. Change the width using the Size (Width) property.

Adding the Price textbox

1. Add a textbox to the form from the Toolbox window.

2. Rename it txtPrice1 with the Name property.

3. Drag the Price textbox to the right of the Product textbox.

4. Right align its text by changing the TextAlign property to Right.

5. Change the text to bold by using the Font property. Expand the Font property and

set the Bold property to true or click on the property text and then the small button

with the three dots to open the Font dialog (see image below).

6. Set the Text property to 0.

7. Change the width of the textbox to about 65px to make it smaller.

8. Add a label above the textbox and change its text to Price.

59

C# For Beginners

The Font property settings in the Properties window.

Adding the Units numericUpDown control

1. Add a NumericUpDown control to the form from the Toolbox window.

2. Drag it to the right of the Price textbox.

3. Rename it numUnits1 using the Name property.

4. Right align the text using the TextAlign property.

5. Change the Maximum property to 10 to allow values from 0 to 10 being entered.

6. Change the text to be displayed with a bold font.

7. Change the width of the textbox to about 39px to make it smaller.

8. Add a label above the control and change its text to Units.

Adding the Line Total textbox

1. Add a textbox to the form from the Toolbox window.

2. Drag the textbox to the right of the NumericUpDown control in the form.

3. Change its name to txtLineTotal1.

4. Right align the text.

5. Change the text to be displayed with a bold font.

6. Change the width of the textbox to about 65px to make it smaller.

7. Since this is a calculated field you will have to change its ReadOnly property to true.

8. Change the BackColor property to a yellow color to signal that it is a calculated field.

9. Add a label above the control and change its text to Line Total.

60

C# For Beginners

Duplicating the order row

1. Select all the input controls (not the labels) and press Ctrl+C on the keyboard to copy

them.

2. Paste in the copied controls by pressing Ctrl+V on the keyboard.

3. Reposition the controls below the once you created earlier while they are still select-

ed.

4. Rename the controls by increasing the number at the end of the names by one. The

copied textbox txtProduct1 will receive the default name textBox1 which you will

change to txtProduct2 and so on for the rest of the copied controls.

5. Repeat 1-4 for the remaining 3 order rows.

Adding the Discount textbox

1. Add a textbox to the form from the Toolbox window.

2. Drag the textbox below the last order row in the form.

3. Change its name to txDiscount.

4. Right align the text.

5. Change the text to be displayed with a bold font.

6. Make the textbox as wide as the Units and Line Total controls combined, 110px

should do the trick.

7. Add a label to the left of the textbox and change its text to Discount.

Adding the VAT textboxes

1. Add a textbox called txtVat for the VAT percentage value.

2. Align the textbox with the left edge of the Discount textbox and place it below the it.

3. Right align the text.

4. Change the text to be displayed with a bold font.

5. Change the width of the textbox to about 39px to make it smaller.

6. Add a second textbox called txtVatAmt for the calculated VAT amount.

7. Align the textbox with the left edge of the Discount textbox and place it below it.

8. Right align the text.

9. Change the text to be displayed with a bold font.

10. Change the width of the textbox to about 64px to make it smaller.

11. Drag the textbox to the right of the txtVat textbox.

12. Since this is a calculated field you will have to change its ReadOnly property to true.

61

C# For Beginners

13. Change the BackColor property to a yellow color to signal that it is a calculated field.

14. Change the ForeColor property to a blue color to make it stand out more.

15. Add a label to the left of the txtVat textbox and change its text to VAT %.

Adding the Total textbox

1. Add a textbox called txtTotal for the total amount payable.

2. Align the textbox with the left edge of the txtVat textbox and place it below it.

3. Right align the text.

4. Change the text to be displayed with a bold font.

5. Change the width of the textbox to about 110px.

6. Since this is a calculated field you will have to change its ReadOnly property to true.

7. Change the BackColor property to a blue color to signal that it is the total amount

due.

8. Change the ForeColor property to white to make it stand out more.

9. Add a label to the left of the textbox and change its text to Total.

Adding the Calculate button

1. Add a button called btnTotal.

2. Align the button with the left edge of the txtTotal textbox and place it below the

textbox.

3. Change the button text to Calculate.

4. Make the button the same with as the txtTotal textbox.

5. Run the application and enter values to the textboxes and the numeric up/down

control. As you will notice nothing happens when the Calculate button is clicked nor

is the Line Total calculated when the up/down buttons are clicked. The reason for

this is that you haven't yet added any code to the code-behind file which will do the

calculations, this is your next task.

6. Close the application.

Restricting the input to numerical values

When dealing with numerical input such as a price you might want to limit the input to only

numerical characters and a decimal point. It is important to know that the decimal point

differs from culture to culture, in Sweden for instance a comma is used to denote a decimal

point whereas in the USA a period is used. This can be solved using a more complex imple-

mentation using the current culture used in Windows which you will not do in this exercise,

62

C# For Beginners

instead you will declare a char constant called decimalPoint holding the decimal symbol.

This constant will then be used throughout the calculations which is a way to make the code

more maintainable because if you want to change the symbol you only have to change it in

one place.

To restrict the allowed characters in the Price, VAT and Discount textboxes you have to add

an event called txtPrice_KeyPress for those textboxes. Because this is not the default event

method for textboxes you cannot just double click on the textboxes to add the event instead

you have to use the Properties window to add it. You switch from displaying properties to

possible events in the Properties window by clicking on the button with the Flash icon.

You could add a new KeyPress event method for each textbox but that would mean a lot of

code duplication which is something you should strive to avoid, instead you will create one

KeyPress event method called txtPrice_KeyPress which will be used for all restricted text-

boxes. Once you have created that event method you can simply set the KeyPress event for

the affected textboxes in the Properties window by selecting it in the dropdown for that par-

ticular event in the list of events.

63

C# For Beginners

 Casting the sender parameter to a textbox

The KeyPress event has a KeyPressEventArgs parameter called e which you find in the event

method's parenthesis. This parameter can be used to find out information about the pressed

keyboard key such as which character it is using its KeyChar property.

To find out if the pressed key is a digit you can use the char.IsDigit method and to find out if

a control key (Ctrl, Alt, Shift) has been pressed you use the char.IsControl method. Informa-

tion of this nature can be extremely valuable when restricting the allowed input in a textbox.

The KeyPress event also has an object parameter called sender which contain the control

being used. To get or set property values such as the text of the active textbox you have to

cast the sender parameter to an actual textbox, you can use the as keyword to achieve this.

The code below show the KeyPress event and how to cast the sender object to a textbox.

Note that you can use the var keyword when declaring the textbox variable because the cast

will determine which data type will be used when the application is compiled.

private void txtPrice_KeyPress(object sender, KeyPressEventArgs e)

{

var textbox = sender as TextBox;

}

Next you need to add a constant called decimalPoint of char type which holds the decimal

point character to be used above the KeyPress event. A constant is a variable which only can

be assigned once when it is declared. If you live in a region where the decimal symbol is a

period you should change this character to a period instead.

const char decimalPoint = ',';

The KeyPress's e parameter has a property called Handled which determines whether the

character for the pressed key should be added to the textbox or not. If the Handled property

is set to true the character will not be added to the textbox. You will create a variable of

type bool called isHandled in the event method which will help determine if the character

should be added. Use the following code to determine if the character should be omitted.

bool isHandled = !char.IsDigit(e.KeyChar) && !char.IsControl(e.KeyChar) &&

!e.KeyChar.Equals(decimalPoint);

64

C# For Beginners

IMPORTANT: An exclamation mark (!) used in an expression mean NOT and will reverse a

result making true become false a vice versa. Two ampersands (&&) in an expression mean

AND forcing both values to be true if a result of true is to be returned. Two pipes (||)in an

expression mean OR and evaluates to one or both values has to be true for the result to be

true.

 Check that the pressed key is not a digit (other than a period) and not a control

 character

Let me explain the code to make it clear what it will do step by step. First you create a

variable called isHandled which will hold the value true if the character should be omitted or

false if the character should be added to the textbox. The first thing you want to exclude are

non-numerical characters using the char.IsDigit method passing in the current character

using the e.KeyChar property, but because the IsDigit method return true if it is a numerical

character you have to reverse the result by placing an exclamation mark before the

expression essentially asking if it is not a numerical value. The code looks like this so far, but

you will add more code to it later.

bool isHandled = !char.IsDigit(e.KeyChar);

Next you want to check that no control character has been pressed using the char.IsControl

method and again you have to use an exclamation mark before the expression to denote

that you want the result to reflect if no control key has been pressed.

The double ampersands (&&) is used to logically add the two Boolean (true/false) method

results to find out if the combined result evaluates to true or false, if one or both are false

the result will be false otherwise it will be true. So as an example if you press 7 on the key-

board the result would be false because the !char.IsDigit would return false and the !char

.IsControl would return true because no control character was pressed.

bool isHandled = !char.IsDigit(e.KeyChar) && !char.IsControl(e.KeyChar);

The last thing you need to check is if the character is equal to the decimalPoint constant

meaning that it is a comma or a period. The reason for checking if it is a decimal point is that

you need to do further analysis if it is, so if it isn't a decimal point you can consider the key

press handled and to omitted it if the previous checks result in true. Use an exclamation

mark before the expression to denote that the result should be reversed. The complete

65

C# For Beginners

result for the isHandled variable looks like this. The expression compares the value of the

e.KeyChar property (the pressed key) to the constant value in the decimalPoint constant

you added earlier.

bool isHandled = !char.IsDigit(e.KeyChar) && !char.IsControl(e.KeyChar) &&

!e.KeyChar.Equals(decimalPoint);

 Only allow one decimal point

The last thing you need to check to evaluate if the key press is handled is if the pressed key is

a decimal point and the textbox already contain a decimal point, you can only have one deci-

mal point after all. You can use the following expression to find out if the pressed key is

equal to the decimal point character stored in the decimalPoint constant and that no deci-

mal character exist in the textbox. If both these statements return true then you can

consider the pressed key to be handled and the character should be omitted from the

textbox.

(e.KeyChar.Equals(decimalPoint) && textbox.Text.Contains(decimalPoint))

Adding the KeyPress event

1. Select the first Price textbox.

2. Click on the Flash button in the Properties window to show the events associated

with the textbox.

3. Locate the KeyPress event in the event list.

4. Write the event name txtPrice_KeyPress in the text field to the right of the KeyPress

label.

5. Press enter on the keyboard to create the event method in the code-behind file.

6. Create the textbox constant immediately below the opening curly brace of the form.

const char decimalPoint = ',';

7. In the event method add the following code to cast the sender parameter into a

textbox in order to access its Text property.

var textbox = sender as TextBox;

8. Add the check to determine if the pressed key is a non-numerical value and also that

a control key wasn't pressed. The only non-numerical character allowed is the one

stored in the decimalPoint constant.

66

C# For Beginners

bool isHandled = !char.IsDigit(e.KeyChar) &&

!char.IsControl(e.KeyChar) && !e.KeyChar.Equals(decimalPoint);

9. Evaluate if the key press is considered handled or if the key character is a decimal

point and that the textbox already contain a decimal point if any of these two

expressions result in true then the key press should be considered handled and the

character be omitted from the textbox.

e.Handled = isHandled || (e.KeyChar.Equals(decimalPoint) &&

textbox.Text.Contains(decimalPoint));

10. Run the application and make sure that only numerical values and one decimal point

can be entered in the first Price text box.

11. Close the application.

12. Select all Price textboxes except the first one and the Discount and VAT Percentage

textboxes.

13. Locate the KeyPress event in the event list in the Properties window and select

txtPrice_KeyPress in the dropdown list in the field to the right of the KeyPress label.

This will associate the same event method to all the selected textboxes KeyPress

events.

14. Run the application again and make sure that you have the same restrictions on all

the previously selected textboxes.

15. Close the application.

The completed evaluation code looks like this taking both results into account.

e.Handled = isHandled || (e.KeyChar.Equals(decimalPoint) &&

textbox.Text.Contains(decimalPoint));

The complete code for the KeyPress event method looks like this.

public partial class Form1 : Form

{

const char decimalPoint = ',';

private void txtPrice_KeyPress(object sender, KeyPressEventArgs e)

{

// Cast the textbox being edited to a TextBox.

var textbox = sender as TextBox;

// The pressed key is not a digit or a

// period/comma and not a control character.

67

C# For Beginners

bool isHandled =

!char.IsDigit(e.KeyChar) &&

!char.IsControl(e.KeyChar) &&

!e.KeyChar.Equals(decimalPoint);

// Allow only one decimal point

e.Handled =

isHandled ||

(e.KeyChar.Equals(decimalPoint) &&

textbox.Text.Contains(decimalPoint));

}

}

Calculate the line total

The line total for each product row is calculated as units*price when the up or down button

in the NumericalUpDown control associated with the row is clicked, when the control has

focus (the cursor is in the control) and the up or down arrows are used on the keyboard,

value changes in the control or when the control loses focus. To implement these scenarios

you have to use the ValueChanged event of the numUnits controls. The result will be pre-

sented in the txtLineItem textbox associated with the product being entered.

Since the Value property of a NumericalUpDown control return a decimal value you have to

cast it to an int before storing the value in a variable called units. The casting is necessary in

order to use the value as an integer. You can cast it by placing the int data type in parenthes-

is before the control name.

var units = (int)numUnits1.Value;

Because the value in the Text property of the txtPrice textbox associated with the product

potentially can hold a non-numerical value you have to parse the value to a variable of the

double data type. The preferred way to convert a value which can contain values other than

a double is to use the Double.TryParse method since it always will return a double value

even if the parse is unsuccessful in which case 0 is returned. Note that the method return

the value as an out parameter instead of a return type, this mean that you have to declare a

double variable (price) which you pass in to the method as the second parameter preceded

by the out keyword, the first parameter being the string value to parse.

double price = 0;

Double.TryParse(txtPrice1.Text, out price);

68

C# For Beginners

Store the result from the actual calculation in a double variable called lineTotal and assign

the variable to the Text property of the txtLineTotal textbox.

1. Open the Form's design surface.

2. Double click on the first NumericalUpDown control to add its ValueChanged event

to the code-behind file.

private void numUnits1_ValueChanged(object sender, EventArgs e)

{

}

3. Add a variable called units using the var keyword and assign the result from the

 numUnits1 Value property cast as an int to it.

var units = (int)numUnits1.Value;

4. To be certain a double value is used in the calculation you can parse the value in the

 txtPrice1 Text property to a double using the TryParse method on the Double class.

The method requires a variable to be passed in as an out parameter through which

the method can return the parsed result. A variable declared as out can be used in

methods to return additional values other than the return type, more on that in the

chapter on methods.

double price = 0;

Double.TryParse(txtPrice1.Text, out price);

5. The line total is calculated with the formula units*price and stored in a variable

called lineTotal declared with the double data type.

double lineTotal = units * price;

6. The result in the lineTotal variable should be displayed in the txtLineTotal1 textbox

assigning the variable to its Text property. Note that you have to use the ToString

method on the variable when assigning it to the Text property in order to convert

the value in the variable to a string. The conversion is necessary because the Text

property requires a string.

txtLineTotal1.Text = lineTotal.ToString();

7. Run the application and test that the line total is displayed when a price has been

entered and the number of units changes.

8. Close the application.

69

C# For Beginners

9. Repeat 2-8 for all the other NumericalUpDown controls in the form. You can save

time by copying the code you just wrote and paste it in to the events you create

changing the names of the controls off course.

The complete code for one of the ValueChanged events looks like this:

private void numUnits1_ValueChanged(object sender, EventArgs e)

{

var units = (int)numUnits1.Value;

double price = 0;

Double.TryParse(txtPrice1.Text, out price);

double lineTotal = units * price;

txtLineTotal1.Text = lineTotal.ToString();

}

Calculate the order total

The order total for all the line totals, the discount and the VAT is calculated in the Click event

of the btnTotal button. The easiest way to add the Click event (since it is the default event

for buttons) is to double click on the button in the form.

You will have to parse all the textbox values to be certain that you are performing the calcu-

lation with numerical values. Since the TryParse method in the Double class always return a

numerical value even if the value passed in isn't a numerical value itself it will happily handle

for instance an empty string returned by an empty textbox yielding a value of 0.

To handle the values returned as out parameters from all the TryParse method calls you

have to declare all the necessary double variables for discount, vat and line totals before

calling the first TryParse method.

After the values have been parsed and stored in double variables it is time to perform the

first calculation which is to add all line totals and subtract the discount, store the result in a

double variable called lineTotals.

The second calculation will be to calculate the VAT amount in a double variable called

vatTotal later to be added to the total cost. You calculate the VAT amount by multiplying the

value in the lineTotal variable with the VAT percentage stored in the vat variable divided by

100. You divide the VAT percentage by 100 because you want the decimal representation of

the given percentage value for the calculation.

70

C# For Beginners

The third and final calculation is the total stored in a double variable called total. You

calculate the total by adding the value in the vatTotal variable to the value in the lineTotal

variable.

To display the VAT amount and the total in the form you have to assign the variables to their

respective textboxes which are txtVatAmt and txtTotal.

1. Open the Form's design surface.

2. Double click on the Calculate button (btnTotal) to add its Click event.

private void btnTotal_Click(object sender, EventArgs e)

{

// The code goes here

}

3. Declare all the necessary variables.

double discount, vat, ltot1, ltot2, ltot3, ltot4, ltot5;

double total, lineTotals, vatTotal;

4. Parse all the values from the textboxes and store the result in the variables you just

created.

Double.TryParse(txtDiscount.Text, out discount);

Double.TryParse(txtVAT.Text, out vat);

Double.TryParse(txtLineTotal1.Text, out ltot1);

Double.TryParse(txtLineTotal2.Text, out ltot2);

Double.TryParse(txtLineTotal3.Text, out ltot3);

Double.TryParse(txtLineTotal4.Text, out ltot4);

Double.TryParse(txtLineTotal5.Text, out ltot5);

5. Add the line totals and subtract the discount, store the result in the lineTotals varia-

ble.

lineTotals = ltot1 + ltot2 + ltot3 + ltot4 + ltot5 - discount;

6. Calculate the VAT amount.

vatTotal = lineTotals * (vat / 100);

7. Calculate the order total by adding the VAT amount to the line totals.

total = lineTotals + vatTotal;

8. Display the result in the txtVatAmt and txtTotal textboxes. Remember to use the

ToString method when assigning the double values.

txtVatAmt.Text = vatTotal.ToString();

txtTotal.Text = total.ToString();

71

C# For Beginners

9. The application is now complete. Run the application and enter some values in the

fields and click the Calculate button to calculate the VAT and total cost.

10. Close the application.

The complete code for the btnTotal_Click event look like this:

private void btnTotal_Click(object sender, EventArgs e)

{

double discount, vat, ltot1, ltot2, ltot3, ltot4, ltot5;

double total, lineTotals, vatTotal;

Double.TryParse(txtDiscount.Text, out discount);

Double.TryParse(txtVAT.Text, out vat);

Double.TryParse(txtLineTotal1.Text, out ltot1);

Double.TryParse(txtLineTotal2.Text, out ltot2);

Double.TryParse(txtLineTotal3.Text, out ltot3);

Double.TryParse(txtLineTotal4.Text, out ltot4);

Double.TryParse(txtLineTotal5.Text, out ltot5);

lineTotals = ltot1 + ltot2 + ltot3 + ltot4 + ltot5 - discount;

vatTotal = lineTotals * (vat / 100);

total = lineTotals + vatTotal;

txtVatAmt.Text = vatTotal.ToString();

txtTotal.Text = total.ToString();

}

String variables

Strings are used to store alphanumerical values and can be used, for example, to store

values from text boxes in a GUI.

String concatenation

You can use the + operator to concatenate strings, but this method of concatenation should

be used sparingly because it causes overhead; every time the + operator is used, a new

string is created in memory and the old string is discarded.

The variable myString in the following example would contain the value First part, second

 part, third part after all the strings have been concatenated.

string myString = "first part, ";

myString = myString + "second part, ";

72

C# For Beginners

myString = myString + "third part";

You should use an instance of the StringBuilder class instead of using the + operator and

append values to the variable because the data is added dynamically and the StringBuilder

object is only instantiated once on the Heap. Use the Append method to append data to the

StringBuilder variable. When you want to use the string built inside the StringBuilder

instance you have to call the ToString method on the variable.

StringBuilder myStringBuilder = new StringBuilder("first part");

myStringBuilder.Append("second part");

myStringBuilder.Append("third part");

string concatenatedString = myStringBuilder.ToString();

String validation

String validation is very important, especially if the value comes from a GUI, it can help avoid

errors in the form of exceptions and it can be used to display validation messages to the user

before the data is saved to a data source. One way to implement string validation is to use

regular expressions.

The Regex class is located in the System.Text.RegularExpressions namespace, you can use

its IsMatch method to validate if the string matches the specified criteria.

The following code validates if the string contains numerical digits.

var textToTest = "hell0 w0rld";

var regularExpression = "\\d";

var result = Regex.IsMatch(textToTest, regularExpression,

RegexOptions.None);

{

// The text matched the expression.

}

Additional reading: "Regex Class"

Exercise: StringBuilder and Regex

In this exercise you will use an instance of the StringBuilder class called emailAddresses to

store email addresses entered in a textbox. The email addresses are validated using a regular

73

C# For Beginners

expression with the IsMatch on the Regex class before being added to the emailAddresses

variable when the btnAdd button is clicked. If the email being evaluated is not a true email

then the txtEmail textbox's background should be displayed in a light pink color denoting

that the email is incorrect. An email should only be added once to the emailAddresses varia-

ble even if the user tries to enter it multiple times, you can solve this by using the Contains

method on the string representation of the variable to see if the email already exist in the

string.

The actual string representation of a regular expression can mildly put be very difficult to

figure out how to create. Unless you really like to dig in to the world of regular expressions I

suggest that you use your favorite search engine and scour the internet for already existing

viable regular expressions.

One (of many) possible regular expressions derived from the RFC 5322 standard for validat-

ing email addresses look like this when added to a read only string constant called email-

 Regex:

readonly string emailRegex;

emailRegex =

@"[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@" +

@"(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-

9])?";

IMPORTANT: A readonly constant can be assigned once at run-time compared to a constant

 declared with the const keyword which has to be assigned a value at compile-time on the

 same line as the constant is created.

The following code show how to evaluate is if a string is a match for a specific regular expre-

ssion. In this case the regular expression stored in the constant is being compared to the

string entered into the txtEmail textbox.

var result = Regex.IsMatch(txtEmail.Text, emailRegex);

Use the result variable in an if-statement to figure out which background color (light pink or

white) should be displayed in the email textbox and whether the email should be added to

the StringBuilder variable. Perform the evaluation in the button's Click event.

74

C# For Beginners

Creating the solution

1. Open Visual Studio and select New-Project in the File menu.

2. Select Visual C# to the left in the dialog.

3. Select Windows Forms Application in the middle list.

4. Name the project Email Regex in the Name textbox.

5. Click the OK button.

Adding the form controls

1. Add a label and position it a short distance from the left side and top of the form.

2. Change the text of the label to Email with its Text property.

3. Add a textbox below the label and name it txtEmail with its Name property.

4. Add a button to the right of the textbox and name it btnAdd.

5. Change the text on the button to Add using its Text property.

6. Add a rich textbox control below the textbox and make it as wide as the textbox and

button combined.

7. Name the rich textbox control txtEmailList. This textbox will be used to display the

email list as new email addresses are added to the StringBuilder variable you will

create later.

Adding the regular expression constant and StringBuilder variable

1. Open the form's code-behind file by double clicking on the forms gray surface in the

designer.

2. Add a read only string constant called emailRegex and an instance of the String-

Builder called emailAddresses to the form class

public partial class Form1 : Form

{

readonly string emailRegex;

StringBuilder emailAddresses = new StringBuilder();

75

C# For Beginners

3. Assign the regular expression string to the emailRegex variable in the form

constructor called Form1(). Place an @-sign in front of the quote when assigning the

string to ensure that all the special characters are treated as characters and keep

them from being evaluated by the compiler. Also note that the string is concatenat-

ed using the + operator.

public Form1()

{

emailRegex =

@"[a-z0-9!#$%&'*+/=?^_`{|}~-]" +

@"+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@" +

@"(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)" +

@"+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?";

InitializeComponent();

}

4. Add the btnAdd button's Click event by double clicking on it in the form designer.

private void btnAdd_Click(object sender, EventArgs e)

{

}

5. Add a variable called result inside the Click event method which will hold the Boole-

an result from the Regex.IsMatch method call. Pass in the text from the txtEmail

textbox and the regular expression in the emailRegex variable.

var result = Regex.IsMatch(txtEmail.Text, emailRegex);

6. Add an if-statement below the result variable and use it to determine if the email is

correct. Use curly braces to create the if-block to be executed if the email is correct

and change the textbox background color to white inside the block.

if (result)

{

txtEmail.BackColor = Color.White;

}

7. Inside the if-block, after the change in background color, add a second if-statement

to check if the email is correct using the ToString and Contains methods to compare

the current content of the StringBuilder variable with the text in the txtEmail text-

box. If the email does not exist (use an exclamation mark to change true to false)

add it to the emailAddresses StringBuilder. The "\n" string adds a line break after

the email.

76

C# For Beginners

if(!emailAddresses.ToString().Contains(txtEmail.Text))

emailAddresses.Append(txtEmail.Text + "\n");

8. Add an else-statement below the closing curly brace of the if-block which will be ex-

ecuted if the if-statement evaluates to false meaning that email is incorrect. Change

the background color of the txtEmail textbox to light pink to show the user that the

email is incorrect.

else

txtEmail.BackColor = Color.LightPink;

9. The last thing you need to do is to display the content from the emailAddresses vari-

able in the txtEmailList rich textbox. Note that you have to call the ToString method

on the variable to be able to add the content to the control.

txtEmailList.Text = emailAddresses.ToString();

10. Run the a application and enter an invalid email making the textbox background turn

light pink when the button is clicked.

11. Enter a valid email address and click on the button adding it to the large textbox and

changing the textbox background color to white.

12. Add another valid email and click the button to add it to the large textbox. Make

sure that both email addresses are displayed.

13. Enter an invalid email and click the button making the textbox background turn light

pink then change the email to a valid email and click the button to make sure that

the background color changes to white and the email is added.

14. Close the application.

The complete code in the form looks like this:

public partial class Form1 : Form

{

readonly string emailRegex;

StringBuilder emailAddresses = new StringBuilder();

public Form1()

{

emailRegex =

@"[a-z0-9!#$%&'*+/=?^_`{|}~-]" +

@"+(?:\.[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@" +

@"(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)" +

@"+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?";

77

C# For Beginners

InitializeComponent();

}

private void Form1_Load(object sender, EventArgs e)

{

}

private void btnAdd_Click(object sender, EventArgs e)

{

var result = Regex.IsMatch(txtEmail.Text, emailRegex);

if (result)

{

txtEmail.BackColor = Color.White;

if(!emailAddresses.ToString().Contains(txtEmail.Text))

emailAddresses.Append(txtEmail.Text + "\n");

}

else

txtEmail.BackColor = Color.LightPink;

txtEmailList.Text = emailAddresses.ToString();

}

}

Arrays

An array is a sequence of values or objects that are treated as a group and managed as a

unit. The most common types of arrays are one-, two- or three-dimensional (list, table and

cube, respectively), but you can create arrays with up to 32 dimensions.

Arrays are zero (0) based, meaning that the first element of an array is stored at index zero.

The size of the array is determined by the number of elements you can store in it. The num-

ber of dimensions the array holds determines the rank of the array. An array always holds

values or objects of the same type.

If you need to be able to store different types in the same sequence, consider using collect-

ions. Collections are found in the System.Collections namespace and are expandable, which

means that you can add and remove objects in the collection as needed.

An array does not allocate physical memory until the new operator has been executed; at

78

C# For Beginners

this time you specify the size of the array implicitly (by assigning values directly) or explicitly

(by stating the size).

When reading or writing data to an array, you should check for the IndexOutOfRangeExcep-

tion exception; this type of error will occur if you try to use an index that is not available in

the array.

One dimensional arrays

The following example shows how you can create a one dimensional array which store

values or objects is a sequence starting at index 0. The value you assign in the declaration of

the array (between the two angle brackets after the data type) determine how many items

can be stored in the array, not the end index. In the code below the array will contain 5

placeholders to store values of the declared type with the indices 0 through 4.

int[] list = new int[5];

You can now assign values to the array using the square bracket syntax; in the following

example the value 10 is stored in the array's first placeholder at index 0.

list[0] = 10;

Another way to declare and assign values to an array is to declare it and assign the values at

the same time using the curly brace syntax. Note that you don’t have to specify the number

of items the array should hold because it is inferred by the number of items you add within

the curly braces.

int[] list = new int[] { 1, 5, 45, 75, 2 };

You read or use values stored in an array by specifying the name of the array followed by the

index of the position you want to fetch the value from. If you are iterating (looping) over the

values in an array the hardcoded value in the angle brackets should be replaced by the loop

counter.

int theValue = list[1];

79

C# For Beginners

Two dimensional arrays

The following example shows how you can create a two dimensional array which store

values or objects in a table like manner where the first index determines the number of di-

mensions (the rank) of the array and the second the number of items which can be stored in

each dimension. The code below would create an array with two dimensions, or two main

placeholders if you like, which each can hold three items of the specified data type.

Note that you specify the number of dimensions by adding commas to the first set of square

brackets where one comma mean two dimensions.

int[,] table = new int[2, 3];

You can now store a maximum of six values in the array where the first value is stored in the

first dimension at index zero ([0, 0]) and the last in the second dimension at index 2 ([1, 2]).

Note that the dimensions also are zero based.

table[0, 0] = 1; table[0, 1] = 2; table[0, 2] = 3;

table[1, 0] = 4; table[1, 1] = 5; table[1, 2] = 6;

You can also declare and assign values at the same time when declaring a two dimensional

array. Use curly braces to indicate the different dimensions.

int[,] table = new int[,]

{

{ 1, 2, 3 },

{ 4, 5, 6 }

};

To fetch a value from a specific placeholder you have to specify the dimension and the index

within that dimension.

var tableValue1 = table[0, 1]; // return 2

var tableValue2 = table[1, 2]; // return 6

Looping over values in an array

Although you have not yet read about loops it can be worth to mention a way to loop over

arrays here just to put loops into an array context. In the example below a for loop is used to

80

C# For Beginners

iterate over the items in a one dimensional array called list; note that you never should

hardcode the end index of a loop (unless absolutely necessary), instead you should use

properties and methods such as Length and Count on the array or collection to determine

the number of iterations required for that specific list of values. Here the Length property of

the list array is used to determine the number of iterations needed. To fetch the individual

values in the array you use the loop counter (i in this case) within the angle brackets of the

array variable. It is very common to use counter variables named I, j, k and so on for loop

counters if nested loops are used. You start at i because a, b, c and so on are usually reserv-

ed for placeholders in mathematical calculations. The code below will loop over the values

stored in the array and add them together storing the result in a variable called result.

int result = 0;

for (int i = 0; i < list.Length; i++)

{

result += list[i];

}

Additional reading: “Arrays (C# Programming Guide)”

Exercise: Building a calculator

In this exercise I would urge you to try to implement it without looking at the solution and

view it as a test of sorts to see if there are any gaps in your knowledge you need to fill before

continuing to the next chapter. The exercise will be presented as a mini use case describing

what the fictive customer want you to implement and leave you to figure it out, it is describ-

ed this way to model a miniature real world scenario. You will get more exercises of this kind

moving forward to make it more fun for you and to keep you on your toes.

IMPORTANT: If you are using Visual Studio 2015 or later the Windows Forms resolution has

 changed and you will have to use other control sizes that are appropriate for the UI.

The use case

The customer is adamant that no hardcoded values should exist in the event methods and

that such values should be declared as constants at the beginning of the Form1 class to

81

C# For Beginners

make the code more maintainable. Any class level variables should also be declared at the

beginning of the class.

The calculator only need to calculate a result using two values. When entering values using

the numbered buttons the current value should be displayed with large digits in the value

label. When one of the arithmetic buttons (+, -, x, /) is clicked the value should be moved

and displayed with a much smaller font in a label displayed over a small portion of the value

label (see image below).

The delete (←), clear (C), memory (M) and memory recall (MR) buttons should be placed

below the value label as well as a label (blue background) which should display used the

arithmetic character (+, -, x, /) when one of the buttons is clicked.

The delete (←) button should remove the last entered digit (the right most digit). Note that

you have to make sure that the minus sign is replaced with a 0 if the last numerical digit of a

negative value is deleted. You also have to add a 0 to the large value label if the last numeri-

cal digit of a positive value is deleted.

The clear (C) button should clear the value in all the small value label and the label displaying

the arithmetic character and assign 0 to the large value label.

The memory (M) button should store the value in the large value label in a string variable

called memory for later use.

82

C# For Beginners

The memory recall (MR) button should recall the value in stored in the memory variable and

display the value in the large value label.

The number buttons should append the digit to the end of the value in the large value label.

The same goes for the decimal character which only should be allowed once in the large

value label.

When one of the arithmetic buttons is clicked the value in the large value label should be

moved to the small value label and the arithmetic symbol should be displayed in the blue

label to the right of the memory recall button. This symbol will then be used to determine

how the result should be calculated when the button with the equal sign on it is clicked.

These buttons should be handled by the same event method called btnCalculate_Click.

When the square root (√) button is clicked the square root of the value in the large value

label should be calculated using the Sqrt method in the Math class and the result displayed

in the large value label replacing the original value. You should also handle negative values

because it is not possible to calculate the square root of a negative value, display a message

box with a suitable message.

The negation button (±) should act as a toggle button adding and removing a minus sign (-)

to the left of the value in the large value label.

When the calculate button (=) is clicked the result should be calculated using the values from

the small and large value labels as well as the symbol store in the blue label.

The number buttons should use the same event method called btnNumber_Click. You can

cast the sender parameter (from the event parenthesis) to a button using the Button class

and use the variable you store the clicked button in to access its Text property.

Button btn = (Button)sender;

Rules regarding calculating the result

If one of the labels contain an empty string or if the large value label contain 0 no calculation

should take place and the event should be prematurely ended using the return keyword.

if (...) return;

83

C# For Beginners

If the last character in either of the two value labels is a decimal sign then that character

should be removed prior to the calculation being performed.

The calculation performed should be determined by the arithmetic sign is displayed in the

blue label.

After the calculation the blue label and the small value label should be cleared by assigning

an empty string to their Text properties.

The result should be displayed in the large value label with three (3) decimal digits. You can

use the format functionality of the ToString method to achieve this. Also if the value is

calculated as for instance 10.0 where the value ends with a zero decimal value (,0 or .0) then

the zero and the decimal symbol should be removed from the string using the Replace

method before the value is displayed in the large value label.

lblValue.Text = result.ToString("F3").Replace(zeroDecimal, String.Empty);

 Now structure the information given to you in a document before you start implementing

 the solution. For instance what constants could be used in place of hard coded text and val-

 ues. I suggest that you implement the solution in incremental stages to see that one

 functionality works before proceeding with something new.

The solution

I hope you have tried to implement the solution before deciding to resort to the solution

presented here. You will start by creating the GUI and move on from there to implement the

button logic culminating in the actual calculation when hitting the button with the equal

sign.

The value labels

1. Create a new Windows Forms Application solution called Simple Calculator.

2. Resize the form to 314px wide and 383px high.

84

C# For Beginners

3. Drag a label to the form which represent the value that the user enters through

clicking on the numerical buttons.

4. Rename the label lblValue.

5. Set the AutoSize property to false to be able to resize the label.

6. Change the background color to white and the border style to Fixed3D to make it

look more like a textbox.

7. Change the font to Consolas 20pt to make the text larger.

8. Resize the label to 274px wide and 46px high.

9. Assign the value 0 to the Text property.

10. Align the text to the bottom right with the TextAlign property.

11. Next drag another label to the form and rename it lblFirstValue.

12. Set the AutoSize property to false to be able to resize the label.

13. Change the background color to white and the border style to None to remove any

border around the label.

14. Change the font to Consolas 10pt to make the text smaller.

15. Resize the label to 270px wide and 14px high.

16. Clear the Text property by deleting any value in it.

17. Align the text to the middle right with the TextAlign property.

18. Reposition the label on top of the first label so that it appears that it is part of the

upper section of the label.

The buttons

All buttons have the same size except the 0 which has double the width of the other buttons

and the equals button which has double the height of the other buttons. The buttons are

50px wide and 50px high. The special characters for the delete (←), square root (√) and

negation (±) buttons can be copied from a word processor's Insert Symbol functionality and

pasted into the Text property of the button or you can use the Unicode value for the desired

symbol if the value is added programmatically in the form's Load event (←, \u2190), (√,

\u221A) and (±, \u00B1).

btnSign.Text = "\u00B1";

The math function label (the blue one)

The purpose of this label is to show the user which mathematical function has been chosen

when clicking on one of the (+, -, /, x) buttons. The value stored in this label will then be used

85

C# For Beginners

to determine how the result will be calculated; you could off course use a variable to store

this information but then it would not be visible to the user.

1. Add a label to the form and change its name to lblMathFunction.

2. Resize the label to the same height (50px) and width (50px) as the buttons.

3. Reposition the label to the right of the Memory Recall (MR) button.

4. Change the background color to blue.

5. Change the text color to White with the ForeColor property.

6. Change the text alignment to MiddleCenter with the TextAlign property.

7. Change the Font to Consolas 20pt.

8. Change the border style to FixedSingle.

The numerical buttons

Name the numerical buttons btnOne, btnTwo and so on.

To avoid a lot of duplicated code and to make it more compact and maintainable you should

create one Click event that is used by all numerical buttons. To access the clicked button's

Text property (or any other property) you can cast the sender parameter to a Button, the

sender parameter is sent in through the event's parenthesis.

You have to take into consideration that the value label which contain the current value

entered so far could contain the default 0 assigned when the calculator is started or when

the value is cleared using either the delete or clear button. If this is the case then you first

have to clear the label by assigning an empty string to it before adding the button's value to

the Text property of the label.

One way of appending the correct numerical value at the end of the value in the value label

is to use the text from the button itself because it holds the necessary number. You can

fetch the value from the Text property of the variable you cast earlier.

1. Select one of the numerical buttons and enter btnNumber_Click in its Click event

field in the Properties window and then press Enter on the keyboard. This should

create the event method and take you to it.

private void btnNumber_Click(object sender, EventArgs e)

{

}

86

C# For Beginners

2. Add a variable called btn which will hold the cast sender parameter and cast the

sender parameter to a Button to be able to use its properties.

Button btn = (Button)sender;

3. Because the customer wanted all constant values to be stored as constants you will

add a constant named noValue to the form's class just inside its opening curly brace

and assign the value 0 to the constant.

public partial class Form1 : Form

{

const string noValue = "0";

4. Use the constant you just added in an if-statement checking if the lblValue label is

equal to that value, if it is then clear the label by assigning an empty string to it. Note

that you don't have to use curly braces to add a block to an if-statement that only

executes one line of code.

if (lblValue.Text == noValue)

lblValue.Text = String.Empty;

5. The last thing you have to do is to append the numerical value of the button to the

end of the text in the lblValue label, you can do this by using the += operator.

lblValue.Text += btn.Text;

6. Now that the event method has been implemented you should add it to the Click

event of all other numerical buttons using the Events section of the Properties win-

dow.

7. Run the application and make sure that the number corresponding to the button

you click is appended to the end of the text in the lblValue label (the large label).

8. Close the application.

Here's the complete code for the event used with the numerical buttons Click events:

private void btnNumber_Click(object sender, EventArgs e)

{

Button btn = (Button)sender;

if (lblValue.Text == noValue)

lblValue.Text = String.Empty;

lblValue.Text += btn.Text;

}

87

C# For Beginners

The Delete button

The purpose of the Delete button is to remove the rightmost character from the lblValue

label when clicked. There are a couple of edge cases you must take into consideration here:

 You should remove the last digit of the label value only if it contain more than one

character otherwise the label value should be reset to 0 using the noValue constant

you created earlier.

 If the label contain only one digit and it is a minus sign the value of the label should

be reset to 0 using the noValue constant you created earlier.

1. Name the button btnDelete.

2. Double click on the Delete (←) button to add its Click event method to the code-

behind file.

3. Declare a string variable called newValue and assign the default value store in the

noValue constant. The variable will hold the new value as it is created throughout

the event.

string newValue = noValue;

4. Next fetch the length of the text stored in the lblValue label and store it in an int

variable called length. You will need this value to determine if the first edge case

should be applied or if the last digit should be removed from the value.

int length = Convert.ToInt32(lblValue.Text.Length);

5. Use the length variable to determine if the last digit should be removed and if so

remove it using the Substring method of the label's Text property storing the result

in the newValue variable you created earlier.

if (length > 1)

newValue = lblValue.Text.Substring(0, length - 1);

6. Check if the remaining value in the newValue is equal to a minus sign denoting that

a negative number was used, if it is reset the value of the variable to the value

stored in the noValue constant. Store the minus character in a string constant

named minusSign at the beginning of the form and use it instead of hard coding the

minus sign in the if-statement.

if (newValue.Equals(minusSign))

newValue = noValue;

7. Assign the value in the newValue variable to the Text property of the lblValue label.

88

C# For Beginners

8. Run the application and make sure that the Delete button works properly.

9. Close the application.

Here's the complete code for the Delete button:

private void btnDelete_Click(object sender, EventArgs e)

{

string newValue = noValue;

int length = Convert.ToInt32(lblValue.Text.Length);

if (length > 1)

newValue = lblValue.Text.Substring(0, length - 1);

if (newValue.Equals(minusSign))

newValue = noValue;

lblValue.Text = newValue;

}

The Clear button

The purpose of the Clear button is to clear the labels and assign default values to them.

1. Name the button btnClear.

2. Double click on the Clear button in the form to create its Click event.

3. Assign the value of the noValue constant to the lblValue label to reset its value to 0.

4. Assign an empty string to the lblFirstValue and lblMathFunction labels to clear

them.

5. Run the application and make sure that the clear button works properly.

6. Close the application.

Here's the complete code for the Clear button:

private void btnClear_Click(object sender, EventArgs e)

{

lblValue.Text = noValue;

lblFirstValue.Text = String.Empty;

lblMathFunction.Text = String.Empty;

}

89

C# For Beginners

The Memory button

The purpose of the Memory (M) button is to store the current value from the label lblValue

in a form level string variable called memory. The user should then be able to recall that

value by clicking on the Memory Recall (MR) button.

1. Name the button btnMemory.

2. Double click on the Memory button in the form to create its Click event.

3. Scroll to the beginning of the form and create a new string variable called memory

below the already existing constants and assign an empty string to it.

string memory = String.Empty;

4. Scroll back to the btnMemory_Click event.

5. Assign the text in the lblValue label to the memory variable.

6. Reset the value of the lblValue label to the value stored in the noValue constant.

Here's the complete code for the Memory button:

private void btnMemory_Click(object sender, EventArgs e)

{

memory = lblValue.Text;

lblValue.Text = noValue;

}

The Memory Recall button

The purpose of the Memory Recall (MR) button is to recall the value stored in the memory

variable and assign that value to the lblValue label.

1. Name the button btnMemoryRecall.

2. Double click on the Memory Recall button in the form to create its Click event.

3. Assign the value from the memory variable you created at form level in the previous

section to the lblValue label.

4. Run the application to test the Memory and Memory Recall buttons by entering a

value using the numerical buttons and then clicking on the Memory button. Clear

the label by clicking on the Clear button and then click on the Memory Recall button

to fetch the value in the memory variable and display it in the lblValue label.

5. Close the application.

Here's the complete code for the Memory Recall button:

90

C# For Beginners

private void btnMemoryRecall_Click(object sender, EventArgs e)

{

lblValue.Text = memory;

}

The Decimal button

The purpose of the Decimal (,) button is to append a decimal character to the end of the

value in the lblValue label. To adhere to the use case specification you have to create anoth-

er string constant for the decimal character (comma or period depending of culture settings

in the Windows operating system), name the constant decimalSign and assign a comma (,)

or a period (.) to it depending of which symbol you use in your country.

1. Name the button btnDecimal.

2. Double click on the Decimal button in the form to create its Click event.

3. Scroll to the beginning of the form and add a string constant called decimalSign to

which you assign the appropriate decimal character.

const string decimalSign = ",";

4. Scroll back down to the btnDecimal_Click event.

5. Add a bool variable called hasDecimal in the event method and assign true or false

to it depending on if the lblValue contain the decimal sign stored in the decimalSign

constant.

bool hasDecimal = lblValue.Text.Contains(decimalSign);

6. Add an if-statement to check if the hasDecimal variable contain false and if it

doesn't then append the decimal sign to the label.

if (!hasDecimal)

lblValue.Text += decimalSign;

7. Run the application and enter a decimal value. Try to add more than one decimal

character, it should not be possible.

8. Close the application.

Here's the complete code for the Decimal button:

private void btnDecimal_Click(object sender, EventArgs e)

{

bool hasDecimal = lblValue.Text.Contains(decimalSign);

if (!hasDecimal)

lblValue.Text += decimalSign;

91

C# For Beginners

}

The Arithmetic buttons

The purpose of the Arithmetic (+, -, x, /) buttons is to determine how the result should be

calculated when the calculate (=) button is clicked. When one of the buttons is clicked the

arithmetic symbol for the clicked button should be displayed in the lblMathFunction label,

the value in the lblValue label should be moved to the lblFirstValue label (the small label on

top of the value label) and the value of the noValue constant should be assigned to the

 lblValue label. Cast the sender parameter to a Button to get to the Text property of the

clicked button which is the value you should display in the lblMathFunction label.

1. Select one of the arithmetic buttons and add the name btnCalculate_Click to its

Click event field in the Events section of the Properties window.

2. If you weren't taken to the event method then double click on the button in the

form to go to its Click event.

3. Cast the sender parameter to a Button variable called btn.

Button btn = (Button)sender;

4. Assign the Text property of the btn variable (which in reality is the clicked button) to

the lblMathFunction label. This will display the text of the button in the blue label.

You will later use this value when determining how to perform the calculation.

lblMathFunction.Text = btn.Text;

5. Assign the value in the lblValue label to the lblFirstValue label.

lblFirstValue.Text = lblValue.Text;

6. Set the value of the lblValue label to the value of the noValue constant.

lblValue.Text = noValue;

7. Run the application and make sure that the arithmetic symbol is displayed in the

blue label and that the value is moved from the lblValue label to the lblFirstValue

label.

8. Close the application.

Here's the complete code for the Calculate button:

private void btnCalculate_Click(object sender, EventArgs e)

{

Button btn = (Button)sender;

lblMathFunction.Text = btn.Text;

92

C# For Beginners

lblFirstValue.Text = lblValue.Text;

lblValue.Text = noValue;

}

The Sign button

The purpose of the Sign (±) button is to toggle between displaying a minus sign in the

 lblValue label making the value negative or to remove the minus sign if it is a negative value.

Since the use case specifies that no hardcoded values should exist in the code except as

constants at the beginning of the form you have to add a string constant called minusSign

which holds a minus sign.

1. Name the button btnSign.

2. Double click on the Sign button in the form to create its Click event.

3. Scroll to the beginning of the form and add a string constant called minusSign and

assign a minus sign to it.

const string minusSign = "-";

4. Scroll back to the btnSign_Click event method.

5. Add a bool variable called hasSign which checks if it is a negative value by using the

Contains method to check if a minus sign is present in the Text property of the

 lblValue label.

bool hasSign = lblValue.Text.Contains(minusSign);

6. Add an if-statement checking if the hasSign variable is true meaning that it is a

negative number and the minus sign should be removed. To remove the minus sign

you can use the Replace method on the Text property of the lblValue label, replac-

ing the minus sign with an empty string.

if (hasSign)

lblValue.Text = lblValue.Text.Replace(minusSign, String.Empty);

7. Add an else if-statement checking if the value isn't equal to the value stored in the

noValue constant; that the value is not zero. If that is the case then insert a minus

sign at the beginning of the lblValue label's Text property making the value nega-

tive. You can use the Insert method with the Text property to add the minus sign at

the beginning of the string.

else if (lblValue.Text != noValue)

lblValue.Text = lblValue.Text.Insert(0, minusSign);

8. Run the application and add toggle between a positive and a negative number.

93

C# For Beginners

9. Close the application.

Here's the complete code for the Sign button:

private void btnSign_Click(object sender, EventArgs e)

{

bool hasSign = lblValue.Text.Contains(minusSign);

if (hasSign)

lblValue.Text = lblValue.Text.Replace(minusSign, String.Empty);

else if (lblValue.Text != noValue)

lblValue.Text = lblValue.Text.Insert(0, minusSign);

}

The Square Root button

The purpose of the Square Root (√) button is to calculate the square root of the value in the

 lblValue label and display the result in the same label. You can use the Sqrt method of the

Math class when calculating the square root. You have to check that the value is positive

before calling the Sqrt method because it is impossible to calculate the square root of a

negative number. Display a message box with an appropriate message if the value is

negative.

1. Name the button btnSqrt.

2. Double click on the Square Root button in the form to create its Click event.

3. Add a bool variable called hasSign that you use to store whether the lblValue label

contain a minus sign or not. You can use the Contains method with the label's Text

property and the minusSign constant you added earlier.

bool hasSign = lblValue.Text.Contains(minusSign);

4. Now use the value of the hasSign variable to determine if you should display a

message box to the user and then exit out from the event prematurely.

if (hasSign)

{

MessageBox.Show("Cannot calculate the square root of a negative

number");

return;

}

5. Next you need to check if the label text ends with a decimal sign using the EndsWith

method on the Text property and the decimalSign constant you created earlier.

Store the result in a variable called endsWithDecimalSign.

94

C# For Beginners

var endsWithDecimalSign = lblValue.Text.EndsWith(decimalSign);

6. Next find out the length of the text in the lblValue label and store it in an int variable

called length.

int length = lblValue.Text.Length;

7. Check if the endsWithDecimalSign variable contain the value true in an if-state-

ment. If the value is true then remove the decimal sign. You can use the Substring

method with the Text property of the lblValue label to remove the decimal charac-

ter; the Substring method's first parameter is the start position in the string and the

second is how many characters to copy. The user might have clicked the decimal

button by mistake and forgot to remove it before hitting the Square Root button.

if (endsWithDecimalSign)

lblValue.Text = lblValue.Text.Substring(0, length - 1);

8. Because the Sqrt method in the Math class requires a double value you have the

convert the value of the lblValue label to a double before passing it to the method.

var value = Convert.ToDouble(lblValue.Text);

9. Next calculate the square root by calling the Math.Sqrt method passing in the value

of the value variable from the previous step and store the result in a variable called

result.

var result = Math.Sqrt(value);

10. You have to call the ToString method on the result variable when assigning the

result to the lblValue label.

lblValue.Text = result.ToString();

11. Run the application and try to calculate the square root of a negative number and

make sure that the message box is displayed. Calculate the square root of a positive

value and make sure that the result is displayed in the lblValue label.

12. Close the application.

Here's the complete code for the Square Root button:

private void btnSqrt_Click(object sender, EventArgs e)

{

bool hasSign = lblValue.Text.Contains(minusSign);

if (hasSign)

{

MessageBox.Show(

95

C# For Beginners

"Cannot calculate the square root of a negative number");

return; // Exit out of the event prematurely

}

var endsWithDecimalSign = lblValue.Text.EndsWith(decimalSign);

int length = lblValue.Text.Length;

if (endsWithDecimalSign)

lblValue.Text = lblValue.Text.Substring(0, length - 1);

var value = Convert.ToDouble(lblValue.Text);

var result = Math.Sqrt(value);

lblValue.Text = result.ToString();

}

The Equals button

The purpose of the Equals (=) button is to calculate the result of the two values using the

appropriate arithmetic depending on which arithmetic button was clicked. Since the use

case specifies that no hardcoded values should exist in the code except as constants at the

beginning of the form you have to add string constants for the three remaining arithmetic

operators called plusSign, divisionSign and multiplicationSign and assign the values +, / and

x to them respectively.

1. Name the button btnEquals.

2. Double click on the Equals button in the form to create its Click event.

3. Scroll to the beginning of the form and add the three string constants plusSign,

divisionSign and multiplicationSign.

const string plusSign = "+";

const string divisionSign = "/";

const string multiplicationSign = "x";

4. Scroll back to the btnEquals_Click event.

5. The first thing you need to check is if any of the labels are empty or if the value of

the lblValue label is 0 and if so exit out of the event prematurely.

if (lblFirstValue.Text.Equals(String.Empty) ||

blMathFunction.Text.Equals(String.Empty) ||

lblValue.Text.Equals(String.Empty) ||

lblValue.Text.Equals(noValue))

return;

6. Next you need to check if the value of the lblFirstValue ends with a decimal

character and if so remove it.

96

C# For Beginners

var endsWithDecimalSign = lblFirstValue.Text.EndsWith(decimalSign);

int length = Convert.ToInt32(lblFirstValue.Text.Length);

if(endsWithDecimalSign)

lblFirstValue.Text = lblFirstValue.Text.Substring(0, length - 1);

7. Next you need to check if the value of the lblValue end with a decimal character and

if so remove it.

length = Convert.ToInt32(lblValue.Text.Length);

endsWithDecimalSign = lblValue.Text.EndsWith(decimalSign);

if (endsWithDecimalSign)

lblValue.Text = lblValue.Text.Substring(0, length - 1);

8. Declare two variables called value1 and value2 and store the double converted

values of the two labels lblValue and lblFirstValue in them.

var value1 = Convert.ToDouble(lblFirstValue.Text);

var value2 = Convert.ToDouble(lblValue.Text);

9. Fetch the value stored in the blue lblMathFunction label assign it to a string variable

called mathFunction.

var mathFunction = lblMathFunction.Text;

10. Add a decimal variable called result and assign 0 to it. You can either explicitly de-

clare the variable using the double data type or implicitly using the var keyword and

assign 0d to it; the d after the 0 specifies that the value should be considered a

double value by the compiler.

var result = 0d; //decimal = 0m, double = 0d

11. If the sign stored in the mathFunction is equal to the plusSign constant then

calculate the result as value1 + value2 and store the result in the result variable.

if (mathFunction.Equals(plusSign))

result = value1 + value2;

12. Else if the sign is equal to the minusSign constant the calculate then result as value1

- value2 and store the result in the result variable.

else if (mathFunction.Equals(minusSign))

result = value1 - value2;

13. Else if the sign is equal to the divisionSign constant then calculate the result as

value1 / value2 and store the result in the result variable.

else if (mathFunction.Equals(divisionSign))

result = value1 / value2;

97

C# For Beginners

14. Else if the sign is equal to the multiplicationSign constant then calculate the result

as value1 * value2 and store the result in the result variable.

else if (mathFunction.Equals(multiplicationSign))

result = value1 * value2;

15. Next empty the two labels lblMathFunction and lblFirstValue.

lblMathFunction.Text = String.Empty;

lblFirstValue.Text = String.Empty;

16. Assign the result of the result variable with a formatted output of 3 decimal digits

using the format option of the ToString method.

lblValue.Text = result.ToString("F3");

17. Run the application and do a few calculations involving +, -, x and /.

18. Close the application.

Here's the complete code for the Equals button:

private void btnEquals_Click(object sender, EventArgs e)

{

if (lblFirstValue.Text.Equals(String.Empty) ||

lblMathFunction.Text.Equals(String.Empty) ||

lblValue.Text.Equals(String.Empty) ||

lblValue.Text.Equals(noValue))

return;

var endsWithDecimalSign = lblFirstValue.Text.EndsWith(decimalSign);

int length = Convert.ToInt32(lblFirstValue.Text.Length);

if(endsWithDecimalSign)

lblFirstValue.Text = lblFirstValue.Text.Substring(0, length - 1);

length = Convert.ToInt32(lblValue.Text.Length);

endsWithDecimalSign = lblValue.Text.EndsWith(decimalSign);

if (endsWithDecimalSign)

lblValue.Text = lblValue.Text.Substring(0, length - 1);

var value1 = Convert.ToDouble(lblFirstValue.Text);

var value2 = Convert.ToDouble(lblValue.Text);

var mathFunction = lblMathFunction.Text;

var result = 0d; //decimal = 0m, double = 0d

if (mathFunction.Equals(plusSign))

result = value1 + value2;

else if (mathFunction.Equals(minusSign))

98

C# For Beginners

result = value1 - value2;

else if (mathFunction.Equals(divisionSign))

result = value1 / value2;

else if (mathFunction.Equals(multiplicationSign))

result = value1 * value2;

lblMathFunction.Text = String.Empty;

lblFirstValue.Text = String.Empty;

lblValue.Text = result.ToString("F3");

}

99

C# For Beginners

100

C# For Beginners

4. Loops and Iterations

Introduction

An iteration is a great way to execute a block of code multiple times; it can for instance be

an array or a collection of values. The examples in this chapter will use the array below to

supply data.

string[] animals = { "Cat", "Dog", "Bird", "Fish", "Lizard" };

For

A for loop is a way to iterate over a set of values until the given expression evaluates to

101

C# For Beginners

false. A for loop has three parts: a start value for the loop, an expression telling the loop

when to stop, and a counter.

In this example int i = 0 is the start value, i < 5 is the condition that makes the loop

iterate 5 times, i++ is the iterator.

for (int i = 0; i < 5; i++)

{

lstResult.Items.Add(animals[i]);

}

A more dynamic way of determining when the loop should stop iterate is to use the Length

property or Count method on the array or collection variable to find out how many items it

contain.

for (int i = 0; i < animals.Length; i++)

{

lstResult.Items.Add(animals[i]);

}

Foreach

When using a foreach loop, you don’t have to know the number of elements that the loop

will iterate over because it will iterate over all elements in an array or a collection, unless

you explicitly end the loop prematurely with the break command. The following code will

loop over the animals in the array and stop iterating and end the loop when the current

animal of the loop is equal to "Fish", exiting before "Lizard" is even added to the list box.

Note that the foreach loop don’t have an index and fetch the next item in the array instead.

The item is fetched as the type it was created as, in this cases a string, but it could be items

created using a struct or a class.

foreach (string animal in animals)

{

if (animal.Equals("Fish")) break;

lstResult.Items.Add(animal);

}

102

C# For Beginners

While

A while loop is a way to execute a block of code while a condition is true. Important to note

is that a while loop will not execute if the condition is true from the start. In this example the

while loop will end when the animal fetched from the array is equal to "Bird".

int counter = 0;

while (!animals[counter].Equals("Bird"))

{

lstResult.Items.Add(animals[counter]);

counter++;

}

Do

A do loop will, contrary to a while loop, always execute at least once.

int counter = 0;

do

{

lstResult.Items.Add(animals[counter]);

counter++;

} while (!animals[counter].Equals("Bird"));

Additional reading: “Iteration Statements (C# Reference)”

Exercise: Loops

In this exercise you will add values in an array to a list box using a foreach loop and when the

user clicks either the Move (For) button or the Move (While) button the selected values in

the list box will be moved to a second list box.

You can clear the list boxes displaying the selected values after one of the buttons have been

clicked by calling its Items.Clear method.

lstSelected.Items.Clear();

103

C# For Beginners

Adding the controls

1. Create a new Windows Forms Application in Visual Studio and name it Loops.

2. Add a label with the text Cars to the form.

3. Add a list box below the label and name it lstCars.

4. Add a button below the list box with the text Move (For) and name it btnMoveCars-

 For.

5. Set the SelectionMode property of the list to MultiExtended to be able to select

multiple items while holding down the Ctrl or Shift key.

6. Add a label with the text Selected Cars to the form.

7. Add a list box below the label and name it lstSelectedCars.

8. Add a button below the list box with the text Move (While) and name it btnMove-

 CarsWhile.

Adding values to the lstCars list box

1. Double click on the form surface (not one of the controls) to add the Form_Load

event.

2. Locate the beginning of the From1 class and add a string array called cars which con-

tain a list of cars.

public partial class Form1 : Form

{

string[] cars = {

"Volvo", "Saab", "Corvette", "Mustang", "Honda" };

}

104

C# For Beginners

3. Locate the Form_Load event and use a for loop to add the items in the cars array to

the lstCars list box. Use the Length property of the cars array to determine the num-

ber of iterations needed.

for (int i = 0; i < cars.Length; i++)

{

lstCars.Items.Add(cars[i]);

}

The complete code of the Form_Load event look like this:

private void Form1_Load(object sender, EventArgs e)

{

for (int i = 0; i < cars.Length; i++)

{

lstCars.Items.Add(cars[i]);

}

}

Moving the selected values to the lstSelectedCars list box with a

foreach loop

1. Double click on btnMoveCarsFor button in the form designer, this will create and

take you to the button's Click event.

2. Clear the lstSelectedCars list box.

lstSelectedCars.Items.Clear();

3. Use a foreach loop to move the selected items from the lstCars list box to the

 lstSelectedCars list box. You find the selected items in the list box's SelectedItems

property.

foreach (string car in lstCars.SelectedItems)

{

lstSelectedCars.Items.Add(car);

}

4. Run the application and select one or more cars in the list, hold down Ctrl or Shift to

select multiple items when clicking in the list box.

5. Click on the Move (For) button to move the selected items to the lstSelectedCars

list.

6. Close the application.

105

C# For Beginners

The complete code of the btnMoveCarsFor_Click event look like this:

private void btnMoveCarsFor_Click(object sender, EventArgs e)

{

lstSelectedCars.Items.Clear();

foreach (string car in lstCars.SelectedItems)

{

lstSelectedCars.Items.Add(car);

}

}

Moving the selected values to the lstSelectedCars list box with a while

loop

1. Double click on btnMoveCarsWhile button in the form designer, this will create and

take you to the button's Click event.

2. Clear the lstSelectedCars list box.

lstSelectedCars.Items.Clear();

3. Use a while loop to move the selected items from the lstCars list box to the

 lstSelectedCars list box. You find the selected items in the list box's SelectedItems

property.

int index = 0;

while (index < lstCars.SelectedItems.Count)

{

lstSelectedCars.Items.Add(lstCars.SelectedItems[index]);

index++;

}

4. Run the application and select one or more cars in the list, hold down Ctrl or Shift to

select multiple items when clicking in the list box.

5. Click on the Move (While) button to move the selected items to the lstSelectedCars

list.

6. Close the application.

106

C# For Beginners

The complete code of the btnMoveCarsWhile_Click event look like this:

private void btnMoveCarsWhile_Click(object sender, EventArgs e)

{

lstSelectedCars.Items.Clear();

int index = 0;

while (index < lstCars.SelectedItems.Count)

{

lstSelectedCars.Items.Add(lstCars.SelectedItems[index]);

index++;

}

}

107

C# For Beginners

108

C# For Beginners

5. Debugging

Introduction

Debugging is a skill you have to adopt and learn in order to monitor what's going on in the

application at a specific point of the program flow, it is often used to find and fix errors.

When debugging you can peek at the current values of variables and control properties by

inserting what is known as breakpoints in the code. When a breakpoint is hit the execution

halts so that you can switch to the development environment and figure out what is happen-

ing at that stage of the application.

There are a number of windows you can utilize when debugging and you will get acquainted

with some of them here.

While in debug mode after hitting a breakpoint you are able to step through the code which

simplifies the task of finding out where the problem is that you need to fix. To be able to

debug an application it must be in Debug mode; you can set the mode from the Standards

toolbar located below the main menu bar.

Breakpoints and windows

If you know roughly where the problem you want to debug is located, you can place a break-

point on the row where you want to halt the execution. This enables you to use the various

windows and tools available for debugging.

To set or remove a breakpoint, click on the desired line of code and select Toggle Breakpoint

from the Debug menu, press F9 on keyboard, or click on the grey area to the left of the de-

sired line of code. A break point is displayed as a filled red circle on the grey area to the left

in the code window and the code background is changed to dark red.

109

C# For Beginners

To start the application in debug mode, press F5 on the keyboard, select Debug-Start

Debugging in the main menu or click on the Play button in the Standard toolbar. If you want

to start the application without debugging enabled you can press Ctrl+F5 on the keyboard or

select Debug-Start Without Debugging in the main menu.

When the execution encounters a breakpoint the execution halts at that breakpoint making

it possible for you to step through the code using the buttons or keyboard keys described in

the table below. Note that the line of code where the breakpoint was set gets highlighted in

yellow; this highlighting effect will show the next row to be executed when stepping in the

code. When stepping in the code you use F11 to step one line of code at a time jumping into

methods if they are called and F10 to step one line at a time but executing methods in their

entirety as they are called without stepping into them.

110

C# For Beginners

To check values in debug mode you can just hover over a variable name or property. If you

want to check or alter values, you can use one of the Autos, Locals or Watch windows.

The Autos window displays information about the line of code that was just stepped over

while debugging. The information can contain the form controls and variables involved. You

can open the window by selecting Debug-Windows-Autos in the main menu while in debug

mode and a breakpoint has been hit; once opened it will be accessible through a tab located

at the bottom of Visual Studio if you are using Visual Studio's default settings.

The Locals window display information about the currently accessible variables and objects,

these variables and objects are often referred to as being in scope. You can open the

window by selecting Debug-Windows-Locals in the main menu while in debug mode and a

breakpoint has been hit.

111

C# For Beginners

The Watch window can be used to keep track of specific variables or control properties. You

can open the window by selecting Debug-Windows-Watch-Watch 1 in the main menu while

in debug mode and a breakpoint has been hit. You can add a variable to the watch list by

dragging it to the Watch window from the code window. To remove a variable from the

watch list you simply right click on it in the Watch window and select Delete Watch in the

displayed context menu.

If you want to print out data while debugging you can use the Output window in conjunction

with the Debug.WriteLine command in your code. You can open the window by selecting

View-Output in the main menu. You have to add a using statement to the System.Diagno-

stics namespace to be able to call the methods on the Debug class.

Exercise: Debugging the calculator

1. Open the Calculator project you created in the previous chapter.

2. Place breakpoints in the event methods.

3. Start the application in debug mode (F5).

4. Step through the code as you click on the buttons.

5. Point to variable names and control properties, for instance the Text property of text-

boxes, and see what values they contain.

112

C# For Beginners

6. Open the Watch window and add a variable to it and see what happens in the window

as you step through the code.

7. Open the Locals window and see what happens in the window as you step through the

code.

8. Open the Autos window and see what happens in the window as you step through the

code.

9. Close the application.

Exercise: Debugging the order form

In this exercise you will open the Order Form project you created earlier. You want to print

debug information to the Output window when the up/down buttons in the Units control is

clicked for the products. Print the product name, price, units and line total on one line and

print the values in separate columns. Add descriptive text to the values (see images below).

1. Open the Order Form solution you created in an earlier exercise.

2. Locate the numUnits1_ValueChanged event which will trigger when the up/down

buttons in the NumericUpDown controls are clicked.

3. Add the following code below the last line of code in the event.

Debug.WriteLine(String.Format("{0}\tPrice: {1}\tUnits: {2}\tLine

total: {3}", txtProduct1.Text, price, units, lineTotal));

4. Repeat step 2-3 for the other ValueChanged events.

113

C# For Beginners

5. Open the Output window.

6. Run the application, add data to the form and click the up/down arrows. When the

buttons are clicked data should be written to the Output window (see image above).

7. Close the application.

114

C# For Beginners

6. Simple Types

Introduction

Simple types are user defined types you can create to define your own data types by using

the struct or enum keywords. In some situations a single value is not enough to represent

the data you are working with without involving multiple variables; instead of declaring

multiple variables you can encapsulate them in a struct block which you give an appropriate

descriptive name. A variable declared from the struct can then be used to gain access to the

multiple related values stored in it.

An enum is basically a list of constant values which are related to one another.

Enum

If you want to create a variable with a fixed set of values, for instance the names of the

weekdays or the months; an enum is a good choice. Enums are always declared on name-

space or class level.

Although you theoretically could use multiple text or numerical variables to achieve a similar

result, it is not advisable because the code would be much harder to maintain. There are

several benefits to using enums:

 Improved manageability

It is less likely that you will run into invalid arguments and misspelled names using

an enum. An enum restricts what values can be used because it has a fixed set of

values.

 Improved developer experience

Available values in an enum will be displayed with IntelliSense.

 Improved code readability

Using an enum makes the code easier to read and understand.

 Improved reusability

You can easily reuse the same enum in different scenarios.

115

C# For Beginners

Each enum member has a name and a value; the name is the string you list in the braces and

the value is a zero-based integer; the first member would get the value 0, the next value 1

and so on. Looking at the next example, Sunday would have the value 0 and Monday the

value 1.

If you need to, you can assign custom values to the enum members by simply giving them

integer values. You can access an enum either by casting it to an integer (int)day or use the

value names without casting them day.Sunday.

You can use an enum as is in if-statements or switch-expressions. An enum can also be used

by first declaring a variable using the enum as the variable data type or as a parameter in a

method definition.

The following example declares an enum called Weekday which then can be used to create

variables or be used in conditional logic.

enum Weekday {

Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday }

The following code can be used to declare a variable using the enum.

var today = Weekday.Saturday; // implicit declaration

Weekday anotherDay = Weekday.Monday; // explicit declaration

The following code will find out if the variable today day is a weekend day.

var isWeekend = todayday.Equals(Weekday.Saturday) ||

todayday.Equals(Weekday.Sunday);

The following code uses the value in the today variable in an if-statement.

if(today.Equals(Weekday.Friday))

{

}

The following code use the today variable in a switch.

switch (today)

{

116

C# For Beginners

case Weekday.Saturday:

case Weekday.Sunday:

Debug.WriteLine("Is weekend");

break;

default:

Debug.WriteLine("Is weekday");

break;

}

The following code would cast the day stored in the today variable from a Weekday data

type to an int data type.

int dayNumber = (int)today;

In the following code a Weekday parameter is defined for a method. The parameter would

be assigned its value when the method is called.

void MethodUsingEnum(Weekday day)

{

}

If you want to iterate over the names in an enum to display the names in a combo box or list

box control you will have to use the enum type and its methods. Use the typeof keyword to

fetch the underlying type of the enum in order to be able to manipulate it during run-time.

Call the GetEnumNames method to list the value names. The following code will add the

value names of the Weekday enum (the name of the days) to a combo box called cboWeek-

 days.

cboWeekdays.Items.AddRange(typeof(Weekday).GetEnumNames());

Additional reading: “Enumeration Types (C# Programming Guide)”

Exercise: Weekdays (part 1)

In the following exercise you will add an enum to a form class in the code-behind file and

then use that enum to populate a combo box and a list box with the weekdays stored in the

enum.

When a new day is selected in either control a label should indicate whether the two

selected days are the same or not by changing label background color and text. Use Light-

117

C# For Beginners

Green if they are same otherwise LightPink. The text should be "The selected days are

equal:" followed by true or false depending on if they are equal or not.

Both the combo box and the list box should use the same SelectedIndexChanged event to

determine if the weekdays are the same.

1. Create a new Windows Forms Application in Visual Studio and name it Weekdays.

2. Drag a combo box control to the form and name it cboWeekdays.

3. Change the DropDownStyle property of the combo box to DropDownList enabling

select only mode making it behave like a drop down list instead of a combo box with

a text field.

4. Drag a list box control to the form below the combo box and name it lstWeekdays.

5. Drag a label to the form below the list box and name it lblAreEqual.

6. Double click on the form to get to its Form_Load event.

private void Form1_Load(object sender, EventArgs e)

{

}

7. Scroll to the beginning of the code-behind file.

8. Add an enum called Weekdays containing the weekdays just inside the opening

curly brace of the form's class.

enum Weekday { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday }

9. Scroll back down to the Form_Load event.

118

C# For Beginners

10. Use the typeof keyword and its GetEnumNames method with the enum to fetch the

weekday names and add them to the combo box and list box using their AddRange

method.

cboWeekdays.Items.AddRange(typeof(Weekday).GetEnumNames());

lstWeekdays.Items.AddRange(typeof(Weekday).GetEnumNames());

11. Next use the DateTime data type to get the current day of week (for today's date)

and assign it to the SelectedIndex property of the combo box and list box to select

the current day in the lists.

cboWeekdays.SelectedIndex = (int)DateTime.Today.DayOfWeek;

lstWeekdays.SelectedIndex = (int)DateTime.Today.DayOfWeek;

12. Switch to the form's design view and select the combo box.

13. Find the SelectedIndexChanged event in the event section of the Properties win-

dow.

14. Add the name Weekdays_SelectedIndexChanged to the event field and press enter

on the keyboard. You should be taken to the event method automatically.

private void Weekdays_SelectedIndexChanged(object sender,

EventArgs e)

{

}

15. Fetch the value in the SelectedItem property of the combo box and store it in a var-

iable called cboDay then do the same for the list box and store the value in a varia-

ble called lstDay.

var cboDay = cboWeekdays.SelectedItem;

var lstDay = lstWeekdays.SelectedItem;

16. Change the text on the label to reflect if the selected days are the same or not.

lblAreEqual.Text = String.Format("The selected days are equal: {0}",

cboDay.Equals(lstDay));

17. Change the background color of the label based on if the selected days are the same

or not.

lblAreEqual.BackColor = cboDay.Equals(lstDay) ? Color.LightGreen :

Color.LightPink;

18. Switch to the form's designer.

19. Select the list box and change its SelectedIndexChanged event setting to Weekdays

_SelectedIndexChanged.

119

C# For Beginners

20. Run the application and select different days in the two controls and make sure that

the label changes according to the rules in the exercise description.

21. Close the application.

Struct

You can use the struct keyword to create custom lightweight data structures that contain

information related as a single item. An example of data which could be ideal for a struct is a

point, you could create a struct called Point which contains variables or properties for x-and

y-coordinates. One might argue that you could use a class instead, and that is true, but

structs are faster than classes because they are stored on the Stack and therefore doesn't

have to be passed over to the Garbage Collector (GC) when removed. Most built-in types like

int, bool and long are defined by structs.

When creating a struct, the struct keyword is preceded by an access modifier: public,

internal or private. Public mean that the struct can be accessed anywhere. Internal (default)

mean that the type can be accessed in the same project, but not from other projects; this

access modifier is used if the access modifier is omitted. Private mean that the struct only is

accessible to code within the same struct or class; this requires the struct to be located with-

in another type.

You can declare constructors in a struct if you want to be able to initialize it when an

instance is created. The constructor always has the same name as the struct and an empty

default constructor is always created by the compiler if you don't provide one. It is possible

to add multiple constructors to the same structure as long as they have unique parameter

lists.

Important: When adding constructors with parameters all backing variables or properties in

 the struct have to be initialized with values from within the constructor block.

To store information in a struct, you declare fields (variables) and properties inside it to hold

the values. It is not recommended to use public fields in a struct; instead you should use

properties to get and set the private field values (see the section on Properties).

120

C# For Beginners

This code declares a structure with a constructor.

private struct Point

{

public int x, y;

public Point(int x, int y)

{

this.x = x;

this.y = y;

}

}

The code below use the Point struct when declaring a variable; note that you have to use

the new keyword when creating a variable based on a struct. The variable below could be

declared on a class level or in an event or method.

Point point = new Point(10, 20);

You can read or change the value of the variables (or properties) inside your point variable

at any time by writing a dot (.) after the variable name followed by the name of the variable

(or property) you wish to read or change. In the code below the x-variable is changed from

its initial value of 10 to 30 before the content of the point variable is printed to the Output

window.

private void Form1_Load(object sender, EventArgs e)

{

point.x = 30;

Debug.WriteLine(String.Format("x:{0}, y:{1}", point.x, point.y));

}

Properties

Properties are used to get and set private variable values residing in a struct or a class. One

huge benefit of using properties is that you can perform data checks before assigning or

returning a value through a property. Another benefit is that you can change the implemen-

tation of the property without impacting the client code (as long as you don't remove the

property or change its access modifier or name). A third benefit is that you can bind controls

to properties, but not to variables. To the consumer of the struct or the class, the property

121

C# For Beginners

looks like a public variable.

When implementing a property, you use the get and set accessors. The get accessor is used

for returning a value from a private field using a return statement; the set accessor uses a

special local variable named value to assign the value to the private variable. The value

variable is assigned when the client code assigns a value to the property.

You can decide how a property can be used by the client code by providing both a get and a

set block (read/write), a get block (read only), or a set block (write only).

There is a predefined property snippet you can use by typing prop followed by pressing Tab

key twice on the keyboard, this template can speed up you coding considerably.

A property can also be used to assimilate data and provide the client code with a result. For

instance, you could create a property that return the full name from two private variables or

properties containing the first name and last name. Or you could return or assign a value

based on business logic. Remember to assign values to all the private variables from the

constructor.

This example code builds on the previous Point struct code where two variables x and y

were added to the struct and assigned through a constructor. Now the public variables will

be changed to properties to make the struct conform to best practices.

The variables have been changed from public to private making them accessible only within

the struct and two properties have been added to reflect the values out from the struct and

to make it possible to change the values. Note that property names begin with a upper case

letter as opposed to variables and constants which begin with a lower case letter or an

underscore character.

private struct Point

{

private int x, y;

public int X { get { return x; } set { x = value; } }

public int Y { get { return y; } set { y = value; } }

public Point(int x, int y)

{

122

C# For Beginners

this.x = x;

this.y = y;

}

}

Point point = new Point(10, 20);

private void Form1_Load(object sender, EventArgs e)

{

point.X = 30;

Debug.WriteLine(String.Format("x:{0}, y:{1}", point.X, point.Y));

}

Exercise: Weekdays (part 2)

In this exercise you will alter the Weekdays exercise you implemented in the previous

section on enum. You will encapsulate all information about a weekday in a struct called Day

which you then will use when adding items to the combo box and list box; instead of adding

the weekdays to the list controls as strings you will add them as instances of the Day struct.

Altering the data in the lists will make it possible to cast the selected list items to Day instan-

ces which you then can extract data from using the struct properties.

123

C# For Beginners

Create a struct called Day inside the form's class, because it is placed inside the class it will

only be accessible inside the form; if you wanted to give it a wider reach you could declare it

as internal or public outside the form's class and inside the namespace.

The struct should have a property called weekday which can be used to get or set a value of

the Weekday enum type you created in the previous exercise. It should also have an int

property called DayNumber which keep track of which day of week is being stored in the

struct variable, a string property called DayName which keep track of the name of the day

and a bool property called IsWeekday which should return true if it is a weekday and false

otherwise.

The DayNumber, DayName and IsWeekday properties should only return a value, it should

not be possible to assign values to them from the code (use only a get-block and omit the

set-block).

The struct in this exercise should have two constructors one with a Weekday parameter to

be able to assign the weekday directly to the private local variable weekday in the struct

which is storing the value for the Weekday property. The second constructor should have an

int parameter that is cast to a Weekday enum type and thus converted to an actual week-

day which then can be stored in the private local variable weekday.

Delete all code in the form's Form_Load event and then create an array which will be used

to store the weekdays called weekdays using the Day struct as its data type. To add days to

124

C# For Beginners

the array you will have to use a loop in which you create a new Day instance for each day in

the Weekday enum which is then added to the array. Because loops only have been

mentioned briefly in an earlier chapter the code will be provided here. Since the weekdays in

this exercise start with Sunday you can assume that it will be day 0, knowing this you can

have the for loop begin with 0 as its initial counter value. Finding out how many iterations

the loop should perform is easy in this case because a week always have 7 days, but to show

you a more dynamic way of implementing it you will use the GetEnumValues of the Week-

day enum type. Create an instance (variable) of the Day struct type inside the loop-block

and pass in the day number (the current loop value) to its constructor, this will create the

day you store at the array index for the day being processed at the moment. When the loop

has finished the weekdays array will contain seven instances of the Day struct one for each

day of the week.

Day[] weekdays = new Day[7];

for (int dayNbr = 0; dayNbr < typeof(Weekday).GetEnumValues().Length;

dayNbr++)

{

var day = new Day(dayNbr);

weekdays[dayNbr] = day;

}

Use the array as the data source for the combo box and a clone of it for the list box. Assign

the weekdays array to the DataSource property of the combo box and call the Clone method

on the weekdays array variable to create a copy of the array and assign it to the same prop-

erty on the list box. Because you are assigning struct instances to the list controls you have

to specify which property value should be displayed as text in the list controls, you do this by

assigning the property's name as a string to the DisplayMember property of the list controls,

which in this case is DayName.

To set the current weekday as the startup value for the list controls you have to create a

new variable of the Day struct and pass in the Today.DayOfWeek property of the DateTime

class to its constructor and then assign that variable to the SelectedItem property of the

combo box and list box.

125

C# For Beginners

To avoid exception handling (which you haven't learned about yet) you will have to surround

the existing code inside the Weekdays_SelectedItemChanged event with an if-block which

checks that the SelectedItem property of the combo box and list box controls are not null.

Cast the SelectedItem property values stored in cboDay and lstDay variables to the Day

struct data type. You have to do this because, in the loop, you added seven instances of the

Day struct (one for each day of the week) to the array which later was used as the data

source for the list controls. The cast makes it possible to use the properties values when dis-

playing information about the selected days.

Next you want to add a line of text to the lblAreEqual label displaying the name of the two

selected weekdays and also if it is a weekday or weekend day, use the IsWeekday property

of the Day variables to figure out if they are a weekdays or part of a weekend. Keep the

existing text as the second row in the label, use the \n formatting command to create a line

break and the += operator to append the old text to the new text.

Keep the logic for the background color as is.

Creating the Day struct

1. Open the Weekdays project you created in the enum section.

2. Switch to the code-behind window.

3. Locate the Weekday enum at the beginning of the class.

4. Add a struct called Day below the Weekday enum.

struct Day

{

}

5. Add a private variable called weekday and its corresponding public property called

Weekday using the Weekday enum as the data type inside the struct. The variable

will be the placeholder for the data stored in the Day struct and will be assigned

through a constructor or the Weekday property.

private Weekday weekday;

public Weekday Weekday { get { return weekday; } set { weekday =

value; } }

6. Add a public int property called DayNumber that return the weekday stored in the

struct cast to an int. The property should be read only.

126

C# For Beginners

public int DayNumber { get { return (int)weekday; } }

7. Add a public string property called DayName that return the weekday as a string,

use the ToString method on the weekday variable. The property should be read

only.

public string DayName { get { return weekday.ToString(); } }

8. Add a public bool property called IsWeekday which return true if the weekday

stored in the struct is a weekday (mo-fr), you can compare the value stored in the

weekday variable to the days in the Weekday enum. The property should be read

only.

public bool IsWeekday { get { return !weekday.Equals(Weekday.Sunday)

&& !weekday.Equals(Weekday.Saturday); } }

9. Add a constructor method with a parameter called weekday of the Weekday enum

type. Note that a constructor is a method which always has the same name as the

struct. Assign the weekday parameter to the private weekday variable in the struct

to store the value internally for later use.

public Day(Weekday weekday)

{

this.weekday = weekday;

}

10. Add a second constructor method which has an int parameter called weekday.

Assign the weekday parameter to the private weekday variable in the struct by

casting it using the Weekday enum.

public Day(int weekday)

{

this.weekday = (Weekday)weekday;

}

The complete code for the Day struct looks like this:

struct Day

{

private Weekday weekday;

public Weekday Weekday

{

get { return weekday; }

set { weekday = value; }

}

127

C# For Beginners

public int DayNumber { get { return (int)weekday; } }

public string DayName { get { return weekday.ToString(); } }

public bool IsWeekday

{

get

{

return !weekday.Equals(Weekday.Sunday) &&

!weekday.Equals(Weekday.Saturday);

}

}

public Day(Weekday weekday)

{

this.weekday = weekday;

}

public Day(int weekday)

{

this.weekday = (Weekday)weekday;

}

}

The Form_Load event

1. Locate the Form_Load event and comment out or delete all the code in it.

2. Create an array called weekdays capable of storing 7 Day values one for each day of

the week.

Day[] weekdays = new Day[7];

3. Add a for loop which iterates over the number of days in the Weekday enum. Create

a Day variable for each iteration and pass in the loop index as a value to the con-

structor to seed the Day variable with a weekday (the second constructor you added

will be called). Add the Day variable to the position in the array corresponding to the

current value of the loop index variable.

for (int dayNbr = 0; dayNbr < typeof(Weekday).GetEnumValues().Length;

dayNbr++)

{

var day = new Day(dayNbr);

weekdays[dayNbr] = day;

}

4. Assign the weekdays array to the DataSource property of the combo box and a copy

(clone) of the array to the list box filling them with data. Use the Clone method of

128

C# For Beginners

the array variable to create the copy. If you don't create a copy of the array both list

controls will use the same data linking them together through the shared memory

causing undesirable side effects.

cboWeekdays.DataSource = weekdays;

lstWeekdays.DataSource = weekdays.Clone();

5. Tell the list controls which property value to display in the controls by assigning the

name of the property as a string to the DisplayMember property of the combo box

and list box.

cboWeekdays.DisplayMember = "DayName";

lstWeekdays.DisplayMember = "DayName";

6. Initialize the two list controls with the current day using the DateTime class. Create a

variable called dayOfWeek which is assigned the day of the week as an int using the

cast value of the DateTime.Today.DayOfWeek property.

var dayOfWeek = (int)DateTime.Today.DayOfWeek;

7. Create a new variable called today using the Day struct as its data type passing in

the value of the dayOfWeek variable you just created to its constructor.

var today = new Day(dayOfWeek);

8. Assign the today variable you just created to the SelectedItem property of the

combo box and list box to select the corresponding day in the list.

cboWeekdays.SelectedItem = today;

lstWeekdays.SelectedItem = today;

The complete code of the Form_Load event looks like this:

private void Form1_Load(object sender, EventArgs e)

{

Day[] weekdays = new Day[7];

for (int dayNbr = 0; dayNbr < typeof(Weekday).GetEnumValues().Length;

dayNbr++)

{

var day = new Day(dayNbr);

weekdays[dayNbr] = day;

}

cboWeekdays.DataSource = weekdays;

lstWeekdays.DataSource = weekdays.Clone();

cboWeekdays.DisplayMember = "DayName";

lstWeekdays.DisplayMember = "DayName";

129

C# For Beginners

var dayOfWeek = (int)DateTime.Today.DayOfWeek;

var today = new Day(dayOfWeek);

cboWeekdays.SelectedItem = today;

lstWeekdays.SelectedItem = today;

}

The Weekdays_SelectedIndexChanged Event

1. Locate the Weekdays_SelectedIndexChanged event.

2. Add an if-statement and block around the code inside the event checking that the

SelectedItem property of the combo box and list box not is null. If you try to cast a

null value an exception (error) will be thrown but you circumvent this by checking

that the values are not null. The first time the event is executed the SelectedItem of

the list box will be null since no values have been added to it yet.

if (cboWeekdays.SelectedItem != null && lstWeekdays.SelectedItem !=

null)

{

}

3. Cast the SelectedItem property using the Day struct as the data type when assigning

them to the cboDay and lstDay variables.

var cboDay = (Day)cboWeekdays.SelectedItem;

var lstDay = (Day)lstWeekdays.SelectedItem;

4. Add text stating the names of the selected weekdays and if they are weekdays or

weekend days. Prepend the already existing text with this new text as well as a line

break.

lblAreEqual.Text = String.Format("{0}: {1}, {2}: {3}",

cboDay.DayName, cboDay.IsWeekday ? "Weekday" : "Weekend",

lstDay.DayName, lstDay.IsWeekday ? "Weekday" : "Weekend");

lblAreEqual.Text += String.Format(

"\nThe selected days are equal: {0}",

cboDay.Equals(lstDay));

5. Run the application and make sure that the correct text is displayed when selecting

days in the combo box and list box.

130

C# For Beginners

The complete code of the Weekdays_SelectedIndexChanged event looks like this:

private void Weekdays_SelectedIndexChanged(object sender, EventArgs e)

{

if (cboWeekdays.SelectedItem != null &&

lstWeekdays.SelectedItem != null)

{

var cboDay = (Day)cboWeekdays.SelectedItem;

var lstDay = (Day)lstWeekdays.SelectedItem;

lblAreEqual.Text = String.Format("{0}: {1}, {2}: {3}",

cboDay.DayName, cboDay.IsWeekday ? "Weekday" : "Weekend",

lstDay.DayName, lstDay.IsWeekday ? "Weekday" : "Weekend");

lblAreEqual.Text += String.Format(

"\nThe selected days are equal: {0}",

cboDay.Equals(lstDay));

lblAreEqual.BackColor = cboDay.Equals(lstDay) ?

Color.LightGreen : Color.LightPink;

}

}

131

C# For Beginners

132

C# For Beginners

7. Methods

Introduction

It's important to divide the solution into small, logical components; methods are a way to

group code into a separate pieces of work. Writing all code in events without using methods

to structure the application would be near impossible to maintain. In this chapter, you will

learn how to create and call methods.

A method is a way to encapsulate operations designed for a specific purpose and to protect

data stored in a type such as a class or a struct. Many system methods are called when

executing an application, one of those methods is called Main and defines an entry point to

the application which is executed by the CLR when the application is started; you used this

method when you created Console applications in the beginning of the book, but it is also

used behind the scenes when executing a Windows Forms Application.

There are different types of methods, some are only used internally by the type and are not

visible outside of that type, while other methods are public and available for other types to

request information from that object instance.

.NET Framework itself contain classes with methods you can use to interact with the user,

computer, or the computer's operating system.

Creating methods

All methods have two parts: a specification and a body. The specification defines the meth-

od name, its parameters, return type and accessibility (the scope). Each method must have a

unique signature which is defined by the name and parameter list. Leaving out the access-

ibility will give the method private scope, making it accessible only inside the type.

Naming methods

When naming a method, you should adhere to similar naming conventions as for variables.

Below are some best practices you can follow.

133

C# For Beginners

 Use verbs or verb phrases when naming a method; it makes it easier for developers

to understand the code structure.

 Use Pascal casing (each word should start with an uppercase letter); do not begin a

method name with an underscore or a lowercase letter.

The method body

A method body is always enclosed in curly braces and is a block of code that can contain any

programming construct. Variables created inside a method will go out of scope (reach) and

are destroyed when the method ends and can therefore only be used inside the method.

Method without parameters

The simplest methods have no parameters for in- or out data and return no value. This type

of methods are known as void methods because the return type which must be declared

even though no value is returned is called void.

If you know that the method only should be accessible inside the class or struct you are

working on then you create it as a private method using the keyword with the same name.

The private keyword can be omitted from the declaration if you want, but I find that it is

better to state the intent by specifying the keyword.

In this chapter all methods will be private, you will learn about scope in a later chapter.

One scenario when you might want to use a parameter-less method is when initializing

controls in a form; extracting that code to one or more methods will keep the Form_Load

event clean and easy to maintain. You should strive to have as little logic inside the event

itself and create separate methods for specific logic and call the methods from the event

instead.

The following example shows how you can initialize a label control from a method which is

called from the Form_Load event. Since no settings will change and the method only is

called once no parameters are necessary.

134

C# For Beginners

public partial class Form1 : Form

{

private void Form1_Load(object sender, EventArgs e)

{

InitializeControls();

}

private void InitializeControls()

{

lblTest.AutoSize = false;

lblTest.Size = new Size(80, 80);

lblTest.Location = new Point(10, 10);

lblTest.BorderStyle = BorderStyle.FixedSingle;

lblTest.Font = new Font("Consolas", 20);

lblTest.TextAlign = ContentAlignment.MiddleCenter;

lblTest.BackColor = Color.White;

}

}

Method with parameters

All methods have a parameter list which is specified within the method parentheses; if you

don't specify any parameters a default empty parameter list will be provided. Each param-

eter is separated by a comma and is defined by a type and a name. Best practices for param-

eter names is to use camel case.

In the following example the user can input two numbers into textboxes and when the Add

button is clicked the two values are added together and displayed in a third textbox. To

make the button's Click event less cluttered the calculation has been moved into a separate

method called Add which takes two double parameters. In the Add method the two num-

bers are added and displayed in the third textbox and the background of the textbox change

based on the calculated result, if the result is negative the background color is changed to

Light Pink and if it is positive Light Green.

135

C# For Beginners

A second method taking a string parameter is also created to display error messages in a

message box. This logic has been placed in a separate method for easy reuse. Here it is

called if the user enters a non-numerical value in one of the two textboxes intended for

numerical values.

public partial class Form1 : Form

{

private void Add(double a, double b)

{

double result = a + b;

txtReslut.Text = result.ToString();

txtReslut.BackColor = result < 0 ? Color.LightPink :

Color.LightGreen;

}

private void ErrorMessage(string message)

{

MessageBox.Show(message, "Error",

MessageBoxButtons.OK, MessageBoxIcon.Error);

}

private void btnAdd_Click(object sender, EventArgs e)

{

double a = 0d, b = 0d;

var successA = Double.TryParse(txtNo1.Text, out a);

var successB = Double.TryParse(txtNo2.Text, out b);

if (successA && successB)

Add(a, b);

else

ErrorMessage("Not a numeric value!");

}

}

136

C# For Beginners

Method with reference parameters

When you define a reference parameter using the ref keyword you instruct the Common

Language Run-time (CLR), to pass a memory reference (pointer) to the passed-in variable

instead of passing in the value. This means that you can use the passed-in value as well as

assigning a new value to that variable.

In this example the square root is calculated from a value entered in a textbox. When the

result has been calculated in the Sqrt method it is sent out through the same parameter

which received the value to calculate, in the Click event the modified value is then displayed

in the textbox.

The double variable a is used as a reference parameter which means that the memory

pointer to that variable is set into the Sqrt method making it possible to use and alter the

variable value in the method as opposed to sending in the value stored in the variable which

is the default behavior. As you can see in the Sqrt method the a parameter is assigned the

square root value after calculating it using the same parameter.

Because it is impossible to calculate the square root of a negative number an if-statement

has been added checking the value passed in through the a parameter; if the value is

negative the ErrorMessage method from the previous example is called.

A value check is also done before calling the Sqrt method to make sure that the value is

numeric, if not the ErrorMessage method is called.

public partial class Form2 : Form

{

private void ErrorMessage(string message)

{

MessageBox.Show(message, "Error",

MessageBoxButtons.OK, MessageBoxIcon.Error);

}

private void Sqrt(ref double a)

{

if (a >= 0)

a = Math.Sqrt(a);

else

ErrorMessage("Cannot calculate Sqrt from a negative number!");

}

137

C# For Beginners

private void btnSqrt_Click(object sender, EventArgs e)

{

double a = 0d;

var successA = Double.TryParse(txtNo.Text, out a);

if (successA)

{

Sqrt(ref a);

txtNo.Text = a.ToString();

}

else

ErrorMessage("Not a numeric value!");

}

}

Additional reading: "ref (C# Reference)"

Method with out parameters

If you want to pass out more than a return value from a method, you can use output

parameters in the parameter list. When you use output parameters, they must be assigned

values within the method's body. To specify a parameter as output, you prefix it with the out

keyword. A parameter defined as out cannot pass a value to the method, it can only pass a

value out from the method.

This is basically the same example as in the Method With Parameters section in this chapter

with the difference that the result in the Add method is passed out from the method using a

out parameter; this type of parameter cannot be used in a method other than to return a

value, it is not possible to use value passed in through it trying to do so will generate a com-

pile error.

138

C# For Beginners

public partial class Form1 : Form

{

private void Add(double a, double b, out double result)

{

result = a + b;

}

private void ErrorMessage(string message)

{

MessageBox.Show(message, "Error",

MessageBoxButtons.OK, MessageBoxIcon.Error);

}

private void btnAdd_Click(object sender, EventArgs e)

{

double a = 0d, b = 0d;

var successA = Double.TryParse(txtNo1.Text, out a);

var successB = Double.TryParse(txtNo2.Text, out b);

if (successA && successB)

{

double result;

Add(a, b, out result);

txtReslut.Text = result.ToString();

txtReslut.BackColor = result < 0 ?

Color.LightPink : Color.LightGreen;

}

else

ErrorMessage("Not a numeric value!");

}

}

Additional reading: "out parameter modifier (C# Reference)"

Method with a return type

All methods have return types, even those that don't return a value. You use the void return

type to specify that a method shouldn't return a value. Methods which return a value must

have a return statement in the method body and the returned value must have the same

data type as in the method declaration. When the method reaches a return statement the

method is exited; this means that code which occurs after the return statement will not be

executed.

139

C# For Beginners

In this example a return value is used from the Subtract method to send back the result to

the event where the call originated. The result is collected in a variable which is assigned the

result of the method call. Inside the Subtract method the return keyword is used to send

back the result of the arithmetic operation. Note that the return data type is specified to the

left of the method name, where void previously was used for other methods the double

data type is now used to specify that a value will be returned using the return keyword.

public partial class Form1 : Form

{

private double Subtract(double a, double b) {

return a - b;

}

private void ErrorMessage(string message) {

MessageBox.Show(message, "Error",

MessageBoxButtons.OK, MessageBoxIcon.Error);

}

private void btnSubtract_Click(object sender, EventArgs e)

{

double a = 0d, b = 0d;

var successA = Double.TryParse(txtNo1.Text, out a);

var successB = Double.TryParse(txtNo2.Text, out b);

if (successA && successB)

{

var result = Subtract(a, b);

txtReslut.Text = result.ToString();

txtReslut.BackColor = result < 0 ?

Color.LightPink : Color.LightGreen;

}

else

ErrorMessage("Not a numeric value!");

}

}

140

C# For Beginners

Calling methods

Because a method encapsulates its logic and "hides" it from the caller you might not have

access to the code or know the inner workings of the method; it might be provided by a

third-party class library or the .NET Framework.

You call a method by specifying its name followed by its parameters within parentheses. If

the method return a value through its return data type you typically assign the value to a

variable when calling the method; if you don't need the returned value then you can skip

assigning it to a variable.

double a = 0d, b = 0d;

var result = Subtract(a, b);

Sqrt(ref a);

Add(a, b);

Additional reading: "Methods (C# Programming Guide)"

Overload methods

With overloading, you can create different implementations of methods with the same

method name. Sometimes you may want to perform a task with a slight variation depending

on the passed-in method parameters; this is when you want to use overloading. You can use

the same method name for more than one method, but the signature must be different for

each of the methods. The signature consists of the method name and its parameters; the

parameters can be declared as output, be optional or named parameters.

Because the return type is not part of the method signature, it is not sufficient to change the

return type when creating an overloaded method.

In the example with the Add method below an overload is used to be able to call the

method with different parameters but with the same end result of adding two numbers.

private void Add(double a, double b)

{

double result = a + b;

txtReslut.Text = result.ToString();

txtReslut.BackColor = result < 0 ? Color.LightPink :

Color.LightGreen;

}

141

C# For Beginners

private void Add(double a, double b, out double result)

{

result = a + b;

}

Optional method parameters

One situation where you might want to use optional parameters is when interoperating with

Component Object Model (COM) libraries. Since these libraries does not support

overloading, you can use optional parameters instead.

Another situation where you might use optional parameters in is when the compiler can't

distinguish between method implementations enough to achieve overloading because the

parameter list doesn't vary enough.

You declare an optional parameter by assigning it a value in the method's parameter list. All

mandatory (non-optional) parameters must be declared before any optional parameters.

When calling a method which has optional parameters you can omit all or some of the

optional parameters because they have default values provided by you; if you have more

than one optional parameter and omit one, then the rest of the parameters following that

parameter must be omitted as well. The method will use the default value when a para-

meter has been omitted.

In this example you will see how you can implement a more generic method for formatting

text controls such as textboxes and labels which have the same properties for formatting

and text. To achieve a more generic method optional parameters will be used; in this case

the text displayed in the control as well as background and text color will be sent in as optio-

nal parameters.

When calling the method for different controls you can choose to omit values to activate the

default value for those parameters. As soon as you specify a value for one of the optional

parameters you have to specify all parameters to the right of that parameter in the method

definition.

Note that you must assign constant compile-time values to the optional parameters like a

string, the default method can be used to get the default value for a type; in this example

142

C# For Beginners

the default method had to be implemented for the Color enumeration in the method

definition which then is handled in the method body with if-statements.

The Control class defining the first parameter is inherited (part of) all the controls added to a

form and can therefore handle any control passed to the method, you will learn more about

inheritance in a later chapter.

The FormatControls method is called from the Form_Load event and the various labels and

textboxes (in the image below) are sent into the method to be formatted.

public partial class Form3 : Form

{

private void FormatControls(Control ctrl,

string text = "Empty", Color color = default(Color),

Color bkColor = default(Color))

{

if (color.Equals(Color.Empty))

color = Color.DarkRed;

if (bkColor.Equals(Color.Empty))

bkColor = Color.White;

ctrl.BackColor = bkColor;

ctrl.ForeColor = color;

ctrl.Text = text;

ctrl.Font = new Font("Consolas", 20);

}

private void Form3_Load(object sender, EventArgs e)

{

FormatControls(lblMessage, "Some label text",

Color.White, Color.DarkBlue);

FormatControls(txtMessage, "Some text",

Color.DarkBlue, Color.LightYellow);

FormatControls(lblMessage2, "Some label text", Color.DarkGray);

143

C# For Beginners

FormatControls(txtMessage2, "Some text", Color.DarkBlue);

FormatControls(lblMessage3);

FormatControls(txtMessage3, "Some text");

}

}

Named method arguments

Using named arguments, you can forego the order in which the parameters have been

declared in a method. To use named arguments, specify the parameter name and value

separated by a colon.

When used in conjunction with optional parameters, named arguments make it easy to omit

parameters. Optional parameters will receive their default values. Omitting mandatory

parameters will result in a compilation error.

If you look back at the previous example it has a method called FormatControls which

implement optional parameters. In that example you learned that you have to specify all

subsequent parameters following the first assigned optional parameter, while this is true

you can circumvent this by using named arguments. If you wanted to call the Format-

Controls method sending in text and background color omitting the text color or you only

want to send in the text color omitting the other two optional parameters then you need to

implement the method call using named parameters.

private void Form3_Load(object sender, EventArgs e)

{

//Using Named Arguments

FormatControls(txtMessage3, "Some text", bkColor: Color.LightSkyBlue);

FormatControls(txtMessage3, color: Color.DarkKhaki);

}

Additional reading: "Named and Optional Arguments (C# Programming Guide)"

Debugging methods

Debugging is a very powerful tool when testing the application logic. When debugging

methods, there are three ways to step through the code; step into, step out and step over.

144

C# For Beginners

Step into

Press F11 on the keyboard to execute the statement at the current position; if that is a call

to a function, the debugging will continue in that method. You can click the Step into button

for the same effect; if you start the application with Step into, it will start in break mode.

Step over

Press F10 on the keyboard to execute the statement at the current position; if that is a call

to a function, the debugging will execute the method but not jump into it and continue on

the next row of code. The exception is if a breakpoint has been set in that method, then the

execution will halt on that line of code.

Step out

Will execute the remaining code in the method and halt on the line of code that called the

method.

Exception handling

Exception handling is a good way to enhance the user experience and to avoid unnecessary

data loss. Errors can occur in the application logic as well as in external code which has been

linked in to the application with references; for instance, you might not know if a file is

accessible or if a database is online.

Checking method return values is not sufficient to catch all types of errors, mainly because

not all methods return a value. It is important to know why a method failed, not only that it

failed. Many errors cannot be handled by checking a return value; one such error could be

running out of memory.

You use exceptions to handle all types of errors in your .NET applications. For instance, if a

method tries to open a file that does not exist, an exception will be thrown. If the exception

is not handled in the method, the exception will propagate to the calling method that has to

be ready to handle the exception. The exception will propagate all the way to the application

start-up method; if it’s not handled by that method, the application will crash and an ugly

message will be displayed to the user.

In .NET Framework, all exceptions are derived from the Exception class. There are many

specialized exceptions that can be thrown by the system, all of which have inherited the

145

C# For Beginners

Exception class. You can even create your own exceptions to handle your application logic

by deriving them from one of the existing exception classes.

Additional reading: "Exception Class"

Try/Catch block

Try/catch blocks are the way you implement Structured Exception Handling (SEH) in an app-

lication. To handle exceptions that might arise, you wrap the code in a try-block and handle

the exceptions in one or more catch blocks. It is recommended that you add exception

handling using the general Exception class as the last catch-block in the list of catches; this

last catch is used to handle any exceptions that you might have overlooked.

Inside the catch-blocks you can use properties such as Message on the exception variable

defined in the catch-parenthesis to display or log error information.

try

{

// Code to execute

}

catch (DivideByZeroException ex)

{

// Specific error handling

}

catch (Exception ex)

{

// Generic error handling which

// catches all unhandled exceptions

}

finally

{

// Will always be executed whether an

146

C# For Beginners

// exception has been thrown or not

}

If 0 is entered in the second textbox in the following example the execution will recognize

that you try to divide by zero and the DivideByZeroException exception will be thrown and

the code in the catch-block handling the exception will be executed. If you on the other

hand enter a non-numerical value the second catch-block will be executed because that will

not throw a DivideByZeroException exception.

private void btnDivide_Click(object sender, EventArgs e)

{

try

{

int value1 = Int32.Parse(txtNo1.Text);

int value2 = Int32.Parse(txtNo2.Text);

var result = value1 / value2;

}

catch (DivideByZeroException ex)

{

MessageBox.Show("Divide by zero exception was thrown!");

}

catch (Exception ex)

{

MessageBox.Show(ex.Message);

}

}

Finally block

With a Finally block at the end of a Try/Catch block, you ensure that code that needs to be

executed, regardless of if an exception has been handled or not, will be executed. Typically

the code in a Finally-block make sure that files opened by the application are closed and that

open database connections are closed.

The following example is based on the previous example with the addition of a finally-block

in which the value of the result variable is displayed in a message box.

private void btnDivide_Click(object sender, EventArgs e)

{

var result = Int32.MinValue;

147

C# For Beginners

try

{

int value1 = Int32.Parse(txtNo1.Text);

int value2 = Int32.Parse(txtNo2.Text);

result = value1 / value2;

}

catch (DivideByZeroException ex)

{

MessageBox.Show("Divide by zero exception was thrown!");

}

catch (Exception ex)

{

MessageBox.Show(ex.Message);

}

finally

{

MessageBox.Show(String.Format("Result: {0}", result.ToString()));

}

}

Additional reading: ” try-catch-finally (C# Reference)”

Throwing exceptions

To implement exception handling in your application logic, you will need to know how to

throw exceptions as well as handle them. When you throw an exception, the execution of

that method ends and the exception will be passed by the CLR to the first exception handler

that can handle that particular exception.

Use the throw keyword to throw exceptions from your application logic. It's recommended

that you create your own exception classes that correspond to your application logic when

the system exceptions aren't a good match; consider that you might want to pass application

data with the exception; to do that you need to create a new exception class that derives

from an existing exception class and implement properties for the data in it.

In the following example, an ApplicationException is thrown in the called method when the

value of the second parameter (b) is 0. The exception is then handled in the calling event.

public partial class Form5 : Form

{

private double ThrowException(int a, int b)

148

C# For Beginners

{

if (b.Equals(0))

throw new ApplicationException("You cannot divide by Zero!");

return a / b;

}

private void Form5_Load(object sender, EventArgs e)

{

try

{

ThrowException(1, 0);

}

catch (ApplicationException ex)

{

MessageBox.Show(ex.Message);

}

catch (Exception ex)

{

MessageBox.Show(ex.Message);

}

}

}

You can re-throw an exception if the exception handler can't resolve the problem.

public partial class Form5 : Form

{

private double ReThrowException(int a, int b)

{

try

{

// Will generate a DivideByZeroException

return a / b;

}

catch (Exception ex)

{

// Will propagate the exception

// to the calling method/event

throw;

}

}

149

C# For Beginners

private void Form5_Load(object sender, EventArgs e)

{

try

{

ReThrowException(1, 0);

}

catch (DivideByZeroException ex)

{

// The DivideByZeroException

// will be handled here

MessageBox.Show(ex.Message);

}

catch (Exception ex)

{

MessageBox.Show(ex.Message);

}

}

}

Exercise: Refactoring the calculator application

In this exercise you will do refactoring to the Calculator solution you created in an earlier

exercise in chapter 3. Refactoring is when you take an existing code base and change it by

for instance breaking out code from events to methods making the code cleaner and easier

to read and reuse, that is exactly what you will do in this exercise.

The first refactoring you will do is to add regions to logically separate the constructor,

events, constants and variables from each other by moving the constants into a Constants

region, variables into a Variables region, the constructor into a Constructors region and all

the control events into a Control Events region. Also add a region called Methods for the

refactored methods.

Create a method called AddDigit which will add a digit to the calculator value; copy the code

from the btnNumber_Click event and paste it into the AddDigit method body. Change the

code to use the two string parameters you pass into the AddDigit method instead of using

the label directly. Return the concatenated text from the method using a return statement.

Call the AddDigit method from the btnNumber_Click event passing in the Text property

values from the lblValue label and the currently clicked button as parameters.

150

C# For Beginners

lblValue.Text = AddDigit(lblValue.Text, btn.Text);

Create a void method called DeleteDigit which takes a reference (ref) string parameter and

a regular string parameter. The reference parameter can be used to send in data and to

return data from the method. Cut all code except the first and last code lines from the

btnDelete_Click event and paste it into the Delete method then change the pasted code to

use the passed in parameters instead of using the label directly. Call the Delete method from

the btnDelete_Click event where the code you cut out was located between the two

remaining code lines. Pass in the newValue variable as the first parameter by reference

using the ref keyword and the text in the lblValue as the second parameter.

DeleteDigit(ref newValue, lblValue.Text);

Create a method called AddDecimal and modify and use the code form the btnDecimal

_Click event in it; the method should return a string and take a string as a parameter.

Remove all code from the event and assign the result from a call the AddDecimal to the

 lblValue label.

lblValue.Text = AddDecimal(lblValue.Text);

Create a method called ToggleSign and modify and use the code form the btnSign_Click

event in it; the method should return a string and take a string as a parameter. Remove all

code from the event and assign the result from a call the ToggleSign to the lblValue label.

lblValue.Text = ToggleSign(lblValue.Text);

The btnEquals_Click event can be refactored into three methods. Create a method called

CanCalculate which will check that the labels contain text, call the CanCalculate method in

the first if-statement of the event and exit from the method with a return statement if the

result of the method call is true.

if (CanCalculate()) return;

Create a method called EndsWithDecimalSign which return a string and take a string as a

parameter; the purpose of this method is to make sure that the value in the labels involved

in the calculations don't end with a decimal character. Copy the code that checks if a label

end with a decimal from the event and modify the code to not use the label directly and

151

C# For Beginners

instead use the passed in string parameter. Replace the two checks in the event with calls to

the EndsWithDecimalSign method and assign the result to the Text property of the

 lblFirstValue and lblValue respectively.

lblFirstValue.Text = EndsWithDecimalSign(lblFirstValue.Text);

lblValue.Text = EndsWithDecimalSign(lblValue.Text);

Create a void method called Calculate which takes three double parameters and a string

parameter, the first double parameter should be declared as an out parameter which mean

that no value can be passed into the method through that parameter but a value can be

passed out through it. Cut out the if- and else if-statements performing the calculation in the

btnEquals_Click event and paste it into the Calculate method; make sure that the out

parameter is assigned the result of the calculations and that its default value is 0d. Call the

Calculate method from the event where you cut out the code.

Calculate(out result, value1, value2, mathFunction);

Open the btnSqrt_Click event and replace the decimal character check with a call to the

EndsWithDecimalSign method.

lblValue.Text = EndsWithDecimalSign(lblValue.Text);

Adding regions

1. Open the Calculator project you created in chapter 3.

2. Create a region called Constants around the constants in the form's code-behind

file.

3. Create a region called Variables around the memory variable.

4. Create an empty region called Methods; you will add methods in this region as you

do refactoring to the code in this exercise.

5. Create a region called Constructors around the Form1 constructor.

6. Create a region called Control Events surrounding all the Click events and the Load

event.

The AddDigit method

1. Add a method called AddDigit with a string return type and two string parameters

called labelText and buttonText to the Methods region.

#region Methods

152

C# For Beginners

private string AddDigit(string labelText, string buttonText)

{

}

#endregion

2. Locate the btnNumber_Click event and copy all code inside it except the first line

where the button is cast.

3. Paste the copied code into the AddDigit method body.

4. Replace all the occurrences of lblValue.Text with the labelText variable name.

5. Replace btn.Text with the buttonText variable.

6. Add a return statement returning the labelText variable.

The complete code for the AddDigit method look like this:

#region Methods

private string AddDigit(string labelText, string buttonText)

{

if (labelText == noValue)

labelText = String.Empty;

labelText += buttonText;

return labelText;

}

#endregion

The btnNumber_Click event

1. Locate the btnNumber_Click event and delete all code inside it except the first line

where the button is cast.

2. Add a line of code where the result of the AddDigit method call is assigned to the

Text property of the lblValue label. Pass in the Text properties of the label and

button to the method.

The complete btnNumber_Click event code look like this:

private void btnNumber_Click(object sender, EventArgs e)

{

Button btn = (Button)sender;

lblValue.Text = AddDigit(lblValue.Text, btn.Text);

}

153

C# For Beginners

The DeleteDigit method

1. Add a method called DeleteDigit with a void return type and two string parameters

called newValue and value to the Methods region. The newValue parameter should

be defined with the ref keyword making it possible to pass in and return a value

through it.

private void DeleteDigit(ref string newValue, string value)

{

}

2. Locate the btnDelete_Click event and cut out all code inside it except the first and

last line of code.

3. Paste the copied code into the DeleteDigit method body.

4. Replace all occurrences of lblValue.Text with the value parameter.

The complete code for the DeleteDigit method look like this:

private void DeleteDigit(ref string newValue, string value)

{

int length = Convert.ToInt32(value.Length);

if (length > 1)

newValue = value.Substring(0, length - 1);

if (newValue.Equals(minusSign))

newValue = noValue;

}

The btnDelete_Click event

1. Locate the btnDelete_Click event.

2. Add a line of code between the two remaining code lines calling the DeleteDigit

method passing in the newValue variable as the first parameter and the lblValue

label's text as the second parameter. You cannot assign the method call to the

label's Text property because it is declared as void but you can assign the value in

the ref variable.

154

C# For Beginners

The complete btnDelete_Click event code look like this:

private void btnDelete_Click(object sender, EventArgs e)

{

string newValue = noValue;

DeleteDigit(ref newValue, lblValue.Text);

lblValue.Text = newValue;

}

The AddDecimal method

1. Add a method called AddDecimal with a string return type and one string parameter

called value to the Methods region.

private string AddDecimal(string value) { }

2. Locate the btnDecimal_Click event and cut out all code inside it.

3. Paste the copied code into the AddDecimal method body.

4. Replace all occurrences of lblValue.Text with the value parameter.

5. Add a return statement returning the value variable.

The complete code for the AddDecimal method look like this:

private string AddDecimal(string value)

{

bool hasDecimal = value.Contains(decimalSign);

if (!hasDecimal)

value += decimalSign;

return value;

}

The btnDecimal_Click event

1. Locate the btnDelete_Click event.

2. Assign a call to the AddDecimal method to the Text property of the lblValue label

passing in the same Text property as a parameter to the method.

The complete btnDecimal_Click event code look like this:

private void btnDecimal_Click(object sender, EventArgs e)

{

lblValue.Text = AddDecimal(lblValue.Text);

}

155

C# For Beginners

The ToggleSign method

1. Add a method called ToggleSign with a string return type and one string parameter

called value to the Methods region.

private string ToggleSign(string value)

{

}

2. Locate the btnSign_Click event and cut out all code inside it.

3. Paste the cut code into the ToggleSign method body.

4. Replace all occurrences of lblValue.Text with the value parameter.

5. Add a return statement returning the value variable.

The complete code for the ToggleSign method look like this:

private string ToggleSign(string value)

{

bool hasSign = value.Contains(minusSign);

if (hasSign)

value = value.Replace(minusSign, String.Empty);

else if (value != noValue)

value = value.Insert(0, minusSign);

return value;

}

The btnSign_Click event

1. Locate the btnSign_Click event.

2. Assign a call to the ToggleSign method to the Text property of the lblValue label

passing in the same Text property as a parameter to the method.

The complete btnSign_Click event code look like this:

private void btnSign_Click(object sender, EventArgs e)

{

lblValue.Text = ToggleSign(lblValue.Text);

}

The CanCalculate method

1. Add a method called CanCalculate with a bool return type and no parameters to the

Methods region.

private bool CanCalculate()

156

C# For Beginners

{

}

2. Locate the btnEquals_Click event and copy all code inside the first if-statement.

3. Paste the copied code into the CanCalculate method body as a return statement.

return lblFirstValue.Text.Equals(String.Empty) ||

lblMathFunction.Text.Equals(String.Empty) ||

lblValue.Text.Equals(String.Empty) ||

lblValue.Text.Equals(noValue);

The complete code for the CanCalculate method look like this:

private bool CanCalculate()

{

return lblFirstValue.Text.Equals(String.Empty) ||

lblMathFunction.Text.Equals(String.Empty) ||

lblValue.Text.Equals(String.Empty) ||

lblValue.Text.Equals(noValue);

}

The EndWithDecimalSign method

1. Add a method called EndWithDecimalSign with a string return type and one string

parameter called value to the Methods region.

private string EndWithDecimalSign(string value)

{

}

2. Locate the btnEquals_Click event and copy all code for the first check if the label's

text ends with a decimal.

var endsWithDecimalSign = lblFirstValue.Text.EndsWith(decimalSign);

int length = Convert.ToInt32(lblFirstValue.Text.Length);

if(endsWithDecimalSign)

lblFirstValue.Text = lblFirstValue.Text.Substring(0, length - 1);

3. Paste the copied code into the EndWithDecimalSign method body.

4. Replace all instances of lblFirstValue.Text with the value variable.

5. Add a return statement returning the value variable.

The complete code for the EndWithDecimalSign method look like this:

private string EndsWithDecimalSign(string value)

{

var endsWithDecimalSign = value.EndsWith(decimalSign);

157

C# For Beginners

int length = Convert.ToInt32(value.Length);

if (endsWithDecimalSign)

value = value.Substring(0, length - 1);

return value;

}

The Calculate method

1. Add a method called Calculate to the Methods region with a void return type and

one double parameter called result declared with the out keyword making it possi-

ble to pass out but not in values through it. Add two other double parameters called

value1 and value2 and one string parameter called mathFunction. You must initial-

ize the result variable with the value 0d because an out parameter must always be

assigned a value.

private void Calculate(out double result, double value1, double

value2, string mathFunction)

{

result = 0d;

}

2. Locate the btnEquals_Click event and copy all calculation code.

3. Paste the copied code into the Calculate method body after the variable assignment.

The complete code for the Calculate method look like this:

private void Calculate(out double result, double value1, double value2,

string mathFunction)

{

result = 0d;

if (mathFunction.Equals(plusSign))

result = value1 + value2;

else if (mathFunction.Equals(minusSign))

result = value1 - value2;

else if (mathFunction.Equals(divisionSign))

result = value1 / value2;

else if (mathFunction.Equals(multiplicationSign))

result = value1 * value2;

}

158

C# For Beginners

The btnEquals_Click event

1. Locate the btnEquals_Click event.

2. Replace the content of the first if-statement with a call to the CanCalculate method.

if (CanCalculate()) return;

3. Replace the code checking if the lblFirstValue label ends with a decimal with a call to

the EndsWithDecimalSign method passing in the value lblFirstValue.Text property

and assign the result to the same property.

lblFirstValue.Text = EndsWithDecimalSign(lblFirstValue.Text);

4. Now do the same for the lblValue label.

lblValue.Text = EndsWithDecimalSign(lblValue.Text);

5. Replace the if- and else if-statements with a call to the Calculate method passing in

the four variables.

Calculate(out result, value1, value2, mathFunction);

6. Run the application and do some calculations to make sure that the application

works as it is supposed to.

7. Close the application.

The complete btnEquals_Click event code look like this:

private void btnEquals_Click(object sender, EventArgs e)

{

if (CanCalculate()) return;

lblFirstValue.Text = EndsWithDecimalSign(lblFirstValue.Text);

lblValue.Text = EndsWithDecimalSign(lblValue.Text);

var value1 = Convert.ToDouble(lblFirstValue.Text);

var value2 = Convert.ToDouble(lblValue.Text);

var mathFunction = lblMathFunction.Text;

var result = 0d; // double = 0d

Calculate(out result, value1, value2, mathFunction);

lblMathFunction.Text = String.Empty;

lblFirstValue.Text = String.Empty;

lblValue.Text = result.ToString("F3");

}

159

C# For Beginners

The btnSqrt_Click event

1. Locate the btnSqrt_Click event.

2. Replace the code checking if the lblValue label ends with a decimal with a call to the

EndsWithDecimalSign method passing in the value lblValue.Text property and

assign the result to the same property.

lblValue.Text = EndsWithDecimalSign(lblValue.Text);

3. Run the application and calculate some square roots to make sure that the

application works as it is supposed to.

4. Close the application.

The complete btnSqrt_Click event code look like this:

private void btnSqrt_Click(object sender, EventArgs e)

{

bool hasSign = lblValue.Text.Contains(minusSign);

if (hasSign)

{

MessageBox.Show(

"Cannot calculate the square root of a negative number");

return; // Exit out of the event prematurely

}

lblValue.Text = EndsWithDecimalSign(lblValue.Text);

var value = Convert.ToDouble(lblValue.Text);

var result = Math.Sqrt(value);

lblValue.Text = result.ToString();

}

160

C# For Beginners

8. Collections

Introduction

Collections is an essential tool to manage items of the same type as a set where you can add

and remove items from and iterate over the items one at a time, as well as count the

number of items. You can use any data type such as int, string and custom types such as

Film with collections.

Collections are often used in graphical user interfaces where they are data-bound to controls

such as list boxes, drop-down lists and menus. Another neat feature is that you can use LINQ

to query a collection.

Collection classes are provided by the System.Collections namespace and there are several

categories of collections you can use depending on the situation below are the most

commonly used collection types described.

List

Store items in a linear collection; you can think of a List collection as a dynamic one-

dimensional array. Can be used to store for example struct or class instances, strings or int

values.

Let's say that you are working with map information in the form of latitude and longitude,

you could then create a struct for that purpose and store the coordinates in a List collection.

When creating a List collection you have to specify the data type you want to store objects

or values of when declaring it, you do this by stating the data type in angle brackets after the

List data type.

The code below shows how to create two instances of the List collection the first with a

struct called MapPoint and the second with the int data type.

List<MapPoint> map = new List<MapPoint>();

List<int> values = new List<int>();

161

C# For Beginners

You add data to a List collection by calling the Add or AddRange methods depending on if

you want to add one value or a range of values. Continuing with the previous example you

could add data to the collections like this.

double latitude = 59.3296842, longitude = 18.0684023;

map.Add(new MapPoint(latitude, longitude));

values.AddRange(new int[] { 1, 2, 3 });

values.Add(10);

If you want to fetch a specific item in a List collection you can use square brackets after the

List variable and state the index you wish to fetch from or you can use LINQ which you will

look at later in this chapter.

var point = map[0];

If you need to remove an item from a List collection you use the one of the Remove or

RemoveAt methods. Let's say that you want to remove the coordinate you fetched in the

previous example, to achieve this you can either call the RemoveAt method and pass in the

index position of the item you want to remove or you can call the Remove method and pass

in the actual instance you want to remove which off course mean that you would have had

to fetched it earlier. One scenario could be that the user has selected the item in a combo

box or list box and then clicked a delete button.

var point = map[0];

map.Remove(point);

int index = 0;

map.RemoveAt(index);

To iterate over the items in a collection you can use any type of loop you desire, the most

commonly used loops for collections are foreach and for.

foreach (var coordinate in map)

{

lstCoordinates.Items.Add(

String.Format("Lat: {0}, long: {1}",

coordinate.Latitude, coordinate.Longitude));

}

162

C# For Beginners

Exercise: Map coordinates

In this exercise you will store map coordinates in a List collection called map. Longitude, lati-

tude and the city name will be stored using a struct called MapPoint which you will create.

When the user enters data in the form and clicks the Add button the a new MapPoint

instance will be created and saved in the map List collection the data will also be added to a

list box called lstCoordinates (see image below).

To make sure that the values entered for longitude and latitude are of the double data type

you have to parse the string values from the textboxes using the TryParse method on the

Double class. Before parsing you might also want to make sure that the decimal sign is a dot

(.) and not a comma (,) to be sure that the parse works. Another thing you might want to do

is to change the culture used by the application making sure that all users no matter where

they live use the same setting when parsing the values, you can achieve this by setting the

CurrentCulture property on the form's thread. This might be a bit advanced for where you

are right now, but let's do it anyway.

Add the following code to the Form_Load event to change the culture setting for the form to

the US standard.

private void Form1_Load(object sender, EventArgs e)

{

System.Threading.Thread.CurrentThread.CurrentCulture =

new System.Globalization.CultureInfo("en-US");

}

When the user select a city in the list box and click the Delete button the selected item

should be removed from the list box and the map List collection. Use the SelectedIndex

property of the list box as the index to remove from the List collection. The property value

correspond with the index at which the coordinate information is stored in the collection

because you added them at the same time to the collection and the list box and both are

zero based.

163

C# For Beginners

Adding the controls

1. Create a new Windows Forms Application called Map Coordinates.

2. Add a label with the text Latitude.

3. Add a textbox called txtLatitude below the label.

4. Add a label with the text Longitude to the right of the previous label.

5. Add a textbox called txtLongitude below the label.

6. Add a label with the text City below the latitude textbox.

7. Add a textbox called txtCity below the label.

8. Add a button named btnAddCoordinate with the text "Add" to the right of the city

textbox.

9. Add a list box below the city textbox called lstCoordinates.

10. Add a button named btnDelete with the text "Delete" below the list box.

Adding the MapPoint struct

1. Double click on the form to get to the code-behind file.

2. Locate the beginning of the Form1 class.

3. Add a struct called MapPoint to the class.

struct MapPoint

{

}

4. Add two private variables of the double data type called _latitude and _longitude,

and one called _city of the string data type to the struct. These variables will store

the internal data of the struct variable.

private double _latitude, _longitude;

private string _city;

5. Add the variables' corresponding properties called Latitude, Longitude and City.

164

C# For Beginners

public double Latitude {

get { return _latitude; }

set { _latitude = value; }

}

public double Longitude {

get { return _longitude; }

set { _longitude = value; }

}

public string City {

get { return _city; }

set { _city = value; }

}

6. Add a constructor to the struct which takes three parameters for the latitude, longi-

tude and city name and assigns them to their respective private variable.

public MapPoint(double latitude, double longitude, string city)

{

_latitude = latitude;

_longitude = longitude;

_city = city;

}

7. Add a List capable of storing MapPoint values called map below the closing curly

brace of the struct. This collection will store all added coordinates as MapPoint

instances.

List<MapPoint> map = new List<MapPoint>();

The code so far look like this:

public partial class Form1 : Form

{

struct MapPoint

{

private double _latitude, _longitude;

private string _city;

public double Latitude {

get { return _latitude; }

set { _latitude = value; }

}

public double Longitude {

get { return _longitude; }

set { _longitude = value; }

}

public string City {

165

C# For Beginners

get { return _city; }

set { _city = value; }

}

public MapPoint(double latitude, double longitude, string city)

{

_latitude = latitude;

_longitude = longitude;

_city = city;

}

}

List<MapPoint> map = new List<MapPoint>();

}

The Form_Load event

Here's where it might be a bit tricky to understand what is happening because you will use a

thread which is something you haven't done before. What you want to accomplish is to

make sure that all users use the same settings when it comes to converting values such as

strings to doubles. In order for you to pull that off you have to change the current culture

setting which normally is fetched from the operating system to one of your choice, in this

case the US standard (en-US).

The code below is added with the full namespace path but you could add it as a using

statement above the namespace surrounding the form. It is added with the full path only to

make it easier for you to understand from where the setting originates.

private void Form1_Load(object sender, EventArgs e)

{

System.Threading.Thread.CurrentThread.CurrentCulture = new

System.Globalization.CultureInfo("en-US");

}

The Add button

When the Add button is clicked you want to create a new MapPoint instance and assign the

values from the textbox to its properties. Then you want to add that MapPoint to the map

collection you created earlier and also to the list box.

1. Double click on the Add button in the form designer to create its Click event.

166

C# For Beginners

2. Add two double variables called longitude and latitude which will be used when

parsing the textbox values.

double latitude, longitude;

3. Use the TryParse method on the Double class to parse the value from the longitude

and latitude textboxes. Also save the result from the method calls in two variables

called isLatutude and isLongitude; the result will be true if the parse went well and

false otherwise. Also replace commas (,) for dots (.) in case a user has entered a

comma as a decimal sign. Note that the latitude and longitude variables you pass in

to the TryParse method has the out keyword in front of them; this keyword is used

when you want to store a value in the variable which is created inside the method

you call but you do not want to pass any value into the method, you are only

interested in the value sent out from the method.

var isLatitude = Double.TryParse(

txtLatitude.Text.Replace(',', '.'), out latitude);

var isLongitude = Double.TryParse(

txtLongitude.Text.Replace(',', '.'), out longitude);

4. Use the isLatutude and isLongitude variables in an if-statement to determine if you

should proceed with adding a MapPoint to the map List collection and the list box.

Only if both are true should you add a MapPoint to the collection and the list box

because then both have been successfully converted to double values and can be

considered valid coordinates.

if (isLatitude && isLongitude)

{

}

5. Create a new MapPoint called coordinate inside the if-block using the parsed

double values for latitude and longitude and the text from the city textbox.

var coordinate = new MapPoint(latitude, longitude, txtCity.Text);

6. Add the coordinate variable to the map collection.

map.Add(coordinate);

7. Add the data from the coordinate variable's properties to the list box.

lstCoordinates.Items.Add(String.Format("{0} [{1}, {2}]",

coordinate.City, coordinate.Latitude, coordinate.Longitude));

167

C# For Beginners

8. Run the application and add some coordinates and cities, below is a list of cities and

their coordinates you can use if you like.

// Stockholm: Lat:59,3296842, Long: 18,0684023

// New York: Lat:40,7130838, Long:-74,0057028

// London: Lat:51,5073509, Long: 0

9. Close the application.

This is the complete code for the Add button:

private void btnAddCoordinate_Click(object sender, EventArgs e)

{

double latitude, longitude;

var isLatitude = Double.TryParse(

txtLatitude.Text.Replace(',', '.'), out latitude);

var isLongitude = Double.TryParse(

txtLongitude.Text.Replace(',', '.'), out longitude);

if (isLatitude && isLongitude)

{

var coordinate = new MapPoint(latitude, longitude, txtCity.Text);

map.Add(coordinate);

lstCoordinates.Items.Add(

String.Format("{0} [{1}, {2}]",

coordinate.City, coordinate.Latitude,

coordinate.Longitude));

}

}

The Delete button

The purpose of the Delete button is to remove the selected list box item from the list box list

and also from the List collection.

1. Double click on the Delete button.

2. Check if the SelectedIndex of the list box is greater than -1 which mean that an item

is selected.

if (lstCoordinates.SelectedIndex > -1)

{

}

3. Add a variable called index inside the if-block and assign it the SelectedIndex value.

168

C# For Beginners

var index = lstCoordinates.SelectedIndex;

4. Use the value of the index variable when removing the selected item from the list

box and the map List collection.

map.RemoveAt(index);

lstCoordinates.Items.RemoveAt(index);

5. Run the application and add some cities and coordinates. Select a city in the list box

and click the Delete button to remove it from the collection and the list box.

6. Now I urge you to place breakpoints in the event methods and step through the

code when adding and deleting items. This will help you immensely in understanding

your code and how everything comes together, it can propel you forward in your

understanding of the C# language in ways you cannot imagine. You have to be

curious to become a top coder.

7. Close the application when you have finished stepping through the code.

This is the complete code for the Delete button:

private void btnDelete_Click(object sender, EventArgs e)

{

if (lstCoordinates.SelectedIndex > -1)

{

var index = lstCoordinates.SelectedIndex;

map.RemoveAt(index);

lstCoordinates.Items.RemoveAt(index);

}

}

Dictionary

Dictionary collections store items using a key/value pair where each item has one key

(object used to index the collection and look up the value with) and one value (the object

you want to store). An example could be that you are working on a car registry where the

items you want to store are information about cars using their unique registration numbers

as key values.

You could solve this by creating a class or a struct working as a container for the car

information and the registration number stored in the struct or class instances would act as

the unique key in the dictionary.

169

C# For Beginners

The following struct called Car will be used in the examples below.

struct Car

{

private string _regNo, _vinNo, _model;

private int _year;

public string RegNo { get { return _regNo; } set { _regNo = value; } }

public string VinNo { get { return _vinNo; } set { _vinNo = value; } }

public string Model { get { return _model; } set { _model = value; } }

public int Year { get { return _year; } set { _year = value; } }

public Car(string regNo, string vinNo, string model, int year)

{

_regNo = regNo;

_vinNo = vinNo;

_model = model;

_year = year;

}

}

The code below shows how to create an instance of the Dictionary collection using the pre-

viously described Car a struct.

Dictionary<string, Car> cars = new Dictionary<string, Car>();

You add data to a Dictionary collection by calling its Add method. Continuing with the exam-

ple you could add data to the collection like this.

var car = new Car("ABC123", "1234567", "Volvo", 1989);

cars.Add(car.RegNo, car);

If you want to fetch a specific item in a Dictionary collection you can use square brackets

after the Dictionary variable and state the key of the item you wish to fetch or you can use

LINQ which you will look at later in this chapter.

var fetchedCar = cars["ABC123"];

If you need to remove an item from a Dictionary collection you use the Remove method

passing in the key to the item you wish to remove. Let's say that you want to remove the car

with the key (registration number) "ABC123", to achieve this you call the Remove method

passing in the registration number of the car you want to remove.

170

C# For Beginners

cars.Remove("ABC123");

To iterate over the items in a collection you can use any type of loop you desire, the most

commonly used loops for collections are foreach and for. Because Dictionary collections

have a key and a value you can access both in the loop-block. The following example would

add two cars to the cars Dictionary and list them in a list box called lstCars.

private void Form1_Load(object sender, EventArgs e)

{

var car1 = new Car("ABC123", "1234567", "Volvo", 1989);

var car2 = new Car("XYZ987", "987654", "Saab", 2005);

cars.Add(car1.RegNo, car1);

cars.Add(car2.RegNo, car2);

foreach (var car in cars)

{

lstCars.Items.Add(

String.Format("Key:{0}, RegNo:{1}, Vin:{2}, Model:{3}, Year:{4}",

car.Key, car.Value.RegNo, car.Value.VinNo,

car.Value.Model, car.Value.Year));

}

}

Exercise: Book dictionary

In this exercise you will create a form with which the user can add books to a Dictionary

collection displayed in a list view control called lstBooks. This type of control is designed to

display data in different ways where large icons is the default; to display data in a table

format you change its View property to Details. The data in the control is not set to select

the entire row by default so that is something you want to change as well by assigning true

to its FullRowSelect property.

You also need to add the desired columns to the list view control by clicking on the small

arrow button in the top right corner of the control when it is selected. A menu pops up

171

C# For Beginners

where you select Edit Columns to open the ColumnsHeader dialog (see image below). Add

three columns for the book information (ISBN, Title and Year) and use the Name, Text and

Width columns to modify the columns you add.

The books should be stored in a Dictionary collection called books where the Key is the ISBN

number of the book and Value is the complete book information stored using a Book struct

with properties for ISBN, Title and Year.

Add three books to the books collection using the Book struct in the form constructor, you

can use the following data:

ISBN: 978-0547928227, Title: The Hobbit, Year: 2010

ISBN: 978-0547928210, Title: The Fellowship of the Ring, Year: 2011

ISBN: 978-0547928197, Title: The Return of the King, Year: 2012

Iterate over the books collection in the Form_Load event and add the books to the lstBooks

list view control. You have to assign the ISBN number to the Name property of the ListView-

Item instance to make it easier to target specific books in the list when removing books.

172

C# For Beginners

The form must have three textboxes for adding new books to the list and an Add and a

Delete button (see image below).

Because the year is entered in a textbox it will be a string when fetched in the Add button's

Click event, you have to parse the value and display an error message to the user and not

add the book if the value in the Year textbox can't be parsed to an int or if the parsed value

is negative.

Assuming the Year could be parsed and is greater than 0 then you should create a new book

using the Book struct and add it to the books collection. Then you use the book information

to add the book to the list view using the Add methods of its Items collection. Lastly the

textboxes should be cleared.

Iterate over the SelectedItems collection of the list view control in the Click event of the

Delete button to remove the selected books from the books collection and the lstBooks list

view. Both the list view and the collection has a Remove method you can use to remove the

current item in the loop. Use the ToString method on the current item to get the ISBN

number (the Key) needed to remove the item from the books collection and cast the current

item to a ListViewItem to remove it from the list view.

173

C# For Beginners

Adding the Controls

1. Create a new Windows Forms Application project called Books.

2. Add a list view control to the form.

3. Change its View property to Details in the Properties window.

4. Set the FullRowSelect property to true.

5. Name the control lstBooks.

6. Select the list view control and click on the small arrow button in the top right cor-

ner of the control.

7. Click on the Edit Columns link in the pop up menu.

8. Add the following columns to the list view control using the Name, Text and Width

columns.

a. colISBN, ISBN, 120

b. colTitle, Title, 300

c. colYear, Year, 60

9. Add a label below the list view and change its text to ISBN.

10. Add a textbox below the ISBN label and name it txtISBN.

11. Add a label to the right of the ISBN label and change its text to "Title".

12. Add a textbox below the Title label and name it txtTitle.

13. Add a label to the right of the Title label and change its text to "Year".

14. Add a textbox below the Year label and name it txtYear.

15. Add a button below the txtYear textbox called btnAdd and change its text to "Add".

16. Add a button to the left of the Add button called btnDelete and change its text to

"Delete".

Adding Book struct

1. Go the form's code-behind and locate the beginning of its class.

2. Add a struct called Book to the class.

struct Book

{

}

3. Add two private string variables called _ISBN and _Title and a private int variable

called _year to the struct.

private string _ISBN, _title;

private int _year;

174

C# For Beginners

4. Add the properties corresponding to the variables you just added.

public string ISBN { get { return _ISBN; } set { _ISBN = value; } }

public string Title { get { return _title; } set { _title = value; }

}

public int Year { get { return _year; } set { _year = value; } }

5. Add a constructor with parameters for the three variables.

public Book(string isbn, string title, int year)

{

_ISBN = isbn;

_title = title;

_year = year;

}

6. Add the books Dictionary collection below the struct. The Key value should be a

string and the Value a Book.

Dictionary<string, Book> books = new Dictionary<string, Book>();

The code looks like this so far:

public partial class Form1 : Form

{

struct Book

{

private string _ISBN, _title;

private int _year;

public string ISBN { get { return _ISBN; } set { _ISBN = value; } }

public string Title

{

get { return _title; }

set { _title = value; }

}

public int Year { get { return _year; } set { _year = value; } }

public Book(string isbn, string title, int year)

{

_ISBN = isbn;

_title = title;

_year = year;

}

}

Dictionary<string, Book> books = new Dictionary<string, Book>();

175

C# For Beginners

public Form1()

{

InitializeComponent();

}

private void Form1_Load(object sender, EventArgs e)

{

}

}

Adding books to the books collection

1. Locate the form's constructor.

2. Create three new book variables using the Book struct and the data described in the

exercise.

var book1 = new Book("978-0547928227", "The Hobbit", 2012);

3. Add the books to the books collection.

books.Add(book1.ISBN, book1);

The complete constructor code looks like this:

public Form1()

{

var book1 = new Book("978-0547928227", "The Hobbit", 2012);

var book2 = new Book("978-0547928210",

"The Fellowship of the Ring", 2012);

var book3 = new Book("978-0547928197",

"The Return of the King", 2012);

books.Add(book1.ISBN, book1);

books.Add(book2.ISBN, book2);

books.Add(book3.ISBN, book3);

InitializeComponent();

}

Adding Books to the list view

1. Locate the Form_Load event.

2. Add a foreach loop iterating over the Values collection in the books collection.

foreach(var book in books.Values)

{

}

176

C# For Beginners

3. Create a new ListViewItem variable called item and use the values of the current

book in the iteration. Assign the ISBN number to the Name property of the item var-

iable before adding it to the list view.

var item = new ListViewItem(new string[]{book.ISBN, book.Title,

book.Year.ToString() });

item.Name = book.ISBN;

lstBooks.Items.Add(item);

4. Run the application and make sure that the books are displayed correctly in the list

view.

5. Close the application.

The complete code for the Form_Load event look like this:

private void Form1_Load(object sender, EventArgs e)

{

foreach(var book in books.Values)

{

var item = new ListViewItem(

new string[]{ book.ISBN, book.Title, book.Year.ToString() });

item.Name = book.ISBN;

lstBooks.Items.Add(item);

}

}

The Add button

1. Add the Add button's click event.

2. Add an int variable called year which will be used when parsing the text from the

 txtYear textbox. Use the variable to store the result from the call to the Int32.Try-

Parse method parsing the year, remember that you have to pass in the variable as

an out parameter. Store the bool return value from the method call in a variable

called success.

var year = 0;

var success = Int32.TryParse(txtYear.Text, out year);

3. Use the parsed result to determine if the book should be added to the collection and

the list view. If the parse is successful the success variable should contain true. You

also want the year to be a positive number. If the parse is unsuccessful or the year is

less than 0 then display a message with an appropriate message.

177

C# For Beginners

if (success && year > 0)

{

}

else

MessageBox.Show("Not a valid year");

4. Create a new book in the if-block and add it to the books collection.

var newBook = new Book(txtISBN.Text, txtTitle.Text, year);

books.Add(newBook.ISBN, newBook);

5. Create a new ListViewItem using the book information in the newBook variable and

add set its Name property to the ISBN number of the book before adding it to the

 lstBooks list view. The value in the Name property will be used when removing

books.

var item = new ListViewItem(new string[] { newBook.ISBN,

newBook.Title, newBook.Year.ToString() });

item.Name = newBook.ISBN;

lstBooks.Items.Add(item);

6. Clear the textboxes.

txtISBN.Text = String.Empty;

txtTitle.Text = String.Empty;

txtYear.Text = String.Empty;

7. Run the application and add a new book by writing values to the text boxes and

clicking the Add button.

8. Try to add a book with a year less than 0 or non-numerical text. The message box

should be displayed.

9. Close the application.

The complete code for the Add button look like this:

private void btnAdd_Click(object sender, EventArgs e)

{

var year = 0;

var success = Int32.TryParse(txtYear.Text, out year);

if (success && year > 0)

{

var newBook = new Book(txtISBN.Text, txtTitle.Text, year);

books.Add(newBook.ISBN, newBook);

178

C# For Beginners

var item = new ListViewItem(new string[] {

newBook.ISBN, newBook.Title, newBook.Year.ToString() });

item.Name = newBook.ISBN;

lstBooks.Items.Add(item);

txtISBN.Text = String.Empty;

txtTitle.Text = String.Empty;

txtYear.Text = String.Empty;

}

else

MessageBox.Show("Not a valid year");

}

The Delete button

1. Add the Delete button's click event.

2. Add a foreach loop iterating over the SelectedItems collection of the list view; this

collection contain all selected rows in the control.

foreach (var item in lstBooks.SelectedItems) { }

3. Remove the current book in the iteration from the books collection calling its

Remove method passing in the Dictionary collection Key value (the ISBN number).

The ToString method of a selected item in the list view will return the value from the

first column.

books.Remove(item.ToString());

4. Call the Remove method on the list view's Items collection passing in the current

item cast to a ListViewItem to remove it from the list view.

lstBooks.Items.Remove((ListViewItem)item);

5. Run the application, select a book in the list and click the Delete button to remove it.

6. Close the application.

The complete code for the Delete button look like this:

private void btnDelete_Click(object sender, EventArgs e)

{

foreach (var item in lstBooks.SelectedItems)

{

books.Remove(item.ToString());

lstBooks.Items.Remove((ListViewItem)item);

}

}

179

C# For Beginners

Queue

Store items on a first in, first out basis; that is, the objects are read in the same order they

were added. One example could be an order processing system where the first order in is

the first to be processed, another is people standing in line at the checkout counter.

Normally when working with the Queue class you only use the Enqueue method to add a

new item to the queue and Dequeue to get the next item in line, but there is a method

called Peek which can be used to look at items without removing them from the queue.

You can use queues to store any type of data; the code below adds a new item to a string

queue.

Queue<string> myQ = new Queue<string>();

myQ.Enqueue("The string message");

The code below retrieves the next item in the queue and stores it in a string variable.

string value = myQ.Dequeue();

Exercise: Order form

In this exercise you will create an order form which adds new orders to a Queue called

orders when the Add button is clicked and fetches the next order in the queue when the Get

button is clicked. The data about the fetched order will be displayed in a message box. There

will also be label showing the number of orders in the queue and a list box displaying the

queued orders. If there are no orders in the queue when the Get button is clicked the event

should be exited gracefully using the return keyword without causing any errors.

Adding the controls

1. Create a new Windows Forms Application called Order Form.

2. Add a label and change its text to "OrderNo".

180

C# For Beginners

3. Add a textbox below the label and name it txtOrderNo.

4. Add a label to the right of the OrderNo label and change its text to "Description".

5. Add a textbox below the label and name it txtDescription.

6. Add a label below the OrderNo textbox, name it lblInQueue and change its text to

"Orders in Q:".

7. Add a button called btnAdd below and right aligned to the txtDescription textbox.

Change the text on the button to "Add".

8. Add a button called btnGet to the left of the Add button and change its text to

"Get".

9. Add a list box called lstOrders to the right of the already added controls.

Adding the Order struct

1. Open the form's code-behind and locate the beginning of its class.

2. Add a struct called Order to the beginning of the class.

3. Add two properties called OrderNo and Description and their corresponding private

variables to the struct. The properties should be read only (only have the get-block

implemented).

4. Add the Order constructor with two parameters for the order number and descrip-

tion.

5. Add a Queue variable called orders which holds instances of the Order struct.

The complete code for the Order struct and Queue look like this:

public partial class Form1 : Form

{

struct Order

{

private string _orderNo, _description;

public string OrderNo { get{ return _orderNo;} }

public string Description { get{ return _description; } }

public Order(string orderNo, string description)

{

_orderNo = orderNo;

_description = description;

}

}

181

C# For Beginners

Queue<Order> orders = new Queue<Order>();

The Form_load event

Display the number of orders in the queue in the lblInQueue label here in case there already

are orders in the queue when the application starts, perhaps read from a database.

lblInQueue.Text = String.Format("Orders in Q: {0}", orders.Count);

The Add button

1. Add the Click event for the Add button.

2. Use the Enqueue method on the orders queue variable to add a new order to the

queue.

orders.Enqueue(new Order(txtOrderNo.Text, txtDescription.Text));

3. Use the same code as in the Form_Load event to display the number of orders in the

queue in the lblInQueue label.

4. Clear the list box and use a foreach loop to display the orders in the queue in the list

box.

lstOrders.Items.Add(String.Format("Order [{0}] {1}", order.OrderNo,

order.Description));

5. Run the application and add a couple of orders to make sure that the counter is in-

cremented and that the orders in the queue are displayed in the list box.

6. Close the application.

The complete code for the btnAdd_Click event look like this:

private void btnAdd_Click(object sender, EventArgs e)

{

orders.Enqueue(new Order(txtOrderNo.Text, txtDescription.Text));

lblInQueue.Text = String.Format("Orders in Q: {0}", orders.Count);

lstOrders.Items.Clear();

foreach (var order in orders)

{

lstOrders.Items.Add(String.Format(

"Order [{0}] {1}", order.OrderNo, order.Description));

}

}

182

C# For Beginners

The Get button

1. Add the Click event for the Get button.

2. Make sure that no attempt to fetch an order from an empty queue is made. Use the

return keyword to make sure that the event is exited gracefully.

if (orders.Count.Equals(0)) return;

3. Dequeue the next order and store it in a variable called order.

var order = orders.Dequeue();

4. Display the number of orders in the queue in the lblInQueue label.

5. Display a message box with the order information on the following format:

String.Format("Order [{0}] {1}", order.OrderNo, order.Description)

6. Clear the list box and use it to display the queued orders.

7. Run the application and try to add and remove orders and make sure that the num-

ber of orders in the queue is updated in the label and that the orders in queue are

displayed in the list box.

8. Close the application.

The complete code for the btnGet_Click event look like this:

private void btnGet_Click(object sender, EventArgs e)

{

if (orders.Count.Equals(0)) return;

var order = orders.Dequeue();

lblInQueue.Text = String.Format("Orders in Q: {0}", orders.Count);

MessageBox.Show(String.Format("Order [{0}] {1}",

order.OrderNo, order.Description));

lstOrders.Items.Clear();

foreach (var item in orders)

{

lstOrders.Items.Add(String.Format("Order [{0}] {1}",

item.OrderNo, item.Description));

}

}

183

C# For Beginners

Stack

A Stack store items on a last in, first out basis; that is, the items are read in the opposite

order they were added; the item added last will be read first. One obvious example is a stack

of coins; you add coins on top of the coin stack and remove from the top of the stack to

avoid coins falling in all directions. Another example is a deck of cards, you shuffle the deck

and then draw cards from the top as you deal (at least if you are an honest dealer).

Normally when working with the Stack class you use the Push method to add a new item to

the stack and Pop to get the next item from the top of the stack, but there is a method

called Peek which can be used to look at items without removing them from the stack.

You can store any type of data in a ; the code below adds a new item to a string stack.

Stack<string> myStack = new Stack<string>();

myStack.Push("Added First");

myStack.Push("Added Second");

myStack.Push("Added Third");

When fetching values from the stack the one added last will be the first one received,

looking at the previous code snippet the first value to be fetched and stored in the variable

by the Pop method in the example below would be "Added Third" because it is at the very

top of the stack.

var nextValue = myStack.Pop();

Exercise: Deck of cards

In this exercise you will create a deck of playing cards using two enumerations (Suit and

Value) and a struct called Card which houses two properties called Suit and a Value. You

will then create the deck of cards as a Stack called deck and fill it with all the 52 playing

cards.

Then you will add a button called btnDraw which will draw the next card from the stack and

display its data in a list box.

184

C# For Beginners

The Value enum should hold the card values (Ace = 1, Two, Three, …, Jack, Queen, King) and the Suit enum should hold Hearts, Spades, Diamonds and Clubs. Each card is then assigned a

value from the Value enum and a value from the Suit enum.

Adding the controls

1. Create a new Windows Forms Application called Deck of Cards.

2. Add a button called btnDraw with the text "Draw".

3. Add a list box called lstCards below the button.

Adding the enums

1. Go to the code-behind and locate the beginning of the form's class.

2. Add an enum called Suite which holds the names of the four card suites. Note that

the first enum choice is assigned the value 1 to have the enumeration start at that

value as opposed to the default 0.

enum Suit { Hearts = 1, Spades, Diamonds, Clubs }

3. Add an enum called Value which holds the thirteen card values.

enum Value { Ace = 1, Two, Three, Four, Five, Six, Seven, Eight,

Nine, Ten, Jack, Queen, King }

Adding the Card struct

1. Add a struct called Card below the second enum.

2. Add a private variable called _suit using the Suit enum as its data type. This will be

the placeholder for the specific card's suit.

private Suit _suit;

3. Add a private variable called _value using the Value enum as its data type. This will

be the placeholder for the specific card's value.

185

C# For Beginners

private Suit _value;

4. Add the two corresponding properties called Value and Suit.

5. Add a constructor which takes one suit and one value as parameters and assigns

them to the appropriate variables in the struct.

public Card(Value value, Suit suit)

6. Add a Stack variable called deck below the Card struct using the Card struct as its

data type. This Stack will hold all 52 playing cards.

Stack<Card> deck = new Stack<Card>();

The complete code so far look like this:

public partial class Form1 : Form

{

enum Suit { Hearts = 1, Spades, Diamonds, Clubs }

enum Value { Ace = 1, Two, Three, Four, Five, Six, Seven, Eight, Nine,

Ten, Jack, Queen, King }

struct Card

{

private Value _value;

private Suit _suit;

public Value Value { get { return _value; } }

public Suit Suit { get { return _suit; } }

public Card(Value value, Suit suit)

{

_value = value;

_suit = suit;

}

}

Stack<Card> deck = new Stack<Card>();

}

Adding the playing cards to the stack

1. Locate the Form_Load event.

2. Create one outer for loop which iterates from 1 through 13 (the card values) and

add a second inner (nested) loop inside that loop iterating from 1 through 4 (the

card suites).

186

C# For Beginners

3. Push (add) each playing card to the deck Stack in the inner loop. You have to cast

the loop values to their respective enum type (Suit or Value) when creating the

playing cards because the Card constructor requires enum values as parameters.

The complete code for adding the playing cards look like this:

private void Form1_Load(object sender, EventArgs e)

{

for (int value = 1; value <= 13; value++)

for (int suit = 1; suit <= 4; suit++)

deck.Push(new Card((Value)value, (Suit)suit));

}

The Draw button

1. Create the Draw button's Click event.

2. Check that the deck Stack isn't empty before popping (fetching) the next value from

it.

if(deck.Count > 0)

3. Fetch the next card using the Pop method and store it in a variable called card.

var card = deck.Pop();

4. Add the fetched card to the lstCards list box displaying the value and suit on the

format "Ace of Hearts".

5. Run the application and draw a few cards. Note that the cards are retrieved in the

opposite order they were added.

6. Close the application.

The complete code for the Draw button look like this:

private void btnDraw_Click(object sender, EventArgs e)

{

if(deck.Count > 0)

{

var card = deck.Pop();

lstCards.Items.Add(String.Format("{0} of {1}", card.Value,

card.Suit));

}

}

187

C# For Beginners

Introduction to LINQ

In this section you will learn how to use LINQ and Lambda expressions to fetch data from a

collection and how to join (link) collections together to assimilate data from multiple sources

before displaying it to the user. Joining collections together can be very useful when dealing

with data that are related for instance when displaying customer information in an order

header where the customer is connected to the order through a unique customer id.

One of the great features of LINQ is that values are fetched when you ask for them;

instances where the data will be fetched include iterating over a query result, using methods

such as First, Last, FirstOrDefault that fetch one value, or ToList that fetch all items prod-

uced by the LINQ query.

Because the data isn't retrieved immediately when the data is selected with the query you

can actually build on existing queries narrowing down the result even more before fetching

the actual data from the source.

Order example

The following code is used by the upcoming examples when creating the orders and

customers List collections used.

public partial class Form1 : Form

{

struct Order

{

private int _id, _customerId;

private double _total;

private DateTime _date;

public int Id { get { return _id; } }

public int CustomerId { get { return _customerId; } }

public double Total

{

get { return _total; }

set { _total = value; }

}

public DateTime Date { get { return _date; } set { _date = value; } }

188

C# For Beginners

public Order(int id, int customerId, double total, DateTime date)

{

_id = id;

_customerId = customerId;

_total = total;

_date = date;

}

}

struct Customer

{

private int _id;

private string _name;

public int Id { get { return _id; } }

public string Name { get { return _name; } set { _name = value; } }

public Customer(int id, string name) {

_id = id;

_name = name;

}

}

List<Order> orders = new List<Order>();

List<Customer> customers = new List<Customer>();

public Form1()

{

orders.AddRange(new Order[]{

new Order(1, 2, 100, new DateTime(2015, 01, 10)),

new Order(2, 1, 200, new DateTime(2015, 01, 20)),

new Order(3, 2, 300, new DateTime(2015, 01, 15)),

new Order(4, 3, 400, new DateTime(2015, 5, 1))

});

customers.AddRange(new Customer[]{

new Customer(1, "Carl Smith"),

new Customer(2, "Jane Doe"),

new Customer(3, "John Doe"),

});

InitializeComponent();

}

}

189

C# For Beginners

Query syntax

You use the following basic syntax when querying with LINQ:

from <variable> in <data source>

join <varible2> in < data source2>

on <varible.property> equals <varible2.property>

group <grouping criteria>

where <selection criteria>

orderby <result ordering criteria>

select <variable name>

A LINQ query always begin with a from statement listing the variable names used in the

query followed by the in keyword and the data source (in this chapter the data sources are

collections). The query also always have to have a select statement defining what to select

from the data source, in simple queries that will be the data source variable returning comp-

lete items from the data source.

When working with multiple data sources you might want to link them together to create

one result set with data from all data sources, to achieve this you use one or more join state-

ments (one per data source you want to join).

it is also possible to group data crating an aggregated result.

The where clause is used to filter the data and narrow down the result set; a where clause

can be very simple only filtering on one property or more complex involving multiple prop-

erties.

Use an orderby statement if you want to sort the selected data.

Fetch all items

When using LINQ you can fetch all the items in a collection as an IEnumerable or as a List of

items; an IEnumerable contain the select query used when fetching the desired data but not

the data itself whereas the ToList method will use the query to fetch the actual data and

store it in a List collection.

190

C# For Beginners

Create a query and fetch the data later:

var allOrders = from o in orders

select o;

// Execute ToList when you want to fetch the data

allOrders.ToList();

Fetch the items directly:

var allOrders = (from o in orders

select o).ToList();

var allCustomers = (from c in customers

select c).ToList();

Fetch a specific item

When using LINQ you can choose two different syntaxes when querying a data source, you

can go the all out LINQ query way or you can use predefined query methods which use

Lambda expressions. Let's explore both.

In this example you want to fetch a specific order by its order id. With LINQ only the query

would involve a where clause while using Lambda the First or FirstOrDefault method would

require an expression. The difference between the First and FirstOrDefault methods is that

the latter would return an object with the default settings applied if no matching item was

found and the First method would return null.

Note that both queries uses the First method to fetch the first item in a collection of items

but since the order id is unique ensuring that only one item is fetched the correct item will

be returned. Normally you wouldn't hard code the id off course but it's done here for simpli-

city.

When it comes to Lambda expressions the => symbol is read as goes to. The variable name

used in the expression correspond to the current item being evaluated in the collection of

items; you can view it as the iteration variable in a foreach loop. The Equals method is

replacing the traditional == operator here but keep in mind that the Equals method can yield

un-compliable code when comparing the Lambda variable to a null value like o.Id.Equals

(null) in these instances you must resort to the old fashioned syntax o.Id == null or o.Id !=

null when checking whether it is null or not null.

191

C# For Beginners

//LINQ only

var order = (from o in orders

where o.Id.Equals(1)

select o).First();

//LINQ and Lambda

var order = orders.First(o => o.Id.Equals(1));

It's a matter of taste which syntax you choose to use except in certain edge cases where you

have to use the LINQ method with a Lambda expression; one such occasion is if you want to

fetch a certain number of items using the Take method or if you want to skip a number of

items before fetching your items using the Skip method. Both these methods are frequently

used when implementing pagination on web pages.

Sorting the fetched items

Sometimes when fetching data you want to sort the result before displaying it to the user, to

achieve this you can use an orderby clause or call the OrderBy method (ascending) or the

OrderByDescending method (descending) specifying which property to sort by.

//LINQ Only

var sortedItems = (from o in orders

where o.CustomerId.Equals(2)

orderby o.Id

select o).ToList();

//LINQ and Lambda

var sortedItems = orders.Where(c =>

c.CustomerId.Equals(2)).OrderByDescending(o => o.Id).ToList();

Joining two collections (anonymous object)

Sometimes you need to combine data from two or more data sources using a join expres-

sion. When deciding what values to include in the final result set you can use an anonymous

object to house the data for each item when the select statement is executed, this can be

very useful if you don't have access to or don't want to create a new class defining the

desired properties. Use the new keyword and curly braces to define the beginning and end

of the anonymous object and inside the curly braces you can specify the desired properties

where each property is given a name and a value from one of the join variables.

192

C# For Beginners

var joinedData = (

from o in orders

join c in customers on o.CustomerId equals c.Id

select new

{

OrderId = o.Id,

CustomerId = c.Id,

OrderDate = o.Date,

Total = o.Total,

CustomerName = c.Name

}).ToList();

Joining two collections using an existing class or struct

In the previous section you learned how an anonymous object can be used to collect joined

data. In this section you will learn how the joined data can be collected using an existing

struct or class.

To collect the same data as in the previous section you could use a struct, but here a class is

used because it simplifies code and is the recommended way of handling larger objects; just

remember that you can substitute the class for a struct if needs be.

The class looks like this:

class CustomerOrder

{

public int OrderId { get; set; }

public int CustomerId { get; set; }

public DateTime OrderDate { get; set; }

public double Total { get; set; }

public string CustomerName { get; set; }

}

The LINQ query would be almost identical to the one in the previous section with the except-

ion of specifying the data type to be used.

var joinedData = (

from o in orders

join c in customers on o.CustomerId equals c.Id

select new CustomerOrder

{

OrderId = o.Id,

CustomerId = c.Id,

193

C# For Beginners

OrderDate = o.Date,

Total = o.Total,

CustomerName = c.Name

}).ToList();

Exercise: Order form

In this exercise you will use a Queue and two List collections to store information about

customers and orders which you will display in a list view using LINQ and Lambda

expressions. Two structs will define the customer and order content and will be used as data

types for the queue and lists. The customer should have customer id (int) and name (string)

properties and the order should have order number (Guid), total (double) and customer id

(int). The customer id is used to tie a customer to an order.

A Guid is a globally unique identifier meaning that it is virtually impossible to get the same

value twice. You can use the Guid data type to store this type of values, the Guid class can

also be used to create new Guids at run-time by calling the NewGuid method on the class.

An unassigned Guid is filled with zeros and can be checked or assigned using the Empty

property on the Guid class.

The queue should hold new orders and will be a repository for not yet processed orders, by

using a queue the orders will be processed on a first in first out basis. The first list should

hold customers and the second orders which have been processed.

The GUI is divided into two sections, a tab control at the top with two tabs and a list view

control at the bottom (see image below). The New Order tab contain the controls for adding

a new order; a combo box control for customers, a textbox for the total order amount and a

button that will add the order to the queue. The Manage Orders tab contain three buttons

where the first display the next order in the queue in the list view, the second button

processes the next order in the queue and moves it to the processed order list and the third

button lists all orders not yet processed in the list view.

When the New Order tab is clicked all orders processed and unprocessed should be

displayed in the list view; this can be achieved using the Union LINQ method to add two

query results together and then iterate overt the orders. The same data should be displayed

in the list view when the Add Order button is clicked, a customer is selected in the combo

194

C# For Beginners

box or the Process Next Order button is clicked. To reuse the code you can place it in a

method that is called from the different events.

The next order in the queue should be displayed with a light blue backgound, all unproce-

ssed orders with a light pink background and all processed orders with a light green back-

grond in the list view.

New orders should only be added to the orders queue if the value in the Total textbox can

be parsed to a double.

The Close button should close the window and exit the application. If there are unprocessed

orders in the queue a message box should be displayed asking the user if the application

should end ("Order Q not empty! Close anyway?"); if the user answers yes the application

ends otherwise it should remain open. You can change the buttons displayed in a message

box and the result can be collected in a DialogResult variable. You can optionally display an

icon as well.

var result = MessageBox.Show("Order Q not empty! Close anyway?", "WARNING",

MessageBoxButtons.YesNo, MessageBoxIcon.Exclamation);

if (result.Equals(DialogResult.No)) return;

195

C# For Beginners

Adding the controls

1. Create a new Windows Forms Application called Orders.

2. Change its Text property to "Orders". This will change the text in the form header.

3. Add a TabControl to the form.

196

C# For Beginners

4. Click on the first tab and then the white surface below the tab and change the Text

property to "New Order".

5. Add two labels with the text "Customer" and "Total" to the white tab surface.

6. Add a combo box called cboCustomers below the "Customer" label.

7. Add a textbox called txtTotal below the "Total" label.

8. Add a button called btnAddOrder with the text "Add Order" to the right of the

 txtTotal textbox.

9. Click on the second tab, this should display a white surface again (the second tab's

surface), click on the empty white surface and change the text of the tab to "Manage

Orders" with its Text property

10. Add three buttons called btnPeekOnNextOrder, btnProcessNextOrder and btnList-

 Orders. Change the text on the buttons to "Peek On Next Order", "Process Next

Order" and "List Orders".

11. Add a list view control called lstOrders below the tab control.

12. Add a button called btnClose with the text "Close" below the list view.

Adding the Order struct

1. Open the code-behind and locate the beginning of the form.

2. Add a new struct called Order above the form class.

3. Add a Guid property called OrderNo and its corresponding private variable.

4. Add a int property called CustomerId and its corresponding private variable.

5. Add a double property called Total and its corresponding private variable.

6. Add a constructor which takes three parameters corresponding to the private

variables and assign them to the variables.

This is the complete code for the Order struct:

struct Order

{

private int _customerId;

private double _total;

private Guid _orderNo;

public Guid OrderNo {

get { return _orderNo; }

set { _orderNo = value; }

}

197

C# For Beginners

public int CustomerId {

get { return _customerId; }

set { _customerId = value; }

}

public double Total {

get { return _total; }

set { _total = value; }

}

public Order(int customerId, double total, Guid orderNo)

{

_total = total;

_customerId = customerId;

_orderNo = orderNo;

}

}

Adding the Customer struct

1. Add a new struct called Customer blow the Order struct.

2. Add an int property called Id and its corresponding private variable.

3. Add a string property called Name and its corresponding private variable.

4. Add a constructor which takes two parameters corresponding to the private vari-

ables and assign them to the variables.

This is the complete code for the Customer struct:

struct Customer

{

private int _id;

private string _name;

public int Id

{

get { return _id; }

}

public string Name

{

get { return _name; }

set { _name = value; }

}

198

C# For Beginners

public Customer(int id, string name)

{

_id = id;

_name = name;

}

}

Adding the collections

1. Locate the beginning of the form class.

2. Add a new List<Customer> collection called customers to the class.

3. Add a new List<Order> collection called fulfilledOrders.

4. Add a new Queue<Order> collection called orders.

5. Add two customers to the customers collection in the constructor.

6. Assign the customers collection to the DataSource property of the cboCustomers

combo box inside the Form_Load event.

7. Specify the Name property as the DisplayMember inside the Form_Load event.

8. Run the application and make sure that the customers are displayed in the combo

box.

9. Close the application.

This is the form's code so far:

public partial class Orders : Form

{

List<Customer> customers = new List<Customer>();

Queue<Order> orders = new Queue<Order>();

List<Order> fulfilledOrders = new List<Order>();

public Orders()

{

customers.AddRange(new Customer[]{

new Customer(1, "John Doe"),

new Customer(2, "Stan Smith")

});

InitializeComponent();

}

199

C# For Beginners

private void Orders_Load(object sender, EventArgs e)

{

cboCustomers.DataSource = customers;

cboCustomers.DisplayMember = "Name";

}

}

Adding ShowCustomerOrder method

To be able to effectively reuse the code for displaying a customer's orders in the list view

control you will create a method called ShowCustomerOrders which will be called whenever

this information should be updated.

1. Add a region called Methods below the Form_Load event.

2. Add a method to the region called ShowCustomerOrders which takes one int para-

meter called customerId.

private void ShowCustomerOrders(int customerId)

{

}

3. Use LINQ and Lambda to fetch the customer matching the passed in customerId

parameter from the customers collection.

var customer = customers.First(c => c.Id.Equals(customerId));

4. To avoid the upcoming LINQ expressions to fail if no orders are in the order queue

you can only peek at the next order using the Peek method if there is at least one

order in the queue otherwise an empty Guid should be stored for the nextOrderNo

variable. This order number will be used later to determine which background color

should be displayed for the unprocessed orders. If the order number matches one of

the orders in the orders queue the background color should be Light Bue otherwise

it should be Light Pink when the order is added to the list view control.

var nextOrderNo = orders.Count > 0 ? orders.Peek().OrderNo :

Guid.Empty;

5. To be able to use one loop when adding the data to the list view control you have to

append the orders in the fulfilledOrders collection to the orders queue for the se-

lected customer using the Union LINQ method. Because the backgound color

shouldn't be part of the displayed data you will have to add it and the ListViewItem

containing the customer and order data to an anonymous object which later is

accessed in the loop adding the data to the list view control.

200

C# For Beginners

var items = (

from o in orders

where o.CustomerId.Equals(customer.Id)

select new

{

// The background color used for the

// order in the list view control

Color = o.OrderNo.Equals(nextOrderNo) ?

Color.LightBlue : Color.LightPink,

// The customer and order data displayed

// in the list view control

Item = new ListViewItem(new string[]{

o.OrderNo.ToString(), o.Total.ToString(),

customer.Name, customer.Id.ToString()})

}).Union(/* The fulfilledOrders LINQ query goes here */);

6. Add the LINQ query for the fulfilledOrders collection inside the Union parenthesis.

7. Clear the items in the list view control below the LINQ query.

8. Iterate over the items in the result from the LINQ query and change the background

color of the current item and then add it to the list view.

lstOrders.Items.Clear();

foreach (var item in items)

{

item.Item.BackColor = item.Color;

lstOrders.Items.Add(item.Item);

}

This is the complete code for the ShowCustomerOrders method:

#region Methods

private void ShowCustomerOrders(int customerId)

{

var customer = customers.First(c => c.Id.Equals(customerId));

var nextOrderNo = orders.Count > 0 ? orders.Peek().OrderNo : Guid.Empty;

var items = (

from o in orders

where o.CustomerId.Equals(customer.Id)

select new

{

Color = o.OrderNo.Equals(nextOrderNo) ?

Color.LightBlue : Color.LightPink,

201

C# For Beginners

Item = new ListViewItem(new string[]{

o.OrderNo.ToString(), o.Total.ToString(),

customer.Name, customer.Id.ToString()})

})

.Union(

from o in fulfilledOrders

where o.CustomerId.Equals(customer.Id)

select new

{

Color = Color.LightGreen,

Item = new ListViewItem(new string[]{

o.OrderNo.ToString(), o.Total.ToString(),

customer.Name, customer.Id.ToString()})

}

); // End of Union

lstOrders.Items.Clear();

foreach (var item in items)

{

item.Item.BackColor = item.Color;

lstOrders.Items.Add(item.Item);

}

}

#endregion

The cboCustomers_SelectedIndexChanged event

When a customer is selected in the combo box that customer's orders should be displayed in

the list view control.

1. Add the SelectedIndexChanged event for the cboCustomers combo box.

2. Check that the customer combo box contain customers, if it is empty then exit the

event gracefully.

if (cboCustomers.Items.Count.Equals(0)) return;

3. Add a variable called customer and store the selected customer from the combo box

cast as Customer.

4. Call the ShowCustomerorder passing in the customer id from the customer variable.

202

C# For Beginners

This is the complete code for the cboCustomers_SelectedIndexChanged event:

private void cboCustomers_SelectedIndexChanged(object sender, EventArgs e)

{

if (cboCustomers.Items.Count.Equals(0)) return;

var customer = (Customer)cboCustomers.SelectedItem;

ShowCustomerOrders(customer.Id);

}

The tab control's SelectedIndexChanged event

When the first tab in the tab control is selected the orders for the selected customer in the

combo box should be displayed in the list view control.

1. Add the SelectedIndexChanged event for the tab control button. You have to click

on one of the tabs in the tab control to add the event.

2. Check that the clicked tab is the first tab in the tab control by accessing its Selected-

Index property.

if (tabControl1.SelectedIndex.Equals(0))

{

}

3. Check that the customer combo box contain customers inside the if-block, if it is

empty then exit the event gracefully.

4. Fetch the selected customer from the combo box and cast it using the Customer

struct.

5. Call the ShowCustomerorder passing in the customer id from the variable with the

cast customer.

This is the complete code for the tab control 's SelectedIndexChanged event:

private void tabControl1_SelectedIndexChanged(object sender, EventArgs e)

{

if (tabControl1.SelectedIndex.Equals(0))

{

if (cboCustomers.Items.Count.Equals(0)) return;

var customer = (Customer)cboCustomers.SelectedItem;

ShowCustomerOrders(customer.Id);

}

}

203

C# For Beginners

The Add Order button

1. Add the Click event for the Add Order button.

2. Because orders only should be added if the value in the Total textbox can be parsed

to a double you have to add a double variable called total to hold the parsed value.

3. The result returned from the TryParse method should be stored in a bool variable

called success and the total variable should be passed in to the TryParse method as

an out parameter. true will be stored in the success variable if the parse succeeds.

4. Add an if-statement where the success variable must be true for the if-block to

execute.

5. Fetch the customer id from the selected customer in the combo box inside the if-

block. Use the SelectedItem property of the combo box and cast it to a Customer

then access its Id property.

var customerId = ((Customer)cboCustomers.SelectedItem).Id;

6. Create a new variable using the Order struct passing in the customer id, the total

and a new Guid.

var order = new Order(customerId, total, Guid.NewGuid());

7. Call the Enqueue method on the orders queue collection to add the order to the

queue.

8. Call the ShowCustomerOrders method to display the customer and order informati-

on in the list view.

ShowCustomerOrders(customerId);

9. Run the application, select a customer in the combo box, enter a value in the Total

textbox and click the Add Order button to add the data as an order to the orders

queue. Make sure that the data is displayed in the list view control. The first row

should be Light Blue and the subsequently added rows should be Light Pink. The

Light Blue color show that it is the next order in the orders queue.

10. Close the application.

This is the complete code for the btnAddOrder_Click event:

private void btnAddOrder_Click(object sender, EventArgs e)

{

var total = 0d;

var success = Double.TryParse(txtTotal.Text, out total);

204

C# For Beginners

if (success)

{

var customerId = ((Customer)cboCustomers.SelectedItem).Id;

var order = new Order(customerId, total, Guid.NewGuid());

orders.Enqueue(order);

ShowCustomerOrders(customerId);

}

}

The Peek On Next Order button

The purpose of this button is to peek at the next unprocessed order in the orders queue; to

achieve this you have to add a LINQ query fetching the customer by customer id and calling

the Peek method on the queue to fetch the order. Then you have to create a ListViewItem

with the data from the customer and order and present it in the list view control.

1. Add the Click event for the btnPeekOnNextOrder button.

2. Check that the orders queue contain at least one order and that the customers

collection contain customers, if either one is empty then exit gracefully from the

Click event.

if (orders.Count.Equals(0) || customers.Count.Equals(0)) return;

3. Peek at the next order without removing it from the queue by calling the Peek

method on the queue and store the order in a variable called order.

4. Fetch the customer matching the customer id stored in the order and store it in a

variable called customer. You can either do this with the First method and a Lambda

expression or a regular LINQ query, both are described here.

a. With Lambda

var customer = customers.First(c =>

c.Id.Equals(order.CustomerId));

b. With LINQ Query

var customer = (

from c in customers

where c.Id.Equals(order.CustomerId)

select new Customer(c.Id, c.Name)

).First();

5. Create a new ListViewItem with the data from the order and customer variables.

var item = new ListViewItem(new string[]{

205

C# For Beginners

order.OrderNo.ToString(), order.Total.ToString(),

customer.Name, customer.Id.ToString()});

6. Clear the list view and add the item to it.

7. Run the application and add a couple of orders.

8. Click on the Manage Orders tab.

9. Click on the Peek On Next Order button; this should display the order and customer

data in the list view control.

10. Switch back to the New Order tab; this should display all orders for the customer

selected in the combo box.

This is the complete code for the btnPeekOnNextOrder_Click event:

private void btnPeekOnNextOrder_Click(object sender, EventArgs e)

{

if (orders.Count.Equals(0) || customers.Count.Equals(0)) return;

var order = orders.Peek();

var customer = customers.First(c => c.Id.Equals(order.CustomerId));

var item = new ListViewItem(new string[]{

order.OrderNo.ToString(), order.Total.ToString(),

customer.Name, customer.Id.ToString()});

lstOrders.Items.Clear();

lstOrders.Items.Add(item);

}

The Process Next Order button

The purpose of this button is to simulate that the order is being processed and moved from

the orders queue to the fulfilledOrders collection. You achieve this by fetching the next

order in the orders queue by calling the Dequeue method and adding the fetched order to

the collection. Call the ShowCutomerOrders method you created earlier to display the vari-

ous orders in the system after the order has been moved.

1. Add the Click event for the btnProcessNextOrder button.

2. Check that there are orders in the orders queue, if there are none then exit grace-

fully from the event.

3. Fetch the next order in the orders queue calling the Dequeue method and store the

order in a variable called order.

206

C# For Beginners

var order = orders.Dequeue();

4. Add the fetched order to the fulfilledOrders collection.

5. Call the ShowCutomerOrders method to display all orders for the current customer.

ShowCustomerOrders(order.CustomerId);

6. Run the application and add a couple of orders.

7. Switch to the Manage Orders tab and note which order is marked with a Light Blue

background.

8. Click the Process Next Order button; this will move the next order in the orders

queue to the fulfilledOrder collection. Note that the order marked with Light Blue

background has changed because another order is now next in line to be processed.

If no order in the list view has a Light Blue background the next order belongs to

another customer or there are no more orders to process.

9. Close the application.

This is the complete code for the btnProcessNextOrder_Click event:

private void btnProcessNextOrder_Click(object sender, EventArgs e)

{

if (orders.Count.Equals(0)) return;

var order = orders.Dequeue();

fulfilledOrders.Add(order);

ShowCustomerOrders(order.CustomerId);

}

The List Orders button

The purpose of this button is to display all processed orders in the fulfilledOrder collection

with their corresponding customer information in the list view. Use a LINQ join statement to

link the customers collection with the fulfilledOrders collection and create an anonymous

object with the combined data.

1. Add the Click event for the btnListOrders button.

2. Link the customers collection with the fulfilledOrders collection using a LINQ join

and store the result in a variable called orderList. Note that you aren't calling the

ToList method to fetch the items immediately, the items will be fetched automati-

cally when you iterate over the result with a foreach loop later.

207

C# For Beginners

var orderList =

from o in fulfilledOrders

join c in customers on o.CustomerId equals c.Id

select new

{

OrderNo = o.OrderNo,

Name = c.Name,

Total = o.Total,

CustomerId = c.Id

};

3. Clear the list view.

4. Add a foreach loop iterating over the result stored in the orderList variable. Create a

new ListViewItem for each iteration inside the foreach-block and add it to the list

view control.

5. Run the application and add a couple of orders.

6. Click on the List Orders button; no orders should be displayed in the list view becau-

se all orders are unprocessed.

7. Click the Process Next Order button to process at least one order. The processed

order should be displayed with a Light Green background.

8. Click the List Orders button to display only the processed orders without any back-

ground color.

9. Close the application.

This is the complete code for the btnListOrders_Click event:

private void btnListOrders_Click(object sender, EventArgs e)

{

var orderList =

from o in fulfilledOrders

join c in customers on o.CustomerId equals c.Id

select new

{

OrderNo = o.OrderNo,

Name = c.Name,

Total = o.Total,

CustomerId = c.Id

};

lstOrders.Items.Clear();

foreach(var order in orderList)

208

C# For Beginners

{

var item = new ListViewItem(new string[]{

order.OrderNo.ToString(), order.Total.ToString(),

order.Name, order.CustomerId.ToString()});

lstOrders.Items.Add(item);

}

}

The Close button

The purpose of this button is to close the application. If the orders queue contain unproce-

ssed orders then a message box should be displayed asking the user if the application should

be closed anyway.

1. Add the Click event for the Close button.

2. Check if the orders queue contain orders. If it does then display a message box with

the header "WARNING", the message "Order Q not Empty, Close anyway?", Yes/No

buttons and an exclamation icon. Store the button click in a variable called result.

var result = MessageBox.Show(

"Order Q not empty! Close anyway?", "WARNING",

MessageBoxButtons.YesNo, MessageBoxIcon.Exclamation);

3. If the No button is clicked then the event should be exited gracefully and the form

remain open.

if (result.Equals(DialogResult.No)) return;

4. Add a call to the form's Close method; the form can be reached using the this key-

word.

this.Close();

This is the complete code for the btnClose_Click event:

private void btnClose_Click(object sender, EventArgs e)

{

if (orders.Count > 0)

{

var result = MessageBox.Show(

"Order Q not empty! Close anyway?", "WARNING",

MessageBoxButtons.YesNo, MessageBoxIcon.Exclamation);

// Check which button has been clicked

if (result.Equals(DialogResult.No)) return;

209

C# For Beginners

}

this.Close();

}

Mini Use Case: Poker application

In this exercise you will create a poker application where the user plays against the compu-

ter. You will get a use case describing the different sections of the application and what

feature that need to be implemented, try to implement it using only the use case if you can.

Some new theory is introduced and described in the use case. The reason for the mini use

case layout is to closely mimic a real world scenario. I strongly suggest that you read the

whole use case at least once before you start coding.

Description

The application should support playing many hands without restarting the application. It

should contain three distinct parts, the Windows Forms Application GUI used when playing,

a struct called Card which represent one playing card and a struct called Hand which

represent a dealt hand.

The GUI

The GUI should display the player and dealer hand values in labels as well as the value and

suit in one label per card; spades and clubs should be displayed in black while hearts and

diamonds are displayed in red (see image below). The card backgrounds should be white.

The outcome should be displayed between the two hands with the text "Player wins!" with a

light green background if the player wins and "Dealer Wins!" against a light pink background

if the dealer wins. A button with the text "DEAL NEW HAND" should deal new hands to the

player and dealer when clicked. The dealt cards should be dynamically added to a Panel

control and should not be present in the GUI when the application is started.

210

C# For Beginners

The card

The card consist of two variables storing the value and suit, a property displaying the symbol

for the card's suit using the value stored in the suit variable and a property displaying the

card value in abbreviated form (2, 3, …, K, A) using the value in the value variable; use three

enums to keep track of the possible values (Two, Three, …, King, Ace), suit (Heart, Spades,

Diamonds, Clubs) and the symbol for each suit (Hearts = '♥', Spades = '♠', Diamonds = '♦',

Clubs = '♣').

The value and suit variables should be declared as types of the respective enum.

You will also have to implement an interface called IComparable to make it possible to

compare two cards on their values (see code and description below).

The hand

The Hand struct represent the player or dealer hand. Two enums are required outside the

struct, one called Hands which is holding a list of all possible hands (pair, two pairs, …, Full

House, Royal Straight Flush) and one called Winner which holds the possible winners

(Dealer, Player, Draw). A Hand is comprised of data relating to the cards dealt for that hand

such as an array able to hold 5 Card instances, the hand value in the form of a value from the

Hands enum, two properties to store the high card during hand evaluation using the Values

enum, a List<Value> collection storing kicker cards using the Values enum and an int storing

the suit (hearts, spades, clubs, diamonds).

211

C# For Beginners

The Code-behind (form code)

Two variables declared with the Hand struct will be needed, one for the dealer called

dealerHand and one for the player called playerHand. A List<Card> collection called deck is

also needed to hold the 52 playing cards in the card deck. An int variable called shuffles will

determine how many times the deck should be shuffled before any cards can be dealt.

Create a method called Initialize which is called from the button to instantiate the variables

mentioned earlier. This method is used to clear the current hands and deck of cards.

Create a method called ShuffleDeck which is called after the Initialize method in the button

Click event. The purpose of this method is to shuffle the card deck as many times as speci-

fied by the shuffles variable; use the Random class to randomize the shuffling.

Create a method called DealCards which will assign cards to the dealer and player in an

alternating fashion. Don't forget to remove the used cards from the deck collection as you

deal out the cards. The dealer and player should get 5 cards each stored in the Cards array in

the dealerHand and playerHand respectively.

Create a method called CompareHands which compare the dealer and player hands using

the Hands enum, the two HighCard and Kicker properties of the player and dealer hands.

This method need to call another method you will create called EvaluateHand taking a Hand

parameter passed in by reference (ref); the method will figure out the hand (pair, two pair,

…) stored in the Hand parameter and alter the two HighCard and Kicker properties in it. To

make it easier to evaluate the hand you might want to sort the Cards array before evaluating

the hand. Call the EvaluateHand method twice, once for the player's hand and once for the

dealer's hand.

You should also create a method called CompareCards which compare the dealer and player

cards in the event the hands are equal or both hands don't have a value (only a set of mixed

cards).

The last method you need to create is called RevealCards which dynamically add the cards

to the player and dealer areas in the form and show the winner in the label between the

dealer and player cards; the background color of the label should be light pink if the dealer

wins and light green if the player wins.

212

C# For Beginners

Evaluating the hand

The hand value should be determined by the following hand order: Royal Straight Flush,

Straight Flush, Four of a kind, Full House, Flush, Straight, Three of a Kind, Two Pairs, One

Pair, High Card.

If the dealer and player have the same hand the winner is determined by the kicker which is

the highest of the remaining cards.

How to create a struct in a separate file

1. Right click on the project name in the Solution Explorer and select Add-Class in the

menu.

2. Give the file a name and click on the Add button.

3. Replace the class keyword with the struct keyword in the file.

How to add controls dynamically

The code below will dynamically add 5 cards to the dealer panel and the player panel.

First the panels are cleared calling the Clear method on the Controls collection on each

panel; the Controls collection keep track of what intrinsic controls are placed inside a control

or form. You use this collection when adding controls to the panels calling their Add meth-

ods. Before the labels can be added they have to be created by calling a method called

CreateCard (which you will create); the purpose of this method is to format the card labels

and prepare them to be displayed in a panel.

this.panDealer.Controls.Clear();

this.panPlayer.Controls.Clear();

for (int i = 0; i < 5; i++)

{

//Calculate position

var x = i * 60;

var y = 0;

//Create and format the labels

var lblDealer = CreateCard(x, y, dealerHand.Cards[i]);

var lblPlayer = CreateCard(x, y, playerHand.Cards[i]);

//Add the labels to the Panel's Controls collection

this.panDealer.Controls.Add(lblDealer);

this.panPlayer.Controls.Add(lblPlayer);

}

213

C# For Beginners

private Label CreateCard(int x, int y, Card card)

{

Label lbl = new Label();

//Format the label text value and symbol on separate rows

lbl.Text = String.Format("{0}\n{1}",

card.ValueSymbol, card.SuitSymbol);

lbl.Size = new Size(55, 76);

//Position the label in the Panel

lbl.Location = new Point(x, y);

//Format border and font

lbl.BorderStyle = BorderStyle.FixedSingle;

lbl.Font = new Font("Consolas", 20);

lbl.TextAlign = ContentAlignment.MiddleCenter;

lbl.BackColor = Color.White;

//Set the text color

lbl.ForeColor =

card.Suit.Equals(Suit.Hearts) ||

card.Suit.Equals(Suit.Diamonds) ?

Color.Red : Color.Black;

return lbl;

}

How to implement the IComparable interface

The IComparable interface makes it possible to compare one object with another object

based on the criteria you set up. Without implementing this interface objects will be com-

pared on their memory reference instead of a value or criteria.

An interface is a contract describing the method headers for methods that must be imple-

mented, not how they should be implemented. A method called CompareTo must be imple-

mented with this particular interface which can then be called on a variable to compare its

value with another variable's value. In this case it will be used when sorting the array con-

taining the cards representing a hand.

Value is the property used in the Card struct to expose the private value variable storing the

card's value using the enum containing all the possible card values.

struct Card : IComparable

{

public int CompareTo(object obj)

{

var obj1 = (int)Value;

214

C# For Beginners

var obj2 = (int)((Card)obj).Value;

return obj1.CompareTo(obj2);

}

}

Implementation

You will start by creating the user interface and then add functionality to shuffle a deck and

deal two hands, one for the dealer and one for the player, from the shuffled deck. When the

two hands have been dealt they should be evaluated and compared to determine the

winner; the result should then be displayed in a label between the two hands in the GUI (see

image below).

The GUI

1. Create a new Windows Forms Application called Poker.

2. Change the form's title to Poker.

3. Change the form's font to Consolas, 20pt.

4. Add a Label with the text "Dealer".

5. Add a Label called lblDealerHand with the text "Hand:" to the right of the previous

label.

6. Add a Panel called panDelaer below the two labels. The Panel will hold the dynami-

cally added labels representing the dealer's cards which will be added at run-time.

215

C# For Beginners

7. Add a an empty Label called lblWinner below the dealer's panel. If you need to

change the size of a label then change its AutoSize property to false. Change the

label's TextAlign property to MiddleCenter to center the text horizontally and verti-

cally.

8. Add a Panel called panPlayer below the winner label. The Panel will hold the

dynamically added labels representing the player's cards which will be added at run-

time.

9. Add a Label with the text "Player".

10. Add a Label called lblPlayerHand with the text "Hand:" to the right of the previous

label.

11. Add a button called btnDeal with the text "DEAL NEW HAND" at the bottom of the

form.

The Card struct

A struct will come in handy to encapsulate all information about a single playing card, add a

struct called Card in a separate .cs file called Card. Add three enums above the struct inside

the namespace for the card suits, card values and card symbols.

enum Suit { Hearts = 1, Spades, Diamonds, Clubs }

enum Value { Two = 2, Three = 3, ..., King = 13, Ace = 14 }

enum Symbol { Hearts = '♥', Spades = '♠', Diamonds = '♦', Clubs = '♣' }

// Unicode characters "\u2665", "\u2660", "\u2666", "\u2663"

The struct should have a private variable called _value and its corresponding read only

property called Value storing a value from the Value enum. It should also have a variable

called _suit and its corresponding read only property called Suit storing a value of the Suit

enum.

To display the suit symbol from the Symbol enum for the playing card you have to parse the

_suit value using the Enum.Parse method and ultimately cast the result to a char.

To display an abbreviated form of the Value enum value stored in the _value variable you

have to add a fourth property called ValueSymbol that uses a switch to return a string

representing the card's value (1, 2, 3, ..., J, Q, K, A).

216

C# For Beginners

The constructor should have two parameters called value and suit of the Value and Suit

enum data types respectively. The values should be assigned to the appropriate variables in

the struct.

Implement the IComparable interface and its CompareTo method comparing the value of

the Value property cast to an int for the two objects being compared. The method is needed

later when sorting the cards of a hand. You can read more about how to implement the

interface above.

1. Right click on the project name in the Solution Explorer and select Add-Class in the

menu.

2. Name the file Card and click on the Add button.

3. Change the type from class to struct.

struct Card

{

}

4. Add three enums called Suit, Value and Symbol to the Poker namespace , the first

for the four card suit, the second for the card values and the third for the card suit

symbols. You can find the symbols in a word processor's insert character tool or

Google it.

namespace Poker

{

enum Suit { Hearts = 1, Spades, Diamonds, Clubs }

enum Value { Two = 2, Three = 3, Four = 4, Five = 5,

Six = 6, Seven = 7, Eight = 8, Nine = 9, Ten = 10,

Jack = 11, Queen = 12, King = 13, Ace = 14 }

enum Symbol { Hearts = '♥', Spades = '♠',

Diamonds = '♦', Clubs = '♣' }

// Unicode characters "\u2665", "\u2660", "\u2666", "\u2663"

5. Add a variable called _value and its corresponding read only property called Value

to the struct using the Value enum as their data types.

6. Add a variable called _suit and its corresponding read only property called Suit to

the struct using the Suit enum as their data types.

7. Add a read only property called SuitSymbol to return the symbol from the Symbol

enum using the value in the _suit variable.

217

C# For Beginners

public char SuitSymbol

{

get {

// return '♥', '♠', '♦' or '♣' based on _suit

return (char)(Symbol)Enum.Parse(

typeof(Symbol), _suit.ToString());

}

}

8. Add a property called ValueSymbol which uses a switch to return a string represent-

ing the card's abbreviated value (1, 2, 3, ..., J, Q, K, A) based in the value stored in

the _value variable cast to an int.

switch ((int)_value)

{

case 11: return "J";

...

default: return ((int)_value).ToString();

9. Add a constructor that has two parameters called value and suit of the Value and

Suit enum data types respectively and assign their values to the appropriate varia-

bles.

public Card(Value value, Suit suit)

10. Implement the IComparable interface by appending : IComparable to the struct

declaration.

struct Card : IComparable

11. Right click on the interface name and select Implement Interface to add the

CompareTo method from the interface.

public int CompareTo(object obj)

{

throw new NotImplementedException();

}

12. Change the code inside the CompareTo method to compare on the Value property.

public int CompareTo(object obj)

{

var obj1 = (int)Value;

var obj2 = (int)((Card)obj).Value;

return obj1.CompareTo(obj2);

}

218

C# For Beginners

The complete code for the Card .cs file look like this:

namespace Poker

{

enum Suit { Hearts = 1, Spades, Diamonds, Clubs }

enum Value { Two = 2, Three = 3, Four = 4, Five = 5,

Six = 6, Seven = 7, Eight = 8, Nine = 9, Ten = 10,

Jack = 11, Queen = 12, King = 13, Ace = 14 }

enum Symbol { Hearts = '♥', Spades = '♠',

Diamonds = '♦', Clubs = '♣' }

// Unicode characters "\u2665", "\u2660", "\u2666", "\u2663"

struct Card : IComparable

{

private Value _value;

private Suit _suit;

public Value Value { get { return _value; } }

public Suit Suit { get { return _suit; } }

public char SuitSymbol

{

get

{

return (char)(Symbol)Enum.Parse(

typeof(Symbol), _suit.ToString());

}

}

public string ValueSymbol

{

get

{

switch ((int)_value)

{

case 11: return "J";

case 12: return "Q";

case 13: return "K";

case 14: return "A";

default: return ((int)_value).ToString();

}

}

}

219

C# For Beginners

public Card(Value value, Suit suit)

{

_value = value;

_suit = suit;

}

public int CompareTo(object obj)

{

var obj1 = (int)Value;

var obj2 = (int)((Card)obj).Value;

return obj1.CompareTo(obj2);

}

}

}

The Hand struct

The Hand struct holds information about the dealer's or player's hand such as an array of

cards, the hand value, high cards, kicker cards and the suit in case of a flush or straight flush.

All variables except the cards array will be assigned and used during the evaluation and

comparison process.

You will also have to add two enums to the Poker namespace, one called Hands for all the

possible poker hands and one called Winner for the possible winners.

enum Hands { Nothing, Pair, TwoPair, ..., RoyalStraightFlush }

enum Winner { Dealer, Player, Draw }

1. Right click on the project name in the Solution Explorer and select Add-Class in the

menu.

2. Name the file Hand and click on the Add button.

3. Change the type from class to struct.

struct Hand

{

}

4. Add an enum called Hands to the Poker namespace for all the possible poker hands.

enum Hands { Nothing, Pair, TwoPair, ThreeOfAKind, Straight, Flush,

FullHouse, FourOfAKind, StraightFlush, RoyalStraightFlush }

5. Add an array property called Cards using the Card struct as its data type.

public Card[] Cards { get; set; }

220

C# For Beginners

6. Add a property called HandValue using the Hands enum as its data type.

7. Add two properties called HighCard1 and HighCard2 using the Value enum as their

data types.

8. Add a List<Value> collection property called Kickers.

public List<Value> Kickers { get; set; }

9. Add an int property called Suit.

The complete code for the Hand .cs file look like this:

namespace Poker

{

enum Hands { Nothing, Pair, TwoPair, ThreeOfAKind,

Straight, Flush, FullHouse, FourOfAKind,

StraightFlush, RoyalStraightFlush }

enum Winner { Dealer, Player, Draw }

struct Hand

{

public Card[] Cards { get; set; }

public Hands HandValue { get; set; }

public Value HighCard1 { get; set; }

public Value HighCard2 { get; set; }

public List<Value> Kickers { get; set; }

public int Suit { get; set; }

}

}

The form variables

You'll need three variables and one constant on form level. The first variable is used to hold

the player's hand and the second the dealer's hand, both declared with the Hand struct. The

third variable is the deck of cards declared as a List<Card> collection. An int constant called

shuffles determines how many times the card deck should be shuffled before any cards are

dealt.

Place the variables and constant in a region.

1. Open the form's code-behind file and locate the beginning of the form's class.

2. Add a region called Variables.

221

C# For Beginners

3. Add a variable called playerHand declared using the Hand struct. This variable holds

the player's cards.

Hand playerHand = new Hand();

4. Add a variable called dealerHand declared using the Hand struct. This variable holds

the dealer's cards.

5. Add a variable called deck declared using a List<Card> collection. This variable

represent all 52 playing cards in the a deck. It is from this collection the player's and

dealer's cards will be dealt.

List<Card> deck = new List<Card>();

6. Add an int constant called shuffles representing the number of times the deck

should be shuffled before any cards are dealt. Assign 1000 to the constant.

The form code so far:

public partial class Form1 : Form

{

#region Variables

Hand playerHand;

Hand dealerHand;

List<Card> deck;

const int shuffles = 1000;

#endregion

public Form1()

{

InitializeComponent();

}

}

The Initialize method

The purpose of this method is to create instances for the playerHand, dealerHand and deck

variables before each new hand is dealt simulating that the dealer collects the cards and

shuffles the deck. Place the method in a region called Methods.

The Initialize method should always be called first in the button Click event.

1. Open the form's code-behind file and locate the end of the form class.

2. Add a region called Methods at the end of the class.

3. Add a parameter-less void method called Initialize to the region.

222

C# For Beginners

#region Methods

private void Initialize()

{

}

#endregion

4. Create instances for the playerHand, dealerHand and deck variables.

playerHand = new Hand();

dealerHand = new Hand();

deck = new List<Card>();

5. Add the btnDeal_Click event.

6. Call the Initialize method from the event.

private void btnDeal_Click(object sender, EventArgs e)

{

Initialize();

}

7. Add a breakpoint where the method call is made by placing the cursor on that line of

code and press F9 on the keyboard.

8. Run the application and click the button.

9. When the execution has halted on the breakpoint point to the variables one at a

time and see what they contain. The hands should have been created with the

default values for the variables in the Hand struct and the List should be null.

10. Press F11 to step into the method and check the variable values as you step over

them with F11. The hand variables still contain the default values but the list should

have been instantiated and contain 0 Card instances.

11. Stop the application.

The complete code for the Initialize method look like this:

#region Methods

private void Initialize()

{

playerHand = new Hand();

dealerHand = new Hand();

deck = new List<Card>();

}

#endregion

223

C# For Beginners

private void btnDeal_Click(object sender, EventArgs e)

{

Initialize();

}

The ShuffleDeck method

The purpose of this method is to shuffle the deck. To add the playing cards to the deck you

can use two nested foreach loops iterating over the Suit enum in the outer loop and the

Value enum in the inner loop, this will add cards with the value 2 through 14 for each suit

(hearts, spades, diamonds and clubs).

When the 52 cards have been added to the deck collection with the loops it is time to shuffle

the cards. One way to shuffle the cards is to use the Random class to generate random

numbers using the number of remaining cards in the collection as the max value for the Next

method of the Random class variable.

Use the random number as the index for the card you fetch and remove from the deck

collection and add it to a temporary List<Card> collection. When the deck collection is

empty the temporary collection should contain the cards shuffled once. Move the cards to

the deck collection and empty the temporary collection for each iteration of the random-

ization process, iterate the number of times stated in the shuffles constant. You can use a

for loop when iterating over the number of shuffles in the shuffles constant and a while loop

to iterate over the cards in the deck, you cannot use a for or foreach loop when removing

items from a collection while iterating because that would mess up the index for the loop.

1. Locate the Methods region and add a parameter-less void method called

ShuffleDeck.

private void ShuffleDeck()

{

}

2. Add a foreach loop iterating over the values in the Suit enum to the method. To pull

this off you need to use the GetValues method Enum class passing in the type using

the typeof method.

foreach (Suit suit in Enum.GetValues(typeof(Suit)))

{

}

224

C# For Beginners

3. Add a nested foreach loop inside the previous foreach loop iterating over the values

in the Values enum.

foreach (Value value in Enum.GetValues(typeof(Value)))

{

}

4. Create a new Card variable inside the nested loop using the suit and value loop

variables to add that card to the deck collection.

var card = new Card(value, suit);

deck.Add(card);

5. Create an instance of the Random class called rnd below the outer foreach loop.

Random rnd = new Random();

6. Add a for loop iterating over the shuffles constant and create a new temporary

List<Card> collection in the loop.

for (int i = 0; i < shuffles; i++)

{

List<Card> tmpDeck = new List<Card>();

}

7. Add a while loop below the temporary collection iterating for as long as there are

cards in the deck collection.

while (deck.Count > 0)

{

}

8. Use the Next method on the rnd variable to generate a new random number with

the number of remaining cards in the deck collection as the max value.

var index = rnd.Next(deck.Count);

9. Use the random number as the index to fetch and remove a card from the deck

collection. Add the fetched card to the temporary collection.

var card = deck[index];

deck.RemoveAt(index);

tmpDeck.Add(card);

10. Assign the temporary collection to the deck collection outside the while loop when

all the cards have been moved to the temporary collection.

deck = tmpDeck;

225

C# For Beginners

11. Add a call to the ShuffleDeck method below the Initialize method in the button Click

vent.

12. Add a breakpoint at the end of the button Click event.

13. Run the application and click the button.

14. When the breakpoint is hit examine the deck collection, it should now contain 52

cards in random order.

15. Stop the application.

The complete code for the ShuffleDeck method look like this:

private void ShuffleDeck()

{

foreach (Suit suit in Enum.GetValues(typeof(Suit)))

{

foreach (Value value in Enum.GetValues(typeof(Value)))

{

var card = new Card(value, suit);

deck.Add(card);

}

}

Random rnd = new Random();

for (int i = 0; i < shuffles; i++)

{

List<Card> tmpDeck = new List<Card>();

while (deck.Count > 0)

{

var index = rnd.Next(deck.Count);

var card = deck[index];

deck.RemoveAt(index);

tmpDeck.Add(card);

}

deck = tmpDeck;

}

}

The DealCards method

The purpose of this method is to deal five cards each to the dealer and player, one card each

for each iteration. You will have to initialize the Cards array for 5 values in the playerHand

and dealerHand variables. To deal the cards you have to iterate 5 times fetching and remov-

226

C# For Beginners

ing 2 cards from the deck collection with each iteration and placing one card in the

playerHand and one in the dealerHand Cards array.

1. Add a parameter-less void method called DealCards in the Methods region.

2. Initialize the Cards array for the player and dealer hands inside the method.

private void DealCards()

{

playerHand.Cards = new Card[5];

dealerHand.Cards = new Card[5];

}

3. Add a for loop iterating 5 times fetching two cards that you assign to the player and

dealer Cards arrays. Then remove the two cards from the deck collection simulating

that two cards have been dealt from the deck.

for (int i = 0; i < 5; i++)

{

playerHand.Cards[i] = deck.ElementAt(0);

dealerHand.Cards[i] = deck.ElementAt(1);

deck.RemoveRange(0, 2);

}

4. Add a call to the DealCards method in the button's Click event.

5. Run the application and explore the Cards array in the dealerHand and playerHand

variables. They should contain 5 cards each representing the hands of the player and

the dealer.

6. Stop the application.

The complete code for the DealCards method look like this:

private void DealCards()

{

playerHand.Cards = new Card[5];

dealerHand.Cards = new Card[5];

for (int i = 0; i < 5; i++)

{

playerHand.Cards[i] = deck.ElementAt(0);

dealerHand.Cards[i] = deck.ElementAt(1);

deck.RemoveRange(0, 2);

}

}

227

C# For Beginners

The EvaluateHand method

The purpose of this method is to evaluate a poker hand finding out what hand the dealer or

the player has and assign the correct hand to the HandValue property of the passed in hand

using the Hands enum. Most properties in the passed in hand will be used during the

evaluation. The EvaluateHand method should have one ref parameter declared as a Hand

struct; it needs to be declared as ref because you will make permanent changes to it.

This method could be viewed as one of the more complex since it involves a lot of checks

that has to be performed in the correct order for the hand to be evaluated correctly.

I suggest that you start by sorting the cards in the Cards array using the Sort method in the

Array class to make it easier to evaluate the hand. By sorting the hand cards with the same

value will be placed after one another making it easier to find pairs, three of a kind and four

of a kind. Finding a straight will also be easier since the cards will be in sequence. Sorting the

cards will not only make it easier to determine the hand it will drastically cut down the

amount of code you have to write to achieve the end result.

The hand value should be determined using the following hand order: Royal Straight Flush,

Straight Flush, Four of a kind, Full House, Flush, Straight, Three of a Kind, Two Pairs, One

Pair, High Card, Nothing. You will need to use the Value and Hands enums when evaluating

the hand.

 Sorting the cards

After sorting the cards you can create variables called suit1-suit5 for the cards suits and

value1-value5 for the cards values to make it easier to read the code not having to use the

Cards array in the if-statements.

1. Add a void method called EvaluateHand taking a Hand parameter declared with the

ref keyword in the Methods region.

private void EvaluateHand(ref Hand evalHand)

{

}

2. Create a region called Arranging cards and sort the cards.

#region Arranging cards

Array.Sort(evalHand.Cards);

#endregion

228

C# For Beginners

3. Add the siut1-suit5 and value1-value5 variables in the region.

var suit1 = evalHand.Cards[0].Suit;

...

var value1 = evalHand.Cards[0].Value;

...

The complete code for the Arranging cards region look like this:

private void EvaluateHand(ref Hand evalHand)

{

#region Arranging cards

Array.Sort(evalHand.Cards);

var suit1 = evalHand.Cards[0].Suit;

var suit2 = evalHand.Cards[1].Suit;

var suit3 = evalHand.Cards[2].Suit;

var suit4 = evalHand.Cards[3].Suit;

var suit5 = evalHand.Cards[4].Suit;

var value1 = evalHand.Cards[0].Value;

var value2 = evalHand.Cards[1].Value;

var value3 = evalHand.Cards[2].Value;

var value4 = evalHand.Cards[3].Value;

var value5 = evalHand.Cards[4].Value;

#endregion

}

 Has Flush ?

By finding out if the hand is a flush and storing the result in the Suit and HandValue property

of the passed in hand you can use the result to find out the hand is a flush, straight flush or

Royal Straight Flush. One way to achieve this is to use LINQ methods and a Lambda express-

ion counting how may cards of the same suit are in the hand, if there are 5 cards with the

same suit then you know that it is a flush. You cannot jump out of the method yet however

because Straight Flush and Royal Straight Flush are better hands which have to be evaluate

first.

1. Add a region with the description Has Flush ? .

2. Use LINQ and Lambda to count the cards with the same suit and assign true if all 5

cards have the same suit otherwise assign false to a variable called hasFlush.

var hasFlush = evalHand.Cards.Count(c =>

c.Suit.Equals(suit1)).Equals(5);

229

C# For Beginners

3. If hasFlush is true then save the suit value in the evalHand parameter's Suit prop-

erty and Hands.Flush in its HandValue property.

The complete code for the Has Flush ? region look like this:

#region Has Flush ?

var hasFlush = evalHand.Cards.Count(c => c.Suit.Equals(suit1)).Equals(5);

if (hasFlush)

{

evalHand.Suit = (int)suit1;

evalHand.HandValue = Hands.Flush;

}

#endregion

 Has Straight ?

By finding out if the hand is a straight and storing the result in three bool variables called

hasStraight, isHighStraight (10, J, Q, K, A) and isLowStraight (A, 2, 3, 4, 5) you can use the

result and the hasFlush variable to find out if the hand is a straight, straight flush or Royal

Straight Flush.

There are two basic scenarios which have to be addressed; the first is when it is a low

straight from A to 5 and all other straights. Use the value1-value5 variables and the Value

enum to find out if the hand is a straight.

Don't exit the method with a return statement because you still have to find out if the hand

is a straight, straight flush or Royal Straight Flush.

1. Add a region called Has Straight ? .

2. Add a bool variable called hasStraight that will contain true if the hand is a straight.

You can achieve this by checking if the current card is equal to the previous card + 1

or if the cards range from A-5.

var hasStraight =

(value2.Equals(value1 + 1) && value3.Equals(value2 + 1) &&

value4.Equals(value3 + 1) && value5.Equals(value4 + 1)) ||

(value1.Equals(Value.Two) && value2.Equals(Value.Three) &&

value3.Equals(Value.Four) && value4.Equals(Value.Five) &&

value5.Equals(Value.Ace));

3. Add a bool variable called isHighStraight that will contain true if the hand is a

straight from 10 to A.

230

C# For Beginners

4. Add a bool variable called isLowStraight that will contain true if the hand is a

straight from A to 5.

The complete code for the Has Straight ? region look like this:

#region Has Straight ?

var hasStraight =

(value2.Equals(value1 + 1) && value3.Equals(value2 + 1) &&

value4.Equals(value3 + 1) && value5.Equals(value4 + 1)) ||

(value1.Equals(Value.Two) && value2.Equals(Value.Three) &&

value3.Equals(Value.Four) && value4.Equals(Value.Five) &&

value5.Equals(Value.Ace));

var isHighStraight = hasStraight && value4.Equals(Value.King) &&

value5.Equals(Value.Ace); // (10, J, Q, K, A)

var isLowStraight = hasStraight && value2.Equals(Value.Two) &&

value5.Equals(Value.Ace); // (A, 2, 3, 4, 5)

#endregion

 Royal Straight Flush

Now that you have figured out if it is a flush or a straight it is time to use that information to

figure out if the hand is a Royal Straight Flush. Use the isHighStraight and hasFlush variables

and check if the suit is equal to Hearts, if the expression evaluates to true then assign the

value5 variable to the HighCard1 property and the RoyalStraightFlush from the Hands

enum to the HandValue property in the evalHand parameter. Exit from the method below

the assignments.

1. Add a region called Royal Straight Flush.

2. Add an if-statement checking if it is a Royal Straight Flush.

if (isHighStraight && hasFlush && suit1.Equals(Suit.Hearts))

{

}

3. Assign the property values inside the if-block and return from the method.

231

C# For Beginners

The complete code for the Royal Straight Flush region look like this:

#region Royal Straight Flush

if (isHighStraight && hasFlush && suit1.Equals(Suit.Hearts))

{

evalHand.HighCard1 = value5;

evalHand.HandValue = Hands.RoyalStraightFlush;

return;

}

#endregion

 Straight/Straight Flush

Now that you have figured out that it isn't a Royal Straight Flush the next step is to figure out

if it is a straight or a Straight Flush.

Use the hasStraight variable in an if-statement to see if it is a straight. Assign the hand value

to the HighCard1 property of the evalHand parameter based on if it is a low straight or any

other straight, a low straight should use the value4 variable and any other straight the

value5 variable.

Use the hasFlush variable to figure out if the HandValue property should be assigned

StraightFlush or Straight from the Hands enum.

1. Add a region called Straight/Straight Flush.

2. Check if the hand has a straight using the hasStraight variable.

if (hasStraight)

{

}

3. Assign the HighCard1 property in the evalHand parameter using the isLowStraight

variable.

evalHand.HighCard1 = isLowStraight ? value4 : value5;

4. Assign the HandValue property in the evalHand parameter using the hasFlush varia-

ble.

evalHand.HandValue = hasFlush ? Hands.StraightFlush : Hands.Straight;

5. Exit from the method.

232

C# For Beginners

The complete code for the Straight/Straight Flush region look like this:

#region Straight/Straight Flush

if (hasStraight)

{

evalHand.HighCard1 = isLowStraight ? value4 : value5;

evalHand.HandValue = hasFlush ? Hands.StraightFlush : Hands.Straight;

return;

}

#endregion

 Flush

Now that you have figured out that it isn't a Royal Straight Flush, Straight Flush or Straight

the next step is to exit from the method if the hand is a Flush.

The complete code for the Flush region look like this:

#region Flush

if (hasFlush) return;

#endregion

 Four of a Kind

Next you will check if the hand is Four of a Kind, you can do this by checking if there are 4

cards with the same value as the third card because the cards have been sorted. You can use

the Count LINQ method and Lambda expressions to figure it out.

When assigning the HighCard1 property in the evalHand parameter the value3 variable will

always give you the correct value since it is present in any Four of a Kind hand.

1. Add a region called Four of a Kind.

2. Evaluate the values for the first and second card to find out if it is a Four of a Kind

hand.

if (evalHand.Cards.Count(c => c.Value.Equals(value3)).Equals(4))

{

}

3. Assign the HighCard1 and HandValue properties.

4. Exit from the method.

233

C# For Beginners

The complete code for the Four of a Kind region look like this:

#region Four of a Kind

if (evalHand.Cards.Count(c => c.Value.Equals(value3)).Equals(4))

{

evalHand.HighCard1 = value3;

evalHand.HandValue = Hands.FourOfAKind;

return;

}

#endregion

 Has Three of a Kind ?

Next you will check if the hand contains Three of a Kind, you can do this by checking if there

are 3 cards with the same value as the third card because the cads are sorted. You can use

the Count LINQ method and Lambda expressions to figure it out.

When assigning the HighCard1 property in the evalHand parameter the value3 variable will

always give you the correct value since it is present in any Three of a Kind hand.

Don't exit from the method because you need to check other hands first such as Full House

which contain a Three of a Kind.

1. Add a region called Three of a Kind ? .

2. Evaluate the values for the first, second and third card to find out if the hand contain

Three of a Kind hand and store the result in a variable called hasThreeOfAKind.

var hasThreeOfAKind =

evalHand.Cards.Count(c => c.Value.Equals(value3)).Equals(3);

3. Assign the HighCard1 and HandValue properties if the hasThreeOfAKind variable is

true. Don't add a return statement.

The complete code for the Has Three of a Kind ? region look like this:

#region Has Three of a kind ?

var hasThreeOfAKind =

evalHand.Cards.Count(c => c.Value.Equals(value3)).Equals(3);

if (hasThreeOfAKind) {

evalHand.HighCard1 = value3;

evalHand.HandValue = Hands.ThreeOfAKind;

}

#endregion

234

C# For Beginners

 Full House

To check if the hand is a Full House you use the hasTreeOfAKind variable and do a check if

there is a pair where the cards have the value of the first or last card in the hand; you only

have to check the value of these two cards for pairs since all the other cards have to be part

of a Three of a Kind for a hand with a Full House.

Use the value3 variable when assigning the HighCard1 property of the evalHand parameter

that correspond to the card value for the Three of a Kind part of the Full House and the first

card value that is not equal to the value3 variable for the HighCard2 property corresponding

to the pair of the Full House.

Assign FullHouse to the HandValue property and then return from the method.

1. Add a region called Full House.

2. Add an if-statement checking the hasTreeOfAKind variable and if there also is a pair

present.

if (hasThreeOfAKind &&

(evalHand.Cards.Count(c => c.Value.Equals(value1)).Equals(2) ||

evalHand.Cards.Count(c => c.Value.Equals(value5)).Equals(2)))

{

}

3. Assign the values to the properties and return from the method.

The complete code for the Full House region look like this:

#region Full House

if (hasThreeOfAKind &&

(evalHand.Cards.Count(c => c.Value.Equals(value1)).Equals(2) ||

evalHand.Cards.Count(c => c.Value.Equals(value5)).Equals(2)))

{

evalHand.HighCard1 = value3; // Three of a kind

evalHand.HighCard2 = evalHand.Cards.First(c =>

!c.Value.Equals(value3)).Value; // Pair

evalHand.HandValue = Hands.FullHouse;

return;

}

#endregion

235

C# For Beginners

 Return if the hand is Three of a Kind

To check if the hand is Three of a Kind you just check if the hasTreeOfAKind variable is true

and return from the method if it is.

The complete code for the Three of a Kind region look like this:

#region Three of a Kind

if (hasThreeOfAKind) return;

#endregion

 Has Pairs ?

To check if the hand contain any pairs you only have to check the first, third and fifth card

values for matching values to find any pair present in the hand; add the pairs you find to a

List<Value> collection called pairs.

You also need to instantiate the Kickers collection in the evalHand parameter because when

comparing pairs the kicker card or cards may come into play if both hands have the same

pairs.

1. Add a region called Has Pairs ? .

2. Add a List<Value> collection variable called pairs which will hold the card value for

any pairs present in the hand.

List<Value> pairs = new List<Value>();

3. Evaluate the hand to find out if there are pairs present that match the first, third and

fifth card values and add the card value to the pairs collection if there is a pair pre-

sent for that value, repeat the code below for the two other scenarios.

if (evalHand.Cards.Count(c => c.Value.Equals(value1)).Equals(2))

pairs.Add(value1);

4. Instantiate the Kickers collection in the evalHand parameter.

evalHand.Kickers = new List<Value>();

236

C# For Beginners

The complete code for the Has Pairs ? region look like this:

#region Has Pairs ?

List<Value> pairs = new List<Value>();

if (evalHand.Cards.Count(c => c.Value.Equals(value1)).Equals(2))

pairs.Add(value1);

if (evalHand.Cards.Count(c => c.Value.Equals(value3)).Equals(2))

pairs.Add(value3);

if (evalHand.Cards.Count(c => c.Value.Equals(value5)).Equals(2))

pairs.Add(value5);

evalHand.Kickers = new List<Value>();

#endregion

 Two Pairs

To check if the hand contain two pairs you can count the number of values in the pairs

collection since each value correspond to a pair.

Assign the first value in the pairs collection to the HighCard2 property and the second to the

HighCard1 property. Also assign TwoPair to the HandValue property.

To find the kicker value for the hand you need to add the value of the one remaining card to

the Kickers collection in the evalHand parameter.

1. Add a region called Two Pairs.

2. Add an if-statement checking if the pairs collection has two entries.

if (pairs.Count.Equals(2))

{

}

3. Assign the first value in the pairs collection to the HighCard2 property.

4. Assign the second value in the pairs collection to the HighCard1 property.

5. Assign TwoPair to the HandValue property.

6. Find the remaining card and add it to the Kickers collection of the evalHand para-

meter.

evalHand.Kickers.Add(evalHand.Cards.First(c =>

!c.Value.Equals(pairs[1]) && !c.Value.Equals(pairs[0])).Value);

7. Return from the method.

237

C# For Beginners

The complete code for the Two Pairs region look like this:

#region Two Pairs

if (pairs.Count.Equals(2))

{

evalHand.HighCard1 = pairs[1];

evalHand.HighCard2 = pairs[0];

evalHand.HandValue = Hands.TwoPair;

evalHand.Kickers.Add(evalHand.Cards.First(c =>

!c.Value.Equals(pairs[1]) &&

!c.Value.Equals(pairs[0])).Value);

return;

}

#endregion

 Pair

To check if the hand contain a pair you can count the number of values in the pairs collect-

ion since each value correspond to a pair.

Assign the first value in the pairs collection to the HighCard1 property of the evalHand para-

meter. Also assign Pair to the HandValue property.

To find all the remaining kicker card values for the hand; you need to add the values of all

the remaining cards to the Kickers collection in the evalHand parameter. Reverse the sort

order of the Cards array to get the kickers from high to low value.

1. Add a region called Pair.

2. Add an if-statement checking if the pairs collection has one entry.

if (pairs.Count.Equals(1))

{

}

3. Assign the first value in the pairs collection to the HighCard1 property.

4. Assign Pair to the HandValue property.

5. Find the remaining cards and add them to the Kickers collection of the evalHand

parameter.

evalHand.Kickers. AddRange(evalHand.Cards. Reverse().Where(

c => !c.Value.Equals(pairs[0])).Select(c => c.Value));

6. Return from the method.

238

C# For Beginners

The complete code for the Pair region look like this:

#region Pair

if (pairs.Count.Equals(1))

{

evalHand.HighCard1 = pairs[0];

evalHand.HandValue = Hands.Pair;

evalHand.Kickers.AddRange(evalHand.Cards.Reverse().Where(c =>

!c.Value.Equals(pairs[0])).Select(c => c.Value));

}

#endregion

 Testing the EvaluateHand method

The easiest way to test the EvaluateHand method is to create a controlled scenario where

no randomizing is involved, to achieve this you can use the playerHand variable and assign 5

known cards to its Cards array and pass in the playerHand variable to the EvaluateHand

method.

Make sure that you have a breakpoint int he button's Click event after the call to the

EvaluateHand method.

1. Locate the btnDeal_Click event.

2. Add the cards to the Cards array in the playerHand variable after the DealCards

method call, you can chose to create any poker hand you like.

playerHand.Cards = new Card[5]{

new Card(Value.Ace, Suit.Diamonds),

new Card(Value.Ace, Suit.Clubs),

new Card(Value.Eight, Suit.Diamonds),

new Card(Value.Ace, Suit.Hearts),

new Card(Value.Five, Suit.Spades)

};

3. Add a call to the EvaluateHand method and pass in the playerHand variable by refe-

rence (ref) to the method to evaluate the hand.

EvaluateHand(ref playerHand);

4. Start the application in Debug mode by pressing F5 on the keyboard and click the

button.

5. Inspect the playerHand variable when the breakpoint is reached. The hand you

chose to create should be reflected in the HandValue property.

239

C# For Beginners

6. Test all possible poker hands from Royal Straight Flush to Nothing to make sure that

the evaluation works.

7. Close the application.

8. Comment out the test code for the playerHand variable.

9. Add a call to the EvaluateHand method after the previous EvaluateHand method

call and pass in the dealerHand variable by reference (ref) to the method to evalu-

ate the hand.

EvaluateHand(ref dealerHand);

The complete code for the btnDeal_Click event look like this:

private void btnDeal_Click(object sender, EventArgs e)

{

Initialize();

ShuffleDeck();

DealCards();

/* Comment out the code for the Cards array

after testing the EvaluateHand method. */

playerHand.Cards = new Card[5]{

new Card(Value.Ace, Suit.Diamonds),

new Card(Value.Ace, Suit.Clubs),

new Card(Value.Eight, Suit.Diamonds),

new Card(Value.Ace, Suit.Hearts),

new Card(Value.Five, Suit.Spades)

};

EvaluateHand(ref playerHand);

EvaluateHand(ref dealerHand);

}

The CompareCards method

Before you can compare the hands you need to create a method that compare the cards of

hands with only mixed cards to find out the winner by the highest card value. This method

will be called from the ComapreHands method you will create next.

The easiest way is probably to create a loop that iterates from 4 to 0 over the cards in the

two hands and compare the cards one at a time and when one of the cards is higher than

the other you exit the loop by returning one of the values in the Winner enum. If both hands

are the same the loop will finish and you return the value Winner.Draw.

240

C# For Beginners

1. Add a method called CompareCards using the Winner enum as its return data type

to the Methods region.

private Winner CompareCards()

{

}

2. Add a for loop iterating from 4 to 0 inside the method.

for (int i = 4; i >= 0; i--)

3. Add an if-statement to the for loop checking if the card values at the loop index in

the Cards arrays differ for the playerHand and the dealerHand.

if (!playerHand.Cards[i].Value.Equals(dealerHand.Cards[i].Value))

4. If the if-expression is true then exit the loop with a return statement reflecting

which hand is the highest using values from the Winner enum.

return playerHand.Cards[i].Value > dealerHand.Cards[i].Value ?

Winner.Player : Winner.Dealer;

5. If the hands are the same then return Winner.Draw.

The complete code for the CompareCards look like this:

private Winner CompareCards()

{

for (int i = 4; i >= 0; i--)

if (!playerHand.Cards[i].Value.Equals(dealerHand.Cards[i].Value))

return playerHand.Cards[i].Value > dealerHand.Cards[i].Value ?

Winner.Player : Winner.Dealer;

return Winner.Draw;

}

The CompareHands method

This method will compare the playerHand and dealerHand variables to determine the win-

ner and return the result using the Winner enum.

There are three scenarios to investigate where you for the first two only have to compare

the HandValue property of the two hands and return the winner. The third scenario is a bit

more complex since it involves finding the highest cards involved in the hand, or the highest

kicker card.

241

C# For Beginners

Picture the scenario where both have the same hand value for instance a pair, to find the

winner the card values of the pairs have to be compared to see who has the highest pair, or

if they have the same pair the kicker cards will help determine the winner. The same goes

for the other poker hands except for Royal Straight Flush which is the highest hand and will

always win (only one player can have that hand).

1. Add a method called CompareHands to the Methods region using the Winner enum

as the method's return data type.

private Winner CompareHands()

{

}

2. Add two if-statements to check if the dealer or the player is the winner.

if (playerHand.HandValue > dealerHand.HandValue) return

Winner.Player;

if (playerHand.HandValue < dealerHand.HandValue) return

Winner.Dealer;

3. Add a switch checking the playerHand.HandValue property.

switch (playerHand.HandValue)

{

}

4. Return a draw if the switch is not executed.

return Winner.Draw;

The code for the CompareHands look like this so far:

private Winner CompareHands()

{

if (playerHand.HandValue > dealerHand.HandValue) return Winner.Player;

if (playerHand.HandValue < dealerHand.HandValue) return Winner.Dealer;

// Compare hands if they have the same HandValue

switch (playerHand.HandValue)

{

//Add case statements for the hands here

}

return Winner.Draw;

}

242

C# For Beginners

 The StraightFlush case

1. Add a case for the Hands.StraightFlush hand to the switch in the CompareHands

method.

case Hands.StraightFlush:

2. Compare the HighCard1 property to see which hand has the highest straight and

return the winner using the Winner enum.

if (playerHand.HighCard1 > dealerHand.HighCard1) return

Winner.Player;

if (playerHand.HighCard1 < dealerHand.HighCard1) return

Winner.Dealer;

3. If the straights are the same then determine the winner using the Suit property of

the playerHand and dealerHand variables.

return dealerHand.Suit > playerHand.Suit? Winner.Player :

Winner.Dealer;

The complete code for the StraightFlush case look like this:

case Hands.StraightFlush:

if (playerHand.HighCard1 > dealerHand.HighCard1) return Winner.Player;

if (playerHand.HighCard1 < dealerHand.HighCard1) return Winner.Dealer;

return playerHand.Suit > dealerHand.Suit ? Winner.Player :

Winner.Dealer;

 The Straight case

1. Add a case for the Hands.Straight hand to the switch in the CompareHands method.

2. Compare the HighCard1 property to see which hand has the highest straight and

return the winner using the Winner enum.

3. If the straights are the same then return Winner.Draw.

return Winner.Draw;

The complete code for the Straight case look like this:

case Hands.Straight:

if (playerHand.HighCard1 > dealerHand.HighCard1) return Winner.Player;

if (playerHand.HighCard1 < dealerHand.HighCard1) return Winner.Dealer;

return Winner.Draw;

 The Four of a Kind, Full House and Three of a Kind cases

1. Add a case for the three HandsFourOfAKind, FullHouse and ThreeOfAKind hands to

the switch in the CompareHands method.

243

C# For Beginners

case Hands.FourOfAKind:

case Hands.FullHouse:

case Hands.ThreeOfAKind:

2. Compare the HighCard1 property to see which player has the best hand and return

the winner using the Winner enum.

The complete code for the HandsFourOfAKind, FullHouse and ThreeOfAKind case look like

this:

case Hands.FourOfAKind:

case Hands.FullHouse:

case Hands.ThreeOfAKind:

return playerHand.HighCard1 > dealerHand.HighCard1 ?

Winner.Player : Winner.Dealer;

 The Flush case

1. Add a case for the Hands.Flush hand to the switch in the CompareHands method.

2. Add an if-statement to check if the hands have the same flush and compare the

HighCard1 property to see which hand has the highest flush and return the winner

using the Winner enum if they do.

3. If they have flushes of different suits then compare the cards to see which hand has

the highest card by returning the result from a call to the CompareCards method.

return CompareCards();

The complete code for the Flush case look like this:

case Hands.Flush:

if (playerHand.Suit.Equals(dealerHand.Suit))

return playerHand.HighCard1 > dealerHand.HighCard1 ?

Winner.Player : Winner.Dealer;

return CompareCards();

 The Two Pairs case

Three checks are necessary to figure out the winner of two hands with two pairs. The first is

to check the highest pairs and see if they are equal or not, the second is to check the second

pairs and see if they are equal or not and the third is to compare the kicker cards. If none of

the if-statements have been executed then return a draw.

244

C# For Beginners

1. Add a case for the Hands.TwoPair hand to the switch in the CompareHands meth-

od.

2. Add an if-statement to check if the HighCard1 property value of the playerHand is

higher than the value in same property in the dealerHand.

if (playerHand.HighCard1 > dealerHand.HighCard1) return

Winner.Player;

3. Add an if-statement to check if the HighCard1 property value of the playerHand is

lower than the value in same property in the dealerHand.

4. Add an if-statement to check if the HighCard2 property value of the playerHand is

higher than the same value in property in the dealerHand.

if (playerHand.HighCard2 > dealerHand.HighCard2) return

Winner.Player;

5. Add an if-statement to check if the HighCard2 property value of the playerHand is

lower than the same value in property in the dealerHand.

6. Add an if-statement to check if the Kicker of the playerHand is higher than the

Kicker in the dealerHand.

if (playerHand.Kickers[0] > dealerHand.Kickers[0]) return

Winner.Player;

7. Add an if-statement to check if the Kicker of the playerHand is lower than the Kicker

in the dealerHand.

8. If the hands are the same then return Hands.Draw.

The complete code for the Flush case look like this:

case Hands.TwoPair:

if (playerHand.HighCard1 > dealerHand.HighCard1) return Winner.Player;

if (playerHand.HighCard1 < dealerHand.HighCard1) return Winner.Dealer;

if (playerHand.HighCard2 > dealerHand.HighCard2) return Winner.Player;

if (playerHand.HighCard2 < dealerHand.HighCard2) return Winner.Dealer;

if (playerHand.Kickers[0] > dealerHand.Kickers[0]) return Winner.Player;

if (playerHand.Kickers[0] < dealerHand.Kickers[0]) return Winner.Dealer;

return Winner.Draw;

 The Pair case

There are two checks that has to be made to figure out the winner if both hands have a pair.

The first is to check the pairs and see if they are equal or not and the second is to compare

the kicker cards. If none of the if-statements have been executed then return a draw.

245

C# For Beginners

1. Add a case for the Hands.Pair hand to the switch in the CompareHands method.

2. Add an if-statement to check if the HighCard1 property value of the playerHand is

higher than the value of the same property in the dealerHand.

3. Add an if-statement to check if the HighCard1 property value of the playerHand is

lower than the value of the same property in the dealerHand.

4. Iterate over the kicker cards in the Kickers collection and find out which hand has

the highest kicker.

for (int i = 2; i >= 0; i--)

if (!playerHand.Kickers[i].Equals(dealerHand.Kickers[i]))

return playerHand.Kickers[i] > dealerHand.Kickers[i] ?

Winner.Player : Winner.Dealer;

5. Return a draw if none of the if-statements have been executed.

The complete code for the Pair case look like this:

case Hands.Pair:

if (playerHand.HighCard1 > dealerHand.HighCard1) return Winner.Player;

if (playerHand.HighCard1 < dealerHand.HighCard1) return Winner.Dealer;

for (int i = 2; i >= 0; i--)

if (!playerHand.Kickers[i].Equals(dealerHand.Kickers[i]))

return playerHand.Kickers[i] > dealerHand.Kickers[i] ?

Winner.Player : Winner.Dealer;

return Winner.Draw;

 The Nothing case

If none of the player's have a hand it comes down to comparing all the cards until the high-

est card has been found in either hand when compared, you can achieve this by calling the

CompareCards method you created earlier.

The complete code for the Pair case look like this:

case Hands.Nothing:

return CompareCards();

 Add a call to the CompareHands method

When the hands have been evaluated it is time to compare them and determine a winner

which you do by calling the CompareHands method from the button's Click event and save

the result in a variable called winner.

246

C# For Beginners

1. Locate the button's Click event.

2. Add a call to the CompareHands method after the calls to the EvaluateHand method

and save the result in a variable called winner.

var winner = CompareHands();

3. Run the application and look at the value in the winner variable to make sure that

the correct hand is the winner. Test a few hands to be sure using the commented

out test code you added earlier and add the same code for the dealerHand variable.

4. Close the application.

The CreateCard method

To add a label dynamically you need to create the labels with similar settings and coordi-

nates this is best done by separating out the label creation code to a method. The

CreateCard method will return a Label and take the x- and y-coordinates as int parameters

along with the Card being created.

The complete code for the CreateCard method look like this:

private Label CreateCard(int x, int y, Card card)

{

Label lbl = new Label();

lbl.Text = String.Format("{0}\n{1}",

card.ValueSymbol, card.SuitSymbol);

lbl.Size = new Size(55, 76);

lbl.Location = new Point(x, y);

lbl.BorderStyle = BorderStyle.FixedSingle;

lbl.Font = new Font("Consolas", 20);

lbl.TextAlign = ContentAlignment.MiddleCenter;

lbl.BackColor = Color.White;

lbl.ForeColor =

card.Suit.Equals(Suit.Hearts) ||

card.Suit.Equals(Suit.Diamonds) ?

Color.Red : Color.Black;

return lbl;

}

The RevealCards method

The purpose of the RevealCards method is to display the cards for the player and dealer as

labels in the form as well as the winner and the individual hand values. The method has one

247

C# For Beginners

parameter called winner declared using the Winner enum, the value will be provided from a

call to the CompareHands method in the button's Click event.

You must clear the two panels where the cards will be added before iterating over the cards

and adding them.

To add the cards dynamically to the form you need to call the CreateCard method for each

card and add the resulting card label to the Controls collection of the correct panel.

Then you display the hand values and the winner in the appropriate labels. Change the back-

ground color to light green in the winner label if the player wins otherwise change it to light

pink.

1. Add a void method called RevealCards which takes one parameter of the Winner

enum data type to the Methods region.

private void RevealCards(Winner winner)

{

}

2. Clear the panels before adding any cards to them.

this.panDealer.Controls.Clear();

this.panPlayer.Controls.Clear();

3. Add a loop iterating over the cards in the player and dealer hands calling the

CreateCards method to create the card labels. Duplicate the code for the dealer

hand.

var lblPlayer = CreateCard(x, y, playerHand.Cards[i]);

this.panPlayer.Controls.Add(lblPlayer);

4. Add the dealer hand value to the lblDealerHand label and the player hand value to

the lblPlayerHand label.

5. Add the text "Player wins !", Dealer wins !" or "It's a draw" to the lblWinner label

depending on the outcome.

6. Change the background color of the lblWinner label depending on the outcome.

7. Add a call to the RevealCards method to the button's Click event below the previous

methods passing in the winner variable from the call to the CompareHands method.

8. Run the application and click the button. Make sure that the information and cards

are displayed correctly.

248

C# For Beginners

9. Close the application.

10. Comment out the code for the test cards and run the application again. Now ran-

domly generated cards should be displayed when the button is clicked.

11. Close the application.

The complete code for the RevealCards method look like this:

private void RevealCards(Winner winner)

{

this.panDealer.Controls.Clear();

this.panPlayer.Controls.Clear();

for (int i = 0; i < 5; i++)

{

var x = i * 60;

var y = 0;

var lblDealer = CreateCard(x, y, dealerHand.Cards[i]);

var lblPlayer = CreateCard(x, y, playerHand.Cards[i]);

this.panDealer.Controls.Add(lblDealer);

this.panPlayer.Controls.Add(lblPlayer);

}

lblDealerHand.Text = dealerHand.HandValue.ToString();

lblPlayerHand.Text = playerHand.HandValue.ToString();

lblWinner.Text = String.Format("\t{0}",

winner.Equals(Winner.Player) ? "Player wins!" :

winner.Equals(Winner.Dealer) ? "Dealer wins!" :

"It's a draw");

lblWinner.BackColor = winner.Equals(Winner.Player) ?

Color.LightGreen : Color.LightPink;

}

249

C# For Beginners

The button's Click event

Displayed below is the complete code for the btnDeal_Click event.

private void btnDeal_Click(object sender, EventArgs e)

{

Initialize();

ShuffleDeck();

DealCards();

EvaluateHand(ref playerHand);

EvaluateHand(ref dealerHand);

var winner = CompareHands();

RevealCards(winner);

}

250

C# For Beginners

9. Classes

Introduction

Classes are a central part of object-oriented programming; a class is a construct that lets you

create custom reference types that are created on the Heap. Classes let you encapsulate the

behaviors and characteristics of logical entities. A class is like a blueprint for a type; you

define the class once and can create as many object instances from it as needed; it's

reusable. A class is also extendable, meaning that you can add and change the class without

breaking earlier implementations; this is possible using inheritance or changing the class

directly.

A class is more versatile than a struct which is created on the stack as a value type meant to

be small and fast. There are things you can do with a class which is impossible with a struct

one of those things is inheritance. One way to view the difference between the two is that a

struct is used to create value types that can be used in classes to define a characteristic just

like a regular value type such as an int or a double variable or property would do.

The characteristics and behaviors are defined by variables (fields), properties, methods, and

events.

Use the class keyword to create a class; best practice is to create one class per .cs file even

though it is possible to add more than one, the exception to the rule is if you nest the class-

es. Following this best practice makes it easier to separate concerns and follow the applica-

tion flow.

Adding a class

To keep the project structured you should consider to create a folder called Classes or

something pertinent to what the classes you add are used for and create the classes in that

folder.

To create a folder you right click on the project or folder you want to crate it in and select

Add-New Folder and give it a name. To add a class to the folder you right click on the folder,

select Add-Class, give it a name and click on the Add button.

251

C# For Beginners

Important: Best practices is to use Pascal casing when naming classes using an uppercase

 character for each new word in the name including the first character of the name.

Access modifiers

You can use access modifiers when declaring a class to specify where it should be accessible.

The access modifiers come into play when you reference assemblies from the application

assembly (project); if you reference a class library from your application then public classes

will be accessible through the reference in the application while internal and private will not

be accessible.

A class declared as internal will only be accessible within the assembly (project) it was crea-

ted; applications referencing the class library will not even know they exist. This is the defa-

ult setting when omitting the access modifier.

You can only declare a class as private if you create it inside another class (nesting it) which

is common practice in a class factory where you need the factory to handle the created

instances and not expose them directly to the rest of the application.

class MyClass1 // internal (access modifier omitted)

{

}

internal class MyClass2

{

}

public class MyClass3

{

}

class MyClass4 // internal (access modifier omitted)

{

private class MyNestedClass1

{

}

internal class MyNestedClass2

{

}

252

C# For Beginners

}

Adding members

To define the characteristics of a class you add variables (fields) and properties; to define the

 behaviors you add methods and events. The variables and properties declared in a class can

be value types such as int and double, they can also be defined by a struct or a reference

type using a class.

A behavior could be a method creating a new order or adding a new order row to an order

rows collection; another behavior could be an event that is raised when a new order row has

been added.

You add members to a class the same way you do in a struct. One difference is that

properties don't have to be assigned values when using a constructor and they don't have to

have private backing variables if you create them using only the get and set keywords with-

out curly braces.

class ClassWithMembers

{

double _result;

int _writeOnlyValue;

public int Value { get; set; }

public double Result { get { return _result; } set{ _result = value; } }

public int ReadOnlyValue { get { return Value * 10; } }

public int WriteOnlyValue { set { _writeOnlyValue = value; } }

public double SqureRoot(double value)

{

if (value < 0)

throw new ApplicationException("Value must be greater than 0.");

else

return Math.Sqrt(value);

}

}

253

C# For Beginners

Instantiating classes

To use a class, you create instances of it; instances are also known as objects. When you

create an instance of a class, two things happen; when the variable is declared using the

class type a reference pointer is created and stored using the variable name and when the

new keyword is executed an object is created and memory is allocated for it on the Heap.

If you like you can skip declaring a variable's data type and let the compiler deduce the type

at compile time; you do this by using the var keyword when declaring the variable. Using the

var keyword does not change how the application executes; it is only a shortcut to writing

the type name once.

The following code sample shows how you can create an instance of a class by using the

class type or the var keyword.

private void button1_Click(object sender, EventArgs e)

{

var cls = new ClassWithMembers();

// or

ClassWithMembers cls = new ClassWithMembers();

}

When an object has been created, you can use its properties to assign values creating its

characteristics. You can also call its methods to achieve certain tasks, and subscribe to its

events. When using the dot notation (typing a period after an object name) when writing the

code IntelliSense will display a list of all available members for that object.

Constructor

A constructor is a special method that is called when an instance of a class is created. You

can pass in parameters to the constructor with initial values that you use to set character-

istics of the instance using its properties or variables. If no constructor is added to the code,

a default constructor will be added by the compiler when the solution is compiled.

It is possible to provide multiple constructors with different parameter lists; this is useful

when you want the developer to be able to instantiate instances with different initial values,

maybe a sub set of values compared with the constructor taking the most parameters.

In an order class, you could make three implementations of the constructor; one empty, one

254

C# For Beginners

taking the description and one taking a description and an order id as parameters instanti-

ating the object in different ways.

You can use the default method to assign the default value of a given data type to a variable

instead of hard coding the value.

public class Order

{

public int OrderId { get; set; }

public string Description { get; set; }

// Instantiate with :

// OrderRow orderRow = new OrderRow();

public Order()

{

OrderId = 0;

Description = String.Empty;

}

// Instantiate with :

// OrderRow orderRow = new OrderRow("Row description");

public Order(string description)

{

OrderId = default(int);

Description = description;

}

// Instantiate with :

// OrderRow orderRow = new OrderRow(1001, "Row description");

public Order(int orderId, string description)

{

OrderId = orderId;

Description = description;

}

}

Calling an overloaded constructor

To make the previous code more compact and reuse already declared constructors you can

have them call one another using the this keyword after the constructor declaration.

In the following example the first constructor calls the second and the second the third con-

structor when instances are created.

255

C# For Beginners

public class Order1

{

public int OrderId { get; set; }

public string Description { get; set; }

// Calls the constructor:

// Order1(string description)

public Order() : this(String.Empty) { }

// Calls the constructor:

// Order1(int orderId, string description)

public Order(string description)

: this(default(int), description) { }

// Assigns the passed in values to the properties

public Order(int orderId, string description)

{

OrderId = orderId;

Description = description;

}

}

When an instance is created using the first constructor it calls the second constructor with

an empty string and it in turn calls the third constructor with the empty string from the first

constructor and pass along the default value for the int data type.

var cls = new Order();

When an instance is created using the second constructor the passed in description will be

sent to the third constructor along with the default value for the int data type.

var cls = new Order("Some description");

When an instance is created using the third constructor both the passed in parameters will

be assigned to the properties in the object.

var cls = new Order(101, "The description");

Exercise: Customer data

In this exercise you will create a class called Customer and use it to list customers in a

combo box and display the selected customer's data in textboxes. It should also be possible

256

C# For Beginners

to add, update and remove customer information in the List collection containing the

customers.

The Customer class should have four properties and two constructors. The Id property

should be declared with the Guid data type and the FirstName, LastName and Name

properties should be declared with the string data type. The Name property should be read

only and return the concatenated value of the FirstName and LastName properties.

The first constructor should take three parameters for the three assignable properties and

assign the passed in values to the appropriate properties in the object. The second construc-

tor should take two parameters for the first name and last name and call the first construct-

or using the this keyword.

Instead of having to iterate over the customers collection and write a bunch of add, update

and delete code you can use a BindingList collection which is specialized at keeping data in

form controls in sync when changes are made to the data.

When displaying the collection content in a combo box or list box you simply assign the

collection to the DataSource property and use the DataMember property to specify the

property name in the collection's class whose value you want to display in the control.

If you want to bind textboxes to the collection as well to reflect data from the object

selected in the combo box you add data binding using the DataBinding.Add method on the

textbox. The textboxes will then update the data for the selected item in the collection when

the text is changed. This might not be the behavior you want and to override that setting

you have to pass in two extra parameters where the first can be set to false and the second

to DataSourceUpdateMode.Never which will stop any automatic updates to the collection.

To update data form an item in the collection you have to call the ResetBindings method on

the collection; you don't have to call this method when adding or removing items.

Don't forget to check that the textboxes contain text when adding or updating data and that

there is at least one customer in the collection when trying to update or remove a customer.

257

C# For Beginners

The GUI

1. Add three labels with the text "Customers", "First Name" and "Last Name".

2. Add a combo box called cboCustomers below the "Customers" label.

3. Add two textboxes called txtFirstName and txtLastName to display the first name

and last name of the customer selected in the combo box.

4. Add three buttons called btnRemove, btnUpdate and btnAdd.

The Customer class

1. Add a new folder to the project by right clicking on the project name and selecting

Add-New Folder. Name the folder Classes.

2. Add a class to the folder by right clicking on the folder and selecting Add-Class.

3. Name the class Customer and click the Add button.

class Customer

{

}

4. Add a Guid property called Id.

public Guid Id { get; set; }

5. Add a string property called FirstName.

6. Add a string property called LastName.

7. Add a string property called Name and remove the set keyword.

8. Add a block to the get keyword using curly braces.

public string Name { get { } }

9. Return the concatenated string of the LastName and FirstName properties from the

Name property.

public string Name { get { return String.Format("{0} {1}", LastName,

FirstName); } }

258

C# For Beginners

10. Add a constructor which takes three parameters for the three assignable properties

in the object and assign their values to the appropriate properties.

public Customer(Guid id, string firstName, string lastName)

{

Id = id;

FirstName = firstName;

LastName = lastName;

}

11. Add a second constructor taking the first name and last name as parameters and

calls the first constructor with the passed in values and a new Guid for the id.

public Customer(string firstName, string lastName)

: this(Guid.NewGuid(), firstName, lastName)

{

}

The complete code for the Customer class look like this:

class Customer

{

public Guid Id { get; set; }

public string FirstName { get; set; }

public string LastName { get; set; }

public string Name

{

get

{

return String.Format("{0} {1}", LastName, FirstName);

}

}

public Customer(string firstName, string lastName)

: this(Guid.NewGuid(), firstName, lastName)

{

}

public Customer(Guid id, string firstName, string lastName)

{

Id = id;

FirstName = firstName;

LastName = lastName;

}

}

259

C# For Beginners

Binding the data source

1. Add a BindingList<Customer> collection called customers and instantiate it at the

beginning of the form.

BindingList<Customer> customers = new BindingList<Customer>();

2. Locate the form's Load event.

3. Assign the customers collection to the DataSource property of the combo box.

4. Assign the Name property to the combo box's DisplayMember property.

5. Use the Add method of the txtFirstName's DataBindings property to bind the Text

property of the textbox to the FirstName property of the objects in the customers

collection. Disable the automatic updates.

txtFirstName.DataBindings.Add("Text", customers, "FirstName",

false, DataSourceUpdateMode.Never);

The complete form code so far:

public partial class Form1 : Form

{

BindingList<Customer> customers = new BindingList<Customer>();

public Form1()

{

InitializeComponent();

}

private void Form1_Load(object sender, EventArgs e)

{

// Binding the combo box to the data source

cboCustomers.DataSource = customers;

cboCustomers.DisplayMember = "Name";

// Binding textboxes to data source

// Add(Property in the control, data source,

// Property in the data source, format text, update mode)

txtFirstName.DataBindings.Add("Text", customers,

"FirstName", false, DataSourceUpdateMode.Never);

txtLastName.DataBindings.Add("Text", customers,

"LastName", false, DataSourceUpdateMode.Never);

}

}

260

C# For Beginners

The Add button

1. Add the btnAdd_Click event.

2. Exit the event if the textboxes are empty to avoid adding customers without a first-

or last name.

if (txtFirstName.Text.Equals(String.Empty) ||

txtLastName.Text.Equals(String.Empty)) return;

3. Create a new Customer instance called customer using the values from the text-

boxes.

var customer = new Customer(txtFirstName.Text, txtLastName.Text);

4. Add the customer to the customers collection using the Add method of the collec-

tion.

customers.Add(customer);

5. Display the added customer in the combo box by assigning its index to the Selected-

Index property of the combo box.

cboCustomers.SelectedIndex = cboCustomers.Items.Count - 1;

The complete code for the btnAdd_Click event:

private void btnAdd_Click(object sender, EventArgs e)

{

if (txtFirstName.Text.Equals(String.Empty) ||

txtLastName.Text.Equals(String.Empty)) return;

var customer = new Customer(txtFirstName.Text, txtLastName.Text);

customers.Add(customer);

cboCustomers.SelectedIndex = cboCustomers.Items.Count - 1;

}

The Update button

1. Add the btnUpdate_Click event.

2. Exit the event if the combo box is empty, you can achieve this by checking if the

SelectedIndex is -1.

if (cboCustomers.SelectedIndex.Equals(-1)) return;

3. Exit the event if the textboxes are empty to avoid saving customers without a first-

or last name.

4. Fetch the customer in the customers collection corresponding to the SelectedIndex

value of the combo box.

261

C# For Beginners

var customer = customers[cboCustomers.SelectedIndex];

5. Change the FirstName and LastName properties of the fetched customer to the

values in the textboxes.

customer.FirstName = txtFirstName.Text;

6. To be reflect the changes made to the collection in the combo box you have to call

the ResetBindings method on the collection variable to reset the bindings.

customers.ResetBindings();

The complete code for the btnUpdate_Click event:

private void btnUpdate_Click(object sender, EventArgs e)

{

if (cboCustomers.SelectedIndex.Equals(-1)) return;

if (txtFirstName.Text.Equals(String.Empty) ||

txtLastName.Text.Equals(String.Empty)) return;

var customer = customers[cboCustomers.SelectedIndex];

customer.FirstName = txtFirstName.Text;

customer.LastName = txtLastName.Text;

customers.ResetBindings();

}

The Remove button

1. Add the btnRemove_Click event.

2. Only try to remove the customer if the index is greater than or equal to 0. Use the

RemoveAt method of the collection variable to remove the customer at the index

corresponding to the SelectedIndex property of the combo box.

if (cboCustomers.SelectedIndex >= 0)

customers.RemoveAt(cboCustomers.SelectedIndex);

3. Run the application and try to add, update and remove customers.

4. Stop the application.

The complete code for the btnRemove_Click event:

private void btnRemove_Click(object sender, EventArgs e)

{

if (cboCustomers.SelectedIndex > 0)

customers.RemoveAt(cboCustomers.SelectedIndex);

}

262

C# For Beginners

Class libraries

It is very common to separate out certain functionality and create reusable class libraries

especially in large- and enterprise solutions. A class library is essentially a separate project

containing classes which are compiled to an assembly (.dll) for a specific purpose; it can be a

data access layer, a business layer with business centric logic or a set of helper classes. A

class library can be used for any type of scenario that has a specific defined purpose.

The class library can be created as a separate assembly in its own solution or be part of an

already existing solution. In both cases you have to add a reference to the assembly or proj-

ect containing the classes to gain access to them and to create instances from them.

Create a class library

You create a class library in an existing solution by adding a new Class Library project to it. In

the project you can add as many classes as needed separating them into namespaces and

folders.

1. Right click on the solution name in the Solution Explorer and select Add-New

Project.

2. Select Class Library in the dialog.

3. Give the class library a name and click the OK button.

4. Add classes to the project in the same way you have done before in an application.

Reference a class library

To gain access to the classes in the class library you have to add a reference to the class

library project from the application and add the appropriate using statement specifying the

namespace path to where the classes reside; you can add the using statement by resolving

it, right click on the name of the class you have added to the code and select Resolve-using

 xyz.

1. Right click on the References folder in the application (the main project) and select

Add Reference.

2. Locate the assembly you want to bring in to the application and use classes form. If

the assembly is in the same solution the fastest way to locate it is to select Solution

in the left dialog menu.

3. Check the checkbox to the left of the assembly name and click the OK button.

263

C# For Beginners

4. Add a using statement to where the class is located by hand or write the name of

the class in your code, right click on it and select Resolve-using xyz where xyz is the

namespace path to the class.

Mini Use Case: Create a class library

In this exercise you will create a simple order application using a class library to handle the

data.

The orders and their corresponding order rows are stored in private List collections which

will be converted into BindingList collections in the application and bound to form controls.

The orders collection will hold instances of the Order class containing an int property called

OrderId and a string property called Description. The orderRows collection will hold

instances of the OrderRow class containing two int properties called OrderRowId and

OrderId, a string property called Product and a null-able double property called Price.

The orders and orderRows collections are created in the simple data layer class you will add

called Data, this is the class you will use when creating the orders and order rows from the

classes. The constructors of the Order and OrderRow classes will be declared as internal to

force the creation of objects to take place in the class library project and more specifically in

the Data class. The internal keyword limits the member to be used only within the project it

is created in; since the class library is in a separate assembly to the application the instances

can only be created in the class library but because the class itself is declared as public it can

still be used from other assemblies such as the application.

You will have to create methods in the Data class for adding, updating and removing Order

and OrderRow instances from the collections; these methods will then be called from the

application when an action is taken by the user. You will have to check that the orders

collection doesn't contain an order with the description the user tries to add when clicking

on the Add Order button.

Use two BindingList collections to bind the data fetched from the class library to the form

controls. Use a combo box to display the orders and a data grid view to display the order

rows for the selected order. A textbox should be bound to the orders collection and display

the description of the selected order; the textbox should be used when updating the order

264

C# For Beginners

description and when adding a new order. To fetch and manipulate the data in the class

library you need to create an instance of the Data class.

When an order row is added by clicking on the Add Order Row button a separate form

should be opened where the product information is entered and sent back to the main form

when the order row form is closed. If the OK button has been clicked in the order row form

the order will be added to the orders collection. You can add a new form to the project by

right clicking on the project name in the Solution Explorer and select Add-Windows Form;

name the form frmAddOrderRow. When the form has been created you can create a

variable using the form's name as the data type when creating an instance of the form. To

pass data to and from the form you can alter its constructor sending in an instance of the

OrderRow class; because it is created from a class the object will reside on the Heap and

have a reference pointer on the stack that is sent to the order row form's constructor

effectively changing the same object you sent into it from the main form.

Make sure that the order row form is displayed over the main form when it is opened by

assigning Manual to its StartPoisition property and use its Location property to position it.

// Create the form instance

var frm = new frmOrderRow(orderRow);

// Position the form

frm.StartPosition = FormStartPosition.Manual;

var location = this.Location;

location.Offset(40, 40);

frm.Location = location;

// Open the form

DialogResult result = frm.ShowDialog();

You can check which of the form's buttons was clicked by using the DialogResult enum if

you assign the appropriate value to the form's DialogResult property in the button events of

the order row form.

// Check the button result

if (result.Equals(DialogResult.Cancel)) return;

265

C# For Beginners

Crating the projects

1. Create a Windows Forms Application called Orders.

2. Right click on the solution name, not the project name, in the Solution Explorer and

select Add-New Project.

3. Select Class Library in the project list, do not select Class Library (Portable).

4. Name the project Data Layer and click on the OK button.

5. The new Data Layer project contains a class called Class1.cs that you can rename

and reuse as the Order class. Right click on the class name in the Solution Explorer

and select Rename. Name the class Order and press Enter; a dialog will ask if you

want to rename the class as well, click the Yes button.

6. You add a reference to the class library in the Windows Forms Application by right

clicking on the References folder and select Add Reference.

7. Click on the Solution option in the left menu bar to find the class library.

8. Check the checkbox to the left of the Data Layer project name and click the OK

button.

266

C# For Beginners

The Order class

The Order class define what information the order objects will hold.

1. Locate the Order class in the Data Layer class library and double click on it to open

it.

2. By default classes are internal in a class library so you need to change the class'

access modifier to public.

public class Order

{

}

3. Add an int property called OrderId which later will contain a unique id.

public int OrderId { get; set; }

4. Add a string property called Description which later will contain a short order descri-

ption.

5. Add an internal constructor that takes an order id and a description and stores them

using the two previously added properties.

internal Order(int orderId, string description) { }

6. Save the solution.

The complete Order class code look like this:

public class Order

{

public int OrderId { get; set; }

public string Description { get; set; }

internal Order(int orderId, string description)

{

OrderId = orderId;

Description = description;

}

}

267

C# For Beginners

The OrderRow class

The OrderRow class define what information the order row objects will hold.

1. Right click on the Data Layer class library in the Solution Explorer and select Add-

Class.

2. Name the class OrderRow and click the Add button.

3. By default classes are internal in a class library so you need to change the class'

access modifier to public.

public class OrderRow

{

}

4. Add two int properties called OrderRowId and OrderId, the latter id will be foreign

key to the order collection keeping track of which order row belong with what order.

5. Add a string property called Product that will hold the product name.

6. Add a null-able double property called Price. You make a property or variable null-

able by adding a question mark (?) at the end of the data type name.

public double? Price { get; set; }

7. Add an internal constructor to the class with parameters for all the properties.

The complete OrderRow class code look like this:

public class OrderRow

{

public int OrderRowId { get; set; }

public int OrderId { get; set; }

public string Product { get; set; }

public double? Price { get; set; }

internal OrderRow(int orderId, int orderRowId, string product,

double? price)

{

OrderId = orderId;

OrderRowId = orderRowId;

Product = product;

Price = price;

}

}

268

C# For Beginners

Creating the Data class

The sole purpose of the Data class is to work as a layer between the data source (the orders

and orderRows collections) and the application to separate concerns; the forms should not

contain any code for manipulating data directly they should use an object of the Data class

and call its methods. This mean that the Data class need methods that add, update and re-

move data from the collections; in a real world scenario the collections would most likely be

replaced with a database and Entity Framework or ADO.NET.

You will add methods to the Data class as you add functionality to the forms, for now you

will add the collections and a method called AddOrder that will add an order and a method

called GetOrders that return a List<Order> .

 Adding the Data class

1. Right click on the Data Layer class library in the Solution Explorer and select Add-

Class.

2. Name the class Data and click the Add button.

3. Classes are internal by default so you need to change the class' access modifier to

public.

public class Data

{

}

4. Add a region called Variables.

5. Add a List<Order> collection called orders to the region.

List<Order> orders = new List<Order>();

6. Add a List<OrderRow> collection called orderRows to the region.

 Adding the AddOrder method

1. Add a region called Order Methods.

2. Add a method called AddOrder that return an Order object and takes a string para-

meter called description in the Order Methods region.

public Order AddOrder(string description)

{

}

3. Add exception handling using try/catch-blocks in the method where the catch-block

throws a new ApplicationException for any exception that occurs with the message

269

C# For Beginners

"Could not add the order" and the actual exception as its inner exception. By throw-

ing the exception this way it will be propagated as that specific exception to the

client for handling.

try

{

}

catch(Exception ex)

{

throw new ApplicationException("Could not add the order", ex);

}

4. The first thing you need to do in the try-block is to generate a new order id, in this

case it will be the highest currently existing order id plus one in a real world scenario

it would be automatically generated from the database table or added as a new

Guid.

int newId = orders.Count.Equals(0) ? 1 : orders.Max(o => o.OrderId) +

1;

5. Next you have to create a new instance of the Order class passing in the newId and

the description as values to its constructor.

var order = new Order(newId, description);

6. Add the order to the orders collection using its Add method.

7. Return the order from the method with a return statement.

 Adding the GetOrders method

1. Add a parameter-less method called GetOrders that return a List<Order> collection.

2. Return the orders collection with a return statement.

The Data class code look like this so far:

public class Data

{

#region Variables

List<Order> orders = new List<Order>();

List<OrderRow> orderRows = new List<OrderRow>();

#endregion

270

C# For Beginners

#region Order Methods

public Order AddOrder(string description)

{

try

{

int newId = orders.Count.Equals(0) ? 1 :

orders.Max(o => o.OrderId) + 1;

var order = new Order(newId, description);

orders.Add(order);

return order;

}

catch(Exception ex)

{

throw new ApplicationException("Could not add the order", ex);

}

}

public List<Order> GetOrders()

{

return orders;

}

}

The GUI (the main form)

1. Open the design area of the main form.

2. Add a combo box called cboOrders that will list all available orders.

3. Add a textbox called txtDescription that will display the selected order's description.

4. Add three buttons called btnRemoveOrder, btnUpdateOrder and btnAddOrder.

5. Add a data grid view control called dgvOrderRows.

6. Add a button called btnAddOrderRow.

The GUI (the add order row form)

1. Add a new form to the Orders project by right clicking on the project name in the

Solution Explorer and select Add-Windows Form.

2. Name the form frmAddOrderRow and click the Add button.

3. Add two labels with the text "Product" and "Price".

4. Add two textboxes called txtProduct and txtPrice.

5. Add two buttons called btnOK and btnCancel.

271

C# For Beginners

Binding the controls in the main form

1. Open the code-behind for the main form.

2. Add a region called Variables to the beginning of the form.

3. Add a variable called data in the region that you assign an instance of the Data class

from the class library. You will have to bring in the correct namespace to gain access

to the class.

Data data = new Data();

4. Add two BindingList collections called orders and orderRows which will be used to

bind the controls to the current data.

BindingList<Order> orders;

BindingList<OrderRow> orderRows;

5. Add try/catch-blocks to the Form_Load event with catch-blocks for Application-

Exception and Exception. Add a message box with the text from the exception's

Message property to the catch-block for the ApplicationException; this exception

will be triggered if an order can't be added in the AddOrder method of class library

and propagated here.

6. Call the AddOrder method on the data instance variable in the try-block to add a

couple of orders.

data.AddOrder("Order 1");

data.AddOrder("Order 2");

7. Add the orders from the orders List collection in the class library to the orders

BindingList in the form you link them by calling the GetOrders method on the data

instance variable.

orders = new BindingList<Order>(data.GetOrders());

8. Bind the BindingList orders collection in the form to the combo box's DataSource

property.

9. Assign the name of the property in the Order class that you wish to display in the

combo box to its DisplayName property as a string.

10. Use the DataBindings.Add method to bind the Text property of the txtDescription

textbox to the Description property of orders collection objects.

txtDescription.DataBindings.Add("Text", orders, "Description", false,

DataSourceUpdateMode.Never);

272

C# For Beginners

11. Hide the two first columns in the data grid view to hide the id values of the Order-

Row objects that will be displayed in the grid.

dgvOrderRows.Columns[0].Visible = false;

dgvOrderRows.Columns[1].Visible = false;

12. Run the application.

13. The two orders should be displayed in the combo box and the selected order's

description should be visible in the textbox.

14. Select the other order and make sure that the text in the textbox changes.

15. Close the application.

The main form code so far:

public partial class Form1 : Form

{

#region Variables

Data data = new Data();

BindingList<Order> orders;

BindingList<OrderRow> orderRows;

#endregion

#region Constructor and Form_Load

public Form1()

{

InitializeComponent();

}

private void Form1_Load(object sender, EventArgs e)

{

try

{

data.AddOrder("Order 1");

data.AddOrder("Order 2");

orders = new BindingList<Order>(data.GetOrders());

cboOrders.DataSource = orders;

cboOrders.DisplayMember = "Description";

txtDescription.DataBindings.Add(

"Text", orders, "Description",

false, DataSourceUpdateMode.Never);

273

C# For Beginners

dgvOrderRows.Columns[0].Visible = false;

dgvOrderRows.Columns[1].Visible = false;

}

catch (ApplicationException ex)

{

MessageBox.Show(ex.Message);

}

catch (Exception ex)

{ }

}

#endregion

}

The ContainsOrder method

The purpose of this method is to make sure that the orders collection doesn't already

contain an order with the description provided in the textbox. The method will be called

when the Add Order button is clicked and return true or false depending on if an order with

the provided description already exist; you can use the Count method and Lambda express-

ion to check if the description exist.

1. Open the Data class in the class library.

2. Add a bool method called ContainsOrder to the Order Methods region which take

one string parameter called description.

3. Return the result from checking if the orders collection contain an order with the

description passed in to the method. You can use the Count method and Lambda

expression to check if the description exist; if the result is greater than zero then an

order with that description already exist.

return orders.Count(o => o.Description.Equals(description)) > 0;

The complete code for the ContainsOrder method:

public bool ContainsOrder(string description)

{

return orders.Count(o => o.Description.Equals(description)) > 0;

}

274

C# For Beginners

The btnAddOrder_Click event

The purpose of this button is to add a new order to the orders collection using the text in the

textbox when calling the AddOrder method in the Data class.

1. Add the Click event for the btnAddOrder button.

2. Since the AddOrder method can throw an ApplicationException it must be handled

in the Click event to keep the application from crashing if an exception occur. Add

try/catch-blocks to the Click event and display a message box with the exception

message if the ApplicationException is thrown from the AddOrder method.

try

{

}

catch (ApplicationException ex)

{

MessageBox.Show(ex.Message);

}

catch (Exception ex)

{ }

3. Display the message "Description is empty!" and exit the event if the textbox is

empty.

4. Display the message "Description already exist!" and exit the event if an order with

the description entered in the textbox already exist. You can perform the check by

calling the ContainsOrder in the Data class.

if (data.ContainsOrder(txtDescription.Text))

{

}

5. Add a new order after the last if-block by calling the AddOrder method in the Data

class and save the returned order in a variable called order.

var order = data.AddOrder(txtDescription.Text);

6. Reset the bindings to the orders collection by calling its ResetBindings method.

orders.ResetBindings();

7. Since a new item automatically will be added to the combo box when a new order

has been added and the bindings have been reset you might want to select that

order in the combo box. To achieve this you assign the order returned from the

AddOrder method to the SelectedItem property of the combo box.

275

C# For Beginners

cboOrders.SelectedItem = order;

8. Run the application and enter a description in the textbox.

9. Click the Add Order button.

10. The order should be added to the orders collection and be displayed in the combo

box.

11. Try to add an order with an already existing description; the message box should

pop up.

12. Close the application.

The complete code for the btnAddOrder_Click event:

private void btnAddOrder_Click(object sender, EventArgs e)

{

try

{

if (txtDescription.TextLength.Equals(0))

{

MessageBox.Show("Description is empty!");

return;

}

if (data.ContainsOrder(txtDescription.Text))

{

MessageBox.Show("Description already exist!");

return;

}

var order = data.AddOrder(txtDescription.Text);

orders.ResetBindings();

cboOrders.SelectedItem = order;

}

catch (ApplicationException ex)

{

MessageBox.Show(ex.Message);

}

catch (Exception ex)

{ }

}

276

C# For Beginners

The UpdateOrder method

The purpose of this method in the Data class is to update an existing order description with

the text in the textbox.

1. Add a bool method called UpdateOrder which take two parameters called orderId

of type int and description of type string to the Order Methods region of the Data

class.

2. Add a try/catch-block to the method where the catch-block don't have a parameter

and return false and the try-block return true as its last statement.

try

{

// Other code goes here

return true;

}

catch

{

return false;

}

3. Use LINQ and Lambda to fetch the order matching the passed in order id from the

orders collection and store it in a variable called order.

var order = orders.FirstOrDefault(o => o.OrderId.Equals(orderId));

4. Assign the passed in description to the order variable's Description property to

change it.

The complete code for the UpdateOrder method:

public bool UpdateOrder(int orderId, string description)

{

try

{

var order = orders.FirstOrDefault(o => o.OrderId.Equals(orderId));

order.Description = description;

return true;

}

catch

{

return false;

}

}

277

C# For Beginners

The btnUpdateOrder_Click event

1. Add the Click event for the btnUpdateOrder button.

2. Check that there is at least one order in the orders collection, exit the event if the

collection is empty because then there is no order to update.

if (orders.Count.Equals(0)) return;

3. Call the UpdateOrder method in the Data class and pass in the selected order id

from the order selected in the combo box and the description from the textbox.

Save the return value in a variable called success.

var success =

data.UpdateOrder(((Order)cboOrders.SelectedItem).OrderId,

txtDescription.Text);

4. If the success variable is true then the order was updated and you should reset the

bindings on the orders collection by calling its ResetBindings method.

5. Run the application and select an order in the combo box.

6. Change the description in the textbox and click the Update Order button.

7. Select another order in the combo box and then select the order you changed to

make sure that the description is changed and that the change is reflected in the

textbox

8. Close the application.

The complete code for the btnUpdateOrder_Click event:

private void btnUpdateOrder_Click(object sender, EventArgs e)

{

if (orders.Count.Equals(0)) return;

var success = data.UpdateOrder(

((Order)cboOrders.SelectedItem).OrderId,

txtDescription.Text);

if (success) orders.ResetBindings();

}

278

C# For Beginners

The RemoveOrder method

The purpose of this method in the Data class is to remove an existing order from the orders

collection and all its associated order rows from the orderRows collection.

1. Add a bool method called RemoveOrder which take one parameter called orderId of

type int to the Order Methods region of the Data class.

2. Add a try/catch-block to the method where the catch-block don't have a parameter

and return false and the try-block return true as its last statement.

3. Use LINQ and Lambda to remove all the order rows matching the passed in order id

from the ordersRows collection.

orderRows.RemoveAll(or => or.OrderId.Equals(orderId));

4. Use LINQ and Lambda remove the order matching the passed in order id from the

orders collection.

The complete code for the RemoveOrder method:

public bool RemoveOrder(int orderId)

{

try

{

orderRows.RemoveAll(or => or.OrderId.Equals(orderId));

orders.RemoveAll(o => o.OrderId.Equals(orderId));

return true;

}

catch

{

return false;

}

}

The GetOrderRows method

The purpose of this method in the Data class is to fetch all order rows from the orderRows

collection associated with the selected order in the orders collection.

1. Add a region called Order Row Methods to the Data class.

2. Add a List<OrderRow> method called GetOrderRows to the Order Row Methods

region which take one parameter called orderId of type int.

279

C# For Beginners

3. Use LINQ and Lambda fetch all order rows from the orderRows collection matching

the passed in order id.

return orderRows.Where(or => or.OrderId.Equals(orderId)).ToList();

The complete code for the GetOrderRows method:

public List<OrderRow> GetOrderRows(int orderId)

{

return orderRows.Where(or => or.OrderId.Equals(orderId)).ToList();

}

The UpdateOrderRowBinding method in the main form

The purpose of this method is to update the data bindings between the orderRows Binding-

List and the data grid view displaying the selected order's order rows.

1. Add a region called Methods to the main form.

2. Add a parameter-less void method called UpdateOrderRowBindings to the region.

3. The first thing the method has to do is to check that the combo box has a selected

item because it is not possible to fetch an order id for an order that does not exist. If

the SelectedItem property of the combo box is null then clear the rows in the data

grid view before exiting the method.

if (cboOrders.SelectedItem == null)

{

dgvOrderRows.Rows.Clear();

return;

}

4. Fetch the order id from the order selected in the combo box and store it in an int

variable called orderId.

5. Assign a new instance of the BindingList<OrderRow> collection initialized with the

GetOrderRows method in the Data class to the orderRows variable.

orderRows = new BindingList<OrderRow>(data.GetOrderRows(orderId));

6. Assign the orderRows collection to the DataSource property of the data grid view.

The complete code for the UpdateOrderRowBindings method:

private void UpdateOrderRowBinding()

{

if (cboOrders.SelectedItem == null)

{

280

C# For Beginners

dgvOrderRows.Rows.Clear();

return;

}

var orderId = ((Order)cboOrders.SelectedItem).OrderId;

orderRows = new BindingList<OrderRow>(data.GetOrderRows(orderId));

dgvOrderRows.DataSource = orderRows;

}

The btnRemoveOrder_Click event

The purpose of this button is to remove an existing order and its associated order rows.

1. Check that the orders collection contain at least one order, exit the event if it don't.

2. Call the RemoveOrder method passing in the order id of the selected order. Save the

return value from the method in a variable called success.

var success =

data.RemoveOrder(((Order)cboOrders.SelectedItem).OrderId);

3. If the success variable is true then the order was successfully removed and the

bindings on the orders and orderRows collections have to be reset. You can call the

ResetBindings method on the orders collection and the UpdateOrderRowBindings

method you created earlier to reset the orderRows collection bindings.

4. Run the application and select an order in the combo box.

5. Click the Remove Order button.

6. Open the combo box to make sure that the order was successfully removed.

7. Close the application.

The complete code for the btnRemoveOrder_Click method:

private void btnRemoveOrder_Click(object sender, EventArgs e)

{

if (orders.Count.Equals(0)) return;

var success = data.RemoveOrder(((Order)cboOrders.SelectedItem).OrderId);

if (success)

{

orders.ResetBindings();

UpdateOrderRowBinding();

}

}

281

C# For Beginners

The frmAddOrderRow form's constructor

The purpose of this form is to create a new order row that can be added to the orderRows

collection when the form is closed by clicking on the OK button.

1. Open the code-behind of the frmAddOrderRow form.

2. Add region called Properties at the beginning of the form.

3. Add a private OrderRow property called OrderRow to the region.

4. Alter the constructor definition to take an OrderRow parameter called orderRow.

5. Assign the passed in orderRow to the OrderRow property.

6. Add a region around the constructor with the description Constructor.

The form code so far:

public partial class frmAddOrderRow : Form

{

#region Properties

private OrderRow OrderRow { get; set; }

#endregion

#region Constructor

public frmAddOrderRow(OrderRow orderRow)

{

OrderRow = orderRow;

InitializeComponent();

}

#endregion

}

The OK button in the frmAddOrderRow form

If the price textbox value can't be parsed to a double value when the user clicks this button a

message box with the text "Price not valid!" should be displayed and the form should remain

open.

If the parse succeeds then the values from the textboxes should be added to the appropriate

properties of the OrderRow property containing a reference to the passed in orderRow

object then assign DialogResult.OK to the form's DialogResult property to signal to the main

form that the OK button was clicked and then the form should be closed.

1. Add the Click event for the OK button.

282

C# For Beginners

2. Try to parse the value in the txtPrice textbox to a double value and store the return

value in a variable called success and the parsed value in a variable called price.

3. If the success variable is true then assign the value in the txtProduct textbox to the

Product Property of the OrderRow object and the price variable to the Price prop-

erty of the OrderRow object.

4. Assign DialogResult.OK to the form's DialogResult property.

DialogResult = DialogResult.OK;

5. Close the form calling its Close method; use the this keyword to access the form.

this.Close();

6. If the success variable is false then display a message box with the text "Price not

valid!" and keep the form open.

The complete code for the btnOK_Click event:

private void btnOK_Click(object sender, EventArgs e)

{

double price = 0d;

var success = Double.TryParse(txtPrice.Text, out price);

if (success) {

OrderRow.Product = txtProduct.Text;

OrderRow.Price = price;

DialogResult = DialogResult.OK;

this.Close();

}

else MessageBox.Show("Price not valid!");

}

The Cancel button in the frmAddOrderRow form

1. Add the Click event for the Cancel button.

2. Assign DialogResult.Cancel to the form's DialogResult property.

3. Close the form by calling its Close method.

The complete code for the btnCancel_Click event:

private void btnCancel_Click(object sender, EventArgs e)

{

DialogResult = DialogResult.Cancel;

this.Close();

}

283

C# For Beginners

The EmptyOrderRow method

The purpose of this method in the Data class is to return an instance of the OrderRow class

with default values assigned. The instance will be used when a new order row is added to an

existing order.

1. Add a parameter-less OrderRow method called EmptyOrderRow.

2. Return an OrderRow instance with the value 0 for both id's, an empty string for the

description and null for the price.

The complete code for the EmptyOrderRow method:

public OrderRow EmptyOrderRow()

{

return new OrderRow(0, 0, String.Empty, null);

}

The AddOrderRow method

The purpose of this method in the Data class is to add a new order row to an existing order.

You will have to create a new order row id based on the highest existing order row id in the

orderRows collection and assign it to the OderRowId property of the passed in OrderRow

instance. When the order row has been added to the orderRows collection the order row

instance should be returned with a return statement.

1. Add an OrderRow method called AddOrderRow which as an OrderRow parameter

called orderRow to the Order Row Methods region of Data class

public OrderRow AddOrderRow(OrderRow orderRow)

{

}

2. Add a try/catch-block where the catch throws an ApplicationException with the

message "Could not add the order row" and the actual exception as its inner

exception.

3. Calculate the order row id for the new order row and store the result in a variable

called newId inside the try-block.

int newId = orderRows.Count.Equals(0) ? 1 : orderRows.Max(o =>

o.OrderRowId) + 1;

4. Assign the value of the newId variable to the OrderRowId property of the passed in

orderRow parameter.

284

C# For Beginners

5. Add the orderRow parameter to the orderRows collection using its Add method.

6. Return the orderRow object from the method.

The complete code for the AddOrderRow method:

public OrderRow AddOrderRow(OrderRow orderRow)

{

try

{

int newId = orderRows.Count.Equals(0) ? 1 :

orderRows.Max(o => o.OrderRowId) + 1;

orderRow.OrderRowId = newId;

orderRows.Add(orderRow);

return orderRow;

}

catch (Exception ex)

{

throw new ApplicationException("Could not add the order row", ex);

}

}

The ShowAddOrderRowForm method in the main form

The purpose of this method is to display the Add Order Row form and return the result. You

can display the form as modal form using the ShowDialog method on the form instance

variable; a modal form acts like a dialog which has to be closed to be able to use the main

form that opened it.

1. Add a DialogResult method called ShowAddOrderRowForm that takes an OrderRow

parameter called orderRow to the code-behind of the main form.

2. Create an instance of the frmAddOrderRow and store it in a variable called frm.

var frm = new frmAddOrderRow(orderRow);

3. To be able to position the form 40px from the top and left of the main form you

have to assign Manual to the StartPosition property of the frm instance. Use the

Location property to position the form.

frm.StartPosition = FormStartPosition.Manual;

4. Display the form and save the result of the clicked button in a DialogResult variable

that you return from the method.

285

C# For Beginners

DialogResult result = frm.ShowDialog();

return result;

The complete code for the ShowAddOrderRowForm method:

private DialogResult ShowAddOrderRowForm(OrderRow orderRow)

{

// Create the form instance

var frm = new frmAddOrderRow(orderRow);

// Position the form

frm.StartPosition = FormStartPosition.Manual;

var location = this.Location;

location.Offset(40, 40);

frm.Location = location;

// Open the form and return the result of the clicked button

DialogResult result = frm.ShowDialog();

return result;

}

The Add Order Row button in the main form

The purpose of this button is to add a new order row to an existing order. To achieve this

you have to create an empty order row calling the EmptyOrderRow method you created

earlier and pass the resulting object to the ShowAddOrderRowForm method you created

earlier to display the Add Order Row form.

If the user fills out the form correctly and click the OK button the order id of the order

selected in the combo box should be assigned to the order row object's OrderId property.

Then the order row object should be passed o the AddOrderRow method in the Data class

to add it to the orderRows collection.

The last thing you have to do is to add a call to the UpdateOrderRowBinding method you

created a while back to update the binding between the orderRows BindingList collection

and the data grid view to reflect the changes.

1. Add the Click event for the btnAddOrderRow button.

2. Create a new OrderRow instance by calling the EmptyOrderRow method in the Data

class and store it in a variable called orderRow.

var orderRow = data.EmptyOrderRow();

286

C# For Beginners

3. Pass the orderRow instance to the ShowAddOrderRowForm method to display the

form and fill the object with values. Save the return value from the form in a varia-

ble called result.

var result = ShowAddOrderRowForm(orderRow);

4. Check if the Cancel button was clicked in the form and if so exit the event because

then the order row shouldn't be added to the orderRows collection.

if (result.Equals(DialogResult.Cancel)) return;

5. Add the order id of the order selected in the combo box to the OrderId property of

the orderRow object.

6. Add the orderRow instance to the orderRows collection in the Data class by calling

the AddOrderRow method in the Data class.

7. Run the application and click the Add Order Row button to display the Add Order

Row form.

8. Enter a product name in the Product textbox and an invalid price in the Price

textbox.

9. When you click the OK button a message box should appear. Close the message box.

10. Enter a valid price and click the OK button. The form should close and an order row

should be displayed in the data grid view.

11. Open the form again and click on the Cancel button to make sure that it closes with-

out any message box appearing.

12. Close the application.

The complete code for the btnAddOrderRow_Click event:

private void btnAddOrderRow_Click(object sender, EventArgs e)

{

var orderRow = data.EmptyOrderRow();

var result = ShowAddOrderRowForm(orderRow);

if (result.Equals(DialogResult.Cancel)) return;

orderRow.OrderId = orders[cboOrders.SelectedIndex].OrderId;

orderRow = data.AddOrderRow(orderRow);

UpdateOrderRowBinding();

}

287

C# For Beginners

Binding the combo box's SelectedindexChanged event

In order for the order rows in the data grid view to change with the selected order in the

combo box you have to update the binding between the orderRows collection and the data

grid view. You can achieve this by calling the UpdateOrderRowBinding method you created

a while back from the combo box's SelectedIndexChanged event which is called when an

item is selected in the combo box.

1. Add the SelectedIndexChanged event for the combo box.

2. Add a call to the UpdateOrderRowBinding method.

3. Run the application.

4. Add an order row to the selected order.

5. Select another order in the combo box and make sure that the order rows reflect

the order rows for the current order.

6. Close the application.

The complete code for the combo box's SelectedIndexChanged event:

private void cboOrders_SelectedIndexChanged(object sender, EventArgs e)

{

UpdateOrderRowBinding();

}

The RemoveOrderRow method

The purpose of this method in the Data class is to remove an order row instance from the

orderRows collection in the Data class.

1. Add a bool method called RemoveOrderRow which takes an OrderRow instance

parameter to the Order Row Methods region in the Data class.

2. Return the result from a call to the Remove method on the orderRows collection.

Pass in the OrderRow instance to the method.

The complete code for the RemoveOrderRow method:

public bool RemoveOrderRow(OrderRow orderRow)

{

return orderRows.Remove(orderRow);

}

288

C# For Beginners

Remove an order row

To remove an order row you have to add some code to the UserDeletingRow event of the

data grid view. You can access the order row being removed from the data grid view through

the DataBoundItem property of the e.Row property; you have to cast it to an OrderRow.

Then you have to pass that order row instance to the RemoveOrderRow method in the Data

class.

1. Add the UserDeletingRow event of the data grid view.

2. Save the order row in the DataBoundItem property in a variable called orderRow.

var orderRow = (OrderRow)e.Row.DataBoundItem;

3. Call the RemoveOrderRow method in the Data class passing in the OrderRow in-

stance in the orderRow variable to the method.

data.RemoveOrderRow(orderRow);

4. Run the application.

5. Add an order row to the current order.

6. Click on the gray area to the left of the order row in the data grid view to select the

row. You can select multiple rows by holding down the Shift or Ctrl key while select-

ing rows.

7. Press the Delete key on the keyboard to remove the order row(s).

The complete code for the UserDeletingRow event:

private void dgvOrderRows_UserDeletingRow(object sender,

DataGridViewRowCancelEventArgs e)

{

var orderRow = (OrderRow)e.Row.DataBoundItem;

data.RemoveOrderRow(orderRow);

}

Update the data in an order row

To update the data in an order row you can either double click on the desired cell to enter

edit mode or select a cell and start typing. Press Enter on the keyboard to save the changes.

Reference types vs. value types

There are two types of variables: value type and reference type. Value types are the built-in

struct-types such as int, decimal and bool as well as any structs you create containing value

289

C# For Beginners

types. Value types are stored on the stack and are therefore much faster than reference

types which reside on the heap. When working with a value type variable, you interact

directly with its value because it contains its data.

Reference types, objects created from classes, work in a different way. A variable created

from a class will not contain the data directly; instead it contains a reference (a pointer) to

an allocated memory area on the heap. This means that before you can assign values to the

variable, an instance has to be created first. Also, when the variable goes out of scope and

no longer is used, the object does not simply vanish; a process called Garbage Collector (GC)

will take over the reference and remove the object safely from the memory, which takes

time.

Important: If you copy an object reference to another variable, you are just creating a

 reference pointer to the same object; you are not creating a new instance of that type. Both

 variables will point to the same object in memory.

Additional reading: “Built-In Types Table (C# Reference)”

Boxing and unboxing

Boxing is the mechanism used when converting a value type to a reference type; this is

useful in scenarios when a class only accepts reference types. Converting values this way is

simple because you only have to assign the value type variable to the reference type varia-

ble; it is implicit.

int i = 10;

object obj = i;

Unboxing is the mechanism used when converting a reference type variable to a value type

variable; this is useful if you have a method returning or a collection storing values of the

object data type and you need to convert them to another data type. Converting values this

way requires casting from one type to another; it is explicit.

int j;

j = (int)obj;

290

C# For Beginners

Static classes

There are situations where storing instance data is unnecessary; for instance, you could

create a class which contains only methods that don't store any values. It could be conver-

sion methods or methods that return a result of some kind depending on the input paramet-

ers, such as mathematical calculations. In cases like these, a static class is the choice to go

with; a static class cannot be instantiated and its members need to be declared with the

static keyword.

Important: You access a static member through the class directly not a variable.

Static members

Static members can be useful in circumstances such as if the functionality performed by a

static method pertains to the type itself like keeping track of how many instances of a type

have been created. No matter how many instances that are created, one instance of a static

member will only ever be created.

Important: A static member is available in all instances of a class if the class is not declared

 as static and contains static members. If a static property value changes, it affects all instan-

 ces of that class.

Important: A static method cannot access non-static members; this is because the static

 member belongs to the type and therefore have no knowledge of any instances.

Exercise: Calculator with static class and class library

In this exercise you will use refactoring on the latest version of the calculator application you

created in an earlier exercise extracting constants and methods to a class library with static

classes and members.

Open the latest version of the calculator application, the one that you refactored into

methods, and add a Class Library project called Calculator Library to it. Rename the existing

class Calc in the class library and reference the class library from the application project.

To do refactoring on the constants and methods from the form to the class library you have

to cut them out and paste them into the Calc class and change them from private to public.

All methods except the CanCalculate method can be moved; it cannot be moved since it

contain references to form controls.

291

C# For Beginners

Prepend all constant and method names in the form code-behind with the Calc class (for

instance Calc.noValue). The easiest way to do that is to do a search and replace for each of

them.

Create the class library project

Add a Class Library project to the solution and rename the existing class Calc. Change the

class from an instance class to a static class that cannot be instantiated. Reference the class

library from the application project.

1. Open the most recent version of the Calculator application you refactored in an

earlier exercise.

2. Add a Class Library project by right clicking on the Solution in the Solution Explorer

and select Add-New Project.

3. Name the project Calculator Library and click the OK button

4. Rename the Class1.cs class Calc.cs by right clicking on it and select Rename. A dialog

will pop up, click on the Yes button.

5. Change the class from an instance class to a static class.

public static class Calc

{

}

6. Add a reference to the to the class library in the Calculator application by right

clicking on the References folder and select Add Reference.

7. Select the Calculator Library project name in the dialog and click OK button.

Move the constants and methods

Cut out all constants and methods except the CanCalculate method and paste them into the

Calc class then change them from private to public. Prepend all constant and method names

with the Calc class.

1. Cut out all constants and methods except the CanCalculate method and paste them

into the Calc class.

2. Add the public access modifier to the constants.

3. Change the private access modifier on the methods to public static.

4. Save the Calc class.

292

C# For Beginners

5. Search and replace noValue with Calc.noValue in the form code-behind (Ctrl+Shift+

H). Make sure that the Look in drop down is set to Current Document.

6. Search and replace minusSign with Calc.minusSign.

7. Search and replace AddDigit with Calc.AddDigit.

8. Search and replace DeleteDigit with Calc.DeleteDigit.

9. Search and replace AddDecimal with Calc.AddDecimal.

10. Search and replace ToggleSign with Calc.ToggleSign.

11. Search and replace EndsWithDecimalSign with Calc.EndsWithDecimalSign.

12. Search and replace Calculate with Calc.Calculate.

13. Run the application.

14. Do a few calculations to make sure that the calculator works as supposed.

15. Close the application.

293

C# For Beginners

294

C# For Beginners

10. Interfaces

Introduction

Interfaces are ways to define signatures for methods, properties, events and indexers

without specifying how these members are implemented. When implementing an interface

in a class, you have to implement all the members that are specified in that interface,

guaranteeing the consumer that all members will be implemented. By implementing interfa-

ces, you let the developer use a subset of the class' functionality; it is better to implement

several small interfaces than one gigantic interface; remember that you have to implement

all members, which can be a daunting task if you only need a small portion of the functional-

ity.

Important: You can implement many interfaces in one class defining different characteristics

 and behaviors.

Important: Methods defined in an interfaces cannot have any logic (method body) only a

 definition specifying a return data type and a parameter list if needed. The method body will

 be added in the class where the interface is implemented.

Important: Programming conventions dictate that all interface names should begin with a

 capital letter "I" to easier distinguish them from classes.

An interface can only have one of two access modifiers, either public, which makes it access-

ible from any assembly; or internal, which makes it accessible inside the assembly it was

defined in.

Important: An interface cannot relate to members that are internal to the class such as

 fields, constants, operators and constructors.

Interface declaration

Suppose that you want to implement a Movie class; this could be done by implementing an

interface IMovie which defines what needs to be implemented in the class; for instance,

release date, director, film title, and so on. Note that methods don't have any curly brace

bodies in interfaces and are not declared with access modifiers.

295

C# For Beginners

public interface IMovie

{

// Property declarations

string Title { get; set; }

string Director { get; set; }

DateTime ReleaseDate { get; set; }

// Method declarations

int YearsSinceRelease();

}

When implementing interfaces in a class you append a colon (:) to the class followed by a

comma separated list with the interfaces you want to implement. When adding an interface

you will be able to stub out the interface automatically by pointing to the small square at the

bottom of the interface name and selecting Implement interface from a context menu or

you can right click on the interface name and select Implement Interface.

All members will be implemented throwing a NotImplementedException that you remove

when implementing the actual logic of the member; it’s a safety net to indicate that the

members have not yet been implemented.

Implicit interface implementation

When implementing an interface implicitly you can reach the interface members directly

from the instance variables created from the implementing class without having to cast the

object to the interface type first.

public class Movie : IMovie

{

public string Title { get; set; }

public string Director { get; set; }

public DateTime ReleaseDate { get; set; }

296

C# For Beginners

public int YearsSinceRelease()

{

throw new NotImplementedException();

}

}

Creating an instance from an implicit interface

public partial class Test

{

public Test()

{

var movie = new Movie();

// Or

var movie = (IMovie)new Movie();

// Or

IMovie movie = new Movie();

}

}

Explicit interface implementation

To implement an interface explicitly means that it is qualified by the interface it belongs to;

this can make the code easier to understand, especially if you implement several interfaces.

The only time you have to use explicit implementation is if a member with the same name

and type is used in more than one of the implemented interfaces.

Important: When you implement an interface explicitly you can only use the members from

 that interface by using a variable of that interface type or by casting the class to that inter-

 face type.

public class Movie : IMovie

{

public string IMovie.Title { get; set; }

public string IMovie.Director { get; set; }

public DateTime IMovie.ReleaseDate { get; set; }

public int IMovie.YearsSinceRelease()

{

throw new NotImplementedException();

}

}

297

C# For Beginners

Creating an instance from an explicit interface

public partial class Test

{

public Test()

{

var movie = (IMovie)new Movie();

// Or

IMovie movie = new Movie();

}

}

Exercise: Employee class with two interfaces

In this exercise you will create two interfaces IPerson and IEmployee which will be

implemented in the same class called Employee. The user interface should contain three

radio buttons which will display all accessible data using the full Employee instance, the

IPerson and IEmployee interfaces respectively when clicked; you will have to cast the class

to the appropriate interface type.

The result from clicking on one of the radio buttons should be displayed in a rich textbox

control (see image below).

The IPerson interface should define three properties PersonId (int), Name (string) and Born

(DateTime). It should also define a method called Age which when implemented in the class

return the age calculated from date in the Born property.

The IEmployee interface should define three properties EmployeeId (int), Department

(string) and Salary (double).

298

C# For Beginners

The IPerson interface

1. Create a new Windows Forms Application.

2. Add a folder called Interfaces to the project.

3. Right click on the Interfaces folder and select Add-New Item.

4. Select Interface in the dialog, name it IPerson and click the Add button.

5. Add an int property called PersonId using only the get keyword to make it read only

outside the class it is implemented in. Note that you don't specify any access modi-

 fier for the members defined by the interface.

6. Add a string property called Name.

7. Add a DateTime property called Born.

8. Add a parameter-less int method called Age.

The complete code for the IPerson interface:

interface IPerson

{

// Property definitions

int PersonId { get; }

string Name { get; set; }

DateTime Born { get; set; }

// Method definition

int Age();

}

The IEmployee interface

1. Add an Interface called IEmployee to the Interfaces folder.

2. Add an int property called EmployeeId.

3. Add a string property called Department.

4. Add a double property called Salary.

The complete code for the IEmployee interface:

interface IEmployee

{

int EmployeeId { get; }

string Department { get; set; }

double Salary { get; set; }

}

299

C# For Beginners

The Employee class

1. Add a folder called Classes to the project.

2. Add a class called Employee to the Classes folder.

3. Add a public access modifier to the class so that it can contain public properties.

4. Add the Interface names as a comma separated list after the class name, use a colon

to separate the class name from the interface list.

public class Employee : IPerson, IEmployee

{

}

5. Right click on the both interface names and select Implement Interface - Implement

Interface to implement their members in the class.

6. Add a set keyword with a private access modifier to the PersonId and EmployeeId

properties in the class.

public int EmployeeId { get; private set; }

7. Implement the Age method body calculating the age from the Born property.

public int Age()

{

return DateTime.Now.AddYears(-Born.Year).Year;

}

8. Add a constructor that has parameters for all the properties and assign the passed in

values to the appropriate properties.

The complete code for the Employee class:

public class Employee : IPerson, IEmployee

{

#region IEmployee Implementation

public int EmployeeId { get; private set; }

public string Department { get; set; }

public double Salary { get; set; }

#endregion

#region IPerson Implementation

public int PersonId { get; private set; }

public string Name { get; set; }

public DateTime Born { get; set; }

300

C# For Beginners

public int Age()

{

return DateTime.Now.AddYears(-Born.Year).Year;

}

#endregion

public Employee(int employeeId, int personId, string department,

double salary, string name, DateTime born)

{

EmployeeId = employeeId;

PersonId = personId;

Department = department;

Salary = salary;

Name = name;

Born = born;

}

}

The GUI

1. Open the form's code-behind.

2. Create an instance of the Employee class at the beginning of the form class.

Employee empl = new Employee(1, 2, "Science", 123000, "Carl Carlton",

new DateTime(1982, 10, 5));

3. Add a Click event for the radio button displaying the full Employee instance data.

4. Assign a formatted string with all the data from the Employee instance.

private void rbnEmplyeeClass_Click(object sender, EventArgs e)

{

// Can use all members from both interfaces

txtResult.Text = String.Format("(Employee)\n" +

"{0}, {1}, {2}, {3}\n" + "{4}, {5}, {6}",

empl.PersonId, empl.Name, empl.Born.Year, empl.Age(),

empl.EmployeeId, empl.Department, empl.Salary);

}

5. Do the same for the radio button displaying the data defined by the IPerson inter-

face. Cast the Employee instance to an IPerson interface pointer. Note that you only

 gain access to the members of the interface after casting it.

var person = (IPerson)empl;

6. Do the same for the radio button displaying the data defined by the IEmployee

interface. Note that you can use the as keyword when casting if you like.

301

C# For Beginners

var employee = empl as IEmployee;

7. Run the application and click the radio buttons to change the text displayed in the

rich textbox.

8. Close the application.

The complete code for the Form class:

public partial class Form1 : Form

{

Employee empl = new Employee(1, 2, "Science", 123000, "Carl Carlton",

new DateTime(1982, 10, 5));

public Form1() {

InitializeComponent();

}

private void rbnEmplyeeClass_Click(object sender, EventArgs e)

{

// Can use all members from both interfaces

txtResult.Text = String.Format("(Employee)\n" +

"{0}, {1}, {2}, {3}\n" + "{4}, {5}, {6}",

empl.PersonId, empl.Name, empl.Born.Year, empl.Age(),

empl.EmployeeId, empl.Department, empl.Salary);

}

private void rbnIPersonInterface_Click(object sender, EventArgs e)

{

// Cast as IPerson

// Can only use members from the IPerson interface

var person = (IPerson)empl;

txtResult.Text = String.Format("(IPerson)\n{0}, {1}, {2}, {3}",

person.PersonId, person.Name, person.Born.Year, person.Age());

}

private void rbnIEmployeeInterface_Click(object sender, EventArgs e)

{

// Cast as IEmployee

// Can only use members from the IEmployee interface

var employee = empl as IEmployee;

txtResult.Text = String.Format("(IEmployee)\n{0}, {1}, {2}",

employee.EmployeeId, employee.Department, employee.Salary);

}

}

302

C# For Beginners

Interface polymorphism

Interface polymorphism states that: A class can be represented as an instance of any inter-

 face that it implements.

Because several classes can implement the same interface, we can use interface pointers to

switch between objects at run-time depending on the application flow.

You must use explicit casting to convert from an interface type to a class type implementing

the interface; this is because the class may implement other members than those defined by

the interface.

Because classes that implement the same interface must implement all the members of that

interface, you can use this to your advantage if you need to switch between different instan-

ces at run-time. You can use an interface pointer to hold the instance of the currently select-

ed class type.

Suppose you are implementing an application that handles different types of film media

such as VHS and Blue Ray; when implementing the classes for VHS and Blue Ray they have

some characteristics and behaviors that are similar; for instance, all movies have a title and a

release date. You can standardize the members being implemented by using an interface

called IMovie which contains all the specified members implemented by the classes.

The individual classes implementing the interface can also have unique properties and meth-

ods specific to that type of media such as being able to rewind a VHS cassette and clean the

surface of a Blue Ray disc.

Note that the VHS class has a method called Rewind which does not exist in the BlueRay

class and the BlueRay class has a method called CleanSurface which does not exist in the

VHS class. Also note that the implementation of the YearsSinceRelease method is imple-

mented differently in the two classes.

public class VHS : IMovie

{

public string Title { get; set; }

public string Director { get; set; }

public DateTime ReleaseDate { get; set; }

303

C# For Beginners

// Method is specific to this class

public void Rewind()

{

}

public int YearsSinceRelease()

{

// Implementation different from Blue Ray

return DateTime.Now.Year - ReleaseDate.Year;

}

}

public class BlueRay : IMovie

{

public string Title { get; set; }

public string Director { get; set; }

public DateTime ReleaseDate { get; set; }

// Method is specific to this class

public void CleanSurface()

{

}

public int YearsSinceRelease()

{

// Implementation different from VHS

TimeSpan time = DateTime.Now - ReleaseDate;

return new DateTime().Add(time).Year;

}

}

The Play method in the Player class has an IMovie parameter that can receive an object

from any class implementing the IMovie interface. In this example the VHS and BlueRay

classes both implement the interface.

Since both classes implement the IMovie interface the IMovie parameter will be redirected

to the correct object based on the interface pointer passed in to it and therefore it can be

used to handle all members implementing the interface and no casting is necessary.

You can however cast the interface pointer to the implementing class type to use the

specific members implemented in the class that are not part of the interface.

304

C# For Beginners

public class Player

{

public void Play(IMovie movie)

{

// The same interface properties and methods

// can be used since both classes implement

// the interface.

string info = String.Format(

"Title: {0} | Released: {1} | Years: {2}",

movie.Title,

movie.ReleaseDate.ToShortDateString(),

movie.YearsSinceRelease());

// Use the class instance and call a

// method specific to the defining class

if (movie is VHS)

{

var vhs = (VHS)movie;

vhs.Rewind();

}

else if (movie is BlueRay)

{

var blueRay = (BlueRay)movie;

blueRay.CleanSurface();

}

}

}

In the code below two movies are created one as a VHS cassette and one as a Blue Ray disc.

An instance of the Player class is created in the constructor and used to call the Play method

on the same Player instance twice once for the VHS cassette and once for the Blue Ray disc.

The IMovie pointer will use the correct movie instance based on what is passed into the Play

method.

public class Test

{

VHS vhs = new VHS() { Title = "A.I.",

ReleaseDate = new DateTime(2001, 6, 21) };

BlueRay blueRay = new BlueRay() { Title = "Alien",

ReleaseDate = new DateTime(1979, 11, 2)};

305

C# For Beginners

public Test()

{

var player = new Player();

// Play vhs cassette

player.Play(vhs);

// Play Blue Ray disc

player.Play(blueRay);

}

}

Exercise: Interface polymorphism

In this exercise you will use interface polymorphism to decide which class' implementation

will be used when calling a method. You will create an interface called IAnimal defining one

method called Walk that will be implemented in three classes called Cat, Dog and Dinosaur

which all will have different implementations of the method. When the user selects one of

the radio buttons and click the Walk button the object representing the radio button choice

will be cast to the IAnimal interface, the Walk method will be executed and a message box

with a message will be displayed.

306

C# For Beginners

The IAnimal interface

1. Create a new Windows Forms Application.

2. Add a folder called Interfaces to the project.

3. Right click on the folder and select Add-New Item.

4. Select Interface in the list, name it IAnimal and click the Add button.

5. Add a string method definition called Walk to the interface and save the interface

file.

The complete code for the IAnimal interface:

interface IAnimal

{

string Walk();

}

The classes

1. Add a folder called Classes to the project.

2. Add a class called Cat to the folder.

3. Add the IAnimal interface name after the class name with a colon in between.

class Cat : IAnimal

{

}

4. Implement the interface by right clicking on the interface and select Implement

Interface-Implement Interface. The Walk method will be added to the class, have it

return the string "I'm not gonna walk just because you say so".

public string Walk()

{

return "I'm not gonna walk just because you say so";

}

The complete code for the Cat class:

class Cat : IAnimal

{

public string Walk()

{

return "I'm not gonna walk just because you say so";

}

}

307

C# For Beginners

The Dog class

1. Add a class called Dog to the Classes folder.

2. Add the IAnimal interface name after the class name with a colon in between.

3. Implement the interface. The Walk method should return the string "Sure, I'll happi-

ly go for a walk!".

The complete code for the Dog class:

class Dog : IAnimal

{

public string Walk()

{

return "Sure, I'll happily go for a walk!";

}

}

The Dinosaur class

1. Add a class called Dinosaur to the Classes folder.

2. Implement the IAnimal interface. The Walk method should return the string "Are

you kidding, I'm a fossil!".

The complete code for the Dinosaur class:

class Dinosaur : IAnimal

{

public string Walk()

{

return "Are you kidding, I'm a fossil";

}

}

The GUI

1. Add three radio buttons called rbnCat, rbnDog and rbnDinosaur and a button called

btnWalk.

2. Add the Click event for the Walk button.

3. Declare an IAnimal interface variable called animal in the event. This variable will be

the pointer used when deciding which class' object will be used.

IAnimal animal;

4. Assign an instance of the appropriate class to the animal variable depending on

which radio button has been selected, use an if-statement.

308

C# For Beginners

if (rbnCat.Checked)

animal = new Cat();

5. Display the message "Select an animal" if no radio button have been selected when

the button is clicked and exit the event gracefully after the message box has been

closed.

6. Call the Walk method and display the returned string in a message box after the

if/else if/else-blocks.

7. Run the application, select a radio button and click the Walk button. Try the

different radio buttons to make sure that the correct messages are being displayed.

8. If you want to follow the program flow you can place a breakpoint at the beginning

of the button's Click event and step through the code; you should end up in the

method implementations for the different classes depending on the selected radio

button.

The complete code for the Form class:

public partial class Form1 : Form

{

private void btnWalk_Click(object sender, EventArgs e)

{

IAnimal animal;

//Interface Polymorphism

if (rbnCat.Checked)

animal = new Cat();

else if (rbnDog.Checked)

animal = new Dog();

else if (rbnDinosaur.Checked)

animal = new Dinosaur();

else

{

MessageBox.Show("Select an animal");

return; // Leave the method gracefully

}

MessageBox.Show(animal.Walk());

}

}

309

C# For Beginners

The IComparable interface

When .Net Framework collection items are sorted, for instance by calling a Sort method on

the collection, they use the implementation in the IComparable interface. If you want colle-

ctions to sort the instances of your class in a certain way, you implement the IComparable

interface and its CompareTo method in the class. The CompareTo method is used by the

.NET Framework whenever a comparison between two instances or values is made. All the

built-in data types implement this interface.

The CompareTo method takes one argument, the object to compare the current object with,

and returns an integer specifying if the current instance should be placed before, in the

same position or after the passed-in object instance.

Suppose you have instances of a Book class stored in an List collection that you want to sort

alphabetically by the Title property; to do this you implement the IComparable interface and

its CompareTo method comparing the Title of the objects when the Sort method of the

collection is called.

Implementing the IComparable interface

In order to be able to sort the books in the List<book> collection on the book titles you need

to implement the CompareTo method in the IComparable interface in the Book class, you

might also consider overriding the Equals method to be able to compare books on their

titles using the Equals method.

Implement the IComparable interface in the Book class and compare the Title property of

the current object with the object passed in to the CompareTo method.

The Book Class

public class Book : IComparable

{

public string Title { get; set; }

public Book(string title)

{

Title = title;

}

public int CompareTo(object obj)

{

310

C# For Beginners

Book book = obj as Book;

return String.Compare(this.Title, book.Title);

}

public override bool Equals(object obj)

{

return CompareTo(obj) == 0; // 0 => this == obj

}

}

Sorting a book list

In the Bookstore class below a List<Book> collection will be filled with books and then sort-

ed using the Sort method of the collection, you can see the sorted list in the image below.

class Bookstore

{

List<Book> books = new List<Book>();

public Bookstore()

{

books.Add(new Book("Lord of the Rings"));

books.Add(new Book("The Color of Magic"));

books.Add(new Book("Bilbo"));

books.Sort();

PrintCollection();

}

private void PrintCollection()

{

Debug.WriteLine(String.Format("Type: {0}, Count: {1}",

books.GetType().Name, books.Count));

311

C# For Beginners

foreach (var book in books)

{

Debug.WriteLine(String.Format("Title: {0}", book.Title));

}

}

}

The IComparer interface

If you want to compare two objects using a custom comparer class implementation, you

implement the IComparer interface and its Compare method. Using this type of implemen-

tation you can create very sophisticated comparisons; you are also very clear what type of

comparison is being used because you pass an instance of the comparer class you created to

the Sort method of the collection. It is also easy to update and reuse the comparison should

it be needed.

One major difference between the IComparer and the IComparable interfaces is that the

IComparer interface is implemented in a standalone class whereas the IComparable inter-

face is implemented in the class that is used to define the collection items.

The Book Class

public class Book

{

public string Title { get; set; }

public double Rating { get; set; }

public Book1(string title, double rating) {

Title = title;

Rating = rating;

}

}

The BookComparer Class Implementing the IComparer Interface

class BookComparer : IComparer<Book>

{

public int Compare(Book book1, Book book2)

{

return book1.Rating.CompareTo(book2.Rating);

}

}

312

C# For Beginners

Sorting a book list

In the Bookstore class below a List<Book> collection will be filled with books and then

sorted by rating using the Sort method of the collection and the BookComparer class, you

can see the sorted list in the image below.

class SortedBookstore

{

List<Book> books = new List<Book>();

public SortedBookstore()

{

books.Add(new Book("Lord of the Rings", 4.5));

books.Add(new Book("The Color of Magic", 3.5));

books.Add(new Book("Bilbo", 3.7));

books.Sort(new BookComparer());

PrintCollection();

}

private void PrintCollection()

{

foreach (var book in books)

Debug.WriteLine(String.Format(

"Title: {0, -20} rating: {1}",

book.Title, book.Rating));

}

}

313

C# For Beginners

314

C# For Beginners

11. Events

Introduction

An event is a way for an object to notify another object that something has happened. One

type of events are events that are triggered by a control in a GUI when a user interacts with

that control; it could be the Click event triggered when the user clicks on a button. You write

code that subscribes to an event and it can take some action when it is triggered.

Apart from using control events, you can create events for your types defined by structs or

classes that you can publish to notify the application or a component as subscribers when

something happens.

To enable other code to subscribe to an event, you create a delegate; a method signature

that defines the return type and parameters for the event function it represents.

An event is associated with a delegate; you subscribe to an event by creating a method, an

event handler, that corresponds to the delegate and pass that method name to the event

 publisher, the object that will raise the event.

Defining an event

You use the delegate keyword in a struct or class to define a delegate. A system delegate

takes two parameters; the first is the object that raised the event and the second is the

event argument, an instance of the EventArgs class that contains additional information that

needs to passed to the subscribers.

You use the event keyword to define an event. It takes two parameters: the name of the

delegate followed by the name that you want the event to have which is used when

subscribing to the event.

The following code sample show how to implement the OrderRowAdded event in the Order

class which will be triggered when a new order row is added to the order.

315

C# For Beginners

class Order

{

public delegate void OrderRowAddedHandler(OrderRow row);

public event OrderRowAddedHandler OrderRowAdded;

}

Raising an event

When a delegate and an event have been defined, you can write code to raise the event.

When raising an event, all subscribers of that event will be notified and their event handler

methods will be executed. It's important to check if that the event is not null before raising it

because if no one is subscribing to it an exception will be thrown if you try to raise it. The

syntax for raising an event is the same as calling a method and passing in the necessary para-

meters.

The following code sample show how to raise the OrderRowAdded event from the method

adding the order row.

class Order

{

public delegate void OrderRowAddedHandler(OrderRow row);

public event OrderRowAddedHandler OrderRowAdded;

public void AddOrderRow(Product product, int quantity)

{

// Add code here to add the order row

// Raise the event if there are subscribers

if (OrderRowAdded != null)

OrderRowAdded(orderRow);

}

}

Subscribing to an event

When subscribing to an event in the client code, there are two things you need to do; first,

create a function that matches the event's delegate signature and second, subscribe to the

event by using the += operator to attach the client event handler method to the event. In

certain cases, you only want to subscribe to an event for a while and then unsubscribe from

the event. You do this by using the -= operator.

public partial class Form1 : Form

316

C# For Beginners

{

Order order = new Order();

private void btnAddOrderRow_Click(object sender, EventArgs e)

{

// Subscribe to the event

order.OrderRowAdded += order_OrderRowAdded;

// Call the method that add the

// order row to the order instance

order.AddOrderRow((Product)cboProducts.SelectedItem,

(int)numQty.Value);

// Unsubscribe from the event

order.OrderRowAdded -= order_OrderRowAdded;

}

void order_OrderRowAdded(OrderRow row)

{

// Do something when the event is

// raised in the order instance

}

}

Event example

The following example will simulate a user adding products to order rows in an order. The

order will publish an event which will be triggered when a new order row is added and the

client form will subscribe to the event updating the data source in the data grid view control

displaying the order rows. The order rows are displayed in ascending order on the order row

id and the most recently added order row is displayed with a light green background.

317

C# For Beginners

The Product class

This class represent a product that can be added to an order row, it has three properties a

unique id, a descriptive title and a price.

class Product

{

public int Id { get; set; }

public string Title { get; set; }

public Double Price { get; set; }

}

The OrderRow class

This class represent an order row that can be added to an order, all its properties are public

readable but can only be assigned inside the object or are not assignable at all.

The private Product property will hold the product associated with the order row and is not

accessible outside the order row to adhere to the encapsulation rules of object oriented

programming which states that all data should be private and exposed by properties. It can

be assigned and read internally and its data is exposed through two read only properties

called Title and Price.

The Qty (quantity) and Id (order row id) properties are publically readable but can only be

assigned within the order row object; their set-blocks have been declared as private.

The Total property is publically accessible and does only contain a get-block which return

the price multiplied by the quantity.

318

C# For Beginners

The class' constructor will assign the passed in product and quantity to the appropriate

properties and the Id property is assigned a random number with a max value of 1000 (to be

able to tell the order rows apart in this example).

class OrderRow

{

private Product Product { get; set; }

public int Id { get; private set; }

public string Title { get { return Product.Title; } }

public double Price { get { return Product.Price; } }

public int Qty { get; private set; }

public double Total { get { return Product.Price * Qty; } }

public OrderRow(Product product, int quantity)

{

Product = product;

Qty = quantity;

Id = new Random().Next(1000);

}

}

The Order class (event publisher)

This class represent an order that can contain many order rows stored in a List<OrderRow>

collection. After an order row has been added the OrderRowAdded event will be raised

signaling to its subscribers (the client) that a new order row is available.

The AddOrderRow method will be called by the client when the user clicks the Add Order

Row button in the GUI. A new order row will be created using the passed in product and

quantity and is then added to the orderRows collection. After the order row has been added

to the collection the OrderRowAdded event is raised if there are subscribers to it.

The GetOrderRows method will return all order rows in the order sorted in ascending order

on the order row id. This method is called by the client when listing all order rows belonging

to the order in a data grid view.

319

C# For Beginners

class Order

{

public delegate void OrderRowAddedHandler(OrderRow row);

public event OrderRowAddedHandler OrderRowAdded;

List<OrderRow> orderRows = new List<OrderRow>();

public List<OrderRow> GetOrderRows()

{

return orderRows.OrderBy(or => or.Id).ToList();

}

public void AddOrderRow(Product product, int quantity)

{

// Create a new order row with the passed in

// information and add the order row to the

// order rows collection

var orderRow = new OrderRow(product, quantity);

orderRows.Add(orderRow);

// Raise the event if there are subscribers

if (OrderRowAdded != null)

OrderRowAdded(orderRow);

}

}

The client (event subscriber)

To make the example a bit less complex there is only one order which is declared at the

beginning of the form along with a collection that will contain all available products.

The products are added to the products collection in the constructor and then the collection

is assigned as the combo box's data source listing the product titles .

The button's Click event is where the OrderRowAdded event is subscribed to and the

AddOrderRow method of the order instance is called creating a new order row with data

from the GUI. The product is fetched from the selected item in the combo box listing the

available products and the quantity is fetched from the number up down control.

When the OrderRowAdded event is raised in the order object the order_OrderRowAdded

event method will be called and in it the data source is reassigned by calling the

GetOrderRows method of the order instance. In this method the data grid view output is

320

C# For Beginners

formatted assigning column widths and background color to the most recently added order

row.

public partial class Form1 : Form

{

Order order = new Order();

List<Product> products = new List<Product>();

public Form1()

{

products.Add(new Product { Id = 1, Price = 10.5,

Title = "Product 1" });

products.Add(new Product { Id = 2, Price = 20,

Title = "Product 2" });

products.Add(new Product { Id = 3, Price = 5,

Title = "Product 3" });

InitializeComponent();

cboProducts.DataSource = products;

cboProducts.DisplayMember = "Title";

}

private void btnAddOrderRow_Click(object sender, EventArgs e)

{

// Subscribe to the event

order.OrderRowAdded += order_OrderRowAdded;

order.AddOrderRow((Product)cboProducts.SelectedItem,

(int)numQty.Value);

// Unsubscribe from the event

order.OrderRowAdded -= order_OrderRowAdded;

}

void order_OrderRowAdded(OrderRow row)

{

var idx = order.GetOrderRows().IndexOf(row);

dgvOrderRows.DataSource = null;

dgvOrderRows.DataSource = order.GetOrderRows();

foreach (DataGridViewColumn column in dgvOrderRows.Columns)

column.Width = 90;

321

C# For Beginners

dgvOrderRows.Columns[1].Width = 180;

foreach(DataGridViewCell cell in dgvOrderRows.Rows[idx].Cells)

cell.Style.BackColor = Color.LightGreen;

}

}

Exercise: Video rental with events

In this exercise you will create a simple video rental application using events to signal when

all copies of a film is rented out and a copy of a film has been returned and rented.

Because there can be more than one copy of a film in the videos collection in the Video-

Rental class instance you have to select the films using the Distinct LINQ method to fetch

only one of the films to be displayed in the combo box. To use the Distinct method in this

way you have to implement a class called VideoComparer that implement the IEquality-

Comparer interface and pass an instance of that class to the Distinct method. The interface

has two methods defined called Equals which compares two instances of a class to determi-

ne if they should be considered equal and the GetHashCode method which return the uniq-

ue identifier of the passed in object.

class VideoComparer : IEqualityComparer<Video>

{

public bool Equals(Video video1, Video video2)

{

return video1.FilmId.Equals(video2.FilmId);

}

public int GetHashCode(Video video) {

return video.FilmId;

}

}

322

C# For Beginners

When calling the Distinct LINQ method you pass in an instance of the class defined above to

compare the video instances.

public List<Video> GetVideos()

{

return videos.Distinct(new VideoComparer()).ToList();

}

When the user clicks the Rent button the film id of the film selected in the combo box will be

sent to the RentVideo method of the VideoRental class instance to simulate that the film is

being rented. In the RentVideo method the IsRented property is set to true on the first

instance of the film matching the passed in film id found in the videos collection and the

AllCopiesRentedOut event is raised if there are no more available copies of the film in the

collection otherwise the VideoInfo event is raised.

When the Return button is clicked the VideoReturned event is subscribed to and then the

ReturnVideo method of the VideoRental class instance is called passing in the film id of the

film selected in the combo box. After the method call the event is unsubscribed.

When the AllCopiesRentedOut event of the VideoRental class instance is raised the

corresponding event method called rental_AllCopiesRentedOut in the client is called where

a text message stating that all copies of the film is rented out is displayed in a label (see

image above).

When the VideoInfo event of the VideoRental class instance is raised the corresponding

event method called rental_VideoInfo in the client is called where a text message showing

the number of available copies of the film in a label (see image above).

When the VideoReturned event of the VideoRental class instance is raised the corres-

ponding event method called rental_VideoReturned in the client is called where a text

message showing the number of available copies of the film in a label (see image above).

The GUI

The GUI is very simple it consist of a combo box called cboVideos, two buttons called

 btnRent and btnReturn and a label called lblResult (see image above).

323

C# For Beginners

The Video class

The Video class has three properties called FilmId, Title and IsRented.

1. Add a folder called Classes to the project.

2. Add a class called Video to the folder.

3. Add an int property called FilmId to the class.

4. Add a string property called Title to the class.

5. Add a bool property called IsRented to the class that will keep track of if the film has

been rented or is available.

The complete code of the Video class:

class Video

{

public int FilmId { get; set; }

public string Title { get; set; }

public bool IsRented { get; set; }

}

The VideoComparer class

The VideoComparer class implement the IEqualityComparer interface specifying the Video

class as its designated type. The interface define two methods called Equals and GetHash-

Code which have to be implemented in the VideoComparer class.

The VideoComparer class is used to fetch videos from the videos collection using the

Distinct LINQ method making sure that only one instance of a video is represented in the

result even if several instances are present in the collection. This is necessary when listing

the films in the combo box in the GUI, fetching films without calling the Distinct method will

display the same film title multiple times in the combo box.

1. Add a Class called VideoComparer to the Classes folder.

2. Implement the IEqualityComparer interface.

class VideoComparer : IEqualityComparer<Video>

{

}

3. Implement the Equals method and compare the FilmId property of the two Video

instances passed into the method.

324

C# For Beginners

4. Implement the GetHashCode method and return the FilmId property of the passed

in Video instance.

The complete code of the VideoComparer class:

class VideoComparer : IEqualityComparer<Video>

{

public bool Equals(Video video1, Video video2)

{

return video1.FilmId.Equals(video2.FilmId);

}

public int GetHashCode(Video video)

{

return video.FilmId;

}

}

The VideoRental class (event publisher)

The VideoRental class is the simulated video store where the videos are rented and

returned, it is in this class the events are declared and raised. Apart from the events you also

have to add four methods to the class.

The GetVideos method return the distinct result set of the videos collection and is called

from the GUI when the combo box is loaded with data. The AddVideoToList is used to add a

video to the videos collection. The RentVideo is used to mark a video as rented by assigning

true to its IsRented property in the videos collection and then raise either the AllCopies-

RentedOut or VideoInfo events with information about the film. The ReturnVideo method is

called when a video is returned and the IsRented property of the film is set to false signaling

that it can be rented. After the film has been returned the VideoReturned event is raised.

Events and Video collection

1. Add a class called VideoRental to the Classes folder.

2. Add a delegate called AllCopiesRentedOutHandler which is declared as void and

takes a Video instance as a parameter.

public delegate void AllCopiesRentedOutHandler(Video video);

3. Use the delegate to declare an event called AllCopiesRentedOut.

public event AllCopiesRentedOutHandler AllCopiesRentedOut;

325

C# For Beginners

4. Add a delegate called VideoHandler which is declared as void and takes a string

parameter called title and an int parameter called count.

public delegate void VideoHandler(string title, int count);

5. Use the VideoHandler delegate to declare two events called VideoReturned and

VideoInfo. You can use the same delegate because the methods are defined exactly

the same in the client.

6. Add a List<Video> collection called videos to the class. This collection will hold all

the films both rented and available.

The form's code-behind so far:

class VideoRental

{

public delegate void AllCopiesRentedOutHandler(Video video);

public event AllCopiesRentedOutHandler AllCopiesRentedOut;

public delegate void VideoHandler(string title, int count);

public event VideoHandler VideoReturned;

public event VideoHandler VideoInfo;

List<Video> videos = new List<Video>();

}

The GetVideos method

Add a method called GetVideos which return a List<Video> collection with distinct films

using an instance of the VideoComparer class to compare the Video instances when calling

the Distinct LINQ method.

The complete code for the GetVideos method:

public List<Video> GetVideos()

{

return videos.Distinct(new VideoComparer()).ToList();

}

The AddVideoToList method

Add a void method called AddVideoToList which add the passed in Video instance to the

videos collection.

326

C# For Beginners

The complete code for the AddVideoToList method:

public void AddVideoToList(Video video)

{

videos.Add(video);

}

The RentVideo method

1. Add a void method called RentVideo which takes an int parameter called filmId.

public void RentVideo(int filmId)

{

}

2. Use the passed in film id to fetch the first film in the videos collection matching the

film id and that is not already rented out. Store the result in a variable called video.

var video = videos.FirstOrDefault(v => v.FilmId.Equals(filmId) &&

!v.IsRented);

3. If the video variable is not null then assign true to its IsRented property marking it as

rented and then fetch the first film in the videos collection matching the film id that

is not already rented out. Store the result in the video variable you added earlier.

4. Check if the video variable is null and the AllCopiesRentedOut event has subscrib-

ers, if there are subscribers fetch the first video that matches the film id and pass it

in to the event when it is raised.

if (video == null && AllCopiesRentedOut != null)

{

video = videos.FirstOrDefault(v => v.FilmId.Equals(filmId));

AllCopiesRentedOut(video);

}

5. If the previous if-statement is evaluated to false then count the number of films that

are available for rental and store the result in a variable called count. Raise the

VideoInfo event passing in the Title property of the video matching the film id and

the count variable.

else

{

var count = videos.Count(v => v.FilmId.Equals(filmId) &&

!v.IsRented);

VideoInfo(video.Title, count);

}

327

C# For Beginners

The complete code for the RentVideo method:

public void RentVideo(int filmId)

{

var video = videos.FirstOrDefault(

v => v.FilmId.Equals(filmId) && !v.IsRented);

// Rent out video if available

if (video != null)

{

video.IsRented = true;

// Check if there still are videos available

video = videos.FirstOrDefault(v => v.FilmId.Equals(filmId) &&

!v.IsRented);

}

// Check if event should be triggered

if (video == null && AllCopiesRentedOut != null)

{

video = videos.FirstOrDefault(v => v.FilmId.Equals(filmId));

AllCopiesRentedOut(video);

}

else

{

var count = videos.Count(v => v.FilmId.Equals(filmId) &&

!v.IsRented);

VideoInfo(video.Title, count);

}

}

The ReturnVideo method

1. Add a void method called ReturnVideo which take an int parameter called filmId.

2. Fetch the first video in the videos collection that matches the film id and is rented

out, store the result in a variable called video.

3. If the video variable is not null then set its IsRented property to false to indicate

that it is available for rental.

4. Count the number of films matching the film id and that are not rented out and

store the result in a variable called count.

5. Raise the VideoReturned event passing in the video Title property and the count

variable to it.

328

C# For Beginners

The complete code of the ReturnVideo method:

public void ReturnVideo(int filmId)

{

var video = videos.FirstOrDefault(

v => v.FilmId.Equals(filmId) && v.IsRented);

// Return video

if (video != null)

{

video.IsRented = false;

var count = videos.Count(v => v.FilmId.Equals(filmId) &&

!v.IsRented);

VideoReturned(video.Title, count);

}

}

The Form class (event subscriber)

The form constructor will add videos to the videos collection by calling the AddVideoToList

method on an instance of the VideoRental class called rental. It will also add the videos in

the videos collection as the data source for the combo box by calling the GetVideos method.

The form's code-behind code so far:

public partial class Form1 : Form

{

VideoRental rental = new VideoRental();

public Form1()

{

rental.AddVideoToList(new Video { FilmId = 1, Title = "Alien" });

rental.AddVideoToList(new Video { FilmId = 2, Title = "Aliens" });

rental.AddVideoToList(new Video { FilmId = 2, Title = "Aliens" });

InitializeComponent();

cboVideos.DataSource = rental.GetVideos();

cboVideos.DisplayMember = "Title";

}

}

329

C# For Beginners

The Rent button's click event

Before trying to rent the video selected in the combo box you have to subscribe to the

AllCopiesRentedOut and VideoInfo events. Call the RentVideo method on the rental instan-

ce variable to rent the film then unsubscribe to the events.

1. Add the Click event for the Rent button.

2. Subscribe to the two events. Press the Tab key on the keyboard twice after you have

written += to automatically generate the event method.

rental.AllCopiesRentedOut += rental_AllCopiesRentedOut;

rental.VideoInfo += rental_VideoInfo;

3. Clear the label and fetch the selected video from the combo box.

4. Call the RentVideo method on the rental instance variable and pass in the video you

fetched.

5. Unsubscribe to the events.

The complete code of the Rent button's Click event:

private void btnRent_Click(object sender, EventArgs e)

{

// Subscribe to event

rental.AllCopiesRentedOut += rental_AllCopiesRentedOut;

rental.VideoInfo += rental_VideoInfo;

// Try to rent a video

lblResult.Text = String.Empty;

var video = (Video)cboVideos.SelectedItem;

rental.RentVideo(video.FilmId);

// Unsubscribe to event

rental.AllCopiesRentedOut -= rental_AllCopiesRentedOut;

rental.VideoInfo -= rental_VideoInfo;

}

The AllCopiesRentedOut event method

This method is called when the AllCopiesRentedOut event is raised in the rental instance's

RentVideo method. Write a message to the label which states that all copies of the selected

film is rented out.

330

C# For Beginners

The complete code of the AllCopiesRentedOut event:

void rental_AllCopiesRentedOut(Video video)

{

lblResult.Text = String.Format(

"All copies of '{0}' are rented out.", video.Title);

}

The VideoInfo event method

This method is called when the VideoInfo event is raised in the rental instance's RentVideo

method. Write a message to the label which states that a copy of the selected film has been

rented.

The complete code of the VideoInfo event:

void rental_VideoInfo(string title, int count)

{

lblResult.Text = String.Format(

"A copy of '{0}' has been rented.\nAvailable Copies: {1}.",

title, count);

}

The Return button's Click event

Before the video can be returned you have to subscribe to the VideoReturned event which

will write a message to the label if the video was successfully returned. You return the video

by calling the ReturnVideo method on the rental instance variable.

1. Add the Return button's Click event.

2. Subscribe to the VideoReturned event.

3. Clear the label text and fetch the selected video from the combo box.

4. Call the ReturnVideo method on the rental instance variable.

5. Unsubscribe to the VideoReturned event.

The complete code of the VideoReturned event:

private void btnReturn_Click(object sender, EventArgs e)

{

rental.VideoReturned += rental_VideoReturned;

// Try to return a video

lblResult.Text = String.Empty;

var video = (Video)cboVideos.SelectedItem;

331

C# For Beginners

rental.ReturnVideo(video.FilmId);

rental.VideoReturned -= rental_VideoReturned;

}

The VideoReturned Event Method

This method is called when the VideoReturned event is raised in the rental instance's

ReturnVideo method. Write a message to the label which states that the video has been

returned.

The complete code of the VideoReturned event:

void rental_VideoReturned(string title, int count)

{

lblResult.Text = String.Format(

"A copy of '{0}' has been returned.\nAvailable Copies: {1}.",

title, count);

}

332

C# For Beginners

12. Inheritance

Introduction

Inheritance is the possibility to specialize a class that already exists by reusing it in another

class. It is a very powerful tool in your object-oriented developer’s toolkit. When inheriting a

class, you are reusing the characteristics and behaviors of an already existing class; then you

specialize your class by adding new characteristics and behaviors in the form of methods,

properties and other programming constructs.

Using inheritance saves money and time by reducing the amount of code you have to write.

Object hierarchies that can be used interchangeably depending on requirements are another

benefit of using inheritance.

When inheriting, you take an existing class and use it as a base class, as a source of already

implemented methods, properties and other constructs, and reuse it in your new class

instead of starting from scratch.

Important: You can only inherit from one class but you can implement several interfaces.

Suppose you are creating an application that deals with different types of flying machines;

you could then build an inheritance chain where you start out with the most general class,

FlyingMachine, that implements only what is common to all flying machines. Then you

inherit the FlyingMachine class to more specialized classes, Plane and Saucer, which are

different types of flying machines and therefore have characteristics and behaviors suited to

planes and saucers. Then you decide to specialize it further to different sub-categories and

the different characteristics and behaviors for each category.

In the flying machine scenario, the FlyingMachine class would be the base class for Plane

and Saucer and those two classes respectively would be base classes for the different

categories that are created. Another way of putting it is that the category classes are deriv-

ing from the Plane or the Saucer classes; and the Plane and Saucer classes are deriving from

the FlyingMachine class.

333

C# For Beginners

Important: You inherit a class by specifying the class name of the class you want to inherit

 from to the right of the class name of the class you want to inherit to with a colon in between

 the class names. Example: class InheritingClass : ClassToInherit.

Base class: FlyingMachine

The FlyingMachine class is the most general class in this inheritance chain and contain mem-

bers that are used in all types flying machines.

class FlyingMachine

{

public void Drive() { }

public void Stop() { }

}

More specialized classes: Plane and Saucer

The Plane and Saucer classes are more specialized flying machines than the FlyingMachine

class and need the same logic as in the FlyingMachine class. Instead of rewriting the code

from scratch ending up with two code bases that are the same inviting code inconsistencies,

you can reuse the code from the FlyingMachine class by inheriting it in the Plane and Saucer

class.

By inheriting the FlyingMachine class all its public members are available in the inheriting

classes as if they were implemented in those classes.

class Plane : FlyingMachine

{

public int NumberOfFloors { get; set; }

public bool HasFirstClass { get; set; }

}

334

C# For Beginners

class Saucer : FlyingMachine

{

public bool HasAlienTechnology { get; set; }

public bool IsFromEarth { get; set; }

}

Even more specialized classes: Jet and UFO

The Jet and UFO classes are more specialized planes and flying saucers inheriting the char-

acteristics and behaviors of the Plane and Saucer classes. By inheriting the Plane and Saucer

classes the Jet and UFO classes will have access to the members in the Plane and Saucer

classes as well as the members in the FlyingMachine class.

class Jet : Plane

{

public bool IsSupersonic { get; set; }

}

class UFO : Saucer

{

public bool HasWarpSpeed { get; set; }

}

Using the classes

The following code sample shows how to use the classes and what is available in each class.

Members shown in bold are defined in that class and are not inherited.

void UsingTheSpecializedClasses()

{

FlyingMachine fm = new FlyingMachine();

fm.Drive();

fm.Stop();

Plane plane = new Plane();

plane.Drive();

plane.Stop();

plane.HasFirstClass = true;

plane.NumberOfFloors = 2;

Jet jet = new Jet();

jet.Drive();

jet.Stop();

335

C# For Beginners

jet.NumberOfFloors = 3;

jet.HasFirstClass = true;

jet.IsSupersonic = false;

Saucer saucer = new Saucer();

saucer.Drive();

saucer.Stop();

saucer.HasAlienTechnology = false;

saucer.IsFromEarth = true;

UFO ufo = new UFO();

ufo.Drive();

ufo.Stop();

ufo.HasAlienTechnology = true;

ufo.IsFromEarth = false;

ufo.HasWarpSpeed = true;

}

Base classes

When working in a project, you should ask yourself if and when you or other developers

need to use the class you are creating as a base class for inheritance. You have full control

over how a class can be inherited if you choose to make it inheritable.

Abstract

It is not uncommon to create abstract classes that will be used only as base classes. The

members of an abstract class' members do not have to have completely implemented func-

tionality, it can even have missing functionality. It is up to you to decide if a developer can

create instances of a class you are creating. If you want the class to be used in inheritance

only and don't want the possibility to create instances of the class, then you add the abstract

keyword to the class declaration.

When adding members to an abstract class, you can choose to create them with the abstract

keyword, in which case they will be conceptually similar to members defined by interfaces in

that they have to be overridden and implemented by the deriving class and no implementa-

tion is available in the abstract class. It is possible, however, to create fully implemented

non-abstract members that can be used directly by a deriving class.

Important: Abstract members cannot have a private access modifier.

336

C# For Beginners

Important: An abstract class can only be used in inheritance and cannot be instantiated.

Creating an Abstract Class

The first two members of the class are implemented and contain logic that can be called

directly from the inheriting class. The last two members are declared as abstract and need

to be overridden in the inheriting class using the override keyword.

abstract class AbstractBaseClass

{

// Members with implementations

internal bool NonAbstractProperty { get; set; }

internal void NonAbstractMethod()

{

// Do something

}

// Abstract members that need to be

// overridden in the inheriting class

internal abstract bool AbstractProperty { get; set; }

internal abstract void AbstractMethod();

}

Using an Abstract class

Note that the two abstract members of the inherited AbstractBaseClass class are implemen-

ted using the override keyword in the InheritingClass class before they can be called where-

as the two non-abstract members can be called directly.

class InheritingClass : AbstractBaseClass

{

// Overridden members of the AbstractBaseClass class

internal override bool AbstractProperty { get; set; }

internal override void AbstractMethod()

{

// Do something

}

void UseMemebers()

{

// Using the non-abstract members

// of the inherited class

NonAbstractProperty = false;

NonAbstractMethod();

337

C# For Beginners

// Overridden members of the inherited class

// can be called without first being overridden

AbstractProperty = true;

AbstractMethod();

}

}

Sealed

In some circumstances, you might want to prevent developers from inheriting a class; you

can accomplish this by adding the sealed keyword to the class declaration, creating an un-

inheritable class.

When creating a class that derives from another class, you might want to prevent further

inheritance; you can do that by adding the sealed keyword to your class declaration.

Important: The sealed and abstract keywords cannot be used on the same class since they

 are the opposite of one another.

Important: Static classes are sealed and cannot be inherited and static members in a non-

 static class will not be inherited.

Creating a Sealed class

This class cannot be inherited and must be instantiated to be used.

sealed class SealedClass

{

public bool PropertyInSealedClass { get; set; }

public int MethodInSealedClass(int x, int y)

{

return x + y;

}

}

338

C# For Beginners

Using a Sealed class

The sealed class must be instantiated to be used.

class UseSealedClass

{

public UseSealedClass()

{

// Using the sealed class

var sealedClass = new SealedClass();

sealedClass.PropertyInSealedClass = true;

var result = sealedClass.MethodInSealedClass(10, 20);

}

}

Base class members

Declaring a member of a class with the virtual keyword makes it possible for developers to

override or replace the member in a derived class. When overriding the method in the

deriving class, you use the override keyword on the method.

The following code define a base class with two methods where the Subtract method will

throw an exception when called if not overridden. The Add method can be called without an

exception being throwing because it has valid logic.

class BaseClassWithVirtualMember

{

public virtual int Add(int x, int y)

{

return x + y;

}

public virtual int Subtract(int x, int y)

{

throw new NotImplementedException();

}

}

The following code defines a class inheriting the base class above and overrides the Subtract

method with valid logic making it possible to call the method on instances of the inheriting

class without it throwing an exception.

339

C# For Beginners

Note that you can call the Add method even though it is not overridden because it is inheri-

ted.

class OverridingVirtualMember : BaseClassWithVirtualMember

{

public override int Subtract(int x, int y)

{

return x - y;

}

}

The following code creates instances of the base class and the inheriting class and call the

methods on the two instances. Note that the base class instance will throw an exception

when the Subtract method is called but the Subtract method of the inheriting class instance

will not because it has overridden the method and implemented valid logic.

class UseBaseClassMembers

{

public UseBaseClassMembers()

{

var baseClass = new BaseClassWithVirtualMember();

var baseAdd = baseClass.Add(60, 40);

// Will throw an exception

var baseSubtract = baseClass.Subtract(60, 40);

var overridden = new OverridingVirtualMember();

var add = overridden.Add(50, 30);

// Will use the overridden implementation

var subtract = overridden.Subtract(20, 10);

}

}

New vs. Override

You also can use the new keyword to override a member; there is a subtle difference

between the override and new keywords. The result when using the new keyword on a base

class instance variable that is assigned an instance of a derived class might not be what you

expect; the base class instance variable will call the base class implementation of the

method overridden with the new keyword and not the implementation in the derived class.

340

C# For Beginners

The base class

The base class contain two virtual declared methods which can be overridden in a deriving

class.

class BaseClass

{

public virtual void Method1()

{

Console.WriteLine("Base - Method1");

}

public virtual void Method2()

{

Console.WriteLine("Base - Method2");

}

}

When creating an instance of the base class the methods in the base class will be called no

matter how many deriving classes there are because it has no knowledge of those imple-

mentations as an instance of the base class.

class NewVsOverride

{

public NewVsOverride()

{

BaseClass baseClass = new BaseClass();

baseClass.Method1();

baseClass.Method2();

//Output

//Base - Method1

//Base - Method2

}

}

The Deriving class

The deriving class overrides the two virtual declared methods in the base class one with the

override keyword and one with the new keyword.

class DerivedClass : BaseClass

{

public override void Method1()

341

C# For Beginners

{

Console.WriteLine("Derived - Method1 (override)");

}

public new void Method2()

{

Console.WriteLine("Derived - Method2 (new)");

}

}

When creating an instance of the deriving class and calling the methods on that instance

variable the overridden methods will be called.

class NewVsOverride

{

public NewVsOverride()

{

DerivedClass derivedClass = new DerivedClass();

derivedClass.Method1();

derivedClass.Method2();

//Output

//Derived - Method1 (override)

//Derived - Method2 (new)

}

}

Casting the Deriving class as the base class

When casting an instance of the derived class to the base class and calling the methods on

that base class instance variable there is one scenario concerning the new keyword you

should be aware of and that is when the new keyword has been used to override a method

in the deriving class.

The new keyword will override the method implementation in the deriving class and it will

be executed when an instance variable of the deriving class is used to call the overridden

method. However, if the instance variable of the deriving class is cast to the base class and

that instance variable is used to call the overridden methods, the method overridden with

the override keyword will execute the implementation in the deriving class whereas the one

overridden with the new keyword will execute the implementation in the base class.

342

C# For Beginners

Important: Note the output for this scenario, the first method will execute the code in the

 deriving class and the second method will execute the code in the base class.

class NewVsOverride

{

public NewVsOverride()

{

BaseClass baseClassAsDerivedClass = new DerivedClass();

baseClassAsDerivedClass.Method1();

baseClassAsDerivedClass.Method2();

//Output

//Derived - Method1 (override)

//Base - Method2

}

}

Additional reading: “Knowing When to Use Override and New Keywords (C# Programming

Guide)”

Sealing overridden members

Sealing overridden members is a way for you to force deriving classes to use your implemen-

tation. You make a member sealed by using the sealed keyword on methods overridden

with the override keyword.

Important: Members are sealed by default unless you declare them with the virtual key-

 word.

Important: You can only use the sealed keyword on overridden methods in derived classes.

class BaseClassSealedMembers

{

// Can be overridden when the

// class is inherited

public virtual void DoSomething()

{

}

}

343

C# For Beginners

class DerivingClass : BaseClassSealedMembers

{

// Cannot be overridden if the class

// is inherited

public sealed override void DoSomething()

{

}

}

class SecondDerivingClass : DerivingClass

{

// Not possible because the method

// is sealed in the inherited class.

// Will cause a compilation error.

public override void DoSomething()

{

}

}

Access modifiers

There are five access modifiers that control where a class or a member will be accessible.

Members are private by default and will not be directly accessible from derived classes; to

access a private member, you have to create a property or method to expose it. A class in

internal by default.

Example: Access modifiers (The Godfather)

This example is loosely modeled on the film The Godfather and the Corleone family and the

police interrogating them; the purpose is to shed light on the different access modifiers that

can be used and their restrictions.

344

C# For Beginners

Assemblies, classes and inheritance

In the Corleones assembly, we find the classes related to the Corleone family and their

minions that do the dirty work for the family. The Corleone class is the base class that all

Corleone family members inherit from (Don and Joe). The family has a honor codex that all

of their minions who aspire to be hit men have to adhere to. That codex is represented by

the KillerCodex class; this is the base class for all minions. An instance of the Minion class

represents a hit man that the family uses.

Outside of the family, we have the constables who chase the family and try to catch them;

the Constable class is located in the Police assembly.

345

C# For Beginners

The Corleone class

The Corleone class is declared as public which means that it can be reached from any assem-

bly. All members are declared as internal which means that they can be reached within the

Corleone assembly, but not from the Police assembly.

The GetMinion and AddMinion methods are declared as virtual which means that they can

be overridden and implement new logic when the Corleone class is inherited. Don and Joe

might have different ways of dealing with the minions and therefore implement the meth-

ods with logic specific to their needs.

public class Corleone

{

internal List<Minion> Minions = new List<Minion>();

internal virtual Minion GetMinion(string name)

{

throw new NotImplementedException();

}

internal virtual void AddMinion(Minion minion)

{

Minions.Add(minion);

}

}

The Don class

This class represents the father of the family and the leader of the organization. This class

inherits the Corleone class and will have access to its members. The Don class is declared

with the sealed keyword which means that it cannot be inherited.

Don Corleone has a family secret that is closely guarded and that only the family knows

about; this information and the lie that he tells the police when they are grilling him are

declared as private because he want the possibility to choose who to share the secret with

exposing it through public or internal properties.

One thing that is public knowledge is that he has a son named Joe. Joe is declared as a

separate class of which an instance is stored in the Don class because he is Don Corelones

son and is therefore associated with him; the instance is created in the Don class’ construc-

346

C# For Beginners

tor and the Don instance is passed to the Jon instance to establish the relationship between

father and son using the this keyword which represent the current instance of the Don class.

Son = new Joe(this);

What Don tells the family when they ask about the secret is represented by the TellFamily

property which is declared as internal to make sure that only members of the Corleones

assembly ever can find out the truth. The property TellPolice is declared as public because

anyone, even members of other assemblies, are allowed to hear the lie.

The GetMinion method is inherited from the Corleones class, but is overridden using the

overrides keyword to create an alternative implementation that will be used when Don is

calling for one of his minions. The method is also declared as internal to make sure that only

members of the Corleones assembly can ask Don to contact his minions.

The SolveProblem method is declared without access modifier making it private. This means

that only members in the Don class can call it; whenever Don wants to have a problem

solved his son will take care of it hence the call to the OrderHit method on the Son property

containing the Joe instance.

sealed public class Don : Corleone

{

private string familySecret = "This is the secret";

private string lie = "I have no idea";

public Joe Son { get; set; }

public Don()

{

Son = new Joe(this);

}

internal string TellFamily { get { return familySecret; } }

public string TellPolice { get { return lie; } }

internal override Minion GetMinion(string name)

{

return (from minion in Minions

where minion.Name == name

select minion).SingleOrDefault();

}

347

C# For Beginners

void SolveProblem()

{

Son.OrderHit("Charlie", "Marty");

}

}

The Joe class

Joe is the son of Don and helps him run the family business; the Joe class is declared as

public which means that it can be reached from any assembly and has no restrictions on

inheritance. Who knows, maybe he will clone himself in the future.

The AddMinion method is inherited from the Corleone class but is overridden with its own

unique implementation, it is also declared as sealed which means that if the Joe class is

inherited, this method cannot be overridden by the deriving class; it is also declared as

internal which means that it only can be used inside the Corleones assembly.

The GetMinion method is inherited from the Corleone class but is overridden and declared

as internal which means that it has its own unique implementation and only can be used

inside the Corleones assembly. Note that it has a different implementation than the same

method in the Don class.

In the OrderHit method which is declared as internal and only available in the Corleones

assembly and the Kill method is called on the fetched Minion instance using method

chaining.

The AskAboutSecret method is declared as public, making it possible to access it from the

Police assembly or any other assembly. Note that Joe is thinking about the family secret that

he has asked his father about, but speaking the lie.

public class Joe : Corleone

{

private Don father;

public Joe(Don father)

{

this.father = father;

}

internal sealed override void AddMinion(Minion minion)

{

348

C# For Beginners

var exist = GetMinion(minion.Name) != null;

if(!exist) Minions.Add(minion);

}

internal override Minion GetMinion(string name)

{

return Minions.SingleOrDefault(m => m.Name.Equals(name));

}

internal void OrderHit(string minion, string target)

{

GetMinion(minion).Kill(target);

}

public string AskAboutSecret()

{

Console.WriteLine(

"[Joe thinking] The Secret is: {0}",

father.TellFamily);

return father.TellPolice;

}

}

The KillerCodex class

This class contains two methods that minions who aspire to be hit men must implement or

use as is through inheritance. The KillerCodex class is declared as internal because the police

must not be aware of the contract between a minion and the Corleone family. The contract

is honored by the minion class inheriting the KillerCodex class.

The ChooseWeapon method is declared as protected which means that it has to be

inherited to be used outside of the KillerCodex class.

The Kill method is declared as protected internal which means that it can be used either by

inheritance or through an instance variable internally in the Corleones assembly.

internal class KillerCodex

{

protected void ChooseWeapon()

{

}

349

C# For Beginners

protected internal void Kill(string name)

{

}

}

The Minion class

This class represents one of the minions working for the family and it inherits the

KillerCodex class and its members. The Minion class is declared as internal which means

that it only is accessible within the Corleones assembly and as such not available to the

police assembly; this makes the minions a secret group that only the family knows about.

Note that the Kill method does not have to be implemented to be used when Joe calls the

method from the OrderHit method; the Kill method can be called by Joe because it is

declared as internal in the KillerCodex class.

internal class Minion : KillerCodex

{

internal string Name { get; set; }

internal Minion(string name)

{

Name = name;

ChooseWeapon();

}

public void Talk()

{

Console.WriteLine("I'm not saying anything");

}

}

The Constable class

The Constable class resides in a different assembly than all the other classes because it does

not belong to the family; the police may be bought but that is not the same, they are still not

part of the family. The constables loves to interrogate people and seizes every opportunity

to interrogate the Corleones.

The Constable class contain one method that asks Don or Joe about the secret; note how-

ever that the constable does not have any knowledge of the minions. The Minion class is

350

C# For Beginners

declared as internal, making it impossible for other assemblies to access it; you might say

that the minions hide as a secret group inside the Corleones family assembly.

Note that the person parameter in the Interrogate method is declared with the object data

type to allow instances of any class to be passed in. The is keyword is then used to deter-

mine if it is a Don or a Joe class instance.

Important: You need to add a reference to the Corleones assembly in the Police assembly to

 get access to its classes.

public class Constable

{

public void Interrogate(object person)

{

if (person is Don)

Console.WriteLine("[Don] {0}", ((Don)person).TellPolice);

if (person is Joe)

Console.WriteLine("[Joe] {0}", ((Joe)person).AskAboutSecret());

// Not possible since the Minion class is declared as internal

// if (person is Minion)

// Console.WriteLine("[Minion] {0}", ((Minion)person).TellPolice);

}

}

The base keyword

In some situations, you might want to call a base class' methods or constructor from a

derived class even though you have overridden the member in the derived class. You use the

base keyword to achieve this.

You might have overridden a method in the base class or created a new method and want to

call the base class' method as part of your logic; or you want to call the base class'

constructor when initializing the derived class. You might also want to call a base class

method from a property accessor.

When instantiating a derived class, the base class default constructor will automatically be

called before any of the derived class logic is executed. Sometimes you want to call an

351

C# For Beginners

alternate constructor instead of the default base class constructor; in these situations you

use the base keyword in the derived class' constructor declaration.

The base class

public class Beverage

{

public string Name { get; set; }

public bool IsFairTrade { get; set; }

public Beverage()

{

Name = String.Empty;

IsFairTrade = false;

}

public Beverage(string name, bool isFairTrade)

{

Name = name;

IsFairTrade = isFairTrade;

}

public virtual bool GetFairTrade()

{

return IsFairTrade;

}

}

The deriving class

public class Tea : Beverage

{

public double Weight { get; set; }

// Call the default base class constructor

// Is the same as Tea() : base()

public Tea() { }

public Tea(string name, bool isFairTrade, double weight)

: base(name, isFairTrade)

{

// Will call the Beverage(string name, bool isFairTrade)

// constructor before executing any code in this constructor block

Weight = weight;

}

352

C# For Beginners

public override bool GetFairTrade()

{

// Call the GetFairTrade method

// in the base class

if (!base.GetFairTrade())

{

/* Apply for fair trade status */

}

return base.GetFairTrade();

}

}

Exercise: Inheritance and access modifiers (Jedi vs. Sith)

This exercise is meant to demonstrate how you can implement inheritance across assem-

blies and how to use access modifiers to determine where the members of the classes are

reachable.

The background story is probably already familiar to you it's a story of good versus evil set in

the epic Star Wars science fiction adventures of Jedi versus Sith. As you may well know there

can only ever be two Sith, one master and one apprentice. With Jedi it’s a bit different since

they are the peace keepers of the universe there has to be more than two but a Jedi master

can only have one padawan apprentice at any given time.

There are two sides to the force, light and dark, where the Jedi use the light side to uphold

peace and the Sith use the dark side to cause mischief and chaos. Once you cross from the

light side to the dark it is impossible to turn back. As a Sith you have access to both sides of

the force for a while until you have been completely turned to the dark side, like Anakin

Skywalker aka Darth Vader.

This application will keep track of who is a Jedi master and who is a padawan apprentice as

well as who is the Sith lord and who is the Sith apprentice. To be able to reuse common

classes they will be placed in a separate assembly (class library) called Common Traits and

inherited where needed. The Jedi and Sith classes will also be placed in separate class

libraries called Jedis and Siths to maintain a barrier between the two. The application will be

created as a Console application in a fourth assembly.

353

C# For Beginners

In the Console application you want to display information about the characters such as

name, race, midichlorian count and what force they use (dark and/or light). You also want to

enable the characters to ask one another two questions, the first being whether they are a

Sith, a Jedi or neither, the second question is if the character is a Sith; if the character being

asked is a Jedi the answer should contain information about if they are a Jedi master or a

padawan and if the character has an apprentice. If the character being asked is a Sith and

the character asking is a Sith then internal information about being a Sith lord or an

apprentice should be revealed otherwise any knowledge about the Sith should be denied.

You will add at least the following four characters Jar Jar Binx (gungan, no force), Senator

Palpatine (human, dark side), Anakin Skywalker (human, light side) and Obi Wan Kenobi

(human, light side). During the execution Anakin will be turned to the dark side in two steps

where the first is becoming Palpatine's apprentice and the second giving in fully to the dark

side.

To make it easier to print the information to the Console you will create two methods in the

Console Application's Program class called PrintBeing which outputs the stats about a

character and PrintQuestions which outputs the answers to the two questions mentioned

earlier.

354

C# For Beginners

355

C# For Beginners

Creating the assemblies

You will need to create four assemblies; start with a Console Application called JediVsSith

and add the other three Class Library assemblies called Common Traits, Jedis and Siths to

the solution.

1. Create a new Console Application called JediVsSith.

2. Add a Class Library project called Common Traits to the solution by right clicking on

the solution name in the Solution Explorer and select Add-New Project.

3. Add two folders to the Common Traits assembly called Classes and Enums.

4. Add another Class Library project called Jedis.

5. Add another Class Library project called Siths.

6. Make sure that the Console Application is the startup project by right clicking on it

and select Set as Startup Project.

The Common Traits assembly

The Common Traits assembly is a Class Library which contains classes that are common to

all characters whether they are Jedi, Sith or neither.

The Races and Force enumerations

The Common Traits assembly also contains one enumeration called Force which list the two

forces available (DarkSide and LightSide) and one enumeration called Races which list the

available races that the characters can be (Human, Gungan, Other). The enumerations have

to be public to be accessible from any assembly.

1. Add a new class called Enums to the Enums folder and delete the class' code leaving

the namespace block empty.

namespace CommonTraits.Enums

{

}

2. Add a public enum called Races with the following choices: Human, Gungan and

Other. You can add more if you like.

3. Add a public enum called Force with the following choices: DarkSide and LightSide.

356

C# For Beginners

The complete code for the enums:

namespace CommonTraits.Enums

{

public enum Races

{

Human,

Gungan,

Other

}

public enum Force

{

DarkSide,

LightSide

}

}

The TheForce class

This class should only be accessible through inheritance and contains characteristics and

behaviors related to the force such a collection of the forces a being possesses and the

midichlorian count as well as the abstract definition for the method WhatAreYou answering

that very question when implemented in other classes. A method called AddForce which

should be available through inheritance and be override-able in the inheriting classes, it

should add the specified force to the Forces collection.

 The class: Should only be accessible through inheritance. The constructor should take an int

parameter called midichlorians which should be assigned to a property with the same name

and the Forces collection should be initialized here.

 The Forces collection: Should be readable from any assembly but only assignable within the

class.

 The Midichlorians property: Is an int property containing the midichlorian count for the

character, it should be readable from any assembly but only assignable within the class.

 The WhatAreYou method: Should not contain any implementation and should only be

implementable by an inheriting class. It should have a Being parameter representing the

character being questioned, the suspect if you will.

357

C# For Beginners

 The AddForce method: Should have a Force parameter which is added to the Forces collect-

ion.

1. Add a class called TheForce to the Classes folder in the Common Traits assembly.

2. Change the access modifier of the class to public abstract.

public abstract class TheForce

{

}

3. Add a public List<Force> collection called Forces with a private setter.

public List<Force> Forces { get; private set; }

4. Add a public int property called Midichlorians with a private setter.

5. Add a constructor with an int parameter called midichlorians and assign the para-

meter value to the property with the same name and instantiate the collection.

6. Add an abstract string method called WhatAreYou which have a Being parameter

called suspect. Being abstract the method cannot contain any implementation in the

abstract class and has to be implemented by an inheriting class.

public abstract string WhatAreYou(Being suspect);

7. Add a protected virtual void method called AddForce that has a Force parameter

which is added to the Forces collection. Being protected the method can only be

called from an inheriting class and being declared as virtual will make it possible to

override the implementation in the inheriting class using either the override or new

keyword.

protected virtual void AddForce(Force force) { ... }

The complete code for the TheForce class:

public abstract class TheForce

{

public List<Force> Forces { get; private set; }

public int Midichlorians { get; private set; }

public TheForce(int midichlorians)

{

Midichlorians = midichlorians;

Forces = new List<Force>();

}

public abstract string WhatAreYou(Being suspect);

358

C# For Beginners

protected virtual void AddForce(Force force)

{

Forces.Add(force);

}

}

The Being class

The Being class represent the basic characteristics and behaviors of a character. Use

inheritance to shorten the time it takes to develop the class; by inheriting the TheForce class

you don't have to rewrite everything from scratch. The inheritance will give you direct access

to the AddForce method implementation making it possible to call it from within the Being

class, it will also force you to implement the abstract WhatAreYou method. You can also

read the values from the Forces and Midichlorians properties.

Apart from the inherited properties you will need to add two properties related to a being

called Name of type string and Race of type Races (the enum). It should be possible to

create instances from the Being class as well as inherit it and its constructor should have

three parameters for name, race and midichlorians; the last parameter should be passed to

the base class' constructor.

Three methods called AddForce (override), WhatAreYou (override) and AreYouSith should

be implemented (see details below).

 The Being class: Should inherit the TheForce class and override its AddForce and

WhatAreYou methods. The constructor should take three parameters called name, race and

midichlorians with the data types string, Race (enum) and int respectively. The first two

parameters should be assigned to properties with the same names in the Being class

whereas the third should be passed to the base class' (the inherited class') constructor.

 The AddForce method: Should override the inherited method with the same name and stop

any further overrides if the Being class is inherited. The implementation should check if the

force being added already exist and if so skip adding it.

 The WhatAreYou method: The purpose of this method is to find out if a character is a Jedi,

Sith or neither by asking. The Being instance passed in as through the suspect parameter is

the character you are asking. If the instance is null then return the string "I don't exist"

359

C# For Beginners

(could be the case when Anakin has been completely turned to the dark side and no longer

recognizes himself as Anakin Skywalker), if both the character asking the question and the

suspect are capable of using the dark side of the force then return "I'm a Sith", else if the

suspect is capable of using the light side of the force then return "I'm a Jedi" or if none of the

expressions are valid then return "I'm neither Jedi nor Sith".

 The AreYouSith method: Should be public and override-able by an inheriting class and have

a Being parameter called suspect. The default implementation in this class should return the

string "I'm not Sith".

1. Add a class called Being to the Classes folder in the Common Traits assembly.

2. Change the access modifier of the class to public and inherit the TheForce class.

public class Being : TheForce

{

}

3. Add a string property called Name which can be read from any assembly but only

can be assigned within the Being class.

4. Add a Races property called Race which can be read from any assembly but only is

assignable within the Being class.

5. Add a constructor which has three parameters name of type string, race of type

Races and midichlorians of type int. Assign the first two parameters in the con-

structor and pass the third to the base class' constructor.

public Being(string name, Races race, int midichlorians) :

base(midichlorians){ ... }

6. Override the inherited AddForce method and make it sealed to avoid further over-

rides. Implement it as described above.

sealed protected override void AddForce(Force force)

7. Override the inherited WhatAreYou method and make it sealed to stop further

overrides. Implement it as described above.

8. Add a new public virtual string method called AreYouSith with a Being parameter

called suspect and a default return value of "I'm not a Sith". The virtual keyword will

make it possible to override this implementation in inheriting classes.

public virtual string AreYouSith(Being suspect)

360

C# For Beginners

The complete code for the Being class:

public class Being : TheForce

{

public string Name { get; private set; }

public Races Race { get; private set; }

public Being(string name, Races race, int midichlorians)

: base(midichlorians)

{

Name = name;

Race = race;

}

sealed protected override void AddForce(Force force)

{

if(!Forces.Contains(force))

Forces.Add(force);

}

public sealed override string WhatAreYou(Being suspect)

{

if (suspect == null)

return "I don't exist";

else if (suspect.Forces.Contains(Force.DarkSide) &&

Forces.Contains(Force.DarkSide))

return "I'm a Sith";

else if (suspect.Forces.Contains(Force.LightSide))

return "I'm a Jedi";

return "I'm neither Sith nor Jedi";

}

public virtual string AreYouSith(Being suspect)

{

return "I'm not a Sith";

}

}

The Jedis assembly

This assembly contain one class called Jedi which represent a Jedi character. The reason it is

created in a separate assembly is to define a clear border between the Jedi and Sith classes

to keep their logic clearly separated.

361

C# For Beginners

You will need to add a reference to the Common Traits assembly to gain access to all the

necessary classes and enumerations.

The Jedi class

 The Jedi class: inherit the Being class and all its inherent and inherited characteristics and

behaviors. The constructor should have three parameters name of type string, race of type

Races and midichlorians of type int with a default value of 0. All parameter values should be

passed to the base class' constructor. In the constructor the LightSide force should be added

to the Forces collection by calling the inherited AddForce method.

 The Padawan property: Assigning a Jedi instance to this property represent that the Jedi has

an apprentice. This property should be publicly readable but only privately assignable.

 The IsJediMaster property: Will return true if the Jedi has a padawan apprentice. This prop-

erty should only have a get-block.

 The AddPadawan method: This method will add the passed in Jedi instance to the Padawan

property representing that the Jedi has an apprentice.

 The RemovePadawan method: Will remove the padawan apprentice from the Jedi by

assigning the default value of the Jedi class to the Padawan property.

 The AreYouSith method: This is an overridden version of the inherited method with the

same name. The method should return "I'm a Jedi Master, and my apprentice is {name of

apprentice}" if the passed in Being instance is a Jedi master, "I'm a Padawan and my name is

{name of padawan}" if the being is a Jedi but not a master or "I don't know of any Sith"

otherwise.

1. Add a class called Jedi to the Jedis assembly.

2. Change the access modifier to public and inherit the Being class.

public class Jedi : Being

{

}

3. Add a public Jedi property called Padawan which only can be assigned from within

the Jedi class.

public Jedi Padawan { get; private set; }

362

C# For Beginners

4. Add a public bool property called IsJediMaster which only has a get-block that

return true if there is a Jedi instance assigned to the Padawan property.

public bool IsJediMaster { get { return Padawan != null; } }

5. Add a constructor with three parameters for name, race and midichlorian count that

are passed to the base class' constructor. Call the inherited AddForce method from

inside the constructor to assign the LightSide force to the Jedi.

public Jedi(string name, Races race, int midichlorians = 0) :

base(name, race, midichlorians)

{

AddForce(Force.LightSide);

}

6. Add a public void method called AddPadawan which has a Jedi parameter that is

assigned to the Padawan property.

7. Add a parameter-less public void method called RemovePadawan which assigns the

default value of the Jedi class to the Padawan property.

Padawan = default(Jedi);

8. Override the inherited method AreYouSith. Implement it as described above.

The complete code for the Jedi class:

public class Jedi : Being

{

public Jedi Padawan { get; private set; }

public bool IsJediMaster { get { return Padawan != null; } }

public Jedi(string name, Races race, int midichlorians = 0)

: base(name, race, midichlorians)

{

AddForce(Force.LightSide);

}

public void AddPadawan(Jedi padawan) {

Padawan = padawan;

}

public void RemovePadawan() {

Padawan = default(Jedi);

}

363

C# For Beginners

public override string AreYouSith(Being suspect)

{

if (suspect is Jedi)

{

var jedi = suspect as Jedi;

if (jedi.IsJediMaster)

return "I'm a Jedi Master, and my apprentice is " +

jedi.Padawan.Name;

else

return "I'm a Padawan and my name is " + jedi.Name;

}

else

{

return "I don't know of any Sith";

}

}

}

The Siths assembly

This assembly contain one class called Sith which represent a Sith character. The reason it is

created in a separate assembly is to define a clear border between the Jedi and Sith classes

to keep their logic clearly separated.

You will need to add a reference to the Common Traits assembly to gain access to all the

necessary classes and enumerations.

The Sith class

 The Sith class: inherit the Being class and all its inherent and inherited characteristics and

behaviors. The constructor should have three parameters name of type string, race of type

Races and midichlorians of type int with a default value of 0. All parameter values should be

passed to the base class' constructor. In the constructor the DarkSide force should be added

to the Forces collection by calling the inherited AddForce method. A second constructor

with a parameter called being of the Being data type and a parameter called name of the

string data type should be added calling the first constructor with values from the being

parameter and the name parameter.

 The Apprentice property: Assigning a Sith instance to this property represent that the Sith

has an apprentice. This property should be publicly readable but only privately assignable.

364

C# For Beginners

 The IsSithLord property: Will return true if the Sith has an apprentice. This property should

only have a get-block.

 The AddApprentice method: This method will create a new Sith instance from the passed in

Jedi instance and the name in the name parameter. The new Sith instance is then assigned

to the Apprentice property representing that the current Sith has an apprentice. Then all the

forces in the Jedi's Forces collection is added to the Sith instance and the Jedi instance is

assigned the default value of the Jedi class. Lastly the new apprentice is returned from the

method.

 The CompleteTraining method: This method will be called when the Sith apprentice has

taken the final step towards the dark side to remove any traces of the light force.

 The AreYouSith method: This is an overridden version of the inherited method with the

same name. The method should return "I'm a Sith Lord, and my apprentice is {name of

apprentice}" if the passed in Being instance is a Sith Lord, "I'm a Sith Apprentice and my

name is {name of apprentice}" if the being is a Sith but not a Sith Lord or "I don't know of

any Sith" otherwise.

1. Add a class called Sith to the Siths assembly.

2. Change the access modifier to public and inherit the Being class.

public class Sith : Being

{

}

3. Add a public Sith property called Apprentice which only can be assigned from within

the Sith class.

public Sith Apprentice { get; private set; }

4. Add a public bool property called IsSithLord which only has a get-block that return

true if there is a Sith instance assigned to the Apprentice property.

public bool IsSithLord { get { return Apprentice != null; } }

5. Add a constructor with three parameters for name, race and midichlorian count that

are passed to the base class' constructor. Call the inherited AddForce method from

inside the constructor to assign the DarkSide force to the Sith.

365

C# For Beginners

public Sith(string name, Races race, int midichlorians = 0) :

base(name, race, midichlorians)

{

AddForce(Force.DarkSide);

}

6. Add a second constructor which has a Being and name parameter, use the values in

the parameters when calling the first constructor in this class using the this keyword.

public Sith(Being being, string name)

: this(name, being.Race, being.Midichlorians)

{

}

7. Add a public void method called AddApprentice which has a Jedi parameter passed

in by reference and a string parameter called name with the new name the app-

rentice is given by the Sith lord. The reason the Jedi parameter is passed in by refe-

rence is that you want to assign the default value of the Jedi class to it at the end of

the method to symbolize that the Jedi no longer exist and now is the new born Sith

Apprentice.

public Sith AddApprentice(ref Jedi jedi, string name)

{

Apprentice = new Sith(jedi, name);

Apprentice.Forces.AddRange(jedi.Forces);

jedi = default(Jedi);

return Apprentice;

}

8. Add a public void method called CompleteTraining with a Sith parameter. Remove

all LightSide values from the Apprentice's Forces collection.

Apprentice.Forces.Remove(Force.LightSide);

9. Override the inherited method AreYouSith. Implement it as described above.

The complete code for the Sith class:

public class Sith : Being

{

private Sith Apprentice { get; set; }

internal bool IsSithLord { get { return Apprentice != null; } }

366

C# For Beginners

public Sith(string name, Races race, int midichlorians = 0)

: base(name, race, midichlorians)

{

AddForce(Force.DarkSide);

}

public Sith(Being being, string name)

: this(name, being.Race, being.Midichlorians)

{

}

public void CompleteTrainig(Sith apprentice)

{

Apprentice.Forces.Remove(Force.LightSide);

}

public Sith AddApprentice(ref Jedi jedi, string name)

{

Apprentice = new Sith(jedi, name);

Apprentice.Forces.AddRange(jedi.Forces);

jedi = default(Jedi);

return Apprentice;

}

public override string AreYouSith(Being suspect)

{

if (this is Sith && suspect is Sith)

{

var sith = suspect as Sith;

if (sith.IsSithLord)

return "I'm a Sith Lord, and my apprentice is " +

sith.Apprentice.Name;

else

return "I'm a Sith Apprentice and my name is " + sith.Name;

}

else

{

return "I don't know of any Sith";

}

}

}

367

C# For Beginners

The JediVsSith assembly

This is the main application where the information about the characters is displayed. You will

need to add a reference to all other assemblies to gain access to the necessary classes and

enumerations.

 The PrintBeing method: In order to display the information about the characters you will

have to add a method called PrintBeing which takes one parameter called being of the

Being data type containing the character whose information is to be displayed. Use the

String.Format method to format an output string containing the name, race, midichlorian

count and the forces (dark/light) that the character has and print it to the Console window.

 The PrintQuestions method: In order to display the answers to the two questions What are

 you? and Are you Sith? you need to add a method called PrintQuestions which takes one

parameter called interrogator of the Being data type containing the character asking the

questions and one called suspects which is a List<Being> that contain all the characters

being asked the question. The two questions are asked to each of the characters in the sus-

pects collection.

 The Main method: Create instances for the four characters Anakin Skywalker (Human, Jedi),

Obi Wan Kenobi (Human, Jedi), Senator Palpatine (Human, Sith) and Jar Jar Binx (Gungan,

Being) in the Main method.

Start by calling the PrintBeing for the four characters and then add Anakin as a padawan to

Obi Wan Kenobi. Continue by having each of the characters ask the two questions to all the

other characters by calling the PrintQuestions method. Let Anakin become an apprentice of

Senator Palpatine and print the character info by calling the PrintBeing method then have

Palpatine complete Anakin's training and call the PrintBeing method again, note the

difference in Anakin's forces. Remove Anakin as a padawan from Obi Wan Kenobi and have

Palpatine ask the questions to Darth Vader and Obi Wan, Darth Vader ask Palpatine and Obi

Wan and Obi Wan ask Darth Vader.

The PrintBeing method

The PrintBeing method should have a parameter called being of the Being data type. Iterate

over the forces stored in the being's Forces collection and concatenate a string from the

368

C# For Beginners

data. Display the name, race, midichlorian count and the forces (dark/light) that the charact-

er has in the Console window.

1. Add a method called PrintBeing which has a parameter called being of the Being

data type to the Program class below the Main method.

private static void PrintBeing(Being being)

{

}

2. Add a string variable called forces and assign an empty string to it.

3. Iterate over the forces in the being's Forces collection and concatenate a string from

the data that you store in the forces variable.

foreach (var force in being.Forces)

forces += String.Format("{0}, ", force);

4. If the forces string contain any data after the loop then remove the last two charact-

ers from the string to avoid displaying a comma and space at the end of the string.

if (!forces.Equals(String.Empty))

forces = forces.Substring(0, forces.Length - 2);

5. Write the desired data to the Console window on a single line.

The complete code for the PrintBeing method:

private static void PrintBeing(Being being)

{

string forces = String.Empty;

foreach (var force in being.Forces)

forces += String.Format("{0}, ", force);

if (!forces.Equals(String.Empty))

forces = forces.Substring(0, forces.Length - 2);

Console.WriteLine(String.Format(

"Name: {0}, Race: {1}: Midichlorians: {2}, Forces: {3}",

being.Name, being.Race, being.Midichlorians, forces));

}

The PrintQuestions method

The PrintQuestions method should have one parameter called interrogator of the Being

data type and one called suspects as a List<Being> collection. Iterate over the characters in

the suspects collection and display the interrogator's name, the suspect's name and the

369

C# For Beginners

result from a call to the WhatAreYou method on the interrogator instance passing in the

current suspect as the parameter value, also display the interrogator's name, the suspect's

name and the result from a call to the AreYouSith method on the interrogator instance

passing in the current suspect as the parameter value. Add an empty line to the Console

window after the loop.

1. Add a method called PrintQuestions which has one parameter called interrogator of

the Being data type and one called suspects as a List<Being> collection to the

Program class below the Main method.

private static void PrintQuestions(Being interrogator, List<Being>

suspects)

{

}

2. Add a foreach loop iterating over the suspects in the suspects collection.

3. For each suspect print the interrogator's name, the suspect's name and the result

from a call to the WhatAreYou method.

Console.WriteLine(String.Format("{0} [WhatAreYou] {1}: {2}",

interrogator.Name, suspect.Name, interrogator.WhatAreYou(suspect)));

4. Now do the same as described in bullet 3 calling the AreYouSith method instead.

5. Add call to the Console.WriteLine method after the loop.

The complete code for the PrintQuestions method:

private static void PrintQuestions(Being interrogator,

List<Being> suspects)

{

foreach (var suspect in suspects)

{

Console.WriteLine(String.Format("{0} [WhatAreYou] {1}: {2}",

interrogator.Name, suspect.Name,

interrogator.WhatAreYou(suspect)));

Console.WriteLine(String.Format("{0} [AreYouSith] {1}: {2}",

interrogator.Name, suspect.Name,

interrogator.AreYouSith(suspect)));

}

Console.WriteLine();

}

370

C# For Beginners

The Main method

Here's where it all comes together and the output is displayed (see above for details about

the output and the characters).

1. Add the characters to the Main method.

var jarJar = new Being("Jar Jar Binx", Races.Gungan, 0);

var palpatine = new Sith("Senator Palpatine", Races.Human, 10000);

var anakin = new Jedi("Anakin Skywalker", Races.Human, 50000);

var obiWan = new Jedi("Obi Wan Kenobi", Races.Human, 10000);

2. Output 1: Call the PrintBeing method for the four characters and add a call to the

Console.ReadKey and Console.Clear methods.

PrintBeing(obiWan);

3. Add Anakin as a padawan to Obi Wan Kenobi by calling the AddPadawan method on

the obiWan instance variable passing in the anakin instance variable.

obiWan.AddPadawan(anakin);

4. Output 2: Call the PrintQuestion method for each character passing in the remaining

characters as part of the suspects collection. Add a call to the Console.ReadKey and

Console.Clear methods after the PrintQuestions method calls.

PrintQuestions(palpatine, new List<Being> { anakin, obiWan, jarJar

});

5. Pass in the anakin instance by reference to the AddApprentice method along with

the name "Darth Vader" on the palpatine instance variable and store the result in a

variable called darthVader.

var darthVader = palpatine.AddApprentice(ref anakin, "Darth Vader");

6. Call the PrintBeing method passing in the darthVader instance.

7. Have Darth Vader complete his training by calling the CompleteTraining method on

the palpatine instance passing in the darthVader instance.

palpatine.CompleteTrainig(darthVader);

8. Output 3: Call the PrintBeing method passing in the darthVader instance, note the

change in Darth Vader's forces. Add a call to the Console.ReadKey and Console

.Clear methods after the PrintBeing method call.

9. Remove Anakin as Obi Wan's padawan by calling the RemovePadawan method on

the obiWan instance variable.

371

C# For Beginners

10. Output 4: Call the PrintQuestion method and have Palpatine ask the questions to

Darth Vader and Obi Wan, Darth Vader ask Palpatine and Obi Wan and Obi Wan ask

Darth Vader.

11. Add a call to the Console.ReadKey method.

The complete code for the Main method:

static void Main(string[] args)

{

var jarJar = new Being("Jar Jar Binx", Races.Gungan, 0);

var palpatine = new Sith("Senator Palpatine", Races.Human, 10000);

var anakin = new Jedi("Anakin Skywalker", Races.Human, 50000);

var obiWan = new Jedi("Obi Wan Kenobi", Races.Human, 10000);

#region Output 1

PrintBeing(obiWan);

PrintBeing(anakin);

PrintBeing(palpatine);

PrintBeing(jarJar);

Console.ReadKey();

Console.Clear();

#endregion

obiWan.AddPadawan(anakin);

#region Output 2

PrintQuestions(palpatine, new List<Being> { anakin, obiWan, jarJar });

PrintQuestions(anakin, new List<Being> { palpatine, obiWan, jarJar });

PrintQuestions(obiWan, new List<Being> { anakin, palpatine, jarJar });

PrintQuestions(jarJar, new List<Being> { anakin, obiWan, palpatine });

Console.ReadKey();

Console.Clear();

#endregion

#region Output 3

var darthVader = palpatine.AddApprentice(ref anakin, "Darth Vader");

PrintBeing(darthVader);

palpatine.CompleteTrainig(darthVader);

PrintBeing(darthVader);

Console.ReadKey();

Console.Clear();

#endregion

372

C# For Beginners

obiWan.RemovePadawan();

#region Output 4

PrintQuestions(palpatine, new List<Being> { darthVader, obiWan });

PrintQuestions(darthVader, new List<Being> { palpatine, obiWan });

PrintQuestions(obiWan, new List<Being> { darthVader });

Console.ReadKey();

#endregion

}

The output from the Main method:

#region --- Output 1 ---

/*

Name: Obi Wan Kenobi, Race: Human: Midichlorians: 10000, Forces:

LightSide

Name: Anakin Skywalker, Race: Human: Midichlorians: 50000, Forces:

LightSide

Name: Senator Palpatine, Race: Human: Midichlorians: 10000, Forces:

DarkSide

Name: Jar Jar Binx, Race: Gungan: Midichlorians: 0, Forces:

*/

#endregion

#region --- Output 2 ---

/*

Senator Palpatine [WhatAreYou] Anakin Skywalker: I'm a Jedi

Senator Palpatine [AreYouSith] Anakin Skywalker: I don't know of any

Sith

Senator Palpatine [WhatAreYou] Obi Wan Kenobi: I'm a Jedi

Senator Palpatine [AreYouSith] Obi Wan Kenobi: I don't know of any Sith

Senator Palpatine [WhatAreYou] Jar Jar Binx: I'm neither Sith nor Jedi

Senator Palpatine [AreYouSith] Jar Jar Binx: I don't know of any Sith

Anakin Skywalker [WhatAreYou] Senator Palpatine: I'm neither Sith nor

Jedi

Anakin Skywalker [AreYouSith] Senator Palpatine: I don't know of any

Sith

Anakin Skywalker [WhatAreYou] Obi Wan Kenobi: I'm a Jedi

Anakin Skywalker [AreYouSith] Obi Wan Kenobi: I'm a Jedi Master, and my

apprentice is Anakin Skywalker

Anakin Skywalker [WhatAreYou] Jar Jar Binx: I'm neither Sith nor Jedi

Anakin Skywalker [AreYouSith] Jar Jar Binx: I don't know of any Sith

Obi Wan Kenobi [WhatAreYou] Anakin Skywalker: I'm a Jedi

373

C# For Beginners

Obi Wan Kenobi [AreYouSith] Anakin Skywalker: I'm a Padawan and my

name is Anakin Skywalker

Obi Wan Kenobi [WhatAreYou] Senator Palpatine: I'm neither Sith nor Jedi

Obi Wan Kenobi [AreYouSith] Senator Palpatine: I don't know of any Sith

Obi Wan Kenobi [WhatAreYou] Jar Jar Binx: I'm neither Sith nor Jedi

Obi Wan Kenobi [AreYouSith] Jar Jar Binx: I don't know of any Sith

Jar Jar Binx [WhatAreYou] Anakin Skywalker: I'm a Jedi

Jar Jar Binx [AreYouSith] Anakin Skywalker: I'm not a Sith

Jar Jar Binx [WhatAreYou] Obi Wan Kenobi: I'm a Jedi

Jar Jar Binx [AreYouSith] Obi Wan Kenobi: I'm not a Sith

Jar Jar Binx [WhatAreYou] Senator Palpatine: I'm neither Sith nor Jedi

Jar Jar Binx [AreYouSith] Senator Palpatine: I'm not a Sith

*/

#endregion

#region --- Output 3 ---

/*

Name: Darth Vader, Race: Human: Midichlorians: 50000,

Forces: DarkSide, LightSide

Name: Darth Vader, Race: Human: Midichlorians: 50000,

Forces: DarkSide

*/

#endregion

#region --- Output 4 ---

/*

Senator Palpatine [WhatAreYou] Darth Vader: I'm a Sith

Senator Palpatine [AreYouSith] Darth Vader: I'm a Sith Apprentice and

my name is Darth Vader

Senator Palpatine [WhatAreYou] Obi Wan Kenobi: I'm a Jedi

Senator Palpatine [AreYouSith] Obi Wan Kenobi: I don't know of any Sith

Darth Vader [WhatAreYou] Senator Palpatine: I'm a Sith

Darth Vader [AreYouSith] Senator Palpatine: I'm a Sith Lord, and

my apprentice is Darth Vader

Darth Vader [WhatAreYou] Obi Wan Kenobi: I'm a Jedi

Darth Vader [AreYouSith] Obi Wan Kenobi: I don't know of any Sith

Obi Wan Kenobi [WhatAreYou] Darth Vader: I'm neither Sith nor Jedi

Obi Wan Kenobi [AreYouSith] Darth Vader: I don't know of any Sith

*/

#endregion

374

C# For Beginners

Mini Use Case: Car rental

In this case study you will be building a portal for renting out cars, like the one they use at

gas stations and car rental companies. Obviously you will not build a super detailed and fully

fledged system, you will however build a basic system that will serve the purpose of renting

out and returning a car.

 It is important to know that this solution has been designed this way to illustrate certain

 aspects of object oriented programming (OOP) and might therefore not be optimal.

Tightly coupled vs. loosely coupled design

Tightly coupled solutions are generally much more difficult to change, making changes to a

class generally involves changes to surrounding classes and method calls.

You also paint yourself into a corner in a sense by passing in an instance of a class as a

parameter where an interface could be used. The use of interfaces makes it much easier, not

only to pass in parts of an instance, but also to pass in other instances all together. Take an

instance of a data layer class for instance, by using interfaces you could easily change one

implementation for another; for instance switching from a test data layer to a production

data layer.

When implementing this use case you will use inheritance to illustrate how abstract classes

and members can be used in a solution to re-use code. You will also implement the classes

using interfaces to make the solution easier to maintain. By using interfaces you will in the

end be able to switch out the business layer and data layer for other implementations by

implementing the IDataLayer and IBookingProcessor interfaces in other classes, this is

known as Interface Polymorphism. You will also make the solution totally flexible by not

defining parameters and types using classes but instead use the interfaces that are

implemented in the classes, this is known as interface injection and is part of loosely coupled

design patterns. Imagine that you have an interface called IVehicle which defines the

characteristics and behaviors of any vehicle, by implementing that interface in several

classes such as Car and Motorcycle you can now use the IVehicle interface as a parameter in

a method definition to pass in either an instance of the Car class or the Motorcycle class to

the method because both implement the same interface. This works because as you might

remember from the interface chapter an interface is a contract that has to be implemented

in its entirety by the class.

375

C# For Beginners

Specification for the Car rental application

Let's begin by looking at the specification and discern what needs to be built, and what

technologies to use for this scenario, then you will build the actual loosely coupled applica-

tion. You will use inheritance where called for and interfaces as data types for variables,

parameters and collection types; you will not pass in any parameters using classes.

Important: An important limitation is that we only allow one vehicle per booking, which

 means that we get a 1-1 relation where there normally would be a 1-n relationship.

The system will handle car rentals (rental and return); the system will be used by different

companies with varying data storage solutions and user interfaces which lends itself to use a

loosely coupled design where the data layer easily can be swapped out.

Your task is to build the application as outlined in the specification below.

Prices

The car category determines how the prices should be calculated, the tariff values may

change over time. Common to all calculations are that two types of costs are taken into

account: a daily cost and a cost per Km driven.

Sedan: Price = daily cost * number of days

Combi: Price = daily cost * number of days * day tariff + cost per Km * actual Km driven. The

day tariff is initially 1.5, but that could be changed over time.

Van: Price = daily cost * number of days * day tariff + cost per Km * actual Km driven *

distance tariff. The day tariff is initially 2.0 and distance tariff is initially 2.5, but that could

change over time.

Rental

To make it simple the system calculates all rentals during the same day as a full day, half day

or hourly rentals are not supported by the system. When a car is rented more than one day

the duration should be calculated by subtracting the rental date from the return date.

376

C# For Beginners

Specification

The cars are divided into categories where three categories are defined from the start:

Sedan, Combi and Van. More categories might be added later.

Every rental must be identifiable by a unique booking number. Every rental is defined as

renting one car per booking and every booking can only have one customer.

The classes should be placed in separate assemblies for easy reuse; there are three

assemblies with their own folder structures: Car Rental which is the Windows Forms

Application, Business Layer which houses the booking processor that handles all business

logic such as user rights (if implemented) and Data Layer which houses the entity classes and

the data layer classes.

When working with bookings the application will call the appropriate methods on an

instance of the BookingProcessor class which takes an instance of the CollectionDataLayer

class to be able to communicate with the data source which in this case is dummy data

stored in collections. The CollectionDataLayer class is the class that would be switched out if

another data source would be implemented and used; it is on an instance of this class that

all the method calls from the BookingProcessor class instance to the data source is made.

The BookingProcessor class should have no direct connection to or knowledge of the data

source, handling the data is the purpose of the CollectionDataLayer class. The dummy data

and the collections representing the data source are stored in a class called TestData; in a

real world scenario this would most likely be implemented using Entity Framework entities

to communicate with a database.

377

C# For Beginners

Three assemblies

The solution will contain three assemblies one for the Windows Forms Application called Car

Rental, one business layer for business rules called Business Layer and one that handles

communication with the data source called Data Layer.

To get access to the classes in the Business Layer and Data Layer assemblies you have to add

references to them in the application assembly.

The Application structure

The application should in this case be created using a Windows Forms Application project

called Car Rental. Apart from the default project content such as the form, you will add a

folder called Classes where you will add all classes needed for handling the GUI; you will for

378

C# For Beginners

instance have to create a class used as model for the data displayed in combo box items and

another class used as model for the data displayed in list view.

The application GUI

The application GUI consist of one form with a tab control that has four tabs Rent Vehicle,

Return Booking, Bookings and Add Data.

The Rent Vehicle tab has a list view control displaying vehicles available for rental, a combo

box with a list of customers and a Rent button which uses the information from the other

two controls to rent a car to a customer.

The Return Vehicle tab has a list view control displaying rented vehicles that can be return-

ed, a textbox for specifying the vehicle's meter setting when it is returned and a Return

button which will use the data from the other controls to return the vehicle and calculate

the rental cost.

379

C# For Beginners

The Bookings tab uses a list view control to give an historical overview of all bookings that

have been made in the system. Vehicles that are rented don't have a date specified in the

Returned column.

The Add Data tab has the possibility to add new vehicles and customers using textboxes and

combo boxes to specify or select data.

380

C# For Beginners

The business layer structure

The Business Layer assembly should be created using a Class Library project, not the Class

Library (Portal) project as it has limitations you don't want in your project. The assembly

only has one class called BookingProcessor which implements an interface called IBooking-

Processor which in turn inherits an interface called IRentalBase.

Add two folders called Classes and Interfaces and place the BookingProcessor class in the

classes folder and the IBookingProcessor interface in the Interfaces folder. The IRentalBase

interface belong to the Data Layer assembly which mean that you need a reference to the

Data Layer assembly in the Business Layer assembly.

The IRentalBase interface define most of the methods implemented in the BookingProcess-

or and CollectionDataLayer classes; the two classes both implement the same methods

because the instance of the BookingProcessor class created in the application code-behind

will use an instance of the CollectionDataLayer calling its methods to reach the data source;

having the same name, return data type and parameters for the methods makes it easy to

follow the program flow from business layer to data layer, it also enables reuse of the

IRentalBase interface.

381

C# For Beginners

The data layer structure

The Data Layer assembly should be created using a Class Library project, not the Class

Library (Portal) project as it has limitations you do not want in your project. This assembly

contain most of the classes since it houses all the entity and custom exception classes as well

as any implementation of the IDataLayer interface such as the CollectionDataLayer class.

An instance of the CollectionDataLayer class will be injected into (sent in to) an instance of

the BookingProcessor class; all calls to the data source from the Car Rental application will

be made through the BookingProcessor instance to enforce any business rules before the

data layer is called from within the methods of the BookingProcessor instance.

There are a number of folders needed to keep the structure clean and easy to navigate. The

Data Layers folder will house any implementation of the IDataLayer interface such as the

CollectionDataLayer class. The Data Source folder will have a class called TestData which

will act as the data source for the test data used in this implementation of the application.

The Entities folder will house all data specific classes which could be used to model tables in

a database such as Customer, Booking and Vehicle. The Enums folder will have a .cs file

housing all enumerations needed in the application. The Exceptions folder will house all

custom defined exceptions used in the application such as CustomerException and the

Interfaces folder will house all interfaces used in the assembly.

382

C# For Beginners

The image below show the interfaces involved in implementing a data layer class, in this

case the CollectionDataLayer class which will be used to fetch and manipulate data in the

data source represented by the collections in the TestData class. Note that the same

IRentalBase interface implemented by the BookingProcessor class is implemented here as

part of an interface inheritance between the IDataLayer and the IRentalBase interfaces.

The image below illustrates the custom exceptions needed in the application and their

inheritance of the KeyNotFoundException class.

383

C# For Beginners

The image below illustrates the implementation of vehicles and the interfaces and inherita-

nce used to implement a specific vehicle like the Car class. Note that there is an intermediary

class called Vehicle being inherited by the Car class this is necessary to ensure that default

implementations of certain methods are available and it also opens up to using the IVehicle

interface as a data type for all types of specific vehicle classes that might be added in the

future. It also makes the implementation more flexible by using the interface for interface

injection in methods instead of using the specific vehicle classes for parameters.

The image below illustrates implementations of the remaining entity classes Customer,

Booking and VehicleType. Although it is not strictly necessary to implement these classes

using interfaces it is done here for consistency and in the event that sub categories of the

entities has to be implemented in the future, you might for instance want to have a more

specialized definition of what a customer is and reuse the ICustomer interface to implement

the default characteristics and behaviors of a customer into the specialized classes making

sure that they are customers. Another way of accomplishing a similar result would off course

be to use inheritance and override methods.

384

C# For Beginners

Implementation of the Car rental application

In this section you will implement the different parts of the application starting with the

assemblies and folder structures.

The assemblies

You need to create a Windows Forms Application called Car Rental as the first assembly in

the solution and then add two Class Library projects called Business Layer and Data Layer.

When the assemblies are in place you need to add the folder structures as described earlier.

1. Create a Windows Forms Application called Car Rental.

2. Add a folder called Classes to the project.

3. Add a new Class Library project (assembly) called Business Layer to the solution.

4. Add the following folders to the project: Classes and Interfaces.

5. Add a new Class Library project (assembly) called Data Layer to the solution.

6. Add the following folders to the project: Data Layers, Data Source, Entities, Enums,

Exceptions and Interfaces.

7. Add a reference to the Data Layer assembly in the Business Layer assembly.

8. Add a reference to the Data Layer and Business Layer assemblies in the Car Rental

assembly.

The Entity interfaces and classes

In this section you will focus on implementing the entity classes and their interfaces

according to the specifications given for each scenario. All Id properties in the application

are declared using the int data type.

385

C# For Beginners

The Customer interface and class

This class will represent the characteristics of a customer meaning that it only contains prop-

erties. In this case all properties are public to be reachable anywhere, the data types should

not be a mystery either, all properties except the Id property should be declared using the

string data type.

1. Add an interface called ICustomer to the Interfaces folder in the Data Layer project

and make it public.

public interface ICustomer

{

}

2. Define all the properties in the interface, remember that you don't specify any

access modifiers in an interface.

string LastName { get; set; }

3. Add a public class called Customer to the Entities folder in the Data Layer project

and implement the interface in the class.

public class Customer : ICustomer

{

}

386

C# For Beginners

4. The fastest way to add the properties is to copy them from the interface and paste

them into the class and add the public access modifier to them.

public string LastName { get; set; }

The complete code for the ICustomer interface:

public interface ICustomer

{

int Id { get; set; }

string SocialSecurityNumber { get; set; }

string FirstName { get; set; }

string LastName { get; set; }

}

The complete code for the Customer class:

public class Customer : ICustomer

{

public int Id { get; set; }

public string SocialSecurityNumber { get; set; }

public string FirstName { get; set; }

public string LastName { get; set; }

}

The Booking interface and class

This class will represent the characteristics of a booking and as such only contain properties.

In this case all properties are public to be reachable anywhere, the data types should not be

a mystery either, all Id properties should be declared using the int data type, the Rented and

Returned properties should be declared using the DateTime data type and because the cost

can contain fractions of a dollar the Cost property should be declared using the double data

type.

1. Add an interface called IBooking to the Interfaces folder in the Data Layer project

and make it public.

public interface IBooking

{

}

2. Define all the properties in the interface, remember that you don't specify any

access modifiers in an interface.

double Cost { get; set; }

387

C# For Beginners

3. Add a public class called Booking to the Entities folder in the Data Layer project and

implement the interface in the class.

public class Booking : IBooking

{

}

4. The fastest way to add the properties is to copy them from the interface and paste

them into the class and add the public access modifier to them.

public double Cost { get; set; }

The complete code for the IBooking interface:

public interface IBooking

{

int Id { get; set; }

int VehicleId { get; set; }

int CustomerId { get; set; }

DateTime Rented { get; set; }

DateTime Returned { get; set; }

double Cost { get; set; }

}

The complete code for the Booking class:

public class Booking : IBooking

{

public int Id { get; set; }

public int VehicleId { get; set; }

public int CustomerId { get; set; }

public DateTime Rented { get; set; }

public DateTime Returned { get; set; }

public double Cost { get; set; }

}

The VehicleType interface and class

This class will represent the characteristics of a vehicle type and as such it only contain

properties. In this case all properties are public to be reachable anywhere, the data types

should not be a mystery either, all Id properties should be declared using the int data type,

the base price and tariff properties should be declared using the double data type since they

can contain fractions of a dollar and the Name property should be declared with the string

data type.

388

C# For Beginners

A vehicle type is a not a specific vehicle but a type of vehicle such as Combi, Van and Sedan

which all have different base prices and tariffs per Km and day (see the calculations at the

beginning of the use case). Whenever a vehicle is returned the system will check these stats

to get the values to calculate the cost. Hard coding theses values is not recommended since

that would mean rebuilding the entire solution and distributing that version to the users

each time the prices change.

1. Add an interface called IVehicleType to the Interfaces folder in the Data Layer

project and make it public.

2. Define all the properties in the interface, remember that you don't specify any

access modifiers in an interface.

3. Add a public class called VehicleType to the Entities folder in the Data Layer project

and implement the interface in the class.

4. The fastest way to add the properties is to copy them from the interface and paste

them into the class and then add public access modifiers to them.

The complete code for the IVehicleType interface:

public interface IVehicleType

{

int Id { get; set; }

string Name { get; set; }

double BasePricePerKm { get; set; }

double BasePricePerDay { get; set; }

double DayTariff { get; set; }

double KmTariff { get; set; }

}

The complete code for the VehicleType class:

public class VehicleType : IVehicleType

{

public int Id { get; set; }

public string Name { get; set; }

public double BasePricePerKm { get; set; }

public double BasePricePerDay { get; set; }

public double DayTariff { get; set; }

public double KmTariff { get; set; }

}

389

C# For Beginners

The Vehicle interface and class

This class will represent the characteristics and behaviors of a vehicle, besides containing

properties it will also have two constructors one without parameters and one that has a

parameter declared with the IVehicle interface; it might seem strange to send in an object of

the same type as the class defines, but it is really not that strange if you envision a scenario

where you want to seed a new object with values from an existing object.

In this case the all properties are public to be reachable anywhere, the data types should not

be a mystery either, all Id properties should be dclared with the int data type, the meter,

base price and tariff properties should be declared with the double data type since they can

contain fractions and the RegistrationNumber property should be declared with the string

data type.

You might think that it could be a great idea to create the Vehicle class as an abstract class

and inherit it to the more specialized vehicle classes such as the Car class, but in this case it

is not recommended since you actually want to pass instances of the Car class cast as a

Vehicle to the Vehicle class' constructor to assign values to the Vehicle instance's properties

when a Car instance is crated; this way of implementing the Car class saves you the trouble

of assigning the property values in the Car class' constructor and reuse the code in the

Vehicle class' constructor keeping the Car class much cleaner.

You might wonder why the same set of properties for base prices and tariffs are included in

the vehicle interface and class, the reason is that the values might change for the vehicle

type between the rental and return and if the rental values are not stored the customer

might pay less or more when the vehicle is returned.

390

C# For Beginners

1. Add an interface called IVehicle to the Interfaces folder in the Data Layer project

and make it public.

2. Define all the properties in the interface, remember that you don't specify any

access modifiers in an interface.

3. Add a public class called Vehicle to the Entities folder in the Data Layer project and

implement the interface in the class.

4. The fastest way to add the properties is to copy them from the interface and paste

them into the class and add public access modifiers to them.

391

C# For Beginners

5. Add two public constructors to the class, one without parameters and one with an

IVehicle parameter that assigns the values from the passed in Vehicle object to the

properties.

public Vehicle() { }

public Vehicle(IVehicle vehicle) { ... }

The complete code for the IVehicle interface:

public interface IVehicle {

int Id { get; set; }

int TypeId { get; set; }

double BasePricePerKm { get; set; }

double BasePricePerDay { get; set; }

double DayTariff { get; set; }

double KmTariff { get; set; }

string RegistrationNumber { get; set; }

double Meter { get; set; }

}

The complete code for the Vehicle class:

public class Vehicle : IVehicle {

public int Id { get; set; }

public int TypeId { get; set; }

public string RegistrationNumber { get; set; }

public double BasePricePerKm { get; set; }

public double BasePricePerDay { get; set; }

public double DayTariff { get; set; }

public double KmTariff { get; set; }

public double Meter { get; set; }

public Vehicle() { }

public Vehicle(IVehicle vehicle)

{

BasePricePerDay = vehicle.BasePricePerDay;

BasePricePerKm = vehicle.BasePricePerKm;

DayTariff = vehicle.DayTariff;

KmTariff = vehicle.KmTariff;

Id = vehicle.Id;

Meter = vehicle.Meter;

RegistrationNumber = vehicle.RegistrationNumber;

TypeId = vehicle.TypeId;

}

}

392

C# For Beginners

The Car class

This class will represent the characteristics and behaviors of a car, besides containing prop-

erties it also implements two constructors. One constructor without parameters and one

with an IVehicle parameter that is passed to the base class constructor, now you might see

the point with having the IVehicle constructor in the Vehicle class since that is where the

base class call ends up.

You might have noticed that there is no mention of an ICar interface and the reason is that

the Car class will inherit the Vehicle class which already contain all the properties an ICar

interface would define.

The complete code for the Car class:

public class Car : Vehicle

{

public Car() { }

public Car(IVehicle vehicle) : base(vehicle) { }

}

The data source (the test data)

This class located in the Data Source folder in the Data Layer assembly will house the

collections that will be used to simulate a real data source. Using test data like this can be

invaluable since you always know what data will be available when the application start,

making it easy to spot logical bugs such as calculation errors or displaying wrong data in the

controls.

Because the collections represent tables in a data source you don't want them accessible

everywhere, they should only be accessible by and through the data layer; one of the rea-

sons for using different layers is to achieve separation of concerns, one assembly equals one

specific area. Another reason for using different layers is to enforce encapsulation; you can

encapsulate data in classes and use access modifiers such as internal and private to ensure

that the data only is reachable within the assembly it is created and stored.

Use the internal access modifier to limit the scope of the data collections you create to en-

sure that they only are accessible within the Data Layer assembly; the data will then be

made accessible outside the assembly using properties and methods in the CollectionData-

Layer class implementing the IDataLayer interface. If you introduce other data sources later

393

C# For Beginners

on you simply implement the IDataLayer interface in a class with the logic needed to access

that particular data source and pass an instance of the class to the BookingProcessor

instance.

To make it easier to access the collections holding the test data you will create them as

static to avoid having to create an instance of the class which would reset the data. Note

that this is not typically how you treat data sources but you will use it for this particular test

data scenario.

Four collections are needed. The first is called VehicleTypes which is declared using the

IVehicleType interface and therefore can hold instances of any class implementing the

IVehicleType interface such as the VehicleType class.

The second collection is called Vehicles and is declared using the IVehicle interface making it

possible to store instances of classes implementing that interface such as the Vehicle and

Car class; you might wonder how the Car class has access to the interface and the answer is

through inheriting the Vehicle class that implements the interface.

The third collection is called Customers and is declared using the ICustomer interface

making it possible to store instances of classes implementing that interface such as the

Customer class.

The fourth collection is called Bookings and is declared using the IBooking interface making

it possible to store instances of classes implementing that interface such as the Booking

class. Instances of this class is used to represent bookings in the system.

To create a set of test data you need to add a method called Seed which adds data to the

collections, this keeps the data consistent each time the application is started which is

paramount when testing an application.

Add test data for the following vehicle types in the VehicleTypes collection : Sedan, Combi

and Van.

Add test data for a few vehicles in the Vehicles collection using the Car class and the vehicle

types you just added for the cars' TypeId property.

Add test data for a couple of customers in the Customers collection.

394

C# For Beginners

Add test data for a few bookings in the Bookings collection, make sure that at least one

booking is marked as returned by adding a date to the Returned property.

1. Add a class called TestData to the Data Source folder in the Data Layer project. You

don't have to add an access modifier to the class since it is internal by default.

2. Add an internal static List<IVehicleType> collection called VehicleTypes to the class.

internal static List<IVehicleType> VehicleTypes = new

List<IVehicleType>();

3. Add an internal static List<IVehicle> collection called Vehicles to the class.

4. Add an internal static List<ICustomer> collection called Customers to the class.

5. Add an internal static List<IBooking> collection called Bookings to the class.

6. Add an internal static method called Seed to the class.

internal void Seed()

{

}

7. Add the three vehicle types to the VehicleTypes collection in the Seed method.

VehicleTypes.Add(new VehicleType() { Id = 1, Name = "Sedan",

BasePricePerDay = 100, BasePricePerKm = 0, DayTariff = 1, KmTariff =

1 });

8. Add a few vehicles to the Vehicles collection in the Seed method.

Vehicles.Add(new Car() { Id = 1, TypeId = 1, BasePricePerDay = 100,

BasePricePerKm = 0, DayTariff = 1, KmTariff = 1, RegistrationNumber =

"FGH123", Meter = 10000 });

9. Add a couple of customers to the Customers collection in the Seed method.

Customers.Add(new Customer() { Id = 1, FirstName = "Carl", LastName =

"Raintree", SocialSecurityNumber = "12324545" });

10. Add a few bookings to the Bookings collection in the Seed method.

Bookings.Add(new Booking() { Id = 1, VehicleId = 2, Rented =

DateTime.Now, Returned = DateTime.Now.AddDays(1), Cost = 500,

CustomerId = 2 });

395

C# For Beginners

The complete code for the TestData class:

class TestData

{

#region Collections

internal static List<IVehicleType> VehicleTypes = new

List<IVehicleType>();

internal static List<IVehicle> Vehicles = new List<IVehicle>();

internal static List<ICustomer> Customers = new List<ICustomer>();

internal static List<IBooking> Bookings = new List<IBooking>();

#endregion

#region Methods

internal void Seed()

{

// Add fake data. This data would normally be fetched

// from a data source

VehicleTypes.Add(new VehicleType()

{ Id = 1, Name = "Sedan", BasePricePerDay = 100,

BasePricePerKm = 0, DayTariff = 1, KmTariff = 1 });

VehicleTypes.Add(new VehicleType()

{ Id = 2, Name = "Combi", BasePricePerDay = 200,

BasePricePerKm = 0.5, DayTariff = 1.3, KmTariff = 1 });

VehicleTypes.Add(new VehicleType()

{ Id = 3, Name = "Van", BasePricePerDay = 300,

BasePricePerKm = 0.5, DayTariff = 1.5, KmTariff = 1.5 });

Vehicles.Add(new Car() { Id = 1, TypeId = 1,

BasePricePerDay = 100, BasePricePerKm = 0,

DayTariff = 1, KmTariff = 1,

RegistrationNumber = "FGH123", Meter = 10000 });

Vehicles.Add(new Car() { Id = 2, TypeId = 2,

BasePricePerDay = 200, BasePricePerKm = 0.5,

DayTariff = 1.3, KmTariff = 1,

RegistrationNumber = "ABC123", Meter = 20000 });

Vehicles.Add(new Car()

{ Id = 3, TypeId = 3, BasePricePerDay = 300,

BasePricePerKm = 0.5, DayTariff = 1.5, KmTariff = 1.5,

RegistrationNumber = "DCE123", Meter = 30000 });

Customers.Add(new Customer() { Id = 1, FirstName = "Carl",

LastName = "Raintree", SocialSecurityNumber = "12324545" });

Customers.Add(new Customer() { Id = 2, FirstName = "Lisa",

LastName = "Montgomery", SocialSecurityNumber = "95654123" });

396

C# For Beginners

Bookings.Add(new Booking() { Id = 1, VehicleId = 2,

Rented = DateTime.Now, Returned = DateTime.Now.AddDays(1),

Cost = 500, CustomerId = 2 });

Bookings.Add(new Booking() { Id = 2, VehicleId = 2,

Rented = DateTime.Now, CustomerId = 1 });

}

#endregion

}

The IDataLayer interface and DataLayer class

The IDataLayer interface inherits the IRentalBase interface which also is implemented by

the IBookingProcessor interface. Most of the methods implemented in the CollectionData-

Layer and BookingProcessor classes are defined in the IRentalBase interface.

The CollectionDataLayer class located in the Data Layers folder implements the IDataLayer

interface which directly or indirectly define all the members used when communicating with

the data source. The class should be declared as public since it must be reachable from any

assembly.

The data source in this application are the collections you created in the previous exercise

but in a real world scenario it would most likely be a data base reached through either

ADO.NET or Entity Framework.

The application don't use an instance of the CollectionDataLayer class directly instead the

instance is passed in to the BookingProcessor constructor when its instance is created and

then the business layer calls the data layer. This separates concerns and make the solution

very flexible since the instance of the CollectionDataLayer instance can be swapped out for

any class implementing the IDataLayer interface when more data sources are added in the

future. This fulfills one of the criteria set up by the use case, that the data source can vary.

For right now you will only add an empty IDataLayer interface and an empty CollectionData-

Layer class; you will populate the interface and class as you implement the functionality in

the GUI. The only implementation you need to add is a call to the Seed method of the

TestData class from the constructor to populate the collections with data.

1. Add an empty public interface called IRentalBase to the Interfaces folder in the

Data Layer project.

397

C# For Beginners

2. Add an empty public interface called IDataLayer to the Interfaces folder in the Data

Layer project.

3. Inherit the IRentalBase interface in the IDataLayer interface.

public interface IDataLayer : IRentalBase { ... }

4. Add a public class called CollectionDataLayer to the Data Layers folder in the Data

Layer project.

5. Implement the IDataLayer interface in the class.

public class CollectionDataLayer : IDataLayer { ... }

6. Call to the Seed method of the TestData class from the constructor.

public CollectionDataLayer()

{

new TestData().Seed();

}

The complete code for the IRentalBase interface so far:

public interface IRentalBase

{

}

The complete code for the IDataLayer interface so far:

public interface IDataLayer : IRentalBase

{

}

The complete code for the CollectionDataLayer class so far:

public class CollectionDataLayer : IDataLayer

{

public CollectionDataLayer()

{

new TestData().Seed();

}

}

The IBookingProcessor interface and BookingProcessor class

The IBookingProcessor interface inherit the IRentalBase interface and most of the members

implemented by the BookingProcessor class is defined in the IRentalBase interface.

398

C# For Beginners

The purpose of this class is to insert a layer of business logic between the application and the

data layer to be able to enforce business rules. You can check user rights or create logic that

call different methods in the data layer based on set business rules.

In order to gain access to the IRentalBase interface and other data layer logic you need to

add a reference to the Data Layer project in the Business Layer project.

Once the reference has been added you will create a public interface called IBooking-

Processor in the Interfaces folder in the Business Layer project which inherits the IRental-

Base interface. Add a read only IDataLayer property called DataLayer to the interface and

implement the IBookingProcessor interface in a public class called BookingProcessor in the

Classes folder.

To force the BookingProcessor instances to be created and at the same time receive an

instance of a class implementing the IDataLayer interface you need to add a constructor that

has an IDataLayer parameter and stored it in a property called DataLayer. It is through this

property that the business layer can reach the data layer.

You will later create an instance of the BookingProcessor class in the form's code-behind to

gain access to the data in the data layer.

1. Add a reference to the Data Layer project by right clicking on the References folder

and select Add Reference.

2. Add a public interface called IBookingProcessor to the Interfaces folder.

3. Inherit the IRentalBase interface from the Data Layer project to the IBookingPro-

cessor interface.

4. public interface IBookingProcessor : IRentalBase { ... }

5. Add a read only IDataLayer property called DataLayer to the interface

IDataLayer DataLayer { get; }

6. Implement the interface in the BookingProcessor class. Note the private set key-

word making it possible to add the passed in IDataLayer instance to the property

internally to the BookingProcessor instance.

public class BookingProcessor : IBookingProcessor

{

public IDataLayer DataLayer { get; private set; }

}

399

C# For Beginners

7. Add a constructor with an IDataLayer parameter and assign the parameter to the

DataLayer property.

public BookingProcessor(IDataLayer dataLayer)

{

DataLayer = dataLayer;

}

The IBookingProcessor interface code so far:

public interface IBookingProcessor : IRentalBase

{

IDataLayer DataLayer { get; }

}

The BookingProcessor class' code so far:

public class BookingProcessor : IBookingProcessor

{

#region Properties

public IDataLayer DataLayer { get; private set; }

#endregion

#region Constructor

public BookingProcessor(IDataLayer dataLayer)

{

DataLayer = dataLayer;

}

#endregion

}

The GUI

The GUI is the form the user inputs and selects data from when a car is rented, returned or

when additional data is added such as a new customer or vehicle.

There are four action categories a user can choose from: rent out a vehicle, receive a

returned vehicle, look at booking history and add new data. One way to display this in an

easily understandable manner is to use a tab control with a tab for each action category.

The Rent Vehicle tab: Here the user can rent out a vehicle to a customer by choosing a

vehicle from a list view called lvwAvailableVehicles, select a customer from a combo box

400

C# For Beginners

called cboCustomers and click a button called btnRent (see image in the Application GUI

section at the beginning of the use case).

The Return Vehicle tab: Here the user can process a returned vehicle by choosing a vehicle

from a list view called lvwBookedVehicles, fill out the current meter setting in a textbox

called txtMeterReturn and click a button called btnReturn (see image in the Application GUI

section at the beginning of the use case).

The Bookings tab: Here the user can view all bookings in a list view called lvwBookings (see

image in the Application GUI section at the beginning of the use case).

The Add Data tab: Here the user can add a new vehicle filling out two textboxes called

 txtRegNo and txtMeter, select a vehicle type from a combo box called cboTypes and click

the btnAddVehicle button. New customers can also be added by filling out three textboxes

called txtSocial, txtFirstName and txtLastName and then click the btnAddCustomer button (see image in the Application GUI section at the beginning of the use case).

There should also be a button called btnClose in the form which will close the form when

clicked.

To be able to reach the data in the TestData data source you need to create an instance of

the BookingProcessor class passing in an instance of the data layer class you want to use, in

this case the CollectionDataLayer class. To gain access to the necessary classes you need to

add a reference to the Business Layer and Data Layer projects in the Windows Forms

Application project.

1. Add references to the Business Layer and Data Layer projects.

2. Open the form's code-behind file.

3. Add an IBookingProcessor variable called processor at the beginning of the form

class. It is through this variable you will call the booking processor and get access to

the data through the data layer.

IBookingProcessor processor;

4. Create an instance of the BookingProcessor class and pass in an instance of the

CollectionDataLayer class from the Form_Load event.

processor = new BookingProcessor(new CollectionDataLayer());

401

C# For Beginners

5. Add a region called Fill Data Methods below the Form_Load event.

6. Add a region called Action Methods below the Fill Data Methods region.

7. Add a region called Helper Methods below the Action Methods region.

8. Add a region called Button Events below the Helper Methods region.

The complete form class code so far:

public partial class Form1 : Form

{

IBookingProcessor processor;

public Form1()

{

InitializeComponent();

}

private void Form1_Load(object sender, EventArgs e)

{

processor = new BookingProcessor(new CollectionDataLayer());

}

#region Fill Data Methods

#endregion

#region Action Methods

#endregion

#region Helper Methods

#endregion

#region Button Events

#endregion

}

Rent Vehicle: List customers

Now it's time to actually use the data in the TestData class by implementing the necessary

methods in the BookingProcessor and CollectionDataLayer classes and then calling the

methods from the form's code-behind.

The first task is to fill the cboCustomers combo box in the Rent Vehicle tab with all custo-

mers in the data source. In order to be able to fetch all the customers from the Customers

402

C# For Beginners

collection in the TestData class (the data source) you need to define a method called Get-

Customers in the IRentalBase interface and implement it in the CollectionDataLayer class

with logic that fetches data from the Customers collection but also in the BookingProcessor

class with logic that fetches the data by calling the instance of the CollectionDataLayer class.

When the method has been implemented in both classes the processor variable you added

to the form's code-behind can be used to call the GetCustomer method on the booking

processor.

Since you know that the method will return a list of customers it's not a huge leap to come

to the conclusion that it should return either a List<ICustomer> or IEnumerable <ICusto-

mer> , the main difference between the two is that the IEnumerable defer the actual

fetching of the instances until they are used; for instance when looping over the collection.

Use the ICustomer interface as the collection data type to make the solution as flexible as

possible; if you use the Customer class then only objects from that class can be stored in the

collection, by using the interface instead all classes implementing that interface can be

stored in the collection.

The IRentalBase interface

To implement the GetCustomer method with the same signature in the CollectionDataLayer

and BookingProcessor class you add it to the IRentalBase interface; this will force both

classes to implement the method since they implement the interface. Failure to implement

the method in either or both classes will result in a compilation exception and the applica-

tion will not run until the methods has been added.

1. Open the IRentalBase interface.

2. Add two regions called Action Methods and Fetch Methods.

3. Add a definition for an IEnumerable<ICustomer> method called GetCustomer to the

Fetch Methods region of interface. Remember that interfaces only define members

and never have any logic.

IEnumerable<ICustomer> GetCustomers();

The code for the IRentalBase interface so far:

public interface IRentalBase

{

#region Action Methods

#endregion

403

C# For Beginners

#region Fetch Methods

IEnumerable<ICustomer> GetCustomers();

#endregion

}

The CollectionDataLayer class

Add a method called GetCustomers to the CollectionDataLayer class to implement the

method defined in the IRentalBase interface; you can copy the definition from the interface,

paste it into the class and add the curly braces.

The logic of the method could not be easier, you simply return the Customers collection

from the TestData class.

1. Open the CollectionDataLayer class in the Data Layer project.

2. Add three regions called Action Methods, Fetch Methods and Helper Methods to

the class.

3. Implement the GetCustomers method in the Fetch Methods region.

4. Return the Customers collection in the TestData class from the method.

public IEnumerable<ICustomer> GetCustomers()

{

return TestData.Customers;

}

The complete CollectionDataLayer class so far:

public class CollectionDataLayer : IDataLayer

{

public CollectionDataLayer() {

new TestData().Seed();

}

#region Action Methods

#endregion

#region Fetch Methods

public IEnumerable<ICustomer> GetCustomers()

{

return TestData.Customers;

}

#endregion

404

C# For Beginners

#region Helper Methods

#endregion

}

The BookingProcessor class

Add a method called GetCustomer to the BookingProcessor class to implement the method

defined in the IRentalBase interface; you can copy the definition from the interface, paste it

into the class and add the curly braces.

Since there is no business logic to implement for this method the logic of the method could

not be easier, you simply return the result of a call to the GetCustomers method in the

CollectionDataLayer class that you reach through the DataLayer property you added to the

BookingProcessor class earlier. You should also implement exception handling that re-

throws any exception from the data layer.

1. Open the BookingProcessor class in the Business Layer project.

2. Add three regions called Action Methods, Fetch Methods and Helper Methods to

the class.

3. Implement the GetCustomers method in the Fetch Methods region.

4. Add a try/catch-block in the method where the catch re-throws the exception.

5. Return the result from a call to the GetCustomers method in the data layer.

return DataLayer.GetCustomers();

The complete BookingProcessor class so far:

public class BookingProcessor : IBookingProcessor

{

#region Properties

public IDataLayer DataLayer { get; private set; }

#endregion

#region Constructor

public BookingProcessor(IDataLayer dataLayer)

{

DataLayer = dataLayer;

}

#endregion

405

C# For Beginners

#region Action Methods

#endregion

#region Fetch Methods

public IEnumerable<ICustomer> GetCustomers()

{

try

{

return DataLayer.GetCustomers();

}

catch

{

throw;

}

}

#endregion

#region Helper Methods

#endregion

}

The ComboCustomer class

This class is meant to be the data object stored for each customer in the combo box. The

reason you create this class is to be able to display values from many properties in the

combo box's text field which normally only accept one property. By creating a property that

return the formatted output of the last name, first name and social security number you can

assign that property to the DisplayMember property of the combo box.

The class should have three properties: Name which is the formatted output described

above, SocialSecurityNumber and Id which is the customer id.

1. Add a class called ComboCustomer to the Classes folder in the Windows Forms App-

lication project.

2. Add two string properties called Name and SocialSecurityNumber.

3. Add an int property called Id.

406

C# For Beginners

The complete ComboCustomer class:

class ComboCustomer

{

public string Name { get; set; }

public string SocialSecurityNumber { get; set; }

public int Id { get; set; }

}

Filling the combo box

Add a method called FillCustomers to the form's code-behind and fetch all customers using

the processor variable to call the GetCustomers method in the booking processor. Use a

LINQ query to convert the Customer objects to ComboCustomer objects.

Clear the cboCustomers combo box and add the list of ComboCustomer objects to it, use the

Name property as the DisplayMember.

1. Open the form's code-behind in the Car Rental project.

2. Add a method called FillCustomers to the Fetch Data Methods region.

3. Add a try/catch-block in the method where the catch-block is empty ignoring any

exception that might occur.

4. Use the result from a call to the GetCustomers method in the booking processor in a

LINQ query to convert the Customer objects to ComboCustomer objects.

var customer = from c in processor.GetCustomers()

select new ComboCustomer

{

Name = String.Format("{0} {1} ({2})",

c.LastName, c.FirstName, c.SocialSecurityNumber),

SocialSecurityNumber = c.SocialSecurityNumber,

Id = c.Id

};

5. Clear the combo box items.

6. Use the AddRange method to add the ComboCustomer objects to the combo box.

cboCustomers.Items.AddRange(customer.ToArray());

7. Assign "Name" to the DisplayMember property of the combo box.

8. Call the FillCustomers method below the processor variable in the Form_Load event

9. Run the application and open the Customers combo box to make sure that the cus-

tomers are in the drop down list.

407

C# For Beginners

The code for the GetCustomers method in the form:

public partial class Form1 : Form

{

IBookingProcessor processor;

public Form1() ...

private void Form1_Load(object sender, EventArgs e)

{

processor = new BookingProcessor(new CollectionDataLayer());

FillCustomers();

}

#region Fill Data Methods

private void FillCustomers()

{

try

{

var customer = from c in processor.GetCustomers()

select new ComboCustomer

{

Name = String.Format("{0} {1} ({2})",

c.LastName, c.FirstName, c.SocialSecurityNumber),

SocialSecurityNumber = c.SocialSecurityNumber,

Id = c.Id

};

cboCustomers.Items.Clear();

cboCustomers.Items.AddRange(customer.ToArray());

cboCustomers.DisplayMember = "Name";

}

catch

{

}

}

#endregion

}

Rent Vehicle: List available vehicles

Now that the cboCustomers combo box has been filled with customers it is time to fill the

 lvwAvailableVehicles in the Rent Vehicle tab with all vehicles that are not already rented

408

C# For Beginners

out. In order to be able to fetch all available vehicles from the Vehicles collection in the Test-

Data class (the data source) you need to define a method called GetVehicles in the IRental-

Base interface and implement it in the CollectionDataLayer class with logic that fetches data

from the Vehicles collection but also to the BookingProcessor class with logic that fetches

the data by calling the corresponding method in the CollectionDataLayer class. When the

method has been implemented in both classes the processor variable you added to the

form's code-behind can be used to call the GetVehicles method in the booking processor.

Since you know that the method should return a list of vehicles it should return either a List

<IVehicle> or IEnumerable<IVehicle> . Use the IVehicle interface as the collection data type

to make the solution as flexible as possible; if you use the Vehicle class then only objects

from that class can be stored in the collection, by using the interface instead all classes

implementing the interface can be stored in the collection.

The GetVehicles method should have a VehicleStatus parameter called status that can be

used to filter out the desired vehicles. VehicleStatus is an enumeration with the following

values: All, Booked and Available.

You need to implement a second method in this scenario called GetVehicleType that fetch a

vehicle type based on the passed in vehicle type id; this method is used to display the vehicle

type name instead of the vehicle type id when displaying vehicles in list view controls.

The VehicleSatus enumeration

To be able to filter on vehicle status you need to implement an enumeration called Vehicle-

Status that can be used as a parameter data type in the GetVehicles method and for filtering

in the method. The enumeration should have the following values: All, Booked and Avail-

able.

1. Add a class called Enums to the Enums folder in the Data Layer project.

2. Delete the class code but leave the namespace.

3. Add the public VehicleStatus enum to the namespace.

409

C# For Beginners

The complete code for the VehicleStatus enum:

public enum VehicleStatus

{

All,

Booked,

Available

}

The IRentalBase interface

To implement the GetVehicles and the GetVehicleType methods with their signatures in the

CollectionDataLayer and BookingProcessor classes you add them to the IRentalBase

interface; this will force both classes to implement the methods since they both implement

the interface. Failure to implement the methods in either or both classes will result in a

compilation exception and the application will not run until the methods has been added.

1. Open the IRentalBase interface.

2. Add a definietion for an IEnumerable<IVehicle> method called GetVehicles which

has a VehicleStatus parameter called status; add it to the Fetch Methods region of

the interface.

IEnumerable<IVehicle> GetVehicles(VehicleStatus status);

3. Add a definition for an IVehicleType method called GetVehicleType which has an int

parameter called vehicleTypeId; add it to the Fetch Methods region of the interface.

IVehicleType GetVehicleType(int vehicleTypeId);

The complete code for the IRentalBase interface so far:

public interface IRentalBase

{

#region Action Methods

#endregion

#region Fetch Methods

IEnumerable<ICustomer> GetCustomers();

IEnumerable<IVehicle> GetVehicles(VehicleStatus status);

IVehicleType GetVehicleType(int vehicleTypeId);

#endregion

}

410

C# For Beginners

The CollectionDataLayer class

Add a method called GetVehicles and another called GetVehicleType to the CollectionData-

Layer class to implement the method defined in the IRentalBase interface; you can copy the

definition from the interface, paste it into the class and add the curly braces.

The logic in the GetVehicles method is a little bit trickier than the GetCustomers method

because now the returned result set can contain all, available or booked vehicles which

mean that you have to implement conditional logic to decide which vehicles to return based

on the passed in vehicle status in the status parameter. The easiest way to implement this is

probably to do a recursive call to the GetVehicles method for the Available vehicle status

with the Booked vehicle status as the parameter value; check that the result does not

contain any booked vehicles with the current vehicle id in the where clause of the Available

vehicle status LINQ query. If the chained Count method on the recursive call is zero then the

no booking exist for the vehicle.

case VehicleStatus.Available:

return from c in TestData.Vehicles

where GetVehicles(VehicleStatus.Booked).Count(b =>

b.Id.Equals(c.Id)).Equals(0)

select c;

To return the booked vehicles you need to join the Vehicles collection with the Bookings

collection on the vehicle id in the LINQ query. You also need to add a where clause checking

that the vehicle has a booking with the DateTime.MinValue in its Returned property.

The logic in the GetVehicleType is much simpler; you only have to fetch the first or default

value for the vehicle type id passed in to the method using a LINQ query on the Vehicle-

Types collection in the TestData class.

1. Open the CollectionDataLayer class in the Data Layer project.

2. Implement the GetVehicles method in the Fetch Methods region.

3. Add a switch checking the status parameter value.

4. Return all Vehicles in the Vehicles collection in the TestData class if the status

match All in the VehicleStatus enum.

case VehicleStatus.All:

return TestData.Vehicles;

411

C# For Beginners

5. Join the Vehicles collection with the Bookings collection on the vehicle id to return

the booked vehicles and check that the vehicle's Returned property contain Date-

Time.MinValue.

case VehicleStatus.Booked:

return from c in TestData.Vehicles

join b in TestData.Bookings on c.Id equals b.VehicleId

where b.Returned.Equals(DateTime.MinValue)

select c;

6. Do a recursive call to the GetVehicles method for the Available vehicle status with

the Booked vehicle status as the parameter value and check that the result does not

contain any booked vehicles n the LINQ query.

case VehicleStatus.Available:

return from c in TestData.Vehicles

where GetVehicles(VehicleStatus.Booked)

.Count(b => b.Id.Equals(c.Id)).Equals(0)

select c;

7. Implement the GetVehicleType method in the Fetch Methods region.

8. Add a LINQ query to the method that uses the FirstOrDefault method to fetch the

vehicle type using the passed in vehicleTypeId parameter.

return TestData.VehicleTypes.FirstOrDefault(vt =>

vt.Id.Equals(vehicleTypeId));

The code for the CollectionDataLayer class so far:

public class CollectionDataLayer : IDataLayer

{

public CollectionDataLayer() ...

#region Action Methods

#endregion

#region Fetch Methods

public IEnumerable<ICustomer> GetCustomers() ...

public IEnumerable<IVehicle> GetVehicles(VehicleStatus status)

{

switch (status)

{

case VehicleStatus.All:

return TestData.Vehicles;

412

C# For Beginners

case VehicleStatus.Booked:

return from c in TestData.Vehicles

join b in TestData.Bookings on c.Id equals b.VehicleId

where b.Returned.Equals(DateTime.MinValue)

select c;

case VehicleStatus.Available:

return from c in TestData.Vehicles

where GetVehicles(VehicleStatus.Booked)

.Count(b => b.Id.Equals(c.Id)).Equals(0)

select c;

}

return new List<IVehicle>();

}

public IVehicleType GetVehicleType(int vehicleTypeId)

{

return TestData.VehicleTypes.FirstOrDefault(

vt => vt.Id.Equals(vehicleTypeId));

}

#endregion

#region Helper Methods

#endregion

}

The BookingProcessor class

Add the two methods called GetVehicles and GetVehicleType to the BookingProcessor class

as defined in the IRentalBase interface; you can copy the definitions from the interface,

paste them into the class and add the curly braces.

Since there is no business logic to implement for either of the methods their logic could not

be easier, you simply return the result of calls to the GetVehicles and GetVehicleType

methods in the CollectionDataLayer class that you reach through the DataLayer property

you added to the BookingProcessor class earlier. You should also implement exception

handling that re-throws any exception from the data layer.

1. Open the BookingProcessor class in the Business Layer project.

2. Implement the GetVehicles method in the Fetch Methods region.

3. Add a try/catch-block in the method where the catch-block re-throws the exception.

4. Return the result from a call to the GetVehicles method in the data layer.

return DataLayer.GetVehicles(status);

413

C# For Beginners

5. Implement the GetVehicleType method in the Fetch Methods region.

6. Add a try/catch-block in the method where the catch-block re-throws the exception.

7. Return the result from a call to the GetVehicleType method in the data layer.

return DataLayer.GetVehicleType(vehicleTypeId);

The BookingProcessor class so far:

public class BookingProcessor : IBookingProcessor

{

#region Properties

public IDataLayer DataLayer { get; private set; }

#endregion

#region Constructor

public BookingProcessor(IDataLayer dataLayer) ...

#endregion

#region Action Methods

#endregion

#region Fetch Methods

public IEnumerable<ICustomer> GetCustomers() ...

public IEnumerable<IVehicle> GetVehicles(VehicleStatus status)

{

try

{

return DataLayer.GetVehicles(status);

}

catch

{

throw;

}

}

public IVehicleType GetVehicleType(int vehicleTypeId)

{

try

{

return DataLayer.GetVehicleType(vehicleTypeId);

}

catch { throw; }

}

#endregion

414

C# For Beginners

#region Helper Methods

#endregion

}

The GetVehicles ListViewItem conversion method

Since you want to display vehicles in several list view controls it warrants creating a reusable

method called GetVehicles that can return a collection of ListViewItems needed when add-

ing data to a list view in the Fill Data Methods region of the form. What the method do is

pretty straight forward, it calls the GetVehicles method on the processor variable fetching

the vehicles matching the vehicle status passed into the method and creates new ListView-

Item objects using the result from the LINQ query.

When displaying the vehicles you want to show the vehicle type name and not its id value to

achieve this you can call the GetVehicleType method you created in the previous section of

this exercise in the LINQ query.

This method can then be called whenever vehicles are displayed in a list view control.

1. Open the form's code- behind file.

2. Add a private IEnumerable<ListViewItem> method called GetVehicles that has a

VehicleStatus parameter called vehicleStatus to the Fetch Data Methods region.

private IEnumerable<ListViewItem> GetVehicles(VehicleStatus

vehicleStatus)

{

}

3. Return the result from a LINQ query which call the GetVehicles method on the

processor instance variable to fetch the vehicles matching the passed in vehicle

status. Create new ListViewItem objects for the matching vehicles in the LINQ select

statement. Call the GetVehicleType method in the select statement to fetch the

name of the vehicle type.

return from v in processor.GetVehicles(vehicleStatus)

select new ListViewItem(new string[]

{

processor.GetVehicleType(v.TypeId).Name,

...

});

415

C# For Beginners

The complete code for the GetVehicles method:

private IEnumerable<ListViewItem> GetVehicles(VehicleStatus vehicleStatus)

{

return from v in processor.GetVehicles(vehicleStatus)

select new ListViewItem(new string[]

{

v.RegistrationNumber,

processor.GetVehicleType(v.TypeId).Name,

v.BasePricePerKm.ToString(),

v.BasePricePerDay.ToString(),

v.Meter.ToString(),

v.Id.ToString(),

"0" //BookingId

});

}

Filling the list view

Create a method called FillAvailableVehicles which fetch all available vehicles by calling the

GetVehicles method you just created in the form and pass in the Available vehicle status.

Use the result from the method call to populate the lvwAvailableVehicles list view, don't

forget to clear the items in the list view before adding the fetched vehicles to avoid dupli-

cates in the list view.

1. Open the form's code-behind file.

2. Add a method called FillAvailableVehicles to the Fill Data Methods region.

3. Call the GetVehicles method passing in VehicleStatus.Available and store the result

in a variable called vehicles.

var vehicles = GetVehicles(VehicleStatus.Available);

4. Clear the Items collection of the lvwAvailableVehicles list view.

5. Add the fetched vehicles to the Items collection by calling the AddRange method.

6. Call the FillAvailableVehicles method from the Form_Load event.

416

C# For Beginners

7. Run the application and make sure that the available vehicles are displayed in the

list view control on the Rent Vehicle tab.

The complete code for the FillAvailableVehicles method:

private void FillAvialbleVehicles()

{

var vehicles = GetVehicles(VehicleStatus.Available);

lvwAvailableVehicles.Items.Clear();

lvwAvailableVehicles.Items.AddRange(vehicles.ToArray());

}

Rent Vehicle: Rent a vehicle

Now that the cboCustomers combo box and the lvwAvailableVehicles list view in the Rent

Vehicle tab has been filled with data it is time to implement the functionality to rent a vehi-

cle by clicking the btnRent button. In order to rent a vehicle you need the customer id from

the selected customer in the combo box and the vehicle id from the selected vehicle in the

list view.

Since the RentVehicle method you will create isn't fetching data and performing the action

of adding a booking to the Bookings collection in the TestData class (the data source) it

should be added to the Action Methods regions in the involved classes and the IRentalBase

interface. Implement the RentVehicle method definition from the IRentalBase interface in

the CollectionDataLayer and BookingProcessor classes. When the method has been

implemented in both classes the processor variable you added to the form's code-behind

can be used to call the RentVehicle method on the booking processor.

Since you want the method to add a booking it can be beneficial to return a bool value

stating if the booking was successful or not. The method defined in the interface has three

parameters, two int parameters called vehicleId and customerId and a DateTime parameter

called timeOfRental.

The IRentalBase interface

To implement the RentVehicle method with the same signature in the CollectionDataLayer

and BookingProcessor class you add it to the IRentalBase interface; this will force both

classes to implement the method since they implement the interface. Failure to implement

417

C# For Beginners

the method in either or both classes will result in a compilation exception and the applica-

tion will not run until the methods has been added.

1. Open the IRentalBase interface.

2. Add a definition for a bool method called RentVehicle with three parameters, two

int parameters called vehicleId and customerId and a DateTime parameter called

timeOfRental to the Action Methods region of the interface. Remember that

interfaces only define members and never have any logic.

bool RentVehicle(int vehicleId, int customerId, DateTime

timeOfRental);

The code for the IRentalBase interface so far:

public interface IRentalBase

{

#region Action Methods

bool RentVehicle(int vehicleId, int customerId, DateTime timeOfRental);

#endregion

#region Fetch Methods

IEnumerable<ICustomer> GetCustomers();

IEnumerable<IVehicle> GetVehicles(VehicleStatus status);

IVehicleType GetVehicleType(int vehicleTypeId);

#endregion

}

The CollectionDataLayer class

Add a method called RentVehicle to the CollectionDataLayer class to implement the meth-

od defined in the IRentalBase interface; you can copy the definition from the interface,

paste it into the class and add the curly braces.

The logic of the method is fairly simple, first you add a try/catch-block and then generate a

new booking id by adding 1 to the highest existing booking id from the Bookings collection in

the TestData class (note that the booking id would be auto generated from the database in a

real world scenario).

Once you have the booking id you use the Add method of the Bookings collection to add a

new booking by creating a new instance of the Booking class using the values passed in to

the RentVehicle method and the new booking id. Return true from the method if no excep-

418

C# For Beginners

tion was thrown by either of the two previous code statements. If an exception is thrown

you end up in the catch-block where false is returned.

1. Open the CollectionDataLayer class in the Data Layer project.

2. Implement the RentVehicle method in the Action Methods region.

3. Add a try/catch-block to the method.

4. Generate a new booking id by adding 1 to the highest existing booking id from the

Bookings collection by calling the Max method specifying which property you want

to fetch the maximum value for.

var bookingId = TestData.Bookings.Max(b => b.Id) + 1;

5. Add a new booking by calling the Add method on the Bookings collection passing in

a new instance of the Booking class.

TestData.Bookings.Add(new Booking() { Id = bookingId, CustomerId =

customerId, Rented = timeOfRental, VehicleId = vehicleId });

6. Return true if no exception was thrown otherwise return false.

The code in the CollectionDataLayer class so far:

public class CollectionDataLayer : IDataLayer

{

public CollectionDataLayer() ...

#region Action Methods

public bool RentVehicle(int vehicleId, int customerId,

DateTime timeOfRental)

{

try

{

// The booking id would normally be supplied by the database

var bookingId = TestData.Bookings.Max(b => b.Id) + 1;

TestData.Bookings.Add(new Booking() {

Id = bookingId,

CustomerId = customerId,

Rented = timeOfRental,

VehicleId = vehicleId

});

return true;

}

419

C# For Beginners

catch

{

throw;

}

}

#endregion

#region Fetch Methods

public IEnumerable<ICustomer> GetCustomers() ...

public IEnumerable<IVehicle> GetVehicles(VehicleStatus status) ...

public IVehicleType GetVehicleType(int vehicleTypeId) ...

#endregion

#region Helper Methods

#endregion

}

The BookingProcessor class

Add a method called RentVehicle to the BookingProcessor class to implement the method

defined in the IRentalBase interface; you can copy the definition from the interface, paste it

into the class and add the curly braces.

Since there is no business logic to implement for this method the logic of the method could

not be easier, you simply return the result of a call to the RentVehicle method in the

CollectionDataLayer class that you reach through the DataLayer property you added to the

BookingProcessor class earlier. You should also implement exception handling that re-

throws any exception from the data layer.

1. Open the BookingProcessor class in the Business Layer project.

2. Implement the RentVehicle method in the Action Methods region.

3. Add a try/catch-block in the method where the catch re-throws the exception.

4. Return the result from a call to the RentVehicle method in the data layer.

return DataLayer.RentVehicle(vehicleId, customerId, DateTime.Now);

The complete BookingProcessor class so far:

public class BookingProcessor : IBookingProcessor

{

#region Properties

public IDataLayer DataLayer { get; private set; }

#endregion

420

C# For Beginners

#region Constructor

public BookingProcessor(IDataLayer dataLayer) ...

#endregion

#region Action Methods

public bool RentVehicle(int vehicleId, int customerId,

DateTime timeOfRental)

{

try

{

return DataLayer.RentVehicle(vehicleId, customerId,

DateTime.Now);

}

catch

{

throw;

}

}

#endregion

#region Fetch Methods

public IEnumerable<ICustomer> GetCustomers() ...

public IEnumerable<IVehicle> GetVehicles(VehicleStatus status) ...

public IVehicleType GetVehicleType(int vehicleTypeId) ...

#endregion

#region Helper Methods

#endregion

}

Renting a vehicle

In order to rent a vehicle you need to create a bool method called RentVehicle that fetch

data from the selected items in the cboCustomers combo box and the lvwAvailableVehicles

list view and use that information to call the RentVehicle method on the processor instance.

The RentVehicle method in the Action Methods region of the form should return true if the

booking process was successful otherwise it should return false. The returned result will be

used in the Click event of the btnRent button to display a message box if the booking was

unsuccessful.

Add a bool variable called success in the method.

421

C# For Beginners

Implement a try/catch-block returning true in the try-block and false in the catch-block like

you have done in previous methods with the difference that you use a variable to store the

value and return it after the catch-block.

Add an if-block checking that a customer is selected in the combo box and display a message

to the user and exit gracefully from the method if that is not the case.

Add another if-block checking that a vehicle is selected in the list view and display a message

to the user and exit gracefully from the method if that is not the case.

Fetch the selected vehicle's id from the list view and store it in a variable called vehicleId

and the selected customer's id from the combo box and store it in a variable called

customerId.

Call the RentVehicle method on the processor instance variable passing in the vehicleId and

customerId variables as well as the current date and store the result in the returnVehicle

variable.

Call the FillAvailableVehicles method you created in the beginning of this exercise to

repopulate the list view containing the vehicles available for rental.

1. Open the form's code-behind file.

2. Add a bool method called RentVehicle to the Action Methods region.

3. Add a bool variable called success to the method and assign false to it.

4. Add a try/catch-block where the catch-block assign false to the success variable.

5. Return the value of the success variable after the catch-block.

6. Add an if-statement to the try-block that check if the SelectedIndex of the combo

box is less than zero and display a message to the user and return the value of the

success variable if it is.

7. Add an if-statement try-block that check if the SelectedItems.Count property of the

list view is zero and display a message to the user and return the value of the

success variable if it is.

8. Parse the sixth sub item of the selected item in the list view to get the vehicle id and

store the result in a variable called vehicleId.

var vehicleId = Int32.Parse(lvwAvailableVehicles

.SelectedItems[0].SubItems[5].Text);

422

C# For Beginners

9. Fetch the customer id from the selected item in the combo box by casting the

selected item to a ComboCustomer object and read the value in its Id property,

store the value in a variable called customerId.

var customerId = ((ComboCustomer)cboCustomers.SelectedItem).Id;

10. Call the RentVehicle method on the processor variable passing in the vehicleId,

customerId and the current date. Store the result form the method call in the

success variable.

success = processor.RentVehicle(vehicleId, customerId, DateTime.Now);

11. Call the FillAvailableVehicles method to update the lvwAvailableVehicles list view.

Later you will add calls to two other methods updating the other two list view con-

trols.

12. Add the Click event for the btnRent button to the Button Events region.

13. Call the RentVehicle method you just added to the form in the Click event and store

the result in a variable called rented.

14. Add an if-statement that display a message box telling the user that the vehicle

wasn't rented if the rented variable is false.

15. Run the application and click the button without selecting a customer and make sure

that the correct messages are displayed.

16. Now select a vehicle and customer and click the button. If the booking was success-

fully added the vehicle should no longer be available for rental in the list view.

The code for the form so far:

public partial class Form1 : Form

{

IBookingProcessor processor;

public Form1() ...

private void Form1_Load(object sender, EventArgs e) ...

#region Fill Data Methods

private void FillCustomers() ...

private IEnumerable<ListViewItem> GetVehicles(

VehicleStatus vehicleStatus) ...

private void FillAvialbleVehicles() ...

#endregion

423

C# For Beginners

#region Action Methods

private bool RentVehicle()

{

bool success = false;

try

{

if (cboCustomers.SelectedIndex < 0)

{

MessageBox.Show(

"A customer must be selected in the drop down list");

return success;

}

if (lvwAvailableVehicles.SelectedItems.Count == 0)

{

MessageBox.Show("A vehicle must be selected in the list");

return success;

}

var vehicleId = Int32.Parse(

lvwAvailableVehicles.SelectedItems[0].SubItems[5].Text);

var customerId = ((ComboCustomer)cboCustomers.SelectedItem).Id;

success = processor.RentVehicle(vehicleId, customerId,

DateTime.Now);

FillAvialbleVehicles();

}

catch { success = false; }

return success;

}

#endregion

#region Helper Methods

#endregion

#region Button Events

private void btnRent_Click(object sender, EventArgs e)

{

var rented = RentVehicle();

424

C# For Beginners

if (!rented) MessageBox.Show("The vehicle was not rented");

}

#endregion

}

Return Vehicle: Fill the booked vehicles list box

Now that you have enabled the user to rent out a vehicle it's time to add the functionality to

return a vehicle on the Return Vehicle tab of the form. To return a vehicle the user has to

select a vehicle from the lvwBookedVehicles list view and enter the current meter setting in

the txtMeterReturn textbox before clicking on the btnReturn button.

In this part of the exercise you will add all booked vehicles to the lvwBookedVehicles list

view. In order to be able to fetch all the booked vehicles from the Vehicles collection in the

TestData class (the data source) you need to call the GetVehicles method you created earli-

er passing in VehicleStatus.Booked in its vehicleStatus parameter.

Filling the list view

Add a method called FillBookedVehicles to the Fill Data Methods region of the form that

call the GetVehicles method and use the result to fill the list view and then call that method

from the Form_Load event.

1. Open the form's code-behind file.

2. Add a void method called FillBookedVehicles to the Fill Data Methods region.

3. Call the GetVehicles method passing in VehicleStatus.Booked to it. Store the result

from the method call in a variable called vehicles.

var vehicles = GetVehicles(VehicleStatus.Booked);

4. Clear the Items collection of the lvwBookedVehicles list view.

5. Add the fetched vehicles to the list view using the AddRange method.

6. Add a call to the FillBookedVehicles method at the end of the Form_Load event.

7. Add a call to the FillBookedVehicles method after the call to the FillAvailableVehic-

les method in the RentVehicle method to update the list view content when a vehic-

le is rented.

8. Run the application and make sure that there is a booking in the Booked Vehicles

list view on the Return Vehicle tab.

425

C# For Beginners

9. Go to the Rent Vehicle tab and rent one of the remaining vehicles and make sure

that it is removed from the Available vehicles list view. Switch to the Return Vehicle

tab and make sure that the vehicle is displayed in the list view.

The form's code so far:

public partial class Form1 : Form

{

IBookingProcessor processor;

public Form1() ...

private void Form1_Load(object sender, EventArgs e) ...

#region Fill Data Methods

private void FillCustomers() ...

private IEnumerable<ListViewItem> GetVehicles(

VehicleStatus vehicleStatus) ...

private void FillAvialbleVehicles() ...

private void FillBookedVehicles()

{

var vehicles = GetVehicles(VehicleStatus.Booked);

lvwBokedVehicles.Items.Clear();

lvwBokedVehicles.Items.AddRange(vehicles.ToArray());

}

#endregion

#region Action Methods

private bool RentVehicle() ...

#endregion

#region Helper Methods

#endregion

#region Button Events

private void btnRent_Click(object sender, EventArgs e) ...

#endregion

}

Return Vehicle: Return a vehicle

In order to return a rented vehicle the user must select a vehicle in the lvwBookedVehicles

to get access to the vehicle id, enter the current vehicle meter setting in the txtMeterReturn

textbox and click the brnReturn button.

426

C# For Beginners

Since the ReturnVehicle method you will create isn't fetching data and performing the

action of returning a rented out vehicle it should be added to the Action Methods regions in

the involved classes and the IRentalBase interface. Implement the ReturnVehicle method

definition from the IRentalBase interface in the CollectionDataLayer and BookingProcessor

classes. When the method has been implemented in both classes the processor variable you

added to the form's code-behind can be used to call the ReturnVehicle method in the

booking processor.

Since you want the method to return a vehicle by adding the current date to the Returned

property, calculate the cost and assign that value to the Cost property and assign the passed

in meter setting to the Meter property of an existing booking matching the passed in book-

ing id it can be beneficial to return a bool value stating if the actions were successful or not.

The method defined in the interface has three parameters, one int parameter called book-

ingId, a double parameter called meter for the current meter setting and a DateTime para-

meter called returned.

If something goes wrong with the booking object then a specialized custom exception called

BookingException should be thrown with a suitable message and the booking id stored in an

Id property. The BookingException should inherit and extend the KeyNotFoundException

class.

If something goes wrong with the vehicle object then a specialized custom exception called

VehicleException should be thrown with a suitable message and the vehicle id stored in an

Id property. The VehicleException should inherit and extend the KeyNotFoundException

class.

To keep the code in the ReturnVehicle method clean you have to add two helper methods

called RentalDuration which calculates how long the vehicle has been rented based on the

rental and return date and CalculatePrice which calculates the price based on information in

the fetched vehicle, the current meter setting and the duration calculated by the

RentalDuration method.

To do the calculations you have to fetch the booking matching the booking id passed in to

the method from the Bookings collection in the TestData class and the vehicle matching the

vehicle id in the fetched booking from the Vehicles collection.

427

C# For Beginners

The BookingsException, VehicleException and CustomerException classes

To store custom data in an exception you inherit the best existing exception class to a new

class, add the necessary properties to the class and add a constructor with the necessary

parameters.

In these two exception classes you want to add a property with a public getter and a private

setter called Id. The custom message for the exceptions will be stored in the inherited excep-

tion class' Message property by sending it to inherited class' constructor using the base

keyword.

The exception classes should be created in the Exceptions folder in the Data Layer project to

be accessible everywhere.

1. Add a class called BookingException to the Exceptions folder in the Data Layer pro-

ject.

2. Change its accessibility to public and inherit the KeyNotFoundException class.

public class BookingException : KeyNotFoundException

3. Add a public int property called Id with a private setter.

public int Id { get; private set; }

4. Add a constructor that has an int parameter called id and a string parameter called

message. Let the constructor call the base class' constructor with the message para-

meter and assign the passed in id parameter to the Id property in the constructor

body.

public BookingException(int id, string message = "The given booking

id does not exist") : base(message)

{

Id = id;

}

5. Repeat the bullets 1-4 for two classes called VehicleException and

CustomerException changing the default text for the message parameter.

The complete code for the BookingException class:

public class BookingException : KeyNotFoundException

{

public int Id { get; private set; }

428

C# For Beginners

public BookingException(int id, string message = "The given booking id

does not exist") : base(message)

{

Id = id;

}

}

The complete code for the VehicleException class:

public class VehicleException : KeyNotFoundException

{

public int Id { get; private set; }

public VehicleException(int id, string message = "The given vehicle id

does not exist") : base(message)

{

Id = id;

}

}

The IDataLayer interface

To implement the RentalDuration and CalculatePrice methods in the CollectionDataLayer

class you add it to the IDataLayer interface; this will force the class to implement the meth-

ods. Failure to implement the methods in the class will result in a compilation exception and

the application will not run until the methods have been added.

1. Open the IDataLayer interface.

2. Add a definition for an int method called RentalDuration with two DateTime para-

meters called rented and returned to the Helper Methods region in the interface.

Remember that interfaces only define members and never have any logic.

int RentalDuration(DateTime rented, DateTime returned);

3. Add a definition for a double method called CalculatePrice with three parameters,

one IVehicle parameter called vehicle, a double parameter called returnedMeter-

Setting and an int parameter called duration. Add the method to the Helper Meth-

ods region in the interface.

double CalculatePrice(IVehicle vehicle, double returnedMeterSetting,

int duration);

429

C# For Beginners

The complete code for the IDataLayer interface:

public interface IDataLayer : IRentalBase

{

#region Helper Methods

int RentalDuration(DateTime rented, DateTime returned);

double CalculatePrice(IVehicle vehicle,

double returnedMeterSetting, int duration);

#endregion

}

The RentalDuration method

This method defined in the IDataLayer interface will calculate how long a vehicle has been

rented by subtracting the return date from the rental date storing the result in a TimeSpan

object called time. You can use the passed in parameters TimeOfDay property to check if

the rental duration is within an acceptable range; return 1 if the time object's Days property

is equal to zero and the difference between the returned and rented parameters' TimeOf-

Day properties is greater than the minimal value for a time span otherwise return the value

of the Days property of the time object.

if (time.Days == 0 && returned.TimeOfDay - rented.TimeOfDay >

TimeSpan.MinValue)

Add the RentalDuration method to the Helper Methods region in the CollectionDataLayer.

The method should have two DateTime parameters called rented and returned and return

an int value representing the number of days the vehicle has been rented out.

1. Open the CollectionDataLayer class.

2. Add a method called RentalDuration with two DateTime parameters called rented

and returned to the Helper Methods region.

public int RentalDuration(DateTime rented, DateTime returned)

3. Add a TimeSpan variable called time to which you assign the result of the difference

between the returned and rented date parameters.

TimeSpan time = returned - rented;

4. Add an if statement checking if the number of days is equal to zero and return 1 if it

is otherwise return the number of days calculated by the time variable.

430

C# For Beginners

if (time.Days == 0 && returned.TimeOfDay - rented.TimeOfDay >

TimeSpan.MinValue)

return 1;

else

return time.Days;

The complete code for the RentalDuration method:

public class CollectionDataLayer : IDataLayer

{

public CollectionDataLayer() ...

#region Action Methods

public bool RentVehicle(int vehicleId, int

customerId, DateTime timeOfRental) ...

#endregion

#region Fetch Methods

public IEnumerable<ICustomer> GetCustomers() ...

public IEnumerable<IVehicle> GetVehicles(VehicleStatus status) ...

public IVehicleType GetVehicleType(int vehicleTypeId) ...

#endregion

#region Helper Methods

public int RentalDuration(DateTime rented, DateTime returned)

{

TimeSpan time = returned - rented;

if (time.Days == 0 &&

returned.TimeOfDay - rented.TimeOfDay > TimeSpan.MinValue)

return 1;

else

return time.Days;

}

#endregion

}

The CalcualtePrice method

This method defined in the IDataLayer interface will calculate how much the customer owe

for renting the vehicle using the formulas specified by the use case (see below). The

CalculatePrice method returning a double should be added to the Helper Methods region in

the CollectionDataLayer class and have three parameters, vehicle of the IVehicle data type,

returnedMeterSetting of the int data type and duration of the int data type.

431

C# For Beginners

Sedan: Price = daily cost * number of days

Combi: Price = daily cost * number of days * day tariff + cost per Km * actual Km driven. The

day tariff is initially 1.5, but that could be changed over time.

Van: Price = daily cost * number of days * day tariff + cost per Km * actual Km driven *

distance tariff. The day tariff is initially 2.0 and distance tariff is initially 2.5, but that could

be changed over time.

1. Open the CollectionDataLayer class.

2. Add a method called CalculatePrice with three parameters, vehicle of the IVehicle

data type, returnedMeterSetting of the int data type and duration of the int data

type to the Helper Methods region.

public double CalculatePrice(IVehicle vehicle, double

returnedMeterSetting, int duration)

3. Calculate the price and return it from the method.

return vehicle.BasePricePerDay * duration * vehicle.DayTariff +

vehicle.BasePricePerKm * (returnedMeterSetting - vehicle.Meter) *

vehicle.KmTariff;

The complete code for the CalculatePrice method:

public class CollectionDataLayer : IDataLayer

{

public CollectionDataLayer() ...

#region Action Methods

public bool RentVehicle(int vehicleId, int

customerId, DateTime timeOfRental) ...

#endregion

#region Fetch Methods

public IEnumerable<ICustomer> GetCustomers() ...

public IEnumerable<IVehicle> GetVehicles(VehicleStatus status) ...

public IVehicleType GetVehicleType(int vehicleTypeId) ...

#endregion

#region Helper Methods

public int RentalDuration(DateTime rented, DateTime returned) ...

public double CalculatePrice(IVehicle vehicle,

432

C# For Beginners

double returnedMeterSetting, int duration)

{

return vehicle.BasePricePerDay * duration * vehicle.DayTariff +

vehicle.BasePricePerKm *

(returnedMeterSetting - vehicle.Meter) *

vehicle.KmTariff;

}

#endregion

}

The IRentalBase interface

To implement the ReturnVehicle and GetBookings methods with their signatures in the

CollectionDataLayer and BookingProcessor classes you add them to the IRentalBase inter-

face; this will force both classes to implement the methods since they implement the inter-

face. Failure to implement the method in either or both classes will result in a compilation

exception and the application will not run until the methods have been added.

The ReturnVehicle method is used when returning the vehicle and changing the Booking

object in the Bookings collection in the TestData class. The GetBookings method return all

bookings in the system and is used as a base when fetching a single booking using the Get-

Booking method in the BookingProcessor class.

1. Open the IRentalBase interface.

2. Add a definition for a double method called ReturnVehicle with three parameters,

one int parameter called bookingId, a double parameter called meter and a

DateTime parameter called Returned to the Action Methods region of interface.

Remember that interfaces only define members and never have any logic.

double ReturnVehicle(int bookingId, double meter, DateTime returned);

3. Add a definition for a parameter-less IEnumerable<IBooking> method called Get-

Bookings to the Fetch Methods region of interface.

IEnumerable<IBooking> GetBookings();

433

C# For Beginners

The complete code for the IRentalBase interface so far:

public interface IRentalBase

{

#region Action Methods

bool RentVehicle(int vehicleId, int customerId, DateTime timeOfRental);

double ReturnVehicle(int bookingId, double meter, DateTime returned);

#endregion

#region Fetch Methods

IEnumerable<ICustomer> GetCustomers();

IEnumerable<IVehicle> GetVehicles(VehicleStatus status);

IVehicleType GetVehicleType(int vehicleTypeId);

IEnumerable<IBooking> GetBookings();

#endregion

}

The ReturnVehicle method in the CollectionDataLayer class

Add a method called ReturnVehicle to the CollectionDataLayer class to implement the

method defined in the IRentalBase interface; you can copy the definition from the interface,

paste it into the class and add the curly braces.

The logic of the method is more complex than in the previous methods. First you add a

try/catch-block and then you check a bunch of conditions that can result in booking

exceptions and vehicle exceptions before using the booking and vehicle objects to perform

the calculations.

The following conditions will result in the method throwing a BookingException before

calculating the rental duration and cost:

 The fetched booking object is null, this mean that no booking object with the passed

in booking id exist in the Bookings collection.

 The VehicleId property in the fetched booking contain null or is less than 1.

 The Date value of the Rented property in the fetched booking is equal to the

minimal value for a date.

 The Date value of the Rented property in the fetched booking is greater than the

return date.

 The returned parameter passed into the method is equal to the minimal value for a

date. This mean that the vehicle is rented and has not been returned.

434

C# For Beginners

The following conditions will result in you throwing a VehicleException before calculating

the rental duration and cost:

 The fetched vehicle object is equal to null.

 The Meter property of the fetched vehicle object is greater than the meter setting

passed in through the method's meter parameter.

If no exception has been thrown then the RentalDuration and CalculatePrice methods can

be called to calculate the rental duration and the cost. Use the results to assign values to the

Returned, Cost and Meter properties of the fetched booking to return the vehicle.

1. Open the CollectionDataLayer class in the Data Layer project.

2. Implement the ReturnVehicle method in the Action Methods region.

3. Add a try/catch-block to the method.

4. Fetch the booking matching the passed in bookingId parameter and the Returned

property contain the minimal value for a date. Store the booking in a variable called

booking.

var booking = TestData.Bookings.FirstOrDefault(b =>

b.Id.Equals(bookingId) && b.Returned.Equals(DateTime.MinValue));

5. Add if-statements for the conditions that can trigger a booking exception.

6. Fetch the vehicle matching the VehicleId property of the fetched booking.

var vehicle = TestData.Vehicles.FirstOrDefault(v =>

v.Id.Equals(booking.VehicleId));

7. Add if-statements for the conditions that can trigger a vehicle exception.

8. Call the RentalDuration method passing in the date of the Rented property of the

booking object and the returned parameter passed in to the method to calculate

how long the vehicle has been rented, store the result in a variable called duration.

9. Call the CalculatePrice method passing in the vehicle object, the meter parameter

and the calculated duration, store the result in a variable called cost.

10. Assign the value of the returned parameter to the Returned property of the booking

object.

11. Assign the value of the cost variable to the Cost property of the booking object.

12. Assign the value of the meter parameter to the Meter property of the booking

object.

13. Return the cost variable from the method.

14. Re-throw any exception in the catch-block.

435

C# For Beginners

The code in the CollectionDataLayer class so far:

public class CollectionDataLayer : IDataLayer

{

public CollectionDataLayer() ...

#region Action Methods

public bool RentVehicle(int vehicleId, int

customerId, DateTime timeOfRental) ...

public double ReturnVehicle(int bookingId, double meter,

DateTime returned)

{

try

{

var booking = TestData.Bookings.FirstOrDefault(

b => b.Id.Equals(bookingId) &&

b.Returned.Equals(DateTime.MinValue));

// Throw exception if there is something wrong

// with the booking object.

if (booking == null) throw new BookingException(bookingId);

if (booking.VehicleId == null || booking.VehicleId < 1)

throw new BookingException(bookingId);

if (booking.Rented.Date == DateTime.MinValue)

throw new BookingException(bookingId);

if (booking.Rented.Date > returned)

throw new BookingException(bookingId,

"Rental date is greater than the return date.");

if (returned == DateTime.MinValue)

throw new BookingException(bookingId,

"The car is still rented out.");

var vehicle = TestData.Vehicles.FirstOrDefault(

v => v.Id.Equals(booking.VehicleId));

// Throw exception if there is something wrong

// with the vehicle object.

if (vehicle == null) throw new VehicleException(

vehicle.Id, "The vehicle is not rented out.");

if (vehicle.Meter > meter)

throw new VehicleException(vehicle.Id,

"The meter setting is lower than the current meter

setting.");

436

C# For Beginners

// Calculate the cost.

var duration = RentalDuration(booking.Rented, returned);

var cost = CalculatePrice(vehicle, meter, duration);

booking.Returned = returned;

booking.Cost = cost;

vehicle.Meter = meter;

return cost;

}

catch

{

throw;

}

}

#endregion

#region Fetch Methods

public IEnumerable<ICustomer> GetCustomers() ...

public IEnumerable<IVehicle> GetVehicles(VehicleStatus status) ...

public IVehicleType GetVehicleType(int vehicleTypeId) ...

#endregion

#region Helper Methods

public int RentalDuration(DateTime rented, DateTime returned) ...

public double CalculatePrice(IVehicle vehicle,

double returnedMeterSetting, int duration) ...

#endregion

}

The ReturnVehicle method in the BookingProcessor class

Add a method called ReturnVehicle to the BookingProcessor class to implement the method

defined in the IRentalBase interface; you can copy the definition from the interface, paste it

into the class and add the curly braces.

The logic of the method is almost the same as for the RentVehicle method. First you add a

try/catch-block and in the try-block you then call the ReturnVehicle method on the Data-

Layer instance property.

1. Open the BookingProcessor class in the Business Layer project.

2. Implement the ReturnVehicle method in the Action Methods region.

3. Add a try/catch-block to the method.

437

C# For Beginners

4. Return the result from a call to the ReturnVehicle method in the try-block passing in

the necessary parameters to the method.

5. Fetch the vehicle matching the VehicleId property of the fetched booking.

return DataLayer.ReturnVehicle(bookingId, meter, returned);

6. Re-throwany exceptions in the catch-block.

The code for the ReturnVehicle method in the BookingProcessor class:

public double ReturnVehicle(int bookingId, double meter, DateTime returned)

{

try

{

return DataLayer.ReturnVehicle(bookingId, meter, returned);

}

catch

{

throw;

}

}

The GetBookings method in the CollectionDataLayer class

Add a method called GetBookings in the CollectionDataLayer class to implement the meth-

od defined in the IRentalBase interface.

The logic of the method is very simple you only return the Bookings collection from the Test-

Data class.

1. Open the CollectionDataLayer class.

2. Add a parameter-less IEnumerable<IBooking> method called GetBookings to the

Fetch Methods region of the class.

3. Return the data in the Bookings collection in the TestData class.

The code in the CollectionDataLayer class so far:

public class CollectionDataLayer : IDataLayer

{

public CollectionDataLayer() ...

#region Action Methods

public bool RentVehicle(int vehicleId,

int customerId, DateTime timeOfRental) ...

438

C# For Beginners

public double ReturnVehicle(int bookingId, double meter,

DateTime returned) ...

#endregion

#region Fetch Methods

public IEnumerable<ICustomer> GetCustomers() ...

public IEnumerable<IVehicle> GetVehicles(VehicleStatus status) ...

public IVehicleType GetVehicleType(int vehicleTypeId) ...

public IEnumerable<IBooking> GetBookings()

{

return TestData.Bookings;

}

#endregion

#region Helper Methods

public int RentalDuration(DateTime rented, DateTime returned) ...

public double CalculatePrice(IVehicle vehicle,

double returnedMeterSetting, int duration) ...

#endregion

}

The IBookingProcessor interface

You have to add an IBooking method called GetBooking with an int parameter called

vehicleId to the IBookingProcessor interface. The purpose of this method is to return a

single Booking object from the Bookings collection in the TestClass based on a vehicle id and

that the vehicle has not yet been returned.

1. Open the IBookingProcessor interface.

2. Add a definition for an IBooking method with an int parameter called vehicleId call-

ed GetBooking.

IBooking GetBooking(int vehicleId);

The code for the IBookingProcessor interface so far:

public interface IBookingProcessor : IRentalBase

{

IDataLayer DataLayer { get; }

IBooking GetBooking(int vehicleId);

}

439

C# For Beginners

The GetBooking method in the BookingProcessor class

You have to add two methods called GetBookings and GetBooking to the BookingProcessor

class where the first return all bookings in the Bookings collection as an IEnumerable

<IBooking> and the second method call the GetBookings method returning one booking.

The logic in the GetBookings method is very easy to implement, you simply return the result

from a call to the GetBookings method in the data layer and re-throw any exceptions that

might occur.

The logic in the GetBooking method is slightly more difficult because you have to use LINQ

to fetch a specific booking from a call to the GetBookings method based on a vehicle id and

if the booking is marked as returned by having a date other than the min date stored in the

Returned property; return the default value for an instance of the Booking class if no book-

ing is found.

1. Open the BookingProcessor class.

2. Add a parameter-less IEnumerable<Booking> method called GetBookings to the

Fetch Methods region.

3. Add a try/catch-block where the catch-block re-throws any exception that might

occur.

4. Return the result form a call to the GetBookings method on the DataLayer property.

return DataLayer.GetBookings();

5. Add a public IBooking method called GetBooking which has an int parameter called

vehicleId to the Fetch Methods region.

public IBooking GetBooking(int vehicleId)

6. Add a try/catch-block where the catch-block re-throws any exception that might

occur.

7. Return the result form a LINQ query using the GetBookings method to filter out any

booking matching the passed in vehicle id and has the min value for a DateTime

stored in its Returned property.

return (from b in DataLayer.GetBookings()

where b.VehicleId.Equals(vehicleId) &&

b.Returned.Equals(DateTime.MinValue)

select b).FirstOrDefault();

The code for the BookingProcessor class so far:

440

C# For Beginners

public class BookingProcessor : IBookingProcessor

{

#region Properties

public IDataLayer DataLayer { get; private set; }

#endregion

#region Constructor

public BookingProcessor(IDataLayer dataLayer) ...

#endregion

#region Action Methods

public bool RentVehicle(int vehicleId, int customerId,

DateTime timeOfRental) ...

#endregion

#region Fetch Methods

public IEnumerable<ICustomer> GetCustomers() ...

public IEnumerable<IVehicle> GetVehicles(VehicleStatus status) ...

public IVehicleType GetVehicleType(int vehicleTypeId) ...

public IEnumerable<IBooking> GetBookings()

{

try

{

return DataLayer.GetBookings();

}

catch

{

throw;

}

}

441

C# For Beginners

public IBooking GetBooking(int vehicleId)

{

try

{

return (from b in DataLayer.GetBookings()

where b.VehicleId.Equals(vehicleId) &&

b.Returned.Equals(DateTime.MinValue)

select b).FirstOrDefault();

}

catch

{

throw;

}

}

#endregion

#region Helper Methods

#endregion

}

The IsNumeric method

This is a helper method that will check if a string is a numeric value using a regular express-

ion.

Regex regex = new Regex(@"^[-+]?[0-9]*\.?[0-9]+$");

1. Open the form's code-behind file.

2. Locate the Helper Methods region and add a bool method called IsNumeric with a

string parameter called text.

3. Create a new RegEx object and pass in the regular expression to its constructor.

Regex regex = new Regex(@"^[-+]?[0-9]*\.?[0-9]+$");

4. return the result from a call to the IsMatch method on the regex variable passing in

the string in its text parameter.

return regex.IsMatch(text);

442

C# For Beginners

The complete code for the IsNumeric method:

#region Helper Methods

bool IsNumeric(string text)

{

Regex regex = new Regex(@"^[-+]?[0-9]*\.?[0-9]+$");

return regex.IsMatch(text);

}

#endregion

Returning a vehicle

When a user clicks the btnReturn button, has selected a vehicle in the lvwBookedVehicles

list view and entered a value in the txtMeterReturn textbox then the vehicle should be

marked as returned by assigning the current date to the Returned property. The cost should

be calculated and assigned to the Cost property and the current meter value should be

assigned to the Meter property of that particular booking. All this is achieved by calling the

ReturnVehicle method in the booking processor passing in the booking id, meter setting and

current date.

To keep the code clean in the button Click event you will create a method called Return-

Vehicle in the Action Methods region of the form which is called from the Click event.

In the method you have to check that the value entered in the textbox it numeric, if it isn't

display a message to the user and return false. You also have to check that a vehicle is

selected in the list view and display a message and return false if no vehicle is selected.

Fetch the vehicle id from the selected item in the list view and store the value in a variable

called vehicleId. Then fetch the booking id by calling the GetBooking method on the proces-

sor instance and save the result in a variable called bookingId.

Call the ReturnVehicle method on the processor instance passing in the booking id, meter

setting and current date to the method to return the selected vehicle.

Call the FillAvailableVehicles and FillBookedVehicles methods to update the content in the

list views.

Assign an empty string to the Text property of the textbox and return true from the method.

443

C# For Beginners

Return false if an exception is thrown.

1. Open the form's code-behind file.

2. Locate the Action Methods region and add a private parameter-less bool method

called ReturnVehicle to it.

3. Add a bool variable called success and assign false to it.

4. Add a try/catch-block that assign false to the success variable in the catch-block.

5. Add an if-statement checking if the value in the textbox is not numeric by calling the

IsNumeric method you added earlier and if the statement is true then display a

message to the user and return the value in the success variable.

if (!IsNumeric(txtMeterReturn.Text))

6. Add an if-statement checking if no vehicle is selected in the list view and if the state-

ment is true then display a message to the user and return the value in the success

variable.

if (lvwBokedVehicles.SelectedItems.Count == 0)

7. Fetch the vehicle id by parsing the id of the selected vehicle in the list view.

var vehicleId = Int32.Parse(lvwBokedVehicles

.SelectedItems[0].SubItems[5].Text);

8. Fetch the booking id by calling the GetBooking method on the processor instance

passing in the vehicle id.

var bookingId = processor.GetBooking(vehicleId).Id;

9. Return the vehicle by calling the ReturnVehicle method on the processor instance

passing in the booking id, meter setting and current date.

processor.ReturnVehicle(bookingId, Double.Parse(txtMeterReturn.Text),

DateTime.Now);

10. Call the FillAvailableVehicles and FillBookedVehicles methods to update the list

views.

11. Clear the textbox.

12. Assign true to the success variable.

13. Add a return statement at the end of the method returning the value of the success

variable.

14. Add the Click event for the btnReturn button to the Button Events region.

444

C# For Beginners

15. Call the ReturnVehicle method you added to the form and store the result in a

variable called returned.

16. if the value of the returned variable is false then display a message box with a

message stating that the vehicle wasn't returned.

17. Run the application and book a vehicle on the Rent Vehicle tab.

18. Open the Return Vehicle tab and return the vehicle. Make sure that the vehicle dis-

appears from the list view and appears in the list view in the Rent Vehicle tab.

The code in the form code-behind so far:

public partial class Form1 : Form

{

IBookingProcessor processor;

public Form1() ...

private void Form1_Load(object sender, EventArgs e) ...

#region Fill Data Methods

private void FillCustomers() ...

private IEnumerable<ListViewItem> GetVehicles(

VehicleStatus vehicleStatus) ...

private void FillAvialbleVehicles() ...

private void FillBookedVehicles() ...

#endregion

#region Action Methods

private bool RentVehicle() ...

private bool ReturnVehicle()

{

bool success = false;

try

{

if (!IsNumeric(txtMeterReturn.Text))

{

MessageBox.Show("The meter setting must be a number");

return success;

}

445

C# For Beginners

if (lvwBokedVehicles.SelectedItems.Count == 0)

{

MessageBox.Show("A vehicle must be selected in the list");

return success;

}

var vehicleId = Int32.Parse(

lvwBokedVehicles.SelectedItems[0].SubItems[5].Text);

var bookingId = processor.GetBooking(vehicleId).Id;

processor.ReturnVehicle(bookingId,

Double.Parse(txtMeterReturn.Text), DateTime.Now);

FillAvialbleVehicles();

FillBookedVehicles();

txtMeterReturn.Text = String.Empty;

success = true;

}

catch { success = false; }

return success;

}

#endregion

#region Helper Methods

bool IsNumeric(string text)

{

Regex regex = new Regex(@"^[-+]?[0-9]*\.?[0-9]+$");

return regex.IsMatch(text);

}

#endregion

#region Button Events

private void btnRent_Click(object sender, EventArgs e) ...

private void btnReturn_Click(object sender, EventArgs e)

{

var returned = ReturnVehicle();

if (!returned) MessageBox.Show("The vehicle was not returned");

}

#endregion

}

446

C# For Beginners

Bookings: List bookings

Although this listing look simple enough it actually is the most complex listing in the

application since it uses information from all four collections in the TestData class. The

Bookings collection is used to fetch information about a booking and is joined with the

Customers collection to get the customer name and the Vehicles and VehicleTypes collec-

tions to get the vehicle type. To display the data in the list view a new class called

ListViewBooking has to be created. Since you already have created all the methods needed

to fetch the data the implementation should be fairly quick.

The LINQ query responsible for fetching the data will use the GetBookings method and join

the customers by calling the GetCustomers method and the vehicles by calling the

GetVehicles method. When collecting the data for each booking using the ListViewBooking

class you call the GetVehicleType method with the value in the current car's TypeId prop-

erty.

The ListViewBooking class should contain the following information: booking id, customer

id, cost, customer name (Last name and First name in the same property called Customer),

registration number, vehicle type (fetched with the GetVehicleType method), the rented

date and the return date. If the vehicle in a booking has not been returned the return date

should be empty in the list view and the cost should be zero.

To keep the Form_Load event clean and to enable reuse of the code you should place the

code in a method called FillBookings in the form. You also want to add a method call to this

method in the RentVehicle and ReturnVehicle methods after the call to the FillBooked-

Vehicles method.

Don't forget to clear the list view's Items collection before displaying the bookings to avoid

duplicate entries.

447

C# For Beginners

The ListViewBooking class

Add a class called ListViewBooking to the Classes folder in the Car Rental project.

Implement the following properties in it: BookingId of type int, CustomerId of type int, Cost

of type double, Customer of type string (Last name and First name concatenated), Registra-

tionNumber of type string, VehicleType of type string (fetched with the GetVehicleType

method), Rented of type DateTime, Returned of type DateTime.

Implement a method called ToArray which return a string array with the column data from

the properties in the following order: BookingId, RegistrationNumber, VehicleType, Custo-

mer, Cost, Rented and Returned. The Returned property should return an empty string if

the date is equal to DateTime.MinValue otherwise the date stored in the property. Note

that the CustomerId property is not included in the array since you don't want to display

that piece of data in the list view.

1. Add a class called ListViewBooking to the Classes folder in the Car Rental project.

2. Add the two int properties BookingId and CustomerId.

3. Add the double property Cost.

4. Add the three string properties RegistrationNumber, VehicleType and Customer.

5. Add the two DateTime properties Rented and Returned.

6. Add a string[] method called ToArray.

7. Return a string array with the data listed above.

The complete code in the ListViewBooking class:

class ListViewBooking

{

public int BookingId { get; set; }

public int CustomerId { get; set; }

public string RegistrationNumber { get; set; }

public string VehicleType { get; set; }

public double Cost { get; set; }

public string Customer { get; set; }

public DateTime Rented { get; set; }

public DateTime Returned { get; set; }

448

C# For Beginners

public string[] ToArray()

{

return new string[] {

BookingId.ToString(),

RegistrationNumber,

VehicleType,

Customer,

Cost.ToString(),

Rented.ToString(),

Returned == DateTime.MinValue ?

String.Empty : Returned.ToString()

};

}

}

Filling the list view

Add a method called FillBookings to the Fill Data Methods region of the form and call it

from the Form_Load event and the two methods RentVehicle and ReturnVehicle after the

call to the FillBookedVehicles method.

Add a try/catch-block that return true at the end of the try-block and false in the catch-

block for any exceptions that are thrown.

Use a LINQ query in the try-block to fetch a list of all bookings using the ListViewBooking

class to create the booking objects and store the result in a variable called bookings. You will

have to join the results from three method calls to GetBookings, GetCustomers and

GetVehicles on the processor instance variable and call the GetVehicleType for each object

created to get the vehicle type name.

Once you have the list of ListViewBooking objects you clear the Items collection of the

 lvwBookings list view and display the bookings stored in the bookings variable.

1. Add a parameter-less bool method called FillBookings to the Fill Data Methods

region of the form's code-behind.

2. Add a try/catch-block that return false in the catch-block.

3. Add a LINQ query that join the result from a call to the GetBookings method with

the result from a call to the GetCustomers method on the customer id and the

GetVehicles method on the vehicle id. Store the result of the query in a variable

449

C# For Beginners

called bookings and use the ListViewBooking class to create the objects. Call the

GetVehicleTypes method to fetch the vehicle type name.

var bookings =

from b in processor.GetBookings()

join c in processor.GetCustomers()

on b.CustomerId equals c.Id

join car in processor.GetVehicles(VehicleStatus.All)

on b.VehicleId equals car.Id

select new ListViewItem(new ListViewBooking

{

BookingId = b.Id,

CustomerId = b.CustomerId,

Cost = b.Cost,

Customer = String.Format("{0} {1}", c.LastName, c.FirstName),

RegistrationNumber = car.RegistrationNumber,

VehicleType = processor.GetVehicleType(car.TypeId).Name,

Rented = b.Rented,

Returned = b.Returned

}.ToArray());

4. Clear the Items collection on the list view.

5. Add the result stored in the bookings variable to the Items collection using the

AddRange method.

6. Return true;

7. Add a call to the FillBookings method in the Form_Load event after the call to the

FillBookedVehicles method.

8. Add a call to the FillBookings method in the RentVehicle method after the call to the

FillBookedVehicles method.

9. Add a call to the FillBookings method in the ReturnVehicle method after the call to

the FillBookedVehicles method.

10. Run the application and make sure that there are bookings in the list view on the

Bookings tab.

11. Add a booking in the Rent Vehicle tab and open the Bookings tab, the booking

should be visible in the list view and the Returned column should be empty for the

booking.

12. Open the Return Vehicle tab and return the vehicle you rented. Open the Bookings

tab and make sure that the Returned column has the current date in it.

450

C# For Beginners

The code in the form code-behind so far:

public partial class Form1 : Form

{

IBookingProcessor processor;

public Form1() ...

private void Form1_Load(object sender, EventArgs e) ...

#region Fill Data Methods

private void FillCustomers() ...

private IEnumerable<ListViewItem> GetVehicles(

VehicleStatus vehicleStatus) ...

private void FillAvialbleVehicles() ...

private void FillBookedVehicles() ...

private bool FillBookings()

{

try

{

var bookings =

from b in processor.GetBookings()

join c in processor.GetCustomers()

on b.CustomerId equals c.Id

join car in processor.GetVehicles(VehicleStatus.All)

on b.VehicleId equals car.Id

select new ListViewItem(new ListViewBooking

{

BookingId = b.Id,

CustomerId = b.CustomerId,

Cost = b.Cost,

Customer = String.Format("{0} {1}", c.LastName,

c.FirstName),

RegistrationNumber = car.RegistrationNumber,

VehicleType = processor.GetVehicleType(car.TypeId).Name,

Rented = b.Rented,

Returned = b.Returned

}.ToArray());

lvwBookings.Items.Clear();

lvwBookings.Items.AddRange(bookings.ToArray());

return true;

}

451

C# For Beginners

catch { return false; }

}

#endregion

#region Action Methods

private bool RentVehicle() ...

private bool ReturnVehicle() ...

#endregion

#region Helper Methods

bool IsNumeric(string text) ...

#endregion

#region Button Events

private void btnRent_Click(object sender, EventArgs e) ...

private void btnReturn_Click(object sender, EventArgs e) ...

#endregion

}

Add Data: List vehicle types

To be able to select the vehicle type from a combo box when adding a new vehicle you need

to add a method called GetVehicleTypes to the IRentalBase interface and implement it in

the CollectionDataLayer and BookingProcessor classes.

The logic for the method in the CollectionDataLayer class is very easy to implement you

simply return the content in the VehicleTypes collection in the TestData class.

The IRentalBase interface

Add the definition for a parameter-less IEnumerable<IVehicleType> method called Get-

VehicleTypes in the Fetch Methods region of IRentalBase interface.

1. Open the IRentalBase interface.

2. Add a parameter-less IEnumerable<IVehicleType> method called GetVehicleTypes

in the Fetch Methods region.

452

C# For Beginners

The complete code for the IRentalBase interface so far:

public interface IRentalBase

{

#region Action Methods

bool RentVehicle(int vehicleId, int customerId, DateTime timeOfRental);

double ReturnVehicle(int bookingId, double meter, DateTime returned);

#endregion

#region Fetch Methods

IEnumerable<ICustomer> GetCustomers();

IEnumerable<IVehicle> GetVehicles(VehicleStatus status);

IVehicleType GetVehicleType(int vehicleTypeId);

IEnumerable<IBooking> GetBookings();

IEnumerable<IVehicleType> GetVehicleTypes();

#endregion

}

The CollectionDataLayer class

Implement the GetVehicleTypes method in the Fetch Methods region of the Collection-

DataLayer class by returning the content in the VehicleTypes collection in the TestData

class.

1. Open the CollectionDataLayer class.

2. Add a parameter-less IEnumerable<IVehicleType> method called GetVehicleTypes

to the Fetch Methods region.

3. Return the content of the VehicleTypes collection in the TestData class.

The code in the CollectionDataLayer class so far:

public class CollectionDataLayer : IDataLayer

{

public CollectionDataLayer() ...

#region Action Methods

public bool RentVehicle(int vehicleId,

int customerId, DateTime timeOfRental) ...

public double ReturnVehicle(int bookingId, double meter,

DateTime returned) ...

#endregion

#region Fetch Methods

public IEnumerable<ICustomer> GetCustomers() ...

453

C# For Beginners

public IEnumerable<IVehicle> GetVehicles(VehicleStatus status) ...

public IVehicleType GetVehicleType(int vehicleTypeId) ...

public IEnumerable<IBooking> GetBookings() ...

public IEnumerable<IVehicleType> GetVehicleTypes()

{

return TestData.VehicleTypes;

}

#endregion

#region Helper Methods

public int RentalDuration(DateTime rented, DateTime returned) ...

public double CalculatePrice(IVehicle vehicle,

double returnedMeterSetting, int duration) ...

#endregion

}

The BookingProcessor class

Implement the GetVehicleTypes method in the Fetch Methods region of the Booking-

Processor class by returning the result from a call to the GetVehicleTypes method on the

DataLayer property. Make sure that the catch-block re-throws any exception.

1. Open the BookingProcessor class.

2. Add a parameter-less IEnumerable<IVehicleType> method called GetVehicleTypes

to the Fetch Methods region.

3. Return the result from a call to the GetVehicleTypes method in the data layer in the

try-block.

return DataLayer.GetVehicleTypes();

The code for the BookingProcessor class so far:

public class BookingProcessor : IBookingProcessor

{

#region Properties

public IDataLayer DataLayer { get; private set; }

#endregion

#region Constructor

public BookingProcessor(IDataLayer dataLayer) ...

#endregion

454

C# For Beginners

#region Action Methods

public bool RentVehicle(int vehicleId,

int customerId, DateTime timeOfRental) ...

public double ReturnVehicle(int bookingId, double meter,

DateTime returned) ...

#endregion

#region Fetch Methods

public IEnumerable<ICustomer> GetCustomers() ...

public IEnumerable<IVehicle> GetVehicles(VehicleStatus status) ...

public IVehicleType GetVehicleType(int vehicleTypeId) ...

public IEnumerable<IBooking> GetBookings() ...

public IBooking GetBooking(int vehicleId) ...

public IEnumerable<IVehicleType> GetVehicleTypes()

{

try

{

return DataLayer.GetVehicleTypes();

}

catch

{

throw;

}

}

#endregion

#region Helper Methods

#endregion

}

Filling the combo box

Add a parameter-less void method called FillVehicleTypes to the Fill Data Methods region of

the form and call it from the Form_Load event after the call to the FillBookings method.

Add a try/catch-block that fills the combo box in the try-block and handles any exception by

ignoring them with an empty catch-block.

Assign the result from a call to the GetVehicleTypes method to the DataSource property of

the cboTypes combo box and set its DisplayMember property to "Name" to display the

names of the vehicle types in the combo box.

1. Open the form's code-behind.

455

C# For Beginners

2. Add a parameter-less void method called FillVehicleTypes to the Fill Data Methods

region.

3. Add a try/catch-block to the method and leave the catch-block empty.

4. Assign the result from a call to the GetVehicleTypes method to the DataSource

property of the cboTypes combo box.

cboTypes.DataSource = processor.GetVehicleTypes();

5. Assign "Name" to the combo box's DisplayMember property.

6. Run the application and click the Add Data tab.

7. Make sure that the vehicle types are listed in the cboTypes combo box.

The code in the form code-behind so far:

public partial class Form1 : Form

{

IBookingProcessor processor;

public Form1() ...

private void Form1_Load(object sender, EventArgs e) ...

#region Fill Data Methods

private void FillCustomers() ...

private IEnumerable<ListViewItem> GetVehicles(

VehicleStatus vehicleStatus) ...

private void FillAvialbleVehicles() ...

private void FillBookedVehicles() ...

private bool FillBookings() ...

private void FillVehicleTypes()

{

try

{

cboTypes.DataSource = processor.GetVehicleTypes();

cboTypes.DisplayMember = "Name";

}

catch { }

}

#endregion

#region Action Methods

private bool RentVehicle() ...

private bool ReturnVehicle() ...

#endregion

456

C# For Beginners

#region Helper Methods

bool IsNumeric(string text) ...

#endregion

#region Button Events

private void btnRent_Click(object sender, EventArgs e) ...

private void btnReturn_Click(object sender, EventArgs e) ...

#endregion

}

Add Data: Add a new vehicle

To add a new vehicle the user has to specify a registration number in the txtRegNo textbox,

an initial meter setting in the txtMeter textbox and select a vehicle type in the cboTypes

combo box before clicking on the btnAddVehicle button on the Add Data tab.

The button calls a method called AddVehicle which has an IVehicle parameter called

vehicle. An instance of the desired vehicle class is passed into the method. At the moment

there is only one specialized vehicle class and that is the Car class. If the vehicle is not added

to the Vehicles collection a variable called added storing the result of the method call will

contain false and if it does then a message that the vehicle wasn't added should be

displayed to the user. The last thing to happen in the try-block is that the Rent Vehicle tab is

displayed.

Since the AddVehicle method you will create isn't fetching data and is performing an action

by adding a new vehicle it should be added to the Action Methods regions in the involved

classes and the IRentalBase interface. Implement the AddVehicle method definition from

the IRentalBase interface in the CollectionDataLayer and BookingProcessor classes. When

the method has been implemented in both classes the processor variable you added to the

form's code-behind can be used to call the AddVehicle method of the booking processor.

The IRentalBase interface

To implement the AddVehicle method with its signature in the CollectionDataLayer and

BookingProcessor classes you add it to the IRentalBase interface; this will force both classes

to implement the methods since they implement the interface. Failure to implement the

method in either or both classes will result in a compilation exception and the application

will not run until the methods have been added.

457

C# For Beginners

The AddVehicle method is used when adding a new vehicle to the Vehicles collection in the

TestData class.

1. Open the IRentalBase interface.

2. Add a definition for a void method called AddVehicle with an IVehicle parameter

called vehicle to the Action Methods region of interface. Remember that interfaces

only define members and never have any logic.

void AddVehicle(IVehicle vehicle);

The complete code for the IRentalBase interface so far:

public interface IRentalBase

{

#region Action Methods

bool RentVehicle(int vehicleId, int customerId, DateTime timeOfRental);

double ReturnVehicle(int bookingId, double meter, DateTime returned);

void AddVehicle(IVehicle vehicle);

#endregion

#region Fetch Methods

IEnumerable<ICustomer> GetCustomers();

IEnumerable<IVehicle> GetVehicles(VehicleStatus status);

IVehicleType GetVehicleType(int vehicleTypeId);

IEnumerable<IBooking> GetBookings();

IEnumerable<IVehicleType> GetVehicleTypes();

#endregion

}

The CollectionDataLayer class

Implement the AddVehicle method in the Action Methods region of the CollectionData-

Layer class by first fetching the highest existing vehicle id in the Vehicles collection and store

the value incremented by 1 in the Id property of the passed in vehicle instance. Pass the

vehicle instance to the Add method of the Vehicles collection in the TestData class.

 Note that the vehicle id would be auto generated by the database in a real world scenario.

Surround the code with a try/catch-block that re-throws any exception that might occur.

1. Open the CollectionDataLayer class.

2. Add a void method called AddVehicle which has an IVehicle parameter called

vehicle to the Action Methods region.

458

C# For Beginners

3. Add a try/catch-block where the catch re-throws any exception.

4. Calculate the next vehicle id and store it in the Id property of the passed in vehicle

instance.

vehicle.Id = TestData.Vehicles.Max(b => b.Id) + 1;

5. Add the vehicle instance to the Vehicles collection in the TestData class by calling its

Add method passing in the vehicle instance to it.

The code in the CollectionDataLayer class so far:

public class CollectionDataLayer : IDataLayer

{

public CollectionDataLayer() ...

#region Action Methods

public bool RentVehicle(int vehicleId,

int customerId, DateTime timeOfRental) ...

public double ReturnVehicle(int bookingId, double meter,

DateTime returned) ...

public void AddVehicle(IVehicle vehicle)

{

try

{

// The booking id would normally be supplied by the database

vehicle.Id = TestData.Vehicles.Max(b => b.Id) + 1;

TestData.Vehicles.Add(vehicle);

}

catch

{

throw;

}

}

#endregion

#region Fetch Methods

public IEnumerable<ICustomer> GetCustomers() ...

public IEnumerable<IVehicle> GetVehicles(VehicleStatus status) ...

public IVehicleType GetVehicleType(int vehicleTypeId) ...

public IEnumerable<IBooking> GetBookings() ...

public IEnumerable<IVehicleType> GetVehicleTypes() ...

#endregion

459

C# For Beginners

#region Helper Methods

public int RentalDuration(DateTime rented, DateTime returned) ...

public double CalculatePrice(IVehicle vehicle,

double returnedMeterSetting, int duration) ...

#endregion

}

The BookingProcessor class

Implement the AddVehicle method in the Action Methods region of the BookingProcessor

class.

Add a try/catch-block where the catch-block re-throws any exception.

This method implementation differs a bit from previous method implementations in that it

has business logic to execute before the call to the AddVehicle method can be made.

The business logic consist of an if-statement checking property values of the passed in

vehicle instance; if the Id property is greater than zero or the Meter property is less than

zero or the RegistrationNumber property is empty or the TypeId property is less than 1 then

a new VehicleException should be thrown with a message stating that the vehicle has

erroneous data.

Call the AddVehicle method on the DataLayer property to add the vehicle instance to the

Vehicles collection in the TestData class.

1. Open the BookingProcessor class.

2. Add a void method called AddVehicle to the Action Methods region.

3. Add a try/catch-block where the catch-block re-throws any exception.

4. Add the business logic described above using an if-statement in the try-block.

if (vehicle.Id > 0 || vehicle.Meter < 0 ||

vehicle.RegistrationNumber.Equals(String.Empty) ||

vehicle.TypeId < 1)

throw new VehicleException(vehicle.Id,

"The vehicle has erroneous data.");

5. Call the AddVehicle method in the data layer.

DataLayer.AddVehicle(vehicle);

460

C# For Beginners

The code for the BookingProcessor class so far:

public class BookingProcessor : IBookingProcessor

{

#region Properties

public IDataLayer DataLayer { get; private set; }

#endregion

#region Constructor

public BookingProcessor(IDataLayer dataLayer) ...

#endregion

#region Action Methods

public bool RentVehicle(int vehicleId, int customerId,

DateTime timeOfRental)

public double ReturnVehicle(int bookingId, double meter,

DateTime returned) ...

public void AddVehicle(IVehicle vehicle)

{

try

{

if (vehicle.Id > 0 || vehicle.Meter < 0 ||

vehicle.RegistrationNumber.Equals(String.Empty) ||

vehicle.TypeId < 1)

throw new VehicleException(vehicle.Id,

"The vehicle has erroneous data.");

DataLayer.AddVehicle(vehicle);

}

catch

{

throw;

}

}

#endregion

#region Fetch Methods

public IEnumerable<ICustomer> GetCustomers() ...

public IEnumerable<IVehicle> GetVehicles(VehicleStatus status) ...

public IVehicleType GetVehicleType(int vehicleTypeId) ...

public IEnumerable<IBooking> GetBookings() ...

public IBooking GetBooking(int vehicleId) ...

public IEnumerable<IVehicleType> GetVehicleTypes()

#endregion

461

C# For Beginners

#region Helper Methods

#endregion

}

Adding a vehicle

Add a void method called AddVehicle with an IVehicle parameter called vehicle to the

Action Methods region of the form.

Add a try/catch-block with a catch-block that re-throws any exceptions.

The AddVehicle method should check that all controls involved contain correct information,

the txtRegNo textbox must not be empty, the txtMeter textbox must contain a numerical

value that can be parsed into a double and the cboTypes combo box must have a selected

value.

If one or more of the controls contain erroneous data a string variable called errMsg should

be populated with pertinent error messages. The complete message should then be display-

ed to the user and the method should return false.

When the properties of the passed in vehicle instance has been assigned using values from

the textboxes and the VehicleType object stored for the selected vehicle type in the combo

box the AddVehicle method should be called on the processor instance variable.

After the vehicle instance has been added to the Vehicles collection in the TestData class

the FillAvailableVehicles method should be called to repopulate the list view on the Rent

Vehicle tab and the textboxes should be cleared.

Return true from the method if no exception has been thrown in the try-block.

When the AddVehicle method has been added it can be called from the btnAddVehicle

button's Click event. Store the result from the method call in a variable called added and

pass in a new instance of the Car class as the method parameter.

If the vehicle could not be added the added variable will contain false which can be checked

with an if-statement in order to display a suitable error message to the user.

Open the Rent Vehicle tab after the if-statement.

462

C# For Beginners

1. Open the form's code-behind.

2. Add a void method called AddVehicle with an IVehicle parameter called vehicle to

the Action Methods region of the form.

3. Add a try/catch-block where the catch-block re-throws any exceptions.

4. Check that the controls has valid data and build an error message in a string variable

called errMsg if any data is invalid.

5. Display the error message and return false if the value in the txtMeter textbox is not

numeric or cannot be parsed to a double or the txtRegNo textbox is empty or the no

item has been selected in the cboTypes combo box.

if (!IsNumeric(txtMeter.Text) || Double.Parse(txtMeter.Text) < 0 ||

txtRegNo.TextLength == 0 || cboTypes.SelectedIndex < 0)

6. Fetch the VehicleType object from the selected item in the combo box and store it

in a variable called type. You have to cast the object using the VehicleType class

because it is stored using the object data type in the combo box.

var type = ((VehicleType)cboTypes.SelectedItem);

7. Assign values to the properties of the passed in vehicle object using the form

controls and the type variable.

8. Call the AddVehicle method passing in the vehicle object as its parameter to add the

vehicle to the Vehicles collection in the TestData class.

processor.AddVehicle(vehicle);

9. Update the available vehicles in the list view on the Rent Vehicle tab by calling the

FillAvailableVehicles method.

10. Clear the txtRegNo and txtMeter textboxes.

11. Return true from the method.

12. Add the btnAddVehicle Click event to the Button Events region.

13. Add a try/catch-block where the catch-block displays the exception message in a

message box.

14. Call the AddVehicle method with a new instance of the Car class and store the result

from the method call in a variable called added.

var added = AddVehicle(new Car());

15. Check if the added variable contain false and display an error message if that is the

case.

463

C# For Beginners

16. Switch to the Rent Vehicle tab by passing in the tab name to the SelectTab method

on the tab control.

tabBooking.SelectTab(tabRentVehicle);

17. Run the application and click the Add Data tab.

18. Add a new vehicle and make sure that it appears in the vehicle list view on the Rent

Vehicle tab.

The code in the form code-behind so far:

public partial class Form1 : Form

{

IBookingProcessor processor;

public Form1() ...

private void Form1_Load(object sender, EventArgs e) ...

#region Fill Data Methods

private void FillCustomers() ...

private IEnumerable<ListViewItem> GetVehicles(

VehicleStatus vehicleStatus) ...

private void FillAvialbleVehicles() ...

private void FillBookedVehicles() ...

private bool FillBookings() ...

private void FillVehicleTypes()

#endregion

#region Action Methods

private bool RentVehicle() ...

private bool ReturnVehicle() ...

private bool AddVehicle(IVehicle vehicle)

{

try

{

// Check the controls for erroneous data

string errMsg = String.Empty;

if (txtRegNo.TextLength == 0)

errMsg = "Incorrect vehicle registration number" +

Environment.NewLine;

464

C# For Beginners

if (cboTypes.SelectedIndex < 0)

errMsg += "No vehicle type selected" +

Environment.NewLine;

if (!IsNummeric(txtMeter.Text) ||

(IsNummeric(txtMeter.Text) &&

Double.Parse(txtMeter.Text) < 0))

errMsg += "The meter value is incorrect" +

Environment.NewLine;

if (!IsNummeric(txtMeter.Text) ||

Double.Parse(txtMeter.Text) < 0 ||

txtRegNo.TextLength == 0 ||

cboTypes.SelectedIndex < 0)

{

MessageBox.Show(errMsg);

return false;

}

// Assign data to the vehicle object

var type = ((VehicleType)cboTypes.SelectedItem);

vehicle.Meter = Double.Parse(txtMeter.Text);

vehicle.RegistrationNumber = txtRegNo.Text;

vehicle.TypeId = type.Id;

vehicle.BasePricePerDay = type.BasePricePerDay;

vehicle.BasePricePerKm = type.BasePricePerKm;

vehicle.DayTariff = type.DayTariff;

vehicle.KmTariff = type.KmTariff;

// Add the vehicle object to the Vehicles collection

processor.AddVehicle(vehicle);

// Update the vehicle list on the Rent Vehicles tab

FillAvialbleVehicles();

txtRegNo.Text = String.Empty;

txtMeter.Text = String.Empty;

return true;

}

catch { return false; }

}

#endregion

465

C# For Beginners

#region Helper Methods

bool IsNumeric(string text) ...

#endregion

#region Button Events

private void btnRent_Click(object sender, EventArgs e) ...

private void btnReturn_Click(object sender, EventArgs e) ...

private void btnAddVehicle_Click(object sender, EventArgs e)

{

try

{

var added = AddVehicle(new Car());

if (!added) MessageBox.Show("The vehicle was not added");

tabBooking.SelectTab(tabRentVehicle);

}

catch (Exception ex)

{

MessageBox.Show(ex.Message);

}

}

#endregion

}

Add Data: Add a new customer

To add a new customer the user has to specify a social security number, a first name and a

last name in the txtSocial, txtFirstName and txtLastName textboxes before clicking on the

 btnAddCustomer button on the Add Data tab.

The button calls a parameter-less int method called AddCustomer that return the index

position of the added customer in the cboCustomers combo box so that it can be selected in

the Rent Vehicle tab. Add a try/catch-block to the method where exceptions are ignored by

implementing an empty catch-block.

The AddCustomer method defined by the IRentalBase interface as a void method with an

ICustomer parameter called customer. Since the AddCustomer method performs an action

by adding a new customer it should be added to the Action Methods regions in the involved

classes and the IRentalBase interface.

466

C# For Beginners

Implement the AddCustomer method definition in the IRentalBase interface in the

CollectionDataLayer and BookingProcessor classes. When the method has been

implemented in both classes use the processor variable in the form's code-behind to call the

AddCustomer method.

Call the FillCustomers method after the new customer has been added to update the

contents of the cboCustomers combo box in the Rent Vehicle tab.

The IRentalBase interface

To implement the AddCustomer method in the CollectionDataLayer and BookingProcessor

classes you add its definition to the IRentalBase interface; this will force both classes to

implement the methods since they implement the interface.

The AddCustomer method is used when adding a new customer to the Customers collection

in the TestData class.

1. Open the IRentalBase interface.

2. Add a definition for a void method called AddCustomer with an ICustomer para-

meter called customer to the Action Methods region of the interface.

void AddCustomer(ICustomer customer);

The complete code for the IRentalBase interface:

public interface IRentalBase

{

#region Action Methods

bool RentVehicle(int vehicleId, int customerId, DateTime timeOfRental);

double ReturnVehicle(int bookingId, double meter, DateTime returned);

void AddVehicle(IVehicle vehicle);

void AddCustomer(ICustomer customer);

#endregion

#region Fetch Methods

IEnumerable<ICustomer> GetCustomers();

IEnumerable<IVehicle> GetVehicles(VehicleStatus status);

IVehicleType GetVehicleType(int vehicleTypeId);

IEnumerable<IBooking> GetBookings();

IEnumerable<IVehicleType> GetVehicleTypes();

#endregion

}

467

C# For Beginners

The CollectionDataLayer class

Implement the AddCustomer method in the Action Methods region of the CollectionData-

Layer class by first fetching the highest existing customer id in the Customers collection and

store the value incremented by 1 in the Id property of the passed in customer instance. Pass

the customer instance to the Add method of the Customers collection in the TestData class.

 Note that the customer id would be auto generated by the database in a real world scenario.

Surround the code with a try/catch-block that re-throws any exception that might occur.

1. Open the CollectionDataLayer class.

2. Add a void method called AddCustomer with an ICustomer parameter called

customer to the Action Methods region.

3. Add a try/catch-block where the catch-block re-throws any exception.

4. Calculate the next customer id and store it in the Id property of the passed in custo-

mer instance.

customer.Id = TestData.Customers.Max(c => c.Id) + 1;

5. Add the customer instance to the Customers collection in the TestData class by

calling its Add method passing in the customer instance to it.

The code in the CollectionDataLayer class:

public class CollectionDataLayer : IDataLayer

{

public CollectionDataLayer() ...

#region Action Methods

public bool RentVehicle(int vehicleId,

int customerId, DateTime timeOfRental) ...

public double ReturnVehicle(int bookingId, double meter,

DateTime returned) ...

public void AddVehicle(IVehicle vehicle) ...

public void AddCustomer(ICustomer customer)

{

try

{

// The customer id would be auto generated by the database

customer.Id = TestData.Customers.Max(c => c.Id) + 1;

TestData.Customers.Add(customer);

}

468

C# For Beginners

catch

{

throw;

}

}

#endregion

#region Fetch Methods

public IEnumerable<ICustomer> GetCustomers() ...

public IEnumerable<IVehicle> GetVehicles(VehicleStatus status) ...

public IVehicleType GetVehicleType(int vehicleTypeId) ...

public IEnumerable<IBooking> GetBookings() ...

public IEnumerable<IVehicleType> GetVehicleTypes() ...

#endregion

#region Helper Methods

public int RentalDuration(DateTime rented, DateTime returned) ...

public double CalculatePrice(IVehicle vehicle,

double returnedMeterSetting, int duration) ...

#endregion

}

The IBookingProcessor interface

You need to add a definition for a bool method called CustomerExist with a string para-

meter called socialSecurityNumber to the IBookingProcessor interface. The purpose of this

method is to check if a given social security number already exist in the Customers collection

in the TestData class.

1. Open the IBookingProcessor interface.

2. Add a definition for a bool method called CustomerExist with a string parameter

called socialSecurityNumber.

bool CustomerExist(string socialScurityNumber);

The complete code for the IBookingProcessor interface:

public interface IBookingProcessor : IRentalBase

{

IDataLayer DataLayer { get; }

IBooking GetBooking(int vehicleId);

bool CustomerExist(string socialScurityNumber);

}

469

C# For Beginners

The BookingProcessor class

Implement the AddCustomer method in the Action Methods region and the CustomerExist

method in the Helper Methods region of the BookingProcessor class.

 The CustomerExist method

Use LINQ to count the number of objects with a social security number equal to the value of

the passed in parameter. Return true if the result from the LINQ query is greater than zero

meaning that the customer already exist.

 The AddCustomer method

Add a try/catch-block where the catch-block re-throws any exception.

This method implementation differs a bit from many of the previous method implementa-

tions in that it has business logic to execute before the call to the AddCustomer method in

the data layer can be made.

The business logic consist of two if-statements where the first checks if the Id property is

greater than zero on the passed in customer parameter and to throws a new Customer-

Exception with a message stating that the customer has erroneous data should the if-

statement evaluate to true.

The second business logic if-statement checks if the social security number in the passed in

customer parameter already exist in the Customers collection and throws a new Customer-

Exception with a message stating that the customer already exist should the if-statement

evaluate to true.

Call the AddCustomer method on the DataLayer property to add the customer instance to

the Customers collection in the TestData class.

1. Open the BookingProcessor class.

2. Add a bool method called CustomerExist with a string parameter called social-

SecurityNumber to the Helper Methods region.

3. Count the objects in the Customers collection in the TestClass whose SocialSecurity-

Number property is equal to the passed in parameter with the same name. Store

the result from the LINQ query in a variable called social.

4. Return true if there are objects with that social security number.

470

C# For Beginners

return social > 0;

5. Add a void method called AddCustomer with an ICustomer parameter called

customer to the Action Methods region.

6. Add a try/catch-block where the catch-block re-throws any exception.

7. Add the business logic for the customer id described above using an if-statement in

the try-block.

if (customer.Id > 0)

throw new CustomerException(customer.Id,

"The customer has erroneous data.");

8. Add the business logic described above for checking if a customer already exist.

if (CustomerExist(customer.SocialSecurityNumber))

throw new CustomerException(customer.Id,

"The customer already exist.");

9. Call the AddCustomer method in the data layer to add the customer.

DataLayer.AddCustomer(customer);

The code for the BookingProcessor class:

public class BookingProcessor : IBookingProcessor

{

#region Properties

public IDataLayer DataLayer { get; private set; }

#endregion

#region Constructor

public BookingProcessor(IDataLayer dataLayer) ...

#endregion

#region Action Methods

public bool RentVehicle(int vehicleId, int customerId,

DateTime timeOfRental) ...

public double ReturnVehicle(int bookingId, double meter,

DateTime returned) ...

public void AddVehicle(IVehicle vehicle) ...

public void AddCustomer(ICustomer customer)

{

try

{

// Business logic to check that the

// customer does not already exist

471

C# For Beginners

if (customer.Id > 0)

throw new CustomerException(customer.Id,

"The customer has erroneous data.");

if (CustomerExist(customer.SocialSecurityNumber))

throw new CustomerException(customer.Id,

"The customer already exist.");

DataLayer.AddCustomer(customer);

}

catch

{

throw;

}

}

#endregion

#region Fetch Methods

public IEnumerable<ICustomer> GetCustomers() ...

public IEnumerable<IVehicle> GetVehicles(VehicleStatus status) ...

public IVehicleType GetVehicleType(int vehicleTypeId) ...

public IEnumerable<IBooking> GetBookings() ...

public IBooking GetBooking(int vehicleId) ...

public IEnumerable<IVehicleType> GetVehicleTypes() ...

#endregion

#region Helper Methods

public bool CustomerExist(string socialScurityNumber)

{

var social = (from c in DataLayer.GetCustomers()

where c.SocialSecurityNumber.Equals(socialScurityNumber)

select c).Count();

return social > 0;

}

#endregion

}

Adding a customer

Add a parameter-less void method called AddCustomer to the Action Methods region of the

form.

472

C# For Beginners

Add a try/catch-block where the first catch-block handles any CustomerException by

displaying the exception message to the user and then return Int32.MinValue. The second

catch-block should be empty to disregard any other exceptions.

The AddCustomer method should check that all controls involved contain correct

information, if one or more of the textboxes are empty an appropriate message should be

displayed and then the method should end gracefully by returning -1.

When the properties of the a new instance of the Customer class called customer has been

assigned values from the textboxes the AddCustomer method should be called on the

processor instance variable to add the customer.

After the customer instance has been added to the Customers collection in the TestData

class the FillCustomers method should be called to repopulate the combo box on the Rent

Vehicle tab and then the textboxes should be cleared.

Return the index position of the customer instance in the combo box if no exception has

been thrown.

When the AddCustomer method has been added it can be called from the btnAddCustomer

button's Click event. Store the result from the method call in a variable called idx.

If the vehicle could not be added the idx variable will contain -1 or Int32.MinValue which

can be checked by if-statements in order to display suitable error messages to the user.

Assign the value in the idx variable to the SelectedIndex property of the cboCustomer

combo box and switch to the Rent Vehicle tab.

1. Open the form's code-behind.

2. Add a parameter-less void method called AddCustomer to the Action Methods

region of the form.

3. Add a try/catch-block with the two catch-blocks described above.

4. Check that the controls has valid data and build an error message in a variable called

errMsg if any data is invalid.

5. Display the error message and return -1 if any of the textboxes are empty.

473

C# For Beginners

6. Create a new instance of the Customer class called customer assigning the textbox

values to its properties.

var customer = new Customer() { SocialSecurityNumber =

txtSocial.Text, FirstName = txtFirstName.Text, LastName =

txtLastName.Text };

7. Call the AddCustomer method passing in the customer object as its parameter to

add the customer to the Customers collection in the TestData class.

processor.AddCustomer(customer);

8. Update the customers in the combo box on the Rent Vehicle tab by calling the

FillCustomers method.

9. Clear the textboxes.

10. Return the index position of the customer instance in the combo box.

11. Add the Click event for the btnAddCustomer button to the Button Events region.

12. Call the AddCustomer method and store the return value in a variable called idx.

13. Add an if-statement checking if the value of the idx variable is equal to Int32.Min-

Value and if so exit the event with a return statement.

14. Add an if-statement checking if the value of the idx variable is equal to -1 and if so

display a message to the user stating that the customer wasn't added and then exit

the event with a return statement.

15. Assign the value of the idx variable to the SelectedIndex property of the cboCusto-

 mers combo box to select the newly added customer.

16. Open the Rent Vehicle tab.

tabBooking.SelectTab(tabRentVehicle);

17. Run the application and add a new vehicle, make sure that it appears in the vehicle

list view on the Rent Vehicle tab.

The code in the form code-behind:

public partial class Form1 : Form

{

IBookingProcessor processor;

public Form1() ...

private void Form1_Load(object sender, EventArgs e) ...

474

C# For Beginners

#region Fill Data Methods

private void FillCustomers() ...

private IEnumerable<ListViewItem> GetVehicles(

VehicleStatus vehicleStatus) ...

private void FillAvialbleVehicles() ...

private void FillBookedVehicles() ...

private bool FillBookings() ...

private void FillVehicleTypes() ...

#endregion

#region Action Methods

private bool RentVehicle() ...

private bool ReturnVehicle() ...

private bool AddVehicle(IVehicle vehicle) ...

private int AddCustomer()

{

try

{

// Check for erroneous data

string errMsg = String.Empty;

if (txtSocial.TextLength == 0)

errMsg = "Incorrect social security number" +

Environment.NewLine;

if (txtFirstName.TextLength == 0)

errMsg += "Incorrect first name" + Environment.NewLine;

if (txtLastName.TextLength == 0)

errMsg += "Incorrect last name" + Environment.NewLine;

if (txtSocial.TextLength == 0 ||

txtFirstName.TextLength == 0 || txtLastName.TextLength == 0)

{

MessageBox.Show(errMsg);

return -1;

}

// Create the new customer object

var customer = new Customer() {

SocialSecurityNumber = txtSocial.Text,

FirstName = txtFirstName.Text,

LastName = txtLastName.Text

};

475

C# For Beginners

// Add the new customer to the Customers

// collection and update the combo box

processor.AddCustomer(customer);

FillCustomers();

txtSocial.Text = String.Empty;

txtFirstName.Text = String.Empty;

txtLastName.Text = String.Empty;

return cboCustomers.Items.Count - 1;

}

catch(CustomerException ex)

{

MessageBox.Show(ex.Message);

return Int32.MinValue;

}

catch { return -1; }

}

#endregion

#region Helper Methods

bool IsNummeric(string text) ...

#endregion

#region Button Events

private void btnRent_Click(object sender, EventArgs e) ...

private void btnReturn_Click(object sender, EventArgs e) ...

private void btnAddVehicle_Click(object sender, EventArgs e) ...

private void btnAddCustomer_Click(object sender, EventArgs e)

{

var idx = AddCustomer();

if (idx.Equals(Int32.MinValue)) return;

if (idx.Equals(-1))

{

MessageBox.Show("The customer was not added");

return;

}

cboCustomers.SelectedIndex = idx;

tabBooking.SelectTab(tabRentVehicle);

}

#endregion

}

476

C# For Beginners

477

C# For Beginners

PART 2 - .NET FRAMEWORK

478

C# For Beginners

13. Using Streams

Introduction

When a file, whether in a file system or on a web server fetched over HTTP, reaches a certain

size you no longer can use an atomic operation to manipulate the whole file in memory; this

is where file streams come into the picture. By streaming a file, you can manipulate it in

chunks. A file stream is a sequence of bytes.

Streams are typically used to read data onto a byte array or other types, or fetch data from

types and write it to a stream. You can query the stream for the current position when

performing reads or writes.

When choosing the stream type, you need to consider what type of data you are

manipulating (binary, text …) and where it is or will be stored; on a web server, in memory or

in a file system. The most common file streams are stored in the System.IO namespace.

All stream classes derive from the Stream class which contains the most commonly used

functionality. An instance of the Stream class holds a pointer that refers to the current

position in the data source; when first created, the pointer points to the byte before the fist

byte in the data source. The pointer is then advanced when reading from or writing to the

stream.

When using streams, you cannot use the Stream class directly, instead you use one of the

specialized stream classes such as FileStream to connect to a file in a file system,

MemoryStream storing data in memory, or a NetworkStream to connect to a data source

on a network source.

The StreamReader/StreamWriter reads/writes textual data. The BinaryReader/Binary-

Writer reads/writes binary data. All these readers and writers use streams like the

FileStream, MemoryStream and the NetworkStream to connect to a source.

479

C# For Beginners

Streams and binary data

Reading binary data is fast and takes up less space when stored; the drawback is that it is not

readable text.

Writing binary data

The BinaryWriter class has several properties and functions that you can use when writing

to a stream. The Write method writes to the stream and advances the pointer. The Seek

method makes it possible to position the pointer at a specific position; you can then write to

that byte. The Flush method makes it possible to write the remaining bytes in the buffer to

the stream. The Close method closes the BinaryWriter instance and its underlying stream.

The BaseStream property makes it possible to access the underlying stream.

Example: Writing a byte array to a file using a BinaryWriter

In this example the values in a byte array is saved as binary data to a file using the Write

method on a BinaryWriter instance.

private void BinaryWriterTest(string path, byte[] binaryData)

{

var destinationFile = new FileStream(path, FileMode.Create,

FileAccess.Write);

var writer = new BinaryWriter(destinationFile);

foreach (byte data in binaryData)

writer.Write(data);

writer.Close();

destinationFile.Close();

}

Reading binary data

The BinaryReader class has several properties and functions that you can use when reading

from a stream. The Read method reads the remaining bytes in the stream from a specific

position. The ReadByte and ReadBytes methods read the next byte or a number of bytes.

The Close method closes the BinaryReader instance and its underlying stream. The

BaseStream property makes it possible to access the underlying stream.

480

C# For Beginners

Example: Reading a whole file with a BinaryReader

In this example the contents of a binary file is read in its entirety into a byte array using the

Read method on a BinaryReader instance and then the data is returned from the method.

private byte[] BinaryReaderTest(string path)

{

FileStream sourceFile = new FileStream(path, FileMode.Open,

FileAccess.Read);

BinaryReader reader = new BinaryReader(sourceFile);

int length = (int)reader.BaseStream.Length;

// Read all data into an array

byte[] binaryData = new byte[length];

reader.Read(binaryData, 0, length);

reader.Close();

sourceFile.Close();

return binaryData;

}

Example: Reading from a BinaryReader with a while loop

In this example the contents of a binary file is read byte by byte into a byte array using the

ReadByte method on a BinaryReader instance in a while loop and then the data is returned

from the method.

private byte[] BinaryReaderTest(string path)

{

FileStream sourceFile = new FileStream(path, FileMode.Open,

FileAccess.Read);

BinaryReader reader = new BinaryReader(sourceFile);

int length = (int)reader.BaseStream.Length;

// Read data with a while loop

byte[] binaryData = new byte[length];

while (sourceFile.Position < length)

binaryData[sourceFile.Position] = reader.ReadByte();

reader.Close();

sourceFile.Close();

return binaryData;

}

481

C# For Beginners

Example: Reading from a BinaryReader with a for loop

In this example the contents of a binary file is read byte by byte into a byte array using the

ReadByte method on a BinaryReader instance with a for loop and then the data is returned

from the method.

private byte[] BinaryReaderTest(string path)

{

FileStream sourceFile = new FileStream(path, FileMode.Open,

FileAccess.Read);

BinaryReader reader = new BinaryReader(sourceFile);

int length = (int)reader.BaseStream.Length;

// Read data with a for loop

byte[] binaryData = new byte[length];

for (int i = 0; i < length; i++)

binaryData[i] = reader.ReadByte();

reader.Close();

sourceFile.Close();

return binaryData;

}

Streams and text data

When you need to store and read human readable data, you can use the StreamReader and

StreamWriter classes.

Writing text data

The StreamWriter class has several properties and functions that you can use when reading

from a stream. The Flush method writes the remaining data in the buffer to the stream. The

Write method writes the data to the stream and advances the stream. The WriteLine

method writes the data to the stream followed by a new line break. The Close method

closes the StreamWriter instance and its underlying stream.

The AutoFlush property tells the StreamWriter to flush data to the stream after every time

it writes data making sure that the write buffer is empty. With the NewLine property you

can decide which characters that will be used to represent a new line break.

482

C# For Beginners

Example: Writing with a StreamWriter

In this example the text in a string variable is saved as human readable text to a file using

the WriteLine method on a StreamWriter instance. The path parameter will contain the

physical path to the file location and the name of the file.

private void StreamWriterTest(string path, string data)

{

var destinationFile = new FileStream(path, FileMode.Create,

FileAccess.Write);

var writer = new StreamWriter(destinationFile);

writer.WriteLine(data);

writer.Close();

destinationFile.Close();

}

Reading text data

The StreamReader class has several properties and functions that you can use when reading

from a stream. The Peak method reads the next character, but does not consume it. The

Read method reads the next character as a binary delivered as an int; you might have to

explicitly convert the value. The ReadBlock method makes it possible to read a block of

characters from a specified position. The ReadLine method makes it possible to read a line

of characters from the stream. The ReadToEnd method makes it possible to read the

remaining characters from the current position. The Close method closes the StreamReader

instance and its underlying stream. The EndOfStream property tells you if you have reached

the end of the stream.

Example: Reading characters with a StreamReader

In this example the contents of a text file is read character by character into a StringBuilder

instance using the Read method on a StreamReader instance and then the data is returned

from the method. The read character is cast to a char before it is appended to the

StringBuilder instance.

private string StreamReaderTest(string path)

{

FileStream sourceFile = new FileStream(path, FileMode.Open,

FileAccess.Read);

StreamReader reader = new StreamReader(sourceFile);

483

C# For Beginners

StringBuilder text = new StringBuilder();

while (reader.Peek() != -1)

text.Append((char)reader.Read());

string data = text.ToString();

reader.Close();

sourceFile.Close();

return data;

}

Example: Reading a whole text file with a StreamReader

In this example the entire contents of a text file is read in one go into a string variable using

the ReadToEnd method on a StreamReader instance and then the fetched data is returned

from the method.

private string StreamReaderTest(string path)

{

FileStream sourceFile = new FileStream(path, FileMode.Open,

FileAccess.Read);

StreamReader reader = new StreamReader(sourceFile);

string data = reader.ReadToEnd();

reader.Close();

return data;

}

Exercise: Reading/writing data to binary and text files

In this exercise you will create a class called IO that will contain two methods for reading and

writing data to binary- and text files. By selecting one of the radio buttons in the GUI and

clicking on the Read- or Write button the ReadFile or WriteToFile methods will be called

with a parameter stating if the data should be saved in binary- or text format.

If the Binary data radio button is selected and the Save button is clicked then the values in a

byte array will be saved to a file with a .bin extension using the Write method on a

BinaryWriter instance. When the Read button is clicked the file with the .bin extension will

be read using the Read method on a BinaryReader instance and the data will be displayed in

a rich textbox.

484

C# For Beginners

If the Text data radio button is selected and the Save button is clicked then the text in the

rich textbox will be saved to a file with a .txt extension using the WriteLine method on a

StreamWriter instance. When the Read button is clicked the file with the .txt extension will

be read using the ReadToEnd method on a StreamReader instance and the data will be

displayed in the rich textbox.

The IO class

Add a class called IO to a folder named Classes and an enum called DataFormat above the

class with two values Binary and Text.

Because you will be reading and writing data in different formats (binary and text) the values

of the DataFormat enum will determine which type of writer to use when saving the data to

a file.

The static WriteToFile method that you will create have three parameters one called path of

the string data type, a second called dataFormat of the DataFormat data type and a third

called data of the object data type; the data parameter is declared as object because the

data can be of different types, a byte array or plain text. The method should return a bool

value stating if the data was successfully saved to the file in the try/catch-block.

The static ReadFile method that you will create have three parameters one called path of

the string data type, a second called dataFormat of the DataFormat data type and a third

called data of the object data type declared as an out parameter to return the read data; the

data parameter is declared as object because the read data can be of different types and as

an out parameter because the return data type is already used to return a bool value stating

if the data was successfully read from the file.

1. Create a new Windows Forms Application called Read and Write.

2. Add a folder named Classes to the project.

3. Add a class called IO to the Classes folder.

4. Add an enum called DataFormat above the class and add the two values Binary and

Text.

5. Add a static bool method called WriteToFile which has the three parameters de-

scribed above.

485

C# For Beginners

public static bool WriteToFile(string path, DataFormat dataFormat,

object data) { ... }

6. Add a try/catch-block where the try-block return true as its last statement and the

catch-block return false. This value will indicate whether the write operation

succeeded or not.

7. Add a FileStream instance called file using the path parameter for its path, the

FileMode set to Create and the FileAccess set to Write.

var file = new FileStream(path, FileMode.Create, FileAccess.Write);

8. Since you know that the data will be saved using different formats an if/else if-block

will be needed to separate the logic using the value from the dataFormat para-

meter.

if (dataFormat.Equals(DataFormat.Binary)) { ... }

else if (dataFormat.Equals(DataFormat.Text)) { ... }

9. Add a static bool method called ReadFile which has the three parameters described

above.

public static bool ReadFile(string path, DataFormat dataFormat, out

object data) { ... }

10. Since an out parameter always need to be assigned in the method its first line of

code will be assigning a value of null to it.

data = null;

11. Add a try/catch-block where the try-block return true as its last statement and the

catch-block return false. This value will indicate whether the write operation

succeeded or not.

12. Add a FileStream instance called file using the path parameter for its path, the

FileMode set to Open and the FileAccess set to Read.

var file = new FileStream(path, FileMode.Open, FileAccess.Read);

13. Since you know that the data will be read using different formats an if/else if-block

will be needed to separate the logic using the value from the dataFormat para-

meter.

if (dataFormat.Equals(DataFormat.Binary)) { ... }

else if (dataFormat.Equals(DataFormat.Text)) { ... }

486

C# For Beginners

This is the code for the IO class so far:

class IO

{

public static bool WriteToFile(string path,

DataFormat dataFormat, object data)

{

try

{

var file = new FileStream(path, FileMode.Create,

FileAccess.Write);

if (dataFormat.Equals(DataFormat.Binary)) { }

else if (dataFormat.Equals(DataFormat.Text)) { }

return true;

}

catch

{

return false;

}

}

public static bool ReadFile(string path,

DataFormat dataFormat, out object data)

{

data = null;

try

{

FileStream file = new FileStream(

path, FileMode.Open, FileAccess.Read);

if (dataFormat.Equals(DataFormat.Binary)) { }

else if (dataFormat.Equals(DataFormat.Text)) { }

return true;

}

catch { return false; }

}

}

487

C# For Beginners

The GUI

The GUI is made up of a label with the text "Message", a rich textbox named txtMessage,

two radio buttons called rbnBinary and rbnText, a Read button called btnRead and a Save button called btnSave.

The radio buttons don't need any events since their Checked property will be used in the

buttons Click events.

1. Create a new Windows Forms Application called Streams.

2. Add the controls as described in the image and text above.

3. Add the Click event for the Save button.

4. Add a bool variable called success to the Click event.

5. Add if/else if-blocks checking which of the radio buttons is checked.

if (rbnBinary.Checked)

{ }

else if (rbnText.Checked)

{ }

6. Add a byte array variable with some data to the if-block.

byte[] binaryData = { 1, 2, 4, 8, 16, 32, 64, 128 };

7. Call the WriteToFile method in the IO class and save the return value in the success

variable. Pass in the path and file name as its first parameter, DataFormat.Binary

and the array as the second and third parameters.

success = IO.WriteToFile(@"C:\Test\binary.bin", DataFormat.Binary,

binaryData);

8. Locate the else if-block and call the WriteToFile method in the IO class and save the

return value in the success variable. Pass in the path and file name as its first para-

488

C# For Beginners

meter, DataFormat.Text and the text in the textbox as the second and third para-

meters.

success = IO.WriteToFile(@"C:\Test\text.txt", DataFormat.Text,

txtMessage.Text);

9. Display the message "Could not write to file!" if the success variable is false in the

Write button's Click event.

10. Clear the textbox after the message if-statement in the Write button.

11. Add the Click event for the Read button.

12. Add a bool variable called success to the Click event.

13. Clear the textbox after the success variable declaration.

14. Add an if/else if-block checking which of the radio buttons is checked.

15. locate the if-block and add an object variable called binaryData.

16. Call the ReadFile method in the IO class, store the return value in the success varia-

ble. Pass in the path and file name as its first parameter, DataFormat.Binary as its

second parameter and the binaryData variable as an out parameter as its third para-

meter.

success = IO.ReadFile(@"C:\Test\binary.bin", DataFormat.Binary, out

binaryData);

17. Since the data is returned with the object data type you have to cast it to a byte[]

when looping over the values to display them in the textbox if the success variable is

true.

foreach (byte data in binaryData as byte[])

18. Locate the else if-block and add an object variable called text.

19. Call the ReadFile method in the IO class, store the return value in the success varia-

ble. Pass in the path and file name as its first parameter, DataFormat.Text as its se-

cond parameter and the text variable as an out parameter as its third parameter.

success = IO.ReadFile(@"C:\Test\text.txt", DataFormat.Text, out

text);

20. If the success variable is true then assign the text variable to the textbox's Text

property. You will have to call the ToString method on the text variable.

21. Display the message "Could not read from file!" if the success variable is false below

the if/else if-block.

489

C# For Beginners

The complete button Click events code in the form's code-behind:

public partial class Form1 : Form

{

private void btnSave_Click(object sender, EventArgs e)

{

var success = false;

if (rbnBinary.Checked)

{

byte[] binaryData = { 1, 2, 4, 8, 16, 32, 64, 128 };

success = IO.WriteToFile(@"C:\Test\binary.bin",

DataFormat.Binary, binaryData);

}

else if (rbnText.Checked)

{

success = IO.WriteToFile(@"C:\Test\text.txt",

DataFormat.Text, txtMessage.Text);

}

if (!success) MessageBox.Show("Could not write to the file!");

txtMessage.Clear();

}

private void btnRead_Click(object sender, EventArgs e)

{

var success = false;

txtMessage.Clear();

if (rbnBinary.Checked)

{

object binaryData;

success = IO.ReadFile(@"C:\Test\binary.bin",

DataFormat.Binary, out binaryData);

if (success)

foreach (byte data in binaryData as byte[])

txtMessage.Text += data + ", ";

}

else if (rbnText.Checked)

{

object text;

success = IO.ReadFile(@"C:\Test\text.txt",

DataFormat.Text, out text);

490

C# For Beginners

if (success) txtMessage.Text = text.ToString();

}

if (!success)

MessageBox.Show("Could not read from the file!");

}

}

Saving binary data

In this part of the exercise you will focus on the if-block in the WriteToFile method where

you will add code to save the byte array data to a binary file using a foreach loop and the

Write method on a BinaryWriter instance in conjunction with the FileStream instance.

1. Open the IO class and locate the if-block in the WriteToFile method.

if (dataFormat.Equals(DataFormat.Binary))

2. Add a region inside the if-block with the description Binary Writer.

3. Create a BinaryWriter instance variable called writer inside the region passing in the

file variable as its only parameter.

var writer = new BinaryWriter(file);

4. Add a foreach loop where you loop over the data in the data parameter and write

the data to the file using the Write method. Note that you have to cast the data to a

byte[] since it is passed in using the object data type.

foreach (byte b in data as byte[])

5. Close the writer and the file stream by calling their Close methods.

6. Run the application and make sure that the Binary data radio button is selected

before clicking the Save button.

7. Close the application and open the folder you gave in the Save button's Click event

when calling the WriteToFile method.

8. Locate the and open file with the file name you gave when calling the WriteToFile

method. Note that the data looks like random unreadable characters.

9. Close the file.

491

C# For Beginners

The complete code for writing to a file with a BinaryWriter:

if (dataFormat.Equals(DataFormat.Binary))

{

#region Binary Writer

var writer = new BinaryWriter(file);

foreach (byte b in data as byte[])

writer.Write(b);

writer.Close();

file.Close();

#endregion

}

Reading binary data

In this part of the exercise you will focus on the if-block in the ReadFile method where you

will add code to read the data in the binary file back to a byte array using the Read method

on a BinaryReader instance in conjunction with the FileStream instance.

1. Open the IO class and locate the if-block in the ReadFile method.

if (dataFormat.Equals(DataFormat.Binary))

2. Add a region inside the if-block with the description Binary Reader.

3. Create a BinaryReader instance variable called reader inside the region passing in

the file variable as its only parameter.

var reader = new BinaryReader(file);

4. Find out the length of the stream; the number of bytes needed to create the byte

array that will store the read data.

int length = (int)reader.BaseStream.Length;

5. Create a byte array called binaryData using the length variable.

byte[] binaryData = new byte[length];

6. Read the data into the array by calling the Read method on the reader variable pass-

ing in the array, the start position in the stream and the number of bytes to read.

7. Close the reader and the file stream by calling their Close methods.

8. Assign the binaryData variable to the out data parameter.

9. Run the application and make sure that the Binary data radio button is selected be-

fore clicking the Read button. The data in the file should be displayed in the textbox.

492

C# For Beginners

The complete code for reading a file with a BinaryReader:

if (dataFormat.Equals(DataFormat.Binary))

{

#region Binary Reader

var reader = new BinaryReader(file);

int length = (int)reader.BaseStream.Length;

// Read all data into an array

byte[] binaryData = new byte[length];

reader.Read(binaryData, 0, length);

reader.Close();

file.Close();

data = binaryData;

#endregion

}

Saving text data

In this part of the exercise you will focus on the else if-block in the WriteToFile method

where you will add code to save the text data to a file using the WriteLine method on a

StreamWriter instance in conjunction with the FileStream instance.

1. Open the IO class and locate the else if-block in the WriteToFile method.

if (dataFormat.Equals(DataFormat.Text))

2. Add a region inside the else if-block with the description Stream Writer.

3. Create a StreamWriter instance variable called writer inside the region passing in

the file variable as its only parameter.

var writer = new StreamWriter(file);

4. Call the WriteLine method on the writer instance variable and pass in the content of

the data parameter.

5. Close the writer and the file stream by calling their Close methods.

6. Run the application and make sure that the Text data radio button is selected before

clicking the Save button.

7. Close the application and open the folder you gave in the Click event for the Save

button when calling the WriteToFile method.

493

C# For Beginners

8. Locate and open the file with the file name you gave when calling the WriteToFile

method. Note that the data is in human readable text.

9. Close the file.

The complete code for writing to a file with a StreamWriter:

else if (dataFormat.Equals(DataFormat.Text))

{

#region Stream Writer

var writer = new StreamWriter(file);

writer.WriteLine(data);

writer.Close();

file.Close();

#endregion

}

Reading text data

In this part of the exercise you will focus on the else if-block in the ReadFile method where

you will add code to read the data in the text file back to a string using the ReadToEnd

method on a StreamReader instance in conjunction with the FileStream instance.

1. Open the IO class and locate the else if-block in the ReadFile method.

if (dataFormat.Equals(DataFormat.Text))

2. Add a region inside the else if-block with the description Stream Reader.

3. Create a StreamReader instance variable called reader inside the region passing in

the file variable as its only parameter.

var reader = new StreamReader(file);

4. Read the data into the data parameter calling the ReadToEnd method on the reader

variable.

5. Close the reader and the file stream by calling their Close methods.

6. Run the application and make sure that the Text data radio button is selected before

clicking the Read button. The data in the file should be displayed in the textbox.

494

C# For Beginners

The complete code for reading a file with a StreamReader:

else if (dataFormat.Equals(DataFormat.Text))

{

#region Stream Reader

var reader = new StreamReader(file);

data = reader.ReadToEnd();

reader.Close();

file.Close();

#endregion

}

Exercise: Car Rental - Saving customers to a file

In this exercise you will add an IO class to the Car Rental application. The purpose of the

WriteToFile method will be to list all customers in a text file as tabular data. Because you

know what information will be saved to the file it is easy to determine what data type to use

to pass the data to the method, an IEnumerable<ICustomer> parameter named customers

will do the trick. The method should return a bool value indicating if the data was success-

fully saved.

Because you want to save the data as human readable text the StreamWriter is a good

choice to pass the data to the file. In the foreach loop used to iterate over the customers the

WriteLine method of the writer instance can be used to write each customer on a separate

line. The String.Format method can be used to format the data into columns using \t to cre-

ate the columns.

The data should be saved when the user clicks a button called btnSave on the Rent Vehicle

tab.

Adding the WriteToFile method

1. Open the most recent version of the Car Rental solution.

2. Add a class called IO to the Classes folder.

3. Add a public static bool method called WriteToFile which has two parameters a

string called path and an IEnumerable<ICustomer> called customers.

495

C# For Beginners

4. Add a try/catch-block where the try-block return true as its last statement and the

catch-block return false. This value will show if the data was successfully saved to

the file.

5. Add a FileStream instance called file using the path parameter as its first parameter

and FileMode.Create and FileAccess.Write as its second and third parameters.

6. Add a StreamWriter instance called writer and pass in the file variable to its con-

structor.

7. Iterate over the customers in the passed in customers collection and use the Write-

Line method to write the customer data on separate lines in the file.

foreach (var customer in customers)

writer.WriteLine(String.Format("{0}\t{1}\t{2}\t{3}",

customer.Id, customer.SocialSecurityNumber,

customer.LastName, customer.FirstName));

8. Call the Close method on the writer and file objects.

The complete code for the IO class:

class IO

{

public static bool WriteToFile(string path,

IEnumerable<ICustomer> customers)

{

try

{

var file = new FileStream(path, FileMode.Create,

FileAccess.Write);

var writer = new StreamWriter(file);

foreach (var customer in customers)

writer.WriteLine(String.Format("{0}\t{1}\t{2}\t{3}",

customer.Id, customer.SocialSecurityNumber,

customer.LastName, customer.FirstName));

writer.Close();

file.Close();

return true;

}

496

C# For Beginners

catch

{

return false;

}

}

}

Saving the customers

1. Add a Save button called btnSave to the Rent Vehicle tab.

2. Add the Save button's Click event to the Button Events region in the code-behind.

3. Add a call to the WriteToFile method in the IO class and pass in a suitable path and

file name as the first parameter and a call to the GetCustomers method on the

processor instance to fetch the customers from the data source through the booking

processor. Save the return value from the method call in a variable called success.

var success = IO.WriteToFile(@"C:\Test\Customers.txt",

processor.GetCustomers());

4. If the success variable is true then display a message telling the user that the custo-

mers were saved to the file and display a message teling the user that the customers

couldn't be saved to the file if it is false.

5. Run the application and click the Save button. The resulting file's content should

look something like this:

1

12324545

Raintree

Carl

2

95654123

Montgomery

Lisa

The code for the Save button:

private void btnSave_Click(object sender, EventArgs e)

{

var success = IO.WriteToFile(@"C:\Test\Customers.txt",

processor.GetCustomers());

if (success) MessageBox.Show("The customers were saved to the file.");

else MessageBox.Show("Could not save the customers to the file!");

}

497

C# For Beginners

498

C# For Beginners

14. Serialization

Introduction

Serialization can be used to persist or transport object data that later can be de-serialized

back to object instances. We will look at how we can use Binary, XML and JSON serialization/

de-serialization. The format needs to be lightweight for transportation over HTTP and SOAP.

One scenario could be that you want to save user settings. You could have an object contain-

ing the settings as properties be serialized when the settings are changed and de-serialized

when starting the application. Another scenario could be that you are taking orders from

your front-end GUI and the orders are serialized and placed in a queue for later processing.

The back-end order processing process will then de-serialize the order data into objects that

it can use to store the data.

Binary serialization is often used when transporting objects between applications on the

same platform; it is lightweight, has little overhead and preserves fidelity and state between

instances.

XML serialization is often used when transporting objects over the SOAP protocol to and

from web services; it has overhead because it is verbose being formatted using XML which

makes it more processor intensive. The upside is that it can be used cross-platform and be-

tween different applications. Another drawback is that it does not preserve type fidelity and

only serializes public members. The System.Runtime. Serialization.Formatters.Soap assem-

bly has to be referenced.

Alternatively you can use easier to use XmlSerializer class in the System.Xml.Serialization

namespace when serializing to XML (see example below).

499

C# For Beginners

The following code shows an example XML output:

<?xml version="1.0"?>

<ArrayOfCustomer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<Customer>

<Id>1</Id>

<SocialSecurityNumber>12324545</SocialSecurityNumber>

<FirstName>Carl</FirstName>

<LastName>Raintree</LastName>

</Customer>

<Customer>

<Id>2</Id>

<SocialSecurityNumber>95654123</SocialSecurityNumber>

<FirstName>Lisa</FirstName>

<LastName>Montgomery</LastName>

</Customer>

</ArrayOfCustomer>

JSON serialization is based on a subset of JavaScript and is often used when asynchronous

calls from JavaScript using AJAX are involved. You are not limited to the same domain and

JSON is lightweight, human readable, easy to parse and platform independent. The System

.Runtime.Serialization assembly has to be referenced and a using statement added to

System .Runtime.Serialization.Json.

Alternatively you can use JavaScriptSerializer class in the System.Web.Extensions assembly

when serializing to JSON (see example below).

The following code shows an example JSON output:

[{"Id":1,"SocialSecurityNumber":"12324545",

"FirstName":"Carl","LastName":"Raintree"},

{"Id":2,"SocialSecurityNumber":"95654123",

"FirstName":"Lisa","LastName":"Montgomery"}]

Serializing and deserializing

To make a class serializable when using a BinaryFormatter, you have to add some seriali-

zation code; add the [Serializable] attribute above the class definition and implement the

500

C# For Beginners

ISerializable interface; this interface contain the method definition for GetObjectData that is

used when serializing the data. You also need to add a constructor that takes two para-

meters SerializationInfo and StreamingContext. This constructor is used when de-serializing

data into an object. If you want to omit fields from the serialization process then add the

[NonSerialized] attribute to the fields.

[Serializable]

public class Customer

{

public int Id { get; set; }

public string SocialSecurityNumber { get; set; }

public string FirstName { get; set; }

public string LastName { get; set; }

[NonSerialized]

public string TempValue { get; set; }

}

Binary serialization

Binary serialization requires the class to be marked with the [Serializable] attribute. To seria-

lize an object using binary serialization, you need to create an instance of the Binary-

Formatter class. Next you create the file you want to persist the object to using the File or

FileStream class. To serialize the object, you call the Serialize method on the Binary-

Formatter instance passing in the file stream and the object you want to serialize. Don't

forget to close the file stream using the Close method on the file stream instance.

The GetCustomers method in the example return a List<Customer> collection.

var formatter = new BinaryFormatter();

using (var stream = File.Create(@"C:\Test\binary.txt"))

{

formatter.Serialize(stream, GetCustomers());

}

Binary deserialization

To deserialize a persisted object to an object instance stored in binary format you need to

create an instance of the BinaryFormatter class. To open the file containing the object data

you use the OpenRead method on the File or FileStream class. To recreate the object you

call the Deserialize method on the BinaryFormatter instance passing in the file stream and

501

C# For Beginners

store the result in an instance variable of the serialized type. Don't forget to close the file

stream using the Close method on the file stream instance.

var formatter = new BinaryFormatter();

using (var stream = File.OpenRead(@"C:\Test\binary.txt")) {

var customers = (List<Customer>)formatter.Deserialize(stream);

}

XML serialization

To serialize an object using binary serialization you need to create an instance of the

XmlSerializer class located in the System.Xml.Serialization namespace. Create the file you

want to persist the object to using the File or FileStream class. To serialize the object you call

the Serialize method on the XmlSerializer instance passing in the file stream and the object

you want to serialize. Don't forget to close the file stream using the Close method on the file

stream.

The GetCustomers method in the example return a List<Customer> collection.

var serializer = new XmlSerializer(typeof(List<Customer>));

using (var stream = File.Create(@"C:\Test\xml.txt"))

{

serializer.Serialize(stream, GetCustomers());

}

XML deserialization

To de-serialize a persisted object stored in binary format to an object instance you need to

create an instance of the XmlSerializer class. Open the file containing the object data and

use the OpenRead method on the File or FileStream class. To recreate the object you call

the Deserialize method on the XmlSerializer instance passing in the file stream and store the

result in an instance variable of the serialized type. Don't forget to close the file stream using

the Close method on the file stream instance. You have to cast the de-serialized data to the

correct data type, in this case List<Customer> .

var xml = File.ReadAllText(@"C:\Test\xml.txt");

var deserializer = new XmlSerializer(typeof(List<Customer>));

using (var reader = new StringReader(xml))

{

var customers = (List<Customer>)deserializer.Deserialize(reader);

}

502

C# For Beginners

JSON serialization

You need to create an instance of the JavaScriptSerializer class and pass in the object type of

the class you are serializing to serialize an object using JSON serialization. Create the file you

want to persist the object to using the File or FileStream class and use the WriteAllText

method to persist the data.

Important: You need to reference the System.Web.Extensions assembly to get access to the

 JavaScriptSerializer class.

Note: There are other .NET and third party (Json.NET) assemblies that can be used when

 serializing to JSON.

The GetCustomers method in the example return a List<Customer> collection.

string json = new JavaScriptSerializer().Serialize(GetCustomers());

File.WriteAllText(@"C:\Test\json.txt", json);

JSON deserialization

To de-serialize a persisted object to an object instance stored in JSON format you need to

open the file containing the object data using the ReadAllText method on the File or File-

Stream class. To recreate the object, you call the Deserialize method on the JavaScriptSeria-

lizer instance passing in the data you read from the file and store the result in an instance

variable of the serialized type.

string json = File.ReadAllText(@"C:\Test\json.txt");

var customers = new

JavaScriptSerializer().Deserialize<List<Customer>>(json);

Exercise: Car Rental - Persisting data

In this exercise you will add data persisting functionality to the Car Rental application using

JSON serialization and de-serialization.

The first thing you need to do is to add a reference to the System.Web.Extensions assembly

in the Data Layer project.

503

C# For Beginners

Add a new region with the description Serialize/Deserialize to the CollectionDataLayer class

and place all methods you create in this exercise that region.

Add a new public interface called ISerialize which contain one void method called Serialize

that has a string parameter called path. The IDataLayer interface should inherit the

ISerialize interface. Implement the Serialize method in the CollectionDataLayer class; use a

Serialize method on a JavaScriptSerializer object to serialize the four collections in the

TestData class and the File class to persist the data to files calling its WriteAllText method.

File.WriteAllText(path + @"Bookings.txt", new JavaScriptSerializer()

.Serialize(TestData.Bookings));

Add four methods called DeserializeBookings, DeserializeCustomers, DeserializeVehicles

and DeserializeVehicleTypes to the CollectionDataLayer class which deserialises the data in

their respective files and return an appropriate collection with the fetched data. In each

method the file containing the data for that particular collection should be read using the

ReadAllText method on the File class. Pass the fetched data to the Deserialize method on an

instance of the JavaScriptSerializer class and return the result from the method.

string json = File.ReadAllText(path);

return new JavaScriptSerializer().Deserialize<List<Booking>>(json);

Add a void method called Seed which has a string parameter called path that will load the

data into the respective collections by calling the four Deserialize methods you just added.

Once the files have been created with a call to the TestClass.Seed method you replace it

with a call to this method in the CollectionDataLayer class' constructor.

You can use the FormClosing event of the form to persist the data to the files each time the

form closes. Call the Serialize method on the DataLayer instance within the processor

instance.

processor.DataLayer.Serialize(@"C:\Test\");

Adding the ISerialize interface

1. Add an interface called ISerialize to the to the Interfaces folder in the Data Layer

project.

2. Change the interface accessibility to public.

504

C# For Beginners

3. Add a method definition for a void method called Serialize which has a string para-

meter called path.

4. Open the IDataLayer interface and inherit the ISerialize interface.

public interface IDataLayer : IRentalBase, ISerialize

The complete code for the ISerialize interface:

public interface ISerialize

{

void Serialize(string path);

}

Implementing the ISerialize interface

1. Open the CollectionDataLayer class.

2. Add a region with the description Serialize/Deserialize.

3. Add a void method called Serialize which has a string parameter called path to the

region.

4. Call the WriteAllText method on the File class to persist the serialized data. Pass a

path to where you want the file to be created and the name of the file as its first

parameter and the serialized data as the second parameter. As you can see in the

code below the call has been condensed into one row of code.

File.WriteAllText(path + @"Bookings.txt", new

JavaScriptSerializer().Serialize(TestData.Bookings));

The complete code for the Serialize method:

public void Serialize(string path)

{

/* Requires a reference to the System.Web.Extensions assembly */

File.WriteAllText(path + @"Bookings.txt",

new JavaScriptSerializer().Serialize(TestData.Bookings));

File.WriteAllText(path + @"Customers.txt",

new JavaScriptSerializer().Serialize(TestData.Customers));

File.WriteAllText(path + @"Vehicles.txt",

new JavaScriptSerializer().Serialize(TestData.Vehicles));

File.WriteAllText(path + @"VehicleTypes.txt",

new JavaScriptSerializer().Serialize(TestData.VehicleTypes));

}

505

C# For Beginners

Implementing the four deserialize methods

1. Open the CollectionDataLayer class.

2. Locate the Serialize/Deserialize region.

3. Add a private List<Booking> method called DeserializeBookings which has a string

parameter called path.

4. Fetch the JSON data stored in the file specified by the path parameter using the

ReadAllText method on the File class. Store the result in a string variable called json.

string json = File.ReadAllText(path);

5. Return the result from a call to the Deserialize method on an instance of the Java-

ScriptSerializer class to which you pass the JSON data you just fetched.

return new JavaScriptSerializer().Deserialize<List<Booking>>(json);

6. Repeat the previous steps for the three other methods called DeserializeCustomers,

DeserializeVehicles and DeserializeVehicleTypes and their corresponding collecti-

ons in the TestData class called Customers, Vehicles and VehicleTypes.

The complete code for the four Deserialize methods:

/* Requires a reference to the System.Web.Extensions assembly */

private List<Booking> DeserializeBookings(string path)

{

string json = File.ReadAllText(path);

return new JavaScriptSerializer().Deserialize<List<Booking>>(json);

}

private List<Customer> DeserializeCustomers(string path)

{

string json = File.ReadAllText(path);

return new JavaScriptSerializer().Deserialize<List<Customer>>(json);

}

private List<Vehicle> DeserializeVehicles(string path)

{

string json = File.ReadAllText(path);

return new JavaScriptSerializer().Deserialize<List<Vehicle>>(json);

}

506

C# For Beginners

private List<VehicleType> DeserializeVehicleTypes(string path)

{

string json = File.ReadAllText(path);

return new JavaScriptSerializer().Deserialize<List<VehicleType>>(json);

}

Implementing the Seed method

1. Open the CollectionDataLayer class.

2. Locate the Serialize/Deserialize region.

3. Add a private void method called Seed which has a string parameter called path.

4. Assign the result from a call to the DeserializeBookings method to the Bookings

collection in the TestData class. Note that you have to call the Cast method to cast

the data from a list of Booking objects to a list of IBooking objects. You also have to

call the ToList method to force the objects to be fetched as a list.

TestData.Bookings = DeserializeBookings(path +

@"Bookings.txt").Cast<IBooking>().ToList();

5. Repeat the previous step for the three remaining collections in the TestData class

changing the method calls to DeserializeCustomers, DeserializeVehicles and

DeserializeVehicleTypes.

The complete code for the Seed method:

private void Seed(string path)

{

TestData.Bookings = DeserializeBookings(path +

@"Bookings.txt").Cast<IBooking>().ToList();

TestData.Customers = DeserializeCustomers(path +

@"Customers.txt").Cast<ICustomer>().ToList();

TestData.Vehicles = DeserializeVehicles(path +

@"Vehicles.txt").Cast<IVehicle>().ToList();

TestData.VehicleTypes = DeserializeVehicleTypes(path +

@"VehicleTypes.txt").Cast<IVehicleType>().ToList();

}

Implementing the FormClosing event

1. Open the form designer and select the form.

2. Double click on the FormClosing event in the event list in the Properties window.

507

C# For Beginners

3. Call the Serialize method on the DataLayer property of the processor instance from

the FormClosing event passing in the path to the location where you want the files

to end up.

processor.DataLayer.Serialize(@"C:\Test\");

4. Run the application and close it immediately.

5. Open a Windows Explorer window and go to the location where the files have been

created. Open them and make sure that they contain the expected data.

6. Go back to Visual Studio.

7. Locate the CollectionDataLayer class's constructor and comment out or remove the

call to the TestData class' Seed method and add a call to the local Seed method you

created earlier.

public CollectionDataLayer()

{

//new TestData().Seed();

Seed(@"C:\Test\");

}

8. Run the application and make sure that the data from the files have been loaded

correctly.

9. Add and change some data and close the application.

10. Start the application again and make sure that the data was persisted to the files

and read back correctly.

The complete code for the FormClosing event:

private void Form1_FormClosing(object sender, FormClosingEventArgs e)

{

processor.DataLayer.Serialize(@"C:\Test\");

}

The complete code for the CollectionDataLayer class' constructor:

public CollectionDataLayer()

{

//new TestData().Seed();

Seed(@"C:\Test\");

}

508

C# For Beginners

15. Reflection

Introduction

Reuse of code and components is something you always want to keep in mind when building

an application. Reflection is a way to use existing assemblies in your application and to in-

spect their metadata at run time; just keep in mind that it is marginally slower than static C#

code. Use the classes in the System.Reflection namespace to implement reflection in your

applications.

An example of where reflection is used is the System.Runtime.Serialization namespace that

uses reflection to determine which type members to serialize.

You can examine a third-party assembly with unknown types and members to see if your

application satisfies the dependencies of the assembly. In some cases, such as if you are

implementing a generic storage repository, you might want to use reflection to inspect each

type and its attributes before storing it. In other cases, you might want to have pluggable

assemblies that load at run-time; one way to implement this is to look for specific interfaces

with reflection. If you are building a virtualized platform that uses types and methods crea-

ted in a language such as JavaScript you might want to define and execute methods at run-

time.

Apart from the reflection classes listed below you might also find the System.Type class

useful when implementing reflection; one method of particular interest is the GetFields

method that fetches the fields defined within the type into a list of FieldInfo objects.

This is a list of some of the classes in the System.Reflection namespace.

509

C# For Beginners

Additional reading: “MSDN Type Class” and “Reflection in the .NET Framework”

Loading assemblies

The Assembly class of the System.Reflection namespace has two contexts; one that is for

reflection-only operations that you can use to examine the assembly metadata using static

methods but not execute any code. The other is the execution context that you use to

execute code in an assembly that has been loaded.

Trying to execute code in an assembly using the reflection-only context will result in an

InvalidOperationException exception being thrown. This context is faster than the execution

context.

The Assembly class contains the following static methods for loading an assembly at run

time.

510

C# For Beginners

The following code shows the three ways of loading an assembly; you only have to use one

of them when implementing your solution.

string assemblyPath = @"C:\Sample Files\TestAssembly.dll";

// Execute context

Assembly assembly = Assembly.LoadFrom(assemblyPath);

// Reflection-only context

Assembly assembly = Assembly.ReflectionOnlyLoadFrom(assemblyPath);

// Reflection-only context - BLOB

var rawBytes = File.ReadAllBytes(assemblyPath);

Assembly assembly = Assembly.ReflectionOnlyLoad(rawBytes);

When the assembly is loaded, you can use the following methods and properties to inspect

and execute it.

Additional reading: “Assembly Class”

Examining types

With reflection you can examine an assembly fetching information about individual mem-

bers or all members of a type. The following code examples build on the code in the previ-

ous example.

511

C# For Beginners

GetType/GetTypes

Use the GetType method to fetch a type in an assembly by its fully qualified name, null will

be returned if the type does not exist. Use the GetTypes method to fetch all types in an

array of Type objects.

The following code shows how you can get a specific type (class, struct, …) from a loaded

assembly.

public static Type GetType(Assembly assembly, string typeName)

{

return assembly.GetType(typeName);

}

The following code shows how you can get a list of all type names from a loaded assembly.

public static List<string> GetTypeNames(Assembly assembly)

{

return assembly.GetTypes().Select(t => t.FullName).ToList();

}

GetConstructors

Use the GetConstructors method to fetch all constructors of a type; it returns an array of

ConstructorInfo objects. Use the GetParameters method to get each constructor's para-

meters.

The following example show how you can iterate over the constructors in a type and fetch

each constructor's parameters.

public static List<string> GetConstructors(Type type)

{

// Iterate over the constructors

foreach (var constructor in type.GetConstructors())

{

var parameters = new StringBuilder();

// Iterate over the constructor's parameters

foreach (var parameter in constructor.GetParameters())

parameters.Append(String.Format("{0} {1}, ",

parameter.ParameterType.Name, parameter.Name));

}

}

512

C# For Beginners

GetFields

Use the GetFields method to fetch all fields (variables) of a type; it returns an array of Field-

Info objects. Use the BindingFlags collection to select which fields are to be fetched. The

fields will be listed on the form [private/public] Fieldname.

Add a where clause removing all variable names that contain a "<" character to remove

backing properties created by the system to store property values in variables,

public static List<string> GetFields(Type type)

{

var flags = BindingFlags.Instance | BindingFlags.NonPublic |

BindingFlags.Public | BindingFlags.DeclaredOnly;

return (

from t in type.GetFields(flags)

where !t.Name.Contains("<")

select String.Format("{0} {1}",

t.IsPrivate ? "private" : "public", t.Name)

).ToList();

}

GetProperties

Use the GetProperties method to fetch all fields of a type; it returns an array of PropertyInfo

objects. Use the BindingFlags collection to select which properties are to be fetched. The

properties will be listed on the form [private/public] Propertyname {[public/private] get;

 [public/private] set;}. The GetMethod.IsPrivate property states if the property is public or

private and the GetGetMethod.IsPrivate and GetSetMethod.IsPrivate property states if the

property’s getter and setter blocks are public or private.

public static List<string> GetProperties(Type type)

{

var flags = BindingFlags.Instance | BindingFlags.NonPublic |

BindingFlags.Public | BindingFlags.DeclaredOnly;

return (

from t in type.GetProperties(flags)

select String.Format(

"{0} {1} {{ {2} get; {3} set; }}",

t.GetMethod.IsPrivate ? "private" : "public",

t.ToString(),

513

C# For Beginners

t.GetGetMethod(true).IsPrivate ?

"private" : "public",

t.GetSetMethod(true).IsPrivate ?

"private" : "public")

).ToList();

}

GetMethods

Use the GetMethods method to fetch all methods of a type; it returns an array of Method-

Info objects. Use the BindingFlags collection to select which methods are to be fetched. The

methods will be listed on the form [private/public] Methodname.

private List<string> GetMethods(Type type)

{

var flags = BindingFlags.Instance | BindingFlags.NonPublic |

BindingFlags.Public | BindingFlags.DeclaredOnly;

return (

from t in type.GetMethods(flags)

select String.Format("{0} {1}", t.IsPrivate ?

"private" : "public", t.Name)

).ToList();

}

Invoking members

In .NET you can invoke objects using reflection which is done in the same basic way as with

regular instantiations using C#; you first create an instance of the type then you call methods

and use properties.

If you are using static members, there is no need to create an instance explicitly when using

reflection.

A class named Student will be used from the assembly named TestAssembly.dll. The follow-

ing code will be the set-up for coming examples.

514

C# For Beginners

public class Student

{

private int _id;

public int Id { get { return _id; } set { _id = value; } }

public string FirstName { get; set; }

public string LastName { get; set; }

public DateTime DateOfBirth { get; private set; }

public static string School { get; set; }

public Student()

{

DateOfBirth = DateTime.MinValue;

}

public Student(DateTime dateOfBirth)

{

DateOfBirth = dateOfBirth;

}

public int GetAge()

{

TimeSpan difference =

DateTime.Now.Subtract(DateOfBirth);

int ageInYears = (int)(difference.Days / 365.25);

return ageInYears;

}

public int GetAge(DateTime dateOfBirth)

{

if (DateOfBirth == DateTime.MinValue ||

dateOfBirth != DateOfBirth)

DateOfBirth = dateOfBirth;

return GetAge();

}

}

Creating an instance of a type

To create an instance of Type, you use the GetType method on the assembly that you have

loaded with the LoadFrom method of the Assembly class. When you have the Type loaded,

you can use the GetConstructor method to fetch the desired constructor; matching the

515

C# For Beginners

parameter signature with the array of Types that you pass in to the GetConstructor method,

to get the default constructor, you pass in an empty array with a length of zero (0).

This sample code shows how you create an instance of a Type in an assembly loaded with

reflection. Note that the return data type is object since the instance type is unknown at

design time.

public static object CreateWithDefaultConstructor(Type type)

{

try

{

var constructor = type.GetConstructor(new Type[0]);

return constructor.Invoke(new object[0]);

}

catch { throw; }

}

public static object CreateWithSpecificConstructor(Type type)

{

try

{

var constructor = type.GetConstructor(

new Type[1] { typeof(DateTime) });

return constructor.Invoke(

new object[1] { new DateTime(1970, 5, 4) });

}

catch { throw; }

}

Calling methods

To call a method on a type in an assembly using reflection you call the GetMethod method

on the instance's Type (use the GetType method), then call the Invoke method on the

MethodInfo object returned from the GetMethod method; pass in the Type instance and

the list of arguments (as an object array). Pass in an empty object array if it is a parameter-

less method.

516

C# For Beginners

In the following example the method must return an int since that is the return data type of

the ExecuteMethod method. You could make the method more generic with a little after-

thought.

public static int ExecuteMethod(object instance, string methodName)

{

try

{

var method = instance.GetType().GetMethod(methodName, new Type[0]);

var value = method.Invoke(instance, new object[0]);

return Convert.ToInt32(value);

}

catch

{

return Int32.MinValue;

}

}

Setting property values

To assign a value to an instance property using reflection you first have to fetch the property

from the instance Type calling the GetProperty method and then call the SetValue method

on the PropertyInfo object returned from the GetProperty method to set the value of the

property.

This example shows how you assign a value to an instance property using reflection.

public static void SetPropertyValue(object instance, string propertyName,

object value)

{

var property = instance.GetType().GetProperty(propertyName);

property.SetValue(instance, value);

}

To assign a value to a static property using reflection you first have to fetch the property

from the Type calling the GetProperty method, no instance is needed. You can then call the

SetValue method on the PropertyInfo object returned from the GetProperty method to set

the value of the property.

517

C# For Beginners

This example shows how you assign a value to a static property using reflection.

private void SetStaticPropertyValue(Type type, string propertyName,

object value)

{

var property = type.GetProperty(propertyName);

property.SetValue(null, value);

}

Getting Property Values

To fetch a value from an instance property using reflection you first have to fetch the prop-

erty from the instance Type calling the GetProperty method; you can then call the GetValue

method on the PropertyInfo object returned from the GetProperty method to get the value

of the property.

This example shows how you fetch a value from an instance property using reflection.

public static string GetPropertyValue(object instance, string propertyName)

{

var property = instance.GetType().GetProperty(propertyName);

var value = property.GetValue(instance);

return value.ToString();

}

To fetch a value from a static property using reflection you first have to fetch the property

from the Type calling the GetProperty method, no instance is needed; you can then call the

GetValue method on the PropertyInfo object returned from the GetProperty method to set

the value of the property.

This example shows how you fetch a value from a static property using reflection.

private string GetStaticPropertyValue(Type type, string propertyName)

{

var property = type.GetProperty(propertyName);

var value = property.GetValue(null);

return value.ToString();

}

518

C# For Beginners

Exercise: Reflection

In this exercise you will use your knowledge about reflection to create a Windows Forms

Application that uses a class library you will build with reflection methods to read

information from the Student class type described earlier in this chapter, you will also read

and update information in an instance of the Student class using reflection. The Student

class will be created in a third assembly called Test Assembly and you will reflect over the

.dll assembly crated when the project is built.

The first thing you want to display in the GUI is a list of all the types (classes) in the

TestAssembly using a combo box called cboTypes. When a type is selected in the list the

application will use reflection to list all the variables, properties, methods and constructors

in the type using a list box called lstInfo.

Then you will add a button called btnCallMethod which will call the GetAge method on an

instance of the Student class and display the result in a label called lblResult.

The last part of the exercise will be to change a value of the FirstName property when the

button btnSetProperty is clicked using the value from a textbox called txtValue and then

read that value back and display it in the lblResult label when the btnGetProperty is clicked.

519

C# For Beginners

The solution setup

The solution consist of three projects one Windows Forms Application called Reflection App-

lication, a class library for the reflection methods you will create called Reflection Library

and a class library containing the Student class called Test Assembly.

You will create two classes in the Reflection Library assembly one called LoadAssembly

which will contain the methods needed to load an assembly and another called Members

which will contain the methods for reading and altering data in the assembly types.

1. Create a new Windows Forms Application called Reflection Application.

2. Add a new Class Library project called Reflection Library to the solution.

3. Add two classes called LoadAssembly and Members.

4. Change their accessibility to public.

5. Add a new Class Library project called Test Assembly to the solution.

6. Add a public class called Student and implement it according to the specification

provided in the Invoking Members section of this chapter.

The GUI

1. Open the form's designer in the Reflection Application project (see image above).

2. Add a label with the text "Types in assembly".

3. Add a combo box called cboTypes; will later be filled with the names of all the types

(classes) in the Test Assembly.dll assembly.

4. Add a list box called lstInfo; will list all the members of the type selected in the

combo box.

5. Add a label called lblResult below the list box.

6. Add a textbox called txtValue beside the label to the right.

7. Add a button called btnCallMethod which will be used to call a method on the load-

ed type.

8. Add a button called btnSetProperty which will be used to assign a value to a prop-

erty on the loaded type.

9. Add a button called btnGetProperty which will be used to read a value from a prop-

erty on the loaded type.

520

C# For Beginners

Loading the assembly type

To be able to load the names of all the types in an assembly you need to load the assembly

into memory calling the Assembly.ReflectionOnlyLoadFrom method and then the GetTypes

method on the assembly instance. You then assign the result to the DataSource property of

the cboTypes combo box.

To make the assembly code reusable you will create a public static Assembly method called

LoadReflectionOnly with a string parameter called assemblyPath in the LoadAssembly class.

The method loads the assembly using the Assembly.ReflectionOnlyLoadFrom method and

returns the resulting readable assembly instance.

Important: Creating the methods as static mean that you can call them without having to

 first create an instance of the class.

The LoadAssembly class

1. Open the LoadAssembly class in the Reflection Library project.

2. Add a region called Load Assembly.

3. Add a public static Assembly method called LoadReflectionOnly with a string para-

meter called assemblyPath. This method will return a reflection only instance of the

loaded assembly.

public static Assembly LoadReflectionOnly(string assemblyPath)

4. Return the .dll assembly loaded from the path in the parameter. Use the Reflection-

OnlyLoadFrom method on the Assembly class to load the assembly into memory.

return Assembly.ReflectionOnlyLoadFrom(assemblyPath);

The code in the LoadAssembly class so far:

public class LoadAssembly

{

#region Load Assembly

public static Assembly LoadReflectionOnly(string assemblyPath)

{

// Reflection-only context

return Assembly.ReflectionOnlyLoadFrom(assemblyPath);

}

#endregion

}

521

C# For Beginners

The Members class

1. Open the Members class in the Reflection Library project.

2. Add a region called Type Methods.

3. Add a public static List<string> method called GetTypeNames with an Assembly

parameter called assembly. This method will return a list of the names of all types

(classes, structs, …) in the passed in assembly.

public static List<string> GetTypeNames(Assembly assembly)

4. Return the FullName property of the types. The GetTypes method on the passed in

assembly will fetch all types in the assembly. Use the Select LINQ method to fetch

only the FullName property value of each type and chain on the ToList method at

the end to create a list of the result.

return assembly.GetTypes().Select(t => t.FullName).ToList();

The code in the Members class so far:

public class Members

{

#region Type Methods

public static List<string> GetTypeNames(Assembly assembly)

{

return assembly.GetTypes().Select(t => t.FullName).ToList();

}

#endregion

}

The form's Load event

To load a reflection only instance of the Test Assembly you need to provide the full path and

file name to the LoadReflectionOnly method that you call from the form's Load event.

Because the same path will be used multiple times you can create a string constant on form

level to hold the value. You will also need to create an Assembly variable on form level to

hold the instance you create. The last thing you will do in the Load event is to assign the

result from a call to the LoadReflectionOnly method to the cboTypes combo box's Data-

Source property; you don't need to specify a DisplayMember value since the collection you

are assigning only contain a list of strings.

1. Open the form and add the its Load event to the code-behind.

522

C# For Beginners

2. Add a string constant called assemblyPath to the form's class and assign the path

and file name to the Test Assembly .dll file. If you think that the path is overly long

to where the .dll file is located you can always copy the .dll file to another directory

closer to the root directory; don't place the file in the root directory because it often

has safety restrictions.

3. Add an Assembly variable called assembly to the form class.

Assembly assembly;

4. Add a call to the LoadReflectionOnly method from the Load event and store the

return value in the assembly variable. Pass in the assemblyPath constant as the

method's parameter.

assembly = LoadAssembly.LoadReflectionOnly(assemblyPath);

5. Call the GetTypeNames method in the Members class and assign the result to the

DataSource property of the cboTypes combo box.

6. Run the application and make sure that the Students class is listed in the combo box.

The form class so far:

public partial class Form1 : Form

{

const string assemblyPath = @"C:\Sample Files\Test Assembly.dll";

Assembly assembly;

public Form1()

{

InitializeComponent();

}

private void Form1_Load(object sender, EventArgs e)

{

assembly = LoadAssembly.LoadReflectionOnly(assemblyPath);

cboTypes.DataSource = Members.GetTypeNames(assembly);

}

}

523

C# For Beginners

Fetching the constructors in the type

In this part of the exercise you will use the loaded assembly to fetch the information about

its constructors and display that information in the lstInfo list box with one row per con-

structor.

To be able to fetch the type itself you will need to add a method called GetType which takes

an Assembly parameter called assembly and a string parameter called typeName. The pass-

ed in assembly will be used when extracting the type specified by the typeName parameter

using the GetType method on the assembly instance.

Once the type has been extracted in the SelectedIndexChanged event of the cboTypes

combo box the GetConstructor method you will add to the Members class will fetch the

information about the constructors and return it as a list of strings which are displayed in the

 lstInfo list box.

A nested loop is required to iterate over the constructors by calling the GetConstructors

method on the passed in type and the GetParameters method on each constructor. Use the

information to build a formatted string containing the constructor name and any parameters

within parenthesis.

The GetType method

1. Locate the Type Methods region in the Members class.

2. Add a public static Type method called GetType which has an Assembly parameter

called assembly and a string parameter called typeName.

public static Type GetType(Assembly assembly, string typeName)

3. Return the result from a call to the GetType method on the assembly parameter

passing in the typeName parameter to the method.

524

C# For Beginners

The Members class so far:

public class Members

{

#region Type Methods

public static List<string> GetTypeNames(Assembly assembly) ...

public static Type GetType(Assembly assembly, string typeName)

{

return assembly.GetType(typeName);

}

#endregion

}

The GetConstructors method

1. Add a region called Fetch Type Members below the previously added region in the

Members class.

2. Add a public static List<string> method called GetConstructors which has a Type

parameter called type.

public static List<string> GetConstructors(Type type)

3. Add a List<string> variable called constructors to the method and instantiate it.

4. Add a foreach loop iterating over the constructors returned from a call to the Get-

Constructors method on the passed in type.

5. Add a new instance of the StringBuilder class called ctor which will be used to create

the string representing the constructor and its parameters. Send in the type name

and an open parenthesis to the StringBuilder constructor; you use the type name

because a constructor always has the same name as the type it resides in and an

open parenthesis because all methods has a at least an opening and a closing paren-

thesis after the method name.

var ctor = new StringBuilder(String.Format("{0}(", type.Name));

6. Add another StringBuilder instance called parameters which will be used when

building the list of parameters belonging to the constructor. Instantiate it with an

empty constructor.

7. Add a foreach loop iterating over the result from a call to the GetParameters on the

current constructor instance in the constructor variable in the outer loop.

525

C# For Beginners

8. Use the Append method on the parameters StringBuilder variable to add the con-

structor parameters to it using the String.Format method to add the parameter type

and the parameter name with a space in between and a comma at the end.

parameters.Append(String.Format("{0} {1}, ",

parameter.ParameterType.Name, parameter.Name));

9. Add an if-statement checking if the length of the parameters StringBuilder variable

is equal to 0; if it is then there are no parameters and a closing parenthesis can be

added to the ctor variable. If there are parameters then they have to be added to

the ctor variable along with a closing parenthesis. Be sure to remove the ending

comma and space from the parameters variable before adding the parameters to

the ctor variable.

if(parameters.Length.Equals(0))

ctor.Append(")");

else

ctor.Append(String.Format("{0})",

parameters.ToString().Substring(0, parameters.Length - 2)));

10. Add the ctor variable to the constructors collection.

11. Return the constructors collection at the end of the method outside the loops.

The Members class so far:

public class Members

{

#region Type Methods

public static List<string> GetTypeNames(Assembly assembly) ...

public static Type GetType(Assembly assembly, string typeName) ...

#endregion

#region Fetch Type Members

public static List<string> GetConstructors(Type type)

{

// Iterate over the constructors

var constructors = new List<string>();

foreach (var constructor in type.GetConstructors())

{

var ctor = new StringBuilder(String.Format("{0}(", type.Name));

var parameters = new StringBuilder();

526

C# For Beginners

foreach (var parameter in constructor.GetParameters())

parameters.Append(String.Format("{0} {1}, ",

parameter.ParameterType.Name, parameter.Name));

if(parameters.Length.Equals(0))

ctor.Append(")");

else

ctor.Append(String.Format("{0})",

parameters.ToString().Substring(0,

parameters.Length - 2)));

constructors.Add(ctor.ToString());

}

return constructors;

}

}

#endregion

The SelectedIndexChanged event

1. Add the SelectedIndexChanged event for the cboTypes combo box.

2. Add a call to the GetType method and store the returned type in a variable called

type. Pass in the assembly variable you added to the form class earlier and the text

from the combo box to the method.

var type = Members.GetType(assembly, cboTypes.Text);

3. Clear the content in the lstInfo list box.

4. Add an item with the text "--- Constructors ---" to the list box.

5. Add the list of constructors to the list box by passing in the result from a call to the

GetConstructors method on the Members class to the AddRange method on the list

box's Items collection.

lstInfo.Items.AddRange(Members.GetConstructors(type).ToArray());

6. Add an empty item to the list box as a separator for the upcoming information.

7. Run the application and make sure that the constructors of the Student class are

listed in the list box.

527

C# For Beginners

The form class so far:

public partial class Form1 : Form

{

const string assemblyPath = @"C:\Sample Files\Test Assembly.dll";

Assembly assembly;

public Form1() ...

private void Form1_Load(object sender, EventArgs e) ...

private void cboTypes_SelectedIndexChanged(object sender, EventArgs e)

{

var type = Members.GetType(assembly, cboTypes.Text);

lstInfo.Items.Clear();

lstInfo.Items.Add("--- Constructors ---");

lstInfo.Items.AddRange(Members.GetConstructors(type).ToArray());

lstInfo.Items.Add("");

}

}

Fetching the fields in the type

In this part of the exercise you will use the loaded assembly to fetch information about its

fields (variables) and display that information in the lstInfo list box with one row per field.

Add a public static List<string> method called GetFields which has a Type parameter called

type to the Members class; it will fetch the information about the fields and return it as a list

of strings. The returned data will be displayed in the lstInfo list box using the SelectedIndex-

Changed event of the cboTypes combo box.

You can use a LINQ query in the GetFields method on the passed in type and the String

.Format method to format the output. You want to exclude any field with a "<" in its name

because that is a field added by the system to back a property. The output should reflect

whether the field is public or private, its data type and its name separated by spaces.

528

C# For Beginners

The GetFields method

1. Open the Members class and add a new region at the top of the class called

Constants.

2. Add BindingFlags constant called flags to the region and assign the following values

to it: Instance, NonPublic, Public and DeclaredOnly. These flags determine which

members to include from the type.

static BindingFlags flags =

BindingFlags.Instance | BindingFlags.NonPublic |

BindingFlags.Public | BindingFlags.DeclaredOnly;

3. Locate the Fetch Type Members region in the Members class.

4. Add a public static List<string> method called GetFields which has a Type parameter

called type.

public static List<string> GetFields(Type type)

5. Return the result from a LINQ query fetching the fields by calling the GetFields

method on the type parameter passing in the list of BindingFlags from the flags con-

stant to the method.

from t in type.GetFields(flags)

where !t.Name.Contains("<")

select String.Format("{0} {1} {2}", t.IsPrivate ?

"private" : "public", t.FieldType.Name, t.Name)

The Members class so far:

public class Members

{

#region Constants

static BindingFlags flags =

BindingFlags.Instance | BindingFlags.NonPublic |

BindingFlags.Public | BindingFlags.DeclaredOnly;

#endregion

529

C# For Beginners

#region Type Methods

public static List<string> GetTypeNames(Assembly assembly) ...

public static Type GetType(Assembly assembly, string typeName) ...

#endregion

#region Fetch Type Members

public static List<string> GetConstructors(Type type) ...

public static List<string> GetFields(Type type)

{

return (

from t in type.GetFields(flags)

where !t.Name.Contains("<")

select String.Format("{0} {1} {2}", t.IsPrivate ?

"private" : "public", t.FieldType.Name, t.Name)

).ToList();

}

#endregion

The SelectedIndexChanged event

1. Locate the SelectedIndexChanged event for the cboTypes combo box in the form's

code-behind file.

2. Add an item with the text "--- Fields ---" to the list box.

3. Add the list of fields to the list box by passing in the result from a call to the Get-

Fields method on the Members class to the AddRange method on the list box's

Items collection.

lstInfo.Items.AddRange(Members.GetFields(type).ToArray());

4. Add an empty item to the list box as a separator for the upcoming information.

5. Run the application and make sure that the fields of the Student class have been

added to the list box.

The combo box's SelectedIndexChanged event so far:

private void cboTypes_SelectedIndexChanged(object sender, EventArgs e)

{

var type = Members.GetType(assembly, cboTypes.Text);

lstInfo.Items.Clear();

lstInfo.Items.Add("--- Constructors ---");

lstInfo.Items.AddRange(Members.GetConstructors(type).ToArray());

lstInfo.Items.Add("");

530

C# For Beginners

lstInfo.Items.Add("--- Fields ---");

lstInfo.Items.AddRange(Members.GetFields(type).ToArray());

lstInfo.Items.Add("");

}

Fetching the properties in the type

In this part of the exercise you will use the loaded assembly to fetch information about its

properties and display that information in the lstInfo list box with one row per property.

Add a public static List<string> method called GetProperties to the Members class which

has a Type parameter called type; it will fetch the information about the properties and

return it as a list of strings. The returned data will be displayed in the lstInfo list box using

the SelectedIndexChanged event of the cboTypes combo box.

You can use a LINQ query in the GetProperties method on the passed in type and use the

String.Format method to format the output. The output should reflect whether the property

is public or private, its data type, its name, whether the getter and setters are public or

private; use the following format: "{0} {1} {2} {{ {3} get; {4} set; }}".

Use the GetGetMethod and GetSetMethod methods on the current type to fetch infor-

mation about the getter and setter.

The GetProperties method

1. Open the Members class and locate the Fetch Type Members region.

2. Add a public static List<string> method called GetProperties which has a Type para-

meter called type.

531

C# For Beginners

public static List<string> GetProperties(Type type)

3. Return the result from a LINQ query fetching the properties by calling the GetProp-

erties method on the type parameter passing in the list of BindingFlags from the

flags constant to the method.

The Members class so far:

public class Members

{

#region Constants

static BindingFlags flags = ...

#endregion

#region Type Methods

public static List<string> GetTypeNames(Assembly assembly) ...

public static Type GetType(Assembly assembly, string typeName) ...

#endregion

#region Fetch Type Members

public static List<string> GetConstructors(Type type) ...

public static List<string> GetFields(Type type) ...

public static List<string> GetProperties(Type type)

{

return (

from t in type.GetProperties(flags)

select String.Format(

"{0} {1} {2} {{ {3} get; {4} set; }}",

t.GetMethod.IsPrivate ? "private" : "public",

t.PropertyType.Name,

t.Name,

t.GetGetMethod(true).IsPrivate ?

"private" : "public",

t.GetSetMethod(true).IsPrivate ?

"private" : "public")

).ToList();

}

#endregion

The SelectedIndexChanged event

1. Locate the SelectedIndexChanged event for the cboTypes combo box in the form's

code-behind file.

2. Add an item with the text "--- Properties ---" to the list box.

532

C# For Beginners

3. Add the list of fields to the list box by passing in the result from a call to the Get-

Properties method on the Members class to the AddRange method on the list box's

Items collection.

lstInfo.Items.AddRange(Members.GetProperties(type).ToArray());

4. Add an empty item to the list box as a separator for the upcoming information.

5. Run the application and make sure that the properties of the Student class have

been added to the list box.

The combo box's SelectedIndexChanged event so far:

private void cboTypes_SelectedIndexChanged(object sender, EventArgs e)

{

var type = Members.GetType(assembly, cboTypes.Text);

lstInfo.Items.Clear();

lstInfo.Items.Add("--- Constructors ---");

lstInfo.Items.AddRange(Members.GetConstructors(type).ToArray());

lstInfo.Items.Add("");

lstInfo.Items.Add("--- Fields ---");

lstInfo.Items.AddRange(Members.GetFields(type).ToArray());

lstInfo.Items.Add("");

lstInfo.Items.Add("--- Properties ---");

lstInfo.Items.AddRange(Members.GetProperties(type).ToArray());

lstInfo.Items.Add("");

}

Fetching the methods in the type

In this part of the exercise you will use the loaded assembly to fetch information about its

methods and display that information in the lstInfo list box with one row per method.

Add a public static List<string> method called GetMethods which has a Type parameter

called type to the Members class which will fetch the information about the methods and

return it as a list of strings. The returned data will be displayed in the lstInfo list box using

the SelectedIndexChanged event of the cboTypes combo box.

You can use the result from a LINQ query in conjunction with a loop in the GetMethods

method on the passed in type and use the String.Format method to format the output. The

output should reflect whether the method is public or private, its data type, its name, and a

list of its parameters; use the following format: "{0} {1} {2}({3})".

533

C# For Beginners

You want to exclude any method with a name that contain get_ or set_ because that is a

property.

The GetMethods method

1. Open the Members class and locate the Fetch Type Members region.

2. Add a public static List<string> method called GetMethods with a Type parameter

called type.

public static List<string> GetMethods(Type type)

3. Add a List<string> variable called result and instantiate it.

4. Save the result from a LINQ query fetching the methods by calling the GetMethods

method on the type parameter in a variable called methods, pass in the list of

BindingFlags from the flags constant to the method. You also want to exclude any

methods with a name that contain get_ or set_ because that is a property.

var methods =

from method in type.GetMethods(flags)

where !method.Name.Contains("get_") &&

!method.Name.Contains("set_")

select method;

5. Add a foreach loop which iterates over the methods in the methods variable.

6. Add a StringBuilder variable called parameters to the loop.

7. Add a nested loop iterating over the parameters in each method by calling the Get-

Parameters method on the current method in the outer loop.

534

C# For Beginners

foreach (var parameter in method.GetParameters())

8. Append the parameter info to the parameters StringBuilder variable; display the

data type and parameter name for each parameter.

9. Remove any trailing comma and space in the parameters variable.

10. Add the method information to the result collection where each string represent

one method's data. The string should show if the method is public or private, its

return data type, its name, and its list of parameters inside parenthesis. Use the

following format: "{0} {1} {2}({3})".

11. Return the result collection at the end of the method outside the loops.

The Members class so far:

public class Members

{

#region Constants

static BindingFlags flags = ...

#endregion

#region Type Methods

public static List<string> GetTypeNames(Assembly assembly) ...

public static Type GetType(Assembly assembly, string typeName) ...

#endregion

#region Fetch Type Members

public static List<string> GetConstructors(Type type) ...

public static List<string> GetFields(Type type) ...

public static List<string> GetProperties(Type type) ...

public static List<string> GetMethods(Type type)

{

var result = new List<string>();

var methods =

from method in type.GetMethods(flags)

where !method.Name.Contains("get_") &&

!method.Name.Contains("set_")

select method;

foreach (var method in methods)

{

var parameters = new StringBuilder();

535

C# For Beginners

foreach (var parameter in method.GetParameters())

parameters.Append(String.Format("{0} {1}, ",

parameter.ParameterType.Name, parameter.Name));

if (parameters.Length > 0)

parameters.Remove(parameters.Length - 2, 2);

result.Add(String.Format("{0} {1} {2}({3})",

method.IsPrivate ? "private" : "public",

method.ReturnType.Name,

method.Name,

parameters.ToString()));

}

return result;

}

#endregion

The SelectedIndexChanged event

1. Locate the SelectedIndexChanged event for the cboTypes combo box in the form's

code-behind file.

2. Add an item with the text "--- Methods ---" to the list box.

3. Add the list of methods to the list box by passing in the result from a call to the Get-

Methods method on the Members class to the AddRange method on the list box's

Items collection.

lstInfo.Items.AddRange(Members.GetMethods(type).ToArray());

4. Add an empty item to the list box as a separator for the upcoming information.

5. Run the application and make sure that the methods of the Student class have been

added to the list box.

The complete code for the combo box's SelectedIndexChanged event:

private void cboTypes_SelectedIndexChanged(object sender, EventArgs e)

{

var type = Members.GetType(assembly, cboTypes.Text);

lstInfo.Items.Clear();

lstInfo.Items.Add("--- Constructors ---");

lstInfo.Items.AddRange(Members.GetConstructors(type).ToArray());

lstInfo.Items.Add("");

lstInfo.Items.Add("--- Fields ---");

lstInfo.Items.AddRange(Members.GetFields(type).ToArray());

536

C# For Beginners

lstInfo.Items.Add("");

lstInfo.Items.Add("--- Properties ---");

lstInfo.Items.AddRange(Members.GetProperties(type).ToArray());

lstInfo.Items.Add("");

lstInfo.Items.Add("--- Methods ---");

lstInfo.Items.AddRange(Members.GetMethods(type).ToArray());

}

Calling a method in the type

In this part of the exercise you will use the assembly instance to call an object method called

ExecuteMethod which has an object parameter called instance that holds the instance of

the desired type and a string parameter called methodName which holds the name of the

method to call on the instance. Call the GetMethod method on the GetType method on the

passed in instance to specify which method you want to call, store the definition in a varia-

ble called method; pass in the methodName parameter and an empty Type array (because

you are not passing in any parameters to the method). To call the method you have to call

the Invoke method on the method variable, store the return value from the method call in a

variable called result. return the result variable from the method if no exception was thrown

and null from the catch-block if an exception was thrown.

Display the returned value from the ExecuteMethod method call in a label called lblResult.

To be able to call a method on an instance of a type created with reflection you have to call

the LoadFrom method on the Assembly class, you will add a method to the LoadAssembly

class called LoadExecutable which returns the created assembly. You cannot use the Load-

ReflectionOnly method since it only return reflection data and not a fully created assembly

instance.

Add an object method called CreateWithSpecificConstructor to the Members class which

has a Type parameter called type and a DateTime parameter called date. Add a try/catch-

block where the catch-block re-throws any exception. In the try-block you first have to add a

variable called constructor that will hold the definition of the constructor and then invoke

that constructor by calling the Invoke method on the constructor variable. Pass in the list of

necessary parameters as a comma separated list in a Type array to the GetConstructor

method and the values for those parameters in a comma separated list in an object array to

the Invoke method.

537

C# For Beginners

var constructor = type.GetConstructor(new Type[1] { typeof(DateTime) });

return constructor.Invoke(new object[1] { date });

Add a try/catch-block to the btnCallMethod button and display the exception message in a

message box if an exception is thrown.

Load the assembly into memory by calling the LoadExecutable method in the LoadAssembly

class and store the result in the assembly variable on form level.

Fetch the selected type name from the combo box and pass it and the assembly as

parameter values to the GetType method in the Members class to get the type definition of

the class with the selected type name in the assembly, store the type in a variable called

type.

Call the CreateWithSpecificConstructor method in the Members class to create an instance

of the type and store it in a variable called instance.

Call the ExecuteMethod method with the instance variable and the name of the method

(GetAge) you want to call and display the return value in the lblResult label.

The LoadExecutable method

1. Open the LoadAssembly class and locate the Load Assembly region.

2. Add a public static Assembly method called LoadExecutable which has a string para-

meter called assemblyPath.

public static Assembly LoadExecutable(string assemblyPath)

3. Return the result from a call to the Assembly.LoadFrom method passing in the

assemblyPath parameter to it.

538

C# For Beginners

The LoadAssembly class so far:

public class LoadAssembly

{

#region Load Assembly

public static Assembly LoadReflectionOnly(string assemblyPath) ...

public static Assembly LoadExecutable(string assemblyPath)

{

// Executable context

return Assembly.LoadFrom(assemblyPath);

}

#endregion

}

The CreateWithSpecificConstructor method

1. Open the Members class and add a region called Instance Members.

2. Add a public static object method called CreateWithSpecificConstructor which has a

Type parameter called type and a DateTime parameter called date.

public static object CreateWithSpecificConstructor(Type type,

DateTime date)

3. Add a try/catch-block where the catch-block re-throws any exception.

4. Add a List<string> variable called result and instantiate it.

5. Call the GetConstructor method on the passed in type specifying that the construct-

or definition should have a DateTime parameter.

var constructor = type.GetConstructor(new Type[1] { typeof(DateTime)

});

6. Return the result from a call to the Invoke method on the constructor variable pass-

ing in the date from the date parameter.

return constructor.Invoke(new object[1] { date });

The Members class so far:

public class Members

{

#region Constants

static BindingFlags flags = ...

#endregion

#region Type Methods

public static List<string> GetTypeNames(Assembly assembly) ...

539

C# For Beginners

public static Type GetType(Assembly assembly, string typeName) ...

#endregion

#region Fetch Type Members

public static List<string> GetConstructors(Type type) ...

public static List<string> GetFields(Type type) ...

public static List<string> GetProperties(Type type) ...

public static List<string> GetMethods(Type type) ...

#endregion

#region Instance Members

public static object CreateWithSpecificConstructor(Type type,

DateTime date)

{

try

{

var constructor = type.GetConstructor(

new Type[1] { typeof(DateTime) });

return constructor.Invoke(new object[1] { date });

}

catch { throw; }

}

#endregion

}

The ExecuteMethod method

1. Open the Members class and locate the Instance Members region.

2. Add a public static object method called ExecuteMethod that has an object para-

meter called instance which is the instance crated from the class and a string

parameter called methodName which is the name of the method to call.

public static object ExecuteMethod(object instance, string

methodName)

3. Add a try/catch-block where the catch-block return null.

4. Call the GetMethod method on the GetType method on the instance parameter,

store the result in a variable called method. Pass in the methodName parameter

and an empty Type array to the GetMethod method.

var method = instance.GetType().GetMethod(methodName, new Type[0]);

540

C# For Beginners

5. Return the result from a call to the Invoke method on the method variable passing

in the instance parameter and an empty object array.

return method.Invoke(instance, new object[0]);

The Members class so far:

public class Members

{

#region Constants

static BindingFlags flags = ...

#endregion

#region Type Methods

public static List<string> GetTypeNames(Assembly assembly) ...

public static Type GetType(Assembly assembly, string typeName) ...

#endregion

#region Fetch Type Members

public static List<string> GetConstructors(Type type) ...

public static List<string> GetFields(Type type) ...

public static List<string> GetProperties(Type type) ...

public static List<string> GetMethods(Type type) ...

#endregion

#region Instance Members

public static object CreateWithSpecificConstructor(Type type,

DateTime date) ...

public static object ExecuteMethod(object instance, string methodName)

{

try

{

var method = instance.GetType().GetMethod(methodName,

new Type[0]);

return method.Invoke(instance, new object[0]);

}

catch

{

return null;

}

}

#endregion

}

541

C# For Beginners

The Call Method button Click event

1. Add the btnCallMethod button's Click event to the code-behind.

2. Add a try/catch-block where the catch-block displays the exception message in a

message box.

3. Call the LoadExecutable method on the LoadAssembly class and pass in the

assemblyPath constant to it, store the resulting assembly in the assembly variable

that you added to the form class in the beginning of the exercise.

assembly = LoadAssembly.LoadExecutable(assemblyPath);

4. Call the GetType method on the Members class passing in the assembly variable

and the text from the selected item in the combo box. Store the resulting type in a

variable called type.

var type = Members.GetType(assembly, cboTypes.Text);

5. Create an instance of the type definition in the type variable by calling the Create-

WithSpecificConstructor method on the Members class passing in the type variable

and a date. Store the result in a variable called instance.

var instance = Members.CreateWithSpecificConstructor(type,

new DateTime(1970, 5, 4));

6. Call the ExecuteMethod method on the Members class passing in the instance var-

iable and the name of the method to call (GetAge); display the result in the lblResult

label.

lblResult.Text = Members.ExecuteMethod(instance,

"GetAge").ToString();

7. Run the application and click the Call Method button and the age should appear in

the label.

The form class so far:

public partial class Form1 : Form

{

const string assemblyPath = @"C:\Sample Files\Test Assembly.dll";

Assembly assembly;

public Form1() ...

private void Form1_Load(object sender, EventArgs e) ...

542

C# For Beginners

private void cboTypes_SelectedIndexChanged(object sender,

EventArgs e) ...

private void btnCallMethod_Click(object sender, EventArgs e)

{

try

{

assembly = LoadAssembly.LoadExecutable(assemblyPath);

var type = Members.GetType(assembly, cboTypes.Text);

var instance = Members.CreateWithSpecificConstructor(

type, new DateTime(1970, 5, 4));

lblResult.Text = Members.ExecuteMethod(instance,

"GetAge").ToString();

}

catch (Exception ex)

{

MessageBox.Show(ex.Message);

}

}

}

Saving and reading a value from a property

In this part of the exercise you will use the assembly instance to assign and read a value

stored in a property.

Since you already have called a constructor with a parameter you will now call the default

constructor when creating the instance of the type. To achieve this you will add a new

method to the Members class called CreateWithDefaultConstructor which has a Type para-

meter called type. In the method you will fetch the constructor definition and create the

instance from the type like before only this time you will pass in an empty Type array to the

GetConstructor method and an empty object array to the Invoke method.

Add an object method called SetPropertyValue which have an object parameter called

instance, a string parameter called propertyName and an object property called value to

the Members class. In the method you call the GetProperty method with the propertyName

parameter on the GetType method on the instance parameter to fetch the property defini-

tion into a variable called property. Call the SetValue method on the property variable

passing in the instance and the value parameters to assign the value to the property.

543

C# For Beginners

Add an object method called GetPropertyValue which has an object parameter called

instance and a string parameter called propertyName to the Members class. In the method

you call the GetProperty method with the propertyName parameter on the GetType

method on the instance parameter to fetch the property definition into a variable called

property. Return the result from a call to the SetValue method on the property variable

passing in the instance parameter to read the value from the property.

Since both buttons involved in reading and writing to the property must use the same insta-

nce of the type you have to add an object variable called instance to the form class that will

hold the instance created when the value is assigned to the property in the btnSetProperty

button's Click event.

Both the btnSetProperty and btnGetProperty buttons will have try/catch-blocks where the

exception message is displayed to the user with a message box in the catch-block.

The LoadExecutable method will be called in the btnSetProperty button's try-block to load

the assembly into memory. Then the GetType method will be called to load the type (class)

into memory and that type will be used to create the instance by calling the CreateWith-

DefaultConstructor method. When the instance has been created it can be passed into the

SetPropertyValue method along with the name of the property you want to assign the value

to and the actual value fetched from the txtValue textbox.

The SetProperty and GetProperty methods

1. Open the Members class and locate the Instance Members region.

2. Add a public static void method called SetProperty which has an object parameter

called instance (the instance crated from the class), a string parameter called

propertyName which is the name of the property to assign the value to and an

object parameter called value which is the value to assign to the property.

public static void SetPropertyValue(object instance, string

propertyName, object value)

3. Add a try/catch-block where the catch-block re-throws any exception.

4. Call the GetProperty method on the GetType method on the instance parameter,

store the result in a variable called property. Pass in the propertyName parameter

to the GetProperty method.

var method = instance.GetType().GetProperty(propertyName);

544

C# For Beginners

5. Call the SetValue method on the property variable passing in the instance and value

parameters to assign the value to the property.

property.SetValue(instance, value);

6. Add a public static object method called GetProperty which has an object para-

meter called instance (the instance crated from the class) and a string parameter

called propertyName which is the name of the property to retrieve the value from.

public static object GetPropertyValue(object instance, string

propertyName)

7. Add a try/catch-block where the catch-block re-throws any exception.

8. Call the GetProperty method on the GetType method on the instance parameter,

store the result in a variable called property. Pass in the propertyName parameter

to the GetProperty method.

var method = instance.GetType().GetProperty(propertyName);

9. Return the result from a call to the GetValue method on the property variable pass-

ing in the instance parameter to fetch the value stored in the property.

return property.GetValue(instance);

The Members class so far:

public class Members

{

#region Constants

static BindingFlags flags = ...

#endregion

#region Type Methods

public static List<string> GetTypeNames(Assembly assembly) ...

public static Type GetType(Assembly assembly, string typeName) ...

#endregion

#region Fetch Type Members

public static List<string> GetConstructors(Type type) ...

public static List<string> GetFields(Type type) ...

public static List<string> GetProperties(Type type) ...

public static List<string> GetMethods(Type type) ...

#endregion

545

C# For Beginners

#region Instance Members

public static object CreateWithSpecificConstructor(Type type,

DateTime date) ...

public static object ExecuteMethod(object instance,

string methodName) ...

public static void SetPropertyValue(object instance,

string propertyName, object value)

{

try

{

var property = instance.GetType().GetProperty(propertyName);

property.SetValue(instance, value);

}

catch { throw; }

}

public static object GetPropertyValue(object instance,

string propertyName)

{

try

{

var property = instance.GetType().GetProperty(propertyName);

return property.GetValue(instance);

}

catch { throw; }

}

#endregion

}

The CreateWithDefaultConstructor method

1. Open the Members class and locate the Instance Members region.

2. Add a public static object method called CreateWithDefaultConstructor which has a

Type parameter called type.

public static object CreateWithDefaultConstructor(Type type)

3. Add a try/catch-block where the catch-block re-throws any exception.

4. Call the GetConstructor method on the type parameter passing in an empty Type

array. Store the result in a variable called constructor.

var constructor = type.GetConstructor(new Type[0]);

5. Return the result from a call to the Invoke method on the constructor variable pass-

ing in an empty object array.

546

C# For Beginners

return constructor.Invoke(new object[0]);

The complete code for the Members class:

public class Members

{

#region Constants

static BindingFlags flags = ...

#endregion

#region Type Methods

public static List<string> GetTypeNames(Assembly assembly) ...

public static Type GetType(Assembly assembly, string typeName) ...

#endregion

#region Fetch Type Members

public static List<string> GetConstructors(Type type) ...

public static List<string> GetFields(Type type) ...

public static List<string> GetProperties(Type type) ...

public static List<string> GetMethods(Type type) ...

#endregion

#region Instance Members

public static object CreateWithSpecificConstructor(Type type,

DateTime date) ...

public static object ExecuteMethod(object instance,

string methodName) ...

public static void SetPropertyValue(object instance,

string propertyName, object value) ...

public static object GetPropertyValue(object instance,

string propertyName) ...

public static object CreateWithDefaultConstructor(Type type)

{

try

{

var constructor = type.GetConstructor(new Type[0]);

return constructor.Invoke(new object[0]);

}

catch { throw; }

}

#endregion

}

547

C# For Beginners

The Set Property button's Click event

1. Add the btnSetProperty button's Click event to the code-behind.

2. Add an object variable called instance to the form's class.

3. Add a try/catch-block to the Click event where the catch-block displays the excep-

tion message in a message box.

4. Call the LoadExecutable method on the LoadAssembly class passing in the

assemblyPath constant. Store the result in the assembly varaible on form level.

5. Call the GetType method on the Members class passing in the assembly variable

and the text from the item selected in the combo box. Store the result in a variable

called type.

6. Call the CreateWithDefaultConstructor method on the Members class passing in the

type variable. Store the result in the instance variable you just added to the form's

class.

instance = Members.CreateWithDefaultConstructor(type);

7. Call the SetPropertyValue method on the Members class passing in the instance

variable, the name of the property to store the value in (FirstName) and the value to

store from the txtValue textbox.

Members.SetPropertyValue(instance, "FirstName", txtValue.Text);

The complete code for the btnSetProperty button's Click event:

private void btnSetProperty_Click(object sender, EventArgs e)

{

try

{

assembly = LoadAssembly.LoadExecutable(assemblyPath);

var type = Members.GetType(assembly, cboTypes.Text);

instance = Members.CreateWithDefaultConstructor(type);

Members.SetPropertyValue(instance, "FirstName", txtValue.Text);

}

catch (Exception ex)

{

MessageBox.Show(ex.Message);

}

}

548

C# For Beginners

The Get Property button's Click event

You don't have to create the instance of the type since that was done in the btnSetProperty-

 Value button's Click event and stored in a form level variable called instance.

1. Add the btnGetProperty button's Click event to the code-behind.

2. Add a try/catch-block to the Click event where the catch-block displays the excep-

tion message in a message box.

3. Assign the result from a call to the GetPropertyValue method on the Members class

passing in the instance variable and the name of the property to fetch the value

from to the lblResult label.

lblResult.Text = Members.GetPropertyValue(instance,

FirstName").ToString();

4. Run the application and enter a value in the textbox.

5. Click the Set Property button to save the value in the FirstName property of the

Student class instance.

6. Click the Get Property button to fetch the value stored in the FirstName property.

The value should be displayed in the label.

The complete code for the btnGetProperty button's Click event:

private void btnSetProperty_Click(object sender, EventArgs e)

{

try

{

assembly = LoadAssembly.LoadExecutable(assemblyPath);

var type = Members.GetType(assembly, cboTypes.Text);

instance = Members.CreateWithDefaultConstructor(type);

Members.SetPropertyValue(instance, "FirstName", txtValue.Text);

}

catch (Exception ex)

{

MessageBox.Show(ex.Message);

}

}

549

C# For Beginners

550

C# For Beginners

16. Generics

Why use generics?

In this section you will learn about why you might want to use generics and why they are a

powerful tool in your C# coding tool belt.

Generics is a powerful way of reusing code in a type safe manner. Imagine what would

happen if you executed the following code:

public void UseArrayList()

{

ArrayList books = new ArrayList();

books.Add(new Book("Lord of the Rings"));

books.Add(new Book("The Color of Magic"));

// We can add an object which is not of the Books class

books.Add(new Car());

// The run-time will throw an exception because

// you cannot cast a Car to a Book

Book book = (Book)books[2];

}

The application would throw an exception because it is not possible to cast an object created

with the Car class to an object of the Book class. You could of course circumvent the prob-

lem by adding additional checks to the code like if-blocks, but that would be cumbersome

and unmanageable. You would essentially have to add checks for every existing and future

type to be "safe".

551

C# For Beginners

Collections

Wouldn't it be nice if there was a way to state what type of object should be stored in a

collection without the hassle of adding a lot of extra logic to your code such as casting obj-

ects and avoiding boxing and un-boxing of value types being stored?

Constraining a collection

As you probably already have guessed, there is. The name of the valiant knight on the white

steed saving the day is Generics. Generics is a way to postpone stating the type to be used

until the instance of the class is created.

Note that as you write the open angle bracket after the List class a gray pop-up message is

telling you that it is a generic list which takes types of T where T is substituted with the actu-

al type you want to use with the list. Once you state the type the generic list becomes a

 closed generic list which only can work with the provided type.

Note that a closed generic list is used as a return type for the method returning the book list

that is created in the method.

public List<Book> UseGenericCollection()

{

var books = new List<Book>

{

new Book{ ISBN = "1234567890", Title = "Lord of the Rings"},

new Book { ISBN = "0987654321", Title = "The Color of Magic" }

};

// It is no longer possible to add objects other than Books to the list

//books.Add(new Car { ChassiId = "1223ABDS23", Make = "Volvo" });

return books;

}

552

C# For Beginners

If you try to add a Car to the Book list a pre-compile error will be displayed.

Creating a specialized collection using generics

Let's say that you have realized that your application framework could use a specialized

collection which easily can reverse the content of a collection. To achieve this you could cre-

ate a class which takes a generic type and implements the IEnumerable interface making it

possible to iterate over the stored items.

This example is a bit contrived, I know, but it serves the purpose to show you how you can

use generics with classes, methods, method parameters, fields and as a return type. You will

also learn how to use the yield keyword to create a list result when looping.

To begin you have to add a class called ReversableCollection which implements the generic

IEnumerable<T> version of the IEnumerable interface.

Important: The yield keyword builds a state machine which will implement an IEnumerator

 <T> and return the modified or sorted items when the iteration has finished.

class ReverasbleCollection<T> : IEnumerable<T>

{

#region Implementation of IEnumerable<T>

public IEnumerator<T> GetEnumerator()

{

foreach (var item in collection)

{

yield return item;

}

}

IEnumerator IEnumerable.GetEnumerator()

{

// Calls the other GetEnumerator

// method and return its result

553

C# For Beginners

return GetEnumerator();

}

#endregion

}

Next you need to enable to save items of type T in an private collection which cannot be

reached outside the class. The list will store the items added through the Add and AddRange

methods which you will add next.

Because you have implemented the class with the generic type of T which means that T now

can be used throughout the whole class. You will take advantage of this when adding a

List<T> named collection which will store the items added to the collection. You will also use

the generic type T when creating the Add(T item) and AddRange(T[] item) methods to the

class.

In the Add method you simply add the passed in item to the List<T> collection by calling its

Add method. You do the same in the AddRange method but call the AddRange method on

the List<T> collection.

Because the items are passed in as items of type T any type can be stored in the Reversable-

Collection, but it can only handle one type once assigned as it then becomes a closed

generic.

List<T> collection = new List<T> ();

public void Add(T item)

{

collection.Add(item);

}

public void AddRange(T[] items)

{

collection.AddRange(items);

}

Next you will implement the Reverse method which will reverse the order of the items in the

collection. This method takes no parameters and return an IEnumerable<T> , the reversed

list. Note that you can use the yield keyword when looping to build the reversed list.

554

C# For Beginners

public IEnumerator<T> Reverse()

{

foreach (var item in collection.Reverse<T> ())

{

yield return item;

}

}

Lastly you want to use the ReversableCollection from a button in the form.

private void btnOpenGenericList_Click(object sender, EventArgs e)

{

var books = new ReversableCollection<Book>

{

new Book{ ISBN = "1234567890", Title = "Lord of the Rings"},

new Book { ISBN = "0987654321", Title = "The Color of Magic" },

new Book { ISBN = "6789054321", Title = "Bilbo" }

};

lstResult.DataSource = books. Reverse<Book>(). ToList();

lstResult.DisplayMember = "Title";

}

Exercise: Generic collections

In this exercise you will use a generic collection and constrain it to store data of one type.

This will make the collection type safe storing only values of one type per instantiation.

Using a collection

Let's start by looking at what happens if you use a regular collection to store values of

multiple types.

1. Create a new Windows Forms Application solution.

2. Add a folder called Classes to the project.

3. Add a class called Car to the Classes folder. The Car class should have two prop-

erties: RegNo of type string and Model of type string.

4. Add a class called Motorcycle to the Classes folder. The Motorcycle class should

have two properties: RegNo of type string and Model of type string.

5. Add a combo box control named dboCars to the form.

6. Add a button named btnCollections to the form and open its Click event.

555

C# For Beginners

7. Create an ArrayList collection named vehicles to the form's class (not in the button

Click event).

8. Add two cars and one motorcycle to the vehicles collection in the form's constructor

or in the form's Load event.

vehicles.Add(new Car { RegNo = "ABC123", Model = "Volvo" });

vehicles.Add(new Car { RegNo = "XYZ123", Model = "Saab" });

vehicles.Add(new Motorcycle { RegNo = "QWE987", Model = "Honda" });

9. In the button Click event add a foreach loop iterating over the vehicles in the

vehicles collection.

10. Because you only want to display cars in the cboCars combo box you cast the objects

using the Car class before adding them to the combo box .

foreach (var vehicle in vehicles)

cboCars.Items.Add((Car)vehicle);

11. When you run the application and push the button an InvalidCastException excep-

tion is displayed because the Motorcycle object cannot be cast to a Car object.

The complete code for the Car class:

class Car

{

public string RegNo { get; set; }

public string Model { get; set; }

}

The complete code for the Motorcycle class:

class Motorcycle

{

public string RegNo { get; set; }

public string Model { get; set; }

}

556

C# For Beginners

The code for the form's class so far:

public partial class Form1 : Form

{

ArrayList vehicles = new ArrayList();

public Form1()

{

InitializeComponent();

#region ArrayList collection

vehicles.Add(new Car { RegNo = "ABC123", Model = "Volvo" });

vehicles.Add(new Car { RegNo = "XYZ123", Model = "Saab" });

vehicles.Add(new Motorcycle { RegNo = "QWE987", Model = "Honda" });

#endregion

}

private void btnCollections_Click(object sender, EventArgs e)

{

foreach (var vehicle in vehicles)

cboCars.Items.Add(((Car)vehicle).RegNo);

}

}

The interface solution

You could solve this by using an intermediary interface called IVehicle implemented by both

the Car and the Motorcycle classes and use that interface to avoid the exception. This will

however present another challenge which you will explore in this exercise.

1. Add a new folder to the project named Interfaces.

2. Add an Interface named IVehicle to the Interfaces folder.

3. Add the two properties RegNo and Model to the IVehicle interface.

4. Implement the IVehicle interface in the Car and Motorcycle classes.

class Car : IVehicle

class Motorcycle : IVehicle

5. Add another button to the form named btnCollectionWithInterface.

6. Go to the button's Click event and add a foreach loop iterating over the vehicles

collection.

7. This time you will cast the objects to IVehicle instead of Car when adding them to

the combo box.

557

C# For Beginners

8. Run the application. This time no exception is thrown. However if you look in the

combo box list you can see that now the motorcycle object is displayed alongside

the car objects in the combo box's drop down list.

Clearly this wasn't the outcome you wished for when the goal was to display only cars in the

combo box.

The code for the form's class so far:

public partial class Form1 : Form

{

ArrayList vehicles = new ArrayList();

public Form1() ...

private void btnCollections_Click(object sender, EventArgs e) ...

private void btnCollectionsWithInterface_Click(object sender,

EventArgs e)

{

foreach (var vehicle in vehicles)

cboCars.Items.Add(((IVehicle)vehicle).RegNo);

}

}

The generic solution

A better way to solve displaying only cars would be to use a collection dedicated only to car

objects when working with cars and a collection dedicated to motorcycles when working

with motorcycles. To achieve this you will use generics.

1. Add a List<T> collection called cars which is used to store cars to the form's class

(not the button's Click event).

List<Car> cars;

2. Add two cars to the cars collection.

cars = new List< Car>

{

new Car { RegNo = "ABC123", Model = "Volvo" },

new Car { RegNo = "XYZ123", Model = "Saab" }

558

C# For Beginners

};

3. Try to add a Motorcycle instance to the cars collection, this should raise a pre-com-

pile error underlining the code with a red squiggly line. As you can see it is impossi-

ble to store anything but cars in the a generic list once it has been instantiated with

a type and has become a closed generic collection.

4. Comment out or remove the line of code trying to add the motorcycle.

5. Create a new button called btnGenericCollection and add its Click event.

6. In the button's event use the DataSource property of the combo box to display the

registration numbers using the DisplayMember property.

7. Run the application and click the button. As you can see the list is only displaying

cars.

The code for the form's class:

public partial class Form1 : Form

{

ArrayList vehicles = new ArrayList();

List<Car> cars;

public Form1()

{

InitializeComponent();

#region ArrayList collection ...

#region Generic collection

cars = new List<Car>

{

new Car { RegNo = "ABC123", Model = "Volvo" },

new Car { RegNo = "XYZ123", Model = "Saab" }

};

#endregion

}

private void btnCollections_Click(object sender, EventArgs e) ...

559

C# For Beginners

private void btnCollectionsWithInterface_Click(object sender,

EventArgs e) ...

private void btnGenericCollection_Click(object sender, EventArgs e)

{

cboCars.DataSource = cars;

cboCars.DisplayMember = "RegNo";

}

}

Constraining generics

When working with generics it is sometimes necessary to constrain the usage of the generic

type to be of a specific class, implement a certain interface or make sure that it has a default

parameter-less constructor. By doing this you can use the generic in a more flexible way. You

can for instance defer execution of a method or property defined by the constraining inter-

face because the compiler will know that that method or property exist because it belong to

the interface (remember that an interface has to be implemented in its entirety to ensure

that the members exist in the implementing class).

Constraints

The table below describe constraints you can use with generics.

Must be a class

This type of constraint is very useful if you know that the generic type must be a class. It

could be that it handles different entities in a data base for instance which have to be class-

es. By limiting the generic type to only work with classes (reference types) it won't work with

value types.

560

C# For Beginners

class Repository<T> where T : class

{

public T Get(int id)

{

return (T)new object();

}

public void Add(T entity)

{

}

}

There is a limitation to what we can do with the passed in generic type inside the methods

because the compiler does not know what the type contains. The only methods available are

the default methods available in all reference types (see image above).

If you need access to other methods you can specify a specific class the generic type must be

or inherit from but then it will no longer be a true generic.

Must derive from a specific base class

Using the pervious example as a starting point you can change the constraint to a specific

base class from which all instances of the generic type must inherit. Let's say you have a

base class called Entity which all generic types used in the Repository class must inherit

from, then you could change the class definition of the Repository class to:

class Repository<T> where T : Entity

561

C# For Beginners

If the Entity base class implements a property called IsValid then you would have access to

that property using the generic type within the Repository class.

class Entity

{

public bool IsValid { get; set; }

}

Must have a default constructor

You can also specify that the generic type must have a default constructor implemented. A

default constructor takes no parameters. The new() constraint must be the last constraint in

the list of constraints.

class Repository<T> where T : Entity, new()

Must implement a specific interface

Using the same basic example as a starting point you can change the constraint to a specific

interface which all instances of the generic type must implement. This is more flexible be-

cause you are not narrowing down the constraint to a specific base class, instead you are

allowing any class implementing the interface to be passed in as the generic type.

Let's say you have an interface called IEntity which all generic types used in the Repository

class must implement, then you could change the class definition of the Repository class to:

class Repository<T> where T : IEntity

562

C# For Beginners

If the IEntity interface defines a property called IsValid which all classes passed in as the

generic type must implement then you would have access to that property using the generic

type within the Repository class. This works because the compiler can defer the type assign-

ment and thus point at the right method at run-time when the type is known.

interface IEntity

{

bool IsValid { get; set; }

}

class Repository<T> where T : IEntity

{

public void Add(T entity)

{

if (entity. IsValid) { }

}

}

Exercise: Creating a specialized collection

In this exercise you will create a generic repository class which will have two methods Add

and Get and only allows types implementing the IRegisterable interface that you will create.

Create and implement the IRegisterable interface

In this part of the exercise you will create a new interface called IRegisterable which contain

one property called IsRegistered of type bool.

1. Create a new Windows Forms Application.

2. Add a new interface named IRegisterable.

3. Add a bool property called IsRegistered to the interface.

4. Add a class called Car.

5. Implement the IRegisterable interface in the Car class.

6. Also add a read only string property called DisplayValue that return the registration

number, model and if the car is registered (use String.Format). The DisplayValue

 property belongs to the Car class and is not part of the interface.

7. Add a class called Motorcycle with two string properties called RegNo and Model.

Do not implement the IRegisterable interface in this class.

563

C# For Beginners

The code for the IRegisterable interface:

public interface IRegisterable

{

bool IsRegistered { get; set; }

}

The complete code for the Car class:

class Car : IRegisterable

{

public string RegNo { get; set; }

public string Model { get; set; }

public bool IsRegistered { get; set; }

public string DisplayValue

{

get

{

return String.Format("{0} : {1} : {2}",

RegNo, Model, IsRegistered.ToString());

}

}

}

The code for the Motorcycle class so far:

class Motorcycle

{

public string RegNo { get; set; }

public string Model { get; set; }

}

Create the Repository class

In this part of the exercise you will add a generic class called Repository<T> , T will determine

the type of object that can be stored in the list collection the class contain. The generic type

T defining the class should be constrained by the interface you crated in the previous

exercise. The Repository<T> class should contain a List<T> collection called items which will

store the items being added through its Add method that which you will create in a later

exercise.

564

C# For Beginners

1. Add a new generic Repository<T> class.

2. Constrain the type T to only allow objects that implement the IRegisterable

interface.

3. Add a private List<T> collection called items in the class.

class Repository< T> where T : IRegisterable

{

List< T> items = new List< T>();

}

Create the Add and Get methods in the Repository class

In this part of the exercise you will add two methods Add and Get to the Repository<T>

class. The Add method will take an item of type T and add it to the collection. The Get meth-

od will return an IEnumerable<T> with all items if its null-able bool parameter registered is

null otherwise it will return the items where the IsRegistered property is equal to the value

of the parameter.

1. Add a method named Add to the Repository<T> class, it should have a parameter of

type T.

2. The passed in item should be added to the items collection in the method.

3. Add a method called Get that has a null-able bool parameter (bool?) called

registered. The method should return an IEnumerable<T> . The bool? parameter

should have a default value of null.

4. Add an if-statement checking if the passed in parameter is null. If it is then return

the whole list of items (cars). If the parameter is true then return registered cars

otherwise return the unregistered cars. You can us a LINQ statement with a Lambda

expression to fetch the registered or unregistered cars with only one else-block.

The complete code for the Repository<T> class:

public class Repository<T> where T : class, IRegisterable, new()

{

List<T> items = new List<T>();

public void Add(T item)

{

items.Add(item);

}

565

C# For Beginners

public IEnumerable<T> Get(bool? registered = null)

{

// If registered is null then return all items

// otherwise return registered items if true

// and not registered items if false

if (registered == null)

return items;

else

return items.Where(item => item.IsRegistered.Equals(registered));

}

}

The GUI

In this part of the exercise you will create the GUI.

1. Add a list box called lstItems to the form.

2. Add a group box control in which you place three radio buttons.

3. Name the radio buttons rbnAll (if selected all items will be returned from the Get

method in the Repository<T> class), rbnRegistered (will return registered items) and

 rbnUnregistered (will return unregistered items).

4. Make sure that the rbnAll is preselected when the application is started.

5. Go to the form's code-behind file and add an instance of the Repository<T> class

called repository to the form's class.

Repository<Car> carRepository= new Repository<Car>();

6. Add four Car instances to the to the repository<T> instance by calling its Add meth-

od. Two instance should be registered and two unregistered.

566

C# For Beginners

carRepository. Add(new Car { RegNo = "ABC123", Model = "Volvo",

 IsRegistered = false });

carRepository. Add(new Car { RegNo = "GFD123", Model = "Corvette",

 IsRegistered = false });

carRepository. Add(new Car { RegNo = "XYZ123", Model = "Saab",

 IsRegistered = true });

carRepository. Add(new Car { RegNo = "LKJ123", Model = "Koenigsegg",

 IsRegistered = true });

7. Add a button called btnInterfaceConstraint to the form and create its Click event.

8. Add an if-statement checking if the rbnAll is selected and call the Get method of the

repository<T> instance without any value if it is.

9. Add an else-statement that call the Get method with either true if rbnRegistered is

checked or false if the rbnUnregistered is checked. You can use the short notation

for an if-statement (expression to check ? true : false) to avoid having to implement

two else statements. Assign the returned IEnumerable<T> from the method call to

the DataSource property of the list box control and set its DisplayMember property

to "DisplayValue" (the property you added to the Car class earlier).

10. Run the application and click the button. All the cars should be displayed in the list

box.

11. Select the rbnRegistered radio button and click the button. Only the registered cars

should be displayed in the list box.

12. Select the rbnUnregistered radio button and click the button. Only the unregistered

cars should be displayed in the list box.

The code for the form's class so far:

public partial class Form1 : Form

{

Repository<Car> carRepository = new Repository<Car>();

public Form1()

{

InitializeComponent();

carRepository.Add(new Car {

RegNo = "ABC123", Model = "Volvo", IsRegistered = false });

carRepository.Add(new Car {

RegNo = "GFD123", Model = "Corvette", IsRegistered = false });

567

C# For Beginners

carRepository.Add(new Car {

RegNo = "XYZ123", Model = "Saab", IsRegistered = true });

carRepository.Add(new Car {

RegNo = "LKJ123", Model = "Koenigsegg", IsRegistered = true });

}

private void btnInterfaceConstraint_Click(object sender, EventArgs e)

{

if (rbnAll.Checked)

lstItems.DataSource = carRepository.Get();

else

lstItems.DataSource = carRepository.Get(

rbnRegistered.Checked ? true : false).ToList();

lstItems.DisplayMember = "DisplayValue";

}

}

Testing the Repository with the Motorcycle class

In this part of the exercise you will create an instance of the Repository<T> class called

mcRepository which takes instances of the Motorcycle class.

1. Go to the form's code-behind.

2. Add an instance of the Repository<T> class below the carRepository instance called

mcRepository which is defined by the Motorcycle class.

3. You should get an exception saying that the interface IRegisterable isn't implemen-

ted by the Motorcycle class.

4. Implement the IRegisterable interface in the Motorcycle class.

5. Add the DisplayValue property to the Motorcycle class (see the Car class). It is

needed to print the result to the list box in the form.

6. The exception should disappear when you build the solution.

The code for the form's class so far:

public partial class Form1 : Form

{

Repository<Car> carRepository = new Repository<Car>();

Repository<Motorcycle> mcRepository = new Repository<Motorcycle>();

568

C# For Beginners

public Form1() ...

private void btnInterfaceConstraint_Click(object sender,

EventArgs e) ...

}

The code for the Motorcycle class so far:

class Motorcycle : IRegisterable

{

public string RegNo { get; set; }

public string Model { get; set; }

public bool IsRegistered { get; set; }

public string DisplayValue

{

get

{

return String.Format("{0} : {1} : {2}",

RegNo, Model, IsRegistered.ToString());

}

}

}

Constrain with class and default constructor

In this part of the exercise you will constrain the generic type T used with the Repository<T>

class further by adding the constraints class and new() to it. The class constraint forces the

Repository<T> class to only handle reference types (classes) and the new() constraint checks

that the instances represented by the generic type implements a default constructor.

1. Go to the Repository<T> class and change its constraint to:

class Repository<T> where T : class, IRegisterable, new()

2. Go to the Motorcycle class and implement a constructor which takes three para-

meters for the assignable properties in the class (RegNo, Model and IsRegistered)

3. This should generate a compile error making it impossible to build the solution

The reason for this exception is that when you implement a constructor the default

constructor is automatically disregarded by the compiler.

569

C# For Beginners

4. To solve this you have to implement a default constructor in the Motorcycle class.

You do this by adding a constructor without parameters.

5. The error should go away.

6. Run the application and click the button. All the cars should be displayed in the list

box.

The reason they are displayed even though you changed the constraint on the

Repository<T> class is that the Car class is a class which has a default constructor

and implement the IRegisterable interface.

The code for the Motorcycle class so far:

class Motorcycle : IRegisterable

{

public string RegNo { get; set; }

public string Model { get; set; }

public bool IsRegistered { get; set; }

public string DisplayValue

{

get

{

return String.Format("{0} : {1} : {2}",

RegNo, Model, IsRegistered.ToString());

}

}

public Motorcycle(string regNo, string model, bool isRegistered)

{

RegNo = regNo;

Model = model;

IsRegistered = isRegistered;

}

// Default constructor

public Motorcycle()

{

}

}

570

C# For Beginners

Extension methods

Inheritance is often used when extending classes but in some cases, such as when dealing

with a sealed class where inheritance is not an option, extension methods could be the an-

swer. One scenario might be that you want to lift out some functionality and create a more

generic version which can be used with many different types.

An extension method does not change the underlying type. They must be declared as public

static and the first parameter must specify the type to extend; you do this by prefixing the

first parameter with the this keyword. Note that you don't pass in a value for the this

parameter to the method when calling the it because it represents the type on which the

extension method is used. The class containing the extension methods must be declared

with the static keyword.

Extension methods are frequently used in MVC applications to output HTML.

Important: You must place a using statement to the class containing the extension method

 in the .cs file where you intend to use the them.

Example: Extension method

This sample code shows how to create an extension method for the sealed Sytem.String

type that checks if the string contains numbers.

public static class StringExtensions

{

public static bool ContainsNumbers(this string value) {

return Regex.IsMatch(value, @"\d");

}

}

This sample code shows how to call an extension method.

public class UseExtensions

{

void UseExtensionMethod(string str) {

// The extension method is called on the type variable

bool hasNumbers = str.ContainsNumbers();

}

}

571

C# For Beginners

Chaining extension methods

If the extension method returns a value of the same type it was initiated with then other

extension methods working with that type can be chained to the original extension method

with the dot (.) notation. Let's say the extension method will receive a collection and reverse

the order of its items and then return the modified collection. If you then wanted to retrieve

the top 10 items from the collection you could chain on the LINQ Take extension method.

Example: Chaining extension methods

In this example Person objects are stored in a collection added with an Add extension

method with a string parameter called name and returns a modified version of the passed in

List<Person> collection. The extension method should also return the number of times a

name exist in the collection by calling another extension method called Count which has a

string parameter called name.

When implemented the static class containing the extension methods should have two

methods called Add and Count.

public class Person

{

public string Name { get; set; }

}

public static class ChainingExtensions

{

public static List<Person> Add(this List<Person> persons, string name)

{

persons.Add(new Person { Name = name });

return persons;

}

public static int Count(this List<Person> persons, string name)

{

var count = persons.Count(p => p.Name.Equals(name));

return count;

}

}

In the previous example the Add method can be chained several times if more than one

person will be added because it return the same collection that was passed in to the meth-

572

C# For Beginners

od. As soon as the Count method has been called chaining is no longer possible on the

List<Person> collection because the Count method returns an int.

List<Person> persons = new List<Person>();

public int ChainingExtensionMethods(string searchName)

{

var count = persons. Add("Jonas")

. Add("Lisa")

. Add("Jonas")

. Count(searchName);

return count;

}

Generic methods

Generics are very useful when an undetermined type has to be used with the method. A

generic method can work with any type and will be a closed generic method when the type

is determined at run-time. Reflection can be used with the generic type to glean information

and to call its methods and properties.

Example: Generic extension methods

In this example items in a List<T> collection will be manipulated using extension methods.

Two generic extension methods will be created, AddItem which adds an item to the collec-

tion and CountItems which counts the number of times a value exist in the collection. Note

the similarities with the pervious example, the difference is that the methods are generic.

Also note that the AddItem and CountItems methods are constrained to implement the

ICounter interface which defines a CompareValue property that is used when comparing the

generic item's value with a passed in value. Using the interface ensures that reflection don't

have to be used access the value stored in the CompareValue property of the generic item.

Because the compiler can be certain that the CompareValue property exist it can defer the

execution until run-time.

In this example the CompareValue implemented in the Animal class will return the value

stored in the Race property, but it any value could be returned that should be used when

comparing the values.

573

C# For Beginners

public interface ICounter

{

string CompareValue { get; }

}

public class Animal : ICounter

{

public string Race { get; set; }

public string CompareValue { get { return Race; } }

}

Continuing with the example. The generic extension method AddItem takes two parameters

a generic List<T> collection and an item of type T that will be added to the collection. Note

that the method name is decorated with the generic type T, this is necessary for passing in

generic types in the method parameters.

The generic extension method CountItems<T> has two parameters a generic List<T> collec-

tion and a string containing the value to filter on when counting the items. Note that the

method name is decorated with the generic type T, this is necessary for passing in a generic

List<T> collection as a method parameter.

Note that both methods are constrained to implement the ICounter interface to ensure that

the type T contains the CompareValue property used in the CounterItem method.

public static class GenericExtensionMethods

{

public static List< T> AddItem< T>(this List< T> list, T item)

where T : ICounter

{

list.Add(item);

return list;

}

public static int CountItems< T>(this List< T> items, string value)

where T : ICounter

{

var count = items.Count(item => item. CompareValue.Equals(value));

return count;

}

}

574

C# For Beginners

The Animal class used when creating the objects stored in the collection implement the

ICounter interface enabling the use of the CountItem extension method.

public class UseExtensions

{

List<Animal> items = new List<Animal>();

public int GenericExtensionMethods(string filter)

{

var count =

items.AddItem(new Animal { Race = "Cat", Type="Egyptian Mau" })

.AddItem(new Animal { Race = "Dog", Type = "Boxer" })

.AddItem(new Animal { Race = "Cat", Type = "Siberian" })

.CountItems(filter);

return count;

}

}

Create an instance of the UseExtensions class from the btnGenericExtensionMethods

button's Click event and call the GenericExtensionMethods method to use the extension

methods.

private void btnGenericExtensionMethods_Click(object sender, EventArgs e)

{

var extensions = new UseExtensions();

var count = extensions.GenericExtensionMethods("Cat");

lblResult.Text = count.ToString();

}

Exercise: Generic extension methods

In this exercise you will create an extension method called Search which will filter out vehic-

les on any of their string properties and display the result in a list box.

Creating the Search extension method

Create an extension method called Search that will search through all the available readable

string properties of the items in the items collection located in the Repository class. The

Search method will return an IEnumerable<T> containing all items where at least one string

property contains the search string provided by the method parameter.

575

C# For Beginners

You will have to pretend that you don't have access to the code in the Repository class, as if

it was part of a third party class library. You will use reflection in a loop to find the properties

of the items one at a time and in a second (inner) loop you will iterate over the available

readable properties of the generic type T to find out if the property name exist in the generic

type. Use the property names to find out if the corresponding properties in the current item

contains the value from the passed in string search parameter.

1. Create a new class called Extensions and change it to static.

2. Create a public static method called Search which is declared with the generic type

T.

3. Add two parameters to the method:

a. The first is the object the method should act upon, this parameter should be

decorated with the this keyword. Name the parameter rep and declare it as

a Repository<T> . Because you don't have direct access to the collection in

the Repository<T> class you can gain access to its items through the rep

object's Get method.

b. The second is a string parameter called search which contains the string to

search for.

4. Because the Repository<T> class has constraints this method must have the same

constraints.

public static class Extensions

{

public static IEnumerable<T> Search< T>(this Repository<T> rep,

string search) where T : class, IRegisterable, new()

{ ... }

}

5. Find all the string properties defined in the passed in type T. To do this you have to:

a. Call the GetProperties method on the type T using typeof to get the actual

type of T.

b. Use the LINQ Where method to find the properties that are declared as

string and are readable:

i. To find out if a property is of a certain type you can use the

PropertyType property of the current item in the Where method's

Lambda variable and compare it to the desired type you are after.

576

C# For Beginners

ii. To find out if a property is readable you can check the CanRead

property of the current item in the Where method's Lambda varia-

ble.

c. Save the resulting properties in a variable called readProps.

var readProps = typeof(T).GetProperties()

.Where(p => p.PropertyType.Equals(typeof(string)) &&

p.CanRead);

6. Create a List<T> called result which will hold the items matching the passed in string

search value.

7. Add a foreach loop that iterates over all the items in the Repository<T> class collec-

tion; you can get access to the items by calling the Get method on the rep para-

meter passed in to the Search method.

8. Add an if-statement inside the loop which checks if the current item already is in the

result collection (see step 6). If it exist then immediately jump to the next item by

using the continue keyword.

var result = new List<T>();

foreach (var item in rep.Get())

{

if (result.Contains(item)) continue;

}

9. Iterate over all the properties of string types you fetched in step 5 after the if-state-

ment. You want to use the names of these properties when checking their corre-

sponding values in the current loop item.

a. To check the property value of the current loop item you need to:

i. Call the GetType method on the item.

ii. Call the GetProperty method on the GetType method passing in the

name of the current property from the collection of properties you

are iterating over in the inner loop.

iii. To get the value of the property you have to call the GetValue

method on the GetProperty method passing in the current item as a

parameter.

iv. Convert that value to an upper case string and check if the upper

case version of the search string is somewhere within that property

string.

577

C# For Beginners

foreach (var prop in readProps)

if (item.GetType().GetProperty(prop.Name).GetValue(item)

.ToString().ToUpper().Contains(search.ToUpper()))

{

...

}

10. Add another if-block inside the if-block of the inner loop that checks if the result

collection does not contain the current item. If that is the case then add the current

item to the result collection and use the continue keyword to continue to the next

item.

if (!result.Contains(item))

{

result.Add(item);

continue;

}

11. Return the result collection from the Search method.

The Extensions class so far:

public static class Extensions

{

public static IEnumerable<T> Search<T>(this Repository<T> rep,

string search) where T : class, IRegisterable, new()

{

var readProps = typeof(T).GetProperties()

.Where(p => p.PropertyType.Equals(typeof(string)) &&

p.CanRead);

var result = new List<T>();

foreach (var item in rep.Get())

{

if (result.Contains(item)) continue;

foreach (var prop in readProps)

if (item.GetType().GetProperty(prop.Name).GetValue(item)

.ToString().ToUpper().Contains(search.ToUpper()))

{

if (!result.Contains(item))

{

result.Add(item);

578

C# For Beginners

continue;

}

}

}

return result;

}

}

The GUI

The GUI contains a list box called lstResult which will display the search results, a label with

the text "Search", a textbox called txtSearch where the search text will be entered and a

button called btnSearch that will initiate the search and display the result in the list box.

1. Create a new Windows Forms Application.

2. Add a list box called lstResult to the form.

3. Add a label with the text "Search" to the form.

4. Add a textbox called txtSearch to the right of the label in form.

5. Add a button called btnSearch below the textbox in the form.

Calling the Search extension method

In this part of the exercise you will call the Search extension method that you created earli-

er. When the Search button is clicked a value from the textbox is passed to the Search

method and the result from the method call is displayed in the list box.

1. Add a an instance of the Repository<T> called carRepository to the form's class.

2. Add the same cars to the repository in the form's constructor as in previous

exercises.

579

C# For Beginners

3. In the button's Click event assign the collection of cars returned from a call to the

Search method of the carRepository instance to the DataSource property of the list

box. Don't forget to pass in the text value from the textbox to the Search method.

4. Set the DisplayMember property of the list box to "DisplayValue" which is the

property value you want to display from Car objects.

private void btnSearch_Click(object sender, EventArgs e)

{

lstResult.DataSource = carRepository.Search(txtSearch.Text);

lstResult.DisplayMember = "DisplayValue";

}

5. Run the application and enter a value in the textbox then click the button. For a Car

object to be displayed in the list box one or more of its string property values must

contain the text entered in the textbox.

The form class so far:

public partial class Form1 : Form

{

Repository<Car> carRepository = new Repository<Car>();

public Form1()

{

InitializeComponent();

carRepository.Add(new Car {

RegNo = "ABC123", Model = "Volvo", IsRegistered = false });

carRepository.Add(new Car {

RegNo = "GFD123", Model = "Volvo", IsRegistered = false });

carRepository.Add(new Car {

RegNo = "XYZ123", Model = "Saab", IsRegistered = true });

carRepository.Add(new Car {

RegNo = "LKJ123", Model = "Koenigsegg", IsRegistered = true });

}

private void btnSearch_Click(object sender, EventArgs e)

{

lstResult.DataSource = carRepository.Search(txtSearch.Text);

lstResult.DisplayMember = "DisplayValue";

}

}

580

C# For Beginners

Delegates and generics

A delegate is essentially a variable that can point to a method and later be used when you

want to call that method. It defines a method header and its return type making it possible

to call the method associated with that delegate in a type safe way.

Example: Outputting data without a delegate using a generic

approach

To be able to output the CompareValue of the items stored in the List<T> collection you can

implement an Output method in the GenericExtensionMethods class; there is a drawback

and that is that it is not very flexible and only allow printing the values to one type of output

control or window, in the example code it's the Output window in the Visual Studio IDE.

public static void Output<T>(this List<T> items) where T : ICounter

{

foreach(var item in items)

{

Debug.WriteLine(item.CompareValue);

}

}

Example: Using a delegate

To make the Output method more flexible it can be implemented using delegate to pass in a

function pointer. The function pointer can then be directed to a print method which will

handle the actual printing. This approach will enable reuse of the Output method by

pointing the delegate to different print methods. The print method will be determined by

the method sent in to the Printer delegate.

You need to add a public delegate which takes a parameter of the object data type outside

the class; by using the object data type the delegate can handle any type of data.

public delegate void Printer(object data);

To be able to use the delegate the Output extension method in the GenericExtension-

Methods class has to be altered to take the delegate as its second parameter. This will

enable the Output method to call the passed in method associated with the delegate when

printing.

581

C# For Beginners

Swap out the Debug.WriteLine call for an invocation call to the delegate.

public static void Output<T>(this List<T> items, Printer print)

where T : ICounter

{

foreach (var item in items)

{

print(item.CompareValue);

}

}

By making this change to the Output method it is possible to print to any output control you

desire.

Let's add a method that writes to the form's list box instead of the Output window. To

achieve this the print method added to the form's class has to match the delegate definition.

As you can see in the example code below it's a void method that has a parameter of the

object data type just like the delegate definition dictates. You can give the individual print

methods appropriate names according to their intended purposes.

void PrintToListBox(object data)

{

lstResult.Items.Add(data);

}

Add a button called btnPrintingUsingDelegate and add its Click event to the form's class.

Create a delegate using the PrintToListBox method you just added. Call the Output method

passing in the delegate as its parameter.

private void btnPrintingUsingDelegate_Click(object sender, EventArgs e)

{

Printer print = new Printer(PrintToListBox);

var extensions = new DelegatesAndGenerics();

extensions.items.Output(print);

}

You can create as many delegate methods as you need displaying data in other controls or

windows.

582

C# For Beginners

Example: Using a generic delegate

The code can be made more generic by passing in a type of T to the print methods. Start by

changing the delegate to take a generic type of T.

public delegate void Printer<T>(T data);

The Output method has to be modified to take a Printer<T> delegate and pass the items in

the loop as the parameter to the print delegate pointer. Remember to add the correct

constraint to the method.

public static void Output<T>(this List<T> items, Printer<T> print)

where T : ICounter

{

foreach (var item in items)

{

print(item);

}

}

Change the PrintToListBox delegate method parameter to the generic type T. To get access

to the CompareValue in the class you need to restrict the generic type T to types

implementing the ICounter interface like you have done on other methods.

void PrintToListBox<T>(T data) where T : ICounter

{

lstResult.Items.Add(data.CompareValue);

}

Add a button called btnPrintingUsingGenericDelegate and add its Click event to the form's

class. Create a delegate with a specific type for and pass in the PrintToListBox method you

just altered as its parameter. Call the Output method passing in the delegate as its para-

meter.

Connect the PrintToListBox method to the delegate and call Output method on the list from

a button click event.

583

C# For Beginners

private void btnPrintingUsingGenericDelegate_Click(object sender,

EventArgs e)

{

var extensions = new DelegatesAndGenerics();

var print = new Printer<Animal> (PrintToListBox);

extensions.items.Output(print);

}

Action/Func/Predicate delegates

Another way of handling delegate calls is to use one of the three predefined delegates

Action, Func and Predicate. Action and Func can take up to 16 generic type arguments and

Predicate only 1.

Action

Defines a delegate method that always return void.

Func

Defines a delegate method that always return a type.

Predicate

Defines a delegate method that always return bool.

Action Delegate

Instead of writing all that cumbersome code in the previous example an Action delegate can

be used to achieve the same result. There are several different ways to implement the code,

let's look at them one at a time.

Example: Replacing a delegate

The first step is to replace the delegate and still use the PrintToListBox method. To do this

you need to change the Output method (or overload the existing one) to take an Action<T>

as its print parameter.

public static void Output<T>(this List<T> items, Action<T> print)

where T : ICounter

{

foreach (var item in items)

{

print(item);

}

}

584

C# For Beginners

Then you have to change the definition of the delegate call to use an Action instead of the

delegate you removed.

private void btnPrintingUsingAction_Click(object sender, EventArgs e)

{

var extensions = new DelegatesAndGenerics();

Action<Animal> print = PrintToListBox;

extensions.items.Output(print);

}

Example: Inline delegate

The second step is to get rid of the PrintToListBox method replacing it with an inline

delegate, placing the code directly inside the button's Click event. This type of Action can be

very useful when using LINQ and Lambda expressions.

By changing the code in this way you can delete the PrintToListBox method.

private void btnPrintingUsingAction_Click(object sender, EventArgs e)

{

Action<Animal> print = delegate(Animal data) {

lstResult.Items.Add(data.Race);

};

extensions.items.Output(print);

}

Example: Using Lambda

The third step is to get rid of the delegate definition and the code block all together; to

achieve this you can use a Lambda expression. You read the Lambda expression (a =>) as 'a'

 goes to.

private void btnPrintingUsingAction_Click(object sender, EventArgs e)

{

Action<Animal> print = a => lstResult.Items.Add(a.Race);

extensions.items.Output(print);

}

Pretty significant change wouldn't you say! You can take it one step further though by using

a Lambda expression directly in the function call.

585

C# For Beginners

private void btnPrintingUsingAction_Click(object sender, EventArgs e)

{

extensions.items.Output(a => lstResult.Items.Add(a.Race));

}

Func delegate

A Func differs from an Action in that it always has to return a value and thus always has to

take at least one generic type, the return value. The last generic type in a Func is always the

return type.

Example: Calling a Func

Let's say you want to create a function that returns the first Animal instance from a

List<Animal> collection by the specified race. To achieve this you could use a Func to which

you pass in two parameters, a string for the race and Animal for the return type. When the

Func has been declared it can be called like any other function. The 'a' in the Lambda

expression below is the string ("Cat") passed in to the animal Func.

var extensions = new DelegatesAndGenerics();

// Defining the function that can be called

Func<string, Animal> animal = a =>

extensions.items.FirstOrDefault(f => f.Race.Equals(a));

// Calling the function

var result = animal("Cat");

Predicate delegate

A Predicate differs from an Action in that it always has to return a Boolean value and take

one generic type, the in-parameter value.

Example: Calling a predicate

In the following example a Predicate function called HasRace is used to find out if the speci-

fied animal race exist in the animals collection. The race in the Lambda expression below is

the string ("Cat") passed in to the HasRace function.

private void btnPredicate_Click(object sender, EventArgs e)

{

var extensions = new DelegatesAndGenerics();

586

C# For Beginners

Predicate<string> HasRace = race =>

extensions.items.Count(f => f.Race.Equals(race)) > 0;

var result = HasRace("Cat");

lblResult.Text = result.ToString();

}

Exercise: Action/Func/Predicate delegates

In the exercises in this section you will create an Action to output information to different

controls, a Func to return an object and a Predicate to find out if one or more items match

the search string in a textbox.

The GUI

The GUI needs a few more controls for this exercise. Add a label with the text "Result:" and

to the right of that label add a label called lblResult with the text "No result". Add a combo

box called cboResult and four buttons called btnPrintToListBox, btnPrintToComboBox,

 btnCallFunc and btnCallPredicate (see image below).

1. Add a label with the text "Result:" below the Search button.

2. Add a label called lblResult with the text "No result" to the right of the previous

label.

587

C# For Beginners

3. Add a combo box called cboResult below the two labels.

4. Add a button called btnPrintToListBox below the combo box.

5. Add a button called btnPrintToComboBox below the previous button.

6. Add a button called btnCallFunc below the previous button.

7. Add a button called btnCallPredicate to the right of the btnCallFunc button.

Adding an Action

In this section you will call the Search extension method you created in a previous exercise

and output the result to a list box and a combo box by calling an extension method called

Output which you will create. This demonstrates how an Action can be used to divert the

output to the chosen type of control without having to change the implementation of the

extension method.

1. Open the Extensions class an add an extension method called Output which takes

an IEnumerable<T> called items as its first parameter and an Action<T> called print

as its second parameter. The method should return void

2. Add a foreach loop to the method that iterates over the items in the passed in

collection.

The complete code of the Extensions class:

public static class Extensions

{

public static IEnumerable<T> Search<T>(this Repository<T> rep,

string search) where T : class, IRegisterable, new() ...

public static void Output<T>(this IEnumerable<T> items, Action<T> print)

where T : class, IRegisterable, new()

{

foreach (var item in items)

{

print(item);

}

}

}

Using the Action

Now you will call the Search extension method you created in a previous exercise. Output

the result to a list box and a combo box by calling the Output extension method you just

588

C# For Beginners

created. This demonstrates how an Action can be used to divert the output to the chosen

type of control without having to change the implementation of the extension method.

1. Add the Click event for the btnPrintToListBox button.

2. Clear the list box's items.

3. Call the Output method on the result from a call to the Search method. You can

attach the call to the Output method directly to the Search method chaining them

together. Use a Lambda expression in the call to the Output method pointing to the

Add method of the list box.

carRepository . Search(txtSearch.Text).Output(

a => lstResult.Items.Add(a.DisplayValue));

4. Start the application, enter a value in the text box and click the btnPrintToListBox

button. The list box should display information about the matching cars.

5. Add the Click event for the btnPrintToComboBox button.

6. Repeat step 5 but clear the combo box and point to its Add method in the Lambda

expression.

7. Start the application, enter a value in the text box and click the btnPrintToCombo-

 Box button. The combo box should display information about the matching cars.

The form's class so far:

public partial class Form1 : Form

{

Repository<Car> carRepository = new Repository<Car>();

public Form1() ...

private void btnSearch_Click(object sender, EventArgs e) ...

private void btnPrintToListBox_Click(object sender, EventArgs e)

{

lstResult.Items.Clear();

carRepository.Search(txtSearch.Text)

.Output(a => lstResult.Items.Add(a.DisplayValue));

}

589

C# For Beginners

private void btnPrintToComboBox_Click(object sender, EventArgs e)

{

cboResult.Items.Clear();

carRepository.Search(txtSearch.Text)

.Output(a => cboResult.Items.Add(a.DisplayValue));

}

}

Using a Func

In this exercise you will create a Func called FirstMatch which return the first item matching

the search text entered into the textbox.

1. Add the Click event for the btnCallFunc button.

2. Create a Func delegate called FirstMatch that takes a string input parameter and

calls the Search method on the carRepository returning the first car matching the

search string. Use a Lambda expression to call the Search method

Func<string, Car> FirstMatch = search => // Defines the Func delegate

carRepository.Search(search).FirstOrDefault();// The method to

call

3. Call the FirstMatch Func and pass in the text from the textbox; store the result in a

variable called result.

var result = FirstMatch(txtSearch.Text);

4. Display the DisplayValue property value in the label lblResult if the result variable is

not null otherwise display the text "No car found".

lblResult.Text = result != null ? result.DisplayValue : "No car

found";

5. Run the application, enter a value in the textbox and click the button. If the value

matches a text value in one or more of the car objects then the information of the

first car is displayed in the label otherwise the text "No car found" is displayed.

The form's class so far:

public partial class Form1 : Form

{

Repository<Car> carRepository = new Repository<Car>();

public Form1() ...

590

C# For Beginners

private void btnSearch_Click(object sender, EventArgs e) ...

private void btnPrintToListBox_Click(object sender, EventArgs e) ...

private void btnPrintToComboBox_Click(object sender, EventArgs e) ...

private void btnCallFunc_Click(object sender, EventArgs e)

{

// Create a Func which takes a string (search)

// and return a Car object by calling the

// Search method with the search text and

// returning the first item found.

Func<string, Car> FirstMatch = search =>

carRepository.Search(search).FirstOrDefault();

// Call the Func

var result = FirstMatch(txtSearch.Text);

// Display the result

lblResult.Text = result != null ?

result.DisplayValue : "No car found";

}

}

Using a Predicate

In this exercise you will create a Predicate called Contains which return true if there is a

matching item and false if no matching item was found.

1. Add the Click event for the btnCallPredicate button.

2. Create a Predicate delegate which takes a string input parameter and calls the

Search method on the carRepository. Use a Lambda expression to call the Search

method

Predicate<string> Contains = search => // Defines the Predicate

delegate

carRepository.Search(search).Count() > 0; // The method to call

3. Call the Contains Predicate method passing in the text from the textbox and store

the result in a variable called result.

var result = Contains(txtSearch.Text);

4. Display the result in the lblResult label

591

C# For Beginners

5. Run the application, enter a value in the textbox and click the button. If the value

matches a text value in one or more of the car objects then display True in the label

otherwise display False.

The form's class so far:

public partial class Form1 : Form

{

Repository<Car> carRepository = new Repository<Car>();

public Form1() ...

private void btnSearch_Click(object sender, EventArgs e) ...

private void btnPrintToListBox_Click(object sender, EventArgs e) ...

private void btnPrintToComboBox_Click(object sender, EventArgs e) ...

private void btnCallFunc_Click(object sender, EventArgs e) ...

private void btnCallPredicate_Click(object sender, EventArgs e)

{

// Create a Predicate which takes a string (search) and

// return true if a match is found otherwise false.

Predicate<string> Contains = search =>

carRepository.Search(search).Count() > 0;

// Call the Predicate and display the result

var result = Contains(txtSearch.Text);

lblResult.Text = result.ToString();

}

}

Events and generics

It can be very useful to be able to send information from an object to the caller using generic

events. Using regular events you have to specify the data type in advance forcing the event

to work with that type an no other type. With generic events however you can specify the

type to use when registering for that event making it possible to use the event with any

type.

To declare a generic event you use the EventHandler<T> class which coincidentally saves

you one line of code since you don't have to explicitly specify a delegate for it; one is provid-

ed behind the scenes.

592

C# For Beginners

Every event takes two parameters sender of type object, which is the object or control from

where the event originated and EventArgs which can contain data about the object or

control that needs to be sent to the subscriber (the recipient). To pass your own data with

the event you have to create your own EventArgs class containing the properties.

To create the EventArgs class you add a new class deriving from the EventArgs class and add

properties to it. Since the generic type of T will be available throughout the class raising the

event you can safely use it in your EventArgs class.

Example: Generic event

In this example you will see how a generic event can be used to pass data to the event

subscriber.

In the specification handed to you for this task it's stated that you should be able to remove

an item from a list in a class called Buffer end raise an event when the item is removed. The

first thing on the agenda is to create a class called RemovedItemEventArgs which inherits

the EventArgs class.

Note that the generic type T is passed in to the class and used to store the removed item.

public class RemovedItemEventArgs<T> : EventArgs

{

public T RemovedItem { get; set; }

public RemovedItemEventArgs(T removedItem)

{

RemovedItem = removedItem;

}

}

The Buffer class takes a generic type T and contains a collection to store the items in.

public class Buffer<T>

{

public List<T> items = new List<T>();

}

593

C# For Beginners

Add the event to the Buffer class. The event will be triggered when an item is removed from

the collection.

public event EventHandler<RemovedItemEventArgs<T>> ItemRemoved;

Add the RemoveItem method to the Buffer class, it will remove an item from the collection

at the given index and raise the event to the subscriber.

public void RemoveItem(int index)

{

var item = items.ElementAtOrDefault(index);

// Create the EventArgs and raise the event

var eventArgs = new RemovedItemEventArgs<T>(item);

ItemRemoved(this, eventArgs);

items.RemoveAt(index);

}

With the Buffer class complete we move on to the form where the event will be subscribed

to in a button event. An instance of the Buffer class is added to the form and filled with the

following data.

Buffer<string> buffer = new Buffer<string>();

buffer.items.Add("First string");

buffer.items.Add("Second string");

buffer.items.Add("Third string");

Subscribe to the event in the button's Click event and remove the second item from the

collection and display the remaining strings in a list box.

private void btnEvent_Click(object sender, EventArgs e)

{

// Subscribe to the event

buffer.ItemRemoved += buffer_ItemRemoved;

// Remove the second item "Second string"

buffer.RemoveItem(1);

//Display the remaining items in a list box

lstResult.Items.Clear();

594

C# For Beginners

foreach (var item in buffer.items)

lstResult.Items.Add(item);

}

In the buffer_ItemRemoved event method created when subscribing to the event you want

to display the removed string in a Label. Note that Visual Studio automatically detected the

type that was used with the Buffer class and used that type with the RemovedItemEvent-

Args class.

void buffer_ItemRemoved(object sender, RemovedItemEventArgs<string> e)

{

// Display the removed item in a Label

lblResult.Text = e.RemovedItem;

}

Mini Use Case: Car rental - Generic business rules engine

In this exercise you will refactor and redefine how business rules are added and evaluated.

The rules are defined in the form and evaluated in the business layer. This is possible by

creating objects of a class called BusinessRule which defines what property to compare with

a given value and what operator to use specified by an enum.

Important: I strongly suggest that you create a copy of the Car Rental solution before contin-

 uing with the use case so that you can go back to the starting point if anything goes wrong. I

 also suggest that you continually make copies of the solution as you refactor it.

The rule will be evaluated by an instance of the RuleComparer class which implements the

IComparer interface in order to define how two object values will be compared. It will also

implement a generic method called EvaluateRules<T> which will take an item of T and a list

of BusinessRule<T> objects. The methods uses reflection to fetch the property value from

the item of T and a property called Property in each rule object, the property is compared to

the value in the Value property of each of the rule objects. So in essence you take the value

from a property in an object (of type T) use reflection to fetch the property value for a given

property specified by the rule object and compare it to another property value supplied by

the rule object.

595

C# For Beginners

Each rule object in the List<BusinessRule<T>> collection sent into the method will be

evaluated separately and the weighted result from all rules will determine if the

EvaluateRules<T> method will return success (true) or fail (false).

To make this work you need to add two classes and one enum.

The enum: The enum called RuleOperator will define the different types of comparisons

that can be made by the EvaluateRules<T> method when it evaluates the rules. Each rule

object will have a property specifying how the property value and the specified value should

be compared. The operators you will add are: GreaterThan, LessThan, Equal, NotEqual,

Contains and NotContains; the two last values will be used when checking whether a list

contains a value or not.

The BusinessRule<T> class: The first class is the generic public BusinessRule<T> class which

will define a single business rule for an item of the given type T. The class has five public

properties:

 A string property called Property which will hold the name of the property in the

item that you wish to compare to the value in the second object property called

Value.

 The third property is an IEnumerable<T> called Items which is a list of items of the

same type as the rule will evaluate; the method scans all the items in the collection

to determine if the rule is successful or not.

 The fourth is a RuleOperator property called Comparer will hold one of the values

from the RuleOperator enum, it will determine how the two values are compared.

 The last property is a null-able bool (bool?) called Success; it will be null until the

rule has been evaluated, true if the EvaluateRules<T> method returned success for

the rule and false if the evaluation was unsuccessful or failed.

The RuleComparer class: The RuleComparer instance will evaluate a list of BusinessRule<T>

rules against one item of type T. In order to compare object values using the standard comp-

arison operators such as < and > the class has to implement the IComparer interface be-

cause otherwise object values cannot be compared using those operators.

.NET Framework has a couple of comparer classes that you can use if you don't want to

implement you own; the one you will use here is called CaseInsensitiveComparer and works

596

C# For Beginners

on string values. The Compare method implemented by the IComparer interface return an

int where a negative value mean that the first object's value is less than the second object's

value, zero mean that they are equal and a positive value mean that the first object's value is

greater than the second object's value. Since this particular comparer will compare num-

erical values as double values and strings as string values you have to create two scenarios

where the first compare the values parsed to double values and the second where the

values are compared as strings. You can implement the same IsNumeric method that you

created a while back to check whether the values are numerical or not.

The class will have three methods where the first is called IsNumeric and will check if an

object value is numerical or not and return true or false depending in the outcome. The

second int method is called Compare which has two object parameters called value1 and

value2 and is part of the IComparer interface, its task is to evaluate whether two objects

values are equal or not. The third method is called EvaluateRules<T> with a T parameter

called item and a List<BusinessRule<T>> parameter called rules. The purpose of this method

is to iterate through the rules in the collection and evaluate each rule against a given prop-

erty in the passed in T instance stored in the item object. You can read how the method

works at the beginning of this use case.

Defining a rule: You define the rules in the form's methods by creating a List<BusinessRule

<T>> collection which you then pass to the booking processor for evaluation through one of

its methods, for instance the generic Add method you will create in another use case. All

rules have to be successful for the evaluation to be considered a success.

// Create rules to be evaluated by the booking processor

var rules = new List<BusinessRule<ICustomer>>() {

new BusinessRule<ICustomer> {

Property = "Id", Value = 1, Comparer = RuleOperator.LessThan

},

new BusinessRule<ICustomer> { Property = "SocialSecurityNumber",

Items = processor.Get<ICustomer>(),

Comparer = RuleOperator.NotContains

}

};

// Passing the rules collection to the Add method

var success = processor.Add(customer, rules);

597

C# For Beginners

The BusinessRule<T> class

Here you will implement the RuleOperator enum and the BusinessRule<T> class; they will

be placed in the same .cs file for simplicity but you can place them in separate files if you

want.

1. Create a copy of the Car Rental solution so that you can go back to the starting point

if something goes wrong.

2. Open the Car Rental solution.

3. Add a class called BusinessRule in the Classes folder in the Business Layer project.

4. Change the accessibility of the class to public.

5. Make the class generic of type T.

public class BusinessRule<T>

6. Add a public enum called RuleOperator above the class and inside the namespace.

7. Add the following values to the enum: GreaterThan, LessThan, Equal, NotEqual,

Contains and NotContains.

8. Add the following public properties to the class: Property of type string, Value of

type object, Items of type IEnumerable<T> , Comparer of type RuleOperator,

Success of type bool? (null-able bool).

The complete code for the BusinessRule class and the RuleOperator enum:

public enum RuleOperator

{

GreaterThan,

LessThan,

Equal,

NotEqual,

Contains,

NotContains

}

public class BusinessRule<T>

{

public string Property { get; set; }

public object Value { get; set; }

public IEnumerable<T> Items { get; set; }

public RuleOperator Comparer { get; set; }

public bool? Success { get; set; }

}

598

C# For Beginners

The RuleComparer class

The purpose of the methods in this class is to evaluate the business rules of type Business-

Rule<T> that you pass in to it.

The Compare method

1. Add a class called RuleComparer to the Classes folder in the Business Layer project.

2. Implement the IComparer interface in the class. This will add a method called

Compare which takes two parameters of the object data type that will be compared

with one another.

3. To be able to evaluate the values in the Compare method you need to add a method

called IsNumeric which checks if an object value is numeric. You have already creat-

ed this method in the form so you can simply copy it and paste it into the RuleCom-

parer class.

4. Use the IsNumeric method in the Compare class to determine if the values in the

value1 and value2 parameters defined by the method are numerical.

if (IsNumeric(value1) && IsNumeric(value2))

5. If both values are numerical then parse them to the double data type before sending

them in to the CaseSensitiveComparer's Compare method to compare them.

return ((new CaseInsensitiveComparer()).Compare(

Double.Parse(value1.ToString()),

Double.Parse(value2.ToString()))

);

6. If the values are not numerical you can call the CaseSensitiveComparer's Compare

method without first parsing the values.

return ((new CaseInsensitiveComparer()).Compare(value1, value2));

The complete code for the Compare and IsNumeric methods:

class RuleComparer : IComparer

{

bool IsNumeric(object value)

{

Regex regex = new Regex(@"^[-+]?[0-9]*\.?[0-9]+$");

return regex.IsMatch(value.ToString());

}

599

C# For Beginners

public int Compare(object value1, object value2)

{

if (IsNumeric(value1) && IsNumeric(value2))

{

return ((new CaseInsensitiveComparer()).Compare(

Double.Parse(value1.ToString()),

Double.Parse(value2.ToString()))

);

}

return ((new CaseInsensitiveComparer()).Compare(value1, value2));

}

}

The EvaluateRules<T> method

The purpose of this method is to evaluate the rules against properties in an object of type T.

To achieve this you will need to use reflection to look at the properties of the object and to

fetch the value from a property named by the Property property of the rule.

1. Add a generic bool method called EvaluateRules<T> which has a T parameter called

item and a List<BusinessRule<T>> collection parameter called rules. The T parame-

ter is the instance you want to evaluate the rules against and the collection is the list

of rules to evaluate.

public bool EvaluateRules<T>(T item, List<BusinessRule<T>> rules)

{

}

2. Add a bool variable called success and assign true to it. The variable will be used to

determine the weighted success of all the rules in the collection passed into the

method. If all rules are successful then the variable will contain true otherwise it will

contain false.

3. Add a foreach loop which iterates over the rules in the collection.

4. Fetch the property value from the item of type T using reflection inside the foreach-

block. You need to use reflection in order to get to the property values. Call the

GetType method on the item variable to get its type definition (the class and its

content), then call the GetProperty method on the type to fetch a specific property

definition based on the name stored in the Property property in the current rule in

the iteration. Use that property to call the GetValue method passing in the item of T

object to it.

600

C# For Beginners

var value = item.GetType().GetProperty(rule.Property).GetValue(item);

5. Add an int variable called result and assign 0 to it. This variable will be used to store

the result from a call to the Compare method when evaluating if the two values

being compared are equal, less than or greater than one another.

6. To find out what operator to use and how to evaluate the comparison between the

two object values you need to add a switch checking the Comparer property of the

current rule in the iteration.

switch (rule.Comparer)

{

}

7. Add the case for RuleOperator.LessThan by making a call to the Compare method

passing in the value from the property of the item of T that you fetched earlier with

reflection and the value from the Value property of the rule. Store the result in the

result variable you created earlier. To determine if the result is successful you assign

result < 0 to the Success property of the rule and use a Boolean and (&) to determi-

ne the result of the success variable (success & result < 0) that way the result in the

success variable can only be true if both values are true; you can expand the result

to encompass all the rules in the collection.

case RuleOperator.LessThan:

result = Compare(value, rule.Value);

rule.Success = result < 0;

success = success & result < 0;

break;

8. The case for RuleOperator.Equal is very similar to the previous case, the difference

is that instead of evaluating result < 0 you evaluate result.Equals(0).

9. The case for RuleOperator.GreaterThan is very similar to the previous case, the

difference is that instead of evaluating result.Equals(0) you evaluate result > 0.

10. The case for RuleOperator.NotEqual is very similar to the previous case, the

difference is that instead of evaluating result > 0 you evaluate !result.Equals(0).

11. The case for RuleOperator.Contains is different than the other cases in that it has to

iterate over all the items in the collection in order to evaluate the rule fully. Begin by

assigning false to the Success property of the rule.

12. Add a foreach loop iterating over all the items in the rule's Items collection.

601

C# For Beginners

13. Fetch the current item's value In the loop for the same property you fetched the

value for the item of T earlier, use the name in the Property property of the rule

(itm is the current item in the iteration).

var propValue =

itm.GetType().GetProperty(rule.Property).GetValue(itm);

14. Since you want to figure out if there is an item in the collection that is equal to the

item of T based on the given property you can assume that if there is one or more

matches the rule is successful and the Success property of the rule should be assign-

ed true. You can do this evaluation by calling the Compare method and evaluate if

the result is equal to 0 (value is the variable holding the value stored in the property

in the item of T)

if(Compare(propValue, value).Equals(0))

{

rule.Success = true;

}

15. Use a Boolean and (&) when determining if the result is successful and assign the

result to the success variable. You have to cast the rule.Success variable since it is

declared as a null-able bool (bool?)

success = success & (bool)rule.Success;

16. The case for RuleOperator.NotContains is very similar to the previous case but you

begin by assigning true to the Success property of the rule, false to the Success

property of the rule and then break out of the loop if the comparison is successful (if

there is a comparable item in the collection).

if (Compare(propValue, value).Equals(0))

{

rule.Success = false;

break;

}

17. The final evaluation if the rule is successful or not is the same as for the previous

case.

18. The last thing you need to do in the method is to return the success variable from

the method outside the loop (before the closing curly brace of the method).

602

C# For Beginners

The complete code for the EvaluateRules<T> method:

public bool EvaluateRules<T>(T item, List<BusinessRule<T>> rules)

{

var success = true;

foreach (var rule in rules)

{

var value = item.GetType().GetProperty(rule.Property).GetValue(item);

int result = 0;

switch (rule.Comparer)

{

case RuleOperator.LessThan:

result = Compare(value, rule.Value);

rule.Success = result < 0;

success = success & result < 0;

break;

case RuleOperator.Equal:

result = Compare(value, rule.Value);

rule.Success = result.Equals(0);

success = success & result.Equals(0);

break;

case RuleOperator.GreaterThan:

result = Compare(value, rule.Value);

rule.Success = result > 0;

success = success & result > 0;

break;

case RuleOperator.NotEqual:

result = Compare(value, rule.Value);

rule.Success = !result.Equals(0);

success = success & !result.Equals(0);

break;

case RuleOperator.Contains:

rule.Success = false;

foreach (var itm in rule.Items)

{

var propValue = itm.GetType()

.GetProperty(rule.Property).GetValue(itm);

if(Compare(propValue, value).Equals(0))

{

rule.Success = true;

}

603

C# For Beginners

}

success = success & (bool)rule.Success;

break;

case RuleOperator.NotContains:

rule.Success = true;

foreach (var itm in rule.Items)

{

var propValue = itm.GetType()

.GetProperty(rule.Property).GetValue(itm);

if (Compare(propValue, value).Equals(0))

{

rule.Success = false;

break;

}

}

success = success & (bool)rule.Success;

break;

}

}

return success;

}

Adding and testing rules

Let's add the rules that will be used later and test them to see that they actually work. The

rules will be used when adding a new vehicle or customer on the Add Data tab and the rules

are the same as the rules in the AddVehicle and AddCustomer methods of the Booking-

Processor class.

The following rules are evaluated when a vehicle is added:

 The vehicle Id must be less than 1.

 The vehicle's Meter setting must be greater than or equal to 0.

 The vehicle's RegistrationNumber must not be an empty string.

 The vehicle's TypeId must be greater than 0.

The following rules are evaluated when a customer is added:

 The customer Id must be less than 1.

604

C# For Beginners

 The customer's SocialSecurityNumber must not exist in the Customer collection in

the TestData class (the data source).

Adding the rules:

1. Locate the AddVehicle method in the form's code-behind.

2. Add the rules above the call to the processor.AddVehicle method.

3. Create a variable called rules and assign an instance of List<BusinessRule<

IVehicle>> to it. Create rules in the collection by adding new instances of the

BusinessRule<IVehicle> class and assign values to their properties (see the rules

above).

var rules = new List<BusinessRule<IVehicle>>() {

new BusinessRule<IVehicle> {

Property = "Id", Value = 1,

Comparer = RuleOperator.LessThan },

new BusinessRule<IVehicle> {

Property = "Meter", Value = -1,

Comparer = RuleOperator.GreaterThan },

new BusinessRule<IVehicle> {

Property = "RegistrationNumber", Value = String.Empty,

Comparer = RuleOperator.NotEqual },

new BusinessRule<IVehicle> {

Property = "TypeId", Value = 0,

Comparer = RuleOperator.GreaterThan }

};

4. To evaluate the rules you will have to temporarily change the access modifier on the

RuleComparer class to public.

5. Add a call to the EvaluateRules<T> method on an instance of the RuleComparer

class and assign the return value to a variable called success. Pass in the vehicle in-

stance being created in the AddVehicle method to the EvaluateRules method along

with the rules collection.

var success = new RuleComparer().EvaluateRules(vehicle, rules);

6. Place a breakpoint on the call to the processor.AddVehicle method.

7. Run the application and add a new vehicle on the Add Data tab.

8. The value of the success variable should be true.

9. Stop the application.

10. Change the Id rule's Value property to 0.

605

C# For Beginners

11. Run the application and add a new vehicle on the Add Data tab.

12. The value of the success variable should be false. because one of the rules has been

evaluated to false. Remember that all rules have to return true for the final result of

all rules to be true.

13. Stop the application.

14. Change the Id rule's value back to 1.

15. Remove the call to the EvaluateRules method that you added in step 5.

16. Locate the AddCustomer method in the form's code-behind.

17. Add the rules above the call to the processor.AddCustomer method.

18. Create a variable called rules which you assign a List<BusinessRule<ICustomer>> in-

stance, create rules in the collection by adding new instances of the BusinessRule<

ICustomer> class and assign values to their properties (see the rules above). Note

that the Items property is assigned the Customers collection by calling the Get-

Customers method and the Comparer property is assigned NotContains.

var rules = new List<BusinessRule<ICustomer>>() {

new BusinessRule<ICustomer> {

Property = "Id", Value = 1,

Comparer = RuleOperator.LessThan },

new BusinessRule<ICustomer> {

Property = "SocialSecurityNumber",

Items = processor.GetCustomers(),

Comparer = RuleOperator.NotContains }

};

19. Add a call to the EvaluateRules<T> method on an instance of the RuleComparer

class and assign the return value to a variable called success. Pass in the customer

instance being created in the AddCustomer method to the EvaluateRules method

along with the rules collection.

var success = new RuleComparer().EvaluateRules(customer, rules);

20. Place a breakpoint on the call to the processor.AddCustomer method.

21. Run the application and add a new customer on the Add Data tab.

22. The value of the success variable should be true.

23. Stop the application.

24. Change the Id rule's Value property to 0.

25. Run the application and add a new customer on the Add Data tab.

606

C# For Beginners

26. The value of the success variable should be false. because one of the rules has been

evaluated to false.

27. Stop the application.

28. Change the Id rule's Value property back to 1.

29. Run the application and try to add a customer with an existing social security num-

ber and make sure that the result in the success variable is false. You can find exist-

ing social security numbers in the Seed method in the TestData class.

30. Remove the call to the EvaluateRules method that you added in step 19.

31. Remove the public access modifier you added to the RuleComparer class making it

internal again.

Mini Use Case: Car rental - Generic reflection data layer

In this exercise you will refactor the data- and business layer's methods to make them more

flexible using reflection and by doing so cutting down the number of methods needed to

accomplish tasks such as fetching and adding entities. For instance, up until now there has

been one method for each fetch scenario with methods like GetCustomer and GetVehicle;

that will be a thing of the past as you move forward. You will be able to remove all those

methods from the data layer and most of them in the business layer when refactoring to one

Get method and one Add method in the data layer. You might be wondering how that is

possible, well, it is possible because with reflection, as you know, you can look into a class'

definition and call methods on a "reflection" instance of that class.

This task of switching to generic methods would involve pretty significant changes to the

IBookingProcessor and IDataLayer interfaces rendering them useless to other applications,

so what you will do instead is to create two new interfaces (version 2.0) that you will imple-

ment in new data layer and business layer classes. This way the only affected application will

be the one you are working on and older systems can still use the previous version of the

interfaces and class implementations. You can then communicate to all your customers that

the old interfaces are scheduled for removal in a future release giving them time to adapt

their systems to the new implementations.

To make it really visible for you what changes are being made they will be made in copies of

the existing classes and interfaces. Let's take it step by step and incrementally change

everything that has to be altered.

607

C# For Beginners

Creating the interfaces and classes

Copy the IBookingProcessor interface and BookingProcessor class and rename them IGene-

ricProcessor and GenericProcessor. Do the same for the IDataLayer, IRentalBase and

CollectionDataLayer and rename them IGenericDataLayer, IGenericBase and GenericData-

Layer.

Don't forget to change the names of the implemented and inherited interfaces as well as the

constructors of the involved classes. So far no code has been removed, changed or added

apart from the changes stated above.

You can copy a .cs file by:

1. Right clicking on the file in the Solution Explorer and select Copy.

2. Right click on the folder where you want the copy and select Paste.

3. Select the file you pasted in and press F2 on the keyboard to rename the file, this

does not change the name in the file however.

4. Open the file and change the name of the class or interface and the constructor

name if it is a class.

The changes to the copied and renamed interfaces and classes in the Data Layer project:

public interface IGenericBase

{

// Other available methods are not displayed here

}

public interface IGenericDataLayer : IGenericBase, ISerialize

{

// Other available methods are not displayed here

}

public class GenericDataLayer : IGenericDataLayer

{

public GenericDataLayer()

{

// The code is not displayed here

}

// Other available methods are not displayed here

}

608

C# For Beginners

The changes to the copied and renamed interfaces and classes in the Business Layer project:

public interface IGenericProcessor : IGenericBase

{

IGenericDataLayer DataLayer { get; }

// Other available methods are not displayed here

}

public class GenericProcessor : IGenericProcessor

{

#region Properties

public IGenericDataLayer DataLayer { get; private set; }

#endregion

#region Constructor

public GenericProcessor(IGenericDataLayer dataLayer)

{

DataLayer = dataLayer;

}

#endregion

// Other available methods have been left out

}

The generic Get method

To be able to implement the generic Get method it will first have to be implemented in the

IGenericBase interface, that way it has to be implemented in both the GenericProcessor and

GenericDataLayer class. But what should that method return and what, if any, parameters

should it have?

If you look at the old Get methods in the interface you can see that they return an

IEnumerable of the type they fetch data for; this mean that it is a great opportunity for using

generics since it is the type that determine what will be returned; those types can easily be

replaced with the generic type T. The tricky part is that a generic type T doesn't give you

access to the type members which mean that you will have to use reflection to access them

in the generic Get method.

To make it less complicated you will deal with the parameter-less Get methods as one case

and the other Get methods as separate cases, you will still be able to use the generic Get

609

C# For Beginners

method for those methods as well in a secondary capacity. So the GetCustomers, Get-

Bookings and GetVehicleTypes methods will all be replaced by the new parameter-less

generic Get method.

The new generic interface method definition will thus be IEnumerable<T> Get<T>(). Add

that method definition to the IGenericBase interface but don't remove the old Get method

definitions yet.

Implement the new Get method in the GenericProcessor and GenericDataLayer classes.

Call the Get method in the GenericDataLayer class from the Get method in the Generic-

Processor class.

Adding the Get method to the IGenericBase interface

1. Open the IGenericBase interface.

2. Add a region with the description Generic Methods.

3. Add the method definition to the region.

The alterations to the IGenericBase interface:

public interface IGenericBase

{

#region Generic Methods

IEnumerable<T> Get<T>();

#endregion

#region Action Methods ...

#region Fetch Methods ...

}

Implementing the Get method in the GenericProcessor class

1. Open the GenericProcessor class.

2. Add a region with the description Generic Methods.

3. Add a public Get method with the same definition as in the IGenericBase interface.

4. Call the new Get method in the GenericDataLayer class through the DataLayer prop-

erty and return the result.

public IEnumerable<T> Get<T>() {

return DataLayer.Get<T>();

}

610

C# For Beginners

Implementing the Get method in the GenericDataLayer class

This method is a bit tricky since it involves a lot of reflection. The first thing you need to do is

to fetch the type definition for the generic type T in order to get access to its member

definitions. You then create an instance of the TestData class and fetch its type definition in

order to get access to its member definitions and later its collections.

Use the type definition of the TestData class to fetch the first field that has a generic

argument with a type name matching the type name of the generic type T. This will locate

the collection that has the same type in its angle brackets as the type stored in the generic

type T. In other words, if T is ICustomer that type will be used to locate the IEnumerable

<ICustomer> collection in the TestData class matching them on the type name and return it

as a FieldInfo object.

var colFieldInfo = testDataType.GetFields().FirstOrDefault(f =>

f.FieldType.GetGenericArguments().First().Name.Equals(type.Name));

var colFieldInfo =

testDataType.GetFields() // Get the variables in the TestData class

.FirstOrDefault(f => // Find the first matching field

f.FieldType // Get the variable's data type (IEnumerable)

.GetGenericArguments() // Get the angle bracket's data types

.First() // Get the first generic type (you only use one)

.Name // Get the name of that generic type

.Equals(type.Name)); // Is it equal to the type name of T

Use the FieldInfo object, the collection, to fetch its values by calling the GetValue method

on it passing In the instance of the TestData class.

1. Open the GenericDataLayer class.

2. Add a region with the description Generic Methods.

3. Add a public Get method with the same definition as in the IGenericBase interface.

4. Fetch the type definition of the type T and store it in a variable called type.

var type = typeof(T);

5. Create an instance of the TestData class and store it in a variable called testDataObj.

6. Fetch the type definition of the type TestData class and store it in a variable called

testDataType.

var testDataType = testDataObj.GetType();

611

C# For Beginners

7. Fetch the FieldInfo object describing the collection you are seeking and store it in a

variable called collectionField (see detailed description above).

var collectionField = testDataType.GetFields().FirstOrDefault(f =>

f.FieldType.GetGenericArguments().First().Name.Equals(type.Name));

8. Fetch the collection and cast it to a IEnumerable<T> . Store the collection in a

variable called collection. You need to pass in the TestData instance to the GetValue

method to gain access to the data.

var collection =

(IEnumerable<T>)collectionField.GetValue(testDataObj);

9. Return the collection from the method.

The complete code for the Get method in the GenericDataLayer class:

#region Generic Methods

public IEnumerable<T> Get<T>()

{

var type = typeof(T);

var testDataObj = new TestData();

var testDataType = testDataObj.GetType();

var collectionField = testDataType.GetFields()

.FirstOrDefault(f => f.FieldType.GetGenericArguments()

.First().Name.Equals(type.Name));

var collection = (IEnumerable<T>)collectionField

.GetValue(testDataObj);

return collection;

}

#endregion

Replacing the Get method calls in the form

This is basically a search and replace scenario where you replace all the calls to the

GetCustomers, GetBookings and GetVehicleTypes methods with a call to the generic Get

method specifying the type you want to fetch collection data for; an example would be that

the GetCustomers() call would be replaced with a call to Get<ICustomer>().

Changing the access modifiers to public on the collections in the TestData will make it easier

for you to work with the data in the class through reflection.

612

C# For Beginners

1. Open the TestData class and change the access modifier from internal to public for

all the collections.

2. Open the form's code-behind.

3. Locate the IBookingProcessor processor variable at the beginning of the form and

change it to IGenericProcessor processor.

4. Change the instance creation of the BookingProcessor in the Form_Load event to

create an instance of the GenericProcessor class.

processor = new GenericProcessor(new GenericDataLayer());

5. Locate the FillCustomers method.

6. Replace the call to the GetCustomers method in the LINQ query with a call to the

generic Get method.

var customer = from c in processor.Get<ICustomer>()

7. Locate the FillBookings method.

8. Replace the call to the GetBookings and GetCustomers methods in the LINQ query

with calls to the generic Get method.

var bookings = from b in processor.Get<IBooking>()

join c in processor.Get<ICustomer>() on b.CustomerId equals c.Id

9. Locate the FillVehicleTypes method.

10. Replace the call to the GetVehicleTypes method in the LINQ query with a call to the

generic Get method.

cboTypes.DataSource = processor.Get<IVehicleType>();

11. Locate the GetBooking method.

12. Replace the call to the GetBookings method in the LINQ query with calls to the

generic Get method.

return (from b in DataLayer.Get<IBooking>()

13. Locate the AddCustomer method.

14. Replace the call to the GetCustomers method in the SocialSecurityNumber rule with

a call to the generic Get method.

new BusinessRule<ICustomer> { Property = "SocialSecurityNumber",

Items = processor.Get<ICustomer>(),

Comparer = RuleOperator.NotContains }

15. Locate the CustomerExist method.

613

C# For Beginners

16. Replace the call to the GetCustomers method in the LINQ query with calls to the

generic Get method.

var social = (from c in DataLayer.Get<ICustomer>()

17. Locate the btnSave_Click event.

18. Replace the call to the GetCustomers method in the call to the WriteToFile method

with a call to the generic Get method.

var success = IO.WriteToFile(@"C:\Test\Customers.txt",

processor.Get<ICustomer>());

19. Run the application and make sure that all the list views and combo boxes have

data.

20. Close the application.

21. Now that you know that the application works it's time to do some clean up and

remove code that is no longer in use.

22. Open the IGenericBase interface and remove (or comment out) the GetCustomers,

GetBookings and GetVehicleTypes methods.

//IEnumerable<ICustomer> GetCustomers();

//IEnumerable<IBooking> GetBookings();

//IEnumerable<IVehicleType> GetVehicleTypes();

23. Open the GenericProcessor class and remove (or comment out) the GetCustomers,

GetBookings and GetVehicleTypes methods.

24. Open the GenericDataLayer class and remove (or comment out) the GetCustomers,

GetBookings and GetVehicleTypes methods.

25. Run the application and make sure that all the list views and combo boxes have

data.

26. Close the application.

Refactoring the GetVehicles method

This method will no longer be needed in the GenericDataLayer class since it will be calling

the generic Get method from the GetVehicles method in the GenericProcessor class. You

will therefore move the method's interface definition from the IGenericBase to the IGen-

ericProcessor interface.

The GetVehicles method contain logic about which vehicles to fetch that you need to pre-

serve by moving it to the GenericProcessor version of the method.

614

C# For Beginners

1. Open the IGenericBase interface and cut out the GetVehicles definition.

2. Open the IGenericProcessor interface and paste the GetVehicles definition into the

interface.

IEnumerable<IVehicle> GetVehicles(VehicleStatus status);

3. Open The GetVehicles method in the GenericDataLayer class and cut out the

switch-block and delete what's remaining of the method.

4. Open the GenericProcessor version of the GetVehicles method and replace the call

to the DataLayer.GetVehicles method with the switch you cut out.

// Replace this code with the switch

return DataLayer.GetVehicles(status);

5. The code will light up like a Christmas tree, but not to worry. Just replace the direct

collection uses with calls to the generic Get method for the specified collection

types; as an example the TestData.Vehicles would become DataLayer.Get<IVehicle>

().

case VehicleStatus.All:

// return TestData.Vehicles;

// Would become

return DataLayer.Get<IVehicle>();

6. Run the application and make sure that all list views contain information.

7. Close the application.

The complete code for the GetVehicles method in the GenericProcessor class:

public IEnumerable<IVehicle> GetVehicles(VehicleStatus status)

{

try

{

switch (status)

{

case VehicleStatus.All:

return DataLayer.Get<IVehicle>();

case VehicleStatus.Booked:

return from c in DataLayer.Get<IVehicle>()

join b in DataLayer.Get<IBooking>() on c.Id equals b.VehicleId

where b.Returned.Equals(DateTime.MinValue)

select c;

615

C# For Beginners

case VehicleStatus.Available:

return from c in DataLayer.Get<IVehicle>()

where GetVehicles(VehicleStatus.Booked)

.Count(b => b.Id.Equals(c.Id)).Equals(0)

select c;

default:

return null;

}

}

catch

{

throw;

}

}

 Refactoring the GetVehicleTypes method

This method will no longer be needed in the GenericDataLayer class since it will be calling

the generic Get method from the GetVehicleTypes method in the GenericProcessor class.

You will therefore move the method's interface definition from the IGenericBase to the

IGenericProcessor interface.

The GetVehicleTypes method contain logic about which vehicles to fetch that you need to

preserve by moving it to the GenericProcessor version of the method.

1. Open the IGenericBase interface and cut out the GetVehicleTypes definition.

2. Open the IGenericProcessor interface and paste the GetVehicleTypes definition into

the interface.

IVehicleType GetVehicleType(int vehicleTypeId);

3. Open The GetVehicleTypes method in the GenericDataLayer class and cut out the

code fetching the first vehicle type matching the vehicleTypeId parameter.

return TestData.VehicleTypes.FirstOrDefault(vt =>

vt.Id.Equals(vehicleTypeId));

4. Open the GenericProcessor version of the GetVehicleTypes method and replace the

call to the DataLayer.GetVehicleTypes method with the code you cut out.

// Replace this code with the cut out code

return DataLayer.GetVehicleType(vehicleTypeId);

5. Replace the direct usage of the VehicleTypes collection with a call to the generic Get

method for the IVehicleType type DataLayer.Get<IVehicleType>().

616

C# For Beginners

//return DataLayer.GetVehicleType(vehicleTypeId);

// Would become

return DataLayer.Get<IVehicleType>()

.FirstOrDefault(vt => vt.Id.Equals(vehicleTypeId));

6. Run the application and make sure that the list views display the vehicle type in the

Type column and that the combo box on the Add Data tab contain the vehicle types.

7. Close the application.

The complete code for the GetVehicleTypes method in the GenericProcessor class:

public IVehicleType GetVehicleType(int vehicleTypeId)

{

try

{

return DataLayer.Get<IVehicleType>()

.FirstOrDefault(vt => vt.Id.Equals(vehicleTypeId));

}

catch

{

throw;

}

}

The Refactored IGenericBase interface

public interface IGenericBase

{

#region Generic Methods

IEnumerable<T> Get<T>();

#endregion

#region Action Methods

bool RentVehicle(int vehicleId, int customerId, DateTime timeOfRental);

double ReturnVehicle(int bookingId, double meter, DateTime returned);

void AddVehicle(IVehicle vehicle);

void AddCustomer(ICustomer customer);

#endregion

}

617

C# For Beginners

The Refactored IGenericProcessor interface

public interface IGenericProcessor : IGenericBase

{

IGenericDataLayer DataLayer { get; }

bool CustomerExist(string socialScurityNumber);

IBooking GetBooking(int vehicleId);

IEnumerable<IVehicle> GetVehicles(VehicleStatus status);

IVehicleType GetVehicleType(int vehicleTypeId);

}

The generic Add method

One version of the generic Add method will be implemented in the GenericDataLayer class

and another in the GenericProcessor class where the Add method in the GenericProcessor

class will call the Add method in the GenericDataLayer class.

The Add method in the GenericDataLayer class will use reflection to find the correct collec-

tion based on the data type of the item of T passed in to it. It will also use reflection to

generate a new id for the added item.

The Add method in the GenericProcessor class will evaluate the passed in business rules and

if they report back a successful outcome call the Add method in the GenericDataLayer class.

The AddVehicle method in the form's code-behind will call the new Add method in the

GenericProcessor class passing in the vehicle object and a list of rules to evaluate (the rules

you added and tested in an earlier exercise).

The IGenericDataLayer interface

You will add a void Add method which has a parameter called item of type T.

1. Open the IGenericDataLayer interface.

2. Add a region with the description Generic Methods.

3. Add a void Add method which has a parameter called item of type T to the region.

void Add<T>(T item);

618

C# For Beginners

The complete IGenericDataLayer interface:

public interface IGenericDataLayer : IGenericBase, ISerialize

{

#region Generic Methods

void Add<T>(T item);

#endregion

#region Helper Methods

int RentalDuration(DateTime rented, DateTime returned);

double CalculatePrice(IVehicle vehicle,

double returnedMeterSetting, int duration);

#endregion

}

Implementing the Add method in the GenericDataLayer class

This method is a bit tricky since it involves a lot of reflection. The first thing you need to do is

to fetch the type definition for the generic type T in order to get access to its member

definitions. You then have to create an instance of the TestData class to fetch its type

definition and use it to access its member definitions and later be able to get access to the

data in the collections.

Use the type definition of the TestData class to fetch the first field that has a generic

argument with a type name matching the type name of the generic type T. This will locate

the collection that has the same type in its angle brackets as the type stored in the generic

type T. In other words, if T is ICustomer that type will be used to locate the IEnumerable

<ICustomer> collection in the TestData class matching them on the type name and return it

as a FieldInfo object.

var collectionVariable = testDataType.GetFields().FirstOrDefault(f =>

f.FieldType.GetGenericArguments().First().Name.Equals(type.Name));

var collectionVariable =

testDataType.GetFields() // Get the variables in the TestData class

.FirstOrDefault(f => // Find the first matching field

f.FieldType // Get the variable's data type (IEnumerable)

.GetGenericArguments() // Get the angle bracket's data types

.First() // Get the first generic type (you only use one)

.Name // Get the name of that generic type

.Equals(type.Name)); // Is it equal to the type name of T

619

C# For Beginners

Use the collectionVariable to fetch the values in the collection by calling the GetValue

method on it passing in the instance of the TestData class, store the result in a variable call-

ed collection.

Use the collection variable to fetch the highest id value and assign that value incremented

by 1 to the Id property of the item of T object passed in to the method.

Add the updated item object to the collection using its Add method.

1. Open the GenericDataLayer class.

2. Add a region with the description Generic Methods.

3. Add a public Add method with the same definition as in the IGenericDataLayer

interface.

4. Fetch the type definition of the type T and store it in a variable called type.

var type = typeof(T);

5. Create an instance of the TestData class and store it in a variable called testDataObj.

6. Fetch the type definition of the type TestData class and store it in a variable called

testDataType.

var testDataType = testDataObj.GetType();

7. Fetch the FieldInfo object describing the collection you are seeking and store it in a

variable called collectionVariable (see detailed description above).

var collectionVariable = testDataType.GetFields().FirstOrDefault(f =>

f.FieldType.GetGenericArguments().First().Name.Equals(type.Name));

8. Fetch the collection and cast it to an IEnumerable<T> . Store the collection in a

variable called collection. You need to pass in the TestData instance to the GetValue

method to gain access to the data.

var collection =

(IEnumerable<T>)collectionVariable.GetValue(testDataObj);

9. Assign a value to the item object's Id property.

item.GetType().GetProperty("Id").SetValue(item, collection.Max(b =>

(int)b.GetType().GetProperty("Id").GetValue(b) + 1));

10. Add the updated item object to the collection.

620

C# For Beginners

The complete code for the Add method in the GenericDataLayer class:

public void Add<T>(T item)

{

// Get the type that defines the collection

var type = typeof(T);

// Create an instance of the TestData Class,

// the instance is needed when adding the

// item to the collection

var testDataObj = new TestData();

// The type definition of the TestData class

// which is needed to find the collection

var testDataType = testDataObj.GetType();

// Find the collection based on its generic type

// for instance <ICustomer> and the type name of

// T (ICustomer, IVehicle, ...)

var collectionVariable = testDataType.GetFields()

.FirstOrDefault(f => f.FieldType.GetGenericArguments()

.First().Name.Equals(type.Name));

// Get the actual collection as a List<T>

// using the collection variable

var collection = (List<T>)collectionVariable.GetValue(testDataObj);

// Highest Id + 1

item.GetType().GetProperty("Id").SetValue(item,

collection.Max(b => (int)b.GetType().GetProperty("Id").GetValue(b) +

1));

// Add the instance of T to the collection

collection.Add(item);

}

The IGenericProcessor interface

You will add a void Add method which has one parameter called item of type T and another

called rules of type List<BusinessRule<T>> .

1. Open the IGenericProcessor interface.

2. Add a region with the description Generic Methods.

3. Add a void Add method which with the two parameters described above to the

region.

bool Add<T>(T item, List<BusinessRule<T>> rules);

621

C# For Beginners

The complete IGenericProcessor interface:

public interface IGenericProcessor : IGenericBase

{

IGenericDataLayer DataLayer { get; }

#region Generic Methods

bool Add<T>(T item, List<BusinessRule<T>> rules);

#endregion

bool CustomerExist(string socialScurityNumber);

IBooking GetBooking(int vehicleId);

IEnumerable<IVehicle> GetVehicles(VehicleStatus status);

IVehicleType GetVehicleType(int vehicleTypeId);

}

Implementing the Add method in the GenericProcessor class

This Add method takes an item parameter of type T and a List<BusinessRule<T>> parameter

called rules. It implements a try/catch-block where the catch-block re-throws any exception.

The first thing to happen in the try-block is that the rules are evaluated by the EvaluateRules

method on an instance of the RuleComparer class. If the method return a successful out-

come the Add method is called on the DataLayer instance. The Add method result is then

returned from the EvaluateRules method call.

1. Open the GenericProcessor class.

2. Add the Add method as described above to the Generic Methods region.

public bool Add<T>(T item, List<BusinessRule<T>> rules)

3. Add a try/catch-block where the catch-block re-throws any exception.

4. Evaluate the rules by calling the EvaluateRules method on an instance of the Rule-

Comparer class and store the result in a variable called success.

var success = new RuleComparer().EvaluateRules(item, rules);

5. Call the Add method on the DataLayer instance if the success variable is true.

6. Return the value in the success variable from the method.

622

C# For Beginners

The complete code for the Add method in the GenericProcessor class:

public bool Add<T>(T item, List<BusinessRule<T>> rules)

{

try

{

var success = new RuleComparer().EvaluateRules(item, rules);

if (success) DataLayer.Add(item);

return success;

}

catch

{

throw;

}

}

Altering the AddVehicle method in the form's code-behind

Replace the call to the processor.AddVehicle method call with a call to the new generic Add

method passing in the vehicle object and the collection of rules you added in an earlier

exercise.

1. Open the form's code-behind and locate the call to the AddVehicle method.

2. Replace the call to the AddVehicle method with a call to the generic Add method.

// processor.AddVehicle(vehicle);

// Replace with

var success = processor.Add<IVehicle>(vehicle, rules);

3. Open the IGenericBase interface and remove the AddVehicle method.

4. Open the IGenericDataLayer interface and remove the AddVehicle method.

5. Open the IGenericProcessor interface and remove the AddVehicle method.

6. Run the application and make sure that you can add a vehicle on the Add Data tab.

7. Try to add a vehicle with a negative meter setting and make sure that it has not been

added to the Available Vehicles list on the Rent Vehicle tab.

8. Close the application.

623

C# For Beginners

The code in the form's AddVehicle method:

private bool AddVehicle(IVehicle vehicle)

{

try

{

// Code for checking the form input

// fields has been omitted to save space

// Code for adding values to the vehicle

// has been omitted to save space

// Business rules that are evaluated

// in the Add method of the GenericProcessor

var rules = new List<BusinessRule<IVehicle>>() {

new BusinessRule<IVehicle> { Property = "Id",

Value = 1, Comparer = RuleOperator.LessThan },

new BusinessRule<IVehicle> { Property = "Meter",

Value = -1, Comparer = RuleOperator.GreaterThan },

new BusinessRule<IVehicle> {

Property = "RegistrationNumber", Value = String.Empty,

Comparer = RuleOperator.NotEqual },

new BusinessRule<IVehicle> { Property = "TypeId",

Value = 0, Comparer = RuleOperator.GreaterThan }

};

var success = processor.Add<IVehicle>(vehicle, rules);

FillAvialbleVehicles();

txtRegNo.Text = String.Empty;

txtMeter.Text = String.Empty;

return true;

}

catch { return false; }

}

Altering the AddCustomer method in the form's code-behind

Replace the call to the processor.AddCustomer method call with a call to the new generic

Add method passing in the customer object and the collection of rules you added in an

earlier exercise.

624

C# For Beginners

1. Open the form's code-behind and locate the call to the AddCustomer method.

2. Replace the call to the AddCustomer method with a call to the generic Add method.

Note that you don't have to specify the interface type when calling the Add method

on the processor instance, it will be inferred by the compiler.

// processor.AddCustomer(vehicle);

// Replace with

var success = processor.Add(customer, rules);

3. Open the IGenericBase interface and remove the AddCustomer method.

4. Open the IGenericDataLayer interface and remove the AddCustomer method.

5. Open the IGenericProcessor interface and remove the AddCustomer method.

6. Open the IGenericProcessor interface and remove the CustomerExist method.

7. Open the GenericProcessor interface and remove the CustomerExist method.

8. Run the application and add a customer, make sure that the customer is added in

the combo box on the Rent Vehicle tab.

9. Try to add a customer with a social security number that already exist and make sure

that the customer isn't added to the combo box on the Rent Vehicle tab.

10. Close the application.

The code in the form's AddCustomer method:

private int AddCustomer()

{

try

{

// Code for checking the form input

// fields has been omitted to save space

var customer = new Customer() {

SocialSecurityNumber = txtSocial.Text,

FirstName = txtFirstName.Text,

LastName = txtLastName.Text

};

// Business rules that are evaluated

// in the Add method of the GenericProcessor

var rules = new List<BusinessRule<ICustomer>>() {

new BusinessRule<ICustomer> { Property = "Id",

Value = 1, Comparer = RuleOperator.LessThan },

625

C# For Beginners

new BusinessRule<ICustomer> {

Property = "SocialSecurityNumber",

Items = processor.Get<ICustomer>(),

Comparer = RuleOperator.NotContains }

};

processor.Add(customer, rules);

FillCustomers();

txtSocial.Text = String.Empty;

txtFirstName.Text = String.Empty;

txtLastName.Text = String.Empty;

return cboCustomers.Items.Count - 1;

}

catch(CustomerException ex)

{

MessageBox.Show(ex.Message);

return Int32.MinValue;

}

catch { return -1; }

}

626

C# For Beginners

17. Multithreading

Introduction

To enhance the user experience, you should take advantage of the possibility to distribute

the work load to multiple threads simultaneously. We will see how the Task Parallel Library

will solve this and how we can perform long-running tasks without blocking threads as well

as how to access resources concurrently from multiple threads.

You should avoid executing long-running tasks on the UI thread because that will render the

UI unresponsive. Most of the processors today have multiple cores; be sure to utilize that by

using multiple threads in the application to improve performance.

Tasks

The Task class will enable you to perform multiple tasks in parallel on different threads. The

 Task Parallel Library handles the thread pool in the background to assign tasks to threads;

with this library you can chain and pause tasks, wait for tasks to complete and perform other

operations.

You create a task by using an instance of the Task class passing in an Action delegate that

points to the method to be executed; this static method must be implemented and cannot

return a value. If you need to return a value, you can use the Func class or a Task<TResult>

instead.

Example: Use an Action delegate to perform a Task:

public partial class Form1 : Form

{

Task taskWithMethod = new Task(new Action(ActionMethod));

private void TaskWithMethod_Click(object sender, EventArgs e)

{

taskWithMethod.Start();

}

627

C# For Beginners

private static void ActionMethod()

{

// Do some long running operation

Thread.Sleep(3000);

MessageBox.Show("Finished: " +

DateTime.Now.ToLongTimeString());

}

}

Example: Using an anonymous delegate to perform a Task

If you want to execute a method that has a single purpose you can implement it using an

anonymous delegate.

public partial class Form1 : Form

{

Task taskWithDelegate = new Task(delegate

{

Thread.Sleep(3000);

MessageBox.Show("Finished: " +

DateTime.Now.ToLongTimeString());

});

private void TaskWithDelegate_Click(object sender, EventArgs e)

{

taskWithDelegate.Start();

}

}

Creating tasks using Lambda expressions

Lambda is a shorthand way to define anonymous delegates that can take parameters and

return a value; Lambda expressions follow the form (input parameters) => expression; the

Lambda operator (=>) reads as “Goes to”. You can pass in variables to the expression in the

parenthesis on the left side of the operator; for instance the expression (x, y) => x > y would

return true if x is greater than y, otherwise it would return false.

A Lambda expression can be used with a simple expression, target an implemented method

or an anonymous method defined by a code block within curly braces on the form (input

 parameters) => { C# code }.

628

C# For Beginners

Using Lambda expressions is the recommended way to implement Tasks because it is a

concise way of declaring delegates that have a tendency to become complex.

Example: Task and Lambda expression with an implemented function

public partial class Form1 : Form

{

// Equivalent to:

// Task taskName = new Task(delegate(TaskMethod));

Task taskWithLambda = new Task(() => TaskMethod());

private void TaskWithLambda_Click(object sender, EventArgs e)

{

taskWithLambda.Start();

}

private static void TaskMethod()

{

Thread.Sleep(3000);

MessageBox.Show("Finished: " +

DateTime.Now.ToLongTimeString());

}

}

Example: Task and Lambda expression with an Anonymous delegate

public partial class Form1 : Form

{

Task taskWithLambdaAnonymous = new Task(() =>

{

Thread.Sleep(3000);

MessageBox.Show("Finished: " +

DateTime.Now.ToLongTimeString());

});

private void TaskWithLambdaAnonymous_Click(object sender, EventArgs e)

{

taskWithLambdaAnonymous.Start();

}

}

Additional reading: “Lambda Expressions (C# Programming Guide)”

629

C# For Beginners

Controlling Task execution

You can use three different methods to start queuing a Task for execution; the Task.Factory

.StartNew method is highly configurable using its parameters.

Example: Three ways to start a Task

public partial class Form1 : Form

{

private void ThreeWaysToStartATask_Click(object sender, EventArgs e)

{

Task task1 = new Task(() =>

Console.WriteLine("Task 1 has completed.")

);

task1.Start();

var task2 = Task.Factory.StartNew(() =>

Console.WriteLine("Task 2 has completed.")

);

// A shorter way of calling the

// Task.Factory.StartNew method

var task3 = Task.Run(() =>

Console.WriteLine("Task 3 has completed. ")

);

}

}

Waiting on Tasks

Sometimes you need to wait on the execution of a Task; for instance if you need to use the

result of the Task or if you need to handle exceptions that might be thrown by the Task.

There are three methods that you can use to wait on a Task; the Task.Wait method waits on

a specific Task; the Task.WaitAll will wait on multiple Tasks to finish, and the Task.WaitAny

will wait until any one Task in a collection of tasks has finished.

The following methods and variable will be used in the upcoming code samples.

630

C# For Beginners

public partial class Form1 : Form

{

private static string result = String.Empty;

private static void LongRunningTaskA()

{

Thread.Sleep(3000);

result = "LongRunningTaskA";

}

private static void LongRunningTaskB()

{

Thread.Sleep(1000);

result = "LongRunningTaskB";

}

private static void LongRunningTaskC()

{

Thread.Sleep(3000);

result = "LongRunningTaskC";

}

}

Example: "Wait On One" Task

The execution will wait until the Task has completed; the label will display LongRunning-

 TaskA when the task has completed.

public partial class Form1 : Form

{

private static string result = String.Empty;

private static void LongRunningTaskA() ...

private static void LongRunningTaskB() ...

private static void LongRunningTaskC() ...

private void WaitOnOneTask_Click(object sender, EventArgs e)

{

var taskA = Task.Run(() => LongRunningTaskA());

taskA.Wait();

lblTest.Text = result;

}

}

631

C# For Beginners

Example: "Wait On Any" Task

The execution will wait until one of the tasks in the Task collection has completed; the Label

will display LongRunningTaskB when the task has completed because that Task finishes first.

public partial class Form1 : Form

{

private static string result = String.Empty;

private static void LongRunningTaskA() ...

private static void LongRunningTaskB() ...

private static void LongRunningTaskC() ...

private void WaitOnOneTask_Click(object sender, EventArgs e) ...

private void WaitOnAnyTask_Click(object sender, EventArgs e)

{

Task[] tasks = new Task[3]

{

Task.Run(() => LongRunningTaskA()),

Task.Run(() => LongRunningTaskB()),

Task.Run(() => LongRunningTaskC())

};

// Wait for any of the tasks to complete

// Only one Task has to complete

Task.WaitAny(tasks);

lblTest.Text = result;

}

}

Example: "Wait On All" Tasks

The execution will wait until all of the tasks in the Task collection have completed; the label

will display LongRunningTaskC when tasks have completed because that Task finishes last.

public partial class Form1 : Form

{

private static string result = String.Empty;

private static void LongRunningTaskA() ...

private static void LongRunningTaskB() ...

private static void LongRunningTaskC() ...

private void WaitOnOneTask_Click(object sender, EventArgs e) ...

private void WaitOnAnyTask_Click(object sender, EventArgs e) ...

632

C# For Beginners

private void WaitAllTask_Click(object sender, EventArgs e)

{

Task[] tasks = new Task[3]

{

Task.Run(() => LongRunningTaskA()),

Task.Run(() => LongRunningTaskB()),

Task.Run(() => LongRunningTaskC())

};

// Wait for all of the tasks to complete

Task.WaitAll(tasks);

lblTest.Text = result;

}

}

Return a value from a Task

To return a value from Task, you need to use the generic Task<TResult> class; when the

Task<TResult> has finished its execution, the return value will reside in a property named

Result in the Task<TResult> instance variable.

Example: Return a value from a Task

When the Task finishes its execution, a Student instance is returned in the Return property.

class Student

{

public string FirstName { get; set; }

public string LastName { get; set; }

public DateTime DOB { get; set; }

}

public partial class Form1 : Form

{

private void ReturnAValueFromATask_Click(object sender, EventArgs e)

{

Task<Student> studentTask = Task.Run<Student>(() => new Student()

{ FirstName = "Jonas", LastName = "Fagerberg" });

lblTest.Text = String.Format("{0} {1}",

studentTask.Result.FirstName,

studentTask.Result.LastName);

}

}

633

C# For Beginners

Cancel a Task

In certain circumstances, you might want to give the user the possibility to cancel a long-

running Task; it would however be dangerous to just end the Task, so the Task Parallel

 Library uses cancellation tokens to support cooperative cancellations.

To be able to cancel a Task a cancellation token has to be created when creating the Task.

The token is then passed to the delegate method. You cancel the Task by calling the Cancel

method on the CancellationTokenSource instance that created the token instance. You can

check the status of cancellation token in the method where the Task was created.

Example: Cancel a Task without throwing an exception

First, you create a variable to hold the Task, a CancellationTokenSource instance to create

the cancellation token and a CancellationToken variable to hold the token. Assign a newly

created token to the CancellationToken variable in the Click event where the Task is created

and start the Task. Cancel the Task in the cancellation Click event method.

The DoWork method is executed by the Task; note that a check if cancellation has been

requested is made to see if the Task should be cancelled.

public partial class Form1 : Form

{

Task task;

CancellationTokenSource cts = new CancellationTokenSource();

CancellationToken ct;

private void CancelATask_Click(object sender, EventArgs e)

{

result = String.Empty;

ct = cts.Token;

task = Task.Run(() => doWork(ct));

}

private void CancelTheTask_Click(object sender, EventArgs e)

{

cts.Cancel();

lblTest.Text = result;

}

634

C# For Beginners

private void doWork(CancellationToken token)

{

for (int i = 0; i < 3; i++)

{

// Check for cancellation.

if (token.IsCancellationRequested)

{

result = "Cancelled";

return;

}

Thread.Sleep(1000);

// Continue if the task has not been cancelled

result = "Finished";

}

}

}

Example: Cancel a Task throwing an exception

If you want the Task to throw an exception if canceled, then you need to call the ThrowIf-

CancellationRequested method on the token instance; an OperationCanceledException

exception will be thrown if the Task is canceled.

public partial class Form1 : Form

{

Task task;

CancellationTokenSource cts = new CancellationTokenSource();

CancellationToken ct;

private void CancelATaskThrow_Click(object sender, EventArgs e)

{

result = String.Empty;

ct = cts.Token;

task = Task.Run(() => doWorkThrow(ct));

}

635

C# For Beginners

private void CancelTheTaskThrow_Click(object sender, EventArgs e)

{

try

{

cts.Cancel();

if (ct.IsCancellationRequested)

throw new OperationCanceledException(ct);

}

catch (OperationCanceledException ex)

{

lblTest.Text = "Cancelled";

}

}

private void doWorkThrow(CancellationToken token)

{

token.ThrowIfCancellationRequested();

Thread.Sleep(5000);

}

}

Additional reading: “How to: Cancel a Task and Its Children” and “Task Cancellation C#”

Parallel Tasks

The Parallel class in the Task Parallel Library contains a number of methods that can be used

if you want to execute several tasks simultaneously.

Example: A fixed set of Tasks

If you have a fixed set of Tasks that you want to execute simultaneously, you can use the

Parallel.Invoke method.

The result after executing this Task list would be MethodC MethodB MethodA because that’s

the order the methods finish.

public partial class Form1 : Form

{

private static void MethodA(){

Thread.Sleep(3000);

result += "MethodA ";

}

636

C# For Beginners

private static void MethodB()

{

Thread.Sleep(2000);

result += "MethodB ";

}

private static void MethodC()

{

Thread.Sleep(1000);

result += "MethodC ";

}

private void ExecuteFixedSetOfTasks_Click(object sender, EventArgs e)

{

result = String.Empty;

Parallel.Invoke(

() => MethodA(),

() => MethodB(),

() => MethodC()

);

lblTest.Text = result;

}

}

Parallel iterations

If you have a need to run loops in parallel, you can do so using the Parallel.For or

Parallel.Foreach methods; both have many overloads for different scenarios.

Example: Parallel For

The from and to parameters of the loop are of type Int32 and the index parameter is

executed as an Action<Int32> once per iteration.

public partial class Form1 : Form

{

private void ParallelLoops_Click(object sender, EventArgs e)

{

double[] array = ParallelFor();

}

637

C# For Beginners

private double[] ParallelFor()

{

int from = 0;

int to = 500000;

double[] array = new double[to];

Parallel.For(from, to, index =>

{

array[index] = Math.Sqrt(index);

});

return array;

}

}

Example: Parallel Foreach

The simplest version of this overloaded method takes two parameters one collection of type

IEnumerable<TSource> that you want to iterate over and one Action<TSource> which is the

delegate function that will be executed once per iteration.

public partial class Form1 : Form

{

private void ParallelForeach_Click(object sender, EventArgs e)

{

var students = new List<Student>();

students.Add(new Student() { FirstName = "Jonas",

LastName = "Fagerberg"});

students.Add(new Student() { FirstName = "Lisa",

LastName = "Ericsson" });

Parallel.ForEach(students, student =>

ParallelForeach(student));

}

private void ParallelForeach(Student student)

{

if(student.FirstName.Equals("Jonas"))

student.FirstName = "Demo Name";

Debug.WriteLine(student.FirstName);

}

}

Additional reading: “MSDN Data Parallelism (Task Parallel Library)”

638

C# For Beginners

Parallel LINQ

 Language-Integrated Query (LINQ) supports parallel execution through an implementation

called Parallel LINQ (PLINQ). You can use PLINQ when iterating over IEnumerable collections

by calling the AsParallel method

Additional reading: ”MSDN Parallel LINQ (PLINQ)”

public partial class Form1 : Form

{

private void ParallelLinq_Click(object sender, EventArgs e)

{

var students = new List<Student>();

students.Add(new Student()

{ FirstName = "Jonas", LastName = "Fagerberg" });

students.Add(new Student()

{ FirstName = "Lisa", LastName = "Ericsson" });

// Parallel LINQ (PLINQ)

var selectedStudents =

from student in students.AsParallel()

where student.LastName.Equals("Fagerberg")

select student;

}

}

Handling Task exceptions

When exceptions are thrown from tasks, the Task Parallel Library will bundle any exceptions

from joined tasks into an AggregateException object where all thrown exceptions are stored

in the InnerExceptions collection property.

You can handle exceptions by waiting until the Task has finished; this is done by calling the

Task.Wait method in a try block and implementing a catch-block for the AggregateExcep-

tion exception.

Additional reading: "MSDN Exception Handling (Task Parallel Library)"

639

C# For Beginners

public partial class Form1 : Form

{

private void HandleException_Click(object sender, EventArgs e)

{

CancellationTokenSource cts = new CancellationTokenSource();

CancellationToken ct;

ct = cts.Token;

var task = Task.Run(() => doThrow(ct), ct);

// Will trigger the exception

cts.Cancel();

try

{

task.Wait();

}

catch (AggregateException ae)

{

foreach (var inner in ae.InnerExceptions)

{

if (inner is TaskCanceledException)

{

lblTest.Text = "Task Cancelled";

}

else

{

// re-throw any other exception

throw;

}

}

}

}

private void doThrow(CancellationToken token)

{

token.ThrowIfCancellationRequested();

Thread.Sleep(5000);

}

}

640

C# For Beginners

Concurrent collections

When using Tasks or other multi-threading techniques, you must ensure that the collections

you use are thread-safe, which standard collections are not. There are several thread-safe

collections that you can utilize when building a multi-threaded application. The reason you

need thread safe collections is to keep the integrity of the data intact; no two resources

should be able to use the same data simultaneously and cause corrupt data. You find the

thread-safe collections in the System.Collections.Concurrent namespace.

Thread-safe collections

These collections are designed to work in a thread-safe manner in a multi-threaded applica-

tion.

Example: Thread-safe ConcurrentQueue and ConcurrentBag

This sample code shows how you can implement a thread-safe ConcurrentQueue and Con-

currentBag. When we click the button orders will begin pouring in to the queue and the pro-

cessing will begin by one of three people. When all processing is done, the result is present-

ed in a list box.

641

C# For Beginners

The Order class

class Order

{

public Order(string name, string description)

{

Name = name;

Description = description;

}

public string Name { get; set; }

public string Description { get; set; }

public int Id

{

get { return Convert.ToInt32(Description.Substring(5)); }

}

}

The Form

Because the application uses multiple threads to service the customers, one per waiter or

waitress, you have to use thread safe collections. The collections chosen for this particular

task are the ConcurrentQueue and ConcurrentBag; the queue is perfect for handling orders

as they are placed because the items are handled on a first-in-first-out basis and the bag is

useful to store orders as they are serviced to the customer.

The PlaceOrders method will add orders with a slight delay between each order on a sepa-

rate thread.

The ProcessOrders method is called by each waiter or waitress to enable them to deliver the

finished orders to the customers. The while loop ensures that they continue to serve the

customers indefinitely and tries to de-queue orders and add them to the orders collection to

show that they have been delivered.

In the button's Click event the PlaceOrders method is executed on a separate thread using a

Task and is awaited further down the code to ensure that all orders have been processed

before displaying the orders in a list box.

All waiters and waitresses are also started on separate threads using Tasks to ensure that

they can operate simultaneously.

642

C# For Beginners

This means that there are at least five thread running at the same time, the UI thread

running the form, the thread placing orders and the three waiter and waitress threads.

public partial class Form1 : Form

{

ConcurrentQueue<string> queue = new ConcurrentQueue<string>();

ConcurrentBag<Order> orders = new ConcurrentBag<Order>();

private void PlaceOrders()

{

for (int i = 1; i <= 25; i++)

{

Thread.Sleep(5);

var order = String.Format("Order {0}", i);

queue.Enqueue(order);

}

}

private void ProcessOrders(string name)

{

string order;

while (true) //continue indefinitely

if (queue.TryDequeue(out order))

orders.Add(new Order(name, order));

}

private void ConcurrentQueue_Click(object sender, EventArgs e)

{

var taskPlaceOrders = Task.Run(() => PlaceOrders());

Task.Run(() => ProcessOrders("Carl"));

Task.Run(() => ProcessOrders("Lisa"));

Task.Run(() => ProcessOrders("Mary"));

taskPlaceOrders.Wait();

lstOrders.DataSource =

from o in orders

orderby o.Id ascending

select String.Format("{0} processed by {1}",

o.Description, o.Name);

}

}

643

C# For Beginners

Additional reading: “System.Collections.Concurrent Namespace”

Exercise: Restaurant

In this exercise you will create a restaurant application where orders are placed until the is

restaurant closed (the tasks are cancelled). When the start button is clicked the restaurant

opens and the cashier begin taking orders that are added to a thread safe Queue called

orders. The restaurant menu is stored in a thread safe collection called menu; a randomly

chosen dish is added to the order to simulate that a customer has ordered something from

the menu.

The orders are added to the orders queue in a method called PlaceOrders in a while loop

that will run until the cancel button is clicked and the Tasks are cancelled through a Cancel-

lationTokanSource. In the while loop the Thread.Sleep method is used to simulate that it

took a while for the cashier to register the order and then a random number between 1 and

the number of dishes in the menu collection is generated that is used to fetch the ordered

dish; the dish is then used to create a new order that is added to the orders queue. If the

order was successfully added to the queue an orderId variable is incremented by 1.

To simulate that the waiters and waitresses are serving food to the customers a method

called ProcessOrders is called. Here is where it gets a bit tricky because the order informa-

tion that will be presented in a list box originates from a different thread than the form that

contain the control. If you try to add the order information directly to the list box you will

commit a cross-thread operation violation that throws an InvalidOperationException. The

solution is to create an Action<string> delegate called AddToListBox that is used in a call to

the this.BeginInvoke method that sends the information to the form's thread. A while loop

will be added to the ProcessOrders method which will iterate until the current Task has

been cancelled. The purpose with the loop is to fetch the next order in the orders queue,

add the waiters name to it and send the information to be displayed to the list box; you do

this by calling the BeginInvoke method on the form passing it the AddToListBox Action and

the string to display.

To open the restaurant the OpenRestaurant method is called where a CancellationToken is

created that is passed to all the Tasks that are used to run the restaurant; this is the token

that will determine when no more orders will be added to the orders queue and when the

644

C# For Beginners

waiters and waitresses quit for the day. The first Task in the OpenRestaurant method will

call the PlaceOrders method with the CancellationToken to begin adding orders to the

orders queue; it has to be executed on a separate thread because it must be able to add

new orders while the waiters and waitresses service the customer with already placed

orders.

Next the waiters and waitresses will sign in for their shift by you creating one Task per staff

member which call the ProcessOrders method to begin serving the customers. The method

is passed the name of the employee and the CancellationToken.

The form should have a list box called lstOrders and two buttons called btnStart and

 btnCancel. When the Start button is clicked the OpenRestaurant method is called on a

separate thread using a Task to free up the UI thread; if it ran on the UI thread the user

would not be able to click Cancel button to close the restaurant.

The Cancel button will call the Cancel method on the CancellationTokanSource instance to

cancel all the Tasks.

Both buttons should be disabled when clicked.

645

C# For Beginners

The Dish class

Objects of this class represent the different dishes on the menu and are added to a Concur-

rentBag<Dish> called menu in the form's code-behind. Each placed order has a Dish object

stored in it. The Dish class has a public int property called Id and a public string property called Name.

The complete code for the Dish class:

class Dish

{

public int Id { get; set; }

public string Name { get; set; }

}

The Order class

Objects of this class represent orders that the customers place. The Order objects are placed

in a ConcurrentQueue<Order> collection called orders. The Order class has a constructor

that takes three parameters called id of type int, dish of type Dish and waiter of type string.

Assigned the default value for the string data type to the waiter parameter.

Four properties are needed in the class. Id of type int, Waiter of type string, Dish of type

Dish and a read only property called OrderInfo that return information about the order and

the dish. The OrderInfo property is displayed in the list box.

The complete code for the Order class:

class Order

{

public Order(int id, Dish dish, string waiter = default(string))

{

Id = id;

Waiter = waiter;

Dish = dish;

}

public string Waiter { get; set; }

public Dish Dish { get; set; }

public int Id { get; set; }

public string OrderInfo

{

get

{

646

C# For Beginners

return String.Format("{0} [{2}]\t{1}",Id, Dish.Name, Waiter);

}

}

}

The GUI

The GUI contains a list box called lstOrders and two buttons called btnStart and btnCancel.

The form's code-behind has a ConcurrentQueue<Order> called orders that keep track of the

un-serviced orders, a ConcurrentBag<Dish> called menu to keep track of the dishes on the

menu, a CancellationTokenSource called cts and a CancellationToken called ct that will be

used to end the executing Tasks.

Add the Click events for the buttons to the code-behind.

The form's code-behind so far:

public partial class Form1 : Form

{

ConcurrentQueue<Order> orders = new ConcurrentQueue<Order>();

ConcurrentBag<Dish> menu = new ConcurrentBag<Dish> {

new Dish{ Id = 1, Name = "Chicken Vindaloo"},

new Dish{ Id = 2, Name = "Calzone"},

new Dish{ Id = 3, Name = "Caesar Salad"},

new Dish{ Id = 4, Name = "Pasta Carbonara"}

};

CancellationTokenSource cts = new CancellationTokenSource();

CancellationToken ct;

public Form1()

{

InitializeComponent();

}

private void btnStart_Click(object sender, EventArgs e)

{

}

private void btnCancel_Click(object sender, EventArgs e)

{

}

}

647

C# For Beginners

The PlaceOrders method

Add the PlaceOrders method to the form's code-behind; it will add orders to the orders

queue and assign a unique order id and a randomly chosen dish from the menu to each

order.

To be able to cancel the while loop adding orders a CancellationToken instance is passed to

the method, the IsCancellationRequested property of the token can be used to check if a

cancellation request has been made by clicking on the Cancel button.

Use a try/catch-block that ignores any exceptions and only adds the order to the queue in

the try-block if no exception has been thrown.

Add a Thread.Sleep(300) method call to simulate that it takes a while to register the order.

Use the Random class to generate a random number from 1 to the number of items in the

menu collection; this id will then be used to fetch a dish from the menu collection.

Create a new Order instance and pass in the order id and the dish to its constructor; add the

order to the orders queue.

Increment the order id by 1.

1. Add a private void method called PlaceOrders with a CancellationToken parameter

called token to the form's code-behind.

2. Add a variable called orderId and assign 1 to it.

3. Add a while loop that iterates for as long as no cancellation request has been made

with the token parameter.

while(!token.IsCancellationRequested)

4. Add a try/catch-block with an empty catch-block to the while loop.

5. Add a Thred.Sleep(300) to the try-block.

6. Create a random number between 1 and the number if dishes in the menu collec-

tion. Use the random number to fetch the dish with the matching id.

var idx = random.Next(1, menu.Count);

var dish = menu.First(m => m.Id.Equals(idx));

7. Create a new instance of the Order class and pass in the order id and the dish to its

constructor.

648

C# For Beginners

8. Add the order to the orders queue.

9. Increment the orderId variable by 1.

The complete code for the PlaceOrders method:

private void PlaceOrders(CancellationToken token)

{

var orderId = 1;

while(!token.IsCancellationRequested)

{

try

{

Thread.Sleep(300);

var random = new Random();

var idx = random.Next(1, menu.Count);

var dish = menu.First(m => m.Id.Equals(idx));

var order = new Order(orderId, dish);

orders.Enqueue(order);

orderId++;

}

catch { }

}

}

The ProcessOrders method

Add the ProcessOrders method to the form's code-behind; it will try to de-queue an order

from the orders queue and display order information and the waiter's name in the list box.

This is achieved by calling the BeginInvoke method on the form passing in an Action <string>

delegate to it along with the data to display.

A while loop that iterates for as long as no cancellation request has been made will be used

when the waiter or waitress processes orders from the orders queue. The cancellation

request will be triggered by a CancellationToken called token passed in to the method as a

parameter.

For each iteration the waiter or waitress associated with the method will try to de-queue an

order from the orders queue; if successful the name of the person will be added to the order

and the Action<string> delegate method will be called to add the value of the OrderInfo

649

C# For Beginners

property to the list box. To make a cross-thread call you have to use the form's BeginInvoke

method.

The method should have a string parameter called name and a CancellationToken called

token.

1. Add a method called ProcessOrders with a string parameter called name and a

CancellationToken parameter called token to the form's code-behind.

2. Add an Action<string> delegate called AddToListBox.

Action<string> AddToListBox = orderInfo =>

lstOrders.Items.Add(orderInfo);

3. Add an Order variable called order that will be used when de-queuing the next order

in the orders queue.

4. Add a while loop that iterates for as long as no cancellation request has been made

with the token parameter.

while(!token.IsCancellationRequested)

5. Add an if-statement to the while loop that will be executed if an order is successfully

de-queued from the orders queue.

if (orders.TryDequeue(out order))

6. Add the name of the waiter or waitress to the de-queued order in the if-block.

7. Call the BeginInvoke method on the form to activate the Action<string> delegate

that calls the Add method on the list box from within the if-block. pass in the Action

method name and the value of the OrderInfo property of the de-queued order

object.

this.BeginInvoke(AddToListBox, new object[] { order.OrderInfo });

The complete code for the ProcessOrders method:

private void ProcessOrders(string name, CancellationToken token)

{

Action<string> AddToListBox = orderInfo =>

lstOrders.Items.Add(orderInfo);

Order order;

while (!token.IsCancellationRequested)

if (orders.TryDequeue(out order))

{

order.Waiter = name;

650

C# For Beginners

this.BeginInvoke(AddToListBox, new object[] { order.OrderInfo });

}

}

The OpenRestaurant method

This method will start the Task which add orders to the orders queue and the Tasks that are

used by the waiters and waitresses when they are servicing the customers de-queuing

orders from the orders queue.

A token has to be created for the CancellationToken variable that will be passed as a para-

meter to the Task methods making it possible to cancel the ongoing Tasks and close the

restaurant.

1. Add a parameter-less private void method called OpenRestaurant to the form's

code-behind.

2. Create a Token for the CancellationToken variable using the CancellationToken-

Source variable.

ct = cts.Token;

3. Add a Task that executes the PlaceOrders method passing in the CancellationToken

variable.

Task.Run(() => PlaceOrders(ct));

4. Add three Tasks that executes the ProcessOrders method passing in the name of the

waiter or waitress (Carl, Mary and Lisa) and the CancellationToken variable.

Task.Run(() => ProcessOrders("Carl", ct));

The complete code for the OpenRestaurant method:

private void OpenRestaurant()

{

ct = cts.Token;

Task.Run(() => PlaceOrders(ct));

Task.Run(() => ProcessOrders("Carl", ct));

Task.Run(() => ProcessOrders("Lisa", ct));

Task.Run(() => ProcessOrders("Mary", ct));

}

651

C# For Beginners

The btnStart_Click event

The restaurant opens and the OpenRestaurant method is called using a Task when the user

clicks the button. The button should be disabled when it has been clicked.

1. Locate the btnStart_Click event in the form's code-behind.

2. Add a try/catch-block where the catch-block ignores all exceptions.

3. Add a Task that executes the OpenRestaurant method.

4. Disable the button.

The complete code for the btnStart_Click event:

private void btnStart_Click(object sender, EventArgs e)

{

try

{

Task.Run(() => OpenRestaurant());

btnStart.Enabled = false;

}

catch { }

}

The btnCancel_Click event

Clicking this button will close the restaurant by calling the Cancel method on the Cancella-

tionTokenSource instance. The button should be disabled when it has been clicked.

1. Locate the btnCancel_Click event in the form's code-behind.

2. Add a try/catch-block where the catch-block ignores all exceptions.

3. Call the Cancel method on the CancellationTokenSource instance.

4. Disable the button.

The complete code for the btnCancel_Click event:

private void btnCancel_Click(object sender, EventArgs e){

try

{

cts.Cancel();

btnCancel.Enabled = false;

}

catch { }

}

652

C# For Beginners

18. Async

Introduction

When you want to execute an operation on a separate thread from the one that initiated

the operation and you don’t want to wait for the initial thread to complete, then an asynch-

ronous operation is the answer.

.NET Framework 4.5 makes it easier than before to create asynchronous operations; opera-

tions that create tasks in the background and coordinate their actions. The async keyword

lets you create asynchronous operations without blocking the thread and the await keyword

waits for the result, all within a single method.

async and await

In .NET Framework 4.5, the async and await keywords were introduced; they make it much

easier to write asynchronous operations. You use the await keyword to suspend execution

of the async decorated method while a long-running task completes; the main thread can

continue with its work while the async method is suspended.

The unique thing about running an asynchronous operation using async and await is that

they enable you to run asynchronous operations on a single thread; this makes them especi-

ally useful when updating the GUI from asynchronous operations.

Blocked GUI thread

When executing this code, the GUI thread will be blocked until the Task has completed.

public partial class Form1 : Form

{

private void btnBlockingUIThread_Click(object sender, EventArgs e)

{

Task<string> task = Task.Run<string>(() =>

{

Thread.Sleep(5000);

return "Finished";

});

653

C# For Beginners

// Blocks the UI thread until the task has completed.

lblResult.Text = task.Result;

}

}

Suspend execution

To suspend the execution and let the GUI thread continues its work, you use the async and

await keywords. Note that the async keyword is decorating the method header.

public partial class Form1 : Form

{

private async void btnAsyncAndAwait_Click(object sender, EventArgs e)

{

Task<string> task = Task.Run<string>(() =>

{

Thread.Sleep(5000);

return "Finished";

});

// Will be called when the Task has a result

lblResult.Text = await task;

}

}

Additional reading: “Asynchronous Programming with Async and Await (C# and Visual

Basic)”

Awaitable methods

The await operator waits on a Task to complete in a non-locking manner. An await-able

method should return a Task for void methods or a Task<TResult> for methods that return a

value; one exception is event methods that are allowed to return void.

This code shows an implementation of a synchronous method that will be altered to an

asynchronous method in the next example.

654

C# For Beginners

public partial class Form1 : Form

{

private Student GetDataSynchronous()

{

var task = Task.Run<Student>(() =>

{

Thread.Sleep(3000);

return new Student()

{

FirstName = "Jonas"

};

});

return task.Result;

}

}

The code below shows an implementation of an asynchronous method returning a value.

Note that both the asynchronous method and the event method have to be decorated with

the async keyword and that the await operator is used in the event method when calling the

asynchronous method. The Text property of the label will be assigned when the asynchron-

ous method has completed.

public partial class Form1 : Form

{

private async Task<Student> GetDataAsynchronously()

{

var task = await Task.Run<Student>(() =>

{

Thread.Sleep(3000);

return new Student() { FirstName = "Jonas" };

});

return task;

}

private async void btnAwaitableMethod_Click(object sender, EventArgs e)

{

var student = await GetDataAsynchronously();

lblResult.Text = student.FirstName;

}

}

655

C# For Beginners

Additional reading: “Async Return Types (C# and Visual Basic)”

Callback methods

You can configure an asynchronous operation to invoke a callback method when it comple-

tes its task; the asynchronous method can pass data back to the callback method that

processes the information or updates the GUI.

A delegate must be created to handle the callback method and it must be passed as a

parameter to the asynchronous method. A callback method typically has parameters and

returns void; this makes the Action<T> delegate suitable when declaring a callback method

because it can take up to 16 Type parameters, T is the type you want to return.

In the following example a new student is enrolled into school using an asynchronous

method and in the callback method a message box will confirm to the user that the student

was added.

When the button is clicked the EnrollStudent method is called asynchronously using the

await keyword with the callback method and the name of the student as its parameters.

The EnrollStudent method is declared using the async keyword and returning a Task making

it an asynchronous method. The callback parameter handling the incoming callback method

pointer is declared as an Action<Student> since it will be receiving a Student instance as its

parameter.

In the EnrollStudent method an awaited Task adds a new student to the Students collection

(or database table in a real world scenario) and return the Student object. Then another

Task is awaited executing the callback method with the Student object as its parameter.

When both these tasks have been completed the EnrollStudent method will have finished its

work.

In the DisplayStudentCallback method a message box displays the newly enrolled student.

656

C# For Beginners

public partial class Form1 : Form

{

List<Student> Students = new List<Student>();

private async void btnCallbackMethod_Click(object sender, EventArgs e)

{

await EnrollStudent(DisplayStudentCallback, "Lisa", "Smith");

}

private async Task EnrollStudent(Action<Student> callback,

string firstName, string lastName)

{

var student = await Task.Run(() =>

{

Students.Add(new Student {

FirstName = firstName, LastName = lastName });

return Students.Last();

});

// Invoke the callback method asynchronously.

await Task.Run(() => callback(student));

}

private void DisplayStudentCallback(Student student)

{

MessageBox.Show(String.Format(

"Student {0} {1} was enrolled",

student.FirstName, student.LastName));

}

}

Additional reading: ”Action<T> Delegate”

Synchronizing concurrent data access

Responsiveness and performance are two benefits of multitasking, but there are challenges

as well. One of them is concurrent data access; if two resources update the same data

problem can arise leaving the data in an unpredictable state.

To solve these challenges, you can use locking mechanisms and concurrent collections.

657

C# For Beginners

Lock block

If multiple threads access the same data simultaneously, there is a risk of corrupt data being

used and stored. Let’s say you have a warehouse application that has different methods that

updates and checks the stock level of an item. If the stock level is being updated by one

thread when a request for the current stock level, then there is a chance that the request is

being made before the update to the stock level has completed.

The solution is to use a lock-block to implement mutual-exclusion locks where critical

updates are made; a lock of this type will lockout any other threads than the one currently

holding the lock. Use the following syntax to implement a lock: lock (object) {statement

 block}. The object in the lock should be declared as private in the class and serve only one

purpose, to hold the lock with something that is unique. Write the critical code within the

 statement block.

Example: Class with a method using lock

When an instance of the Warehouse class is created an initial stock balance has to be

provided with the constructor and is stored in the int stock variable.

The GetStockLevel method returns the number of items in stock.

When the FetchItemsFromStorage method is called the passed in number of sold items

represented by the soldItems parameter is subtracted from the current stock count and

saved back to the stock variable if a lock has been achieved on the stockLock instance.

class Warehouse

{

private object stockLock = new object();

int stock;

public Warehouse(int initialStock)

{

stock = initialStock;

}

public int GetStockLevel()

{

return stock;

}

658

C# For Beginners

public bool FetchItemsFromStorage(int soldItems)

{

lock (stockLock)

{

if (stock >= soldItems)

{

Thread.Sleep(3000);

// Calculate new stock level

stock = stock - soldItems;

return true;

}

else

{

// Insufficient stock available

return false;

}

}

}

}

Example: Calling method using a lock

The following code shows the class that calls to the method with the lock implemented. If

both buttons are clicked in sequence then the second call will have to wait for the first call to

end. To be able to click both buttons we have to run the calls on separate threads hence the

async and await keywords.

If you executed this code with the lock, you would get the following result: firstUpdateTask =

true, firstStockLevelCountTask = 1, secondUpdateTask = false, secondStockLevelCountTask =

1.

If you removed the lock and executed the code, you would get the following result:

firstUpdateTask = true, firstStockLevelCountTask = 1, secondUpdateTask = true, second-

StockLevelCountTask = -2. The second call yields corrupt data because the stock level up-

dates was not locked and could be executed simultaneously with the first call.

659

C# For Beginners

public partial class Form1 : Form

{

Warehouse w = new Warehouse(4);

bool firstUpdateTask, secondUpdateTask;

int firstStockLevelCountTask, secondStockLevelCountTask;

private async void FirstUser_Click(object sender, EventArgs e)

{

firstUpdateTask = await Task.Run<bool>(() =>

w.FetchItemsFromStorage(3));

firstStockLevelCountTask = await Task.Run<int>(() =>

w.GetStockLevel());

}

private async void SecondUser_Click(object sender, EventArgs e)

{

secondUpdateTask = await Task.Run<bool>(() =>

w.FetchItemsFromStorage(3));

secondStockLevelCountTask = await Task.Run<int>(() =>

w.GetStockLevel());

}

}

Additional reading: ”lock Statement (C# Reference)” and ”Thread Synchronization (C# and

Visual Basic)”

Exercise: Stock history

In this exercise you will use multithreading through Tasks and asynchronous calls using

async and await to fetch stock information from Yahoo and Nasdaq. The web requests will

be made on separate threads and the information from the fastest service will be used; this

accomplished by setting it up as Tasks that are executed using the Task.WaitAny method.

Each Task will call the Task.Factory.FromAsync method to fetch the data asynchronously

from the web sites.

When stock history have been fetched for all desired stock symbols the data is presented

nicely formatted in a rich textbox. Apart from creating a StockFactory class that do all the

660

C# For Beginners

heavy lifting you will also create a Stock class that holds the data for each stock symbol

being processed.

The Stock class

The Stock class will hold the data for one stock symbol. The decimal Max, Min and Avg prop-

erties of the class will be calculated and assigned by a method called ProcessStock. The rest

of the properties will be assigned through the constructor. The string properties Symbol,

Site and DataSource will hold the name of the stock symbol, the site address and informa-

tion about how the data was obtained. The bool property HasPrices will return true if any

prices were obtained for the stock and the decimal property DataPoints will return the

number of data points (prices) that were used to obtain the calculated values for the Max,

Min and Avg properties.

The constructor should have the following parameters: string symbol, string site, string

dataSource and List<decimal> prices.

The ProcessStock method is called from the constructor after the properties have been as-

signed their values from the constructor parameters. It has one List<decimal> collection

parameter called prices that will contain all the historical prices for the stock symbol.

To avoid exceptions when trying to calculate data for empty values the first thing to do in

the method will be to check if the collection is empty or null and return from the method if

that is the case. This can happen if the HttpWebRequest object used when calling the web

sites returns an error code.

Next three Tasks will be defined using the Task.Run method to call the Min, Max and Avera-

ge methods on the prices collection to calculate the values for the Max, Min and Avg prop-

erties.

The Task.WaitAll method will be called within a try-block to execute all the defined Tasks

and wait until they all have finished before assigning their return values to the properties.

The catch-block should ignore any exceptions.

1. Create a new Windows Forms project called Stock History.

2. Add a folder called Classes.

3. Add a class called Stock to the folder.

661

C# For Beginners

4. Add three string properties called Symbol, Site and DataSource with private setters

to the class.

5. Add a bool property called HasPrices that has a private setter.

6. Add four decimal properties called DataPoints, Max, Min and Avg with private set-

ters.

7. Add a constructor that has string parameters called symbol, site and dataSource.

Also add a parameter called prices of type List<decimal> for all the price points. The

last parameter should not be stored in a property or variable, it should only be sent

to the ProcessStock method.

8. Assign values to the Symbol, Site, DataSource, HasPrices and DataPoints properties

in the constructor.

9. Add a private void method called ProcessStock that has a List<decimal> parameter

called prices.

10. Add an if-statement that checks if the prices collection is empty or null and return

from the method with a return statement if that is the case.

11. Add three Tasks called T_min, T_max and T_avg that will hold the Task definition for

the calls to the Min, Max and Average methods of the prices collection. The purpose

of the Tasks is to find the minimum and maximum values in the collection and to

calculate the average of all the values using separate threads to speed up the execu-

tion.

var T_min = Task.Run<decimal>(() => prices.Min());

12. Add a try/catch-block where the catch-block ignores any exceptions.

13. Execute all the Tasks inside the try-block by calling the Task.WaitAll method. This

will halt the execution temporarily in the method until all the Tasks have returned a

result.

Task.WaitAll(new Task[] { T_min, T_max, T_avg });

14. Assign the results from the Tasks to the appropriate properties.

Min = T_min.Result;

15. Add a call to the ProcessStock method after all the property assignments in the

constructor.

662

C# For Beginners

The complete code for the Stock class:

class Stock

{

#region Properties

public string Symbol { get; private set; }

public string Site { get; private set; }

public string DataSource { get; private set; }

public bool HasPrices { get; private set; }

public decimal DataPoints { get; private set; }

public decimal Min { get; private set; }

public decimal Max { get; private set; }

public decimal Avg { get; private set; }

#endregion

#region Constructor

public Stock(string symbol, string site, string dataSource,

List<decimal> prices)

{

Symbol = symbol;

Site = site;

DataSource = dataSource;

HasPrices = prices.Count > 0;

DataPoints = prices.Count;

ProcessStock(prices);

}

#endregion

#region Methods

private void ProcessStock(List<decimal> prices)

{

if (prices == null || prices.Count.Equals(0)) return;

var T_min = Task.Run<decimal>(() => prices.Min());

var T_max = Task.Run<decimal>(() => prices.Max());

var T_avg = Task.Run<decimal>(() => prices.Average());

try

{

Task.WaitAll(new Task[] { T_min, T_max, T_avg });

Min = T_min.Result;

Max = T_max.Result;

Avg = T_avg.Result;

}

663

C# For Beginners

catch { }

}

#endregion

}

The GUI - Part 1

The GUI will have two controls, a rich textbox called txtResult and a button called btnGet-

 StockData. The button's Click event should be asynchronous to prevent locking the GUI

when the stock history is fetched and when the text is formatted and presented.

When the user clicks the button a List<string> called symbols will be created holding the

Microsoft (msft) and Intel (intc) stock symbols, you can add more stock symbols if you like.

Because the Click event is asynchronous the Tasks executing the GetData method that

fetches the data and the FormatOutput method that formats the data can both be awaited

to free up the GUI thread.

Once both Tasks have finished the output generated by the FormatOutput method is

assigned to the Text property of the rich textbox.

664

C# For Beginners

The button should be disabled when clicked and enabled when the data has been displayed.

In this section you will create the two methods GetData and FormatOutput and implement

a delay in them using the Task.Delay method to verify that the form remains responsive

when work is performed by the methods. You will add the real implementation in an

upcoming section of this exercise.

1. Add a rich textbox control to the form called txtResult.

2. Add a button called btnGetSTockData with the text Get Stock Data.

3. Add a private List<Stock> method called GetData with a List<string> parameter

called symbols and an int parameter called yearsOfHistory to the form's code-

behind. Assign a default value of 1 to the yearsOfHistory parameter.

private List<Stock> GetData(List<string> symbols, int yearsOfHistory

= 1)

4. Add a delay of 2 seconds to the method using the Thread.Sleep method.

5. Return null from the method.

6. Add a string method called FormatOutput with a List<Stock> parameter called

stocks.

7. Add a delay of 2 seconds to the method using the Thread.Sleep method.

8. Return null from the method.

9. Add the Click event for the btnGetSTockData button and make it asynchronous by

adding the async keyword to it..

10. Add a try/catch-block to the Click event where the catch-block displays the excep-

tion message in a MessageBox.

11. Disable the button and clear the rich textbox in the try-block.

12. Add a List<string> collection variable called symbols and add the symbols for Micro-

soft (msft) and Intel (intc) to it.

var symbols = new List<string> { "msft", "intc" };

13. Add a Task variable called stocks that awaits the result from a Task calling the

GetData method with the symbols collection and the number of years you want to

fetch data for.

var stocks = await Task.Run(() => GetData(symbols, 2));

14. Add a Task variable called output that awaits the result from a Task calling the

FormatOutput method with the stocks collection returned from the previous Task.

665

C# For Beginners

var output = await Task.Run(() => FormatOutput(stocks));

15. Assign the value in the output variable to the Text property of the txtResult rich

textbox.

16. Enable the button.

17. Run the application and click the button.

18. You should be able to move the form while the button is disabled.

19. Close the application.

The StockFactory class

This class does the heavy lifting when it comes to fetching stock history data from the Nas-

daq and Yahoo websites.

Constants, properties and constructor

To fetch data you need correctly formatted Url's which unfortunately are long with a lot of

numbers; create two string constants in the class called urlTemplateYahoo and urlTemp-

lateNasdaq to hold the Url's.

#region Constants

private const string urlTemplateYahoo =

"http://ichart.finance.yahoo.com/table.csv?s=" +

"{0}&d={1}&e={2}&f={3}&g=d&a={1}&b={2}&c={4}&ignore=.csv";

private const string urlTemplateNasdaq =

"http://charting.nasdaq.com/ext/charts.dll?2-1-14-0-0,0,0,0,0|

0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,

0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,

0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,

0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,

0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|

0,0,0,0,0|0,0,0,0,0|0,0,0,0,0-5120-03NA000000{0}-&SF:4|5-WD=539-HT=395--

XXCL-";

#endregion

You will also need to add a bool property called IsInternetAvailable that will return the

result from a call to the GetIsNetworkAvailable method of the NetWorkInterface class in

the System.Net.NetworkInformation namespace. This property will be used to ensure that

an internet connection is available on the computer.

666

C# For Beginners

Because you will be using asynchronous web requests you need to implement the Unob-

servedTaskException event in the TaskScheduler class to handle Tasks that are cancelled.

Because only the first web request to return a result will be used and the rest will be

cancelled the .NET Framework demands that the cancelled Tasks will be observed to avoid

that the Garbage Collection throws exceptions for those Tasks. Cancelled Tasks can be

ignored by calling the e.SetObserved method in the UnobservedTaskException event.

1. Add a class called StockFactory to the Classes folder.

2. Add a private string constant called urlTemplateYahoo (see description above for

the Url template to use).

3. Add a private string constant called urlTemplateNasdaq (see description above for

the Url template to use).

4. Add a bool property called IsInternetAvailable that return true if an internet con-

nection is available on the computer.

public static bool IsInternetAvailable {

get { return NetworkInterface.GetIsNetworkAvailable(); } }

5. Add a public constructor and wire up the UnobservedTaskException event.

TaskScheduler.UnobservedTaskException += new EventHandler

<UnobservedTaskExceptionEventArgs>(TaskUnobservedException_Handler);

6. Make the event method static so that the it can be used for all instances.

7. Call the e.SetObserved method in the event to tell the Garbage Collection that you

have observed the cancelled Task object and that it can be removed.

The code for the StockFactory class so far:

class StockFactory

{

#region Constants

private const string urlTemplateYahoo =

"http://ichart.finance.yahoo.com/table.csv?s=" +

"{0}&d={1}&e={2}&f={3}&g=d&a={1}&b={2}&c={4}&ignore=.csv";

private const string urlTemplateNasdaq =

"http://charting.nasdaq.com/ext/charts.dll?2-1-14-0-0,0,0,0,0|

0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|

0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|

0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|

0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|

667

C# For Beginners

0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|

0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|0,0,0,0,0|

0,0,0,0,0|0,0,0,0,0|0,0,0,0,0-5120-03NA000000{0}-&SF:4|

5-WD=539-HT=395--XXCL-";

#endregion

#region Properties

public static bool IsInternetAvailable

{

get { return NetworkInterface.GetIsNetworkAvailable(); }

}

#endregion

#region Constructor

public StockFactory()

{

/* When an async requests is canceled exceptions are thrown.

These exceptions must be observed to avoid exceptions

being thrown by the Garbage Collection during clean-up

of the Task objects. */

TaskScheduler.UnobservedTaskException += new

EventHandler<UnobservedTaskExceptionEventArgs>(

TaskUnobservedException_Handler);

}

#endregion

#region Event Handlers

/* In this application several Tasks are started to get the stock

data but only the first one to return is processed, the other

Tasks are cancelled. Cancelled Tasks need to be observed

otherwise the Garbage Collection will throw exceptions during

clean-up of the Task objects. The following event handler is a

work-around this problem.

NOTE: that this event handler is registered with the class'

static constructor to only be registered once. */

private static void TaskUnobservedException_Handler(object sender,

UnobservedTaskExceptionEventArgs e)

{

/* Ignore all subsequent Tasks since the result from the first

Task to return a result already has been processed */

e.SetObserved();

}

#endregion

}

668

C# For Beginners

The ParsePrices method

This static List<decimal> method will be called from the GetStockAsync method and will use

the WebResponse object passed in to it to read its response stream and separate out the

historical price information returned from the called web site.

Add a try/finally-block where the finally-block closes the response stream passed in through

the response parameter to the method.

Use the GetResponseStream method on the response object to get the response stream

containing the data in the try-block..

Use a StreamReader to read the data; continue to read the stream until the EndOfStream

stream property is true.

Read one line at a time from the stream reader and split it up using the Split method and the

separators parameter. Store the result in a string[] variable called tokens.

Check that the first token in the tokens array is a valid date and that the price stored at the

position determined by the passed in dataIndex parameter is parse-able to a decimal value.

Use the en-US culture to make sure that the data is parsed correctly. Add the price to a

List<decimal> collection called prices.

Return the prices collection below the using-blocks reading the response stream.

1. Add a private static List<decimal> method called ParsePrices to the StockFactory

class. The method should have three parameters response of type WebResponse,

separators of type char[] and dataIndex of type int.

2. Add a try/finally-block to the method where the finally-block closes the response

stream.

3. Add a List<decimal> collection called prices to the try-block.

4. Add a using-block for the GetResponseStream method call on the response object.

using (Stream WebStream = Response.GetResponseStream())

5. Add a using-block for the StreamReader that will read the content of the response

stream.

using (StreamReader Reader = new StreamReader(WebStream))

6. Add a while loop that iterates for as long as there is content in the stream.

669

C# For Beginners

while (!Reader.EndOfStream)

7. Read one line at a time inside the while loop and store the data in a string variable

called record.

8. Split the record string using the separators parameter and the Split method. Store

the result in a string[] variable called tokens.

9. Add a DateTime variable called date and a decimal variable called data that will hold

the values returned from the TryParse method calls.

10. Try to parse the first value in the tokens array to a date and the value at the position

corresponding to the value in the dataIndex parameter. Add the price to the prices

collection if the parsing is successful.

if (DateTime.TryParse(tokens[0], out date))

if (Decimal.TryParse(tokens[dataIndex],

NumberStyles.AllowDecimalPoint,

new CultureInfo("en-US"), out data))

prices.Add(data);

11. Return the prices collection from the method below the outer using-block.

The complete code for the ParsePrices method:

/// <summary>

/// Parses prices from the Response stream containing the stock data

/// </summary>

private static List<decimal> ParsePrices(WebResponse Response, char[]

separators, int dataIndex)

{

// Open data stream and parse the data

try

{

List<decimal> prices = new List<decimal>();

using (Stream WebStream = Response.GetResponseStream())

{

using (StreamReader Reader = new StreamReader(WebStream))

{

// Read data stream

while (!Reader.EndOfStream)

{

string record = Reader.ReadLine();

string[] tokens = record.Split(separators);

DateTime date;

670

C# For Beginners

decimal data;

// Add prices that have valid dates.

// Use the specific culture of en-US to ensure that the

// decimal parse works in cultures where a comma is used

// as separator

if (DateTime.TryParse(tokens[0], out date))

if (Decimal.TryParse(tokens[dataIndex],

NumberStyles.AllowDecimalPoint,

new CultureInfo("en-US"), out data))

prices.Add(data);

}

}

}

return prices;

}

finally

{

try

{

// Close the response stream before the data is returned

Response.Close();

}

catch { }

}

}

The GetStockAsync method

This static method will be called from the GetStockData method and will fetch the stock in-

formation for the passed in stock symbol by making an asynchronous call to the web site

named in the method's url parameter. The method has the following parameters: url of type

string, site of type string, dataSource of type string, symbol of type string, separators of type char[], dataIndex of type int, yearsOfHistory of type int and request of type HttpWebRequest declared as out.

To make the asynchronous web request you first have to create the web request using the

url parameter and store it in the request parameter defined with the out keyword. You

create the request by calling the Create method on the HttpWebRequest class.

671

C# For Beginners

To make the asynchronous call you have to create a Task called webTask with the From-

Async method on the Task's Factory property passing in the BeginGetResponse and EndGet-

Response methods of the request variable you created earlier.

Because you want to use the result from the webTask in another Task called resultTask you

will have to continue where the first Task ends its execution using the ContinueWith

method.

The parameter called antecedent passed in through the Lambda expression to the result-

Task Task contains the response from the first Task. If its Status property isn't equal to

TaskStatus.Faulted then call the ParsePrices method to read the response stream and read

the price information for the stock; store the result in a List<decimal> collection called

prices. Return a new instance of the Stock class and pass in the values from the symbol, site

and dataSource parameters along with the prices collection.

If the antecedent parameter is equal to TaskStatus.Faulted then return a new instance of

the Stock class and pass in the values from the symbol, site and dataSource parameters

along with the an empty List<decimal> collection.

Return the value of the resultTask variable from the method.

1. Add a Task<Stock> method called GetStockData to the StockFactory class with the

parameters described above.

private static Task<Stock> GetStockAsync(string url, string site,

string dataSource, string symbol, char[] separators, int dataIndex,

int yearsOfHistory, out HttpWebRequest request)

2. Create an HttpWebRequest instance using the Url in the url parameter and store it

in the request parameter that was passed into the method with the out keyword.

request = (HttpWebRequest)HttpWebRequest.Create(url);

3. Create the asynchronous Task that will use the request object in the request para-

meter to fetch data from the web site specified by the url parameter.

var webTask = Task.Factory.FromAsync<WebResponse>(

request.BeginGetResponse,

request.EndGetResponse,

null);

672

C# For Beginners

4. Add the callback Task called resultTask that will use the result from the asynchro-

nous call.

var resultTask = webTask.ContinueWith<Stock>(antecedent =>

{

}

5. Add an if-statement to the callback Task checking if the webTask Task returned with

a faulty state.

if (!antecedent.Status.Equals(TaskStatus.Faulted))

6. Store the response result from the webTask Task in a variable called response.

7. Call the ParsePrices method passing in the response variable and the separators and

dataIndex parameters to it. Store the result in a List<decimal> collection variable

called prices.

8. Return a new Stock instance from the resultTask passing in the symbol, site and

dataSource parameters along with the prices collection.

9. Return a new Stock instance from the resultTask passing in the symbol, site and

dataSource parameters along with an empty List<decimal> collection (outside the if-

block).

10. Return the resultTask variable from the method below the Tasks.

The complete code for the GetStockAsync method:

/// <summary>

/// Tries to download stock data asynchronously from Yahoo or Nasdaq.

/// </summary>

private static Task<Stock> GetStockAsync(string url, string site, string

dataSource, string symbol, char[] separators, int dataIndex, int

yearsOfHistory, out HttpWebRequest request)

{

// Request data from site

request = (HttpWebRequest)HttpWebRequest.Create(url);

var webTask = Task.Factory.FromAsync<WebResponse>(

request.BeginGetResponse,

request.EndGetResponse,

null);

var resultTask = webTask.ContinueWith<Stock>(antecedent =>

{

if (!antecedent.Status.Equals(TaskStatus.Faulted))

673

C# For Beginners

{

var response = (HttpWebResponse)antecedent.Result;

List<decimal> prices = ParsePrices(response, separators,

dataIndex);

return new Stock(symbol, site, dataSource, prices);

}

return new Stock(symbol, site, dataSource, new List<decimal>());

});

return resultTask;

}

The GetStockData method

This static method will be called from the GetData method in the form to fetch the stock

history data. It should return a Stock instance containing the returned historical prices for

the stock symbol and take to parameters. The first parameter is called symbol of type string

that will contain the symbol for the stock to investigate and the second parameter is called

yearsOfHistory of type int that determines how many years of data to fetch for the stocks.

The method should throw an ApplicationException exception with the message "No internet

available" if there is no internet available. Use the IsInternetAvailable property to determine

if internet is available.

Declare two HttpWebRequest variables called req_yahoo and req_Nasdaq that will hold the

returned request object for the calls to the web sites. The reason you need to store the

request objects is so that the remaining request can be cancelled when one of the sites has

returned with a result. It is unnecessary to continue with ongoing requests once one has

finished, because the historical stock data already has been obtained.

Use the urlTemplateYahoo and urlTemplateNasdaq constants and String.Format to create

two variables called urlYahoo and urlNasdaq that will hold the complete Urls to the sites.

The Yahoo variable will need the symbol, the current month - 1, day - 1, year and year -

yearsOfHistory; use a DateTime instance to get the information. The Nasdaq variable will

need the symbol.

674

C# For Beginners

Create two Task<Stock> variables called yahoo and nasdaq that are assigned the result from

a call to the GetStockAsync method. The GetStockAsync method need the following infor-

mation: the value in the urlYahoo or urlNasdaq variables, the site (to be displayed in the

output), the data source specifying how the data was obtained, for instance Daily Close 2

 years (to be displayed in the output), the character that separates the data returned from

the web site, the index position in the data that contain the prices, the number of years to

fetch data for and the HttpWebRequest variable to receive the request object from the

method declared with the out keyword.

Add a List<Task<Stock>> collection called tasks that will hold the tasks and a List<HttpWeb-

Request> collection called requests that will hold the web request objects returned from the

GetStockAsync method calls. Add the yahoo and nasdaq Tasks to the tasks collection and

the req_yahoo and req_nasdaq object to the requests collection.

Add a Stock variable called result and assign null to it; this variable will hold the stock from

the winning web request Task.

Add a while loop that iterates over the Tasks in the tasks collection. Add a variable called

taskIndex to the loop; this variable will hold the collection index of the winning Task or a

negative value indicating that a timeout occurred. Assign the result of a call to the Task

.WaitAny method that takes the tasks collection converted to an array and a 15 second

timeout as parameters.

Jump out of the loop with a break statement if a timeout occurred.

Assign the Task result to the result variable if no exceptions were reported by the Task and

the Task result contains prices. You can check Exceptions property of the current Task for

exceptions and the Result property for prices.

Remove the Task from the tasks collection and the request object from the requests collec-

tion using the current index in the taskIndex variable.

Add a foreach loop below the while loop that iterates over the remaining requests in the

requests collection and aborts them by calling their Abort method.

675

C# For Beginners

Add an if-statement below the foreach loop that return the value of the result variable if it

isn't null. Add an else-block that throws an ApplicationException exception with the text

"Could not fetch data from any of the web sites."

1. Add a static Stock method called GetStockData that has a string parameter called

symbol and an int parameter called yearsOfHistory.

public static Stock GetStockData(string symbol, int yearsOfHistory)

2. Check if internet is available and throw an exception if it's not.

3. Add the two HttpWebRequest variables.

HttpWebRequest req_yahoo, req_nasdaq;

4. Assemble the Yahoo Url.

DateTime today = DateTime.Now;

string urlYahoo = string.Format(urlTemplateYahoo, symbol, today.Month

- 1, today.Day - 1, today.Year, today.Year - yearsOfHistory);

5. Assemble the Nasdaq Url.

string urlNasdaq = string.Format(urlTemplateNasdaq, symbol);

6. Create the Task that calls the Yahoo site for stock history data.

Task<Stock> yahoo = GetStockAsync(

urlYahoo, http://finance.yahoo.com",

string.Format("Daily Adj Close, {0} years",

yearsOfHistory), symbol, new char[] { ',' },

6, yearsOfHistory, out req_yahoo);

7. Create the Task that calls the Nasdaq site for stock history data.

Task<Stock> nasdaq = GetStockAsync(

urlNasdaq, "http://nasdaq.com",

string.Format("Daily Close, {0} years",

yearsOfHistory), symbol, new char[] { '\t' },

4, yearsOfHistory, out req_nasdaq);

8. Create a List<Task<Stock>> collection called tasks that will hold the tasks.

9. Create a List<HttpWebRequest> collection called requests that will hold the web

request objects returned from the GetStockAsync method calls.

10. Add the Tasks to the tasks collection.

11. Add the request objects (the req_yahoo and req_nasdaq) to the requests collection.

12. Add a Stock variable called result.

13. Add a while loop that iterates over the Tasks in the tasks collection.

676

C# For Beginners

14. Call the Task.WaitAny method and save the result in an int variable called taskIn-

dex. The WaitAny method will wait until one of the Tasks in the tasks collection

return a result and then terminate the remaining Tasks.

int taskIndex = Task.WaitAny(tasks.ToArray(), 15000);

15. Jump out of the loop with a break statement if a timeout has occurred.

16. Assign the Task result to the result variable if no exceptions were reported by the

Task and the Task result contains prices.

if (tasks[taskIndex].Exception == null &&

tasks[taskIndex].Result.HasPrices)

result = tasks[taskIndex].Result;

17. Remove the Task from the tasks collection and the request object from the requests

collection using the current index in the taskIndex variable.

18. Use a foreach loop to abort any remaining requests in the requests collection by

calling the Abort method.

foreach (HttpWebRequest r in requests)

r.Abort();

19. Add an if-statement below the foreach loop that return the value of the result

variable if it isn't null or throws an ApplicationException exception if it is.

The complete code for the GetStockData method:

/// <summary>

/// Tries to fetch historical Stock data from Yahoo or Nasdaq

/// </summary>

public static Stock GetStockData(string symbol, int yearsOfHistory)

{

if (!IsInternetAvailable)

throw new ApplicationException("No internet available.");

HttpWebRequest req_yahoo, req_nasdaq;

DateTime today = DateTime.Now;

string urlYahoo = string.Format(urlTemplateYahoo, symbol,

today.Month - 1, today.Day - 1, today.Year, today.

Year - yearsOfHistory);

string urlNasdaq = string.Format(urlTemplateNasdaq, symbol);

Task<Stock> yahoo = GetStockAsync(urlYahoo, "http://finance.yahoo.com",

677

C# For Beginners

string.Format("Daily Adj Close, {0} years", yearsOfHistory),

symbol, new char[] { ',' }, 6, yearsOfHistory, out req_yahoo);

Task<Stock> nasdaq = GetStockAsync(urlNasdaq, "http://nasdaq.com",

string.Format("Daily Close, {0} years", yearsOfHistory),

symbol, new char[] { '\t' }, 4, yearsOfHistory, out req_nasdaq);

var tasks = new List<Task<Stock>>();

var requests = new List<HttpWebRequest>();

tasks.Add(yahoo);

tasks.Add(nasdaq);

requests.Add(req_yahoo);

requests.Add(req_nasdaq);

Stock result = null;

// Use the result from the first Task that returns without exception

while (tasks.Count > 0)

{

// The index of the completed task in the tasks array,

// or if taskIndex < 0 then a timeout occurred

int taskIndex = Task.WaitAny(tasks.ToArray(), 15000);

if (taskIndex < 0) break; // timeout occurred

// Get the result from the task if it was successful

if (tasks[taskIndex].Exception == null &&

tasks[taskIndex].Result.HasPrices)

result = tasks[taskIndex].Result;

// Remove the Task from the tasks collection

// and the request from the requests collection

tasks.RemoveAt(taskIndex);

requests.RemoveAt(taskIndex);

}

// Cancel any remaining requests

foreach (HttpWebRequest r in requests)

r.Abort();

678

C# For Beginners

// Return the result if it contains data

if (result != null)

return result;

else

// Throw exception if none of the websites could produce data

throw new ApplicationException(

"Could not fetch data from any of the web sites.");

}

The GUI - Part 2

The last thing you have to do before you can run the application and fetch stock data is to

implement the two methods GetData and FormatOutput in the form's code-behind. If you

haven't already removed the two code lines you added to them before then do so while

implementing them.

The GetData method

The GetData method has two parameters symbol of type List <string> and yearsOfHistory

of type int. Assign 1 to the latter parameter. You want to create a new Task for each stock

symbol. The Tasks should call the GetStockData on the StockFactory class and add the

returned Stock object in a List<Stock> collection called stocks. Each Task should be added to

a List<Task> collection called tasks that is passed as a parameter to the Task.WaitAll

method executing the Tasks. The method should return the resulting List<Stock> collection.

1. Add a List<Stock> method called GetData with two parameters symbols of type List

<string> and yearsOfHistory of type int. Assign 1 to the latter parameter.

2. Add a List<Stock> collection called stocks.

3. Add a List<Task> collection called tasks.

4. Add a foreach loop that iterates over the symbols collection.

5. Create a new Task for each symbol using the Task.Factory.StartNew method that

you pass an anonymous Action delegate block and the current symbol of the loop.

Call the GetStockData method on the StockHistory class inside the Action-block and

pass it the symbol from the Action parameter and the yearsOfHistory parameter.

foreach (var symbol in symbols)

{

Task task = Task.Factory.StartNew((t_symbol) =>

{

var stock = StockFactory.GetStockData(t_symbol.ToString(),

yearsOfHistory);

679

C# For Beginners

stocks.Add(stock);

}, symbol);

tasks.Add(task);

}

6. Call the Tasks.WaitAll method below the foreach loop and pass it the tasks collec-

tion converted to an array.

7. Return the stocks collection from the method.

The complete code for the GetData method:

private List<Stock> GetData(List<string> symbols, int yearsOfHistory = 1)

{

var tasks = new List<Task>();

var stocks = new List<Stock>();

foreach (var symbol in symbols)

{

Task task = Task.Factory.StartNew((t_symbol) =>

{

var stock = StockFactory.GetStockData(t_symbol.ToString(),

yearsOfHistory);

stocks.Add(stock);

}, symbol);

tasks.Add(task);

}

// Wait for all tasks to complete

Task.WaitAll(tasks.ToArray());

return stocks;

}

The GetData method

The FormatOutput method has a List<stock> parameter called stocks and returns a string

containing the formatted output from the historical stock data. Use the en-US formatting

when displaying currency information.

680

C# For Beginners

Use a StringBuilder object and append the formatted stock information for each stock in the

stocks collection.

1. Add a string method called FormatOutput with a List<Stock> collection parameter

called stocks to the form's code-behind.

2. Add a StringBuilder variable called output.

3. Add a CultureInfo variable targeting the en-US culture called culture. This object will

be used with the String.Format method when adding currency information.

var culture = new CultureInfo("en-US");

4. Add a foreach loop that iterates over the stocks collection.

5. Use String.Format when appending data about the stock to the StringBuilder object.

Pass in the culture object to String.Format when adding the price information for

the stock to get the correct currency symbol.

output.Append(string.Format(culture, "\n Data points:\t{0:#,##0}",

stock.DataPoints));

output.Append(string.Format(culture, "\n Min price:\t\t{0:C}",

stock.Min));

6. Return the value of the output variable as a string from the method.

7. Run the application and click the button to fetch some historical stock data.

The complete code for the FormatOutput method:

private string FormatOutput(List<Stock> stocks)

{

var output = new StringBuilder();

var culture = new CultureInfo("en-US");

foreach (var stock in stocks)

{

output.Append(string.Format("** {0} **", stock.Symbol));

output.Append(string.Format("\n Site: '{0}'", stock.Site));

output.Append(string.Format("\n Data source:\t'{0}'",

stock.DataSource));

output.Append(string.Format(culture, "\n Data points:\t{0:#,##0}",

stock.DataPoints));

output.Append(string.Format(culture, "\n Min price:\t\t{0:C}",

stock.Min));

output.Append(string.Format(culture, "\n Max price:\t{0:C}",

stock.Max));

681

C# For Beginners

output.Append(string.Format(culture, "\n Avg price:\t\t{0:C}\n\n",

stock.Avg));

}

return output.ToString();

}

682

index-588_1.jpg
foreach (var vehlcle in vehlcles)

NI iwaiaCastcrcoption was oahadied 4— x

Unable to cast object of type ‘Generic_Collections.ClassesMotorcycle'to type
‘Generic_Collections.Classes.Car'.

index-585_1.jpg
books . Add (new Chassild = "1223ABDS23", Make = "Volvo" });l
(Tocal variable) List<Book> bool

Error
The best overloaded method match for ‘SystemCollections Generic List < Generic_Collections.Classes.Chapter_1.Book> Add(Generic_Collections Class:

index-418_1.jpg
ICustomer A 1Booking A IVehicleType A
Interface Interface Interface
L] L= L=
= Properties = Properties = Properties
& FirstName & Cost » BasePricePerDay
Foud K& Customerld K BasePricePerkm
& LastName & ud » DayTariff
K SocialSecurityNumber & Rented F
& Returned & KmTariff
& Vehicleld & Name
J
(P ICustomer (P IBooking (P IVehicleType
)
Customer v Booking v VehicleType v
Class Class Class
3 |) -3

index-417_1.jpg
ICustomer ¥
Interface
2

IBooking ¥
Interface
2

IVehicleType ¥
Interface
2

(P ICustomer (P IBooking (P IVehicleType
Customer ¥ Booking ¥ VehicleType ¥
Class Class Class

=

=

=

index-42_1.jpg
b ConsoleTest - Microsoft Visual Studio ¥ G | QuickLaunch (Ctr+Q) Pl= A x
FLE EDIT VIEW PROJECT BULD DEBUG TEAM TOOLS TEST ANALVZE WINDOW HELP signin [
© - B-Z @ 2T - PStat- - Debug - Foiwm®E =2 A &

6 ConsoleTest] ConsoleTestPragram G Neintstingll o132 -endp o &

=using System; % | Search Solution Bplorer (Ctr+) »-
51 Solution ‘ConsoleTest' (1 project)

| using system.Ling; Project Folder ——p ' oo
using System.Text; | b % propetties

suoneaon

b am References
2 App.confia

using System.Threading.Tasks; i
using System.Collections.Generic;

. Main
=namespace ConsoleTest Solution Explorer program file
{ e
class Program <_Appllcat10n -

Jatoydi Pa(aQ fanms o5 X0qj00L Iaiojdhq wiea) saiojd ShY
o

{ container

Cl static void Main(string[] args) Solution Explorer Test Bplorer Model Browser
" . " Propeties T Ex

| § <€— Application entry point =
| =N &

}
| }

00% - 4 » " Server Explorer | Properties

Data Tools Operations Web Publish Activity Package Manager Console ErrorList TaskList Output Find Results 1 Find Symbol Results Breakpoints Call Hierarchy.

index-423_1.jpg
rIVehit:Ie

Interface

2

=l Properties
BasePricePerDay
BasePricePerkKm
DayTariff

Id

KmTariff

Meter

RegistrationNumber

Yrererrerr

Typeld

»

.
(P IVehicle
-

Vehicle
Class

a

Class

= Vehicle
3

= Methods

@ Car (+ 1 overload)

-

»

VehicleStatus
Enum
-3

All
Booked
Available

J

index-43_1.jpg
/The Application starts here

Execution begin here
class Program

4
static void Main(string[] args)

{ <€—— Write your code

} 2,
} void methods don’t cl:)::lvy\/lebﬁgct;‘se method’s

return any value

static methods don’t
require an object to run

index-594_1.jpg
public void Add(T entity)
{
entity.

} © [Equals
© GetHashCode

© GetType

— 5 i

© ToString

index-438_1.jpg
Customers

Raintree Carl (12324545)
Montgomery Lisa (95654123

index-593_1.jpg
public void Add(T entity)

© [Equals
© GetHashCode
} © Geiype

@ ToStiing

index-448_1.jpg
Available vehicles

Registration Number Type Km Tariff Day Tariff Meter
FGH123 Sedan 0 100 10000
DCE123 Van 0,5 300 30000

index-59_1.jpg
My First Forms Application - Microsoft Visual Studio ¥ 03| Quick Launch (Ctrl+Q) P - 8 x
FLE EDIT VEW PROJECT BUILD DEBUG TEAM FORMAT TOOLS TEST ANALYZE WINDOW HELP signin [
B M DT - p St O - Debug - sl = =
& [seach Tonoor - &lo-2oan|s =] |
§ bW o €—Form (GUI) cnsousenspimerccun 53
51 Solution"My Fist orms Appiaion’ (1 preject)
omnter 4 My First Forms Application
Bitton; b & Properties
CheckBon » foa nt
Sy The Form in 2
eckedListBox L 1) App.config
oot the Solution —§> mm
DeeTimepicke Toolbox Explorer b o pogames
Label H
with controls oo s [T T
it Prpeiies “ax
v Form SystemWindows Forms Form .
i s -
AWS.. Tea. |Tool. | SaL 3 Server Explorer | Properties

Data Tools Operations Web Publish Activity Package Manager Console ErrorList TaskList Output Find Results 1 Find Symbol Results Breakpoints Call Hierarchy.

index-43_2.jpg
Keyword

Class
Static

Void

Description

In the context of the Program class it is the container for the main application flow.
A static method is a CLASS method which means it belongs to the class and not
individual objects which are created from the class. It is imperative that the Main
method is declared as static in order for the .NET Framework run-time to execute it
when the application is started by the user.

A void declared method do not return any value. The Main method is not allowed to
return a value because it cannot be handled by the runtime.

index-598_1.jpg
Form1 -

Item Setting

@ All © Registered © Unregistered

Interface Constraint

index-45_1.jpg
New Project

© Recent NET Framework 45 - Sort by: Defaut
4 Installed - 5

N Blank App (Universal Apps)
4 Templates

» [

<+

AWS CloudFormation

HInsight

b Other Languages.
b Other Project Types

Samples

b Online

Name:
Location:
Solution:

Solution name:

o

o
=i

Ei
5]
=

ConsoleApplication

Windows Forms Application

WPF Application

Hub App (Universal Apps)

ASP.NET Web Application

Class Library

Class Library (Portable)

WebView App (Windows Phone)

Silverlight Application

Click here to go online and find templates,

Ci\Users\Jonas\Documents!Visual Studio 2013\Projects\MVCS Exam Solution\.

Create new solution

ConsoleApplication’

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

p-

Search Installed Templates (Ctri+E)

Type: Visual CG#

A projectfor creating a command-line
application

w—

G

—>

Browse..

Create directory for solution
] Add to source control

—»ox

Cancel

index-590_1.jpg
QWES87

index-44_1.jpg
Y - |[@3knors ||+ owsmins:

Search Error List
Description

File & Line & Colu. « Project &

@2 Implicily-typed local verisbles must be initaized
O3 ;epected

Program.cs 14 7
Program.cs 14 18

ConsoleTest
ConsoleTest

Data Tools Operations Web Publish Activity Package Manager Console ErrorList TaskList Output Find Resuits 1 Find Symbol

Error List Tab

index-58_1.jpg
New Project

b Recent NET Framework45 - Sortby: Default -

4 Installed -t
N Blank App (Universal Apps)

4 Tempiates
I — =
» Store Apps
Windows Desktop. WBF Application
b Web s
o
» Ofice/SharePoint B conopopication
v Aws
=
b Cloud E'TJ Hub App (Universal Apps]
Lghtswitch
ot
Reporting B aspNET Wb Applcation
Siveright e
e 0
Closs i
we e 2
Workflow nic-
Class ibrary Portable
AWS CloudFormation el oDt
HDInsight -
WebView App (Windows Phone
bithe anguages @ PP (Wi)
» Other Project Types = .
e F sheohAppicton
o
b Online BB Silverliaht Class Library.
Cick bt o onfineand eyt
Neme My Fist Forms Application
Yoo C\Usersiones\DocumentsVisual tudio 201 Project\C For Beginners\
Selifon s, My st Forms Agplcation

Visual C#

Visual G2

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Search nstalled Templates (Cti-E) P -

Type: Visual CG#

<

Visual G2 Y

i

—>

Browse..

Create directory for solution
] Add to source control

—_P [Cancel

index-592_1.jpg
Constraint

Description

where T:
where T:
where T:

where T:
where T:
where T:

<name of interface>
<name of base class>
U

new()
struct
class

The type argument must be, or implement, the specified interface.
The type argument must be, or derive from, the specified class.
The type argument must be, or derive from, the supplied type
argument U; for instance where T : Vehicle.

The type argument must have public default constructor.

The type argument must be a value type.

The type argument must be a reference type.

index-591_1.jpg

cover_image.jpg
C# For Beginners:
The tactical
guidebook - Learn
CSharp by coding

Jonas Fagerberg

index-410_1.jpg
Solution Explorer

co@ e--0d@ K=
Search Solution Explorer (Ctrl+")

] Solution 'Car Rental' (3 projects)
4 [&] Business Layer

b S Properties

b =W References

Pl <«¢— Folders

b i Interfaces

| Car Re

b Properties

b =m References

b i Classes | <= Folders
¥ App.config

b Forml.cs

b c* Program.cs

4 [&] Data Layer

b Properties
b =W References
¥ Data Layers
¥ Data Source

I Entities 4_ Folders

¥ Enums
W Exceptions
W Interfaces

vvvvvew

index-411_2.jpg
Form1
Rent Vehicle ‘Retum Vehicle Bookings Add Data\
Available vehicles Customers
Registration Number Type Km Tariff Day Tariff Meter ‘ ¥
FGH123 SEREN 0 100 10000
DCE123 Van 0,5 300 30000 Rent ‘

Close

index-411_1.jpg
ComboCustomer ListViewBooking
Class Class

index-412_2.jpg
Form1

Rent Vehicle| Return Vehicle Bookings ‘ Add Data‘

- oI

Bookings

Booking Id Reg.No. Type Customer
ABC123 Combi Montgomery Lisa

2 ABC123 Combi Raintree Carl

Cost Rented
500 2015-06-30 10...
0 2015-06-30 10...

Returned
2015-07-0...

Close

index-412_1.jpg
Form1

Rent Vehicle Return Vehicle

Booked vehicles

Bookings

Add Data|

- oI

Meter setting

Registration Number Type
ABC123 Combi

Km Tariff Day Tariff Meter

0,5 200 20000

Close

index-414_1.jpg
IRentalBase ¥
Interface
2
FAN

IBookingProcessor ¥
Interface
- IRentalBase

(P IBookingProcessor
BookingProcessor ¥

Class

index-413_1.jpg
Form1

Rent Vehicle | Return Vehicle Bookings Add Data

Add Car Add Customer
Reg.Nr. Social Security Number
Meter Firstname
Type I Lastname
Add Add

- - IES

Close

index-415_2.jpg
O Iserializable

KeyNotFoundEx... ¥
Class

= SystemException
2

CustomerExcept... ¥ BookingException ¥ VehicleException ¥
Class Class Class

= KeyNotFoundException = KeyNotFoundException = KeyNotFoundException
2 2 2

index-415_1.jpg
IRentalBase
Interface

D —
IDatalayer

Interface

- IRentalBase

(P IDatalayer

CollectionDatalLayer ¥ TestData

Class Class

A

«

index-416_1.jpg
IVehicle
Interface

Car
Class

= Vehicle
=2

VehicleStatus

Enum
3

index-543_1.jpg
Method Description

FullName Retrieves the full name of the assembly that contains
the assembly version and public key token.

GetReferencedAssemblies Fetches a list of all the names of the assemblies that
the loaded assembly references.

GlobalAssemblyCache States if the assembly was loaded from the GAC.

Location The absolute path to the assembly file.

ReflectionOnly States if the assembly was loaded using a reflection-
only context.

GetType Fetches an instance of a Type in the assembly with
the type name.

GetTypes Fetches an array of all the types in the assembly; the

array elements are represented by the Type type.

index-542_2.jpg
Static Method

LoadFrom

ReflectionOnlyLoad

ReflectionOnlyLoadFrom

Description

Use an absolute file path to load an assembly in
execution context.

Will load an assembly into a binary BLOB object
using a reflection-only context.

Use an absolute file path to load an assembly in
reflection-only context.

index-556_1.jpg
Form1

Types in assembly
Test_Assembly.Student

- - IEN

--- Constructors ---
Student()
Student(DateTime dateOfBirth)

index-551_1.jpg
Form1 - o KN

Types in assembly
Test_Assembly.Student v

--- Constructors ---
Student()
Student(DateTime dateOfBirth)

--- Fields ---
private Int32 _id

--- Properties ---

public Int32 Id { public get; public set; }

public String FirstName { public get; public set; }
public String LastName { public get; public set; }
public DateTime DateOfBirth { public get; private set; }

--- Methods ---
public GetAge()
lpublic GetAge(DateTime dateOfBirth) v

Jonas Jonas

Call Method @ Set Property | Get Property‘

index-561_1.jpg
Form1

Types in assembly
Test_Assembly.Student

- - IEN

--- Constructors ---
Student()
Student(DateTime dateOfBirth)

--- Fields ---
private Int32 _id

index-55_1.jpg
static void Main(string[] args)

{
}

Math Calculations

index-566_1.jpg
Form1 - o KN

Types in assembly
Test_Assembly.Student v

--- Constructors ---
Student()
Student(DateTime dateOfBirth)

--- Fields ---
private Int32 _id

--- Properties ---

public Int32 Id { public get; public set; }

public String FirstName { public get; public set; }
public String LastName { public get; public set; }
public DateTime DateOfBirth { public get; private set; }

--- Methods ---
public GetAge()
lpublic GetAge(DateTime dateOfBirth) Y|

index-563_1.jpg
Form1

Types in assembly
Test_Assembly.Student

- - IEN

--- Constructors ---
Student()
Student(DateTime dateOfBirth)

--- Fields ---
private Int32 _id

--- Properties ---

public Int32 Id { public get; public set; }

public String FirstName { public get; public set; }
public String LastName { public get; public set; }
public DateTime DateOfBirth { public get; private set; }

index-143_2.jpg
Name Value Type -
Mo doubleToporie retumed e Thoal]
@ ltotl 210 double
@ ltot2 0.0 double
P @ this {OrderForm.Form1, Text: Form1} OrderForm.Form1
P @ tdlineTotall {Text = "21"} System.Windows.Forms.TextBox
F tdlineTotall.Text 21" Q - string
P @ ttlineTotal2 {Text = "60"} System.Windows.Forms.TextBox
& tdlineTotal2.Text "60" Q - string v

Error List Code Definition Window Output Find Results 1 Find Symbol Results Locals | Autos Watch 1

index-584_1.jpg
var books = new List<
lass ystem Collectons.Generic
Represents a strongly typed list of of at can be accessed by index.

The type of elements in the list.

index-143_1.jpg
Debug menu Toolbar button Keyboard key
Start Debugging Start/Continue F5

Break All Break all Ctrl+Alt+Break
Stop Debugging Stop Shift+F5
Restart Restart Ctrl+Shift+F5
Step Into Step Into Fl1

Step Over Step Over F10

Step Out Step Out Shift+F11

Description

Start application in Debug mode

Causes a running application to enter break mode.
Stops debugging and exits the application

Equivalent to stop followed by start

Steps into method calls

Executes a method call without stepping into the code

Executes the remaining code in the current method
and halts execution on the next statement in the
method that made the call.

index-583_1.jpg
B‘oizmoam

A IvalldCastixception was unhandied x

Unable to cast object of type ‘Generic_Collections.Classes.Chapter_1.Car'to type
“Generic_Collections,Classes.Chapter_1.Book'.

index-144_2.jpg
Error List Code Definition Window Output Find Results 1 Find Symbol Results Locals Autos Watch 1

index-144_1.jpg
Name Value Type 4
b
b @ sender {Text = "Calculate"} object {S
b @ e {X=57Y = 8 Button = Left} System.E
@ discount 200 double
@ vat 120 double
@ ltotl 210 double
@ ltot2 0.0 double
@ ltot3 0.0 double ¥

Error List Code Definition Window Output Find Results 1 Find Symbol Results VLo:alslAutos Watch 1

index-145_2.jpg
Output

Show output from: Debug

Product 1 Price:
Product 1 Price:
Product 1 Price:
Product 1 Price:

4

Error List Code Definition Window = Output Find Results 1 Find Symbol Results Locals Autos Watch 1

1e5
1es5
185
185

W e

Line total:
Line total:
Line total:
Line total:

185
210
315
420

index-145_1.jpg
Product 1

Form1

Units

a2

Line Total
420

index-46_1.jpg
line of text
Another line of text

Name Age
Welcome Jonas!

Jonas 45yo

index-484_1.jpg
Type

index-479_1.jpg
Bookings

Booking Id Reg.No. Type Customer Cost Rented Returned
1 ABC123 Combi Montgomery Lisa 500 2015-07-05... 2015-07-06 ...
2 ABC123 Combi Raintree Carl 0 2015-07-05 ...

index-48_2.jpg
New Project

» Recent NET Framework45 = Sort by: Defaut .
4 Installed -cr 5
. N BlenkApp (Universal Apps) Visual C#
e -
P [vindens fomsApcoton Visal 2
b Sete Afps
&
Windows Desktop = wet Appiication Vil 2
b Web I
» Offce/SharePoint
o aws
=
b Cloud] Hub app niversal Apps) Visual C#
LightSwitch =]
a
Reporting B aseer web Applction Visal 2
Siveright e
= P
(st Visol 2
wer o] "y
Workflow nic-
Clss Ly Porabl Vil 2
AWS CloudFormation el oDt
HDIsight e
WebView App (Windows Phone) Vil 2
bithe anguages @ PP (Wi)
 Other Project Types cx
P (G2 g pptn Gnics
» Online
e e T e
N My Fist Appliction
Focdion CAUsers\onas\Documents\Visual Studio 2013\PrjctC For Beginners\ s
Solution: Create new solution -
N T

Search nstalled Templates (Cti-E) P -

“ Type: Visual G#

A projectfor creating a command-line
application

w—

G

Browse..

Create directory for solution
] Add to source control

—_P [Cancel

index-48_1.jpg
Enter your name: Jonas
Welcome Jonas!

Enter your age: 45

Name Age
Jonas 45

Fixed length column output

Jonas 45yo

Press any key to exit

index-50_1.jpg
Enter your name: Jonas
Welcome Jonas!

Press any key to exit

index-49_1.jpg
44— The ReadKey method
waiting for key stroke

index-520_1.jpg
Message

Form1

- - IER

1,2,4,8,16, 32,64, 128,

© Binary data
© Text data

Read

Save

index-51_1.jpg
Enter your name: Jonas
Welcome Jonas!

Enter your age: 45

Name Age
Jonas 45

Press any key to exit

index-542_1.jpg
Class Description

Assembly Inspect an assembly's metadata and types. Can also be
used to load an assembly into memory.
Typelnfo Inspect a type's characteristics.

Parameterinfo Inspect what parameters a member has.
Constructorinfo Inspect a type's constructor.

Fieldinfo Inspect the fields' of a type.
MemberInfo Inspect the members exposed by a type.
Propertyinfo Inspect the properties of a type.

MethodInfo Inspect the methods of a type.

index-107_1.jpg
Email

Formt

Formt

- - I

Email
b@b.c c@b.
a@b.c a@b.c
b@b.c b@b.c

index-116_1.jpg

index-114_1.jpg
Small value label
Large value label

Display the
arithmetic
788t symbol used

index-136_1.jpg
Selected Cars

Form1

index-133_1.jpg
Foreach4oop
Do Loop Whiledoop Do Loop
Values Values
e Cat
Dog Dog
Bird

index-142_1.jpg
_ Form1.cs [Design]

[€#] Simple Calculator
& public Formil()

yrd {
® InitializeComponent();
}

index-141_1.jpg
D‘ Simple Calculator - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLSWTEST ANALY

o B-a e 90 bse o Joms] 0 om

index-142_2.jpg
Imu Form1.cs [Design]

Simple Calculator

J public Formil()

{
i InitializeComponent();
}

index-227_1.jpg
WARNING

A Order Q not empty! Close anyway?

=]]

index-217_1.jpg
g Form1 als

Draw

|King of Clubs E
King of Diamonds
King of Spades

King of Hearts
|Queen of Clubs

index-228_2.jpg
Orders il

New Order Manage Orders

Peek On Next Order Process Next Order List Orders
Order Number Total Customer
16418926-35¢c1-442a-b134-921af544f... 300 Stan Smith

Close

index-228_1.jpg
New Order ‘ Manage Orders‘

Orders

Customer Total

stan Smith « 500 Add Order
Order Number Total Customer
1641 :
f4b08cf4-3374-4163-8418-62e203ach... 400 Stan Smith
2353d02e-cf06-4¢10-bdd 1-072f21¢12... 500 Stan Smith

Close

index-247_1.jpg
Poker

Dealer |Hand:

Player.Hand:

DEAL NEW HAND

index-243_1.jpg
L Poker - oIl
Dealer Pair

8 (|10 J K K
* || * | Vs e

71 819]1e]3
N S S S

Player Straight

DEAL NEW HAND

index-298_1.jpg
Order 1 v Order 1

Remove Order Update Order Add Order

Product Price
> 100
Product 2 | 200

frmOrderRow

Product Price

Product 1 100

Add Order Row
Cancel OK

index-290_1.jpg
Customers

Fagerberg Jonas

First Name

Jonas

Remove

Form1

Last Name
Fagerberg

Update

Add

- oIl

index-205_1.jpg
Form1

ISBN

9780547928227
978-0547928210
978-0547928157

Year

2012
2012

ISBN Title

Year

101-12345645564 | | The Best Book Ever!

| [2015

| Dsee || md |

index-204_1.jpg
o Form1

Edit Items...
C Edit Columns...
Edit Groups...
ColumnHeader Collection Editor v —— Ly
elist: | (none)
collSBN properties: L .
List: | (none)
: ‘ 515‘ ‘ # fent Container
. ‘ Displaylndex 0 "~
= 4 Data
 (ApplicationSetting
Tag
4 Design
(Name) collSBN
GenerateMember True
Modifiers Private
4 Misc
Imagelndex |: (none)
ImageKey |: (none)
Text ISBN
; - TextAlign Left
Add | [Remove Width 120 5
oK Cancel

index-212_1.jpg
Form1

OrderNo Description

456 Order 2

Orders in Q: 1

Get | Add

[Order [123] Order 1
Order [456] Order 2

o

Order [123] Order 1

—

index-168_1.jpg
2 Form1 - B & Form1 - B
Number 1 Number 2 Number 1 Number 2
12 14 Add 12 -14 Add \

Result 26 Result -2

index-172_1.jpg
e Form1 - oS e Form1 - oI
Number 1 Number 2 Number 1 Number 2

12 3 Subtract 12 30 Subtract

Result 9 Result -18

index-170_1.jpg
2 Form1 - B & Form1 - B
Number 1 Number 2 Number 1 Number 2
12 14 Add 12 -14 Add \

Result 26 Result -2

index-178_1.jpg
Exception Class Namespace Description

Exception System Will handle any exception that is raised. Use as failsafe

SystemException System Is the base class for all exceptions in the System
namespace. Handles all errors raised by the CLR.

ApplicationException System Handles all non-fatal exceptions raised by the
application.

NullReferenceException System Handles exceptions related to null objects.

FileNotFoundException System.lO Handles exceptions related to missing files.

index-175_1.jpg
=l Form3 -

Some label Some label Empty

‘Soﬁé té;% !Some text Some text

index-203_1.jpg
Form1 -0

e B Re B e e 8
AB gNo:AB 456 od olvo ar:1989

Key:XYZ987, RegNo:XYZ987, Vin:987654, Model:Saab, Year:2005

index-196_1.jpg
g Form1 =k

Latitude Longitude
59,3296842 18,0684023

City

Stockholm Add

|Stockholm [59.3296842, 18.0684023]

Delete

index-155_1.jpg
Form1 - O HEd L) Form1 - o IES
o o

v
v | Saturday
Monday |
Sunday
Sunda e A
Tuesday
Wory Wednesday
Wednesday b
Thursday F“ltudlrsd
Friday
Saturday E_

index-150_1.jpg

index-167_1.jpg
@ fomt - O S

Some
Text

index-156_1.jpg
sl Form1 -

Saturday v

Sunday
Monday

Tuesda!

Thursday
Friday
Saturday

Saturday: Weekend, Wednesday: Weekday
The selected days are equal: False

index-696_1.jpg
Form1 -

*k met *%k L
Site: 'http://finance.yahoo.com’
Data source: 'Daily Adj Close, 2 years'
Data points: 505
Min price: $29.69
Max price: $48.84
Avg price: $40.68

5 inte **
Site: 'http://nasdaq.com’
Data source: 'Daily Close, 2 years'
Data points: 2,517
Min price: $12.08
Max price: $37.67
Avg price: $23.10

Get Stock Data

index-67_1.jpg
Forml

Name
doras

4

Diplay data

Jonas is 45 years old,

oK

index-83_1.jpg
Stack Heap

Pl e V) ot

int myInt = 100; #101 myint 100 Some text
bool myBool = true; #102 myBool true
double myDouble = 10.05; #103 myDouble 10.05
string myString = "Some text"; [#104 |myString |reference

index-72_1.jpg
a Form1 = = “ o Form1 - o IEl

[] Activate Controls Countries [] Activate Controls Countries
v) Male ﬂ
Select a country ® Female Language: Swedish-
Check Gender

Message place holder Selected value: Female

index-377_2.jpg
Solution Explorer
R e-end@ &
Search Solution Explorer (Ctrl+") P~
] Solution 'Examples’ (25 projects)
4 [Corleones
b S Properties
b =m References
4 @ Classes
P c* Corleone.cs
b ¢ Don.cs
b c* Joecs
b c* KillerCodex.cs
b € Minion.cs
b c* Classl.cs
b % Properties
b =m References
4l Classes
p c* Constable.cs

index-377_1.jpg
Corleones assembly Police assembly:

Corleone Killer codex Constable

L)

Minion

index-37_2.jpg
Byte
KByte
MByte

8 Bits
21%Byte
220 Byte

1 Byte
1024 Byte
1048576 Byte

index-95_2.jpg
VAT System Windows.Forms. TextBox

=l alF] #
ImeModeChonged
Keypown

KeyUp
Eanpit

txtPrice KeyPress

index-37_1.jpg
01000001 01000001

A=01000001 A=01000001

index-95_1.jpg
Properti

txtPrice KeyPress

index-386_1.jpg
f' TheForce ¥ Force
i Abstract Class i Enum
) y 2
e

Being
Class

= TheForce
-2

Races
Enum

index-37_3.jpg
128 64 32 16

il

range =0 to 255

o|€—
o|€<— »

L]

Byte = A(65)

Bits

index-39_1.jpg
32(2°) 16(2%) 8(2%) 4(2?) 2(2) 1
1 1 0 1 0
32 16 0 4 0 1 = 53,

[

index-86_1.jpg
From
sbyte

byte

short
ushort

int

uint

long, ulong
float

char

To

short, int, long, float, double, decimal

short, ushort, int, uint, long, ulong, float, double, decimal
int, long, float, double, decimal

int, uint, long, ulong, float, double, decimal

long, float, double, decimal

long, ulong, float, double, decimal

float, double, decimal

double

ushort, int, uint, long, ulong, float, double, decimal

index-387_1.jpg
TheForce Al
Abstract Class
=]
= Properties
Forces
Midichlorians
= Methods
9. AddForce
@ TheForce
@ WhatAreYou

e /

Being A
Class

- TheForce

-

= Properties
F# Name
F Race
= Methods
e. AddForce
@ AreYouSith
@ Being
@ WhatAreYou

ﬁg—/

Force

Enum

Races
Enum

Jedi
Class

= Being
2

= Properties

5
»

IsJediMaster
Padawan

= Methods

oe0eee

A Sith
Class
= Being

= Properties
K Apprentice
& IsSithLord
= Methods

AddPadawan
AreYouSith
Jedi

RemovePadawan
S

eeee

AddApprentice
AreYouSith
CompleteTrainig
Sith (+ 1 overload)

P

index-84_1.jpg
Type Description Size
(bytes)
Int Whole numbers 4
Long Whole numbers 8
Float Floating point 4
numbers
Double Floating point 8
numbers
Decimal Monetary values 16
Bool Boolean i
Char Single character 2
String Sequence of 2 per
characters (text) char.
DateTime Moments in 8

Object

time
Generic type

Range

-2,147,483,648 to
2,147,483,647
-9,223,372,036,854,775,808
9,223,372,036,854,775,807
+/-3.4 x 10738

+/-1.7 x 101308
28 significant figures
True or False

N/A
N/A

00:00:00 01/01/0001 to
23:59:59 12/31/9999
N/A

CLR Alias
(System.)

Int32
Int64
Single
Double
Decimal
Boolean

Char
String

DateTime

Object

3y

J

-

Value types
(Primitive types)

<4—Stringis not a

value type but
can be used as
one from the
programmer’s
perspective

index-40_1.jpg
6° = 1048576

©
o ©
0 @ ©
n ! N ©
o < o —
! o o i &
0 (6] o o i
o)
1 2 3 4 5 6
1048576 x 1 65536 x 2 4096 x 3 256x4 16x5 1x6
131072 12288 1024 80 6

1048576

1193046

index-92_1.jpg
Name
Size

Unit

Bold
GaiCharset
GaiverticalFont

Italic
Strikeout

Underline

Microsoft Sans S
Microsoft Sans
825

Point

True

0

Fase

Fase

Fase

Fase

Minion Pro
Masinel

Modern No. 20
(Monotype Corsva

Bects
[lsinkeout
[l Underine

Font

Font st
Bald

Regular
Obligue

Bold Obligue

Sample

Sempt

Westem

AaBbYyZz

See

10
11
1
14
16

oK

Cancel

index-39_2.jpg
How many times can you subtract
How many times can you subtract
How many times can you subtract
How many times can you subtract
How many times can you subtract
How many times can you subtract

165 from 1193046407
16* from 14447040?
163 from 1339840?
162 from 1110407
16! from 8610?

16° from 610?

1193046 - 1048576 = 144470
144470 - (65536 x 2) = 13398
13398 - (4096 x 3) = 1110
1110- (256 x 4) = 86
86-(16x5)=6
6-(16x0)=6

index-88_1.jpg
g

Product
Product 1

[Prodoct2

[Product 3

[Poduct4

Product 5

index-376_1.jpg
Access Modifier Description

Public Available from any assembly

Protected Available internally in the class and in classes deriving from
the class containing the member.

Internal Available in the assembly where the class is located.

Protected Internal Available in the assembly where the class is located and in
classes deriving from the class containing the member.

Private Available in the class containing the member.

index-601_1.jpg
Repository<Motorcycle> mcRepository = new Repository<Motorcycle>();

.02_Constraints.Motorcycle’ must be a non-abstract type with a public parameterless constructor in order to|

use it as parameter T'in the generic type or method '_02_Constraints.Classes Chapter_2 Repository<T>"

index-60_2.jpg

index-60_1.jpg
b My First Forms Application - Microsoft Visual Studio

EILE EDIT VIEW PROJECT BUILD DEBUG TEAM TOOLS TEST ANALYZE WINDOW HELP
o - (iRl I - P Start - () - Debug - = L] B
£ Toolbox 1% 3 Formi.cs [Design]”
5‘ Search Toolbox £ - [& My First Forms Application - *3 My_First Forms_Application.Forn - @ Form1()
fi| «Genent =namespace My_First_Forms_Application
There are no usable controlsin {

this group. Drag an item onto
this ted to add it to the toolbox. B

public partial class Forml : Form

{
8 public Formi()

{

InitializeComponent();

AWS.. Tes. |Tool.|SQL. |100% <4

Data Tools Operations Web Publish Activity

»

B

(=] A -

Quick Launch (Ctri+Q)

Signin.

ution Explorer
@ o-20dBd

Search Solution Explorer (Ctrl+)

4 [E My First Forms Application -

b K Properties
b em References

¥ App.config
4 Forml.cs

b) Form1.Designer.s

) Form1.resc
b < Form1 v

Solution Explorer Test Explorer Model Browser

Properties v ax
Form1 Class B
=N~

Server Explorer | Properties

Package Manager Console ErorList TaskList Output Find Results 1 Find Symbol Results Breakpoints Call Hierarchy.

suoyeaynony

index-338_1.jpg
® form1 - &

Animals
O Cat
o Dog

® Dinosaur A you kidding,'m a foss

Walk oK

index-345_1.jpg
Show output from: Debug z E ra

Title:
Title:
Title:

Error List

The Color of Magic | rating: 3,5
Bilbo rating: 3,7
Lord of the Rings rating: 4,5

Code Definition Window Output Find Results 1 Find Symbol Results Locals Autos Watch 1

index-673_1.jpg
Collection Description

ConcurrentBag<T> Stores an unordered collection of items.
ConcurrentDictionary<TKey, TValue> Stores a collection of dictionary items using key-value pairs.
ConcurrentQueue<T> Works the same way as the Queue<T> class.
ConcurrentStack<T> Works the same way as the Stack<T> class.
BlockingCollection<T> Is a wrapper for the IProducerConsumerCollection<T>

interface. It can block read requests until a read lock is
available. It can block items being added to the underlying
collection until space is available.

IProducerConsumerCollection<T> This interface defines methods that are implemented by
classes that distinguish between producers that add items and
consu-mers that read items. The interface is implemented by
the ConcurrentBag<T>, ConcurrentQueue<T> and
ConcurrentStack<T> collections.

index-343_1.jpg
Output

Show output from: Debug
Type: List’1, Count: 3
Title: Bilbo

Title: Lord of the Rings
Title: The Color of Magic

Error List Code Definition Window Output

Find Results 1 Find Symbol Results Locals

IR
#

Autos Watch 1

index-66_2.jpg
@ form1 - © S

Jonas

Dl dota

index-350_1.jpg
Products

Form1

Product 3

Add Order Row ‘

- KN

Title

Price Qty

Total

Product 1

Product 2

105 2

21

index-34_1.jpg

index-677_1.jpg
Formt

- o IES

1[Lisa] Calzone
2 [Lisa] Calzone
3 [Mary] Caesar Salad
4 [Lisa] Caesar Salad

5 [Mary] Caesar Salad

6 [Lisa] Chicken Vindaloo
7 [Carl] Chicken Vindaloo
8[Carl] Calzone

9[Carl] Caesar Salad

10 [Carl] Calzone

Cancel

index-366_1.jpg
FlyingMachine

' ' More Generalized

Plane Saucer

. . More Spezialized
Jet UFO

index-619_1.jpg
g

Form1

- o IER

ABC123 : Volvo : False
GFD123 : Volvo : False

Search vo

Search

Result: ABC123: Volvo : False

GFD123 : Volvo : False

Print to list box

Print to combo box

Call Func Call Predicate

index-354_1.jpg
Form1 - oIl

Alien v

‘ Rent

All copies of 'Alien’ are rented out.

Return

Form1 - oENg = Form1 - oIl

Alien v Aliens v

Rent Return ‘ ‘ Rent Return

A copy of 'Alien' has been returned.
Available Copies: 1.

A copy of 'Aliens' has been rented.
Available Copies: 1.

index-611_1.jpg
Form1

- CENg =

Form1

AB olvo a
GFD123 : Volvo : False
XYZ123 : Saab : True

LKJ123 : Koenigsegg : True

AB

GFD123 : Volvo : False

Search

Search

Search vo

Search

index-36_2.jpg
static void Main(string[] args)||-method private hidebysig
{ static void Main(string[] args)
i = = 5 <
int x =10, y = 20, z; _entrypoint
/7 Code size 24 (9x18)
if (x >y) -maxstack 2
.locals init ([0] int32 x,
_ . [1] int32 y,
z = 100; [2] int32 z,
} [3] bool csu0008)|
} IL_08068: nop

index-66_1.jpg
This is my first dialog box.

o

index-36_1.jpg
class

static void Main(string[] args) [
{
i

Output

index-64_1.jpg
Display data

Display data

index-330_1.jpg
=) Form1 - o
Employee

® Emplyee Class

» IPerson Interface

» IEmployee Interface

e

Form1 - o Kl
Employee
Emplyee Class
@ |Person Interface

> IEmployee Interface

g

Form1 - oIl
Employee

» Emplyee Class

» IPerson Interface

© |Employee Interface

(Employee)
2, Carl Carlton, 1982, 33
1, Science, 123000

(IPerson)
2, Carl Carlton, 1982, 33

(IEmployee)
1, Science, 123000

index-328_1.jpg
class Movie : IMovie
WBs
Implement interface ‘IMovie'
Explicitly implement interface 'IMovie'

