
DATA

Hadoop Security

ISBN: 978-1-491-90098-7

US $49.99  CAN $57.99

“	Hadoop	lets	you	store
more	data	and	explore		
it	with	diverse,	powerful	
tools.	This	book	helps	
you	take	advantage	of	
these	new	capabilities	
without	also	exposing	
yourself	to	new	security	
risks.”

—Doug Cutting
Creator of Hadoop

Twitter: @oreillymedia
facebook.com/oreilly

As more corporations turn to Hadoop to store and process their most 
valuable data, the risk of a potential breach of those systems increases 
exponentially. This practical book not only shows Hadoop administrators 
and security architects how to protect Hadoop data from unauthorized 
access, it also shows how to limit the ability of an attacker to corrupt or 
modify data in the event of a security breach. 

Authors Ben Spivey and Joey Echeverria provide in-depth information about 
the security features available in Hadoop, and organize them according to 
common computer security concepts. You’ll also get real-world examples 
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Foreword

It has not been very long since the phrase “Hadoop security” was an oxymoron. Early
versions of the big data platform, built and used at web companies like Yahoo! and
Facebook, didn’t try very hard to protect the data they stored. They didn’t really have
to—very little sensitive data went into Hadoop. Status updates and news stories aren’t
attractive targets for bad guys. You don’t have to work that hard to lock them down.

As the platform has moved into more traditional enterprise use, though, it has begun
to work with more traditional enterprise data. Financial transactions, personal bank
account and tax information, medical records, and similar kinds of data are exactly
what bad guys are after. Because Hadoop is now used in retail, banking, and health‐
care applications, it has attracted the attention of thieves as well.

And if data is a juicy target, big data may be the biggest and juiciest of all. Hadoop
collects more data from more places, and combines and analyzes it in more ways than
any predecessor system, ever. It creates tremendous value in doing so.

Clearly, then, “Hadoop security” is a big deal.

This book, written by two of the people who’ve been instrumental in driving security
into the platform, tells the story of Hadoop’s evolution from its early, wide open con‐
sumer Internet days to its current status as a trusted place for sensitive data. Ben and
Joey review the history of Hadoop security, covering its advances and its evolution
alongside new business problems. They cover topics like identity, encryption, key
management and business practices, and discuss them in a real-world context.

It’s an interesting story. Hadoop today has come a long way from the software that
Facebook chose for image storage a decade ago. It offers much more power, many
more ways to process and analyze data, much more scale, and much better perfor‐
mance. Therefore it has more pieces that need to be secured, separately and in combi‐
nation.

The best thing about this book, though, is that it doesn’t merely describe. It prescribes.
It tells you, very clearly and with the detail that you expect from seasoned practition‐

ix



ers who have built Hadoop and used it, how to manage your big data securely. It gives
you the very best advice available on how to analyze, process, and understand data
using the state-of-the-art platform—and how to do so safely.

—Mike Olson,
Chief Strategy Officer and Cofounder,

Cloudera, Inc.

x | Foreword



Preface

Apache Hadoop is still a relatively young technology, but that has not limited its rapid
adoption and the explosion of tools that make up the vast ecosystem around it. This
is certainly an exciting time for Hadoop users. While the opportunity to add value to
an organization has never been greater, Hadoop still provides a lot of challenges to
those responsible for securing access to data and ensuring that systems respect rele‐
vant policies and regulations. There exists a wealth of information available to devel‐
opers building solutions with Hadoop and administrators seeking to deploy and
operate it. However, guidance on how to design and implement a secure Hadoop
deployment has been lacking.

This book provides in-depth information about the many security features available
in Hadoop and organizes it using common computer security concepts. It begins with
introductory material in the first chapter, followed by material organized into four
larger parts: Part I, Security Architecture; Part II, Authentication, Authorization, and
Accounting; Part III, Data Security; and Part IV, PUtting It All Together. These parts
cover the early stages of designing a physical and logical security architecture all the
way through implementing common security access controls and protecting data.
Finally, the book wraps up with use cases that gather many of the concepts covered in
the book into real-world examples.

Audience
This book targets Hadoop administrators charged with securing their big data plat‐
form and established security architects who need to design and integrate a Hadoop
security plan within a larger enterprise architecture. It presents many Hadoop secu‐
rity concepts including authentication, authorization, accounting, encryption, and
system architecture.

Chapter 1 includes an overview of some of the security concepts used throughout this
book, as well as a brief description of the Hadoop ecosystem. If you are new to
Hadoop, we encourage you to review Hadoop Operations and Hadoop: The Definitive

xi
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Guide as needed. We assume that you are familiar with Linux, computer networks,
and general system architecture. For administrators who do not have experience with
securing distributed systems, we provide an overview in Chapter 2. Practiced security
architects might want to skip that chapter unless they’re looking for a review. In gen‐
eral, we don’t assume that you have a programming background, and try to focus on
the architectural and operational aspects of implementing Hadoop security.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

xii | Preface

http://shop.oreilly.com/product/0636920033448.do


Using Code Examples
Throughout this book, we provide examples of configuration files to help guide you
in securing your own Hadoop environment. A downloadable version of some of
those examples is available at https://github.com/hadoop-security/examples. In Chap‐
ter 13, we provide a complete example of designing, implementing, and deploying a
web interface for saving snapshots of web pages. The complete source code for the
example, along with instructions for securely configuring a Hadoop cluster for
deployment of the application, is available for download at GitHub.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Hadoop Security by Ben Spivey and
Joey Echeverria (O’Reilly). Copyright 2015 Ben Spivey and Joey Echeverria,
978-1-491-90098-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,

Preface | xiii

https://github.com/hadoop-security/examples
https://github.com/hadoop-security/kite-spring-hbase-example
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/


Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/hadoop-security.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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Disclaimer
Thank you for reading this book. While the authors of this book have made every
attempt to explain, document, and recommend different security features in the
Hadoop ecosystem, there is no warranty expressed or implied that using any of these
features will result in a fully secured cluster. From a security point of view, no infor‐
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mation system is 100% secure, regardless of the mechanisms used to protect it. We
encourage a constant security review process for your Hadoop environment to ensure
the best possible security stance. The authors of this book and O’Reilly Media are not
responsible for any damage that might or might not have come as a result of using
any of the features described in this book. Use at your own risk.
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1 Apache Hadoop itself consists of four subprojects: HDFS, YARN, MapReduce, and Hadoop Common. How‐
ever, the Hadoop ecosystem, Hadoop, and the related projects that build on or integrate with Hadoop are
often shortened to just Hadoop. We attempt to make it clear when we’re referring to Hadoop the project ver‐
sus Hadoop the ecosystem.

CHAPTER 1

Introduction

Back in 2003, Google published a paper describing a scale-out architecture for storing
massive amounts of data across clusters of servers, which it called the Google File Sys‐
tem (GFS). A year later, Google published another paper describing a programming
model called MapReduce, which took advantage of GFS to process data in a parallel
fashion, bringing the program to where the data resides. Around the same time,
Doug Cutting and others were building an open source web crawler now called
Apache Nutch. The Nutch developers realized that the MapReduce programming
model and GFS were the perfect building blocks for a distributed web crawler, and
they began implementing their own versions of both projects. These components
would later split from Nutch and form the Apache Hadoop project. The ecosystem1 of
projects built around Hadoop’s scale-out architecture brought about a different way
of approaching problems by allowing the storage and processing of all data important
to a business.

While all these new and exciting ways to process and store data in the Hadoop eco‐
system have brought many use cases across different verticals to use this technology,
it has become apparent that managing petabytes of data in a single centralized cluster
can be dangerous. Hundreds if not thousands of servers linked together in a common
application stack raises many questions about how to protect such a valuable asset.
While other books focus on such things as writing MapReduce code, designing opti‐
mal ingest frameworks, or architecting complex low-latency processing systems on
top of the Hadoop ecosystem, this one focuses on how to ensure that all of these

1
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things can be protected using the numerous security features available across the
stack as part of a cohesive Hadoop security architecture.

Security Overview
Before this book can begin covering Hadoop-specific content, it is useful to under‐
stand some key theory and terminology related to information security. At the heart
of information security theory is a model known as CIA, which stands for confiden‐
tiality, integrity, and availability. These three components of the model are high-level
concepts that can be applied to a wide range of information systems, computing plat‐
forms, and—more specifically to this book—Hadoop. We also take a closer look at
authentication, authorization, and accounting, which are critical components of secure
computing that will be discussed in detail throughout the book.

While the CIA model helps to organize some information security
principles, it is important to point out that this model is not a strict
set of standards to follow. Security features in the Hadoop platform
may span more than one of the CIA components, or possibly none
at all.

Confidentiality
Confidentiality is a security principle focusing on the notion that information is only
seen by the intended recipients. For example, if Alice sends a letter in the mail to Bob,
it would only be deemed confidential if Bob were the only person able to read it.
While this might seem straightforward enough, several important security concepts
are necessary to ensure that confidentiality actually holds. For instance, how does
Alice know that the letter she is sending is actually being read by the right Bob? If the
correct Bob reads the letter, how does he know that the letter actually came from the
right Alice? In order for both Alice and Bob to take part in this confidential informa‐
tion passing, they need to have an identity that uniquely distinguishes themselves
from any other person. Additionally, both Alice and Bob need to prove their identi‐
ties via a process known as authentication. Identity and authentication are key com‐
ponents of Hadoop security and are covered at length in Chapter 5.

Another important concept of confidentiality is encryption. Encryption is a mecha‐
nism to apply a mathematical algorithm to a piece of information where the output is
something that unintended recipients are not able to read. Only the intended recipi‐
ents are able to decrypt the encrypted message back to the original unencrypted mes‐
sage. Encryption of data can be applied both at rest and in flight. At-rest data
encryption means that data resides in an encrypted format when not being accessed.
A file that is encrypted and located on a hard drive is an example of at-rest encryp‐
tion. In-flight encryption, also known as over-the-wire encryption, applies to data
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sent from one place to another over a network. Both modes of encryption can be
used independently or together. At-rest encryption for Hadoop is covered in Chap‐
ter 9, and in-flight encryption is covered in Chapters 10 and 11.

Integrity
Integrity is an important part of information security. In the previous example where
Alice sends a letter to Bob, what happens if Charles intercepts the letter in transit and
makes changes to it unbeknownst to Alice and Bob? How can Bob ensure that the
letter he receives is exactly the message that Alice sent? This concept is data integrity.
The integrity of data is a critical component of information security, especially in
industries with highly sensitive data. Imagine if a bank did not have a mechanism to
prove the integrity of customer account balances? A hospital’s data integrity of patient
records? A government’s data integrity of intelligence secrets? Even if confidentiality
is guaranteed, data that doesn’t have integrity guarantees is at risk of substantial dam‐
age. Integrity is covered in Chapters 9 and 10.

Availability
Availability is a different type of principle than the previous two. While confidential‐
ity and integrity can closely be aligned to well-known security concepts, availability is
largely covered by operational preparedness. For example, if Alice tries to send her
letter to Bob, but the post office is closed, the letter cannot be sent to Bob, thus mak‐
ing it unavailable to him. The availability of data or services can be impacted by regu‐
lar outages such as scheduled downtime for upgrades or applying security patches,
but it can also be impacted by security events such as distributed denial-of-service
(DDoS) attacks. The handling of high-availability configurations is covered in
Hadoop Operations and Hadoop: The Definitive Guide, but the concepts will be cov‐
ered from a security perspective in Chapters 3 and 10.

Authentication, Authorization, and Accounting
Authentication, authorization, and accounting (often abbreviated, AAA) refer to an
architectural pattern in computer security where users of a service prove their iden‐
tity, are granted access based on rules, and where a recording of a user’s actions is
maintained for auditing purposes. Closely tied to AAA is the concept of identity.
Identity refers to how a system distinguishes between different entities, users, and
services, and is typically represented by an arbitrary string, such as a username or a
unique number, such as a user ID (UID).

Before diving into how Hadoop supports identity, authentication, authorization, and
accounting, consider how these concepts are used in the much simpler case of using
the sudo command on a single Linux server. Let’s take a look at the terminal session
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for two different users, Alice and Bob. On this server, Alice is given the username
alice and Bob is given the username bob. Alice logs in first, as shown in Example 1-1.

Example 1-1. Authentication and authorization

$ ssh alice@hadoop01
alice@hadoop01's password:
Last login: Wed Feb 12 15:26:55 2014 from 172.18.12.166
[alice@hadoop01 ~]$ sudo service sshd status
openssh-daemon (pid  1260) is running...
[alice@hadoop01 ~]$

In Example 1-1, Alice logs in through SSH and she is immediately prompted for her
password. Her username/password pair is used to verify her entry in the /etc/passwd
password file. When this step is completed, Alice has been authenticated with the
identity alice. The next thing Alice does is use the sudo command to get the status of
the sshd service, which requires superuser privileges. The command succeeds, indi‐
cating that Alice was authorized to perform that command. In the case of sudo, the
rules that govern who is authorized to execute commands as the superuser are stored
in the /etc/sudoers file, shown in Example 1-2.

Example 1-2. /etc/sudoers

[root@hadoop01 ~]# cat /etc/sudoers
root ALL = (ALL) ALL
%wheel ALL = (ALL) NOPASSWD:ALL
[root@hadoop01 ~]#

In Example 1-2, we see that the root user is granted permission to execute any com‐
mand with sudo and that members of the wheel group are granted permission to exe‐
cute any command with sudo while not being prompted for a password. In this case,
the system is relying on the authentication that was performed during login rather
than issuing a new authentication challenge. The final question is, how does the sys‐
tem know that Alice is a member of the wheel group? In Unix and Linux systems, this
is typically controlled by the /etc/group file.

In this way, we can see that two files control Alice’s identity: the /etc/passwd file (see
Example 1-4) assigns her username a unique UID as well as details such as her home
directory, while the /etc/group file (see Example 1-3) further provides information
about the identity of groups on the system and which users belong to which groups.
These sources of identity information are then used by the sudo command, along
with authorization rules found in the /etc/sudoers file, to verify that Alice is author‐
ized to execute the requested command.
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Example 1-3. /etc/group

[root@hadoop01 ~]# grep wheel /etc/group
wheel:x:10:alice
[root@hadoop01 ~]#

Example 1-4. /etc/passwd

[root@hadoop01 ~]# grep alice /etc/passwd
alice:x:1000:1000:Alice:/home/alice:/bin/bash
[root@hadoop01 ~]#

Now let’s see how Bob’s session turns out in Example 1-5.

Example 1-5. Authorization failure

$ ssh bob@hadoop01
bob@hadoop01's password:
Last login: Wed Feb 12 15:30:54 2014 from 172.18.12.166
[bob@hadoop01 ~]$ sudo service sshd status

We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:

    #1) Respect the privacy of others.
    #2) Think before you type.
    #3) With great power comes great responsibility.

[sudo] password for bob:
bob is not in the sudoers file.  This incident will be reported.
[bob@hadoop01 ~]$

In this example, Bob is able to authenticate in much the same way that Alice does, but
when he attempts to use sudo he sees very different behavior. First, he is again
prompted for his password and after successfully supplying it, he is denied permis‐
sion to run the service command with superuser privileges. This happens because,
unlike Alice, Bob is not a member of the wheel group and is therefore not authorized
to use the sudo command.

That covers identity, authentication, and authorization, but what about accounting? 
For actions that interact with secure services such as SSH and sudo, Linux generates a
logfile called /var/log/secure. This file records an account of certain actions including
both successes and failures. If we take a look at this log after Alice and Bob have per‐
formed the preceding actions, we see the output in Example 1-6 (formatted for read‐
ability).
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Example 1-6. /var/log/secure

[root@hadoop01 ~]# tail -n 6 /var/log/secure
Feb 12 20:32:04 ip-172-25-3-79 sshd[3774]: Accepted password for
  alice from 172.18.12.166 port 65012 ssh2
Feb 12 20:32:04 ip-172-25-3-79 sshd[3774]: pam_unix(sshd:session):
  session opened for user alice by (uid=0)
Feb 12 20:32:33 ip-172-25-3-79 sudo:    alice : TTY=pts/0 ;
  PWD=/home/alice ; USER=root ; COMMAND=/sbin/service sshd status
Feb 12 20:33:15 ip-172-25-3-79 sshd[3799]: Accepted password for
  bob from 172.18.12.166 port 65017 ssh2
Feb 12 20:33:15 ip-172-25-3-79 sshd[3799]: pam_unix(sshd:session):
  session opened for user bob by (uid=0)
Feb 12 20:33:39 ip-172-25-3-79 sudo:      bob : user NOT in sudoers;
  TTY=pts/2 ; PWD=/home/bob ; USER=root ; COMMAND=/sbin/service sshd status
[root@hadoop01 ~]#

For both users, the fact that they successfully logged in using SSH is recorded, as are
their attempts to use sudo. In Alice’s case, the system records that she successfully
used sudo to execute the /sbin/service sshd status command as the user root. For
Bob, on the other hand, the system records that he attempted to execute
the /sbin/service sshd status command as the user root and was denied permis‐
sion because he is not in /etc/sudoers.

This example shows how the concepts of identity, authentication, authorization, and
accounting are used to maintain a secure system in the relatively simple example of a
single Linux server. These concepts are covered in detail in a Hadoop context in
Part II.

Hadoop Security: A Brief History
Hadoop has its heart in storing and processing large amounts of data efficiently and
as it turns out, cheaply (monetarily) when compared to other platforms. The focus
early on in the project was around the actual technology to make this happen. Much
of the code covered the logic on how to deal with the complexities inherent in dis‐
tributed systems, such as handling of failures and coordination. Due to this focus, the
early Hadoop project established a security stance that the entire cluster of machines
and all of the users accessing it are part of a trusted network. What this effectively
means is that Hadoop did not have strong security measures in place to enforce, well,
much of anything.

As the project evolved, it became apparent that at a minimum there should be a
mechanism for users to strongly authenticate to prove their identities. The mecha‐
nism chosen for the project was Kerberos, a well-established protocol that today is
common in enterprise systems such as Microsoft Active Directory. After strong
authentication came strong authorization. Strong authorization defined what an indi‐
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vidual user could do after they had been authenticated. Initially, authorization was
implemented on a per-component basis, meaning that administrators needed to
define authorization controls in multiple places. Eventually this became easier with 
Apache Sentry (Incubating), but even today there is not a holistic view of authoriza‐
tion across the ecosystem, as we will see in Chapters 6 and 7.

Another aspect of Hadoop security that is still evolving is the protection of data
through encryption and other confidentiality mechanisms. In the trusted network, it
was assumed that data was inherently protected from unauthorized users because
only authorized users were on the network. Since then, Hadoop has added encryption
for data transmitted between nodes, as well as data stored on disk. We will see how
this security evolution comes into play as we proceed, but first we will take a look at
the Hadoop ecosystem to get our bearings.

Hadoop Components and Ecosystem
In this section, we will provide a 50,000-foot view of the Hadoop ecosystem compo‐
nents that are covered throughout the book. This will help to introduce components
before talking about the security of them in later chapters. Readers that are well
versed in the components listed can safely skip to the next section. Unless otherwise
noted, security features described throughout this book apply to the versions of the
associated project listed in Table 1-1.

Table 1-1. Project versionsa

Project Version

Apache HDFS 2.3.0

Apache MapReduce (for MR1) 1.2.1

Apache YARN (for MR2) 2.3.0

Apache Hive 0.12.0

Cloudera Impala 2.0.0

Apache HBase 0.98.0

Apache Accumulo 1.6.0

Apache Solr 4.4.0

Apache Oozie 4.0.0

Cloudera Hue 3.5.0
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Project Version

Apache ZooKeeper 3.4.5

Apache Flume 1.5.0

Apache Sqoop 1.4.4

Apache Sentry (Incubating) 1.4.0-incubating

a An astute reader will notice some omissions in the list of projects covered. In particular, there is no mention of Apache Spark,
Apache Ranger, or Apache Knox. These projects were omitted due to time constraints and given their status as relatively new
additions to the Hadoop ecosystem.

Apache HDFS
The Hadoop Distributed File System, or HDFS, is often considered the foundation
component for the rest of the Hadoop ecosystem. HDFS is the storage layer for
Hadoop and provides the ability to store mass amounts of data while growing storage
capacity and aggregate bandwidth in a linear fashion. HDFS is a logical filesystem that
spans many servers, each with multiple hard drives. This is important to understand
from a security perspective because a given file in HDFS can span many or all servers
in the Hadoop cluster. This means that client interactions with a given file might
require communication with every node in the cluster. This is made possible by a key
implementation feature of HDFS that breaks up files into blocks. Each block of data
for a given file can be stored on any physical drive on any node in the cluster. Because
this is a complex topic that we cannot cover in depth here, we are omitting the details
of how that works and recommend Hadoop: The Definitive Guide, 3rd Edition by Tom
White (O’Reilly). The important security takeaway is that all files in HDFS are broken
up into blocks, and clients using HDFS will communicate over the network to all of
the servers in the Hadoop cluster when reading and writing files.

HDFS is built on a head/worker architecture and is comprised of two primary com‐
ponents: NameNode (head) and DataNode (worker). Additional components include
JournalNode, HttpFS, and NFS Gateway:

NameNode
The NameNode is responsible for keeping track of all the metadata related to the
files in HDFS, such as filenames, block locations, file permissions, and replica‐
tion. From a security perspective, it is important to know that clients of HDFS,
such as those reading or writing files, always communicate with the NameNode.
Additionally, the NameNode provides several important security functions for
the entire Hadoop ecosystem, which are described later.
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DataNode
The DataNode is responsible for the actual storage and retrieval of data blocks in
HDFS. Clients of HDFS reading a given file are told by the NameNode which
DataNode in the cluster has the block of data requested. When writing data to
HDFS, clients write a block of data to a DataNode determined by the NameNode.
From there, that DataNode sets up a write pipeline to other DataNodes to com‐
plete the write based on the desired replication factor.

JournalNode
The JournalNode is a special type of component for HDFS. When HDFS is con‐
figured for high availability (HA), JournalNodes take over the NameNode respon‐
sibility for writing HDFS metadata information. Clusters typically have an odd
number of JournalNodes (usually three or five) to ensure majority. For example,
if a new file is written to HDFS, the metadata about the file is written to every
JournalNode. When the majority of the JournalNodes successfully write this
information, the change is considered durable. HDFS clients and DataNodes do
not interact with JournalNodes directly.

HttpFS
HttpFS is a component of HDFS that provides a proxy for clients to the Name‐
Node and DataNodes. This proxy is a REST API and allows clients to communi‐
cate to the proxy to use HDFS without having direct connectivity to any of the
other components in HDFS. HttpFS will be a key component in certain cluster
architectures, as we will see later in the book.

NFS Gateway
The NFS gateway, as the name implies, allows for clients to use HDFS like an
NFS-mounted filesystem. The NFS gateway is an actual daemon process that
facilitates the NFS protocol communication between clients and the underlying
HDFS cluster. Much like HttpFS, the NFS gateway sits between HDFS and clients
and therefore affords a security boundary that can be useful in certain cluster
architectures.

KMS
The Hadoop Key Management Server, or KMS, plays an important role in HDFS
transparent encryption at rest. Its purpose is to act as the intermediary between
HDFS clients, the NameNode, and a key server, handling encryption operations
such as decrypting data encryption keys and managing encryption zone keys.
This is covered in detail in Chapter 9.

Apache YARN
As Hadoop evolved, it became apparent that the MapReduce processing framework,
while incredibly powerful, did not address the needs of additional use cases. Many
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problems are not easily solved, if at all, using the MapReduce programming para‐
digm. What was needed was a more generic framework that could better fit addi‐
tional processing models. Apache YARN provides this capability. Other processing
frameworks and applications, such as Impala and Spark, use YARN as the resource
management framework. While YARN provides a more general resource manage‐
ment framework, MapReduce is still the canonical application that runs on it. Map‐
Reduce that runs on YARN is considered version 2, or MR2 for short. The YARN
architecture consists of the following components:

ResourceManager
The ResourceManager daemon is responsible for application submission
requests, assigning ApplicationMaster tasks, and enforcing resource management
policies.

JobHistory Server
The JobHistory Server, as the name implies, keeps track of the history of all jobs
that have run on the YARN framework. This includes job metrics like running
time, number of tasks run, amount of data written to HDFS, and so on.

NodeManager
The NodeManager daemon is responsible for launching individual tasks for jobs
within YARN containers, which consist of virtual cores (CPU resources) and
RAM resources. Individual tasks can request some number of virtual cores and
memory depending on its needs. The minimum, maximum, and increment
ranges are defined by the ResourceManager. Tasks execute as separate processes
with their own JVM. One important role of the NodeManager is to launch a spe‐
cial task called the ApplicationMaster. This task is responsible for managing the
status of all tasks for the given application. YARN separates resource manage‐
ment from task management to better scale YARN applications in large clusters
as each job executes its own ApplicationMaster.

Apache MapReduce
MapReduce is the processing counterpart to HDFS and provides the most basic
mechanism to batch process data. When MapReduce is executed on top of YARN, it
is often called MapReduce2, or MR2. This distinguishes the YARN-based verison of
MapReduce from the standalone MapReduce framework, which has been retroac‐
tively named MR1. MapReduce jobs are submitted by clients to the MapReduce
framework and operate over a subset of data in HDFS, usually a specified directory.
MapReduce itself is a programming paradigm that allows chunks of data, or blocks in
the case of HDFS, to be processed by multiple servers in parallel, independent of one
another. While a Hadoop developer needs to know the intricacies of how MapReduce
works, a security architect largely does not. What a security architect needs to know
is that clients submit their jobs to the MapReduce framework and from that point on,
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the MapReduce framework handles the distribution and execution of the client code
across the cluster. Clients do not interact with any of the nodes in the cluster to make
their job run. Jobs themselves require some number of tasks to be run to complete the
work. Each task is started on a given node by the MapReduce framework’s scheduling
algorithm.

Individual tasks started by the MapReduce framework on a given
server are executed as different users depending on whether Ker‐
beros is enabled. Without Kerberos enabled, individual tasks are
run as the mapred system user. When Kerberos is enabled, the indi‐
vidual tasks are executed as the user that submitted the MapReduce
job. However, even if Kerberos is enabled, it may not be immedi‐
ately apparent which user is executing the underlying MapReduce
tasks when another component or tool is submitting the MapRe‐
duce job. See “Impersonation” on page 82 for a relevant detailed
discussion regarding Hive impersonation.

Similar to HDFS, MapReduce is also a head/worker architecture and is comprised of
two primary components:

JobTracker (head)
When clients submit jobs to the MapReduce framework, they are communicating
with the JobTracker. The JobTracker handles the submission of jobs by clients
and determines how jobs are to be run by deciding things like how many tasks
the job requires and which TaskTrackers will handle a given task. The JobTracker
also handles security and operational features such as job queues, scheduling
pools, and access control lists to determine authorization. Lastly, the JobTracker
handles job metrics and other information about the job, which are communica‐
ted to it from the various TaskTrackers throughout the execution of a given job.
The JobTracker includes both resource management and task management,
which were split in MR2 between the ResourceManager and ApplicationMaster.

TaskTracker (worker)
TaskTrackers are responsible for executing a given task that is part of a MapRe‐
duce job. TaskTrackers receive tasks to run from the JobTracker, and spawn off
separate JVM processes for each task they run. TaskTrackers execute both map
and reduce tasks, and the amount of each that can be run concurrently is part of
the MapReduce configuration. The important takeaway from a security stand‐
point is that the JobTracker decides what tasks to be run and on which Task‐
Trackers. Clients do not have control over how tasks are assigned, nor do they
communicate with TaskTrackers as part of normal job execution.

A key point about MapReduce is that other Hadoop ecosystem components are
frameworks and libraries on top of MapReduce, meaning that MapReduce handles
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the actual processing of data, but these frameworks and libraries abstract the MapRe‐
duce job execution from clients. Hive, Pig, and Sqoop are examples of components
that use MapReduce in this fashion.

Understanding how MapReduce jobs are submitted is an important
part of user auditing in Hadoop, and is discussed in detail in “Block
access tokens” on page 79. A user submitting her own Java MapRe‐
duce code is a much different activity from a security point of view
than a user using Sqoop to import data from a RDBMS or execut‐
ing a SQL query in Hive, even though all three of these activities
use MapReduce.

Apache Hive
The Apache Hive project was started by Facebook. The company saw the utility of
MapReduce to process data but found limitations in adoption of the framework due
to the lack of Java programming skills in its analyst communities. Most of Facebook’s
analysts did have SQL skills, so the Hive project was started to serve as a SQL abstrac‐
tion layer that uses MapReduce as the execution engine. The Hive architecture con‐
sists of the following components:

Metastore database
The metastore database is a relational database that contains all the Hive meta‐
data, such as information about databases, tables, columns, and data types. This
information is used to apply structure to the underlying data in HDFS at the time
of access, also known as schema on read.

Metastore server
The Hive Metastore Server is a daemon that sits between Hive clients and the
metastore database. This affords a layer of security by not allowing clients to have
the database credentials to the Hive metastore.

HiveServer2
HiveServer2 is the main access point for clients using Hive. HiveServer2 accepts
JDBC and ODBC clients, and for this reason is leveraged by a variety of client
tools and other third-party applications.

HCatalog
HCatalog is a series of libraries that allow non-Hive frameworks to have access to
Hive metadata. For example, users of Pig can use HCatalog to read schema infor‐
mation about a given directory of files in HDFS. The WebHCat server is a dae‐
mon process that exposes a REST interface to clients, which in turn access
HCatalog APIs.
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For more thorough coverage of Hive, have a look at Programming Hive by Edward
Capriolo, Dean Wampler, and Jason Rutherglen (O’Reilly).

Cloudera Impala
Cloudera Impala is a massive parallel processing (MPP) framework that is purpose-
built for analytic SQL. Impala reads data from HDFS and utilizes the Hive metastore
for interpreting data structures and formats. The Impala architecture consists of the
following components:

Impala daemon (impalad)
The Impala daemon does all of the heavy lifting of data processing. These dae‐
mons are collocated with HDFS DataNodes to optimize for local reads.

StateStore
The StateStore daemon process maintains state information about all of the
Impala daemons running. It monitors whether Impala daemons are up or down,
and broadcasts status to all of the daemons. The StateStore is not a required com‐
ponent in the Impala architecture, but it does provide for faster failure tolerance
in the case where one or more daemons have gone down.

Catalog server
The Catalog server is Impala’s gateway into the Hive metastore. This process is
responsible for pulling metadata from the Hive metastore and synchronizing
metadata changes that have occurred by way of Impala clients. Having a separate
Catalog server helps to reduce the load the Hive metastore server encounters, as
well as to provide additional optimizations for Impala for speed.

New users to the Hadoop ecosystem often ask what the difference
is between Hive and Impala because they both offer SQL access to
data in HDFS. Hive was created to allow users that are familiar
with SQL to process data in HDFS without needing to know any‐
thing about MapReduce. It was designed to abstract the innards of
MapReduce to make the data in HDFS more accessible. Hive is
largely used for batch access and ETL work. Impala, on the other
hand, was designed from the ground up to be a fast analytic pro‐
cessing engine to support ad hoc queries and business intelligence
(BI) tools. There is utility in both Hive and Impala, and they
should be treated as complementary components.

For more thorough coverage of all things Impala, check out Getting Started with
Impala (O’Reilly).
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Apache Sentry (Incubating)
Sentry is the component that provides fine-grained role-based access controls
(RBAC) to several of the other ecosystem components, such as Hive and Impala.
While individual components may have their own authorization mechanism, Sentry
provides a unified authorization that allows centralized policy enforcement across
components. It is a critical component of Hadoop security, which is why we have
dedicated an entire chapter to the topic (Chapter 7). Sentry consists of the following
components:

Sentry server
The Sentry server is a daemon process that facilitates policy lookups made by
other Hadoop ecosystem components. Client components of Sentry are config‐
ured to delegate authorization decisions based on the policies put in place by
Sentry.

Policy database
The Sentry policy database is the location where all authorization policies are
stored. The Sentry server uses the policy database to determine if a user is
allowed to perform a given action. Specifically, the Sentry server looks for a
matching policy that grants access to a resource for the user. In earlier versions of
Sentry, the policy database was a text file that contained all of the policies. The
evolution of Sentry and the policy database is discussed in detail in Chapter 7.

Apache HBase
Apache HBase is a distributed key/value store inspired by Google’s BigTable paper,
“BigTable: A Distributed Storage System for Structured Data”. HBase typically utilizes
HDFS as the underlying storage layer for data, and for the purposes of this book we
will assume that is the case. HBase tables are broken up into regions. These regions are
partitioned by row key, which is the index portion of a given key. Row IDs are sorted,
thus a given region has a range of sorted row keys. Regions are hosted by a Region‐
Server, where clients request data by a key. The key is comprised of several compo‐
nents: the row key, the column family, the column qualifier, and the timestamp. These
components together uniquely identify a value stored in the table.

Clients accessing HBase first look up the RegionServers that are responsible for host‐
ing a particular range of row keys. This lookup is done by scanning the hbase:meta
table. When the right RegionServer is located, the client will make read/write requests
directly to that RegionServer rather than through the master. The client caches the
mapping of regions to RegionServers to avoid going through the lookup process. The
location of the server hosting the hbase:meta table is looked up in ZooKeeper. HBase
consists of the following components:
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Master
As stated, the HBase Master daemon is responsible for managing the regions that
are hosted by which RegionServers. If a given RegionServer goes down, the
HBase Master is responsible for reassigning the region to a different Region‐
Server. Multiple HBase Masters can be run simultaneously and the HBase Mas‐
ters will use ZooKeeper to elect a single HBase Master to be active at any one
time.

RegionServer
RegionServers are responsible for serving regions of a given HBase table. Regions
are sorted ranges of keys; they can either be defined manually using the HBase
shell or automatically defined by HBase over time based upon the keys that are
ingested into the table. One of HBase’s goals is to evenly distribute the key-space,
giving each RegionServer an equal responsibility in serving data. Each Region‐
Server typically hosts multiple regions.

REST server
The HBase REST server provides a REST API to perform HBase operations. The
default HBase API is provided by a Java API, just like many of the other Hadoop
ecosystem projects. The REST API is commonly used as a language agnostic
interface to allow clients to utilize any programming they wish.

Thrift server
In addition to the REST server, HBase also has a Thrift server. This serves as yet
another useful API interface for clients to leverage.

For more information on the architecture of HBase and the use cases it is best suited
for, we recommend HBase: The Definitive Guide by Lars George (O’Reilly).

Apache Accumulo
Apache Accumulo is a sorted and distributed key/value store designed to be a robust,
scalable, high-performance storage and retrieval system. Like HBase, Accumulo was
originally based on the Google BigTable design, but was built on top of the Apache
Hadoop ecosystem of projects (in particular, HDFS, ZooKeeper, and Apache Thrift).
Accumulo uses roughly the same data model as HBase. Each Accumulo table is split
into one or more tablets that contains a roughly equal number of records distributed
by the record’s row ID. Each record also has a multipart column key that includes a
column family, column qualifier, and visibility label. The visibility label was one of
Accumulo’s first major departures from the original BigTable design. Visibility labels
added the ability to implement cell-level security (we’ll discuss them in more detail in
Chapter 6). Finally, each record also contains a timestamp that allows users to store
multiple versions of records that otherwise share the same record key. Collectively,
the row ID, column, and timestamp make up a record’s key, which is associated with a
particular value.
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The tablets are distributed by splitting up the set of row IDs. The split points are cal‐
culated automatically as data is inserted into a table. Each tablet is hosted by a single
TabletServer that is responsible for serving reads and writes to data in the given tab‐
let. Each TabletServer can host multiple tablets from the same tables and/or different
tables. This makes the tablet the unit of distribution in the system.

When clients first access Accumulo, they look up the location of the TabletServer
hosting the accumulo.root table. The accumulo.root table stores the information for
how the accumulo.meta table is split into tablets. The client will directly communi‐
cate with the TabletServer hosting accumulo.root and then again for TabletServers
that are hosting the tablets of the accumulo.meta table. Because the data in these
tables—especially accumulo.root—changes relatively less frequently than other data,
the client will maintain a cache of tablet locations read from these tables to avoid bot‐
tlenecks in the read/write pipeline. Once the client has the location of the tablets for
the row IDs that it is reading/writing, it will communicate directly with the required
TabletServers. At no point does the client have to interact with the Master, and this
greatly aids scalability. Overall, Accumulo consists of the following components:

Master
The Accumulo Master is responsible for coordinating the assignment of tablets to
TabletServers. It ensures that each tablet is hosted by exactly one TabletServer
and responds to events such as a TabletServer failing. It also handles administra‐
tive changes to a table and coordinates startup, shutdown, and write-ahead log
recovery. Multiple Masters can be run simultaneously and they will elect a leader
so that only one Master is active at a time.

TabletServer
The TabletServer handles all read/write requests for a subset of the tablets in the
Accumulo cluster. For writes, it handles writing the records to the write-ahead
log and flushing the in-memory records to disk periodically. During recovery, the
TabletServer replays the records from the write-ahead log into the tablet being
recovered.

GarbageCollector
The GarbageCollector periodically deletes files that are no longer needed by any
Accumulo process. Multiple GarbageCollectors can be run simultaneously and
they will elect a leader so that only one GarbageCollector is active at a time.

Tracer
The Tracer monitors the rest of the cluster using Accumulo’s distributed timing
API and writes the data into an Accumulo table for future reference. Multiple
Tracers can be run simultaneously and they will distribute the load evenly among
them.
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Monitor
The Monitor is a web application for monitoring the state of the Accumulo clus‐
ter. It displays key metrics such as record count, cache hit/miss rates, and table
information such as scan rate. The Monitor also acts as an endpoint for log for‐
warding so that errors and warnings can be diagnosed from a single interface.

Apache Solr
The Apache Solr project, and specifically SolrCloud, enables the search and retrieval
of documents that are part of a larger collection that has been sharded across multiple
physical servers. Search is one of the canonical use cases for big data and is one of the
most common utilities used by anyone accessing the Internet. Solr is built on top of
the Apache Lucene project, which actually handles the bulk of the indexing and
search capabilities. Solr expands on these capabilities by providing enterprise search
features such as faceted navigation, caching, hit highlighting, and an administration
interface.

Solr has a single component, the server. There can be many Solr servers in a single
deployment, which scale out linearly through the sharding provided by SolrCloud.
SolrCloud also provides replication features to accommodate failures in a distributed
environment.

Apache Oozie
Apache Oozie is a workflow management and orchestration system for Hadoop. It
allows for setting up workflows that contain various actions, each of which can utilize
a different component in the Hadoop ecosystem. For example, an Oozie workflow
could start by executing a Sqoop import to move data into HDFS, then a Pig script to
transform the data, followed by a Hive script to set up metadata structures. Oozie
allows for more complex workflows, such as forks and joins that allow multiple steps
to be executed in parallel, and other steps that rely on multiple steps to be completed
before continuing. Oozie workflows can run on a repeatable schedule based on differ‐
ent types of input conditions such as running at a certain time or waiting until a cer‐
tain path exists in HDFS.

Oozie consists of just a single server component, and this server is responsible for
handling client workflow submissions, managing the execution of workflows, and
reporting status.

Apache ZooKeeper
Apache ZooKeeper is a distributed coordination service that allows for distributed
systems to store and read small amounts of data in a synchronized way. It is often
used for storing common configuration information. Additionally, ZooKeeper is
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heavily used in the Hadoop ecosystem for synchronizing high availability (HA) serv‐
ices, such as NameNode HA and ResourceManager HA.

ZooKeeper itself is a distributed system that relies on an odd number of servers called
a ZooKeeper ensemble to reach a quorum, or majority, to acknowledge a given trans‐
action. ZooKeeper has only one component, the ZooKeeper server.

Apache Flume
Apache Flume is an event-based ingestion tool that is used primarily for ingestion
into Hadoop, but can actually be used completely independent of it. Flume, as the
name would imply, was initially created for the purpose of ingesting log events into
HDFS. The Flume architecture consists of three main pieces: sources, sinks, and
channels.

A Flume source defines how data is to be read from the upstream provider. This
would include things like a syslog server, a JMS queue, or even polling a Linux direc‐
tory. A Flume sink defines how data should be written downstream. Common Flume
sinks include an HDFS sink and an HBase sink. Lastly, a Flume channel defines how
data is stored between the source and sink. The two primary Flume channels are the
memory channel and file channel. The memory channel affords speed at the cost of
reliability, and the file channel provides reliability at the cost of speed.

Flume consists of a single component, a Flume agent. Agents contain the code for
sources, sinks, and channels. An important part of the Flume architecture is that
Flume agents can be connected to each other, where the sink of one agent connects to
the source of another. A common interface in this case is using an Avro source and
sink. Flume ingestion and security is covered in Chapter 10 and in Using Flume.

Apache Sqoop
Apache Sqoop provides the ability to do batch imports and exports of data to and
from a traditional RDBMS, as well as other data sources such as FTP servers. Sqoop
itself submits map-only MapReduce jobs that launch tasks to interact with the
RDBMS in a parallel fashion. Sqoop is used both as an easy mechanism to initially
seed a Hadoop cluster with data, as well as a tool used for regular ingestion and
extraction routines. There are currently two different versions of Sqoop: Sqoop1 and
Sqoop2. In this book, the focus is on Sqoop1. Sqoop2 is still not feature complete at
the time of this writing, and is missing some fundamental security features, such as
Kerberos authentication.

Sqoop1 is a set of client libraries that are invoked from the command line using the
sqoop binary. These client libraries are responsible for the actual submission of the
MapReduce job to the proper framework (e.g., traditional MapReduce or MapRe‐
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duce2 on YARN). Sqoop is discussed in more detail in Chapter 10 and in Apache
Sqoop Cookbook.

Cloudera Hue
Cloudera Hue is a web application that exposes many of the Hadoop ecosystem com‐
ponents in a user-friendly way. Hue allows for easy access into the Hadoop cluster
without requiring users to be familiar with Linux or the various command-line inter‐
faces the components have. Hue has several different security controls available,
which we’ll look at in Chapter 12. Hue is comprised of the following components:

Hue server
This is the main component of Hue. It is effectively a web server that serves web
content to users. Users are authenticated at first logon and from there, actions
performed by the end user are actually done by Hue itself on behalf of the user.
This concept is known as impersonation (covered in Chapter 5).

Kerberos Ticket Renewer
As the name implies, this component is responsible for periodically renewing the
Kerberos ticket-granting ticket (TGT), which Hue uses to interact with the Hadoop
cluster when the cluster has Kerberos enabled (Kerberos is discussed at length in
Chapter 4).

Summary
This chapter introduced some common security terminology that builds the founda‐
tion of the topics covered throughout the rest of the book. A key takeaway from this
chapter is to become comfortable with the fact that security for Hadoop is not a com‐
pletely foreign discussion. Tried-and-true security principles such as CIA and AAA
resonate in the Hadoop context and will be discussed at length in the chapters to
come. Lastly, we took a look at many of the Hadoop ecosystem projects (and their
individual components) to understand their purpose in the stack, and to get a sense at
how security will apply.

In the next chapter, we will dive right into securing distributed systems. You will find
that many of the security threats and mitigations that apply to Hadoop are generally
applicable to distributed systems.
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PART I

Security Architecture





CHAPTER 2

Securing Distributed Systems

In Chapter 1, we covered several key principles of secure computing. In this chapter,
we will take a closer look at the interesting challenges that are present when consider‐
ing the security of distributed systems. As we will see, being distributed considerably
increases the potential threats to the system, thus also increasing the complexity of
security measures needed to help mitigate those threats. A real-life example will help
illustrate how security requirements increase when a system becomes more dis‐
tributed.

Let’s consider a bank as an example. Many years ago, everyday banking for the aver‐
age person meant driving down to the local bank, visiting a bank teller, and conduct‐
ing transactions in person. The bank’s security measures would have included
checking the person’s identification, and account number, and verifying that the
requested action could be performed, such as ensuring there was enough money in
the account to cover a withdrawal.

Over the years, banks became larger. Your local hometown bank probably became a
branch of a larger bank, thus giving you the ability to conduct banking not just at the
bank’s nearby location but also at any of its other locations. The security measures
necessary to protect assets have grown because there is no longer just a single physi‐
cal location to protect. Also, more bank tellers need to be properly trained.

Taking this a step further, banks eventually started making use of ATMs to allow cus‐
tomers to withdraw money without having to go to a branch location. As you might
imagine, even more security controls are necessary to protect the bank beyond what
was required when banking was a human interaction. Next, banks became intercon‐
nected with other banks, which allowed customers from one bank to use the ATMs of
a different bank. Banks then needed to establish security controls between themselves
to ensure that no security was lost as a result of this interconnectivity. Lastly, the
Internet movement introduced the ability to do online banking through a website, or
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even from mobile devices. This dramatically increased potential threats and the secu‐
rity controls needed.

As you can see, what started as a straightforward security task to protect a small bank
in your town has become orders of magnitude more difficult the more distributed
and interconnected the bank became over decades of time. While this example might
seem obvious, it starts to frame the problem of how to design a security architecture
for a system that can be distributed across tens, hundreds, or even thousands of
machines. It is no small task but it can be made less intimidating by breaking it down
into pieces, starting with understanding threats.

Threat Categories
A key component to arriving at a robust security architecture for a distributed system
is to understand the threats that are likely to be present, and to be able to categorize
them to better understand what security mechanisms need to be in place to help miti‐
gate those threats. In this section, we will review a few common threat categories that
are important to be aware of. The threat categories will help you identify where the
threats are coming from, what security features are needed to protect against them,
and how to respond to an incident if and when it happens.

Unauthorized Access/Masquerade
One of the most common threat categories comes in the form of unauthorized access.
This happens when someone successfully accesses a system when he should have
otherwise been denied access. One common way for this to happen is from a mas‐
querade attack. Masquerade is the notion that an invalid user presents himself as a
valid user in order to gain access. You might wonder how the invalid user presented
himself as a valid user. The most likely answer that the attacker obtained a valid user‐
name and associated password.

Masquerade attacks are especially prominent since the age of the Internet, and specif‐
ically for distributed systems. Attackers have a variety of ways to obtain valid user‐
names and passwords, such as trying common words and phrases as passwords, or
knowing words that are related to the valid user that might be used as a password. For
example, attackers looking to obtain valid login credentials for a social media website,
might collect keywords from a person’s public posts to come up with a password list
to try (e.g., if the attackers were focusing on New York–based users who list “baseball”
as a hobby, they might try the password yankees).

In the case of an invalid user executing a successful masquerade attack, how would a
security administrator know? After all, if an attacker logged in with a valid user’s cre‐
dentials, wouldn’t this appear as normal from the distributed system’s perspective?
Not necessarily. Typically, masquerade attacks can be profiled by looking at audit logs
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for login attempts. If an attacker is using a list of possible passwords to try against a
user account, the unsuccessful attempts should show up in audit logfiles. Seeing a
high number of failed login attempts for a user can usually be attributed to an attack.
A valid user might mistype or forget her password, leading to a small number of
failed login attempts, but 20 successive failed login attempts, for example, would be
unusual.

Another common footprint for masquerade attacks is to look at where, from a net‐
work perspective, the login attempts are coming from. Profiling login attempts by IP
addresses can be a good way to discover if a masquerade attack is attempted. Are the
IP addresses shown as the client attempting to log in consistent with what is expected,
such as coming from a known subnet of company IP addresses, or are they sourced
from another country on the other side of the world? Also, what time of day did the
login attempts occur? Did Alice try to login to the system at 3:00 a.m., or did she log
in during normal business hours?

Another form of unauthorized access comes from an attacker exploiting a vulnerabil‐
ity in the system, thus gaining entry without needing to present valid credentials. Vul‐
nerabilities are discussed in “Vulnerabilities” on page 28.

Insider Threat
Arguably the single most damaging threat category is the insider threat. As the name
implies, the attacker comes from inside the business and is a regular user. Insider
threats can include employees, consultants, and contractors. What makes the insider
threat so scary is that the attacker already has internal access to the system. The
attacker can log in with valid credentials, get authorized by the system to perform a
certain function, and pass any number of security checks along the way because she is
supposed to be granted access. This can result in a blatant attack on a system, or
something much more subtle like the attacker leaking sensitive data to unauthorized
users by leveraging her own accesses.

Throughout this book, you will find security features that ensure that the right users
are accessing only the data and services they should be. Combating insider threats
requires effective auditing practices (described in Chapter 8). In addition to the tech‐
nical tools available to help combat the insider threat, business policies need to be
established to enforce proper auditing, and procedures that respond to incidents
must be outlined. The need for these policies is true for all of the threat categories
described in this chapter, though best practices for setting such policies are not cov‐
ered.

Denial of Service
Denial of service (DoS), is a situation where a service is unavailable to one or more
clients. The term service in this case is an umbrella that includes access to data, pro‐
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cessing capabilities, and the general usability of the system in question. How the
denial of service happens can come from a variety of different attack vectors. In the
age of the Internet, a common attack vector is to simply overwhelm the system in
question with excessive network traffic. This is done by using many computers in
parallel, thus making the attack a distributed denial of service (DDoS). When the sys‐
tem is bombarded with too many requests for it to handle, it starts failing in some
way, from dropping other valid requests to outright failure of the system.

While distributed systems typically benefit from having fault tolerance of some kind,
DoS attacks are still possible. For example, if a distributed system contains 50 servers,
it might be difficult for attackers to disrupt service to all 50 machines. What if the
distributed system is behind just a few network devices, such as a network firewall
and an access switch? Attackers can use this to their advantage by targeting the gate‐
way into the distributed system rather than the distributed system itself. This point is
important and will be covered in Chapter 3 when discuss about architecting a net‐
work perimeter around the cluster.

Threats to Data
Data is the single most important component of a distributed system. Without data, a
distributed system is nothing more than an idle hum of servers that rack up the elec‐
tric and cooling bills in a data center. Because data is so important, it is also the focus
of security attacks. Threats to data are present in multiple places in a distributed sys‐
tem. First, data must be stored in a secure fashion to prevent unauthorized viewing,
tampering, or deletion. Next, data must also be protected in transit, because dis‐
tributed systems are, well, distributed. The passing of data across a network can be
threatened by something disruptive like a DoS attack, or something more passive
such as an attacker capturing the network traffic unbeknownst to the communicating
parties. In Chapter 1, we discussed the CIA model and its components. Ultimately,
the CIA model is all about mitigating threats to data.

Threat and Risk Assessment
The coverage of threat categories in the previous section probably was not the first
time you have heard about these things. It’s important that in addition to understand‐
ing these threat categories you also assess the risk to your particular distributed sys‐
tem. For example, while a denial-of-service attack may be highly likely to occur for
systems that are directly connected to the Internet, systems that have no outside net‐
work access, such as those on a company intranet, have a much lower risk of this
actually happening. Notice that the risk is low and not completely removed, an
important distinction.
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Assessing the threats to a distributed system involves taking a closer look at two key
components: the users and the environment. Once you understand these compo‐
nents, assessing risk becomes more manageable.

User Assessment
It’s important to understand what users your distributed system will be exposed to.
This obviously includes users who will be accessing the system and directly interact‐
ing with the interfaces it provides. It also includes users who might be present else‐
where in the environment but won’t directly access the system. Understanding users
in this context leads to a better risk assessment. Users of a distributed system like
Hadoop typically are first classified by their line of business. What do these users do?
Are they business intelligence analysts? Developers? Risk analysts? Security auditors?
Data quality analysts?

Once users are classified into groups by business function, you can start to identify
access patterns and tools that these groups of users need in order to use the dis‐
tributed system. For example, if the users of the distributed system are all developers,
several assumptions can be made about the need for shell access to nodes in the sys‐
tem, logfiles to debug jobs, and developer tools. On the other hand, business intelli‐
gence analysts might not need any of those things and will instead require a suite of
analytical tools that interact with the distributed system on the user’s behalf.

There will also be users with indirect access to the system. These users won’t need
access to data or processing resources of the system. However, they’ll still interact
with it as a part of, for example, support functions such as system maintenance,
health monitoring, and user auditing. These types of users need to be accounted for
in the overall security model.

Environment Assessment
To assess the risk for our distributed system, we’ll also need to understand the envi‐
ronment it resides in. Generally, this will mean assessing the operational environment
both in relation to other logical systems and the physical world. We’ll take a look at
the specifics for Hadoop in Chapter 3.

One of the key criteria for assessing the environment, mentioned briefly, is to look at
whether the distributed system is accessible to the Internet. If so, a whole host of
threats are far more likely to be realized, such as DoS attacks, vulnerability exploits,
and viruses. Distributed systems that are indeed connected to the Internet will
require constant monitoring and alerting, as well as a regular cadence for applying
software patches and updating various security software definitions.

Another criteria to evaluate the environment is to understand where the servers that
comprise the distributed system are physically located. Are they located in your com‐
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pany data center? Are they in a third-party–managed data center? Are they in a pub‐
lic cloud infrastructure? Understanding the answer to these questions will start to
frame the problem of providing a security assessment. For example, if the distributed
system is hosted in a public cloud, a few threats are immediately apparent: the infra‐
structure is not owned by your company, so you do not definitively know who has
direct access to the machines. This expands the scope of insider threat to include your
hosting provider. Also, the usage of a public cloud begs the question of how your
users are connecting to the distributed system and how data flows into and out of it.
Again, threats to communications that occur across an open network to a shared
public cloud have a much higher risk of happening than those that are within your
own company data center.

The point is not to scare you into thinking that public clouds are bad and company
data centers are good, but rather to impart that the existence of one versus another
will vary the level of risk that a given threat may have against your distributed system.
Regardless of the environment, the key to protecting your distributed system is to
look at risk mitigation in a multitiered approach, as discussed in the next section.

Vulnerabilities
Vulnerabilities are a separate topic, but they are related to the discussion of threats
and risk. Vulnerabilities exist in a variety of different forms in a distributed system. A
common place for vulnerabilities is in the software itself. All software has vulnerabili‐
ties. This might seem like a harsh statement, but the truth of it is that no piece of soft‐
ware is 100% secure.

So what exactly is a software vulnerability? Put simply, it’s a piece of code that is sus‐
ceptible to some kind of error or failure condition that is not accounted for gracefully.
For instance, consider the simple example of a piece of software with a password
screen that allows users to change their password (we will assume that the intended
logic for the software is to allow passwords up to 16 characters in length). What hap‐
pens if the input field for a new password mistakenly has a maximum length of 8
characters, and thus truncates the chosen password? This could lead to users setting
shorter passwords than they realized, and worse, less complex passwords that are eas‐
ier for an attacker to guess.

Certainly, software vulnerabilities are not the only type of vulnerabilities that dis‐
tributed systems are susceptible to. Other vulnerabilities include those related to the
network infrastructure that a distributed system relies on. For example, many years
ago there was a vulnerability that allowed an attacker to send a ping to a network
broadcast address, causing every host in the network range to reply with a ping
response. The attacker crafted the ping request so that the source IP address was set
to a computer that was the intended target of the attack. The result was that the target
host of the attack was overwhelmed with network communication to the point of fail‐
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ure. This attack was known as the ping of death. It has been mitigated, but the point is
that until this was fixed by network hardware vendors, this was a vulnerability that
had nothing to do with the software stack of machines on the network, yet an
attacker could use it to disrupt the service of a particular machine on the network.

Software patches are regularly released to fix vulnerabilities as they are discovered,
thus regular schedules for applying patches to a distributed system’s software stack
should be an integral part of every administrator’s standard operating procedures. As
the ping-of-death example shows, the scope of patches should also include firmware
for switches, routers, other networking equipment, disk controllers, and the server
BIOS.

Defense in Depth
One of the challenges that security administrators face is how to mitigate all of the
threat categories and vulnerabilities discussed in this chapter. When looking at the
variety of threat categories, it becomes immediately apparent that there is no single
silver bullet that can effectively stop these threats. In order to have a fighting chance,
many security controls must be in place—and must work together—in order to pro‐
vide a comfortable level of security. This idea of deploying multiple security controls
and protection methods is called defense in depth.

Looking back in history, defense in depth was not regularly followed. Security typi‐
cally meant perimeter security, in that security controls existed only on the outside, or
perimeter, of whatever was to be protected. A canonical example of this is imagining
a thick, tall wall surrounding a castle. The mindset was that as long as the wall stood,
the castle was safe. If the wall was breached, that was bad news for the castle dwellers.
Today, things have gotten better.

Defense-in-depth security now exists in our everyday lives. Take the example of going
to a grocery store. The grocery store has a door with a lock on it, and is only
unlocked during normal business hours. There is also an alarm system that is trig‐
gered if an intruder illegally enters the building after hours. During regular hours,
shoppers are monitored with security cameras throughout the store. Finally, store
employees are trained to watch for patrons behaving suspiciously.

All of these security measures are in place to protect the grocery store from a variety
of different threats, such as break-ins, shoplifters, and robberies. Had the grocery
store only relied on the “castle wall” approach by only relying on strong door locks,
most threats would not be addressed. Defense in depth is important here because any
single security measure is not likely to mitigate all threats to the store. The same is
true for distributed systems. There are many places where individual security meas‐
ures can be deployed, such as setting up a network firewall around the perimeter,
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restrictive permissions on data, or access controls to the servers. But implementing all
of these measures together helps to lower the chances that an attack will be successful.

Summary
In this chapter, we broke down distributed system security by analyzing threat cate‐
gories and vulnerabilities, and demonstrating that applying a defense-in-depth secu‐
rity architecture will minimize security risks. We also discussed the insider threat and
why it should not be overlooked when designing security architecture.

The next chapter focuses on protecting Hadoop in particular, and building a sound
system architecture is the first step.
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CHAPTER 3

System Architecture

In Chapter 2, we took a look at how the security landscape changes when going from
individual isolated systems to a fully distributed network of systems. It becomes
immediately apparent just how daunting a task it is to secure hundreds if not thou‐
sands of servers in a single Hadoop cluster. In this chapter, we dive into the details of
taking on this challenge by breaking the cluster down into several components that
can independently be secured as part of an overall security strategy. At a high level,
the Hadoop cluster can be divided into two major areas: the network and the hosts.
But before we do this, let’s explore the operating environment in which the Hadoop
cluster resides.

Operating Environment
In the early days of Hadoop, a cluster likely meant a hodgepodge of repurposed
machines used to try out the new technology. You might even have used old desktop-
class machines and a couple of extra access switches to wire them up. Things have
changed dramatically over the years. The days of stacking a few machines in the cor‐
ner of a room has been replaced by the notion that Hadoop clusters are first-class citi‐
zens in real enterprises. Where Hadoop clusters physically and logically fit into the
enterprise is called the operating environment.

Numerous factors that contribute to the choice of operating environment for Hadoop
are out of scope of this book. We will focus on the typical operating environments in
use today. As a result of rapid advances in server and network hardware (thank
Moore’s law), Hadoop can live in a few different environments:
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In-house
This Hadoop environment consists of a collection of physical (“bare metal”)
machines that are owned and operated by the business, and live in data centers
under the control of the business.

Managed
This Hadoop environment is a variation of in-house in that it consists of physical
machines, but the business does not own and operate them. They are rented
from a separate business that handles the full provisioning and maintenance of
the servers, and the servers live in their own data centers.

Cloud
This Hadoop environment looks very different than the others. A cloud environ‐
ment consists of virtual servers that may physically reside in many different loca‐
tions. The most popular cloud provider for Hadoop environments is Amazon’s
Elastic Compute Cloud (EC2).

Network Security
Network security is a detailed topic and certainly cannot be covered exhaustively
here. Instead, we will focus on a few important network security topics that are com‐
monly used to secure a Hadoop cluster’s network. The first of these is network seg‐
mentation.

Network Segmentation
Network segmentation is a common practice of isolating machines and services to a
separate part of a larger network. This practice holds true no matter if we are talking
about Hadoop clusters, web servers, department workstations, or some other system.
Creating a network segment can be done in two different ways, often together.

The first option is physical network segmentation. This is achieved by sectioning off a
portion of the network with devices such as routers, switches, and firewalls. While
these devices operate at higher layers of the OSI model, from a physical-layer point of
view the separation is just that all devices on one network segment are physically
plugged into network devices that are separate from other devices on the larger net‐
work.

The second option is logical network segmentation. Logical segmentation operates at
higher layers of the OSI model, most commonly at the network layer using Internet
Protocol (IP) addressing. With logical separation, devices in the same network seg‐
ment are grouped together in some way. The most common way this is achieved is
through the use of network subnets. For example, if a Hadoop cluster has 150 nodes,
it may be that these nodes are logically grouped on the same /24 subnet (e.g., an IP
subnet mask of 255.255.255.0), which represents a maximum of 256 IP addresses (254
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usable). Organizing hosts logically in this fashion makes it easy to administer and
secure.

The most common method of network segmentation is a hybrid approach that uses
aspects of both physical and logical network segmentation. The most common way of
implementing the hybrid approach is through the use of virtual local area networks
(VLANs). VLANs allow multiple network subnets to share physical switches. Each
VLAN is a distinct broadcast domain even though all VLANs share a single layer-2
network. Depending on the capabilities of the network switches or routers, you might
have to assign each physical port to a single VLAN or you may be able to take advan‐
tage of packet tagging to run multiple VLANs over the same port.

As briefly mentioned before, both physical and logical separation can be, and often
are, used together. Physical and logical separation may be present in the in-house and
managed environments where a Hadoop cluster has a logical subnet defined, and all
machines are physically connected to the same group of dedicated network devices
(e.g., top-of-rack switches and aggregation switches).

With the cloud operating environment, physical network segmentation is often more
difficult. Cloud infrastructure design goals are such that the location of hardware is
less important than the availability of services sized by operational need. Some cloud
environments allow for users to choose machines to be in the same locality group.
While this is certainly better from a performance point of view, such as in the case of
network latencies, it does not usually help with security. Machines in the same local‐
ity group likely share the same physical network as other machines.

Now that we have a Hadoop cluster that resides on its own network segment, how is
this segment protected? This is largely achieved with network firewalls, and intrusion
detection and prevention systems.

Network Firewalls
Network firewalls are a great way to enforce separation of a Hadoop cluster from the
rest of the network that it resides in. The basic premise of firewalls is that they are
used as an added layer of security for network traffic that traverses from one network
segment to another. For example, a network firewall is likely to exist between a seg‐
ment of users inside a company and one that contains an Internet-facing website for
the company. Likewise, a network firewall is not likely to exist between two desktop
computers in the same department of an office building.

On the surface, it might seem that network firewalls are separate pieces of hardware
in addition to other network hardware such as routers and switches, but this is not
always true. Modern routers and (multilayer) switches often perform many of the
same core functions as standalone firewalls. Several key points about firewalls that are
important in the context of Hadoop are discussed in this section.
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The fundamental feature of a network firewall is to allow or filter (drop) network
packets based on network and transport layer properties. This typically boils down to
making filtering decisions based on source and destination IP address; protocol type
such as TCP, UDP, and ICMP; and source and destination ports, if applicable. These
filtering decisions are easy to make by network devices because all of this information
is contained in the header of a packet, meaning that deep packet inspection of the
payload is not required.

The importance of basic filtering for Hadoop is often based on three general cate‐
gories: data movement to and from the cluster; client access, which includes end
users and third-party tools; and administration traffic. Each of these general cate‐
gories carries a different perspective on how network firewalls will be used to ensure
a secure network path between the Hadoop cluster and everything else.

Data movement
The first category, data movement, is how data is ingested into the cluster or served to
downstream systems. A detailed discussion about securing these flows from a
Hadoop ecosystem perspective takes place in Chapter 10. For now, the focus is on the
network channel for these transfers and the type of data involved to determine the
level of firewall inspection required.

Looking first at the network channel for data movement, the common options are
general-purpose file transfer tools like FTP and SCP, RDBMS flows (via Sqoop), or
streaming ingest flows such as those provided by Flume. Each of these common
channels has associated IP addresses and ports that work well in classifying the net‐
work communication and creating firewall rules to allow it. It is important to under‐
stand what the intended flows look like. Which machines contain the source data? Is
the data landing on a server on the edge of the cluster before being ingested into the
cluster? Which machines are receiving extracted data from the cluster? Answers to
these questions lead to network firewall rules that at a high level could:

• Permit FTP traffic from a limited set of FTP servers to one or more edge nodes
(described later in this chapter)

• Permit worker nodes in the cluster to connect to one or more database servers to
send and receive data over specified ports

• Permit data flowing from log events generated from a cluster of web servers to a
set of Flume agents over a limited number of ports

A follow-up decision that needs to be made is determining where source data is com‐
ing from and if additional firewall inspection is needed. For example, if an upstream
data source is coming from an internal business system, the firewall policies highligh‐
ted are sufficient. However, if an upstream data source comes from an untrusted
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source, such as data provided on the open Internet, it is likely that deep packet
inspection is required to help protect the cluster from malicious content.

Client access
The second common category is all about client access. Again, this subject is covered
in detail in Chapter 11, but what is important from a network firewall point of view is
to understand, and thus classify, the methods clients will be using to interact with the
cluster. Some clusters will operate in a fully “lights out” environment, meaning that
there is no end-user activity permitted. These types of environments typically run
continuous ETL jobs and generate result sets and reports to downstream systems in a
fully automated fashion. In this environment, client access policies exist simply to
block everything. The only policies necessary to keep the cluster up and running and
secure are those of the data movement and administration variety.

A more typical environment is a mixed environment of users, tools, and applications
accessing the cluster. In this case, organization is key. Where are the third-party tools
running? Can they be isolated to a few known machines? Where are the users access‐
ing the cluster from? Is it possible to require users to use an edge node? Where are
custom applications running? Is the network firewall between the application and the
cluster, or between the application and end users?

Administration traffic
The last common category is administration traffic. This includes things like admin‐
istrative users logging into cluster machines, audit event traffic from the cluster to an
external audit server, and backup traffic from the cluster to another network. Backups
could be large data transfers using DistCp, or even backing up the Hive metastore
database to a location outside the cluster’s data center. The term administration traffic
is not meant to give a sense of volume but rather to indicate that the traffic is not
something that regular clients to the cluster generate.

Network firewalls serve as a good security boundary between the cluster and outside
networks, but what about protecting against malicious traffic that might be actively
targeting machines in the cluster? This is where intrusion detection and prevention
come into the discussion.

Intrusion Detection and Prevention
In the previous section, network firewalls were introduced as a way to control flows
into and out of the network that a Hadoop cluster lives in. While this works perfectly
well when “normal” everyday traffic is flowing, what about when not-so-normal
events are happening? What happens if a malicious attacker has bypassed the net‐
work firewall and is attempting exploits against machines in the cluster, such as
buffer overflow attacks? How about distributed denial-of-service (DDoS) attacks?
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Intrusion detection and prevention systems can help stop these types of attacks.
Before we dive into where these devices fit into the system architecture for the cluster,
let’s cover a few basics about these systems.

Intrusion detection systems (IDS) and intrusion prevention systems (IPS) are often used
interchangeably in the discussion of network security. However, these two systems are
fundamentally different in the role they play in dealing with suspected intrusions. An
IDS, as the name implies, detects an intrusion. It falls under the same category as
monitoring and alerting systems. An IDS is typically connected to a switch listening
in promiscuous mode, meaning that all traffic on the switch flows to the IDS in addi‐
tion to the intended destination port(s). When an IDS finds a packet or stream of
packets it suspects as an attack, it generates an alert. An alert might be an event that
gets sent to a separate monitoring system, or even just an email alias that security
administrators subscribe to. Figure 3-1 shows the network diagram when an IDS is in
place; you will notice that the IDS is not in the network flow between the outside net‐
work and the cluster network.

Figure 3-1. Network diagram with an IDS

An IPS, on the other hand, not only detects an intrusion, but actively tries to prevent
or stop the intrusion as it is happening. This is made possible by the key difference
between an IDS and IPS in that an IPS is not listening promiscuously on the network,
but rather sitting between both sides of the network. Because of this fact, an IPS can
actually stop the flow of intrusions to the other side of the network. A common fea‐
ture of an IPS is to fail close. This means that upon failure of the IPS, such as being
overwhelmed by an extensive DDoS attack to the point where it can no longer scan
packets, it simply stops all packets from flowing through to the other side of the IPS.
While this might seem like a successful DDoS attack, and in some ways it is, a fail
close protects all the devices that are behind the IPS. Figure 3-2 shows the network
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diagram when an IPS is in place; you will notice that the IPS is actually in the net‐
work flow between the outside network and the cluster network.

Figure 3-2. Network diagram with an IPS

Now that we have the 50,000-foot view of what these devices do, how does it help
Hadoop? The answer is that it is another piece of the network security puzzle.
Hadoop clusters inherently store massive amounts of data. Both detection and pre‐
vention of intrusion attempts to the cluster are critical to protecting the large swath of
data. So where do these devices live relative to the rest of the network in which a
Hadoop cluster lives? The answer: possibly several places.

In the discussion about network firewalls, it was mentioned that ingest pipelines that
flow from the open Internet are likely to be treated differently from a security point of
view. This is again the case with IDS and IPS devices. Intrusion attacks are largely
sourced from malicious actors on the Internet. With that in mind, placing an IPS in
the ingest path of an Internet data source is perfectly reasonable. The Internet might
be a hotbed of malicious actors, but the insider threat to a business is also very real
and should not be overlooked. Security architecture choices must always be made
under the assumption that the malicious actor works inside the same building you do.
Placing an IDS inside the trusted network can be a valuable tool to warn administra‐
tors against the insider threat.

An added bonus to the discussion of IDS and IPS is the fact that logging network traf‐
fic in high volumes is a fantastic Hadoop use case. Security companies often use
Hadoop to collect IDS logs across many different customer networks in order to per‐
form a variety of large-scale analytics and visualizations of the data, which can then
feed into the advancement of rules engines used by firewalls and IDS/IPS devices.
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Hadoop Roles and Separation Strategies
Earlier, we mentioned that nodes in the cluster can be classified into groups to aid in
setting up an adequate security policy. In this section, we take a look at how to do
that. Each node plays some kind of role in the cluster, and these roles will identify
which security policies are necessary to protect it. First, let’s review the common
Hadoop ecosystem components and the service roles that each have (we assume that
you already knows what these service roles do, but if that’s not the case, refer back to
Chapter 1 for a quick review):

HDFS
NameNode (Active/Standby/Secondary), DataNode, JournalNode, FailoverCon‐
troller, HttpFS, NFSGateway

MapReduce
JobTracker (Active/Standby), TaskTracker, FailoverController

YARN
ResourceManager (Active/Standby), NodeManager, JobHistory Server

Hive
Hive Metastore Server, HiveServer2, WebHCatServer

Impala
Catalog Server, StateStore Server, Impalad

Hue
HueServer, Beeswax, KerberosTicketRenewer

Oozie
OozieServer

ZooKeeper
ZooKeeper Server

HBase
Master, RegionServer, ThriftServer, RESTServer

Accumulo
Master, TabletServer, Tracer, GarbageCollector

Solr
SolrServer

Management and monitoring services
Cloudera Manager, Apache Ambari, Ganglia, Nagios, Puppet, Chef, etc.
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Looking at this (nonexhaustive) list, you can see that many of the various ecosystem
projects have a master/worker architecture. This lends itself well to organizing the
service roles from a security architecture perspective. Additionally, some of the ser‐
vice roles are intended to be client-facing. Overall, the separation strategy is this:
identify all of the master services to be run on master nodes, worker services on
worker nodes, and management services on management nodes. Additionally, identify
which components require client configuration files to be deployed such that users
can access the services. These client configuration files, along with client-facing serv‐
ices, are placed on edge nodes. The classifications of nodes are explained in more
detail in the following subsections.

Master Nodes
Master nodes are likely the most important of the node groups. They contain all of
the primary services that are the backbone of Hadoop. Because of the importance of
these roles to the components they represent, they carry an expectation of increased
security policies to protect them. Following is a list of roles that should be run on
dedicated master nodes:

• HDFS NameNode, Secondary NameNode (or Standby NameNode), Failover‐
Controller, JournalNode, and KMS

• MapReduce JobTracker and FailoverController
• YARN ResourceManager and JobHistory Server
• Hive Metastore Server
• Impala Catalog Server and StateStore Server
• Sentry Server
• ZooKeeper Server
• HBase Master
• Accumulo Master, Tracer, and GarbageCollector

Armed with this list of services, the first security question to ask is: Who needs access
to a master node and for what purpose? The simple answer is administrators, to per‐
form administrative functions (surprise, surprise). Clients to the cluster, be it actual
end users or third-party tools, can access all of these services remotely using the stan‐
dard interfaces that are exposed. For example, a user issuing the command hdfs dfs
-ls can do so on any machine that has the proper client configuration for the HDFS
service. The user does not need to execute this command on the master node that is
running the HDFS NameNode for it to succeed. With that in mind, here are several
important reasons for limiting access to master nodes to administrators:
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Resource contention
If regular end users are able to use master nodes to run arbitrary programs and
thus use system resources, this takes away resources that may otherwise be
needed by the master node roles. This can lead to a degradation of performance.

Security vulnerabilities
Software has inherent vulnerabilities in it, and Hadoop is no different. Allowing
users to have access to the same machines that have master node roles running
can open the door for exploiting unpatched vulnerabilities in the Hadoop code
(maliciously or accidentally). Restricting access to master nodes lowers the risk of
exposing these security vulnerabilities.

Denial of service
Users can do crazy things. There isn’t really a nicer way to say it. If end users are
sharing the same machines as master node roles, it inevitably sets the stage for a
user to do something (for the sake of argument, accidentally) that will take down
a master process. Going back to the resource contention argument, what happens
if a user launches a runaway process that fills up the log directory? Will all of the
master node roles handle it gracefully if they are unable to log anymore? Does an
administrator want to find out? Another example would be a similar case where a
runaway process maxed out CPU or RAM on the system, with the latter easily
leading to out-of-memory errors.

Worker Nodes
Worker nodes handle the bulk of what a Hadoop cluster actually does, which is store
and process data. The typical roles found on worker nodes are the following:

• HDFS DataNode
• MapReduce TaskTracker
• YARN NodeManager
• Impala Daemon
• HBase RegionServer
• Accumulo TabletServer
• SolrServer

On the surface, it might seem like all cluster users need access to these nodes because
these roles handle user requests for data and processing. However, this is most often
not true. Typically, only administrators need remote access to worker nodes for main‐
tenance tasks. End users can ingest data, submit jobs, and retrieve records by utilizing
the corresponding interfaces and APIs available. Most of the time, as will be elabora‐
ted on a bit later, services provide a proxy mechanism that allows administrators to
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channel user activity to a certain set of nodes different from the actual worker nodes.
These proxies communicate with worker nodes on behalf of the user, eliminating the
need for direct access.

As with master nodes, there are reasons why limiting access to worker nodes to
administrators makes sense:

Resource contention
When regular end users are performing activities on a worker node outside the
expected processes, it can create skew in resource management. For example, if
YARN is configured to use a certain amount of system resources based on a cal‐
culation done by a Hadoop administrator taking into account the operating sys‐
tem needs and other software, what about end-user activity? It is often difficult to
accurately profile user activity and account for it, so it is quite likely that heavily
used worker nodes will not perform well or predictably compared to worker
nodes that are not being used.

Worker role skew
If end users are using worker nodes for daily activities, it can create undesirable
skew in how the roles on the worker nodes behave. For example, if end users reg‐
ularly log into a particular worker node that is running the DataNode role, data
ingestion from this node will create skew in disk utilization because HDFS writes
will try to write the first block locally before choosing locations elsewhere in the
cluster. This means that if a user is trying to upload a 10 GB file into her home
directory in HDFS, all 10 GB will be written to the local DataNode they are
ingesting from.

Management Nodes
Management nodes are the lifeblood for administrators. These nodes provide the
mechanism to install, configure, monitor, and otherwise maintain the Hadoop clus‐
ter. The typical roles found on these nodes are:

• Configuration management
• Monitoring
• Alerting
• Software repositories
• Backend databases

These management nodes often contain the actual software repositories for the clus‐
ter. This is especially the case when the nodes in the Hadoop cluster do not have
Internet access. The most critical role hosted on a management node is configuration
management software. Whether it is Hadoop specific (e.g., Cloudera Manager,
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Apache Ambari) or not (e.g., Puppet, Chef), this is the place where administrators
will set up and configure the cluster. The corollary to configuration management is
monitoring and alerting. These roles are provided by software packages like Ganglia,
Nagios, and the Hadoop-specific management consoles.

It goes without saying but will be said anyway: these nodes are not for regular users.
Management and maintenance of a Hadoop cluster is an administrative function and
thus should be protected as such. That being said, there are exceptions to the rule. A
common exception is for developers to have access to cluster monitoring dashboards
to observe metrics while jobs are running so they can ascertain performance charac‐
teristics of their code.

Edge Nodes
Edge nodes are the nodes that all of the users of the Hadoop cluster care about. These
nodes host web interfaces, proxies, and client configurations that ultimately provide
the mechanism for users to take advantage of the combined storage and computing
system that is Hadoop. The following roles are typically found on edge nodes:

• HDFS HttpFS and NFS gateway
• Hive HiveServer2 and WebHCatServer
• Network proxy/load balancer for Impala
• Hue server and Kerberos ticket renewer
• Oozie server
• HBase Thrift server and REST server
• Flume agent
• Client configuration files

When looking at the list of common roles found on edge nodes, it becomes apparent
that this node class is a bit different than the others. Edge nodes in general might not
be treated as equivalent to one another, as is often the case with the other node
classes. For example, ingest pipelines using Flume agents will likely be on edge nodes
not accessible by users, while edge nodes housing client configurations to facilitate
command-line access would be accessible by users. How granular the classification of
nodes within the edge node group will be dependent on a variety of factors, including
cluster size and use cases. Here are some examples of further classifying edge nodes:

Data Gateway
HDFS HttpFS and NFS gateway, HBase Thrift server and REST server, Flume
agent
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SQL Gateway
Hive HiveServer2 and WebHCatServer, Impala load-balancing proxy (e.g., HAP‐
roxy)

User Portal
Hue server and Kerberos ticket renewer, Oozie server, client configuration files

While the Impala daemon does not have to be collocated with an
HDFS DataNode, it is not recommended to use a standalone
Impala daemon as a proxy. A better option is to use a load-
balancing proxy, such as HAProxy, to act as a load balancer. This is
the recommended architecture in the case where clients cannot
connect directly to an Impala daemon on a worker node because of
a firewall or other restrictions.

Using the additional edge node classifications shown, it becomes easier to break
down which nodes users are expected to have remote access to, and which nodes are
only accessible remotely through the configured remote ports. While users need
remote access to the user portal nodes to interact with the cluster from a shell, it is
quite reasonable that both the data and SQL gateways are not accessible in this way.
These nodes are accessible only via remote ports, which facilitates access to both
command-line tools executed on the user portal, as well as additional business intelli‐
gence tools that might reside somewhere else in the network.

The groupings shown are just examples. It is important to understand not only the
services installed in the cluster but also how the services are used and by whom. This
circles back to earlier discussions about knowing the users and the operating environ‐
ment.

Operating System Security
This section digs into how individual nodes should be protected at the operating-
system level.

Remote Access Controls
In a typical server environment, remote access controls are pretty straightforward.
For example, a server that hosts an RDBMS or web server is likely locked down to
end users, allowing only privileged users and administrators to log into the machine.
A Hadoop environment is not so simple. Because of the inherent complexity of the
Hadoop ecosystem, a myriad of tools and access methods are available to interact
with the cluster, in addition to the typical roles and responsibilities for basic adminis‐
tration.
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While Hadoop clusters can span thousands of nodes, these nodes can be classified
into groups, as we will see a bit later in this chapter. With that in mind, it is important
to consider limiting remote access to machines by identifying which machines need
to be accessed and why. Armed with this information, a remote access policy can be
made to restrict remote access (typically SSH) to authorized users. On the surface, it
might seem that authorized users are analogous to users of the Hadoop cluster, but
this is typically not the case. For example, a developer writing Java MapReduce code
or Pig scripts will likely require command-line access to one or more nodes in the
cluster, whereas an analyst writing SQL queries for Hive and Impala might not need
this access at all if they are using Hue or third-party business intelligence (BI) tools to
interact with the cluster.

Host Firewalls
Remote access controls are a good way to limit which users are able to log into a
given machine in the cluster. This is useful and necessary, but it is only a small com‐
ponent of protecting a given machine in the cluster. Host firewalls are an incredibly
useful tool to limit the types of traffic going into and out of a node. In Linux systems,
host firewalls are typically implemented using iptables. Certainly there are other
third-party software packages that perform this function as well (e.g., commercial
software), but we will focus on iptables, as it is largely available by default in most
Linux distributions.

In order to leverage iptables, we must first understand and classify the network traffic
in a Hadoop cluster. Table 3-1 shows common ports that are used by Hadoop ecosys‐
tem components. We will use this table to start building a host firewall policy for ipta‐
bles.

Table 3-1. Common Hadoop service ports

Component Service Port(s)

Accumulo Master 9999

GarbageCollector 50091

Tracer 12234

ProxyServer 42424

TabletServer 9997

Monitor 4560, 50095

Cloudera Impala Catalog Server 25020, 26000
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Component Service Port(s)

StateStore 24000, 25010

Daemon 21000, 21050, 22000, 23000, 25000, 28000

Llama ApplicationMaster 15000, 15001, 15002

Flume Agent 41414

HBase Master 60000, 60010

REST Server 8085, 20550

Thrift Server 9090, 9095

RegionServer 60020, 60030

HDFS NameNode 8020, 8022, 50070, 50470

SecondaryNameNode 50090, 50495

DataNode 1004, 1006, 50010, 50020, 50075, 50475

JournalNode 8480, 8485

HttpFS 14000, 14001

NFS Gateway 111, 2049, 4242

KMS 16000, 16001

Hive Hive Metastore Server 9083

HiveServer2 10000

WebHCat Server 50111

Hue Server 8888

MapReduce JobTracker 8021, 8023, 9290, 50030

FailoverController 8018

TaskTracker 4867, 50060

Oozie Server 11000, 11001, 11443
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Component Service Port(s)

Sentry Server 8038, 51000

Solr Server 8983, 8984

YARN ResourceManager 8030, 8031, 8032, 8033, 8088, 8090

JobHistory Server 10020, 19888, 19890

NodeManager 8040, 8041, 8042, 8044

ZooKeeper Server 2181, 3181, 4181, 9010

Now that we have the common ports listed, we need to understand how strict of a
policy needs to be enforced. Configuring iptables rules involves both ports and IP
addresses, as well as the direction of communication. A typical basic firewall policy
allows any host to reach the allowed ports, and all return (established) traffic is
allowed. An example iptables policy for an HDFS NameNode might look like the one
in Example 3-1.

Example 3-1. Basic NameNode iptables policy

iptables -N hdfs
iptables -A hdfs -p tcp -s 0.0.0.0/0 --dport 8020 -j ACCEPT
iptables -A hdfs -p tcp -s 0.0.0.0/0 --dport 8022 -j ACCEPT
iptables -A hdfs -p tcp -s 0.0.0.0/0 --dport 50070 -j ACCEPT
iptables -A hdfs -p tcp -s 0.0.0.0/0 --dport 50470 -j ACCEPT
iptables -A INPUT -j hdfs

This policy is more relaxed in that it allows all hosts (0.0.0.0/0) to connect to the
machine over the common HDFS NameNode service ports. However, this might be
too open a policy. Let us say that the Hadoop cluster nodes are all part of the
10.1.1.0/24 subnet. Furthermore, a dedicated edge node is set up on the host
10.1.1.254 for all communication to the cluster. Finally, SSL is enabled for web con‐
soles. The adjusted iptables policy for the NameNode machine might instead look
like the one in Example 3-2.

Example 3-2. Secure NameNode iptables policy

iptables -N hdfs
iptables -A hdfs -p tcp -s 10.1.1.254/32 --dport 8020 -j ACCEPT
iptables -A hdfs -p tcp -s 10.1.1.254/32 --dport 8022 -j DROP
iptables -A hdfs -p tcp -s 10.1.1.0/24 --dport 8022 -j ACCEPT
iptables -A hdfs -p tcp -s 0.0.0.0/0 --dport 50470 -j ACCEPT
iptables -A INPUT -j hdfs
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The adjusted policy is now a lot more restrictive. It allows any user to get to the
NameNode web console over SSL (port 50470), only cluster machines to connect to
the NameNode over the dedicated DataNode RPC port (8022), and user traffic to the
NameNode RPC port (8020) to occur only from the edge node.

It might be necessary to insert the iptables jump target to a specific
line number in the INPUT section of your policy for it to take effect.
An append is shown for simplicity.

SELinux
Another often-discussed feature related to operating system security is Security
Enhanced Linux (SELinux), which was originally developed by the National Security
Agency (NSA), an intelligence organization in the United States. The premise of
SELinux is to provide Linux kernel enhancements that allow for the policies and
enforcement of mandatory access controls (MAC). At a high level, SELinux can be
configured in a few different ways:

Disabled
In this mode, SELinux is not active and does not provide any additional level of
security to the operating system. This is far and away the most common configu‐
ration for Hadoop.

Permissive
In this mode, SELinux is enabled but does not protect the system. What it does
instead is print warnings when a policy has been violated. This mode is very use‐
ful to profile the types of workloads on a system to begin building a customized
policy.

Enforcing
In this mode, SELinux is enabled and protects the system based upon the speci‐
fied SELinux policy in place.

In addition to the enabled modes of permissive and enforcing, SELinux has two dif‐
ferent types of enforcement: targeted enforcement and multilevel security (MLS).
With targeted enforcement, only certain processes are targeted, meaning they have an
associated policy that governs the protection. Processes that do not have a policy are
not protected by SELinux. This, of course, is a less stringent mode of protection.
MLS, on the other hand, is much more in depth. The premise of MLS at a very high
level is that all users and processes carry a security level, while files and other objects
carry a security-level requirement. MLS is modeled after U.S. government classifica‐
tion levels, such as Top Secret, Secret, Confidential, and Unclassified. In the U.S. gov‐
ernment classification system, these levels create a hierarchy where each user with a
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given level of access has permission to any information at a lower level. For example,
if a user has a security level of Secret, then the user will be permitted to access objects
in the operating system at the Secret, Confidential, and Unclassified security level
because Confidential and Unclassified are both lower levels than Secret. However,
they would not be able to access objects marked at the Top Secret security level.

All of this sounds great, but what does it have to do with Hadoop? Can SELinux be
used as an additional level of protection to the operating system that is running the
various Hadoop ecosystem components? The short answer: most likely not. This is
not to say that it is not possible—rather, it is an admission that advancements in secu‐
rity integration with SELinux and the creation of associated policies that security
administrators can deploy in the cluster are simply absent at this point. What com‐
pounds the problem is the nature of the Hadoop ecosystem. Today it is filled with
hundreds of components, tools, and other widgets that integrate and/or enhance the
platform in one way or another. The more tools that are added in the mix, the harder
it is to come up with a set of SELinux policies to govern them all.

For those that push the limits of adoption, the likely choice is to set up systems in
permissive mode and run what equates to “normal” workloads in the cluster, leverag‐
ing as many of the tools as deemed typical for the given environment. Once this has
been done over a suitable period of time, the warnings generated by SELinux can be
used to start building out a policy. The issue here is that this can quickly become a
tedious process, and one that has to be revisited every time a new component or fea‐
ture is introduced to the mix.

Summary
In this chapter, we analyzed the Hadoop environment with broad strokes, first identi‐
fying the operating environment that it resides in. Then we discussed protecting this
environment from a network security perspective, taking advantage of common secu‐
rity practices such as network segmentation and introducing network security devices
like firewalls and IDS/IPS. The next level of granularity was understanding how to
break down a Hadoop cluster into different node groups based upon the types of
services they run. Finally, we provided recommendations for securing the operating
systems of individual nodes based on the node group.

In Chapter 4, we take a look at a fundamental component of Hadoop security archi‐
tecture: Kerberos. Kerberos is a key player in enterprise systems, and Hadoop is no
exception. The Kerberos chapter will close out the discussion on security architecture
and set the stage for authentication, authorization, and accounting.
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CHAPTER 4

Kerberos

Kerberos often intimidates even experienced system administrators and developers at
the first mention of it. Applications and systems that rely on Kerberos often have
many support calls and trouble tickets filed to fix problems related to it. This chapter
will introduce the basic Kerberos concepts that are necessary to understand how
strong authentication works, and explain how it plays an important role with Hadoop
authentication in Chapter 5.

So what exactly is Kerberos? From a mythological point of view, Kerberos is the Greek
word for Cerberus, a multiheaded dog that guards the entrance to Hades to ensure
that nobody who enters will ever leave. Kerberos from a technical (and more pleas‐
ant) point of view is the term given to an authentication mechanism developed at
Massachusetts Institute of Technology (MIT). Kerberos evolved to become the de
facto standard for strong authentication for computer systems large and small, with
varying implementations ranging from MIT’s Kerberos distribution to the authenti‐
cation component of Microsoft’s Active Directory.

Why Kerberos?
Playing devil’s advocate here (pun intended), why does Hadoop need Kerberos at all?
The reason becomes apparent when looking at the default model for Hadoop authen‐
tication. When presented with a username, Hadoop happily believes whatever you tell
it, and ensures that every machine in the entire cluster believes it, too.

To use an analogy, if a person at a party approached you and introduced himself as
“Bill,” you naturally would believe that he is, in fact, Bill. How do you know that he
really is Bill? Well, because he said so and you believed him without question.
Hadoop without Kerberos behaves in much the same way, except that, to take the
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analogy a step further, Hadoop not only believes “Bill” is who he says he is but makes
sure that everyone else believes it, too. This is a problem.

Hadoop by design is meant to store and process petabytes of data. As the old adage
goes, with great power comes great responsibility. Hadoop in the enterprise can no
longer get by with simplistic means for identifying (and trusting) users. Enter Ker‐
beros. In the previous analogy, “Bill” introduces himself to you. Upon doing so, what
if you responded by asking to see a valid passport and upon receiving it (naturally,
because everyone brings a passport to a party…), checked the passport against a data‐
base to verify validity? This is the type of identify verification that Hadoop introduced
by adding Kerberos authentication.

Kerberos Overview
The stage is now set and it is time to dig in and understand just how Kerberos works.
Kerberos implementation is, as you might imagine, a client/server architecture.
Before breaking down the components in detail, a bit of Kerberos terminology is
needed.

First, identities in Kerberos are called principals. Every user and service that partici‐
pates in the Kerberos authentication protocol requires a principal to uniquely identify
itself. Principals are classified into two categories: user principals and service princi‐
pals. User principal names, or UPNs, represent regular users. This closely resembles
usernames or accounts in the operating system world. Service principal names, or 
SPNs, represent services that a user needs to access, such as a database on a specific
server. The relationship between UPNs and SPNs will become more apparent when
we work through an example later.

The next important Kerberos term is realm. A Kerberos realm is an authentication
administrative domain. All principals are assigned to a specific Kerberos realm. A
realm establishes a boundary, which makes administration easier.

Now that we have established what principals and realms are, the natural next step is
to understand what stores and controls all of this information. The answer is a key
distribution center (KDC). The KDC is comprised of three components: the Kerberos
database, the authentication service (AS), and the ticket-granting service (TGS). The
Kerberos database stores all the information about the principals and the realm they
belong to, among other things. Kerberos principals in the database are identified with
a naming convention that looks like the following:

alice@EXAMPLE.COM

A UPN that uniquely identifies the user (also called the short name): alice in the
Kerberos realm EXAMPLE.COM. By convention, the realm name is always upper‐
case.

50 | Chapter 4: Kerberos



bob/admin@EXAMPLE.COM

A variation of a regular UPN in that it identifies an administrator bob for the
realm EXAMPLE.COM. The slash (/) in a UPN separates the short name and the
admin distinction. The admin component convention is regularly used, but it is
configurable as we will see later.

hdfs/node1.example.com@EXAMPLE.COM

This principal represents an SPN for the hdfs service, on the host node1.exam
ple.com, in the Kerberos realm EXAMPLE.COM. The slash (/) in an SPN separates
the short name hdfs and the hostname node1.example.com.

The entire principal name is case sensitive! For instance, hdfs/
Node1.Hadoop.com@EXAMPLE.COM is a different principal than the
one in the third example. Typically, it is best practice to use all low‐
ercase for the principal, except for the realm component, which is
uppercase. The caveat here is, of course, that the underlying host‐
names referred to in SPNs are also lowercase, which is also a best
practice for host naming and DNS.

The second component of the KDC, the AS, is responsible for issuing a ticket-
granting ticket (TGT) to a client when they initiate a request to the AS. The TGT is
used to request access to other services.

The third component of the KDC, the TGS, is responsible for validating TGTs and
granting service tickets. Service tickets allow an authenticated principal to use the ser‐
vice provided by the application server, identified by the SPN. The process flow of
obtaining a TGT, presenting it to the TGS, and obtaining a service ticket is explained
in the next section. For now, understand that the KDC has two components, the AS
and TGS, which handle requests for authentication and access to services.

There is a special principal of the form krbtgt/<REALM>@<REALM>
within the Kerberos database, such as krbtgt/EXAMPLE.COM@EXAM
PLE.COM. This principal is used internally by both the AS and the
TGS. The key for this principal is actually used to encrypt the con‐
tent of the TGT that is issued to clients, thus ensuring that the TGT
issued by the AS can only be validated by the TGS.

Table 4-1 provides a summary of the Kerberos terms and abbreviations introduced in
this chapter.
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Table 4-1. Kerberos term abbreviations

Term Name Description

UPN User principal name A principal that identifies a user in a given realm, with the format <short
name><@REALM> or <shortname>/admin@<REALM>

SPN Service principal name A principal that identifies a service on a specific host in a given realm, with the format
<shortname>/<hostname>@<REALM>

TGT Ticket-granting ticket A special ticket type granted to a user after successfully authenticating to the AS

KDC Key distribution center A Kerberos server that contains three components: Kerberos database, AS, and TGS

AS Authentication service A KDC service that issues TGTs

TGS Ticket-granting service A KDC service that validates TGTs and grants service tickets

What has been presented thus far are a few of the basic Kerberos components needed
to understand authentication at a high level. Kerberos in its own right is a very in-
depth and complex topic that warrants an entire book on the subject. Thankfully, that
has already been done. If you wish to dive far deeper than what is presented here, take
a look at Jason Garman’s excellent book, Kerberos: The Definitive Guide (O’Reilly).

Kerberos Workflow: A Simple Example
Now that the terminology and components have been introduced, we can now work
through an example workflow showing how it all works at a high level. First, we will
identify all of the components in play:

EXAMPLE.COM

The Kerberos realm

Alice
A user of the system, identified by the UPN alice@EXAMPLE.COM

myservice

A service that will be hosted on server1.example.com, identified by the SPN
myservice/server1.example.com@EXAMPLE.COM

kdc.example.com

The KDC for the Kerberos realm EXAMPLE.COM

In order for Alice to use myservice, she needs to present a valid service ticket to
myservice. The following list of steps shows how she does this (some details omitted
for brevity):
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1. Alice needs to obtain a TGT. To do this, she initiates a request to the AS at
kdc.example.com, identifying herself as the principal alice@EXAMPLE.COM.

2. The AS responds by providing a TGT that is encrypted using the key (password)
for the principal alice@EXAMPLE.COM.

3. Upon receipt of the encrypted message, Alice is prompted to enter the correct
password for the principal alice@EXAMPLE.COM in order to decrypt the message.

4. After successfully decrypting the message containing the TGT, Alice now
requests a service ticket from the TGS at kdc.example.com for the service identi‐
fied by myservice/server1.example.com@EXAMPLE.COM, presenting the TGT
along with the request.

5. The TGS validates the TGT and provides Alice a service ticket, encrypted with
the myservice/server1.example.com@EXAMPLE.COM principal’s key.

6. Alice now presents the service ticket to myservice, which can then decrypt it
using the myservice/server1.example.com@EXAMPLE.COM key and validate the
ticket.

7. The service myservice permits Alice to use the service because she has been
properly authenticated.

This shows how Kerberos works at a high level. Obviously this is a greatly simplified
example and many of the underlying details have not been presented. See Figure 4-1
for a sequence diagram of this example.
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Figure 4-1. Kerberos workflow example

Kerberos Trusts
So far, Kerberos has been introduced under the implicit expectation that all users and
services are contained within a single Kerberos realm. While this works well for
introductory material, it is often not realistic given how large enterprises work. Over
time, large enterprises end up with multiple Kerberos realms from things like merg‐
ers, acquisitions, or just simply wanting to segregate different parts of the enterprise.
However, by default, a KDC only knows about its own realm and the principals in its
own database. What if a user from one realm wants to use a service that is controlled
by another realm? In order to make this happen, a Kerberos trust is needed between
the two realms.

For example, suppose that Example is a very large corporation and has decided to
create multiple realms to identify different lines of business, including HR.EXAM
PLE.COM and MARKETING.EXAMPLE.COM. Because users in both realms might need to
access services from both realms, the KDC for HR.EXAMPLE.COM needs to trust infor‐
mation from the MARKETING.EXAMPLE.COM realm and vice versa.

On the surface this seems pretty straightforward, except that there are actually two
different types of trusts: one-way trust and two-way trust (sometimes called bidirec‐
tional trust or full trust). The example we just looked at represents a two-way trust.
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What if there is also a DEV.EXAMPLE.COM realm where developers have principals that
need to access the DEV.EXAMPLE.COM and MARKETING.EXAMPLE.COM realms, but mar‐
keting users should not be able to access the DEV.EXAMPLE.COM realm? This scenario
requires a one-way trust. A one-way trust is very common in Hadoop deployments
when a KDC is installed and configured to contain all the information about the
SPNs for the cluster nodes, but all UPNs for end users exist in a different realm, such
as Active Directory. Oftentimes, Active Directory administrators or corporate policies
prohibit full trusts for a variety of reasons.

So how does a Kerberos trust actually get established? Earlier in the chapter it was
noted that a special principal is used internally by the AS and TGS, and it is of the
form krbtgt/<REALM>@<REALM>. This principal becomes increasingly important for
establishing trusts. With trusts, the principal instead takes the form of krbtgt/<TRUST
ING_REALM>@<TRUSTED_REALM>. A key concept of this principal is that it exists in both
realms. For example, if the HR.EXAMPLE.COM realm needs to trust the MARKETING.EXAM
PLE.COM realm, the principal krbtgt/HR.EXAMPLE.COM@MARKETING.EXAMPLE.COM

needs to exist in both realms.

The password for the krbtgt/<TRUSTING_REALM>@<TRUS

TED_REALM> principal and the encryption types used must be the
same in both realms in order for the trust to be established.

The previous example shows what is required for a one-way trust. In order to estab‐
lish a full trust, the principal krbtgt/MARKETING.EXAMPLE.COM@HR.EXAMPLE.COM also
needs to exist in both realms. To summarize, for the HR.EXAMPLE.COM realm to have a
full trust with the MARKETING.EXAMPLE.COM realm, both realms need the principals
krbtgt/MARKETING.EXAMPLE.COM@HR.EXAMPLE.COM and krbtgt/HR.EXAM

PLE.COM@MARKETING.EXAMPLE.COM.

MIT Kerberos
As mentioned in the beginning of this chapter, Kerberos was first created at MIT.
Over the years, it has undergone several revisions and the current version is MIT Ker‐
beros V5, or krb5 as it is often called. This section covers some of the components of
the MIT Kerberos distribution to put some real examples into play with the concep‐
tual examples introduced thus far.

For the most up-to-date definitive resource on the MIT Kerberos
distribution, consult the excellent documentation at the official
project website.
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In the earlier example, we glossed over the fact that Alice initiated an authentication
request. In practice, Alice does this by using the kinit tool (Example 4-1).

Example 4-1. kinit using the default user

[alice@server1 ~]$ kinit
Enter password for alice@EXAMPLE.COM:
[alice@server1 ~]$

This example pairs the current Linux username alice with the default realm to come
up with the suggested principal alice@EXAMPLE.COM. The default realm is explained
later when we dive into the configuration files. The kinit tool also allows the user to
explicitly identify the principal to authenticate as (Example 4-2).

Example 4-2. kinit using a specified user

[alice@server1 ~]$ kinit alice/admin@EXAMPLE.COM
Enter password for alice/admin@EXAMPLE.COM:
[alice@server1 ~]$

Explicitly providing a principal name is often necessary to authenticate as an admin‐
istrative user, as the preceding example depicts. Another option for authentication is
by using a keytab file. A keytab file stores the actual encryption key that can be used
in lieu of a password challenge for a given principal. Creating keytab files are useful
for noninteractive principals, such as SPNs, which are often associated with long-
running processes like Hadoop daemons. A keytab file does not have to be a 1:1 map‐
ping to a single principal. Multiple different principal keys can be stored in a single
keytab file. A user can use kinit with a keytab file by specifying the keytab file loca‐
tion, and the principal name to authenticate as (again, because multiple principal keys
may exist in the keytab file), shown in Example 4-3.

Example 4-3. kinit using a keytab file

[alice@server1 ~]$ kinit -kt alice.keytab alice/admin@EXAMPLE.COM
[alice@server1 ~]$

The keytab file allows a user to authenticate without knowledge of
the password. Because of this fact, keytabs should be protected with
appropriate controls to prevent unauthorized users from authenti‐
cating with it. This is especially important when keytabs are created
for administrative principals!

Another useful utility that is part of the MIT Kerberos distribution is called klist. 
This utility allows users to see what, if any, Kerberos credentials they have in their
credentials cache. The credentials cache is the place on the local filesystem where,
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upon successful authentication to the AS, TGTs are stored. By default, this location is
usually the file /tmp/krb5cc_<uid> where <uid> is the numeric user ID on the local
system. After a successful kinit, alice can view her credentials cache with klist, as
shown in Example 4-4.

Example 4-4. Viewing the credentials cache with klist

[alice@server1 ~]$ kinit
Enter password for alice@EXAMPLE.COM:
[alice@server1 ~]$ klist
Ticket cache: FILE:/tmp/krb5cc_5000
Default principal: alice@EXAMPLE.COM

Valid starting     Expires            Service principal
02/13/14 12:00:27  02/14/14 12:00:27  krbtgt/EXAMPLE.COM@EXAMPLE.COM
        renew until 02/20/14 12:00:27
[alice@server1 ~]$

If a user tries to look at the credentials cache without having authenticated first, no
credentials will be found (see Example 4-5).

Example 4-5. No credentials cache found

[alice@server1 ~]$ klist
No credentials cache found (ticket cache FILE:/tmp/krb5cc_5000
[alice@server1 ~]$

Another useful tool in the MIT Kerberos toolbox is kdestroy. As the name implies,
this allows users to destroy credentials in their credentials cache. This is useful for
switching users, or when trying out or debugging new configurations (see
Example 4-6).

Example 4-6. Destroying the credentials cache with kdestroy

[alice@server1 ~]$ kinit
Enter password for alice@EXAMPLE.COM:
[alice@server1 ~]$ klist
Ticket cache: FILE:/tmp/krb5cc_5000
Default principal: alice@EXAMPLE.COM

Valid starting     Expires            Service principal
02/13/14 12:00:27  02/14/14 12:00:27  krbtgt/EXAMPLE.COM@EXAMPLE.COM
        renew until 02/20/14 12:00:27
[alice@server1 ~]$ kdestroy
[alice@server1 ~]$ klist
No credentials cache found (ticket cache FILE:/tmp/krb5cc_5000
[alice@server1 ~]$
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So far, all of the MIT Kerberos examples shown “just work.” Hidden away in these
examples is the fact that there is a fair amount of configuration necessary to make it
all work, both on the client and server side. The next two sections present basic con‐
figurations to tie together some of the concepts that have been presented thus far.

Server Configuration
Kerberos server configuration is primarily specified in the kdc.conf file, which is
shown in Example 4-7. This file lives in /var/kerberos/krb5kdc/ on Red Hat/CentOS
systems.

Example 4-7. kdc.conf

[kdcdefaults]
 kdc_ports = 88
 kdc_tcp_ports = 88

[realms]
 EXAMPLE.COM = {
  acl_file = /var/kerberos/krb5kdc/kadm5.acl
  dict_file = /usr/share/dict/words
  supported_enctypes = aes256-cts:normal aes128-cts:normal arcfour-hmac-md5:normal
  max_renewable_life = 7d
 }

The first section, kdcdefaults, contains configurations that apply to all the realms
listed, unless the specific realm configuration has values for the same configuration
items. The configurations kdc_ports and kdc_tcp_ports specify the UDP and TCP
ports the KDC should listen on, respectively. The next section, realms, contains all of
the realms that the KDC is the server for. A single KDC can support multiple realms.
The realm configuration items from this example are as follows:

acl_file

This specifies the file location to be used by the admin server for access controls
(more on this later).

dict_file

This specifies the file that contains words that are not allowed to be used as pass‐
words because they are easily cracked/guessed.

supported_enctypes

This specifies all of the encryption types supported by the KDC. When interact‐
ing with the KDC, clients must support at least one of the encryption types listed
here. Be aware of using weak encryption types, such as DES, because they are
easily exploitable.
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max_renewable_life

This specifies the maximum amount of time that a ticket can be renewable. Cli‐
ents can request a renewable lifetime up to this length. A typical value is seven
days, denoted by 7d.

By default, encryption settings in MIT Kerberos are often set to a
variety of encryption types, including weak choices such as DES.
When possible, remove weak encryption types to ensure the best
possible security. Weak encryption types are easily exploitable and
well documented as such. When using AES-256, Java Crypto‐
graphic Extensions need to be installed on all nodes in the cluster
to allow for unlimited strength encryption types. It is important to
note that some countries prohibit the usage of these encryption
types. Always follow the laws governing encryption strength for
your country. A more detailed discussion of encryption is provided
in Chapter 9.

The acl_file location (typically the file kadm5.acl) is used to control which users
have privileged access to administer the Kerberos database. Administration of the
Kerberos database is controlled by two different, but related, components: kad
min.local and kadmin. The first is a utility that allows the root user of the KDC
server to modify the Kerberos database. As the name implies, it can only be run by the
root user on the same machine where the Kerberos database resides. Administrators
wishing to administer the Kerberos database remotely must use the kadmin server.

The kadmin server is a daemon process that allows remote connections to administer
the Kerberos database. This is where the kadm5.acl file (shown in Example 4-8)
comes into play. The kadmin utility uses Kerberos authentication, and the kadm5.acl
file specifies which UPNs are allowed to perform privileged functions.

Example 4-8. kadm5.acl

*/admin@EXAMPLE.COM      *
cloudera-scm@EXAMPLE.COM *     hdfs/*@EXAMPLE.COM
cloudera-scm@EXAMPLE.COM *     mapred/*@EXAMPLE.COM

This allows any principal from the EXAMPLE.COM realm with the /admin distinction to
perform any administrative action. While it is certainly acceptable to change the
admin distinction to some other arbitrary name, it is recommended to follow the con‐
vention for simplicity and maintainability. Administrative users should only use their
admin credentials for specific privileged actions, much in the same way administra‐
tors should not use the root user in Linux for everyday nonadministrative actions.
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The example also shows how the ACL can be defined to restrict privileges to a target
principal. It demonstrates that the user cloudera-scm can perform any action but only
on SPNs that start with hdfs and mapred. This type of syntax is useful to grant access
to a third-party tool to create and administer Hadoop principals, but not grant access
to all of the admin functions.

As mentioned earlier, the kadmin tool allows for administration of the Kerberos data‐
base. This tool brings users to a shell-like interface where various commands can be
entered to perform operations against the Kerberos database (see Examples 4-9
through 4-12.

Example 4-9. Adding a new principal to the Kerberos database

kadmin: addprinc alice@EXAMPLE.COM
WARNING: no policy specified for alice@EXAMPLE.COM; defaulting to no policy
Enter password for principal "alice@EXAMPLE.COM":
Re-enter password for principal "alice@EXAMPLE.COM":
Principal "alice@EXAMPLE.COM" created.
kadmin:

Example 4-10. Displaying the details of a principal in the Kerberos database

kadmin: getprinc alice@EXAMPLE.COM
Principal: alice@EXAMPLE.COM
Expiration date: [never]
Last password change: Tue Feb 18 20:48:15 EST 2014
Password expiration date: [none]
Maximum ticket life: 1 day 00:00:00
Maximum renewable life: 7 days 00:00:00
Last modified: Tue Feb 18 20:48:15 EST 2014 (root/admin@EXAMPLE.COM)
Last successful authentication: [never]
Last failed authentication: [never]
Failed password attempts: 0
Number of keys: 2
Key: vno 1, aes256-cts-hmac-sha1-96, no salt
Key: vno 1, aes128-cts-hmac-sha1-96, no salt
MKey: vno1
Attributes:
Policy: [none]
kadmin:

Example 4-11. Deleting a principal from the Kerberos database

kadmin: delprinc alice@EXAMPLE.COM
Are you sure you want to delete the principal "alice@EXAMPLE.COM"? (yes/no): yes
Principal "alice@EXAMPLE.COM" deleted.
Make sure that you have removed this principal from all ACLs before reusing.
kadmin:
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Example 4-12. Listing all the principals in the Kerberos database

kadmin: listprincs
HTTP/server1.example.com@EXAMPLE.COM
K/M@EXAMPLE.COM
bob@EXAMPLE.COM
flume/server1.example.com@EXAMPLE.COM
hdfs/server1.example.com@EXAMPLE.COM
hdfs@EXAMPLE.COM
hive/server1.example.com@EXAMPLE.COM
hue/server1.example.com@EXAMPLE.COM
impala/server1.example.com@EXAMPLE.COM
kadmin/admin@EXAMPLE.COM
kadmin/server1.example.com@EXAMPLE.COM
kadmin/changepw@EXAMPLE.COM
krbtgt/EXAMPLE.COM@EXAMPLE.COM
mapred/server1.example.com@EXAMPLE.COM
oozie/server1.example.com@EXAMPLE.COM
yarn/server1.example.com@EXAMPLE.COM
zookeeper/server1.example.com@EXAMPLE.COM
kadmin:

Client Configuration
The default Kerberos client configuration file is typically named krb5.conf, and lives
in the /etc/ directory on Unix/Linux systems. This configuration file is read whenever
client applications need to use Kerberos, including the kinit utility. The krb5.conf
shown in Example 4-13 configuration file is minimally configured from the default
that comes with Red Hat/CentOS 6.4.

Example 4-13. krb5.conf

[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]
 default_realm = DEV.EXAMPLE.COM
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = true
 default_tkt_enctypes = aes256-cts aes128-cts
 default_tgs_enctypes = aes256-cts aes128-cts
 udp_preference_limit = 1

[realms]
 EXAMPLE.COM = {
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  kdc = kdc.example.com
  admin_server = kdc.example.com
 }

 DEV.EXAMPLE.COM = {
   kdc = kdc.dev.example.com
   admin_server = kdc.dev.example.com
 }

[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM
 .dev.example.com = DEV.EXAMPLE.COM
 dev.example.com = DEV.EXAMPLE.COM

In this example, there are several different sections. The first, logging, is self-
explanatory. It defines where logfiles are stored for the various Kerberos components
that generate log events. The second section, libdefaults, contains general default
configuration information. Let’s take a closer look at the individual configurations in
this section:

default_realm

This defines what Kerberos realm should be assumed if no realm is provided.
This is right in line with the earlier kinit example when a realm was not pro‐
vided.

dns_lookup_realm

DNS can be used to determine what Kerberos realm to use.

dns_lookup_kdc

DNS can be used to find the location of the KDC.

ticket_lifetime

This specifies how long a ticket lasts for. This can be any length of time up to the
maximum specified by the KDC. A typical value is 24 hours, denoted by 24h.

renew_lifetime

This specifies how long a ticket can be renewed for. Tickets can be renewed by the
KDC without having a client reauthenticate. This must be done prior to tickets
expiring.

forwardable

This specifies that tickets can be forwardable, which means that if a user has a
TGT already but logs into a different remote system, the KDC can automatically
reissue a new TGT without the client having to reauthenticate.
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default_tkt_enctypes

This specifies the encryption types to use for session keys when making requests
to the AS. Preference from highest to lowest is left to right.

default_tgs_enctypes

This specifies the encryption types to use for session keys when making requests
to the TGS. Preference from highest to lowest is left to right.

udp_preference_limit

This specifies the maximum packet size to use before switching to TCP instead of
UDP. Setting this to 1 forces TCP to always be used.

The next section, realms, lists all the Kerberos realms that the client is aware of. The
kdc and admin_server configurations tell the client which server is running the KDC
and kadmin processes, respectively. These configurations can specify the port along
with the hostname. If no port is specified, it is assumed to use port 88 for the KDC
and 749 for admin server. In this example, two realms are shown. This is a common
configuration where a one-way trust exists between two realms, and clients need to
know about both realms. In this example, perhaps the EXAMPLE.COM realm contains all
of the end-user principals and DEV.EXAMPLE.COM contains all of the Hadoop service
principals for a development cluster. Setting up Kerberos in this fashion allows users
of this dev cluster to use their existing credentials in EXAMPLE.COM to access it.

The last section, domain_realm, maps DNS names to Kerberos realms. The first entry
says all hosts under the example.com domain map to the EXAMPLE.COM realm, while
the second entry says that example.com itself maps to the EXAMPLE.COM realm. This is
similarly the case with dev.example.com and DEV.EXAMPLE.COM. If no matching entry
is found in this section, the client will try to use the domain portion of the DNS name
(converted to all uppercase) as the realm name.

Summary
The important takeaway from this chapter is that Kerberos authentication is a multi‐
step client/server process to provide strong authentication of both users and services.
We took a look at the MIT Kerberos distribution, which is a popular implementation
choice. While this chapter covered some of the details of configuring the MIT Ker‐
beros distribution, we strongly encourage you to refer to the official MIT Kerberos
documentation, as it is the most up-to-date reference for the latest distribution; in
addition, it serves as a more detailed guide about all of the configuration options
available to a security administrator for setting up a Kerberos environment.

In the next chapter, the Kerberos concepts covered thus far will be taken a step fur‐
ther by putting them into the context of core Hadoop and the extended Hadoop eco‐
system.
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CHAPTER 5

Identity and Authentication

The first step necessary for any system securing data is to provide each user with a
unique identity and to authenticate a user’s claim of a particular identity. The reason
authentication and identity are so essential is that no authorization scheme can con‐
trol access to data if the scheme can’t trust that users are who they claim to be.

In this chapter, we’ll take a detailed look at how authentication and identity are man‐
aged for core Hadoop services. We start by looking at identity and how Hadoop inte‐
grates information from Kerberos KDCs and from LDAP and Active Directory
domains to provide an integrated view of distributed identity. We’ll also look at how
Hadoop represents users internally and the options for mapping external, global
identities to those internal representations. Next, we revisit Kerberos and go into
more details of how Hadoop uses Kerberos for strong authentication. From there,
we’ll take a look at how some core components use username/password–based
authentication schemes and the role of distributed authentication tokens in the over‐
all architecture. We finish the chapter with a discussion of user impersonation and a
deep dive into the configuration of Hadoop authentication.

Identity
In the context of the Hadoop ecosystem, identity is a relatively complex topic. This is
due to the fact that Hadoop goes to great lengths to be loosely coupled from authori‐
tative identity sources. In Chapter 4, we introduced the Kerberos authentication pro‐
tocol, a topic that will figure prominently in the following section, as it’s the default
secure authentication protocol used in Hadoop. While Kerberos provides support for
robust authentication, it provides very little in the way of advanced identity features
such as groups or roles. In particular, Kerberos exposes identity as a simple two-part
string (or in the case of services, three-part string) consisting of a short name and a
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realm. While this is useful for giving every user a unique identifier, it is insufficient
for the implementation of a robust authorization protocol.

In addition to users, most computing systems provide groups, which are typically
defined as a collection of users. Because one of the goals of Hadoop is to integrate
with existing enterprise systems, Hadoop took the pragmatic approach of using a
pluggable system to provide the traditional group concept.

Mapping Kerberos Principals to Usernames
Before diving into more details on how Hadoop maps users to groups, we need to
discuss how Hadoop translates Kerberos principal names to usernames. Recall from
Chapter 4 that Kerberos uses a two-part string (e.g., alice@EXAMPLE.COM) or three-
part string (e.g., hdfs/namenode.example.com@EXAMPLE.COM) that contains a short
name, realm, and an optional instance name or hostname. To simplify working with
usernames, Hadoop maps Kerberos principal names to local usernames. Hadoop can
use the auth_to_local setting in the krb5.conf file, or Hadoop-specific rules can be
configured in the hadoop.security.auth_to_local parameter in the core-site.xml
file.

The value of hadoop.security.auth_to_local is set to one or more rules for map‐
ping principal names to local usernames. A rule can either be the value DEFAULT or
the string RULE: followed by three parts: the initial principal translation, the accept‐
ance filter, and the substitution command. The special value DEFAULT maps names in
Hadoop’s local realm to just the first component (e.g., alice/admin@EXAMPLE.COM is
mapped to alice by the DEFAULT rule).

The initial principal translation
The initial principal translation consists of a number followed by the substitution
string. The number matches the number of components, not including the realm, of
the principal. The substitution string defines how the principal will be initially trans‐
lated. The variable $0 will be substituted with the realm, $1 will be substituted with
the first component, and $2 will be substituted with the second component. See
Table 5-1 for some example initial principal translations. The format of the initial
principal translation is [<number>:<string>] and the output is called the initial local
name.

Table 5-1. Example principal translations

Principal translation Initial local name for alice@EXAM
PLE.com

Initial local name for hdfs/namenode.exam
ple.com@EXAMPLE.COM

[1:$1.$0] alice.EXAMPLE.COM No match
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Principal translation Initial local name for alice@EXAM
PLE.com

Initial local name for hdfs/namenode.exam
ple.com@EXAMPLE.COM

[1:$1] alice No match

[2:$1_$2@$0] No match hdfs_namenode.example.com@EXAMPLE.COM

[2:$1@$0] No match hdfs@EXAMPLE.COM

The acceptance filter
The acceptance filter is a regular expression, and if the initial local name (i.e., the out‐
put from the first part of the rule) matches the regular expression, then the substitu‐
tion command will be run over the string. The initial local name only matches if the
entire string is matched by the regular expression. This is equivalent to having the
regular expression start with a ^ and end with $. See Table 5-2 for some sample
acceptance filters. The format of the acceptance filter is (<regular expression>).

Table 5-2. Example acceptance filters

Acceptance filter alice.EXAMPLE.COM hdfs@EXAMPLE.COM

(.*\.EXAMPLE\.COM) Match No match

(.*@EXAMPLE\.COM) No match Match

(.*EXAMPLE\.COM) Match Match

(EXAMPLE\.COM) No match No match

The substitution command
The substitution command is a sed-style substitution with a regular expression pat‐
tern and a replacement string. Matching groups can be included by surrounding a
portion of the regular expression in parentheses, and referenced in the replacement
string by number (e.g., \1). The group number is determined by the order of the
opening parentheses in the regular expression. See Table 5-3 for some sample substi‐
tution commands. The format of the substitution command is s/<pattern>/
<replacement>/g. The g at the end is optional, and if it is present then the substitu‐
tion will be global over the entire string. If the g is omitted, then only the first sub‐
string that matches the pattern will be substituted.
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Table 5-3. Example substitution commands

Substitution Command alice.EXAMPLE.COM hdfs@EXAMPLE.COM

s/(.*)\.EXAMPLE.COM/\1/ alice Not applicable

s/.EXAMPLE.COM// alice hdfs

s/E/Q/ alice.QXAMPLE.COM hdfs@QXAMPLE.COM

s/E/Q/g alice.QXAMPLQ.COM hdfs@QXAMPLQ.COM

The complete format for a rule is RULE:[<number>:<string>](<regular expres
sion>)s/<pattern>/<replacement>/. Multiple rules are separated by new lines and
rules are evaluated in order. Once a principal fully matches a rule (i.e., the principal
matches the number in the initial principal translation and the initial local name
matches the acceptance filter), the username becomes the output of that rule and no
other rules are evaluated. Due to this order constraint, it’s common to list the DEFAULT
rule last.

The most common use of the auth_to_local setting is to configure how to handle
principals from other Kerberos realms. A common scenario is to have one or more
trusted realms. For example, if your Hadoop realm is HADOOP.EXAMPLE.COM but your
corporate realm is CORP.EXAMPLE.COM, then you’d add rules to translate principals in
the corporate realm into local users. See Example 5-1 for a sample configuration that
only accepts users in the HADOOP.EXAMPLE.COM and CORP.EXAMPLE.COM realms, and
maps users to the first component for both realms.

Example 5-1. Example auth_to_local configuration for a trusted realm

  <property>
    <name>hadoop.security.auth_to_local</name>
    <value>
      RULE:[1:$1@$0](.*@CORP.EXAMPLE.COM)s/@CORP.EXAMPLE.COM//
      RULE:[2:$1@$0](.*@CORP.EXAMPLE.COM)s/@CORP.EXAMPLE.COM//
      DEFAULT
    </value>
  </property>

Hadoop User to Group Mapping
Hadoop exposes a configuration parameter called hadoop.security.group.mapping
to control how users are mapped to groups. The default implementation uses either
native calls or local shell commands to look up user-to-group mappings using the
standard UNIX interfaces. This means that only the groups that are configured on the
server where the mapping is called are visible to Hadoop. In practice, this is not a
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major concern because it is important for all of the servers in your Hadoop cluster to
have a consistent view of the users and groups that will be accessing the cluster.

In addition to knowing how the user-to-group mapping system
works, it is important to know where the mapping takes place. As
described in Chapter 6, it is important for user-to-group mappings
to get resolved consistently and at the point where authorization
decisions are made. For Hadoop, that means that the mappings 
occur in the NameNode, JobTracker (for MR1), and ResourceMan‐
ager (for YARN/MR2) processes. This is a very important detail, as
the default user-to-group mapping implementation determines
group membership by using standard UNIX interfaces; for a group
to exist from Hadoop’s perspective, it must exist from the perspec‐
tive of the servers running the NameNode, JobTracker, and Resour‐
ceManager.

The hadoop.security.group.mapping configuration parameter can be set to any Java
class that implements the org.apache.hadoop.security.GroupMappingServicePro
vider interface. In addition to the default described earlier, Hadoop ships with a
number of useful implementations of this interface which are summarized here:

JniBasedUnixGroupsMapping

A JNI-based implementation that invokes the getpwnam_r() and getgroup
list() libc functions to determine group membership.

JniBasedUnixGroupsNetgroupMapping

An extension of the JniBasedUnixGroupsMapping that invokes the setnet
grent(), getnetgrent(), and endnetgrent() libc functions to determine mem‐
bers of netgroups. Only netgroups that are used in service-level authorization
access control lists are included in the mappings.

ShellBasedUnixGroupsMapping

A shell-based implementation that uses the id -Gn command.

ShellBasedUnixGroupsNetgroupMapping

An extension of the ShellBasedUnixGroupsMapping that uses the getent

netgroup shell command to determine members of netgroups. Only netgroups
that are used in service-level authorization access control lists are included in the
mappings.

JniBasedUnixGroupsMappingWithFallback

A wrapper around the JniBasedUnixGroupsMapping class that falls back to the
ShellBasedUnixGroupsMapping class if the native libraries cannot be loaded (this
is the default implementation).
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JniBasedUnixGroupsNetgroupMappingWithFallback

A wrapper around the JniBasedUnixGroupsNetgroupMapping class that falls
back to the ShellBasedUnixGroupsNetgroupMapping class if the native libraries
cannot be loaded.

LdapGroupsMapping

Connects directly to an LDAP or Active Directory server to determine group
membership.

Regardless of the group mapping configured, Hadoop will cache
group mappings and only call the group mapping implementation
when entries in the cache expire. By default, the group cache is
configured to expire every 300 seconds (5 minutes). If you want
updates to your underlying groups to appear in Hadoop more fre‐
quently, then set the hadoop.security.groups.cache.secs prop‐
erty in core-site.xml to the number of seconds you want entries
cached. This should be set small enough for updates to be reflected
quickly, but not so small as to require unnecessary calls to your
LDAP server or other group provider.

Mapping users to groups using LDAP
Most deployments can use the default group mapping provider. However, for envi‐
ronments where groups are only available directly from an LDAP or Active Directory
server and not on the cluster nodes, Hadoop provides the LdapGroupsMapping imple‐
mentation. This method can be configured by setting several required parameters in
the core-site.xml file on the NameNode, JobTracker, and/or ResourceManager:

hadoop.security.group.mapping.ldap.url

The URL of the LDAP server to use for resolving groups. Must start with
ldap:// or ldaps:// (if SSL is enabled).

hadoop.security.group.mapping.ldap.bind.user

The distinguished name of the user to bind as when connecting to the LDAP
server. This user needs read access to the directory and need not be an adminis‐
trator.

hadoop.security.group.mapping.ldap.bind.password

The password of the bind user. It is a best practice to not use this setting, but to
put the password in a separate file and to configure the
hadoop.security.group.mapping.ldap.bind.password.file property to point
to that path.
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If you’re configuring Hadoop to directly use LDAP, you lose the
local groups for Hadoop service accounts such as hdfs. This can
lead to a large number of log messages similar to:

No groups available for user hdfs

For this reason, it’s generally better to use the JNI or shell-based
mappings and to integrate with LDAP/Active Directory at the
operating system level. The System Security Services Daemon
(SSSD) provides strong integration with a number of identity and
authentication systems and handles common support for caching
and offline access.

Using the parameters described earlier, Example 5-2 demonstrates how to implement
LdapGroups Mapping in coresite.xml.

Example 5-2. Example LDAP mapping in core-site.xml

  ...
  <property>
    <name>hadoop.security.group.mapping</name>
    <value>org.apache.hadoop.security.LdapGroupsMapping</value>
  </property>
  <property>
    <name>hadoop.security.group.mapping.ldap.url</name>
    <value>ldap://ad.example.com</value>
  </property>
  <property>
    <name>hadoop.security.group.mapping.ldap.bind.user</name>
    <value>Hadoop@ad.example.com</value>
  </property>
  <property>
    <name>hadoop.security.group.mapping.ldap.bind.password</name>
    <value>password</value>
  </property>
  ...

In addition to the required parameters, there are several optional parameters that can
be set to control how users and groups are mapped.

hadoop.security.group.mapping.ldap.bind.password.file

The path to a file that contains the password of the bind user. This file should
only be readable by the Unix users that run the daemons (typically hdfs, mapred,
and yarn).

hadoop.security.group.mapping.ldap.ssl

Set to true to enable the use of SSL when conntecting to the LDAP server. If this
setting is enabled, the hadoop.security.group.mapping.ldap.url must start
with ldaps://.
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hadoop.security.group.mapping.ldap.ssl.keystore

The path to a Java keystore that contains the client certificate required by the
LDAP server when connecting with SSL enabled. The keystore must be in the
Java keystore (JKS) format.

hadoop.security.group.mapping.ldap.ssl.keystore.password

The password to the hadoop.security.group.mapping.ldap.ssl.keystore file.
It is a best practice to not use this setting, but to put the password in a separate
file and configure the hadoop.security.group.mapping.ldap.ssl.key

store.password.file property to point to that path.

hadoop.security.group.mapping.ldap.ssl.keystore.password.file

The path to a file that contains the password to the hadoop.security.group.map
ping.ldap.ssl.keystore file. This file should only be readable by Unix users
that run the daemons (typically hdfs, mapred, and yarn).

hadoop.security.group.mapping.ldap.base

The search base for searching the LDAP directory. This is a distinguished name
and will typically be configured as specifically as possible while still covering all
users who access the cluster.

hadoop.security.group.mapping.ldap.search.filter.user

A filter to use when searching the directory for LDAP users. The default setting,
(&(objectClass=user)(sAMAccountName={0})), is usually appropriate for
Active Directory installations. For other LDAP servers, this setting must be
changed. For OpenLDAP and compatible servers, the recommended setting is
(&(objectClass=inetOrgPerson)(uid={0})).

hadoop.security.group.mapping.ldap.search.filter.group

A filter to use when searching the directory for LDAP groups. The default set‐
ting, (objectClass=group), is usually appropriate for Active Directory installa‐
tions.

hadoop.security.group.mapping.ldap.search.attr.member

The attribute of the group object that identifies the users that are members of the
group.

hadoop.security.group.mapping.ldap.search.attr.group.name

The attribute of the group object that identifies the group’s name.

hadoop.security.group.mapping.ldap.directory.search.timeout

The maximum amount of time in milliseconds to wait for search results from the
directory.
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Provisioning of Hadoop Users
One of the most difficult requirements of Hadoop security to understand is that all
users of a cluster must be provisioned on all servers in the cluster. This means they
can either exist in the local /etc/passwd password file or, more commonly, can be pro‐
visioned by having the servers access a network-based directory service, such as
OpenLDAP or Active Directory. In order to understand this requirement, it’s impor‐
tant to remember that Hadoop is effectively a service that lets you submit and execute
arbitrary code across a cluster of machines. This means that if you don’t trust your
users, you need to restrict their access to any and all services running on those
servers, including standard Linux services such as the local filesystem. Currently, the
best way to enforce those restrictions is to execute individual tasks (the processes that
make up a job) on the cluster using the username and UID of the user who submitted
the job. In order to satisfy that requirement, it is necessary that every server in the
cluster uses a consistent user database.

While it is necessary for all users of the cluster to be provisioned on
all of the servers in the cluster, it is not necessary to enable local or
remote shell access to all of those users. A best practice is to provi‐
sion the users with a default shell of /sbin/nologin and to disable
SSH access using the AllowUsers, DenyUsers, AllowGroups, and
DenyGroups settings in the /etc/ssh/sshd_config file.

Authentication
Early versions of Hadoop and the related ecosystem projects did not support strong
authentication. Hadoop is a complex distributed system, but fortunately most compo‐
nents in the ecosystem have standardized on a relatively small number of authentica‐
tion options, depending on the service and protocol. In particular, Kerberos is used
across most components of the ecosystem because Hadoop standardized on it early
on in its development of security features. A summary of the authentication methods
by service and protocol is shown in Table 5-4. In this section, we focus on authentica‐
tion for HDFS, MapReduce, YARN, HBase, Accumulo, and ZooKeeper. Authentica‐
tion for Hive, Impala, Hue, Oozie, and Solr are deferred to Chapters 11 and 12
because those are commonly accessed directly by clients.

Table 5-4. Hadoop ecosystem authentication methods

Service Protocol Methods

HDFS RPC Kerberos, delegation token

HDFS Web UI SPNEGO (Kerberos), pluggable
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Service Protocol Methods

HDFS REST (WebHDFS) SPNEGO (Kerberos), delegation token

HDFS REST (HttpFS) SPNEGO (Kerberos), delegation token

MapReduce RPC Kerberos, delegation token

MapReduce Web UI SPNEGO (Kerberos), pluggable

YARN RPC Kerberos, delegation token

YARN Web UI SPNEGO (Kerberos), pluggable

Hive Server 2 Thrift Kerberos, LDAP (username/password)

Hive Metastore Thrift Kerberos, LDAP (username/password)

Impala Thrift Kerberos, LDAP (username/password)

HBase RPC Kerberos, delegation token

HBase Thrift Proxy None

HBase REST Proxy SPNEGO (Kerberos)

Accumulo RPC Username/password, pluggable

Accumulo Thrift Proxy Username/password, pluggable

Solr HTTP Based on HTTP container

Oozie REST SPNEGO (Kerberos, delegation token)

Hue Web UI Username/password (database, PAM, LDAP), SAML, OAuth, SPNEGO (Kerberos), remote
user (HTTP proxy)

ZooKeeper RPC Digest (username/password), IP, SASL (Kerberos), pluggable

Kerberos
Out of the box, Hadoop supports two authentication mechanisms: simple and ker
beros. The simple mechanism, which is the default, uses the effective UID of the cli‐
ent process to determine the username, which it passes to Hadoop with no additional
credentials. In this mode, Hadoop servers fully trust their clients. This default is suffi‐
cient for deployments where any user that can gain access to the cluster is fully trus‐
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ted with access to all data and administrative functions on said cluster. For proof-of-
concept systems or lab environments, it is often permissible to run in this mode and
rely on firewalls and limiting the set of users that can log on to any system with
client-access to the cluster. However, this is rarely acceptable for a production system
or any system with multiple tenants. Simple authentication is similarly supported by
HBase as its default mechanism.

HDFS, MapReduce, YARN, HBase, Oozie, and ZooKeeper all support Kerberos as an
authentication mechanism for clients, though the implementations differ somewhat
by service and interface. For RPC-based protocols, the Simple Authentication and
Security Layer (SASL) framework is used to add authentication to the underlying pro‐
tocol. In theory, any SASL mechanism could be supported, but in practice, the only
mechanisms that are supported are GSSAPI (specifically Kerberos V5) and DIGEST-
MD5 (see “Tokens” on page 78 for details on DIGEST-MD5). Oozie does not have an
RPC protocol and instead provides clients a REST interface. Oozie uses the Simple
and Protected GSSAPI Negotiation Mechanism (SPNEGO), a protocol first imple‐
mented by Microsoft in Internet Explorer 5.0.1 and IIS 5.0 to do Kerberos authentica‐
tion over HTTP. SPNEGO is also supported by the web interfaces for HDFS,
MapReduce, YARN, Oozie, and Hue as well as the REST interfaces for HDFS (both
WebHDFS and HttpFS) and HBase. For both SASL and SPNEGO, the authentication
follows the standard Kerberos protocol and only the mechanism for presenting the
service ticket changes.

Let’s see how Alice would authenticate against the HDFS NameNode using Kerberos:

1. Alice requests a service ticket from the TGS at kdc.example.com for the HDFS
service identified by hdfs/namenode.example.com@EXAMPLE.COM, presenting her
TGT with the request.

2. The TGS validates the TGT and provides Alice a service ticket, encrypted with
the hdfs/namenode.example.com@EXAMPLE.COM principal’s key.

3. Alice presents the service ticket to the NameNode (over SASL), which can
decrypt it using the hdfs/namenode.example.com@EXAMPLE.COM key and validate
the ticket.

Username and Password Authentication
ZooKeeper supports authentication by username and password. Rather than using a
database of usernames and passwords, ZooKeeper defers password checking to the
authorization step (see “ZooKeeper ACLs” on page 123). When an ACL is attached to
a ZNode, it includes the authentication scheme and a scheme-specific ID. The
scheme-specific ID is verified using the authentication provider for the given scheme.
Username and password authentication is implemented by the digest authentication
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provider, which generates a SHA-1 digest of the username and password. Because
verification is deferred to the authorization check, the authentication step always suc‐
ceeds. Users add their authentication details by calling the addAuthInfo(String
scheme, byte[] authData) method with "digest" as the scheme and "<user
name>:<password>.getBytes()" as the authData where <username> and <password>
are replaced with their appropriate values.

Accumulo also supports username and password–based authentication. Unlike Zoo‐
Keeper, Accumulo uses the more common approach of storing usernames and pass‐
words and having an explicit login step that verifies if the password is valid.
Accumulo’s authentication system is pluggable through different implementations of
the AuthenticationToken interface. The most common implementation is the Pass
wordToken class, which can be initialized from a CharSequence or a Java Properties
file. Sample code for connecting to Accumulo using a username and password is
shown in Example 5-3.

Example 5-3. Connecting to Accumulo with a username and password

// Create a handle to an Accumulo Instance
Instance instance = new ZooKeeperInstance("instance",
    "zk1.example.com,zk2.example.com,zk3.example.com");

// Create a token with the password
AuthenticationToken token = new PasswordToken("secret");

// Create the Connector; if the password is invalid, an
// AccumuloSecurityException will be thrown
Connector connector = instance.getConnector("alice", token);

Tokens
In any distributed system, it is necessary for all actions taken on behalf of a user to
validate that user’s identity. It is not sufficient to merely authenticate with the master
of a service; authentication must happen at every interaction. Take the example of
running a MapReduce job. Authentication happens between the client and the Name‐
Node in order to expand any wildcards in the command-line parameters, as well as
between the client and the JobTracker, in order to submit the job.

The JobTracker then breaks the job into tasks that are subsequently launched by each
TaskTracker in the cluster. Each task has to communicate with the NameNode in
order to open the files that make up its input split. In order for the NameNode to
enforce filesystem permissions, each task has to authenticate against the NameNode.
If Kerberos was the only authentication mechanism, a user’s TGT would have to be
distributed to each task. The downside to that approach is it allows the tasks to
authenticate against any Kerberos protected service, which is not desirable. Hadoop

78 | Chapter 5: Identity and Authentication



solves this problem by issuing authentication tokens that can be distributed to each
task but are limited to a specific service.

Delegation tokens
Hadoop has multiple types of tokens that are used to allow subsequent authenticated
access without a TGT or Kerberos service ticket. After authenticating against the 
NameNode using Kerberos, a client can obtain a delegation token. The delegation
token is a shared secret between the client and the NameNode and can be used for
RPC authentication using the DIGEST-MD5 mechanism.

Figure 5-1 shows two interactions between a client and the NameNode. First, the cli‐
ent requests a delegation token using the getDelegationToken() RPC call using a
Kerberos service ticket for authentication (1). The NameNode replies with the delega‐
tion token (2). The client invokes the getListing() RPC call to request a directory
listing, but this time it uses the delegation token for authentication. After validating
the token, the NameNode responds with the requested DirectoryListing (4).

Figure 5-1. Retrieving and using a delegation token

The token has both an expiration date and a max issue date. The token will expire
after the expiration date, but can be renewed even if expired up until the max issue
date. A delegation token can be requested by the client after any initial Kerberos
authentication to the NameNode. The token also has a designated token renewer. The
token renewer authenticates using its Kerberos credentials when renewing a token on
behalf of a user. The most common use of delegation tokens is for MapReduce jobs,
in which case the client designates the JobTracker as the renewer. The delegation
tokens are keyed by the NameNode’s URL and stored in the JobTracker’s system
directory so they can be passed to the tasks. This allows the tasks to access HDFS
without putting a user’s TGT at risk.

Block access tokens
File permission checks are performed by the NameNode, not the DataNode. By
default, any client can access any block given only its block ID. To solve this, Hadoop
introduced the notion of block access tokens. Block access tokens are generated by the
NameNode and given to a client after the client is authenticated and the NameNode
has performed the necessary authorization check for access to a file/block. The token
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includes the ID of the client, the block ID, and the permitted access mode (READ,
WRITE, COPY, REPLACE) and is signed using a shared secret between the Name‐
Node and DataNode. The shared secret is never shared with the client and when a
block access token expires, the client has to request a new one from the NameNode.

Figure 5-2 shows how a client uses a block access token to read data. The client will
first use Kerberos credentials to request the location of the block from the NameNode
using the getBlockLocations() RPC call (1). The NameNode will respond with a
LocatedBlock object which includes, among other details, a block access token for
the requested block (2). The client will then request data from the DataNode using
the readBlock() method in the data transfer protocol using the block access token
for authentication (3). Finally, the DataNode will respond with the requested data (4).

Figure 5-2. Accessing a block using a block access token

Job tokens
When submitting a MapReduce job, the JobTracker will create a secret key called a
job token that is used by the tasks of the job to authenticate against the TaskTrackers.
The JobTracker places the token in the JobTracker’s system directory on HDFS and
distributes it to the TaskTrackers over RPC. The TaskTrackers will place the token in
the job directory on the local disk, which is only accessible to the job’s user. The job
token is used to authenticate RPC communication between the tasks and the Task‐
Trackers as well as to generate a hash, which ensures that intermediate outputs sent
over HTTP in the shuffle phase are only accessible to the tasks of the job. Further‐
more, the TaskTracker returning shuffle data calculates a hash that each task can use
to verify that it is talking to a true TaskTracker and not an impostor.

Figure 5-3 is a time sequence diagram showing which authentication methods are
used during job setup. First, the client requests the creation of a new job using Ker‐
beros for authentication (1). The JobTracker responds with a job ID that’s used to
uniquely identify the job (2). The client then requests a delegation token from the
NameNode with the JobTracker as the renewer (3). The NameNode responds with
the delegation token (4). Delegation tokens will only be issued if the client authenti‐
cates with Kerberos. Finally, the client uses Kerberos to authenticate with the Job‐
Tracker sending the delegation token and other required job details.
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Figure 5-3. Job setup

Things get more interesting once the job starts executing, as Figure 5-4 shows.

Figure 5-4. Job execution

The JobTracker will generate a job token for the job and then package up and send
the job token, delegation token, and other required information to the TaskTracker
(1). The JobTracker uses Kerberos authentication when talking to the TaskTracker.
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The TaskTracker will then place the tokens into a directory only accessible by the user
who submitted the job, and will launch the tasks (2). The Task uses the delegation
token to open a file and request the block location for its input split (3). The Name‐
Node will respond with the block location including a block access token for the
given block (4). The Task then uses the block access token to read data from the Data‐
Node (5) and the DataNode responds with the data (6). As the job progresses, the
Task will report task status to the TaskTracker using the job token to authenticate (7).
The TaskTracker will then report status back to the JobTracker using Kerberos
authentication so that overall job status can be aggregated (8).

Impersonation
There are many services in the Hadoop ecosystem that perform actions on behalf of
an end user. In order to maintain security, these services must authenticate their cli‐
ents and be trusted to impersonate other users. Oozie, Hive (in HiveServer2), and Hue
all support impersonating end users when accessing HDFS, MapReduce, YARN, or
HBase. Secure impersonation works consistently across these services and is sup‐
ported by designating which users are trusted to perform impersonation. When a
trusted user needs to act on behalf of another user, she must authenticate as herself
and supply the username of the user she is acting on behalf of. Trusted users can be
limited to only impersonate specific groups of users, and only when accessing
Hadoop from certain hosts to further constrain their privileges.

Impersonation is also sometimes called proxying. The user that can perform the
impersonation (i.e., the user that can proxy other users) is called the proxy. The con‐
figuration parameters for enabling impersonation are hadoop.prox

yuser.<proxy>.hosts and hadoop.proxyuser.<proxy>.groups, where <proxy> is
the username of the user doing the impersonating. The values are comma-separated
lists of hosts and groups, respectively, or * to mean all hosts/groups. If you want both
Hue and Oozie to have proxy capabilities, but you want to limit the users that Oozie
can proxy to members of the oozie-users group, then you’d use a configuration sim‐
ilar to that shown in Example 5-4.

Example 5-4. Example configuration for impersonation

  <!-- Configure Hue impersonation from hue.example.com -->
  <property>
    <name>hadoop.proxyuser.hue.hosts</name>
    <value>hue.example.com</value>
  </property>
  <property>
    <name>hadoop.proxyuser.hue.groups</name>
    <value>*</value>
  </property>
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  <!--
       Configure Oozie impersonation from oozie01.example.com and
       oozie02.example.com for users in oozie-users
    -->
  <property>
    <name>hadoop.proxyuser.oozie.hosts</name>
    <value>oozie01.example.com,oozie02.example.com</value>
  </property>
  <property>
    <name>hadoop.proxyuser.oozie.groups</name>
    <value>oozie-users</value>
  </property>

Configuration
For production deployments, Hadoop supports the kerberos mechanism for authen‐
tication. When configured for Kerberos authentication, all users and daemons must
provide valid credentials in order to access RPC interfaces. This means that you must
create a Kerberos service principal for every server/daemon pair in the cluster. You’ll
recall that in Chapter 4 we described the concept of a service principal name (SPN),
which consists of three parts: a service name, a hostname, and a realm. In Hadoop,
each daemon that’s part of a certain service uses that service’s name (hdfs for HDFS,
mapred for MapReduce, and yarn for YARN). Additionally, if you want to enable Ker‐
beros authentication for the various web interfaces, then you also need to provision
principals with the HTTP service name.

Let’s see what needs to be done to configure a sample cluster with Kerberos authenti‐
cation. For our example, we’ll assume we have a cluster with hosts and services, as
shown in Table 5-5.

The service layout in Table 5-5 is meant to serve as an example, but
it isn’t the best way to provision a cluster. For starters, we’re show‐
ing our example with both YARN and MR1 services configured.
This is only meant to show the full range of configuration settings
needed for both services. In a real deployment, you would only
deploy one or the other. Similarly, you would not need to deploy a
SecondaryNameNode if you’re running two NameNodes with HA
as we’re doing here. Again, this is just to make our example config‐
uration comprehensive.
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Table 5-5. Service layout

Hostname Daemon

nn1.example.com NameNode

JournalNode

nn2.example.com NameNode

JournalNode

snn.example.com SecondaryNameNode

JournalNode

rm.example.com ResourceManager

jt.example.com JobTracker

JobHistoryServer

dn1.example.com DataNode

TaskTracker

NodeManager

dn2.example.com DataNode

TaskTracker

NodeManager

dn3.example.com DataNode

TaskTracker

NodeManager

The first step is to create all of the required SPNs in your Kerberos KDC and to
export a keytab file for each daemon on each server. The list of SPNs required for
each host/role is shown in Table 5-6 along with a recommended name for their
respective keytab files. You need to create different keytab files per server. We recom‐
mend using consistent names per daemon in order to use the same configuration files
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on all hosts even though keytab files with the same name on different hosts will con‐
tain different keys.

Table 5-6. Required Kerberos principals

Hostname Daemon Keytab file SPN

nn1.example.com NameNode/JournalNode hdfs.keytab hdfs/nn1.example.com@EXAMPLE.COM

HTTP/nn1.example.com@EXAMPLE.COM

nn2.example.com NameNode/JournalNode hdfs.keytab hdfs/nn2.example.com@EXAMPLE.COM

HTTP/nn2.example.com@EXAMPLE.COM

snn.example.com SecondaryNameNode/JournalNode hdfs.keytab hdfs/snn.example.com@EXAMPLE.COM

HTTP/snn.example.com@EXAMPLE.COM

rm.example.com ResourceManager yarn.keytab yarn/rm.example.com@EXAMPLE.COM

jt.example.com JobTracker mapred.keytab mapred/jt.example.com@EXAMPLE.COM

HTTP/jt.example.com@EXAMPLE.COM

JobHistoryServer mapred.keytab mapred/jt.example.com@EXAMPLE.COM

dn1.example.com DataNode hdfs.keytab hdfs/dn1.example.com@EXAMPLE.COM

HTTP/dn1.example.com@EXAMPLE.COM

TaskTracker mapred.keytab mapred/dn1.example.com@EXAMPLE.COM

HTTP/dn1.example.com@EXAMPLE.COM

NodeManager yarn.keytab yarn/dn1.example.com@EXAMPLE.COM

HTTP/dn1.example.com@EXAMPLE.COM

dn2.example.com DataNode hdfs.keytab hdfs/dn2.example.com@EXAMPLE.COM

HTTP/dn2.example.com@EXAMPLE.COM

TaskTracker mapred.keytab mapred/dn2.example.com@EXAMPLE.COM

HTTP/dn2.example.com@EXAMPLE.COM

NodeManager yarn.keytab yarn/dn2.example.com@EXAMPLE.COM
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Hostname Daemon Keytab file SPN

HTTP/dn2.example.com@EXAMPLE.COM

dn3.example.com DataNode hdfs.keytab hdfs/dn3.example.com@EXAMPLE.COM

HTTP/dn3.example.com@EXAMPLE.COM

TaskTracker mapred.keytab mapred/dn3.example.com@EXAMPLE.COM

HTTP/dn3.example.com@EXAMPLE.COM

NodeManager yarn.keytab yarn/dn3.example.com@EXAMPLE.COM

HTTP/dn3.example.com@EXAMPLE.COM

Take care when exporting keytab files, as the default is to random‐
ize the Kerberos key each time a principal is exported. You can
export each principal once and then use the ktutil utility to com‐
bine the necessary keys into the keytab file for each daemon.

We recommend placing the appropriate keytab files into your
$HADOOP_CONF_DIR directory (typically /etc/hadoop/conf).

Full Example Configuration Files

A complete set of example configuration files are available in the
example repository on GitHub that accompanies this book.

After you’ve created all of the required SPNs and distributed the keytab files, you
need to configure Hadoop to use Kerberos for authentication. Start by setting
hadoop.security.authentication to kerberos in the core-site.xml file, as shown in
Example 5-5.

Example 5-5. Configuring the authentication type to Kerberos

  <property>
    <name>hadoop.security.authentication</name>
    <value>kerberos</value>
  </property>
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HDFS
Next, we need to configure each daemon with its Kerberos principals and keytab files.
For the NameNode, we also have to enable block access tokens by setting
dfs.block.access.token.enable to true. The NameNode’s configuration should be
set in the hdfs-site.xml file, as shown in Example 5-6.

Example 5-6. Configuring the NameNode for Kerberos

  <property>
    <name>dfs.block.access.token.enable</name>
    <value>true</value>
  </property>
  <property>
    <name>dfs.namenode.keytab.file</name>
    <value>hdfs.keytab</value>
  </property>
  <property>
    <name>dfs.namenode.kerberos.principal</name>
    <value>hdfs/_HOST@EXAMPLE.COM</value>
  </property>
  <property>
    <name>dfs.namenode.kerberos.internal.spnego.principal</name>
    <value>HTTP/_HOST@EXAMPLE.COM</value>
  </property>

If you are not enabling high availability for HDFS, then you would next configure the
SecondaryNameNode in the hdfs-site.xml file, as shown in Example 5-7.

Example 5-7. Configuring the SecondaryNameNode for Kerberos

  <property>
    <name>dfs.secondary.namenode.keytab.file</name>
    <value>hdfs.keytab</value>
  </property>
  <property>
    <name>dfs.secondary.namenode.kerberos.principal</name>
    <value>hdfs/_HOST@EXAMPLE.COM</value>
  </property>
  <property>
    <name>dfs.secondary.namenode.kerberos.internal.spnego.principal</name>
    <value>HTTP/_HOST@EXAMPLE.COM</value>
  </property>

If you are enabling high availability for HDFS, then you need to configure the Jour‐
nalNodes with the following settings in the hdfs-site.xml file, as shown in
Example 5-8.
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Example 5-8. Configuring the JournalNode for Kerberos

  <property>
    <name>dfs.journalnode.keytab.file</name>
    <value>hdfs.keytab</value>
  </property>
  <property>
    <name>dfs.journalnode.kerberos.principal</name>
    <value>hdfs/_HOST@EXAMPLE.COM</value>
  </property>
  <property>
    <name>dfs.journalnode.kerberos.internal.spnego.principal</name>
    <value>HTTP/_HOST@EXAMPLE.COM</value>
  </property>

Next, we’ll configure the DataNode’s with the following settings in the hdfs-site.xml
file. In addition to configuring the keytab and principal name, you must configure
the DataNode to use a privileged port for its RPC and HTTP servers. These ports
need to be privileged because the DataNode does not use Hadoop’s RPC framework
for the data transfer protocol. By using privileged ports, the DataNode is authenticat‐
ing that it was started by root using jsvc, as shown in Example 5-9.

Example 5-9. Configuring the DataNode for Kerberos

  <property>
    <name>dfs.datanode.address</name>
    <value>0.0.0.0:1004</value>
  </property>
  <property>
    <name>dfs.datanode.http.address</name>
    <value>0.0.0.0:1006</value>
  </property>
  <property>
    <name>dfs.datanode.keytab.file</name>
    <value>hdfs.keytab</value>
  </property>
  <property>
    <name>dfs.datanode.kerberos.principal</name>
    <value>hdfs/_HOST@EXAMPLE.COM</value>
  </property>

WebHDFS is a REST-based protocol for accessing data in HDFS. WebHDFS scales by
serving data over HTTP from the DataNode that stores the blocks being read. In
order to secure access to WebHDFS, you need to set the following parameters in the
hdfs-site.xml file of the NameNodes and DataNodes, as shown in Example 5-10.
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Example 5-10. Configuring WebHDFS for Kerberos

  <property>
    <name>dfs.web.authentication.kerberos.keytab</name>
    <value>hdfs.keytab</value>
  </property>
  <property>
    <name>dfs.web.authentication.kerberos.principal</name>
    <value>HTTP/_HOST@EXAMPLE.COM</value>
  </property>

The configuration of HDFS is now complete!

YARN
Now we’ll configure YARN, starting with the ResourceManager. You’ll need to set the
configuration parameters in the yarn-site.xml file, as shown in Example 5-11.

Example 5-11. Configuring the ResourceManager for Kerberos

  <property>
    <name>yarn.resourcemanager.principal</name>
    <value>yarn/_HOST@EXAMPLE.COM</value>
  </property>
  <property>
    <name>yarn.resourcemanager.webapp.spnego-principal</name>
    <value>HTTP/_HOST@EXAMPLE.COM</value>
  </property>
  <property>
    <name>yarn.resourcemanager.keytab</name>
    <value>yarn.keytab</value>
  </property>
  <property>
    <name>yarn.resourcemanager.webapp.spnego-keytab-file</name>
    <value>yarn.keytab</value>
  </property>

We configure the NodeManagers to use Kerberos by setting the configuration para‐
mters in the yarn-site.xml file, as shown in Example 5-12.

Example 5-12. Configuring the NodeManager for Kerberos

  <property>
    <name>yarn.nodemanager.principal</name>
    <value>yarn/_HOST@EXAMPLE.COM</value>
  </property>
  <property>
    <name>yarn.nodemanager.webapp.spnego-principal</name>
    <value>HTTP/_HOST@EXAMPLE.COM</value>
  </property>
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  <property>
    <name>yarn.nodemanager.keytab</name>
    <value>yarn.keytab</value>
  </property>
  <property>
    <name>yarn.nodemanager.webapp.spnego-keytab-file</name>
    <value>yarn.keytab</value>
  </property>

In addition to configuring the NodeMangaer to use Kerberos for authentication, we
need to configure the NodeManager to use the LinuxContainerExecutor. The Linux
ContainerExecutor uses a setuid binary to launch YARN containers. This allows the
NodeManagers to run the containers using the UID of the user that submitted the
job. This is required in a secure configuration to ensure that Alice can’t access files
created by a container launched by Bob. Without the LinuxContainerExecutor, all of
the containers would run as the yarn user and containers could access each other’s
local files. First, set the configuration parameters in the yarn-site.xml file, as shown in
Example 5-13.

Example 5-13. Configuring the NodeManager with the LinuxContainerExecutor

  <property>
    <name>yarn.nodemanager.container-executor.class</name>
    <value>org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor</value>
  </property>
  <property>
    <name>yarn.nodemanager.linux-container-executor.group</name>
    <value>yarn</value>
  </property>

We also have to configure the executor binary itself. That’s done by setting the config‐
uration parameters in the container-executor.cfg file, as shown in Example 5-14. The
value for the yarn.nodemanager.linux-container-executor.group parameter
should be set to the same value in the yarn-site.xml file and the container-executor.cfg 
file. Typically this is set to yarn.

Example 5-14. Configuring the LinuxContainerExecutor

yarn.nodemanager.linux-container-executor.group=yarn
min.user.id=1000
allowed.system.users=nobody,impala,hive,llama
banned.users=root,hdfs,yarn,mapred,bin

The min.user.id setting is used to prevent the LinuxContainerExecutor from run‐
ning containers with UIDs below that value. This is typically set to 1000 or 500
depending on where regular user account UIDs start in your environment. In addi‐
tion to this setting, you can set a list of explicitly allowed users and a list of explicitly
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banned users. The setting is used to allow, among other things, the hive user to run
containers. This is needed when enabling Apache Sentry because Hive impersonation
is turned off when Sentry is enabled.

The final step for configuring YARN to use Kerberos is to configure the JobHistory‐
Server. This can be done by setting the configuration parameters in the mapred-
site.xml file, as shown in Example 5-15.

Example 5-15. Configuring the JobHistoryServer for Kerberos

  <property>
    <name>mapreduce.jobhistory.principal</name>
    <value>mapred/_HOST@EXAMPLE.COM</value>
  </property>
  <property>
    <name>mapreduce.jobhistory.webapp.spnego-principal</name>
    <value>HTTP/_HOST@EXAMPLE.COM</value>
  </property>
  <property>
    <name>mapreduce.jobhistory.keytab</name>
    <value>mapred.keytab</value>
  </property>
  <property>
    <name>mapreduce.jobhistory.webapp.spnego-keytab-file</name>
    <value>mapred.keytab</value>
  </property>

MapReduce (MR1)
If you’re still using MR1, you will skip the preceding steps for YARN and configure
the JobTracker and TaskTrackers. First, set the configuration parameters in the
mapred-site.xml file, as shown in Example 5-16.

Example 5-16. Configuring the JobTracker for Kerberos

  <property>
    <name>mapreduce.jobtracker.kerberos.principal</name>
    <value>mapred/_HOST@EXAMPLE.COM</value>
  </property>
  <property>
    <name>mapreduce.jobtracker.keytab.file</name>
    <value>mapred.keytab</value>
  </property>

Configuring the TaskTrackers is also straightforward. Set the configuration parame‐
ters in the mapred-site.xml file, as shown in Example 5-17.
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Example 5-17. Configuring the TaskTracker for Kerberos

  <property>
    <name>mapreduce.tasktracker.kerberos.principal</name>
    <value>mapred/_HOST@EXAMPLE.COM</value>
  </property>
  <property>
    <name>mapreduce.tasktracker.keytab.file</name>
    <value>mapred.keytab</value>
  </property>

When we configured the NodeManagers in Examples 5-12 and 5-13, we also had to
enable the LinuxContainerExecutor. The LinuxTaskController is the equivalent in
MR1. Start by setting the configuration parameters in the mapred-site.xml file, as
shown in Example 5-18.

Example 5-18. Configuring the TaskTracker with the LinuxTaskController

  <property>
    <name>mapred.task.tracker.task-controller</name>
    <value>org.apache.hadoop.mapred.LinuxTaskController</value>
  </property>
  <property>
    <name>mapreduce.tasktracker.group</name>
    <value>mapred</value>
  </property>

We also have to configure the task controller itself. Set the configuration parameters
in the taskcontroller.cfg file. Make sure that the values for mapreduce.task

tracker.group match the value, typically mapred, used in the mapred-site.xml file.
Unlike the LinuxContainerExecutor, the LinuxTaskController doesn’t let you con‐
figure a list of allowed system users. That means that you might have to lower the
min.user.id and increase the number of users explicitly banned in the banned.users
list if you need to allow certain system users to run jobs, as shown in Example 5-19.

Example 5-19. Configuring the LinuxTaskController

mapred.local.dir=/mapred/local
hadoop.log.dir=/var/log/hadoop-0.20-mapreduce
mapreduce.tasktracker.group=mapred
banned.users=root,mapred,hdfs,bin
min.user.id=1000

Oozie
As already discussed, Oozie supports Kerberos for authentication. Before enabling
authentication in Oozie, you first must configure Oozie to authenticate itself when
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accessing Hadoop. This is done by configuring the following parameters (a sample of
the appropriate configuration parameters is shown in Example 5-20):

oozie.service.HadoopAccessorService.kerberos.enabled

Set to true when Hadoop has hadoop.security.authentication set to
kerberos.

local.realm

Set this to the default realm of the Hadoop cluster. This should be the same realm
as the default_realm setting in the krb5.conf file.

oozie.service.HadoopAccessorService.kerberos.principal

The Kerberos principal that Oozie will use to authenticate. This is typically
oozie/<fqdn>@<REALM> where <fqdn> is the fully qualified domain name of the
server running Oozie and <REALM> is the local Kerberos realm.

oozie.service.HadoopAccessorService.keytab.file

The path to the keytab file that has the key for the configured Kerberos principal.

Example 5-20. Configuring Oozie to work with a Kerberos-enabled Hadoop cluster

  <property>
    <name>oozie.service.HadoopAccessorService.kerberos.enabled</name>
    <value>true</value>
  </property>
  <property>
    <name>local.realm</name>
    <value>EXAMPLE.COM</value>
  </property>
  <property>
    <name>oozie.service.HadoopAccessorService.keytab.file</name>
    <value>oozie.keytab</value>
  </property>
  <property>
    <name>oozie.service.HadoopAccessorService.kerberos.principal</name>
    <value>oozie/oozie01.example.com@EXAMPLE.COM</value>
  </property>

After Oozie is configured to work with your Kerberos-enabled Hadoop cluster, you’re
ready to configure Oozie to use Kerberos for user authentication. The relevant set‐
tings are as follows (an example configuration is shown in Example 5-21):

oozie.authentication.type

Set the type of authentication required by users. This can be set to simple (the
default), kerberos, or the fully qualified class name of a class that implements the
Hadoop AuthenticationHandler interface.
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oozie.authentication.token.validity

The amount of time, in seconds, that authentication tokens are valid. Authentica‐
tion tokens are returned as a cookie following the initial authentication method
(typically Kerberos/SPNEGO).

oozie.authentication.signature.secret

A secret used to sign the authentication tokens. If left blank, a random secret will
be generated on startup. If Oozie is configured in HA mode, then this must be
the same secret on all Oozie servers.

oozie.authentication.cookie.domain

The domain name used when generating the authentication cookie. This should
be set to the domain name of the cluster.

oozie.authentication.kerberos.principal

The Kerberos principal used for the Oozie service. Because Oozie uses SPNEGO
over HTTP for authentication, this must be set to HTTP/<fqdn>@<REALM> where
<fqdn> is the fully qualified domain name of the Oozie server and <REALM> is the
local Kerberos realm.

oozie.authentication.kerberos.keytab

The path to the keytab file that has the key for the Kerberos principal.

oozie.authentication.kerberos.name.rules

Rules for translating from Kerberos principals to local usernames. This parame‐
ter uses the same format as the hadoop.security.auth_to_local parameter in
Hadoop. See “Mapping Kerberos Principals to Usernames” on page 68 and
Example 5-21 for how to configure.

Example 5-21. Configuring Oozie with Kerberos authentication

  <property>
    <name>oozie.authentication.type</name>
    <value>kerberos</value>
  </property>
  <property>
    <name>oozie.authentication.token.validity</name>
    <value>36000</value>
  </property>
  <property>
    <name>oozie.authentication.signature.secret</name>
    <value>FiSEcve7lBsdGpvr</value>
  </property>
  <property>
    <name>oozie.authentication.cookie.domain</name>
    <value>example.com</value>
  </property>
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  <property>
    <name>oozie.authentication.kerberos.principal</name>
    <value>HTTP/oozie01.example.com@EXAMPLE.COM</value>
  </property>
  <property>
    <name>oozie.authentication.kerberos.principal</name>
    <value>oozie.keytab</value>
  </property>
  <property>
    <name>oozie.authentication.kerberos.name.rules</name>
    <value>DEFAULT</value>
  </property>

If you’re running Oozie in high-availability mode, then you need some additional
configuration. First, you should configure Oozie to use ZooKeeper ACLs by setting
oozie.zookeeper.secure in the oozie-site.xml file, as shown in Example 5-22.

Example 5-22. Configuring ZooKeeper ACLs for Oozie in oozie-site.xml

  <property>
    <name>oozie.zookeeper.secure</name>
    <value>true</value>
  </property>

If you’re using Oozie with a version of Hadoop prior to Hadoop 2.5.0, then you need
to use the fully qualified domain of the load balancer in the HTTP principal name.
For example, if you have Oozie servers running on oozie01.example.com, and
oozie02.example.com and the load balancer runs on oozie.example.com, then you’d
use a principal of HTTP/oozie.example.com@EXAMPLE.COM on all of the Oozie servers.
In this mode, only access through the load balancer will work. Also, certain Oozie
features such as log streaming won’t work. In this setup, you’d set the following in
your oozie-site.xml file, as shown in Example 5-23.

Example 5-23. Configuring the Oozie SPN in a load balancer environment

  <property>
    <name>oozie.authentication.kerberos.principal</name>
    <value>HTTP/oozie.example.com@EXAMPLE.COM</value>
  </property>

Starting with Hadoop 2.5.0 and later, you can include multiple Kerberos principals in
Oozie’s keytab file. In this case, you’ll include the principal for the load balancer and
the principal for the specific server in the keytab file (e.g., HTTP/oozie.exam
ple.com@EXAMPLE.COM and HTTP/oozie01.example.com@EXAMPLE.COM). You then
have to set oozie.authentication.kerberos.principal to *, as shown in
Example 5-23.
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Example 5-24. Configuring Oozie with multiple SPNs

  <property>
    <name>oozie.authentication.kerberos.principal</name>
    <value>*</value>
  </property>

HBase
Configuring HBase with Kerberos authentication is very similar to configuring core
Hadoop. In the interest of space, we refer you to the “Securing Apache HBase” section
of The Apache HBase Reference Guide.

Summary
In this chapter, we introduced the concept of identity and showed how Hadoop lever‐
ages Kerberos principal names to map to usernames. We also saw that Hadoop
retrieves group membership information about a user. This will become important in
the next chapter, which covers authorization.

We also analyzed the different ways that authentication takes place in the cluster.
While Kerberos is the canonical example and used frequently, we saw that there are
other ways that authentication happens with the usage of delegation tokens. This is a
key piece of the Hadoop authentication architecture because it reduces the number of
Kerberos authentication paths that are necessary to complete a workflow—such as an
Oozie workflow that executes a Hive query, which translates to a MapReduce job that
ultimately processes files. Without delegation tokens, each of these steps would
require Kerberos service tickets, adding strain on the Kerberos KDC.

Finally, we introduced the idea of impersonation. We discussed how system users can
authenticate on behalf of other users. This is a frequently used concept because end
users often use tools that sit between them and the services they are attempting to
access. With impersonation, a system or service can then authenticate with a second
remote service and be granted access privileges as if the end user authenticated
directly.

From here, we will continue the AAA conversation by talking about authorization, as
we get closer to users being able to access data and services.
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CHAPTER 6

Authorization

In “Authentication” on page 75, we saw how the various Hadoop ecosystem projects
support strong authentication to ensure that users are who they claim to be. However,
authentication is only part of the overall security story—you also need a way to model
which actions or data an authenticated user can access. The protection of resources in
this manner is called authorization and is probably one of the most complex topics
related to Hadoop security. Each service is relatively unique in the services it pro‐
vides, and thus the authorization model it supports. The sections in this chapter are
divided into subsections based on how each service implements authorization.

We start by looking at HDFS and its support for POSIX-style file permissions, as well
as its support for service-level authorization to restrict user access to specific HDFS
functions. Next, we turn our attention to MapReduce and YARN, which support a
similar style of service-level authorization as well as a queue-based model controlling
access to system resources. In the case of MapReduce and YARN, authorization is
useful for both security and resource management/multitenancy (for more informa‐
tion on resource management, we recommend Hadoop Operations by Eric Sammer
[O’Reilly]). Finally, we cover the authorization features of the popular BigTable
clones, Apache HBase and Apache Accumulo, including a discussion of the pros and
cons of role-based and attribute-based security as well as a discussion of cell-level
versus column-level security.

HDFS Authorization
Every attempt to access a file or directory in HDFS must first pass an authorization
check. HDFS adopts the authorization scheme common to POSIX-compatible filesys‐
tems. Permissions are managed by three distinct classes of user: owner, group, and
others. Each file or directory is owned by a specific user and that user makes up the
object’s owner class. Objects are also assigned a group and all of the members of that
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group make up the object’s group class. All users that are not the owner and do not
belong to the group assigned to the object make up the others class. Read, write, and
execute permissions can be granted to each class independently.

These permissions are represented by a single octal integer that is calculated by sum‐
ming the permission values (4 for read, 2 for write, and 1 for execute). For example,
to represent that a class has read and execute permissions for a directory, an octal
value of 5 (4+1) would be assigned. In HDFS, it is not meaningful, nor is it invalid, to
assign the execute permission to a file. For directories, the execute bit gives permis‐
sion to access a file’s contents and metadata information if the name of the file is
known. In order to list the names of files in a directory, you need read permission for
the directory.

Regardless of the permissions on a file or a directory, the user that the NameNode
runs as (typically hdfs) and any member of the group defined in dfs.permis
sions.superusergroup (defaults to supergroup), can read, write, or delete any file
and directory. As far as HDFS is concerned, they are the equivalent of root on a Linux
system.

The permissions assigned to the owner, group, and others can be represented by con‐
catenating the three octal values in that order. For example, take a file for which the
owner has read and write permissions and all other users have only read permission.
This file’s permissions would be represented as 644; 6 is assigned to the owner
because she has both read and write (4+2), and 4 is assigned to the group and other
classes because they only have read permissions. For a file for which all permissions
have been granted to all users, the permissions would be 777.

In addition to the standard permissions, HDFS supports three additional special per‐
missions: setuid, setgid, and sticky. These permissions are also represented as an octal
value with 4 for setuid, 2 for setgid, and 1 for sticky. These permissions are optional
and are included to the left of the regular permission bits if they are specified. Because
files in HDFS can’t be executed, setuid has no effect. Setgid similarly has no effect on
files, but for directories it forces the group of newly created immediate child files and
directories to that of the parent. This is the default behavior in HDFS, so it is not nec‐
essary to enable setgid on directories. The final permission is often called the sticky
bit and it means that files in a directory can only be deleted by the owner of that file.
Without the sticky bit set, a file can be deleted by anyone that has write access to the
directory. In HDFS, the owner of a directory and the HDFS superuser can also delete
files regardless of whether the sticky bit is set. The sticky bit is useful for directories,
such as /tmp, where you want all users to have write access to the directory but only
the owner of the data should be able to delete data.

98 | Chapter 6: Authorization



HDFS Extended ACLs
Using the basic POSIX permissions of owner, group, and world to allow access to a
given file or directory is not always easy. What happens if two or more different
groups of users need access to the same HDFS directory? With basic POSIX permis‐
sions, an administrator is left with two options: (1) make the directory world-
accessible, or (2) create a group that encompasses all of the users that need access to
the directory and assign group permissions to it. This is not ideal because option #1
risks making the data available to more than the intended users, and option #2 can
quickly become a headache from a group management perspective. This problem
becomes further compounded when one group of users requires read access and
another group of users requires both read and write access.

With the release of Hadoop 2.4, HDFS is now equipped with extended ACLs. These
ACLs work very much the same way as extended ACLs in a Unix environment. This
allows files and directories in HDFS to have more permissions than the basic POSIX
permissions.

To use HDFS extended ACLs, they must first be enabled on the NameNode. To do
this, set the configuration property dfs.namenode.acls.enabled to true in hdfs-
site.xml. Example 6-1 shows how HDFS extended ACLs are used.

Example 6-1. HDFS extended ACLs example

[alice@hadoop01 ~]$ hdfs dfs -ls /data
Found 1 items
drwxr-xr-x   - alice analysts          0 2014-10-25 19:03 /data/alice
[alice@hadoop01 ~]$ hdfs dfs -getfacl /data/alice
# file: /data/alice
# owner: alice
# group: analysts
user::rwx
group::r-x
other::r-x
[alice@hadoop01 ~]$ hdfs dfs -setfacl -m user:bob:r-x /data/alice
[alice@hadoop01 ~]$ hdfs dfs -setfacl -m group:developers:rwx /data/alice
[alice@hadoop01 ~]$ hdfs dfs -ls /data
Found 1 items
drwxr-xr-x+   - alice analysts          0 2014-10-25 19:03 /data/alice
[alice@hadoop01 ~]$ hdfs dfs -getfacl /data/alice
# file: /data/alice
# owner: alice
# group: analysts
user::rwx
user:bob:r-x
group::r-x
group:developers:rwx
mask::rwx
other::r-x
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[alice@hadoop01 ~]$ hdfs dfs -chmod 750 /data/alice
[alice@hadoop01 ~]$ hdfs dfs -getfacl /data/alice
# file: /data/alice
# owner: alice
# group: analysts
user::rwx
group::r-x
group:developers:rwx #effective:r-x
mask::r-x
other::---
[alice@hadoop01 ~]$ hdfs dfs -setfacl -b /data/alice
[alice@hadoop01 ~]$ hdfs dfs -getfacl /data/alice
# file: /data/alice
# owner: alice
# group: analysts
user::rwx
group::r-x
other::---

There are a few points worth highlighting. First, by default, files and directories do
not have any ACLs. After adding an ACL entry to an object, the HDFS listing now
appends a + to the permissions listing, such as in drwxr-xr-x+. Also, after adding an
ACL entry, a new property is listed in the ACL called mask. The mask defines what
the most restrictive permissions will be. For example, if user bob has rwx permissions,
but the mask is r-x, bob’s effective permissions are r-x and are noted as such in the
output of getfacl, as shown in the example.

Another important part about the mask is that it gets adjusted to the least restrictive
permissions that are set on an ACL. For example, if a mask is currently set to be r-x
and a new ACL entry is added for a group to grant rwx permissions, the mask is
adjusted to rwx.

Setting standard POSIX permissions on a file or directory that con‐
tains an extended ACL might immediately impact all entries
because hdfs dfs -chmod will effectively set the mask, regardless
of what ACL entries are present. For example, setting 700 permis‐
sions on a file or directory yields effective permissions of no access
to all ACL entries defined, except the owner!

The last part of the example demonstrates how to completely remove all ACL entries
for a directory, leaving just the basic POSIX permissions in place. One final point
about extended ACLs is that they are limited to 32 entries per object (i.e., file or direc‐
tory). That being said, four of the entries are taken up by user, group, other, and
mask, so the net is 28 entries, which can be added before the NameNode throws an
error: setfacl: Invalid ACL: ACL has 33 entries, which exceeds maximum of
32.
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Another useful feature of extended ACLs is the usage of a default ACL. A default ACL
applies only to a directory, and the effect is that all subdirectories and files created in
that directory inherit the default ACL of the parent directory. For example, if a direc‐
tory has a default ACL entry of default:group:analysts:rwx, then all files created
in the directory will get a group:analysts:rwx entry, and subdirectories will get both
the default ACL and the access ACL copied over. To set a default ACL, simply pre‐
pend default: to the user or group entry in the setfacl command. Remember that
default ACLs do not themselves grant authorization. They simply define the inheri‐
tance behavior of newly created subdirectories and files.

Service-Level Authorization
Hadoop also supports authorization at the service level. This can be used to control
which users or groups of users can access certain protocols, as well as prevent rogue
processes from masquerading as daemons. Service-level authorization is enabled by
setting the hadoop.security.authorization variable to true in core-site.xml. The
actual polices are configured in a file called hadoop-policy.xml. This file is structured
similarly to the standard configuration files where each property is defined in a
property tag with one sub-tag for the name of the property and another for the value
of the property. Each service-level authorization property defines an access control
list (ACL) with a comma-delimited list of users and groups that can access that proto‐
col. The two lists are separated by a space. A leading space implies an empty list of
users and a trailing space implies an empty list of groups. A special value of * can be
used to signify that all users are granted access to that protocol (this is the default set‐
ting). Example ACLs are provided in Table 6-1.

Table 6-1. Hadoop access control lists

ACL Meaning

"*" All users are permitted

" " No users are permitted

"alice,bob hdusers" alice, bob, and anyone in the hdusers group are permitted

"alice,bob " (trailing space) alice and bob are permitted, but no groups

" hdusers" (leading space) Anyone in the hdusers group is permitted, but no other users

Before we look at the available ACLs, let’s define some users and groups to help guide
the configuration. Assume that we have a small cluster with a handful of users and a
Hadoop administrator. The users of our cluster have Linux workstations and we want
to make sure that they are able to do as much development from their workstations as
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possible, so we aren’t planning to put a firewall between the workstation network and
the cluster. Furthermore, assume that we have a central Active Directory that defines
users and groups for the entire corporate network. The cluster’s KDC is configured
with a one-way trust to allow AD users to log into the cluster without needing new
credentials. Now we want our Hadoop developers to have access to the cluster, but we
don’t want the entire enterprise browsing HDFS or launching MapReduce jobs. To
help in our setup, we’ve configured two groups, one called hadoop-users and one
called hadoop-admins. Because this is a new environment, we initially populate the
hadoop-users group with just three users: Alice, Bob, and Joey. Joey is a certified
Hadoop administrator so he’s also added to the hadoop-admins group.

Service-level authorizations are supported by HDFS, MapReduce (MR1), and YARN
(MR2). The list of protocol ACLs and suggested configuration values for our example
are defined for HDFS, MapReduce (MR1), and YARN (MR2) in Tables 6-2, 6-3, and
6-4, respectively. Some of the properties are shared among the services, such as pro‐
tocols for refreshing the policy configuration, so they will appear in multiple tables.
Because MR1 is not included in Hadoop 2.3, some of the property names are differ‐
ent for the MR1 policies. The MR1 property names are used when deploying Hadoop
1.2 or a distribution that includes MR1 for use with HDFS from Hadoop 2.x.

Table 6-2. HDFS service-level authorization properties

Property name Description Suggested value

security.client.protocol.acl Client to NameNode protocol; used by user code via
the DistributedFileSystem class

"yarn,mapred 
hadoop-users"

security.client.datanode.pro

tocol.acl

Client to DataNode protocol "yarn,mapred 
hadoop-users"

security.get.user.map

pings.protocol.acl

Protocol to retrieve the groups that a user maps to "yarn,mapred 
hadoop-users"

security.datanode.proto

col.acl

DataNode to NameNode protocol "hdfs"

security.inter.datanode.proto

col.acl

DataNode to DataNode protocol "hdfs"

security.namenode.proto

col.acl

SecondaryNameNode to NameNode protocol "hdfs"

security.qjournal.service.pro

tocol.acl

NameNode to JournalNode protocol "hdfs"
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Property name Description Suggested value

security.zkfc.protocol.acl Protocol exposed by the ZKFailoverControl
ler

"hdfs"

security.ha.service.proto

col.acl

Protocol used by the hdfs hadmin command to
manage the HA states of the NameNodes

"hdfs,yarn 
hadoop-admins"

security.refresh.policy.proto

col.acl

Used by the hdfs dfsadmin command to load
the latest hadoop-policy.xml file

" hadoop-admins"

security.refresh.user.map

pings.protocol.acl

Protocol to refresh the user to group mappings " hadoop-admins"

Table 6-3. MapReduce (MR1) Service Level Authorization Properties

Property Name Description Suggested
Value

security.task.umbilical.pro

tocol.acl

Protocol used by MR tasks to report task progress.
Note: must be set to *

"*"

security.job.submission.pro

tocol.acl

Protocol for clients to submit jobs to the JobTracker " hadoop-
users"

security.inter.tracker.pro

tocol.acl

Protocol used by TaskTrackers to communicate with the
JobTracker

"mapred"

security.refresh.policy.pro

tocol.acl

Used by hadoop mradmin command to load the latest
hadoop-policy.xml file

" hadoop-
admins"

security.refresh.user

togroups.mappings.proto

col.acl

Protocol to refresh the user to group mappings
Note: property name changed in Hadoop 2.0

" hadoop-
admins"

security.admin.opera

tions.protocol.acl

Used by the hadoop mradmin command to refresh queues
and nodes at the JobTracker

" hadoop-
admins"

Table 6-4. YARN and MR2 service-level authorization properties

Property name Description Suggested value

security.job.task.proto

col.acl

Protocol used by MR tasks to report task progress
Note: must be set to *

"*"
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Property name Description Suggested value

security.containermanage

ment.protocol.acl

Protocol used by ApplicationMasters to communicate
with the NodeManager Note: must be set to *

"*"

security.applicationmas

ter.protocol.acl

Protocol used by ApplicationMasters to communicate
with the ResourceManager Note: must be set to *

"*"

security.get.user.map

pings.protocol.acl

Protocol to retrieve the groups that a user maps to "yarn,mapred 
hadoop-users"

security.application

client.protocol.acl

Protocol for clients to submit applications to the
ResourceManager

" hadoop-users"

security.job.client.proto

col.acl

Protocol used by job clients to communicate with the
MR ApplicationMaster

" hadoop-users"

security.mrhs.client.proto

col.acl

Protocol used by job clients to communicate with the
MapReduce JobHistory server

" hadoop-users"

security.resourcetracker.pro

tocol.acl

ResourceManager to NodeManager protocol "yarn"

security.resourcemanager-

administration.protocol.acl

Protocol used by the yarn rmadmin command to
administer the ResourceManager

"yarn"

security.resourcelocal

izer.protocol.acl

Protocol used by ResourceLocalizationService and
NodeManager to communicate

"testing"

security.ha.service.proto

col.acl

Protocol used by the yarn rmadmin command to
manage the HA states of the ResourceManager

"hdfs,yarn 
hadoop-admins"

security.refresh.policy.pro

tocol.acl

Used by the yarn rmadmin command to load the
latest hadoop-policy.xml file

" hadoop-
admins"

security.refresh.user.map

pings.protocol.acl

Protocol to refresh the user to group mappings " hadoop-
admins"

You’ll notice that even though we want to keep the cluster fairly locked down, we had
to configure four protocols with permissions to allow any user to connect. The reason
for this is that these protocols are accessed by running tasks that assume the identity
of the application or task attempt. The identity used will vary with every run and is
not related to the username that launched the job. Because these identities cannot be
enumerated in advance, they can’t be listed in the ACLs or added to a group that
could be used to limit access to those protocols. This is not a major concern, as those
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interfaces are further protected by a job token (see “Tokens” on page 78) that must be
presented in order to gain access.

Most of the protocols fall into one of two categories: protocols that need to be
accessed by clients, and administration protocols. You can use a more restrictive
value for the client protocols if you want to limit which users can use Hadoop to a
whitelist of users or groups. Note, however, that security.job.task.protocol.acl
(for YARN/MR2) and security.task.umbilical.protocol.acl (for MR1) must
always be set to *. This is required because the user that uses those protocols is always
set to the job ID of the MapReduce job. The job ID changes per job and is not likely
to appear in any groups provisioned for your cluster. Therefore, any setting other
than * for these properties would cause your jobs to fail. Let’s look at two user ses‐
sions, first with the default settings in hadoop-policy.xml (Example 6-2) and then
again with the suggested values from the tables (Example 6-3).

Example 6-2. Using the default service-level authorization policies

[alice@hadoop01 ~]$ hdfs dfs -ls .
Found 2 items
drwx------   - alice alice          0 2014-03-29 18:59 .Trash
drwx------   - alice alice          0 2014-03-29 18:59 .staging

[alice@hadoop01 ~]$ hdfs dfs -put file.txt .

[alice@hadoop01 ~]$ hdfs dfs -rm file.txt
14/03/29 21:26:07 INFO fs.TrashPolicyDefault: Namenode trash configuration:
  Deletion interval = 1440 minutes, Emptier interval = 0 minutes.
Moved: 'hdfs://hadoop02:8020/user/alice/file.txt' to trash at:
  hdfs://hadoop02:8020/user/alice/.Trash/Current

[alice@hadoop01 ~]$ hdfs dfs -expunge
14/03/29 21:26:08 INFO fs.TrashPolicyDefault: Namenode trash configuration:
  Deletion interval = 1 minutes, Emptier interval = 0 minutes.
14/03/29 21:26:09 INFO fs.TrashPolicyDefault: Deleted trash checkpoint:
  /user/alice/.Trash/140329185911
14/03/29 21:26:09 INFO fs.TrashPolicyDefault: Created trash checkpoint:
  /user/alice/.Trash/140329212609

[alice@hadoop01 ~]$ hdfs groups
alice@CLOUDERA : alice production-etl hadoop-users

[alice@hadoop01 ~]$ hdfs dfsadmin -refreshNodes
refreshNodes: Access denied for user alice. Superuser privilege is required

[alice@hadoop01 ~]$ hdfs dfsadmin -refreshServiceAcl

[alice@hadoop01 ~]$ hdfs dfsadmin -refreshUserToGroupsMappings

[alice@hadoop01 ~]$ hdfs dfsadmin -refreshSuperUserGroupsConfiguration

Service-Level Authorization | 105



[alice@hadoop01 ~]$ yarn rmadmin -refreshQueues
14/03/29 21:26:16 INFO client.RMProxy: Connecting to ResourceManager at
  hadoop02/172.25.2.223:8033

[alice@hadoop01 ~]$ yarn rmadmin -refreshNodes
14/03/29 21:26:18 INFO client.RMProxy: Connecting to ResourceManager at
  hadoop02/172.25.2.223:8033

[alice@hadoop01 ~]$ yarn rmadmin -refreshSuperUserGroupsConfiguration
14/03/29 21:26:19 INFO client.RMProxy: Connecting to ResourceManager at
  hadoop02/172.25.2.223:8033

[alice@hadoop01 ~]$ yarn rmadmin -refreshUserToGroupsMappings
14/03/29 21:26:21 INFO client.RMProxy: Connecting to ResourceManager at
  hadoop02/172.25.2.223:8033

[alice@hadoop01 ~]$ yarn rmadmin -refreshAdminAcls
14/03/29 21:26:22 INFO client.RMProxy: Connecting to ResourceManager at
  hadoop02/172.25.2.223:8033

[alice@hadoop01 ~]$ yarn rmadmin -refreshServiceAcl
14/03/29 21:26:23 INFO client.RMProxy: Connecting to ResourceManager at
  hadoop02/172.25.2.223:8033

[alice@hadoop01 ~]$ yarn rmadmin -getGroups alice
14/03/29 21:26:25 INFO client.RMProxy: Connecting to ResourceManager at
  hadoop02/172.25.2.223:8033
alice : alice production-etl hadoop-users

[alice@hadoop01 ~]$ yarn jar /opt/cloudera/parcels/CDH/lib/
  hadoop-mapreduce/hadoop-mapreduce-examples.jar randomtextwriter random-text
14/03/29 21:26:26 INFO client.RMProxy: Connecting to ResourceManager at
  hadoop02/172.25.2.223:8032
Running 30 maps.
Job started: Sat Mar 29 21:26:27 EDT 2014
14/03/29 21:26:27 INFO client.RMProxy: Connecting to ResourceManager at
  hadoop02/172.25.2.223:8032
14/03/29 21:26:27 INFO hdfs.DFSClient: Created HDFS_DELEGATION_TOKEN
  token 10 for alice on 172.25.2.223:8020
14/03/29 21:26:27 INFO security.TokenCache: Got dt for hdfs://hadoop02:8020;
  Kind: HDFS_DELEGATION_TOKEN, Service: 172.25.2.223:8020, Ident:
  (HDFS_DELEGATION_TOKEN token 10 for alice)
14/03/29 21:26:28 INFO mapreduce.JobSubmitter: number of splits:30
14/03/29 21:26:28 INFO mapreduce.JobSubmitter: Submitting tokens for job:
  job_1396142628007_0001
14/03/29 21:26:28 INFO mapreduce.JobSubmitter: Kind: HDFS_DELEGATION_TOKEN,
  Service: 172.25.2.223:8020, Ident: (HDFS_DELEGATION_TOKEN token 10 for alice)
14/03/29 21:26:29 INFO impl.YarnClientImpl: Submitted application
  application_1396142628007_0001
14/03/29 21:26:29 INFO mapreduce.Job: The url to track the job:
  http://hadoop02:8088/proxy/application_1396142628007_0001/
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14/03/29 21:26:29 INFO mapreduce.Job: Running job: job_1396142628007_0001
14/03/29 21:26:38 INFO mapreduce.Job: Job job_1396142628007_0001 running
  in uber mode : false
14/03/29 21:26:38 INFO mapreduce.Job:  map 0% reduce 0%
14/03/29 21:28:37 INFO mapreduce.Job:  map 3% reduce 0%
14/03/29 21:28:47 INFO mapreduce.Job:  map 7% reduce 0%
14/03/29 21:28:53 INFO mapreduce.Job:  map 10% reduce 0%
14/03/29 21:29:09 INFO mapreduce.Job:  map 17% reduce 0%
14/03/29 21:29:16 INFO mapreduce.Job:  map 23% reduce 0%
14/03/29 21:29:17 INFO mapreduce.Job:  map 27% reduce 0%
14/03/29 21:29:18 INFO mapreduce.Job:  map 30% reduce 0%
14/03/29 21:29:19 INFO mapreduce.Job:  map 33% reduce 0%
14/03/29 21:29:22 INFO mapreduce.Job:  map 50% reduce 0%
14/03/29 21:29:23 INFO mapreduce.Job:  map 60% reduce 0%
14/03/29 21:29:25 INFO mapreduce.Job:  map 70% reduce 0%
14/03/29 21:29:31 INFO mapreduce.Job:  map 77% reduce 0%
14/03/29 21:30:05 INFO mapreduce.Job:  map 83% reduce 0%
14/03/29 21:30:10 INFO mapreduce.Job:  map 90% reduce 0%
14/03/29 21:30:12 INFO mapreduce.Job:  map 93% reduce 0%
14/03/29 21:30:14 INFO mapreduce.Job:  map 97% reduce 0%
14/03/29 21:30:15 INFO mapreduce.Job:  map 100% reduce 0%
14/03/29 21:30:15 INFO mapreduce.Job: Job job_1396142628007_0001
  completed successfully
14/03/29 21:30:15 INFO mapreduce.Job: Counters: 29
 File System Counters
  FILE: Number of bytes read=0
  FILE: Number of bytes written=2679890
  FILE: Number of read operations=0
  FILE: Number of large read operations=0
  FILE: Number of write operations=0
  HDFS: Number of bytes read=4550
  HDFS: Number of bytes written=33067041057
  HDFS: Number of read operations=120
  HDFS: Number of large read operations=0
  HDFS: Number of write operations=60
 Job Counters
  Launched map tasks=30
  Other local map tasks=30
  Total time spent by all maps in occupied slots (ms)=4015333
  Total time spent by all reduces in occupied slots (ms)=0
 Map-Reduce Framework
  Map input records=30
  Map output records=49159093
  Input split bytes=4550
  Spilled Records=0
  Failed Shuffles=0
  Merged Map outputs=0
  GC time elapsed (ms)=22565
  CPU time spent (ms)=808110
  Physical memory (bytes) snapshot=12234526720
  Virtual memory (bytes) snapshot=40489713664
  Total committed heap usage (bytes)=12699172864
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 org.apache.hadoop.examples.RandomTextWriter$Counters
  BYTES_WRITTEN=32212265105
  RECORDS_WRITTEN=49159093
 File Input Format Counters
  Bytes Read=0
 File Output Format Counters
  Bytes Written=33067041057
Job ended: Sat Mar 29 21:30:15 EDT 2014
The job took 227 seconds.

[alice@hadoop01 ~]$ hdfs dfs -rm -r random-text
14/03/29 21:30:17 INFO fs.TrashPolicyDefault: Namenode trash configuration:
  Deletion interval = 1440 minutes, Emptier interval = 0 minutes.
Moved: 'hdfs://hadoop02:8020/user/alice/random-text' to trash at:
  hdfs://hadoop02:8020/user/alice/.Trash/Current

[alice@hadoop01 ~]$ hdfs dfs -expunge
14/03/29 21:30:18 INFO fs.TrashPolicyDefault: Namenode trash configuration:
  Deletion interval = 1 minutes, Emptier interval = 0 minutes.
14/03/29 21:30:19 INFO fs.TrashPolicyDefault: Deleted trash checkpoint:
  /user/alice/.Trash/140329212609
14/03/29 21:30:19 INFO fs.TrashPolicyDefault: Created trash checkpoint:
  /user/alice/.Trash/140329213019

The listing in Example 6-2 shows Alice using a number of user and administrative
commands. While some commands, such as hdfs dfsadmin -refreshNodes, require
superuser permissions, many don’t require any special privileges when using the
default service-level authorization policies. Example 6-3 runs through the exact same
set of commands using the previously recommended policies.

Example 6-3. Using the recommended service-level authorization policies

[alice@hadoop01 ~]$ hdfs dfs -ls .
Found 2 items
drwx------   - alice alice          0 2014-03-29 18:52 .Trash
drwx------   - alice alice          0 2014-03-29 18:45 .staging

[alice@hadoop01 ~]$ hdfs dfs -put file.txt .

[alice@hadoop01 ~]$ hdfs dfs -rm file.txt
14/03/29 18:54:11 INFO fs.TrashPolicyDefault: Namenode trash configuration:
  Deletion interval = 1440 minutes, Emptier interval = 0 minutes.
Moved: 'hdfs://hadoop02:8020/user/alice/file.txt' to trash at:
  hdfs://hadoop02:8020/user/alice/.Trash/Current

[alice@hadoop01 ~]$ hdfs dfs -expunge
14/03/29 18:54:13 INFO fs.TrashPolicyDefault: Namenode trash configuration:
  Deletion interval = 1 minutes, Emptier interval = 0 minutes.
14/03/29 18:54:13 INFO fs.TrashPolicyDefault: Deleted trash checkpoint:
  /user/alice/.Trash/140329185237
14/03/29 18:54:13 INFO fs.TrashPolicyDefault: Created trash checkpoint:
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  /user/alice/.Trash/140329185413

[alice@hadoop01 ~]$ hdfs groups
alice@CLOUDERA : alice production-etl hadoop-users

[alice@hadoop01 ~]$ hdfs dfsadmin -refreshNodes
refreshNodes: Access denied for user alice. Superuser privilege is required

[alice@hadoop01 ~]$ hdfs dfsadmin -refreshServiceAcl
refreshServiceAcl: User alice@CLOUDERA (auth:KERBEROS) is not authorized for
  protocol interface
  org.apache.hadoop.security.authorize.RefreshAuthorizationPolicyProtocol,
  expected client Kerberos principal is null

[alice@hadoop01 ~]$ hdfs dfsadmin -refreshUserToGroupsMappings
refreshUserToGroupsMappings: User alice@CLOUDERA (auth:KERBEROS) is not
  authorized for protocol interface
  org.apache.hadoop.security.RefreshUserMappingsProtocol, expected client
  Kerberos principal is null

[alice@hadoop01 ~]$ hdfs dfsadmin -refreshSuperUserGroupsConfiguration
refreshSuperUserGroupsConfiguration: User alice@CLOUDERA (auth:KERBEROS) is
  not authorized for protocol interface
  org.apache.hadoop.security.RefreshUserMappingsProtocol, expected client
  Kerberos principal is null

[alice@hadoop01 ~]$ yarn rmadmin -refreshQueues
14/03/29 18:54:21 INFO client.RMProxy: Connecting to ResourceManager at
  hadoop02/172.25.2.223:8033
refreshQueues: User alice@CLOUDERA (auth:KERBEROS) is not authorized
  for protocol interface
  org.apache.hadoop.yarn.server.api.ResourceManagerAdministrationProtocolPB,
  expected client Kerberos principal is null

[alice@hadoop01 ~]$ yarn rmadmin -refreshNodes
14/03/29 18:54:22 INFO client.RMProxy: Connecting to ResourceManager at
  hadoop02/172.25.2.223:8033
refreshNodes: User alice@CLOUDERA (auth:KERBEROS) is not authorized
  for protocol interface
  org.apache.hadoop.yarn.server.api.ResourceManagerAdministrationProtocolPB,
  expected client Kerberos principal is null

[alice@hadoop01 ~]$ yarn rmadmin -refreshSuperUserGroupsConfiguration
14/03/29 18:54:24 INFO client.RMProxy: Connecting to ResourceManager at
  hadoop02/172.25.2.223:8033
refreshSuperUserGroupsConfiguration: User alice@CLOUDERA (auth:KERBEROS)
  is not authorized for protocol interface
  org.apache.hadoop.yarn.server.api.ResourceManagerAdministrationProtocolPB,
  expected client Kerberos principal is null

[alice@hadoop01 ~]$ yarn rmadmin -refreshUserToGroupsMappings
14/03/29 18:54:25 INFO client.RMProxy: Connecting to ResourceManager at
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  hadoop02/172.25.2.223:8033
refreshUserToGroupsMappings: User alice@CLOUDERA (auth:KERBEROS)
  is not authorized for protocol interface
  org.apache.hadoop.yarn.server.api.ResourceManagerAdministrationProtocolPB,
  expected client Kerberos principal is null

[alice@hadoop01 ~]$ yarn rmadmin -refreshAdminAcls
14/03/29 18:54:26 INFO client.RMProxy: Connecting to ResourceManager at
  hadoop02/172.25.2.223:8033
refreshAdminAcls: User alice@CLOUDERA (auth:KERBEROS)
  is not authorized for protocol interface
  org.apache.hadoop.yarn.server.api.ResourceManagerAdministrationProtocolPB,
  expected client Kerberos principal is null

[alice@hadoop01 ~]$ yarn rmadmin -refreshServiceAcl
14/03/29 18:54:28 INFO client.RMProxy: Connecting to ResourceManager at
  hadoop02/172.25.2.223:8033
refreshServiceAcl: User alice@CLOUDERA (auth:KERBEROS)
  is not authorized for protocol interface
  org.apache.hadoop.yarn.server.api.ResourceManagerAdministrationProtocolPB,
  expected client Kerberos principal is null

[alice@hadoop01 ~]$ yarn rmadmin -getGroups alice
14/03/29 18:54:29 INFO client.RMProxy: Connecting to ResourceManager at
  hadoop02/172.25.2.223:8033
getGroups: User alice@CLOUDERA (auth:KERBEROS)
  is not authorized for protocol interface
  org.apache.hadoop.yarn.server.api.ResourceManagerAdministrationProtocolPB,
  expected client Kerberos principal is null

[alice@hadoop01 ~]$ yarn jar /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/
  hadoop-mapreduce-examples.jar randomtextwriter random-text
14/03/29 18:54:31 INFO client.RMProxy: Connecting to ResourceManager at
  hadoop02/172.25.2.223:8032
Running 30 maps.
Job started: Sat Mar 29 18:54:32 EDT 2014
14/03/29 18:54:32 INFO client.RMProxy: Connecting to ResourceManager at
  hadoop02/172.25.2.223:8032
14/03/29 18:54:32 INFO hdfs.DFSClient: Created HDFS_DELEGATION_TOKEN
  token 9 for alice on 172.25.2.223:8020
14/03/29 18:54:32 INFO security.TokenCache: Got dt for hdfs://hadoop02:8020;
  Kind: HDFS_DELEGATION_TOKEN, Service: 172.25.2.223:8020, Ident:
  (HDFS_DELEGATION_TOKEN token 9 for alice)
14/03/29 18:54:32 INFO mapreduce.JobSubmitter: number of splits:30
14/03/29 18:54:32 INFO mapreduce.JobSubmitter: Submitting tokens for job:
  job_1396131817617_0003
14/03/29 18:54:32 INFO mapreduce.JobSubmitter: Kind: HDFS_DELEGATION_TOKEN,
  Service: 172.25.2.223:8020, Ident: (HDFS_DELEGATION_TOKEN token 9 for alice)
14/03/29 18:54:33 INFO impl.YarnClientImpl: Submitted application
  application_1396131817617_0003
14/03/29 18:54:33 INFO mapreduce.Job: The url to track the job:
  http://hadoop02:8088/proxy/application_1396131817617_0003/
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14/03/29 18:54:33 INFO mapreduce.Job: Running job: job_1396131817617_0003
14/03/29 18:54:40 INFO mapreduce.Job: Job job_1396131817617_0003
  running in uber mode : false
14/03/29 18:54:40 INFO mapreduce.Job:  map 0% reduce 0%
14/03/29 18:56:20 INFO mapreduce.Job:  map 3% reduce 0%
14/03/29 18:56:53 INFO mapreduce.Job:  map 7% reduce 0%
14/03/29 18:56:57 INFO mapreduce.Job:  map 10% reduce 0%
14/03/29 18:56:59 INFO mapreduce.Job:  map 13% reduce 0%
14/03/29 18:57:02 INFO mapreduce.Job:  map 17% reduce 0%
14/03/29 18:57:15 INFO mapreduce.Job:  map 20% reduce 0%
14/03/29 18:57:36 INFO mapreduce.Job:  map 27% reduce 0%
14/03/29 18:57:44 INFO mapreduce.Job:  map 30% reduce 0%
14/03/29 18:57:59 INFO mapreduce.Job:  map 33% reduce 0%
14/03/29 18:58:09 INFO mapreduce.Job:  map 37% reduce 0%
14/03/29 18:58:19 INFO mapreduce.Job:  map 40% reduce 0%
14/03/29 18:58:23 INFO mapreduce.Job:  map 43% reduce 0%
14/03/29 18:58:25 INFO mapreduce.Job:  map 47% reduce 0%
14/03/29 18:58:35 INFO mapreduce.Job:  map 50% reduce 0%
14/03/29 18:58:36 INFO mapreduce.Job:  map 53% reduce 0%
14/03/29 18:58:39 INFO mapreduce.Job:  map 57% reduce 0%
14/03/29 18:58:40 INFO mapreduce.Job:  map 60% reduce 0%
14/03/29 18:58:44 INFO mapreduce.Job:  map 63% reduce 0%
14/03/29 18:58:45 INFO mapreduce.Job:  map 67% reduce 0%
14/03/29 18:58:47 INFO mapreduce.Job:  map 70% reduce 0%
14/03/29 18:58:53 INFO mapreduce.Job:  map 73% reduce 0%
14/03/29 18:58:55 INFO mapreduce.Job:  map 80% reduce 0%
14/03/29 18:58:57 INFO mapreduce.Job:  map 83% reduce 0%
14/03/29 18:59:01 INFO mapreduce.Job:  map 90% reduce 0%
14/03/29 18:59:05 INFO mapreduce.Job:  map 93% reduce 0%
14/03/29 18:59:07 INFO mapreduce.Job:  map 100% reduce 0%
14/03/29 18:59:07 INFO mapreduce.Job: Job job_1396131817617_0003
  completed successfully
14/03/29 18:59:07 INFO mapreduce.Job: Counters: 29
 File System Counters
  FILE: Number of bytes read=0
  FILE: Number of bytes written=2679890
  FILE: Number of read operations=0
  FILE: Number of large read operations=0
  FILE: Number of write operations=0
  HDFS: Number of bytes read=4550
  HDFS: Number of bytes written=33067034387
  HDFS: Number of read operations=120
  HDFS: Number of large read operations=0
  HDFS: Number of write operations=60
 Job Counters
  Launched map tasks=30
  Other local map tasks=30
  Total time spent by all maps in occupied slots (ms)=5319195
  Total time spent by all reduces in occupied slots (ms)=0
 Map-Reduce Framework
  Map input records=30
  Map output records=49157281
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  Input split bytes=4550
  Spilled Records=0
  Failed Shuffles=0
  Merged Map outputs=0
  GC time elapsed (ms)=13711
  CPU time spent (ms)=741910
  Physical memory (bytes) snapshot=10065694720
  Virtual memory (bytes) snapshot=40491339776
  Total committed heap usage (bytes)=14946533376
 org.apache.hadoop.examples.RandomTextWriter$Counters
  BYTES_WRITTEN=32212267432
  RECORDS_WRITTEN=49157281
 File Input Format Counters
  Bytes Read=0
 File Output Format Counters
  Bytes Written=33067034387
Job ended: Sat Mar 29 18:59:07 EDT 2014
The job took 275 seconds.

[alice@hadoop01 ~]$ hdfs dfs -rm -r random-text
14/03/29 18:59:09 INFO fs.TrashPolicyDefault: Namenode trash
  configuration: Deletion interval = 1440 minutes, Emptier
  interval = 0 minutes.
Moved: 'hdfs://hadoop02:8020/user/alice/random-text' to trash
  at: hdfs://hadoop02:8020/user/alice/.Trash/Current

[alice@hadoop01 ~]$ hdfs dfs -expunge
14/03/29 18:59:10 INFO fs.TrashPolicyDefault: Namenode trash
  configuration: Deletion interval = 1 minutes, Emptier
  interval = 0 minutes.
14/03/29 18:59:11 INFO fs.TrashPolicyDefault: Deleted trash checkpoint:
  /user/alice/.Trash/140329185413
14/03/29 18:59:11 INFO fs.TrashPolicyDefault: Created trash checkpoint:
  /user/alice/.Trash/140329185911

This time Alice was still able to access all of the user functions, but administrative
functions are denied and report the error User alice@CLOUDERA (auth:KERBEROS)
is not authorized for protocol interface <protocol>. This indicates that the
user is not listed in the ACL for that protocol and also doesn’t belong to a group listed
in the ACL. Service-level authorizations are a very powerful, although complex, tool
for controlling access to a Hadoop cluster. For example, with the policies we config‐
ured, the hdfs user no longer has access to view or modify files in HDFS unless it is
added to the hadoop-users group. This is very useful for organizations that need to
track any administrative action back to the administrator who performed it. If we
combine the recommended service-level authorizations by setting dfs.permis
sions.superusergroup to hadoop-admins, we can tie admin actions back to a spe‐
cific account. Example 6-4 shows what happens when the hdfs user attempts to list the
files in Alice’s home directory and delete a file that she uploaded.
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Example 6-4. User hdfs is denied access to the ClientProtocol

[hdfs@hadoop01 ~]$ hdfs dfs -ls /user/alice/
ls: User hdfs@CLOUDERA (auth:KERBEROS) is not authorized for protocol interface
  org.apache.hadoop.hdfs.protocol.ClientProtocol, expected client Kerberos principal
is null
[hdfs@hadoop01 ~]$ hdfs dfs -rm /user/alice/file.txt
rm: User hdfs@CLOUDERA (auth:KERBEROS) is not authorized for protocol interface
  org.apache.hadoop.hdfs.protocol.ClientProtocol, expected client Kerberos principal
is null

Notice that the hdfs user is denied access at the protocol level before any permission
checks can be performed at the HDFS level. Even though hdfs is a superuser from the
filesystem’s perspective, no data can be viewed or modified due to the service-level
check which happens first. Example 6-5 shows what happens when Joey, a member of
the hadoop-admins group, tries to perform the same actions.

Example 6-5. A member of the hadoop-admins group deleting user files

[joey@hadoop01 ~]$ hdfs dfs -ls /user/alice/
Found 3 items
drwx------   - alice alice          0 2014-03-29 21:30 /user/alice/.Trash
drwx------   - alice alice          0 2014-03-29 21:30 /user/alice/.staging
-rw-------   3 alice alice          5 2014-03-29 21:48 /user/alice/file.txt
[joey@hadoop01 ~]$ hdfs dfs -rm /user/alice/file.txt
14/03/29 21:49:26 INFO fs.TrashPolicyDefault: Namenode trash configuration: Deletion
  interval = 1440 minutes, Emptier interval = 0 minutes.
Moved: 'hdfs://hadoop02:8020/user/alice/file.txt' to trash at:
  hdfs://hadoop02:8020/user/joey/.Trash/Current
[joey@hadoop01 ~]$ hdfs groups joey
joey : joey hadoop-admins hadoop-users
[joey@hadoop01 ~]$ hdfs groups hdfs
hdfs : hdfs hadoop

You’ll notice that this time the actions were allowed. That is because Joey is a member
of both the hadoop-admins group (which is configured as the superuser group in
HDFS) and the hadoop-users group (which gives him access to the HDFS client pro‐
tocols).

In addition to configuring ACLs in hadoop-policy.xml, certain HDFS administrative
actions, such as forcing an HA failover, are only available to HDFS cluster adminis‐
trators. The administrators are configured by setting dfs.cluster.administrators
in hdfs-site.xml to a comma-delimited list of users and a comma-delimited list of
groups that can administer HDFS. The two lists are separated by a space. A leading
space implies an empty list of users and a trailing space implies an empty list of
groups. A special value of * can be used to signify that all users have administrative
access to HDFS; a value of " " (without the quotes) signifies that no users have access
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(this is the default setting). See Example 6-6 for the recommended setting based on
our example environment.

Example 6-6. The dfs.cluster.administrators setting in hdfs-site.xml

<property>
  <name>dfs.cluster.administrators</name>
  <value>hdfs hadoop-admins</value>
</property>

The ACL for administration of the MapReduce Job History server is not configured
in the hadoop-policy.xml file. The ACL is configured by setting mapreduce.jobhis
tory.admin.acl in mapred-site.xml to a comma-delimited list of users and a comma-
delimited list of groups, identical in format to those described in “Service-Level
Authorization” on page 101 and depicted in Table 6-1. A special value of * can be
used to signify that all users have administrative access to the JobHistory server (this
is the default setting). See Example 6-7 for the recommended setting.

Example 6-7. The mapreduce.jobhistory.admin.acl setting in mapred-site.xml

<property>
  <name>mapreduce.jobhistory.admin.acl</name>
  <value>mapred hadoop-admins</value>
</property>

MapReduce and YARN Authorization
Neither MapReduce nor YARN control access to data, but both provide access to
cluster resources such as CPU, memory, disk I/O, and network I/O. Because these
resources are finite, it is common for administrators to allocate resources to specific
users or groups, especially in multitenant environments. The service-level authoriza‐
tions described in the previous section control access to specific protocols, such as
who can and cannot submit a job to the cluster, but they are not granular enough to
control access to cluster resources. Both MapReduce (MR1) and YARN support job
queues as a way of putting limits on how jobs are allocated resources. In order to
securely control those resources, Hadoop supports access control lists (ACLs) on the
job queues. These ACLs control which users can submit to certain queues as well as
which users can administer a queue. MapReduce defines different classes of users,
which affect the way that ACLs are interpreted:

MapReduce/YARN cluster owner
The user that starts the JobTracker process (MR1) or the ResourceManager pro‐
cess (YARN) is defined as the cluster owner. That user has permissions to submit
jobs to any queue and can administer any queue or job. In most cases, the cluster
owner is mapred for MapReduce (MR1) and yarn for YARN. Because it is dan‐
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gerous to run jobs as the cluster owner, the LinuxTaskController defaults to
blacklisting the mapred and yarn user accounts so they can’t submit jobs.

MapReduce administrator
There is a setting to create global MapReduce administrators that have the same
privileges as the cluster owner. The advantage to defining specific users or groups
as administrators is that you can still audit the individual actions of each admin‐
istrator. This also lets you avoid having to distribute the password to a shared
account, thus increasing the likelihood that the password could be compromised.

Job owner
The owner of a job is the user that submitted it. Job owners can always adminis‐
ter their own jobs but can only submit jobs to queues for which they’ve been
granted the submit permission.

Queue administrator
Users or groups can be given administrative permissions over all of the jobs in a
queue. Queue administrators can also submit jobs to the queues they administer.

MapReduce (MR1)
For MR1, ACLs are administered globally and apply to any job scheduler that sup‐
ports ACLs. Both the CapacityScheduler and FairScheduler support ACLs; the FIFO
(default) scheduler does not. Before configuring per-queue ACLs, you must enable
MapReduce ACLs, configure the MapReduce administrators, and define the queue
names in mapred-site.xml:

mapred.acls.enabled

When set to true, ACLs will be checked when submitting or administering jobs.
ACLs are also checked for authorizing the viewing and modification of jobs in
the JobTracker interface.

mapreduce.cluster.administrators

Configure administrators for the MapReduce cluster. Cluster administrators can
always administer any job or queue regardless of the configuration of job- or
queue-specific ACLs. The format for this setting is a comma-delimited list of
users and a comma-delimited list of groups that can access that protocol. The
two lists are separated by a space. A leading space implies an empty list of users
and a trailing space implies an empty list of groups. A special value of * can be
used to signify that all users are granted access to that protocol (this is the default
setting). See Table 6-1 for examples.

mapred.queue.names

A comma-delimited list of queue names. In order to configure ACLs for a queue,
that queue must be listed in this property. MapReduce always supports at least
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one queue named default, so this parameter should always include default among
the list of defined queues.

The configuration for per-queue ACLs is stored in mapred-queue-acls.xml. There are
two types of ACLs that can be configured for each queue, a submit ACL and an
administer ACL:

mapred.queue.<queue_name>.acl-submit-job

The access control list for users that can submit jobs to the queue named
queue_name. The format for the submit job ACL is a comma-delimited list of
users and a comma-delimited list of groups that are allowed to submit jobs to
this queue, identical in format to hose described in “Service-Level Authorization”
on page 101 and depicted in Table 6-1. A special value of * can be used to signify
that all users are granted access to that protocol (this is the default setting).
Regardless of the value of this setting, the cluster owner and MapReduce admin‐
istrators can submit jobs.

mapred.queue.<queue_name>.acl-administer-jobs

The access control list for users that are allowed to view job details, kill jobs, or
modify a job’s priority for all jobs in the queue named queue_name. The format
for the administer-jobs ACL is a comma-delimited list of users and a comma
delimited list of groups that are allowed to administer jobs in this queue, identi‐
cal in format to those described in “Service-Level Authorization” on page 101 and
depicted in Table 6-1. A special value of * can be used to signify that all users are
granted access to that protocol (this is the default setting). Regardless of the value
of this setting, the cluster owner and MapReduce administrators can administer
all the jobs in all the queues. The job owner can also administer jobs.

In addition to the per-queue ACLs, there are two types of ACLs that can be config‐
ured on a per-job basis. Defaults for these settings can be placed in the mapred-
site.xml file used by clients and can be overridden by individual jobs:

mapreduce.job.acl-view-job

The access control list for users that are allowed to view job details. The format
for the view-job ACL is a comma-delimited list of users and a comma-delimited
list of groups that are allowed to view job details, identical in format to those
described in “Service-Level Authorization” on page 101 and depicted in
Table 6-1. A special value of * can be used to signify that all users are granted
access to that protocol (this is the default setting). Regardless of the value of this
setting, the job owner, the cluster owner, MapReduce administrators, and admin‐
istrators of the queue to which the job was submitted always have access to view a
job. This ACL controls access to job-level counters, task-level counters, a task’s
diagnostic information, task logs displayed on the TaskTracker web UI, and the
job.xml shown by the JobTracker’s web UI.
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mapreduce.job.acl-modify-job

The access control list for users that are allowed to kill a job, kill a task, fail a task,
and set the priority of a job. The format for the modify-job ACL is a comma-
delimited list of users and a comma-delimited list of groups that are allowed to
modify the job, identical in format to those described in “Service-Level Authori‐
zation” on page 101 and depicted in Table 6-1. A special value of * can be used to
signify that all users are granted access to that protocol (this is the default set‐
ting). Regardless of the value of this setting, the job owner, the cluster owner,
MapReduce administrators, and administrators of the queue to which the job was
submitted always have access to modify a job.

For deployments where you want a default deny policy for access to job details, a sen‐
sible default value for both settings is a single space, “ ” (without the quotes). This will
deny access to job details to all users except the job owner, queue administrators,
cluster administrators, and cluster owner.

In order to control access to job details in the JobTracker web UI,
you must configure MapReduce ACLs as described earlier, as well
as enable web UI authentication as described in Chapter 11.

YARN (MR2)
With YARN/MR2, queue ACLs are no longer defined globally and each scheduler
provides its own method of defining ACLs. ACLs are still enabled globally and there
is a global ACL that defines YARN administrators. The settings to enable YARN
ACLs and to define the admins are configured in the yarn-site.xml. Example values
are provided in Example 6-8.

Example 6-8. YARN ACL configuration in yarn-site.xml

<property>
  <name>yarn.acl.enable</name>
  <value>true</value>
</property>
<property>
  <name>yarn.admin.acl</name>
  <value>yarn hadoop-admins</value>
</property>

Because each scheduler is configured differently, we will walk through setting up
queue ACLs one scheduler at a time. For both examples, we will implement the same
use case. Our cluster is primarily used for running production ETL pipelines, as well
as production queries that generate regular reports. There is some ad hoc reporting as
well, but production jobs should always take priority. In order to control access, we
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define two additional groups of users that contain only a subset of the hadoop-users
we defined earlier. The production-etl group contains users that run production ETL
jobs and the production-queries group contains users that run production queries. For
this example, Alice is a member of the production-etl group while Bob is a member of
the production-queries group. Let’s start by configuring the FairScheduler.

FairScheduler
In order to guarantee the resources needed by the production jobs, we must first dis‐
able the default behavior of the FairScheduler, which is to place each user into their
own queue that matches their username. This is done by setting two parameters,
yarn.scheduler.fair.user-as-default_queue and yarn.scheduler.fair.allow-
undeclared-pools, to false. The first parameter changes the default queue to
default and the second ensures that users can’t submit jobs to queues that have not
be predefined. These settings, as well as the setting to enable the FairScheduler, are
found in Example 6-9.

Example 6-9. FairScheduler configuration in yarn-site.xml

<property>
  <name>yarn.resourcemanager.scheduler.class</name>
  <value>
    org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler
  </value>
</property>
<property>
  <name>yarn.scheduler.fair.user-as-default-queue</name>
  <value>false</value>
</property>
<property>
  <name>yarn.scheduler.fair.allow-undeclared-pools</name>
  <value>false</value>
</property>

Next, we must define the queues and their ACLs within the fair-scheduler.xml file.
The FairScheduler uses a hierarchical queue system and each queue is a descendant of
the root queue. In our example, we want to provide 90% of the cluster resources to
production jobs and 10% to ad hoc jobs. To achieve this, we define two direct chil‐
dren of the root queue: prod for production jobs and default for ad hoc jobs. We use
the name “default” for the ad hoc queue because that is the queue jobs are submitted
to if a queue is not specified. Resource management is a complex topic and we could
tweak a lot of different settings to control the resources just so. Because our focus is
on security, we’ll use a simplified scheme and just control the resources with the
weight of the queues. All that you need to understand is that for all queues that share
a common parent, their resource allocation is defined as their weight divided by the
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weight of all of their siblings. In this case, we can assign prod a weight of 9.0 and
default a weight of 1.0 to get the desired 90/10 split.

We also want to break up the production queue into two subqueues: one for ETL jobs
and one for queries. For this example, we’ll leave the two queues equally weighted by
setting both queues to a weight of 1.0. It is important to note that the calculation of
fair share happens in the context of your parent queue. In this example, that means
that because we’re giving both the etl and queries queues 50% of the resources of
the prod queue, they’ll end up with a global fair share of 45% each (50% × 90% =
45%).

Just as resources are inherited, so too are ACLs. With the FairScheduler, any user that
has permission to submit jobs to a queue also has permission to submit jobs to any
descendant queues. The same applies to users with administrative privileges to a
queue. In keeping with earlier examples, we want any member of the hadoop-admins
group to be able to administer any job/queue, so we add them to the aclAdminister
Apps ACL of the root queue. It’s also worth noting that you must set the aclSubmi
tApps ACL to " " (without the quotes), otherwise any user could submit to any queue,
as the default ACL when one is not defined is to allow all. For the default queue, we
want to allow any member of the hadoop-users group permission to submit jobs, so
we set aclSubmitApps to " hadoop-users" (without the quotes, and note the leading
space). The prod.etl and prod.queries queues have aclSubmitApps set to
" production-etl" and " production-queries" (without the quotes), respectively,
as these are the groups we defined earlier. The complete configuration for the Fair‐
Scheduler is shown in Example 6-10.

Example 6-10. fair-scheduler.xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<allocations>
    <queue name="root">
        <weight>1.0</weight>
        <aclSubmitApps> </aclSubmitApps>
        <aclAdministerApps> hadoop-admins</aclAdministerApps>
        <queue name="prod">
            <weight>9.0</weight>
            <aclSubmitApps> </aclSubmitApps>
            <aclAdministerApps> </aclAdministerApps>
            <queue name="etl">
                <weight>1.0</weight>
                <aclSubmitApps> production-etl</aclSubmitApps>
                <aclAdministerApps>alice </aclAdministerApps>
            </queue>
            <queue name="queries">
                <weight>1.0</weight>
                <aclSubmitApps> production-queries</aclSubmitApps>
                <aclAdministerApps>bob </aclAdministerApps>
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            </queue>
        </queue>
        <queue name="default">
            <weight>1.0</weight>
            <aclSubmitApps> hadoop-users</aclSubmitApps>
            <aclAdministerApps> </aclAdministerApps>
        </queue>
    </queue>
</allocations>

Now let’s see what happens when Bob tries to kill one of Alice’s job’s without having
queue ACLs defined. First, Bob gets a list of running jobs to find the JobId for Alice’s
job. Then he requests that the job be killed. Because there are no controls over who is
and isn’t allowed to administer jobs, YARN will happily oblige his request. See
Example 6-11 for the complete listing of Bob’s user session.

Example 6-11. Killing another user’s job when no ACLs are defined

[bob@hadoop01 ~]$ mapred job -list
Total jobs:1
                  JobId      State      StartTime     UserName
 job_1396200012809_0002    RUNNING  1396201153018        alice
[bob@hadoop01 ~]$ mapred job -kill job_1396200012809_0002
Killed job job_1396200012809_0002

This is less than ideal, as users can interfere with one another’s production jobs. More
importantly, a simple copy/paste error could result in a user accidentally killing
another user’s job. If we try the same exact process after configuring ACLs in the Fair‐
Scheduler, we instead get the result shown in Example 6-12.

Example 6-12. Bob is denied administrative permissions by the queue ACLs

[bob@hadoop01 ~]$ mapred job -list
Total jobs:1
                  JobId      State      StartTime     UserName
 job_1396192703139_0001    RUNNING  1396192707596        alice
[bob@hadoop01 ~]$ mapred job -kill job_1396192703139_0001
...
Exception in thread "main" java.io.IOException: org.apache.hadoop.yarn.exceptions.Yar
nException: java.security.AccessControlException: User bob cannot perform operation M
ODIFY_APP on application_1396192703139_0001
 at org.apache.hadoop.yarn.ipc.RPCUtil.getRemoteException(RPCUtil.java:38)
...
[bob@hadoop01 ~]$

There are almost always times when some admin must be able to kill another user’s
jobs, which is why we configured admin access to the hadoop-admins group on the
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root queue. So if Joey, one of the Hadoop administrators, attempts to kill a job, it will
proceed as shown in Example 6-13.

Example 6-13. Successfully killing a MapReduce job

[joey@hadoop01 ~]$ mapred job -list
Total jobs:1
                  JobId      State      StartTime     UserName
 job_1396192703139_0002    RUNNING  1396193202565        alice
[joey@hadoop01 ~]$ mapred job -kill job_1396192703139_0002
Killed job job_1396192703139_0002

Controlling administrative access is obviously useful, but it’s also helpful to prevent
users from submitting jobs to the wrong queue. In our example, Alice has permission
to submit jobs to the prod.etl queue because she is a member of the production-etl
group. However, she is not a member of the production-queries group, so if she tries to
submit a job there, she will be denied, as shown in Example 6-14.

Example 6-14. Alice is not allowed to submit jobs to the prod.queries queue

[alice@hadoop01 ~]$ yarn jar \
  /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar \
  randomtextwriter -Dmapreduce.job.queuename=prod.queries random-text
...
Job started: Sun Mar 30 13:20:57 EDT 2014
14/03/30 13:20:59 ERROR security.UserGroupInformation: PriviledgedActionException
as:alice@CLOUDERA (auth:KERBEROS) cause:java.io.IOException: Failed to run job :
User alice cannot submit applications to queue root.prod.queries
...

CapacityScheduler
The CapacityScheduler supports hierarchical queues just like the FairScheduler. It
also supports the same per-queue ACLs and the same ACL inheritance policy of the
FairScheduler. In fact, from a security perspective, the two schedulers are identical
and only differ in the format of their configuration files. In order to implement the
same polices described earlier, you must first enable the CapacityScheduler in the
yarn-site.xml file, as shown in Example 6-15.

Example 6-15. CapacityScheduler configuraiton in yarn-site.xml

<property>
 <name>
  yarn.resourcemanager.scheduler.class
 </name>
 <value>
  org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler
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 </value>
</property>

Once enabled, the CapacityScheduler reads its configuration from a file called
capacity-scheduler.xml. A sample configuration that implements the same queues and
ACLs is shown in Example 6-16. For the FairScheduler, the ACLs are configured as
child elements of the queue definition using the aclSubmitApps tag to control who
can submit applications to a queue and the aclAdministerApps tag to control who
can administer the jobs in a queue. The equivalent settings for the CapacityScheduler
are these properties, respectively, with the <path-to-queue> replaced with a queue’s
hierarchy:

• yarn.scheduler.capacity.root.<path-to-queue>.acl_submit_applications

• yarn.scheduler.capacity.root.<path-to-queue>.acl_administer_applica

tions

For example, the name of the property that defines the prod.etl queue’s ACL is
yarn.scheduler.capacity.root.prod.etl.acl_submit_applications, as shown in
Example 6-16.

Example 6-16. capacity-scheduler.xml

<!-- Define ACLs and subqueues for the root queue -->
<property>
  <name>yarn.scheduler.capacity.root.acl_submit_applications</name>
  <value> </value>
</property>
<property>
  <name>yarn.scheduler.capacity.root.acl_administer_applications</name>
  <value> hadoop-admins</value>
</property>
<property>
  <name>yarn.scheduler.capacity.root.queues</name>
  <value>prod,default</value>
</property>

<!-- Define capacity and ACLs for the root.default queue -->
<property>
  <name>yarn.scheduler.capacity.root.default.capacity</name>
  <value>10.0</value>
</property>
<property>
  <name>yarn.scheduler.capacity.root.acl_submit_applications</name>
  <value> hadoop-users</value>
</property>

<!-- Define capacity, ACLs, and subqueues for the root.prod queue -->
<property>
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  <name>yarn.scheduler.capacity.root.prod.capacity</name>
  <value>90.0</value>
</property>
<property>
  <name>yarn.scheduler.capacity.root.prod.queues</name>
  <value>etl,queries</value>
</property>
<property>
  <name>yarn.scheduler.capacity.root.prod.acl_submit_applications</name>
  <value> </value>
</property>
<property>
  <name>yarn.scheduler.capacity.root.prod.acl_administer_applications</name>
  <value> </value>
</property>

<!-- Define capacity and ACLs for the root.prod.etl queue -->
<property>
  <name>yarn.scheduler.capacity.root.prod.etl.capacity</name>
  <value>50.0</value>
</property>
<property>
  <name>yarn.scheduler.capacity.root.prod.etl.acl_submit_applications</name>
  <value> production-etl</value>
</property>
<property>
  <name>yarn.scheduler.capacity.root.prod.etl.acl_administer_applications</name>
  <value>alice </value>
</property>

<!-- Define capacity and ACLs for the root.prod.queries queue -->
<property>
  <name>yarn.scheduler.capacity.root.prod.queries.capacity</name>
  <value>50.0</value>
</property>
<property>
  <name>yarn.scheduler.capacity.root.prod.queries.acl_submit_applications</name>
  <value> production-queries</value>
</property>
<property>
  <name>yarn.scheduler.capacity.root.prod.queries.acl_administer_applications</name>
  <value>bob </value>
</property>

ZooKeeper ACLs
Apache ZooKeeper controls access to ZNodes (paths) through the use of access con‐
trol lists (ACLs). ZooKeeper’s ACLs are similar to POSIX permission bits, but are
more flexible because permissions are set on a per-user basis rather than based on
owner and primary group. In fact, ZooKeeper doesn’t have the notion of owners or
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groups. As described in “Username and Password Authentication” on page 77, users
are specified by an authentication scheme and a scheme-specific ID. The format for
the IDs varies by the scheme.

An individual ACL has a scheme, ID, and the permissions. The list of available per‐
missions is shown in Table 6-5. It’s important to note that in ZooKeeper, permissions
are not recursive; they apply only the ZNode that they are attached to, not to any of
its children. Because ZooKeeper doesn’t have the notion of owners for ZNodes, a user
must have the ADMIN permission on a ZNode to be able to set the ACLs.

Table 6-5. ZooKeeper ACL permissions

Permission Description

CREATE Permission to create a child ZNode

READ Permission to get data from a ZNode and to list its children

WRITE Permission to set the data for a ZNode

DELETE Permission to delete children ZNodes

ADMIN Permission to set ACLs

The CREATE and DELETE permissions are used to control who can create children of a
ZNode. The use case that motivates granting CREATE but not DELETE is when you want
a path in which users can create children but only an administrator can delete chil‐
dren.

If you’re adding ACLs using the Java API, you’ll first create an Id object with the
scheme and ID, and then create an ACL oject with the Id and the permissions as an
integer. You can manually calculate a permission value or use the constants in the
ZooDefs.Perms class to get the combined permission integer for the permissions you
want to set. See Example 6-17 for sample Java code for setting the ACL on a path.

Example 6-17. Setting ZooKeeper ACLs with the Java API

// Connect to ZooKeeper
ZooKeeper zk = new ZooKeeper("zk.example.com:2181", 60000, watcher);

// Create the Id for alice using the password 'secret'
Id id = new Id("digest", "alice:secret");

// Create the ACL grantin Alice READ and CREATE permissions
ACL acl = new ACL(ZooDefs.Perms.READ | ZooDefs.Perms.CREATE, id);

zk.setAcl("/test", Arrays.asList(new ACL[] {acl}), -1);
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The digest scheme was described in “Username and Password Authentication” on
page 77, but ZooKeeper supports a number of other built-in schemes. Table 6-6
describes the available schemes and the format of an ID when used in an ACL. For
the scheme world, the only ID is the literal string anyone. The digest scheme uses
the base64 encoding of the sha1 digest of the <username>:<password> string. The ip
scheme lets you set ACLs based on an IP address or a range using CIDR notation.
Finally, the sasl scheme uses the <principal> as the ID. By default, the principal is
the full UPN of the user. You can control how to canonicalize the principal by setting
the kerberos.removeRealmFromPrincipal and/or kerberos.removeHostFromPrinci
pal to remove the realm and second component, respectively, before comparing the
IDs.

Table 6-6. ZooKeeper schemes

Scheme Description ACL ID format

world Represents any user anyone

digest Represents a user that is authenticated with a password <username>:base64(sha1sum(<user

name>:<password>))

ip Uses the client IP address as an identity <ip>[/<cidr>]

sasl Represents a SASL authenticated user (e.g., a Kerberos user) <principal>

Oozie Authorization
Apache Oozie has a very simple authorization model with two levels of accounts:
users and admin users. Users have the following permissions:

• Read access to all jobs
• Write access to their own jobs
• Write access to jobs based on a per-job access control list (list of users and

groups)
• Read access to admin operations

Admin users have the following permissions:

• Write access to all jobs
• Writes access to admin operations

You can enable Oozie authorization by setting the following parameters in the oozie-
site.xml file:
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  <property>
    <name>oozie.service.AuthorizationService.security.enabled</name>
    <value>true</value>
  </property>
  <property>
    <name>oozie.service.AuthorizationService.admin.groups</name>
    <value>oozie-admins</value>
  </property>

If you don’t set the oozie.service.AuthorizationService.admin.groups parame‐
ter, then you can specify a list of admin users, one per line, in the adminusers.txt file:

oozie
alice

In addition to owners and admin users having write access to a job, users can be
granted write privileges through the use of a job-specific access control list. An Oozie
ACL uses the same syntax as Hadoop ACLs (see Table 6-1) and is set in the
oozie.job.acl property of a workflow, coordinator, or bundle job.properties file
when submitting a job.

HBase and Accumulo Authorization
Apache HBase and Apache Accumulo are sorted, distributed key/value stores based
on the design of Google’s BigTable and built on top of HDFS and ZooKeeper. Both
systems share a similar data model and are designed to enable random access and
update workloads on top of HDFS which is a write-once filesystem. Data is stored in
rows that contain one or more columns. Unlike a relational database, the columns in
each row can differ. This makes it easier to implement complex data models where
not every record shares the same schema. Each row is indexed with a primary key
called a row id or row key; and within a row, each value is further indexed by a column
key and timestamp. The intersection of a row key, column key and timestamp, along
with the value they point to, is often called a cell. Internally, HBase and Accumulo
store data as a sorted sequence of key/value pairs with the key consisting of the row
ID, column key, and timestamp. Column keys are further split into two components;
a column family and a column qualifier. In HBase, all of the columns in the same col‐
umn family are stored in separate files on disk whereas in Accumulo multiple column
families can be grouped together into locality groups.

A collection of sorted rows is called a table. In HBase, the set of column families is
predefined per table while Accumulo lets users create new column families on the fly.
In both systems, column qualifiers do not need to be predefined and arbitrary qualifi‐
ers can be inserted into any row. A logical grouping of tables, similar to a database or
schema in a relational database system, is called a namespace. Both HBase and Accu‐
mulo support permissions at the system, namespace, and table level. The available
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permissions and their semantics differ between Accumulo and HBase, so let’s start by
taking a look at Accumulo’s permission model.

System, Namespace, and Table-Level Authorization
At the highest level, Accumulo supports system permissions. Generally, system per‐
missions are reserved for the Accumulo root user or Accumulo administrators. Per‐
missions set at a higher level are inherited by objects at a lower level. For example, if
you have the system permission CREATE_TABLE, you can create a table in any name‐
space even if you don’t have explicit permissions to create tables in that namespace.
See Table 6-7 for a list of system-level permissions, their descriptions, and the equiva‐
lent namespace-level permission.

Throughout this section, you’ll see many references to the Accu‐
mulo root user. This is not the same as the root system account.
The Accumulo root user is automatically created when Accumulo
is initialized, and that user is granted all of the system-level permis‐
sions. The root user can never have these permissions revoked,
which prevents leaving Accumulo in a state where no one can
administer it.

Table 6-7. System-level permissions in Accumulo

Permission Description Equivalent namespace
permission

System.GRANT Permission to grant permissions to other users;
reserved for the Accumulo root user

Namespace.ALTER_NAME

SPACE

System.CREATE_TABLE Permission to create tables Namespace.CREATE_TABLE

System.DROP_TABLE Permission to delete tables Namespace.DROP_TABLE

System.ALTER_TABLE Permission to modify tables Namespace.ALTER_TABLE

System.DROP_NAMESPACE Permission to drop namespaces Namespace.DROP_NAME

SPACE

System.ALTER_NAME

SPACE

Permission to modify namespaces Namespace.ALTER_NAME

SPACE

System.CREATE_USER Permission to create new users N/A

System.DROP_USER Permission to delete users N/A
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Permission Description Equivalent namespace
permission

System.ALTER_USER Permission to change user passwords, permissions,
and authorizations

N/A

System.SYSTEM Permission to perform administrative actions on
tables or users

N/A

System.CREATE_NAME

SPACE

Permission to create new namespaces N/A

Namespaces are a logical collection of tables and are useful for organizing tables and
delegating administrative functions to smaller groups. Suppose the marketing depart‐
ment needs to host a number of Accumulo tables to power some of its applications.
In order to reduce the burden on the Accumulo administrator, we can create a mar‐
keting namespace and give GRANT, CREATE_TABLE, DROP_TABLE, and ALTER_TABLE per‐
missions to an administrator in marketing. This will allow the department to create
and manage its own tables without having to grant system-level permissions or wait
for the Accumulo administrator. A number of namespace-level permissions are
inherited by tables in the namespace. See Table 6-8 for the list of namespace-level
permissions, their descriptions, and the equivalent table-level permission.

Table 6-8. Namespace-level permissions in Accumulo

Permission Description Equivalent table permission

Namespace.READ Permission to read (scan) tables in the namespace Table.READ

Namespace.WRITE Permission to write (put/delete) to tables in the
namespace

Table.WRITE

Namespace.GRANT Permission to grant permissions to tables in the
namespace

Table.GRANT

Namespace.BULK_IMPORT Permission to bulk import data into tables in the
namespace

Table.BULK_IMPORT

Namespace.ALTER_TABLE Permission to set properties on tables in the namespace Table.ALTER_TABLE

Namespace.DROP_TABLE Permission to delete tables in the namespace Table.DROP_TABLE

Namespace.CREATE_TABLE Permission to create tables in the namespace N/A

Namespace.ALTER_NAME

SPACE

Permission to set properties on the namespace N/A
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Permission Description Equivalent table permission

Namespace.DROP_NAME

SPACE

Permission to delete the namespace N/A

Table-level permissions are used to control coarse-grained access to individual tables.
Table 6-9 contains a list of table-level permissions and their descriptions.

Table 6-9. Table-level permissions in Accumulo

Permission Description

Table.READ Permission to read (scan) the table

Table.WRITE Permission to write (put/delete) to the table

Table.BULK_IMPORT Permission to bulk import data into the table

Table.ALTER_TABLE Permission to set properties on the table

Table.GRANT Permission to grant permissions to the table

Table.DROP_TABLE Permission to delete the table

System, namespace, and table-level permissions can be managed using the Accumulo
shell. In particular, permissions are granted using the grant command and can be
revoked using the revoke command. See Example 6-18 for an example of using the
Accumulo shell to administer permissions.

Example 6-18. Administering permissions using the Accumulo shell

root@cloudcat> userpermissions -u alice
System permissions:

Namespace permissions (accumulo): Namespace.READ

Table permissions (accumulo.metadata): Table.READ
Table permissions (accumulo.root): Table.READ
root@cloudcat> user alice
Enter password for user alice: *****
alice@cloudcat> table super_secret_squirrel
alice@cloudcat super_secret_squirrel> scan
2014-03-31 16:11:06,828 [shell.Shell] ERROR: java.lang.RuntimeException:
  org.apache.accumulo.core.client.AccumuloSecurityException: Error PERMISSION_DENIED
  for user alice on table super_secret_squirrel(ID:a) - User does not have permission
  to perform this action
alice@cloudcat super_secret_squirrel> user root
Enter password for user root: ******
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root@cloudcat super_secret_squirrel> grant Namespace.READ -ns "" -u alice
root@cloudcat super_secret_squirrel> user alice
Enter password for user alice: *****
alice@cloudcat super_secret_squirrel> scan
r f:c []    value
alice@cloudcat super_secret_squirrel>

HBase uses the same set of permissions (Table 6-10) for ACLs at the system, name‐
space, and table level. Permissions granted at a higher level are inherited by objects at
the lower level. For example, if you grant system-level READ permissions to a user,
that user can read all tables in the cluster. HBase supports assigning permissions to
groups as well as individual users. Group permissions are assigned by prefixing the
group name with an @ when using the grant shell command. HBase uses the same
user-to-group mapping classes that come with Hadoop. Group mapping defaults to
loading the Linux groups on the HBase Master and supports using LDAP groups or a
custom mapping.

Table 6-10. Permissions in HBase

Permission Description

READ (R) Permission to read (get/scan) data

WRITE (W) Permission to write (put/delete)

EXEC (X) Permission to execute coprocessor endpoints

CREATE (C) Permission to drop the table; alter table attributes; and add, alter, or drop column families

ADMIN (A) Permission to enable and disable the table, trigger region reassignment or relocation, and the permissions
granted by CREATE

Example 6-19 takes a look at using system-level permissions to grant read access to all
tables. First, Alice brings up the HBase shell, gets a list of tables, and attempts to scan
the super_secret_squirrel table.

Example 6-19. Alice is denied access to an HBase table

[alice@cdh5-hbase ~]$ hbase shell
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 0.98.0, rUnknown, Fri Feb  7 12:26:17 PST 2014

hbase(main):001:0> list
TABLE
super_secret_squirrel
1 row(s) in 2.2110 seconds
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hbase(main):002:0> scan 'super_secret_squirrel'
ROW                                             COLUMN+CELL

ERROR: org.apache.hadoop.hbase.security.AccessDeniedException: Insufficient
  permissions for user 'alice' for scanner open on table super_secret_squirrel

hbase(main):003:0> user_permission
User                                            Table,Family,Qualifier:Permission
0 row(s) in 0.7350 seconds

Notice that when Alice executes the user_permission command, she is nowhere to
be found. Alice asks the HBase administrator to grant her access to all the tables in
HBase. The admin logs into the HBase shell as the hbase user and uses the grant
command to give Alice READ permissions at the system level.

Example 6-20. HBase admin grants Alice system-level READ permissions

[hbase@cdh5-hbase ~]$ hbase shell
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 0.96.1.1-cdh5.0.0-beta-2, rUnknown, Fri Feb  7 12:26:17 PST 2014

hbase(main):001:0> grant 'alice', 'R'
0 row(s) in 2.6990 seconds

hbase(main):002:0> user_permission 'super_secret_squirrel'
User                                            Table,Family,Qualifier:Permission
 hbase                                          super_secret_squirrel,,: [Permission:
 actions=READ,WRITE,EXEC,CREATE,ADMIN]
1 row(s) in 0.2140 seconds

Notice that Alice still doesn’t have permissions specific to the super_secret_squir
rel table as she was granted access at the system level. Permissions at the system level
are displayed in the shell as applying to the hbase:acl table, as shown in
Example 6-21. Now when Alice executes a scan, she gets back the rows from the table.

Example 6-21. Alice can now scan any HBase table

hbase(main):004:0> user_permission
User                                            Table,Family,Qualifier:Permission
 alice                                          hbase:acl,,: [Permission: actions=REA
D]
1 row(s) in 0.1540 seconds

hbase(main):005:0> scan 'super_secret_squirrel'
ROW                                             COLUMN+CELL
 r                                              column=f:q, timestamp=1396369612376,
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value=value
1 row(s) in 0.1310 seconds

Column- and Cell-Level Authorization
HBase and Accumulo also support fine-grained authorization at the data level. In
HBase, you can specify permissions down to the column level. Only the READ and
WRITE permissions are applicable to column-level ACLs. Because HBase supports
assigning permissions to groups, this is a form of role-based access control (roles are
mapped one-to-one to groups). The HBase model is similar to Sentry, which also uses
RBAC, in that access permissions are stored at the metadata layer and are applied
when a user attempts to access a table or column. Rather than an RBAC approach,
Accumulo supports a form of attribute-based security. Attribute-based security works
by labeling data with tags that are compared with a user’s authorizations to determine
whether the user has permission to read the value.

In Accumulo, security labels are stored at the cell level and each key/value pair has its
own label. Accumulo stores the security labels as part of the key by extending the
BigTable data model with a visibility element between the column qualifier and time‐
stamp. Like all of the elements of Accumulo’s keys, security labels do not need to be
predefined and can be created when data is inserted. In order to support more com‐
plex combinations of permissions, security labels consist of a set of user-defined
tokens that are combined using the boolean | and & operators. Parentheses can also
be used to specify precedence of the boolean operators.

In addition to the labels stored with data, each Accumulo user has a set of security
labels. These labels are compared with the boolean expressions as data is scanned,
and any cells that a user is not authorized to see are filtered from the results. Because
the labels are stored at the cell level and form part of the key, it is very easy to imple‐
ment multilevel security; the same row and column key can refer to data at different
authorization levels. This is a very powerful capability for organizations that collect
related data with multiple compartments, where part of a record is open to all users
but more sensitive parts are restricted.

Summary
In this chapter, we covered authorization for permitting or denying access to data and
services in the cluster. Setting permissions and ACLs to control access to data and
resources is fundamental in Hadoop administration. We saw that authorization con‐
trols look a bit different from component to component, especially the differences
between those that authorize access to data (HDFS, HBase, Accumulo) and those that
authorize access to processing and resources (MapReduce, YARN).

So far, we’ve dealt with authorization in terms of independent controls that are
applied on a per-component basis. While this is effective in locking down access to
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the individual component, it increases the complexity and burden placed on an
administrator having to learn these different controls. In the next chapter, we will
look at how authorization controls are converging with the introduction of Apache
Sentry (Incubating).
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CHAPTER 7

Apache Sentry (Incubating)

Over the lifetime of the various Hadoop ecosystem projects, secure authorization has
been added in a variety of different ways. It has become increasingly challenging for
administrators to implement and maintain a common system of authorization across
multiple components. To compound the problem, the various components have dif‐
ferent levels of granularity and enforcement of authorization controls, which often
leave an administrator confused as to what a given user can actually do (or not do) in
the Hadoop environment. These issues, and many others, were the driving force
behind the proposal for Apache Sentry (Incubating).

The Sentry proposal identified a need for fine-grained role-based access controls
(RBAC) to give administrators more flexibility to control what users can access. Tra‐
ditionally, and covered already, HDFS authorization controls are limited to simple
POXIS-style permissions and extended ACLs. What about frameworks that work on
top of HDFS, such as Hive, Cloudera Impala, Solr, HBase, and others? Sentry’s goals
are to implement authorization for Hadoop ecosystem components in a unified way
so that security administrators can easily control what users and groups have access
to without needing to know the ins and outs of every single component in the
Hadoop stack.

Sentry Concepts
Each component that leverages Sentry for authorization must have a Sentry binding.
The binding is a plug-in that the component uses to delegate authorization decisions
to Sentry. This binding applies the relevant model to use for authorization decisions.
For example, a SQL model would apply for the components Hive and Impala, a
Search model would apply to Solr, and a BigTable model would apply to HBase and
Accumulo. Sentry privilege models are discussed in detail a bit later.
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With the appropriate model in place, Sentry uses a policy engine to determine if the
requested action is authorized by checking the policy provider. The policy provider is
the storage mechanism for the policies, such as a database or text file. Figure 7-1
shows how this looks conceptually.

Figure 7-1. Sentry components

This flow makes sense for how components leverage Sentry at a high level, but what
about the actual decision-making process for authorization by the policy engine?
Regardless of the model in place for a given component, there are several key con‐
cepts that are common. Users are what you expect them to be. They are identities per‐
forming a specific action, such as executing a SQL query, searching a collection,
reading a file, or retrieving a key/value pair. Users also belong to groups. In the Sentry
context, groups are a collection of users that have the same needs and privileges. A
privilege in Sentry is a unit of data access and is represented by a tuple of an object
and an action to be performed on the object. For example, an object could be a DATA
BASE, TABLE, or COLLECTION, and the action could be CREATE, READ, WRITE.

Sentry privileges are always defined in the positive case because, by
default, Sentry denies access to every object. This is not to be con‐
fused with REVOKE syntax covered later, which simply removes the
positive case privileges.

Lastly, a role is a collection of privileges and is the basic unit of grant within Sentry. A
role typically aligns with a business function, such as a marketing analyst or database
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administrator. The relationship between users, groups, privileges, and roles is impor‐
tant in Sentry, and adheres to the following logic:

• A group contains multiple users
• A role is assigned a group
• A role is granted privileges

This is illustrated in Figure 7-2.

Figure 7-2. Sentry entity relationships

This relationship is strictly enforced in Sentry. It is not possible to assign a role to a
user or grant privileges to a group, for example. While this relationship is strict, there
are several many-to-many relationships in play here. A user can belong to many 
groups and a group can contain many users. For example, Alice could belong to both
the Marketing and Developer groups, and the Developer group could contain both
Alice and Bob.

Also, a role can be assigned to many groups and a group can have many roles. For
example, the SQL Analyst role could be assigned to both the Marketing and Devel‐
oper groups, and the Developer group could have both the SQL Analyst role and
Database Administrator role.

Lastly, a role can be granted many privileges and a given privilege can be a part of
many roles. For example, the SQL Analyst role could have SELECT privileges on the
clickstream TABLE and CREATE privileges on the marketing DATABASE, and the same
CREATE privilege on the marketing DATABASE could also be granted to the Database
Administrator role.

Now that the high-level Sentry concepts have been covered, we can take a closer look
at implementation, starting with the latest and greatest: the Sentry service.

The Sentry Service
When the Sentry project first made its way into the Apache incubator, the first release
available to the public was one that utilized a plug-in–based approach. Services that
leveraged Sentry were configured with a Sentry plug-in (the binding), and this plug-
in ran inside the service in question and directly read the policy file. There was no
daemon process for Sentry, like many of the other Hadoop ecosystem components.
Furthermore, Sentry policies were configured in a plain text file that enumerated
every policy. Whenever a policy was added, modified, or removed, it required a mod‐

The Sentry Service | 137



ification to the file. As you might imagine, this approach is rather simplistic, cumber‐
some to maintain, and prone to errors. To compound the problem, mistakes made in
the policy file invalidated the entire file!

Thankfully, Sentry has largely moved beyond this early beginning and has grown into
a first-class citizen in the Hadoop ecosystem. Starting with version 1.4, Sentry comes
with a service that can be leveraged by Hive and Impala. This service utilizes a data‐
base backend instead of a text file for policy storage. Additionally, services that use
Sentry are now configured with a binding that points to the Sentry service instead of
a binding to handle all of the authorization decisions locally. Because of advance‐
ments in Sentry’s architecture, it is not recommended to use the policy file–based
configuration for Hive and Impala except on legacy systems. That being said, this
chapter will include information about both configuration options. Figure 7-3 depicts
how the Sentry service fits in with SQL access.

Figure 7-3. Sentry service architecture

At the time of this writing, Solr still utilizes policy files. It is expected that Solr as well
as any other new Sentry-enabled services will move away from using policy file–based
configurations.

Sentry Service Configuration
The first part of getting Sentry up and running in the cluster is to configure the Sen‐
try service. The master configuration file for Sentry is called sentry-site.xml.
Example 7-1 shows a typical configuration for the Sentry server in a Kerberos-
enabled cluster, and Table 7-1 explains the configuration parameters. Later on in the
chapter, we will take a look at how Hadoop ecosystem components utilize this Sentry
service for authorization.

Example 7-1. Sentry service sentry-site.xml

<?xml version="1.0" encoding="UTF-8"?>

<configuration>
  <property>
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    <name>sentry.service.server.rpc-address</name>
    <value>server1.example.com</value>
  </property>
  <property>
    <name>sentry.service.server.rpc-port</name>
    <value>8038</value>
  </property>
  <property>
    <name>sentry.service.admin.group</name>
    <value>hive,impala,hue</value>
  </property>
  <property>
    <name>sentry.service.allow.connect</name>
    <value>hive,impala,hue</value>
  </property>
  <property>
    <name>sentry.store.group.mapping</name>
    <value>org.apache.sentry.provider.common.HadoopGroupMappingService</value>
  </property>
  <property>
    <name>sentry.service.server.principal</name>
    <value>sentry/_HOST@EXAMPLE.COM</value>
  </property>
  <property>
    <name>sentry.service.security.mode</name>
    <value>kerberos</value>
  </property>
  <property>
    <name>sentry.service.server.keytab</name>
    <value>sentry.keytab</value>
  </property>
  <property>
    <name>sentry.store.jdbc.url</name>
    <value>jdbc:mysql://server2.example.com:3306/</value>
  </property>
  <property>
    <name>sentry.store.jdbc.driver</name>
    <value>com.mysql.jdbc.Driver</value>
  </property>
  <property>
    <name>sentry.store.jdbc.user</name>
    <value>sentry</value>
  </property>
  <property>
    <name>sentry.store.jdbc.password</name>
    <value>sentry_password</value>
  </property>
</configuration>

Table 7-1 shows all of the relevant configuration parameters for sentry-site.xml. This
includes parameters that are used for configuring the Sentry service, as well as config‐
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urations for policy file–based implementations and component-specific configura‐
tions.

Table 7-1. sentry-site.xml configurations

Configuration Description

hive.sentry.provider Typically org.apache.sentry.provider.file.HadoopGroupRe
sourceAuthorizationProvider for Hadoop groups; local groups can
be defined only in a policy-file deployment and use org.apache.sen
try.provider.file.LocalGroupResourceAuthorization

Provider

hive.sentry.provider.resource The location of the policy file; can be both file:// and hdfs:// URIs

hive.sentry.server The name of the Sentry server; can be anything

sentry.hive.provider.backend Type of Sentry service: org.apache.sentry.provider.file.Sim
pleFileProviderBackend or org.apache.sentry.pro
vider.db.SimpleDBProviderBackend

sentry.metastore.service.users List of users allowed to bypass Sentry policies for the Hive metastore; only
applies to Sentry service deployments

sentry.provider Same options as hive.sentry.provider; used by Solr

sentry.service.admin.group List of comma-separated groups that are administrators of the Sentry server

sentry.service.allow.connect List of comma-separated users that are allowed to connect; typically only
service users, not end users

sentry.service.client.server.rpc-

address

Client configuration of the Sentry service endpoint

sentry.service.client.server.rpc-

port

Client configuration of the Sentry service port

sentry.service.security.mode The security mode the Sentry server is operating under; kerberos or none

sentry.service.server.keytab Keytab filename that contains the credentials for sentry.ser
vice.server.principal

sentry.service.server.principal Service principal name contained in sentry.service.server.key
tab that the Sentry server identifies itself as

sentry.service.server.rpc-address The hostname to start the Sentry server on
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Configuration Description

sentry.service.server.rpc-port The port to listen on

sentry.solr.provider.resource The location of the policy file for Solr; can be both file:// and hdfs://
URIs

sentry.store.jdbc.driver The JDBC driver name to use to connect to the database

sentry.store.jdbc.password The JDBC password to use

sentry.store.jdbc.url The JDBC URL for the backend database the Sentry server should use

sentry.store.jdbc.user The JDBC username to connect as

sentry.store.group.mapping The class that provides the mapping of users to groups; typically
org.apache.sentry.provider.common.HadoopGroupMap

pingService

Hive Authorization
The canonical implementation of Sentry is to add role-based access controls to Hive.
Without strong authorization controls, users of Hive can make changes to the Hive
metastore without much restriction. Additionally, access to Hive tables is completely
controlled by the underlying HDFS file permissions, which is extremely limited. With
Sentry, security administrators can control which users and groups can use Hive in a
very granular way to include such operations as creating tables and views, inserting
new data into existing tables, or selecting data with queries.

To understand how Sentry provides authorization for Hive, it is first necessary to
understand the basics of how the components of Hive work together. There are three
major components in the Hive architecture: the metastore database, Hive Metastore
Server, and HiveServer2. The metastore database is a relational database that contains
all of the Hive metadata, such as information about databases, tables and views, loca‐
tions of table data in HDFS, datatypes for columns, file formats and compression, and
so on. When a client interacts with Hive, this information is necessary to make sense
of the operations that are to be performed.

With older versions of Hive, this was pretty much all you had; the Hive client API
would talk directly to the metastore database and perform operations. From a secu‐
rity standpoint, this is bad. This model meant that every Hive client had the full cre‐
dentials to the Hive metastore database! The Hive Metastore Server became a
component of the Hive architecture to address this problem, among others. This
role’s purpose is to become a middle layer between Hive clients and the metastore
database. With this model, clients need only to know how to contact the Hive Meta‐
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store Server, whereas only the Hive Metastore Server holds the keys to the underlying
metastore database.

The last component of the Hive architecture is HiveServer2. This component’s pur‐
pose is to provide a query service to external applications using interfaces such as
JDBC and ODBC. HiveServer2 fields requests from clients, communicates with the
Hive Metastore Server to retrieve metadata information, and performs Hive actions
as appropriate, such as spawning off MapReduce jobs. As the name implies, Hive‐
Server2 is the second version of such a service, with the initial version lacking con‐
currency and security features. The important part to understand here is that
HiveServer2 was initially meant to serve external applications. The Hive command-
line interface (CLI) was still interacting directly with the Hive Metastore Server and
using Hive APIs to perform actions. Users could use the CLI for HiveServer2, beeline,
to perform actions, but it was not required. This fact poses a challenge for enforcing
secure authorization for all clients. As you might have guessed, the way to achieve this
is to enforce secure authorization for HiveServer2, and ensure that all SQL clients
must use HiveServer2 to perform any and all Hive SQL operations.

Another component of the Hive architecture is HCatalog. This is a set of libraries that
allows non-SQL clients to access Hive Metastore structures. This is useful for users of
Pig or MapReduce to determine the metadata structures of files without having to use
traditional Hive clients. An extension of the HCatalog libraries is the WebHCatServer
component. This component is a daemon process that provides a REST interface to
perform HCatalog functions. Neither the HCatalog libraries, nor the WebHCatServer
utilize HiveServer2. All communication is directly to the Hive Metastore Server.
Because of this fact, the Hive Metastore Server must also be protected by Sentry to
ensure HCatalog users cannot make arbitrary modifications to the Hive Metastore
database.

While the 1.4 release of Sentry has the ability to provide write pro‐
tection of the Hive Metastore Server, it does not currently limit
reads. What this means is that a user doing something equivalent
to a SHOW TABLES operation in HCatalog will return a list of all
tables, including tables they do not have access to. This is different
from the same operation performed via HiveServer2 where the
user only sees the objects they have access to. However, this is only
metadata exposure. Permissions of the actual data are still enforced
at the time of access by HDFS. If your cluster does not have any
users that utilize HCatalog, a way to force all Hive traffic to Hive‐
Server2 is to set the property hadoop.proxyuser.hive.groups in
the core-site.xml configuration file to hive,impala, which allows
both Hive (HiveServer2) and Impala (Catalog Server) to directly
access the Hive Metastore Server, but nobody else.
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Figure 7-4 shows how the Hive architecture is laid out and where the Sentry enforce‐
ments occur. As you can see, regardless of the method of access, the key enforcement
is protecting the Hive metastore from unauthorized changes.

Figure 7-4. Hive sentry architecture

Hive Sentry Configuration
In this section, we take a look at what is necessary to configure Hive to leverage Sen‐
try for authorization. Example 7-2 shows the sentry-site.xml configuration file that is
used by both the Hive Metastore Server and HiveServer2 to leverage a Sentry service.

Example 7-2. Hive sentry-site.xml service deployment

<configuration>
  <property>
    <name>hive.sentry.server</name>
    <value>server1</value>
  </property>
  <property>
    <name>sentry.service.server.principal</name>
    <value>sentry/_HOST@EXAMPLE.COM</value>
  </property>
  <property>
    <name>sentry.service.security.mode</name>
    <value>kerberos</value>
  </property>
  <property>
    <name>sentry.hive.provider.backend</name>
    <value>org.apache.sentry.provider.db.SimpleDBProviderBackend</value>
  </property>
  <property>
    <name>sentry.service.client.server.rpc-address</name>
    <value>server1.example.com</value>
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  </property>
  <property>
    <name>sentry.service.client.server.rpc-port</name>
    <value>8038</value>
  </property>
  <property>
    <name>hive.sentry.provider</name>
    <value>
       org.apache.sentry.provider.file.HadoopGroupResourceAuthorizationProvider
    </value>
  </property>
  <property>
    <name>sentry.metastore.service.users</name>
    <value>hive,impala,hue,hdfs</value>
  </property>
</configuration>

Example 7-3 shows a typical configuration for Sentry when used with HiveServer2
(and Hive Metastore Server) and a policy file–based deployment. The policy file–
based configuration for Sentry is rather minimal when compared to the service-based
configuration, but there are commonalities. The location of sentry-site.xml on the
local filesystem is specified in the HiveServer2 daemon’s hive-site.xml configuration
file, as we will see later.

Example 7-3. Hive sentry-site.xml policy file deployment

<?xml version="1.0" encoding="UTF-8"?>

<configuration>
  <property>
    <name>hive.sentry.provider</name>
    <value>
      org.apache.sentry.provider.file.HadoopGroupResourceAuthorizationProvider
    </value>
  </property>
  <property>
    <name>sentry.hive.provider.backend</name>
    <value>org.apache.sentry.provider.file.SimpleFileProviderBackend</value>
  </property>
  <property>
    <name>hive.sentry.provider.resource</name>
    <value>/user/hive/sentry/sentry-provider.ini</value>
  </property>
  <property>
    <name>hive.sentry.server</name>
    <value>server1</value>
  </property>
</configuration>
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First, we will look at the configuration properties that are used in both examples. The
parameter hive.sentry.server specifies a name (label) for this particular Sentry
server, which can be referenced in policies. This name has nothing to do with a
machine hostname. The sentry.hive.provider.backend configuration tells Hive
which provider backend to use. For the Sentry service, this is org.apache.sen
try.provider.db.SimpleDBProviderBackend and for the Sentry policy file this is
org.apache.sentry.provider.file.SimpleFileProviderBackend. hive.sen

try.provider configures the method that Sentry will use to determine group infor‐
mation. HadoopGroupResourceAuthorizationProvider, shown here, will leverage
whatever method Hadoop is configured with, such as reading groups from the local
operating system or directly pulling group information from LDAP. However, this is a
mere formality in Example 7-2 because the Sentry service cannot use a policy file to
define local user-to-group mappings.

Next we will look at the configurations that are specific to the Sentry service example.
The details of how Hive should connect to the Sentry service are provided by the fol‐
lowing:

• sentry.service.client.server.rpc-address

• sentry.service.client.server.rpc-port

Both sentry.service.server.principal and sentry.service.security.mode set
up the Kerberos configuration details. Finally, the sentry.metastore.service.users
configuration lists the users that are allowed to bypass Sentry authorization and con‐
nect directly to the Hive Metastore Server. This likely will always be service/system
users like Hive and Impala, as the example shows.

The remaining configuration that is specific to the policy file deployment example is
hive.sentry.provider.resource. This specifies the location where the policy file is.
The location specified for the Sentry policy file will assume the location is the same as
is specified in hdfs-site.xml. For example, it will assume the path /user/hive/sentry/
sentry-provider.ini is in HDFS if hdfs-site.xml points to HDFS. It is also possible to be
explicit in the location by providing hdfs:// for an HDFS path or file:// for a local
filesystem path.

While the sentry-site.xml configuration is important for Hive, on its own it does not
enable Sentry authorization for it. Additional configuration is necessary in Hive’s
configuration file, hive-site.xml. Example 7-4 shows the relevant configurations
needed for the Hive Metastore Server, and Example 7-5 similarly shows what is
needed for HiveServer2. The two configurations are similar, but slightly different.
The last hive-site.xml example shown in Example 7-6 shows what is needed for Hive‐
Server2 in a policy file–based deployment. Note that in a policy file–based deploy‐
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ment, no additional configuration is needed for the Hive Metastore Server (more on
that later).

Example 7-4. Hive Metastore Server hive-site.xml Sentry service configurations

<?xml version="1.0" encoding="UTF-8"?>

<configuration>
  <!-- Unrelated properties omitted -->
  <property>
    <name>hive.sentry.conf.url</name>
    <value>file:///etc/hive/conf/sentry-site.xml</value>
  </property>
  <property>
    <name>hive.metastore.pre.event.listeners</name>
    <value>org.apache.sentry.binding.metastore.MetastoreAuthzBinding</value>
  </property>
  <property>
    <name>hive.metastore.event.listeners</name>
    <value>
      org.apache.sentry.binding.metastore.SentryMetastorePostEventListener
    </value>
  </property>
</configuration>

Example 7-5. HiveServer2 hive-site.xml Sentry service configurations

<?xml version="1.0" encoding="UTF-8"?>

<configuration>
  <!-- Unrelated properties omitted -->
  <property>
    <name>hive.server2.enable.doAs</name>
    <value>false</value>
  </property>
  <property>
    <name>hive.server2.session.hook</name>
    <value>org.apache.sentry.binding.hive.HiveAuthzBindingSessionHook</value>
  </property>
  <property>
    <name>hive.sentry.conf.url</name>
    <value>file:///etc/hive/conf/sentry-site.xml</value>
  </property>
  <property>
    <name>hive.security.authorization.task.factory</name>
    <value>
      org.apache.sentry.binding.hive.SentryHiveAuthorizationTaskFactoryImpl
    </value>
  </property>
</configuration>
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Example 7-6. HiveServer2 hive-site.xml Sentry policy file configurations

<?xml version="1.0" encoding="UTF-8"?>

<configuration>
  <!-- Unrelated properties omitted -->
  <property>
    <name>hive.server2.enable.doAs</name>
    <value>false</value>
  </property>
  <property>
    <name>hive.server2.session.hook</name>
    <value>org.apache.sentry.binding.hive.HiveAuthzBindingSessionHook</value>
  </property>
  <property>
    <name>hive.sentry.conf.url</name>
    <value>file:///etc/hive/conf/sentry-site.xml</value>
  </property>
</configuration>

In all three hive-site.xml examples, the configuration property hive.sen

try.conf.url tells Hive where to locate the Sentry configuration file. In both Hive‐
Server2 examples, the property hive.server2.session.hook is used to specify a
binding that will actually hand off authorization decisions to Sentry.

Also in both HiveServer2 examples, notice that impersonation is disabled. Disabling
Hive impersonation is a critical piece of Sentry configuration. In order to truly have
authorization that is enforced all the way from query to data access, Sentry and Hive
need to have control of both the query interface as well as file access. To do this,
HDFS permissions of the Hive warehouse need to be locked down, as shown in
Example 7-7.

Example 7-7. Locking down the Hive warehouse

[alice@server1 ~]$ kinit hdfs
Enter password for hdfs@EXAMPLE.COM:
[alice@server1 ~]$ hdfs dfs -chown -R hive:hive /user/hive/warehouse
[alice@server1 ~]$ hdfs dfs -chmod -R 0771 /user/hive/warehouse
[alice@server1 ~]$

After locking down the Hive warehouse and disabling impersonation, Sentry controls
authorization at the query interface. HDFS permissions are locked down because only
the Hive system user is able to access the files. Not only is this better from a security
perspective, but it also allows Sentry the ability to control authorization down to the
view level. Views can be used for column-level security (selecting only certain col‐
umns) and as row-level security, such as providing a filtering WHERE clause. If imper‐
sonation is enabled and queries are thus run as the end user, view-level permissions
are not realistically enforced because the user has file-level (e.g., table-level) access in
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HDFS and can bypass Sentry policies by accessing files directly, such as with MapRe‐
duce.

Impala Authorization
The initial release of Sentry included support for both Hive and Impala. While both
of these components have some similarities, they have some fundamental differences
in architecture that need to be addressed before we can fully understand how Sentry
fits into the equation. First, Impala is an entire processing framework. This differs
from Hive in that Hive does not have any processing power to do the actual work a
user is requesting. That work is handled by MapReduce by default (either standalone
version 1, or version 2 on YARN).

Impala architecture consists of three components: Daemon, StateStore, and Catalog
Service. The Impala Daemon, or impalad, is the actual worker process, which runs on
every node in the cluster that runs the HDFS DataNode daemon. The Impala StateS‐
tore, or statestored, is responsible for keeping track of the health of all of the impalad
instances in the cluster. If an instance goes bad, statestored broadcasts this informa‐
tion to all the rest of the impalad instances. While this might seem like a critical com‐
ponent of the Impala architecture, it actually is not required. If the statestored process
goes down or does not exist at all, all of the work done by the impalad instances con‐
tinues to operate. The only potential impact is if an impalad instance goes into bad
health, the remaining instances will be slow to discover this, which can lead to a delay
in total query execution time. The Impala Catalog Service, or catalogd, is responsible
for keeping track of metadata changes. If an Impala query executes on an impalad
that somehow changes metadata, the catalogd broadcasts the updated metadata to the
other impalad instances. The catalogd is responsible for communicating with the
Hive Metastore server to retrieve all existing metadata information.

Now that the basics of Impala architecture have been reviewed, we can cover where
Sentry actually comes into play. As described earlier in our discussion of Hive, Sentry
is a plug-in for Hive components HiveServer2 and Hive Metastore Server, which
most of the time are each single instances on a cluster. With Impala, Sentry is not a
centralized plug-in to augment a single main component, such as for the catalogd or
statestored processes. Sentry is actually enabled on every impalad. When a user con‐
nects to a given impalad with Sentry enabled and issues a query, the impalad uses the
Sentry policy (either from the Sentry service or a policy file) to determine if the user
is authorized to perform the requested action.

Impala Sentry Configuration
Like we did in the previous section with Hive, in this section we take a look at what is
necessary to configure Impala to leverage Sentry for authorization. Example 7-8
shows the sentry-site.xml configuration file that is used by the Impala daemons to lev‐
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erage a Sentry service. In a policy file–based deployment, a sentry-site.xml file is not
required.

Example 7-8. Impala sentry-site.xml service deployment

<?xml version="1.0" encoding="UTF-8"?>

<configuration>
  <property>
    <name>sentry.service.server.principal</name>
    <value>sentry/_HOST@EXAMPLE.COM</value>
  </property>
  <property>
    <name>sentry.service.security.mode</name>
    <value>kerberos</value>
  </property>
  <property>
    <name>sentry.service.client.server.rpc-address</name>
    <value>server1.example.com</value>
  </property>
  <property>
    <name>sentry.service.client.server.rpc-port</name>
    <value>8038</value>
  </property>
</configuration>

As you might have noticed, the sentry-site.xml configuration for Impala to use a Sen‐
try service is a subset of the configuration for Hive. The properties were already dis‐
cussed in the last section, so we can move on to configuring the Impala daemons to
enable Sentry authorization.

In a Sentry service deployment, the Impala daemons need just three flags configured.
The first flag is server_name, which is a label for the Sentry server. This matches the
hive.sentry.server configuration property. The second flag is sentry_config,
which points the Impala daemon to the location of the sentry-site.xml configuration
file. The third flag, authorized_proxy_user_config, is used to specify users that
serve as impersonators for other users, such as the hue user. Example 7-9 shows what
this looks like.

Example 7-9. Impala flags for Sentry service deployment

...Other unrelated flags omitted for brevity
-server_name=server1
-sentry_config=/etc/impala/conf/sentry-site.xml
-authorized_proxy_user_config=hue=*

In a Sentry policy file–based deployment, the Impala daemons do not need the sen
try_config flag. Instead, the Impala daemons are configured with the authoriza
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tion_policy_file and authorization_policy_provider_class flags. These flags
indicate the location of the Sentry policy file and the authorization provider class,
respectively. The latter was described already with the hive.sentry.provider config‐
uration property, which serves the same purpose. Example 7-10 shows how this
looks.

Example 7-10. Impala flags for Sentry policy file deployment

...Other unrelated flags omitted for brevity
-server_name=server1
-authorized_proxy_user_config=hue=*
-authorization_policy_file=/user/hive/sentry/sentry-provider.ini
-authorization_policy_provider_class=\
 org.apache.sentry.provider.file.HadoopGroupResourceAuthorizationProvider

Solr Authorization
Authorization for Solr starts with collections. Collections are the main entry point of
access, much like how databases are for SQL. Sentry authorization initially started
with defining privileges at the collection level. Sentry has since evolved to provide
document-level authorization. Document-level authorization is done by tagging each
document with a special field name containing the value that corresponds to an asso‐
ciated Sentry role name defined in the Sentry policy file (described later). The tagging
of documents in this fashion would be done at ingest time, so it is important to have a
good sense of role names to avoid needing to reprocess documents to change tag val‐
ues.

Solr Sentry Configuration
This section explains how to set up Solr with Sentry authorization. Example 7-11
shows what is needed in the sentry-site.xml configuration file for the Solr servers.

Example 7-11. Solr sentry-site.xml policy file deployment

<?xml version="1.0" encoding="UTF-8"?>

<configuration>
  <property>
    <name>sentry.provider</name>
    <value>
      org.apache.sentry.provider.file.HadoopGroupResourceAuthorizationProvider
    </value>
  </property>
  <property>
    <name>sentry.solr.provider.resource</name>
    <value>/user/solr/sentry/sentry-provider.ini</value>
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  </property>
</configuration>

The two configuration properties shown in Example 7-11 should look very familiar at
this point, but the configuration property names are slightly different with Solr. The
sentry.provider configuration property works just like the hive.sentry.provider
configuration for Hive and the authorization_policy_provider_class flag for
Impala. The sentry.solr.provider.resource configuration property specifies the
location of the Sentry policy file. Again, this policy file can be located either on the
local filesystem or on HDFS. It needs to be readable by the user that the Solr servers
are running as (typically the solr user).

To set up the Solr servers with Sentry authorization, some environment variables are
needed. These can either be set as environment variables or as lines in the /etc/
default/solr configuration file. The first variable is SOLR_SENTRY_ENABLED. This obvi‐
ously enables Sentry authorization when set to true. The next is SOLR_AUTHORIZA
TION_SUPERUSER. This variable defines the user that has superuser privileges, which
typically should be the solr user. The last variable is SOLR_AUTHORIZATION_SEN
TRY_SITE, which specifies the location of the sentry-site.xml configuration file
described earlier. Example 7-12 shows how this looks.

Example 7-12. Solr environment variables in Sentry policy file deployment

...Other unrelated environment variables omitted for brevity
SOLR_SENTRY_ENABLED=true
SOLR_AUTHORIZATION_SUPERUSER=solr
SOLR_AUTHORIZATION_SENTRY_SITE=/etc/solr/conf/sentry-site.xml

It was mentioned earlier in this section that document-level authorization can be
used. In order to make that happen, a few configurations are necessary for the collec‐
tion. By default, collections are configured using the solrconfig.xml configuration file.
This file needs to look like Example 7-13.

Example 7-13. Document-level security solrconfig.xml

<searchComponent name="queryDocAuthorization"
class="org.apache.solr.handler.component.QueryDocAuthorizationComponent">
    <bool name="enabled">true</bool>
    <str name="sentryAuthField">sentry_auth</str>
    <str name="allRolesToken">*</str>
</searchComponent>

Example 7-13 shows that the class org.apache.solr.handler.component.QueryDo
cAuthorizationComponent is used for document-level authorization decisions. It is
turned on by setting the enabled property to true. The configuration property
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sentryAuthField defines the name of the field in a document that contains the
authorization token to determine access. The default value of sentry_auth is shown,
but this can be anything. Documents will use this tag to insert the role name that is
required to access the document. The last configuration property allRolesToken
defines the token that allows every role to access a given document. The default is *,
and it makes sense to leave that as is to remain consistent with wildcard matches in
other Sentry privileges.

Sentry Privilege Models
In this section, we take a look at the privilege models for the various services that
Sentry provides authorization for. The privilege models identify privileges, object
types that the privileges apply to, the scope of the privilege, and other useful informa‐
tion that will help a security administrator understand the authorization controls
available, and to what granularity. Having a good grasp on the privilege models here
will ensure that appropriate policies are selected to meet the desired level of authori‐
zation controls to protect data from unauthorized access.

SQL Privilege Model
Sentry provides three types of privileges for SQL access: SELECT, INSERT, and ALL.
These privileges are not available for every object. Table 7-2 provides information on
which privileges apply to which object in a SQL context. The SQL privilege model
itself is a hierarchy, meaning privileges to container objects imply privileges to child
objects. This is important to fully understand what users do or do not have access to.

Table 7-2. SQL privilege typesa

Privilege Object

INSERT TABLE,URI

SELECT TABLE,VIEW,URI

ALL SERVER,DB,URI

a All privilege model tables are reproduced from cloudera.com with permission from Cloudera, Inc.

Table 7-3 lays out which container privilege yields the granular privilege on a given
object. For example, the first line in the table should be interpreted as “ALL privileges
on a SERVER object implies ALL privileges on a DATABASE object.”
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Table 7-3. SQL privilege hierarchy

Base Object Granular Privilege Container Object Container Privilege That Implies Granular Privilege

DATABASE ALL SERVER ALL

TABLE INSERT DATABASE ALL

TABLE SELECT DATABASE ALL

VIEW SELECT DATABASE ALL

The final portion of the SQL privilege model is to understand how privileges map to
SQL operations. Table 7-4 shows for a given SQL operation, what object scope does
the operation apply to, and what privileges are required to perform the operation. For
example, the first line in the table should be interpreted as “CREATE DATABASE
applies to the SERVER object and requires ALL privileges on the SERVER object.”
Some of the SQL operations involve more than one privilege, such as creating views.
Creating a new view requires ALL privileges on the DATABASE in which the view is
to be created, as well as SELECT privileges on the TABLE/VIEW object(s) referenced
by the view.

Table 7-4. SQL privileges

SQL Operation Scope Privileges

CREATE DATABASE SERVER ALL

DROP DATABASE DATABASE ALL

CREATE TABLE DATABASE ALL

DROP TABLE TABLE ALL

CREATE VIEW DATABASE; SELECT on TABLE ALL

DROP VIEW VIEW/TABLE ALL

CREATE INDEX TABLE ALL

DROP INDEX TABLE ALL

ALTER TABLE ADD COLUMNS TABLE ALL

ALTER TABLE REPLACE COLUMNS TABLE ALL

ALTER TABLE CHANGE column TABLE ALL
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SQL Operation Scope Privileges

ALTER TABLE RENAME TABLE ALL

ALTER TABLE SET TBLPROPERTIES TABLE ALL

ALTER TABLE SET FILEFORMAT TABLE ALL

ALTER TABLE SET LOCATION TABLE ALL

ALTER TABLE ADD PARTITION TABLE ALL

ALTER TABLE ADD PARTITION location TABLE ALL

ALTER TABLE DROP PARTITION TABLE ALL

ALTER TABLE PARTITION SET FILEFORMAT TABLE ALL

SHOW TBLPROPERTIES TABLE SELECT/INSERT

SHOW CREATE TABLE TABLE SELECT/INSERT

SHOW PARTITIONS TABLE SELECT/INSERT

DESCRIBE TABLE TABLE SELECT/INSERT

DESCRIBE TABLE PARTITION TABLE SELECT/INSERT

LOAD DATA TABLE; URI INSERT

SELECT TABLE SELECT

INSERT OVERWRITE TABLE TABLE INSERT

CREATE TABLE AS SELECT DATABASE; SELECT on TABLE ALL

USE database ANY ANY

ALTER TABLE SET SERDEPROPERTIES TABLE ALL

ALTER TABLE PARTITION SET SERDEPROPERTIES TABLE ALL

CREATE ROLE SERVER ALL

GRANT ROLE TO GROUP SERVER ALL

GRANT PRIVILEGE ON SERVER SERVER ALL
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SQL Operation Scope Privileges

GRANT PRIVILEGE ON DATABASE DATABASE WITH GRANT OPTION

GRANT PRIVILEGE ON TABLE TABLE WITH GRANT OPTION

While most of the SQL operations are supported by both Hive and Impala, some
operations are supported only by Hive or Impala, or have not been implemented yet.
Table 7-5 lists the SQL privileges that only apply to Hive, and Table 7-6 lists the SQL
privileges that only apply to Impala.

Table 7-5. Hive-only SQL privileges

SQL Operation Scope Privileges

INSERT OVERWRITE DIRECTORY TABLE; URI INSERT

ANALYZE TABLE TABLE SELECT + INSERT

IMPORT TABLE DATABASE; URI ALL

EXPORT TABLE TABLE; URI SELECT

ALTER TABLE TOUCH TABLE ALL

ALTER TABLE TOUCH PARTITION TABLE ALL

ALTER TABLE CLUSTERED BY SORTED BY TABLE ALL

ALTER TABLE ENABLE/DISABLE TABLE ALL

ALTER TABLE PARTITION ENABLE/DISABLE TABLE ALL

ALTER TABLE PARTITION RENAME TO PARTITION TABLE ALL

ALTER DATABASE DATABASE ALL

DESCRIBE DATABASE DATABASE SELECT/INSERT

SHOW COLUMNS TABLE SELECT/INSERT

SHOW INDEXES TABLE SELECT/INSERT
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Table 7-6. Impala-only SQL privileges

SQL Operation Scope Privileges

EXPLAIN TABLE SELECT

INVALIDATE METADATA SERVER ALL

INVALIDATE METADATA table TABLE SELECT/INSERT

REFRESH table TABLE SELECT/INSERT

CREATE FUNCTION SERVER ALL

DROP FUNCTION SERVER ALL

COMPUTE STATS TABLE ALL

Solr Privilege Model
With Solr, Sentry provides three types of privileges: QUERY, UPDATE, and * (ALL). The
privilege model for Solr is broken down between privileges that apply to request han‐
dlers and those that apply to collections. In Tables 7-8 through 7-10, the admin col‐
lection name is a special collection in Sentry that is used to represent administrative
actions. In all of the Solr privilege model tables, collection1 denotes an arbitrary col‐
lection name.

Table 7-7. Solr privilege table for nonadministrative request handlers

Request handler Required privilege Collections that require privilege

select QUERY collection1

query QUERY collection1

get QUERY collection1

browse QUERY collection1

tvrh QUERY collection1

clustering QUERY collection1

terms QUERY collection1
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Request handler Required privilege Collections that require privilege

elevate QUERY collection1

analysis/field QUERY collection1

analysis/document QUERY collection1

update UPDATE collection1

update/json UPDATE collection1

update/csv UPDATE collection1

Table 7-8. Solr privilege table for collections admin
actions

Collection action Required privilege Collections that require privilege

create UPDATE admin, collection1

delete UPDATE admin, collection1

reload UPDATE admin, collection1

createAlias UPDATE admin, collection1

deleteAlias UPDATE admin, collection1

syncShard UPDATE admin, collection1

splitShard UPDATE admin, collection1

deleteShard UPDATE admin, collection1

Table 7-9. Solr privilege table for core admin actions

Collection action Required privilege Collections that require privilege

create UPDATE admin, collection1

rename UPDATE admin, collection1

load UPDATE admin, collection1

unload UPDATE admin, collection1

status UPDATE admin, collection1
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Collection action Required privilege Collections that require privilege

persist UPDATE admin

reload UPDATE admin, collection1

swap UPDATE admin, collection1

mergeIndexes UPDATE admin, collection1

split UPDATE admin, collection1

prepRecover UPDATE admin, collection1

requestRecover UPDATE admin, collection1

requestSyncShard UPDATE admin, collection1

requestApplyUpdates UPDATE admin, collection1

Table 7-10. Solr privilege table for info and AdminHandlers

Request handler Required privilege Collections that require privilege

LukeRequestHandler QUERY admin

SystemInfoHandler QUERY admin

SolrInfoMBeanHandler QUERY admin

PluginInfoHandler QUERY admin

ThreadDumpHandler QUERY admin

PropertiesRequestHandler QUERY admin

LogginHandler QUERY, UPDATE (or * ) admin

ShowFileRequestHandler QUERY admin

Sentry Policy Administration
Now that we have seen the privilege tables and the types of accesses available, we can
look at how the actual policies can be added, removed, or changed. The approach to
administering policies differs depending on the type of Sentry deployment, be it the
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newer Sentry service or the older policy file. The first, and preferred, method of
administering policy is by using SQL commands.

SQL Commands
Security administrators who are accustomed to managing roles and permissions in
popular relational database systems will find the SQL syntax for administering Sentry
policies to be very familiar. Table 7-11 shows all of the statements available to an
administrator managing Sentry policies.

Table 7-11. Sentry policy SQL syntax

Statement Description

CREATE ROLE role_name Creates a role with the specified name

DROP ROLE role_name Deletes a role with the specified name

GRANT ROLE role_name TO GROUP 

group_name

Grants the specified role to the specified group

REVOKE ROLE role_name FROM 

GROUP group_name

Revokes the specified role from the specified group

GRANT privilege ON object TO 

ROLE role_name

Grants a privilege on an object to the specified role

GRANT privilege ON object TO 

ROLE role_name WITH GRANT 

OPTION

Grants a privilege on an object to the specified role and allows the role to
further grant privileges within the object

REVOKE privilege ON object 

FROM ROLE role_name

Revokes a privilege on an object from the specified role

SET ROLE role_name Sets the specified role for the current session

SET ROLE ALL Enables all roles (that the user has access to) for the current session

SET ROLE NONE Disables all roles for the current session

SHOW ROLES Lists all roles in the database

SHOW CURRENT ROLES Shows all the roles enabled for the current session

SHOW ROLE GRANT GROUP 

group_name

Shows all roles for the specified group
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Statement Description

SHOW GRANT ROLE role_name Shows all grant permissions for the specified role

SHOW GRANT ROLE role_name ON 

object object_name

Shows all grant permissions for the specified role on the specified object.

Table 7-11 provides a good listing of the various syntaxes, a working example is war‐
ranted to see these in action (Example 7-14).

Example 7-14. Sentry SQL usage example

# Authenticated as the hive user, which is a member of a group listed in
# sentry.service.admin.group and accessing HiveServer2
# via the beeline CLI

# Create the role for hive administrators
0: jdbc:hive2://server1.example.com:100> CREATE ROLE hive_admin;
No rows affected (0.852 seconds)

# Grant the hive administrator role to the sqladmin group
0: jdbc:hive2://server1.example.com:100> GRANT ROLE hive_admin TO GROUP sqladmin;
No rows affected (0.305 seconds)

# Grant server-wide permissions to the hive_admin role
0: jdbc:hive2://server1.example.com:100> GRANT ALL ON SERVER server1
TO ROLE hive_admin;
No rows affected (0.339 seconds)

# Show all of the roles in the Sentry database
0: jdbc:hive2://server1.example.com:100> SHOW ROLES;
+-------------+
|    role     |
+-------------+
| hive_admin  |
+-------------+
1 row selected (0.63 seconds)

# Show all the privileges that the hive_admin role has access to
# (some columns omitted for brevity)
0: jdbc:hive2://server1.example.com:100> SHOW GRANT ROLE hive_admin;
+-----------+-----------------+-----------------+------------+---------------+
| database  | principal_name  | principal_type  | privilege  | grant_option  |
+-----------+-----------------+-----------------+------------+---------------+
| *         | hive_admin      | ROLE            | *          | false         |
+-----------+-----------------+-----------------+------------+---------------+
+----------+
| grantor  |
+----------+
| hive     |
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+----------+
1 row selected (0.5 seconds)

# Show all the roles that the sqladmin is a part of
0: jdbc:hive2://server1.example.com:100> SHOW ROLE GRANT GROUP sqladmin;
+-------------+---------------+-------------+----------+
|    role     | grant_option  | grant_time  | grantor  |
+-------------+---------------+-------------+----------+
| hive_admin  | false         |             | hive     |
+-------------+---------------+-------------+----------+
1 row selected (0.5 seconds)

# Remove all of the roles for the current user session
0: jdbc:hive2://server1.example.com:100> SET ROLE NONE;
No rows affected (0.2 seconds)

# Show list of current roles
0: jdbc:hive2://server1.example.com> SHOW CURRENT ROLES;
+-------+
| role  |
+-------+
+-------+
No rows selected (0.305 seconds)

# Verify that no roles yields no access
0: jdbc:hive2://server1.example.com:100> SHOW TABLES;
+-----------+
| tab_name  |
+-----------+
+-----------+
0: jdbc:hive2://server1.example.com:100> SELECT COUNT(*) FROM sample_07;
Error: Error while compiling statement:
FAILED: SemanticException No valid privileges (state=42000,code=40000)

# Set the current role to the hive_admin role
0: jdbc:hive2://server1.example.com:100> SET ROLE hive_admin;
No rows affected (0.176 seconds)

# Show list of current roles
0: jdbc:hive2://server1.example.com:100> SHOW CURRENT ROLES;
+-------------+
|    role     |
+-------------+
| hive_admin  |
+-------------+
1 row selected (0.404 seconds)

# Execute commands that are permitted
0: jdbc:hive2://server1.example.com:100> SHOW TABLES;
+------------+
|  tab_name  |
+------------+
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| sample_07  |
| sample_08  |
+------------+
2 rows selected (0.536 seconds)
0: jdbc:hive2://server1.example.com:100> SELECT COUNT(*) FROM sample_07;
+------+
| _c0  |
+------+
| 823  |
+------+
1 row selected (20.811 seconds)

Using WITH GRANT OPTION is a great way to ease the administration
burden on a global SQL administrator. A common example is to
create a Hive database for a given line of business and delegate
administrative privileges to a database-specific admin role. This
gives the line of business the flexibility to manage privileges to their
own data. To determine if a role has this option, use SHOW GRANT
ROLE role_name and look at the column grant_option.

In Example 7-14, the commands are executed using the beeline CLI for HiveServer2,
but they can also be run from within the impala-shell. Both components utilize the
same Sentry service and thus the same Sentry policies, so changes made from one
component are immediately reflected in the other. Sentry authorization decisions are
not cached by the individual components because of the security ramifications of
doing that.

SQL Policy File
For Sentry deployments that utilize the Sentry service for SQL components, policy
administration is familiar and straightforward. This is not the case with the legacy
policy file–based implementation. Sentry-enabled components need to have read
access to the policy file. When using a policy file for Hive and Impala, this can be
achieved by making the file group owned by the hive group and ensuring that both
hive and impala users are members of this group. The policy file itself can be located
either on the local system or in HDFS. For the former, the file needs to exist wherever
the component that is making the authorization decision is deployed. For example,
when Sentry is enabled for Hive, the local policy file needs to be on the machine
where the HiveServer2 daemon is running.
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It is highly recommended to specify a location in HDFS for the pol‐
icy file in order to leverage HDFS replication for redundancy and
availability. Because the policy file is read for every single user
operation, it makes sense to increase the replication factor of the
file so components reading it can retrieve it from many different
nodes. This can be done with hdfs dfs -setrep N /user/hive/
sentry/sentry-provider.ini, where N is the number of replicas
desired. The policy file is small, so it is perfectly reasonable to set
the number of replicas to the number of DataNodes in the cluster.

The format of the policy file follows a typical INI file format with configuration sec‐
tions identified with braces and individual configurations specified as KEY = VALUE
pairs. Example 7-15 shows a sample policy file for Sentry when used with Hive and
Impala.

Example 7-15. SQL sentry-provider.ini

[databases]
product = hdfs://nameservice1/user/hive/sentry/product.ini

[groups]
admins = admin_role, tmp_access
analysts = analyst_role, tmp_access
developers = developer_role, tmp_access
etl = etl_role, tmp_access

[roles]
# uri accesses
tmp_access = server=server1->uri=hdfs://nameservice1/tmp

# default database accesses
analyst_role = server=server1->db=default->table=*->action=select
developer_role = server=server1->db=default
etl_role = server=server1->db=default->table=*->action=insert, \
           server=server1->db=default->table=*->action=select

# administrative role
admin_role = server=server1

The policy file in Example 7-15 has a lot going on and it might not be immediately
apparent what it is defining. The first section of the policy file is databases. This sec‐
tion lists all of the databases and the corresponding policy files to be used to secure
access to them. Having separate configuration files for each database is certainly not
required. However, separating out the configuration files provides the following ben‐
efits:
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• Allows for version tracking to easily tell which database was affected by a policy
change and when

• Allows for delegated administrative control at a per-database level of granularity
• A misconfiguration of a given database policy file does not affect the master

sentry-provider.ini or other database policy files
• Easily disable access for an entire database simply by changing permissions of the

policy file in HDFS, which does not require a change to the policy file itself

The second section of the policy file is groups. This section provides a mapping
between groups and the roles to which they are assigned. The syntax for this section
is group = role. The group, as discussed earlier, comes from one of two places: the
group names according to Hadoop, or locally configured groups specifically for Sen‐
try. In Example 7-15, no locally configured groups are defined because the earlier
sentry-site.xml in Example 7-1 is configured with HadoopGroupResourceAuthoriza
tionProvider. A few important facts about the groups section of the policy file:

• A given group can be assigned to many roles, separated by commas
• Entries in the groups section are read top-down, thus making duplicate entries

overwrite any previous entries for the same group
• Names of groups are global in scope, regardless of whether they are defined

locally or provided by Hadoop
• Names of roles are local in scope in that the name of a role assigned to a group

only applies to the file in which it is configured

The last section of the policy file is roles. This is where the meat of the policy is
defined. The role configuration syntax is role = permission. The permission por‐
tion of the configuration looks a little odd in that it also has key=value syntax, but
with arrows between each set of key/value configurations to indicate a more granular
permission being defined. In general, the shorter the permission string, the greater
the permissions. This is evidenced by the admin_role permission definition. This role
is granted complete access to do anything at the server level. The next granular level
of access is the database, or db level. The developer_role permission definition
grants complete access to do anything with the default database. After that, the next
level of access is at the table level. The example shows another feature of the policy
file in that it supports a wildcard option to represent “any” table.

Wildcards are only valid to represent everything. They cannot be used in a leading or
trailing fashion to reference any table with a partial name match. This might seem
like a limiting or inconvenient implementation of wildcards, but keep in mind that
these are security policies. Partial name matching with wildcards opens the door to
accidental granting of privileges to unauthorized users. Imagine a scenario where
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access to any table starting with “pa” was being granted to a group of developers that
are located in Pennsylvania, but later, users from human resources start using the
cluster and create a table called “payroll” containing information about the pay stubs
for all employees in the company. Now the group of developers in Pennsylvania have
unintended access to confidential information. Be very careful with wildcards and
security.

Still within the context of the roles definition at the highest level of granularity for
permissions is the action portion. In the context of table objects in Hive and Impala,
the only supported actions are select and insert. These actions are completely
mutually exclusive. If a role is intended to be granted both select and insert on a table,
both permissions are necessary. As with the groups section, multiple permissions can
be given to a role. To do so, simply separate them by a comma. A backslash character
can be used to carry over a list of permission definitions for ease of readability, as
shown for the etl_role in Example 7-15.

The last part of the roles section to discuss is the notion of URIs. Example 7-15 shows
a URI permission for the tmp_access role. This permission allows users to do two
things: create external tables to data in this location, and export data from other
tables they have access to into this location.

URI accesses by default can only be specified in sentry-provider.ini
and not in per-database policy files. The reason for this restriction
is the case where a separate administrator maintains a database pol‐
icy file but does not administer any others. If this administrator
were able to define URI access in the policy file they control, they
could grant themselves or anyone else access to any location in
HDFS that is readable by the hive user by using external tables. If
this behavior needs to be overridden, the Java configuration option
sentry.allow.uri.db.policyfile=true needs to be set for Hive‐
Server2. This configuration should only be used if all administra‐
tors have equal access to change all Sentry policy files.

Solr Policy File
While Hive and Impala can now leverage a Sentry service and administer policies
using SQL syntax, Solr has not yet migrated away from using policy files. The policy
file format is similar to the SQL counterpart, with a few changes. Solr authorization
operates on collections instead of databases and tables like SQL components do. Also,
Solr privileges do not have SELECT and INSERT, but instead use Query and Update.
Solr privileges can also be All, denoted by an asterisk (*).

Example 7-16 shows a similar layout to the SQL example. In the groups section,
groups are assigned roles; and in the roles section, roles are assigned privileges. The
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analyst_role provides access to query the customer_logs collection, the etl_role
provides access to update it, and finally the developer_role has full access to it.
Lastly, the admin_role has full privileges to the admin collection.

Example 7-16. Solr sentry-provider.ini

[groups]
admins = admin_role
analysts = analyst_role
developers = developer_role
etl = etl_role

[roles]
analyst_role = collection=customer_logs->action=Query
developer_role = collection=customer_logs->action=*
etl_role = collection=customer_logs->action=Update

# administrative role
admin_role = collection=admin->action=*

It is important to point out that while SQL policy files allow for separate policy files
per database, Solr does not. This means that Solr policy administrators need to be
extra careful when modifying the policies because, as with the SQL policy files, a syn‐
tax error invalidates the entire policy file, thus inadvertently denying access to every‐
one. A nice feature to help combat typos and mistakes is to validate the policy file
using the config-tool, which leads us into the next section.

Policy File Verification and Validation
When Sentry was first architected to use plain-text policy files, it was immediately
apparent that administrators would need some kind of validation tool to perform
basic sanity checks on the file prior to putting it in place. Sentry ships with a binary
file, named sentry (surprise, surprise), which provides an important feature for pol‐
icy file implementations: the config-tool command. This command allows an
administrator to check the policy file for errors, but it also provides a mechanism to
verify privileges for a given user. Example 7-17 demonstrates validating a policy file,
where the first policy file has no errors and the second policy file has a typo (the word
“sever” instead of “server”).

Example 7-17. Sentry config-tool validation

[root@server1 ~]# sentry --hive-config /etc/hive/conf --command config-tool
 -s file:///etc/sentry/sentry-site.xml -i file:///etc/sentry/sentry-provider.ini -v
Using hive-conf-dir /etc/hive/conf
Configuration:
Sentry package jar: file:/var/lib/sentry/sentry-binding-hive-1.4.0.jar
Hive config: file:/etc/hive/conf/hive-site.xml
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Sentry config: file:/etc/sentry/sentry-site.xml
Sentry Policy: file:///etc/sentry/sentry-provider.ini
Sentry server: server1
No errors found in the policy file
[root@server1 ~]# sentry --hive-config /etc/hive/conf --command config-tool
 -s file:///etc/sentry/sentry-site.xml -i file:///etc/sentry/sentry-provider2.ini -v
Using hive-conf-dir /etc/hive/conf
Configuration:
Sentry package jar: file:/var/lib/sentry/sentry-binding-hive-1.4.0.jar
Hive config: file:/etc/hive/conf/hive-site.xml
Sentry config: file:/etc/sentry/sentry-site.xml
Sentry Policy: file:///etc/sentry/sentry-provider2.ini
Sentry server: server1
 *** Found configuration problems ***
ERROR: Error processing file file:/etc/sentry/sentry-provider2.ini
 No authorizable found for sever=server1
ERROR: Failed to process global policy file
 file:/etc/sentry/sentry-provider2.ini
Sentry tool reported Errors:
org.apache.sentry.core.common.SentryConfigurationException:
 at org.apache.sentry.provider.file.SimpleFileProviderBackend.
  validatePolicy(SimpleFileProviderBackend.java:198)
 at org.apache.sentry.policy.db.SimpleDBPolicyEngine.
  validatePolicy(SimpleDBPolicyEngine.java:87)
 at org.apache.sentry.provider.common.ResourceAuthorizationProvider.
  validateResource(ResourceAuthorizationProvider.java:170)
 at org.apache.sentry.binding.hive.authz.SentryConfigTool.
  validatePolicy(SentryConfigTool.java:247)
 at org.apache.sentry.binding.hive.authz.
  SentryConfigTool$CommandImpl.run(SentryConfigTool.java:638)
 at org.apache.sentry.SentryMain.main(SentryMain.java:94)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.
  invoke(NativeMethodAccessorImpl.java:57)
 at sun.reflect.DelegatingMethodAccessorImpl.
  invoke(DelegatingMethodAccessorImpl.java:43)
 at java.lang.reflect.Method.invoke(Method.java:606)
 at org.apache.hadoop.util.RunJar.main(RunJar.java:212
[root@server1 ~]#

Verifying a user’s privileges is another powerful feature offered by the config-tool.
This can be done both by listing all privileges for a given user, or can be more specific
by testing whether a given user would be authorized to execute a certain query.
Example 7-18 demonstrates the usage of these features.

Example 7-18. Sentry config-tool Verification

[root@server1 ~]# sentry --hive-config /etc/hive/conf --command config-tool \
 -s file:///etc/sentry/sentry-site.xml \
 -i file:///etc/sentry/sentry-provider.ini -l -u bob
Using hive-conf-dir /etc/hive/conf
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Configuration:
Sentry package jar: file:/var/lib/sentry/sentry-binding-hive-1.4.0.jar
Hive config: file:/etc/hive/conf/hive-site.xml
Sentry config: file:/etc/sentry/sentry-site.xml
Sentry Policy: file:///etc/sentry/sentry-provider.ini
Sentry server: server1
Available privileges for user bob:
 server=server1
 server=server1->uri=hdfs://server1.example.com:8020/tmp
[root@server1 ~]# sentry --hive-config /etc/hive/conf --command config-tool \
 -s file:///etc/sentry/sentry-site.xml \
 -i file:///etc/sentry/sentry-provider.ini -l -u alice
Using hive-conf-dir /etc/hive/conf
Configuration:
Sentry package jar: file:/var/lib/sentry/sentry-binding-hive-1.4.0.jar
Hive config: file:/etc/hive/conf/hive-site.xml
Sentry config: file:/etc/sentry/sentry-site.xml
Sentry Policy: file:///etc/sentry/sentry-provider.ini
Sentry server: server1
Available privileges for user alice:
 *** No permissions available ***
[root@server1 ~]# sentry --hive-config /etc/hive/conf --command config-tool
 -s file:///etc/sentry/sentry-site.xml -i file:///etc/sentry/sentry-provider.ini
 -u bob -e "select * from sample_08"
Using hive-conf-dir /etc/hive/conf
Configuration:
Sentry package jar: file:/var/lib/sentry/sentry-binding-hive-1.4.0.jar
Hive config: file:/etc/hive/conf/hive-site.xml
Sentry config: file:/etc/sentry/sentry-site.xml
Sentry Policy: file:///etc/sentry/sentry-provider.ini
Sentry server: server1
User bob has privileges to run the query
[root@server1 ~]# sentry --hive-config /etc/hive/conf --command config-tool
 -s file:///etc/sentry/sentry-site.xml -i file:///etc/sentry/sentry-provider.ini
 -u alice  -e "select * from sample_08"
Using hive-conf-dir /etc/hive/conf
Configuration:
Sentry package jar: file:/var/lib/sentry/sentry-binding-hive-1.4.0.jar
Hive config: file:/etc/hive/conf/hive-site.xml
Sentry config: file:/etc/sentry/sentry-site.xml
Sentry Policy: file:///etc/sentry/sentry-provider.ini
Sentry server: server1
FAILED: SemanticException No valid privileges
*** Missing privileges for user alice:
         server=server1->db=default->table=sample_08->action=select
User alice does NOT have privileges to run the query
Sentry tool reported Errors: Compilation error: FAILED:
SemanticException No valid privileges
[root@server1 ~]#
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Migrating From Policy Files
When the Sentry service was added to the project, a useful migration tool was also
included. This tool allows an administrator to import the policies from the existing
file into the Sentry service backend database. This alleviated the pains of needing to
derive the SQL syntax for every policy and manually adding them to the database.
The migration tool is a feature enhancement to the config-tool covered in the last
section. Example 7-19 demonstrates the usage.

Example 7-19. Sentry Policy Import Tool

[root@server1 ~]# sentry --command config-tool --import \
-i file:///etc/sentry/sentry-provider.ini
Using hive-conf-dir /etc/hive/conf/
Configuration:
Sentry package jar: file:/var/lib/sentry/sentry-binding-hive-1.4.0.jar
Hive config: file:/etc/hive/conf/hive-site.xml
Sentry config: file:///etc/sentry/sentry-site.xml
Sentry Policy: file:///etc/sentry/sentry-provider.ini
Sentry server: server1
CREATE ROLE analyst_role;
GRANT ROLE analyst_role TO GROUP analysts;
# server=server1
GRANT SELECT ON DATABASE default TO ROLE analyst_role;
CREATE ROLE admin_role;
CREATE ROLE developer_role;
CREATE ROLE etl_role;
GRANT ROLE admin_role TO GROUP admins;
GRANT ALL ON SERVER server1 TO ROLE admin_role;
GRANT ROLE developer_role TO GROUP developers;
# server=server1
GRANT ALL ON DATABASE default TO ROLE developer_role;
GRANT ROLE etl_role TO GROUP etl;
# server=server1
GRANT INSERT ON DATABASE default TO ROLE etl_role;
# server=server1
GRANT SELECT ON DATABASE default TO ROLE etl_role;
[root@server1 ~]#

Summary
Conceptually, Sentry is a familiar and easy-to-understand concept, but as you have
seen, the devil is in the details. Although Sentry is one of the newer components of
the Hadoop ecosystem, it is quickly becoming an integral part of Hadoop security.
Sentry has evolved rapidly in a short time and the expectation is that other ecosystem
components will integrate with Sentry to provide strong authorization in a unified
way.
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Now that we have wrapped up the extensive topics of authentication and authoriza‐
tion, it is time to look at accounting to make sense of user activity in the cluster.
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CHAPTER 8

Accounting

So far in this part of the book, we’ve described how to properly identify and authenti‐
cate users and services, as well as how authorization controls limit what users and
services can do in the cluster. While all of these various controls do a good job defin‐
ing and enforcing a security model for a Hadoop cluster, they do not complete a fun‐
damental component of a security model: accounting. Also referred to as auditing,
accounting is the mechanism to keep track of what users and services are doing in the
cluster. This is a critical piece of the security puzzle because without it, breaches in
security can occur without anybody noticing. Accounting rounds out a security
model by providing a record of what happened, which can be used for:

Active auditing
This type of auditing is used in conjunction with some kind of alerting mecha‐
nism. For example, if a user tries to access a resource on the cluster and is denied,
active auditing could generate an email to security administrators alerting them
of this event.

Passive auditing
This refers to auditing that does not generate some kind of alert. Passive auditing
is often a bare-minimum requirement in a business so that designated auditors
and security administrators can query audit events to look for certain events. For
example, if there is a breach in security to the cluster, a security administrator can
query the audit logs to find the data that was accessed during the breach.

Security compliance
A business might be required to audit certain events to meet internal or legal
compliance. This is most often the case where the data stored in HDFS contains
sensitive information like personally identifiable information (PII), financial
information such as credit card numbers and bank account numbers, and sensi‐
tive information about the business, like payroll records and business financials.
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Hadoop components handle accounting differently depending on the purpose of the
component. Components such as HDFS and HBase are data storage systems, so
auditable events focus on reading, writing, and accessing data. Conversely, compo‐
nents such as MapReduce, Hive, and Impala are query engines and processing frame‐
works, so auditable events focus on end-user queries and jobs. The following
subsections dig deeper into each component, and describe typical interactions with
the component from an accounting point of view.

HDFS Audit Logs
HDFS provides two different audit logs that are used for two different purposes. The
first, hdfs-audit.log, is used to audit general user activity such as when a user creates a
new file, changes permissions of a file, requests a directory listing, and so on. The sec‐
ond, SecurityAuth-hdfs.audit, is used to audit service-level authorization activity. The
setup for these logfiles involves hooking into log4j.category.SecurityLogger and
log4j.additivity.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.aud

it. Example 8-1 shows how to do it.

Example 8-1. HDFS log4j.properties

# other logging settings omitted
hdfs.audit.logger=${log.threshold},RFAAUDIT
hdfs.audit.log.maxfilesize=256MB
hdfs.audit.log.maxbackupindex=20
log4j.logger.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.audit=
  ${hdfs.audit.logger}
log4j.additivity.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.audit=false
log4j.appender.RFAAUDIT=org.apache.log4j.RollingFileAppender
log4j.appender.RFAAUDIT.File=${log.dir}/hdfs-audit.log
log4j.appender.RFAAUDIT.layout=org.apache.log4j.PatternLayout
log4j.appender.RFAAUDIT.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n
log4j.appender.RFAAUDIT.MaxFileSize=${hdfs.audit.log.maxfilesize}
log4j.appender.RFAAUDIT.MaxBackupIndex=${hdfs.audit.log.maxbackupindex}
hadoop.security.logger=INFO,RFAS
hadoop.security.log.maxfilesize=256MB
hadoop.security.log.maxbackupindex=20
log4j.category.SecurityLogger=${hadoop.security.logger}
log4j.additivity.SecurityLogger=false
hadoop.security.log.file=SecurityAuth-${user.name}.audit
log4j.appender.RFAS=org.apache.log4j.RollingFileAppender
log4j.appender.RFAS.File=${log.dir}/${hadoop.security.log.file}
log4j.appender.RFAS.layout=org.apache.log4j.PatternLayout
log4j.appender.RFAS.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n
log4j.appender.RFAS.MaxFileSize=${hadoop.security.log.maxfilesize}
log4j.appender.RFAS.MaxBackupIndex=${hadoop.security.log.maxbackupindex}
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So what actually shows up when an auditable event occurs? For this set of examples,
let’s assume the following:

• The user Alice is identified by the Kerberos principal alice@EXAMPLE.COM, and
she has successfully used kinit to receive a valid TGT

• She does a directory listing on her HDFS home directory
• She creates an empty file named test in her HDFS home directory
• She changes the permissions of this file to be world-writable
• She attempts to move the file out of her home directory and into the /user direc‐

tory

In Example 8-2, Alice has done several actions with HDFS that are typical operations
in HDFS. These are user activity events, so let’s inspect hdfs-audit.log to see the trail
that Alice left behind from her HDFS actions (the example logfile has been formatted
for readability).

Example 8-2. hdfs-audit.log

...
2014-03-11 23:50:18,251 INFO FSNamesystem.audit: allowed=true  ugi=alice@EXAMPLE.COM
 (auth:KERBEROS) ip=/10.1.1.1 cmd=getfileinfo src=/user/alice dst=null perm=null
2014-03-11 23:50:18,280 INFO FSNamesystem.audit: allowed=true  ugi=alice@EXAMPLE.COM
 (auth:KERBEROS) ip=/10.1.1.1 cmd=listStatus src=/user/alice dst=null perm=null
2014-03-11 23:50:32,058 INFO FSNamesystem.audit: allowed=true  ugi=alice@EXAMPLE.COM
 (auth:KERBEROS) ip=/10.1.1.1 cmd=getfileinfo src=/user/alice/test dst=null perm=null
2014-03-11 23:50:32,073 INFO FSNamesystem.audit: allowed=true  ugi=alice@EXAMPLE.COM
 (auth:KERBEROS) ip=/10.1.1.1 cmd=getfileinfo   src=/user/alice dst=null perm=null
2014-03-11 23:50:32,096 INFO FSNamesystem.audit: allowed=true  ugi=alice@EXAMPLE.COM
 (auth:KERBEROS) ip=/10.1.1.1 cmd=create src=/user/alice/test dst=null
 perm=alice:alice:rw-r-----
2014-03-11 23:50:39,558 INFO FSNamesystem.audit: allowed=true  ugi=alice@EXAMPLE.COM
 (auth:KERBEROS) ip=/10.1.1.1 cmd=getfileinfo src=/user/alice/test dst=null perm=null
2014-03-11 23:50:39,587 INFO FSNamesystem.audit: allowed=true  ugi=alice@EXAMPLE.COM
 (auth:KERBEROS) ip=/10.1.1.1 cmd=setPermission src=/user/alice/test dst=null
 perm=alice:alice:rw-rw-rw-
2014-03-11 23:50:47,157 INFO FSNamesystem.audit: allowed=true  ugi=alice@EXAMPLE.COM
 (auth:KERBEROS) ip=/10.1.1.1 cmd=getfileinfo src=/user dst=null perm=null
2014-03-11 23:50:47,185 INFO FSNamesystem.audit: allowed=true  ugi=alice@EXAMPLE.COM
 (auth:KERBEROS) ip=/10.1.1.1 cmd=getfileinfo src=/user/alice/test dst=null perm=null
2014-03-11 23:50:47,187 INFO FSNamesystem.audit: allowed=true  ugi=alice@EXAMPLE.COM
 (auth:KERBEROS) ip=/10.1.1.1 cmd=getfileinfo src=/user/test dst=null perm=null
2014-03-11 23:50:47,190 INFO FSNamesystem.audit: allowed=false ugi=alice@EXAMPLE.COM
 (auth:KERBEROS) ip=/10.1.1.1 cmd=rename src=/user/alice/test dst=/user/test perm=nul
...

As you can see, the audit log shows pertinent information for each action Alice per‐
formed. Every action she performed required a getfileinfo command first, fol‐
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lowed by the various actions she performed (listStatus, create, setPermission, and
rename). In this log, it is clear who the user is that the event was for, what time it
occurred, the IP address that action was performed from, and various other bits of
information. The other important bit that was recorded was that Alice’s last attempted
action to move the file out of her home directory into a location she did not have per‐
missions for was not allowed.

MapReduce Audit Logs
MapReduce follows a very similar approach to auditing in that it contains two audit
logs with very similar purposes as the HDFS audit logs. The first logfile, mapred-
audit.log, is used to audit user activity such as job submissions. The second logfile,
SecurityAuth-mapred.audit, is used to audit service-level authorization activity just
like the HDFS log equivalent. The log4j properties need to be set for these files. The
hooks used to set these up are log4j.category.SecurityLogger and log4j.log
ger.org.apache.hadoop.mapred.AuditLogger, and Example 8-3 shows how to do it.

Example 8-3. MapReduce log4j.properties

# other logging settings omitted
hadoop.security.logger=INFO,RFAS
hadoop.security.log.maxfilesize=256MB
hadoop.security.log.maxbackupindex=20
log4j.category.SecurityLogger=${hadoop.security.logger}
log4j.additivity.SecurityLogger=false
hadoop.security.log.file=SecurityAuth-${user.name}.audit
log4j.appender.RFAS=org.apache.log4j.RollingFileAppender
log4j.appender.RFAS.File=${log.dir}/${hadoop.security.log.file}
log4j.appender.RFAS.layout=org.apache.log4j.PatternLayout
log4j.appender.RFAS.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n
log4j.appender.RFAS.MaxFileSize=${hadoop.security.log.maxfilesize}
log4j.appender.RFAS.MaxBackupIndex=${hadoop.security.log.maxbackupindex}
mapred.audit.logger=${log.threshold},RFAAUDIT
mapred.audit.log.maxfilesize=256MB
mapred.audit.log.maxbackupindex=20
log4j.logger.org.apache.hadoop.mapred.AuditLogger=${mapred.audit.logger}
log4j.additivity.org.apache.hadoop.mapred.AuditLogger=false
log4j.appender.RFAAUDIT=org.apache.log4j.RollingFileAppender
log4j.appender.RFAAUDIT.File=${log.dir}/mapred-audit.log
log4j.appender.RFAAUDIT.layout=org.apache.log4j.PatternLayout
log4j.appender.RFAAUDIT.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n
log4j.appender.RFAAUDIT.MaxFileSize=${mapred.audit.log.maxfilesize}
log4j.appender.RFAAUDIT.MaxBackupIndex=${mapred.audit.log.maxbackupindex}

For this example, let’s assume the following:

174 | Chapter 8: Accounting



• The user Bob is identified by the Kerberos principal bob@EXAMPLE.COM, and he
has already successfully used kinit to receive a valid TGT

• MapReduce service-level authorizations are not being used
• Bob submits a MapReduce job
• Bob kills the MapReduce job before it finishes

The result of these actions according to the logs are shown in Examples 8-4 and 8-5.

Example 8-4. mapred-audit.log

...
2014-03-12 18:11:46,363 INFO mapred.AuditLogger: USER=bob IP=10.1.1.1
 OPERATION=SUBMIT_JOB TARGET=job_201403112320_0001 RESULT=SUCCESS
...

Example 8-5. SecurityAuth-mapred.audit

...
2014-03-12 18:46:25,200 INFO SecurityLogger.org.apache.hadoop.ipc.Server:
 Auth successful for bob@EXAMPLE.COM (auth:SIMPLE)

2014-03-12 18:46:25,239 INFO SecurityLogger.org.apache.hadoop.security.
 authorize.ServiceAuthorizationManager: Authorization successful for
 bob@EXAMPLE.COM (auth:KERBEROS) for protocol=interface
 org.apache.hadoop.mapred.JobSubmissionProtocol

2014-03-12 18:46:29,955 INFO SecurityLogger.org.apache.hadoop.ipc.Server:
 Auth successful for job_201403112320_0002 (auth:SIMPLE)

2014-03-12 18:46:29,976 INFO SecurityLogger.org.apache.hadoop.security.
 authorize.ServiceAuthorizationManager: Authorization successful for
 job_201403112320_0002 (auth:TOKEN) for protocol=interface
 org.apache.hadoop.mapred.TaskUmbilicalProtocol

...(more)...

2014-03-12 18:47:11,598 INFO SecurityLogger.org.apache.hadoop.ipc.Server:
 Auth successful for bob@EXAMPLE.COM (auth:SIMPLE)

2014-03-12 18:47:11,638 INFO SecurityLogger.org.apache.hadoop.security.
 authorize.ServiceAuthorizationManager: Authorization successful for
 bob@EXAMPLE.COM (auth:KERBEROS) for protocol=interface
 org.apache.hadoop.mapred.JobSubmissionProtocol
...

Example 8-4 is pretty straightforward: the user Bob performed the operation
SUBMIT_JOB, which results in a MapReduce job ID of job_201403112320_0001. Other
pertinent info, as one would expect, is the date and time of the event, and the IP
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address. In Example 8-5, things look a little different. The first entry shows that Bob
successfully authenticates to the JobTracker, whereas the second entry shows that Bob
has been authorized to submit the job. The next two events (and subsequent identical
events that have been removed for brevity) show the activity of the job itself. It is
interesting that when Bob kills the running job, the audit events that show up are
identical to the audit events that are generated when Bob submitted the job.

YARN Audit Logs
YARN audit log events are interspersed among the daemon logfiles. However, they
are easily identifiable because the class name is logged in the event. For the Resource
Manager, it is org.apache.hadoop.yarn.server.resourcemanager.RMAuditLogger;
and for the Node Manager, it is org.apache.hadoop.yarn.server.nodeman

ager.NMAuditLogger. These class names can be used to parse out audit events among
normal application log events. For YARN to log audit events, the log4j properties
need to be set. The hook to set this up is the log4j.category.SecurityLogger and
Example 8-6 shows how to do it.

Example 8-6. YARN log4j.properties

# other logging settings omitted
hadoop.security.logger=INFO,RFAS
hadoop.security.log.maxfilesize=256MB
hadoop.security.log.maxbackupindex=20
log4j.category.SecurityLogger=${hadoop.security.logger}
log4j.additivity.SecurityLogger=false
hadoop.security.log.file=SecurityAuth-${user.name}.audit
log4j.appender.RFAS=org.apache.log4j.RollingFileAppender
log4j.appender.RFAS.File=${log.dir}/${hadoop.security.log.file}
log4j.appender.RFAS.layout=org.apache.log4j.PatternLayout
log4j.appender.RFAS.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n
log4j.appender.RFAS.MaxFileSize=${hadoop.security.log.maxfilesize}
log4j.appender.RFAS.MaxBackupIndex=${hadoop.security.log.maxbackupindex}

For this example, the user Alice submits a MapReduce job via YARN, which then
runs to completion. Example 8-7 shows just the audit events for the Resource Man‐
ager and Example 8-8 shows the audit events for one of the NodeManagers. Note that
the repeating auditing class names have been omitted for brevity, and the events have
been formatted for readability.

Example 8-7. YARN Resource Manager Audit Events

2014-12-27 12:49:35,182 INFO USER=alice IP=10.6.9.73
  OPERATION=Submit Application Request
  TARGET=ClientRMService  RESULT=SUCCESS
  APPID=application_1419453547005_0001
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2014-12-27 12:49:43,598 INFO USER=alice OPERATION=AM Allocated Container
  TARGET=SchedulerApp RESULT=SUCCESS APPID=application_1419453547005_0001
  CONTAINERID=container_1419453547005_0001_01_000001
2014-12-27 12:49:57,288 INFO USER=alice IP=10.6.9.75 OPERATION=Register App Master
  TARGET=ApplicationMasterService RESULT=SUCCESS APPID=application_1419453547005_0001
  APPATTEMPTID=appattempt_1419453547005_0001_000001
2014-12-27 12:50:02,375 INFO USER=alice OPERATION=AM Allocated Container
  TARGET=SchedulerApp RESULT=SUCCESS APPID=application_1419453547005_0001
  CONTAINERID=container_1419453547005_0001_01_000002
2014-12-27 12:50:02,376 INFO USER=alice OPERATION=AM Allocated Container
  TARGET=SchedulerApp RESULT=SUCCESS APPID=application_1419453547005_0001
  CONTAINERID=container_1419453547005_0001_01_000003
2014-12-27 12:50:19,361 INFO USER=alice OPERATION=AM Released Container
  TARGET=SchedulerApp RESULT=SUCCESS APPID=application_1419453547005_0001
  CONTAINERID=container_1419453547005_0001_01_000002
2014-12-27 12:50:21,436 INFO USER=alice OPERATION=AM Released Container
  TARGET=SchedulerApp RESULT=SUCCESS APPID=application_1419453547005_0001
  CONTAINERID=container_1419453547005_0001_01_000003
2014-12-27 12:50:27,954 INFO USER=alice OPERATION=AM Released Container
  TARGET=SchedulerApp RESULT=SUCCESS APPID=application_1419453547005_0001
  CONTAINERID=container_1419453547005_0001_01_000001
2014-12-27 12:50:27,963 INFO USER=alice OPERATION=Application Finished - Succeeded
  TARGET=RMAppManager RESULT=SUCCESS  APPID=application_1419453547005_0001

Example 8-8. YARN Node Manager Audit Events

2014-12-27 12:49:43,956 INFO USER=alice IP=10.6.9.75
  OPERATION=Start Container Request TARGET=ContainerManageImpl RESULT=SUCCESS
  APPID=application_1419453547005_0001
  CONTAINERID=container_1419453547005_0001_01_000001
2014-12-27 12:50:27,105 INFO USER=alice OPERATION=Container Finished - Succeeded
  TARGET=ContainerImpl RESULT=SUCCESS APPID=application_1419453547005_0001
  CONTAINERID=container_1419453547005_0001_01_000001
2014-12-27 12:50:27,984 INFO USER=alice IP=10.6.9.75 OPERATION=Stop Container Request
  TARGET=ContainerManageImpl RESULT=SUCCESS APPID=application_1419453547005_0001
  CONTAINERID=container_1419453547005_0001_01_000001

One of the many benefits of YARN is the ability to specify resource pools. As we saw
earlier, resource pools can have authorization controls set up such that only certain
users and groups can submit to a given pool. In the next example, Bob tries to submit
to the prod resource pool, but he does not have authorization to do so. Example 8-9
shows what the audit events look like in this case. Again, the audit logger class name
has been removed for brevity and the log has been formatted for readability.

Example 8-9. YARN Resource Manager Audit Events

2014-12-27 13:56:35,886 INFO USER=bob IP=10.6.9.73
  OPERATION=Submit Application Request TARGET=ClientRMService
  RESULT=SUCCESS APPID=application_1419705820412_0002
2014-12-27 13:56:35,917 WARN USER=bob OPERATION=Application Finished - Failed
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  TARGET=RMAppManager RESULT=FAILURE  DESCRIPTION=App failed with state: FAILED
  PERMISSIONS=User bob cannot submit applications to queue root.prod
  APPID=application_1419705820412_0002

Hive Audit Logs
Hive auditing is similar to YARN in that it does not have a dedicated audit logfile.
Audit events occur inside the actual Hive Metastore service log so it can be a bit of a
challenge for a security administrator to get at just the pertinent audit information
among regular application log events. As with YARN, however, the audit logger class
names can be used to identify audit events. Other Hive components, such as Hive‐
Server2, do not have explicit auditing, but audit-like information can still be gleaned
from the service logs. For this example, let’s assume:

• The user Bob is identified by the Kerberos principal bob@EXAMPLE.COM, and he
has already successfully used kinit to receive a valid TGT

• Bob is using the beeline CLI to connect to HiveServer2
• Bob first executes show tables; to list the tables in the default database
• Bob then executes select count(*) from sample_07; to count the number of

records in the sample_07 table

The result of these actions is shown in Example 8-10, which has been formatted for
readability.

Example 8-10. Hive Metastore audit events

...
2014-03-29 17:13:18,778 INFO org.apache.hadoop.hive.metastore.HiveMetaStore.audit:
 ugi=bob ip=/10.1.1.1 cmd=get_database: default
...
2014-03-29 17:13:18,782 INFO org.apache.hadoop.hive.metastore.HiveMetaStore.audit:
 ugi=bob ip=/10.1.1.1 cmd=get_tables: db=default pat=.*
...
2014-03-29 17:13:37,110 INFO org.apache.hadoop.hive.metastore.HiveMetaStore.audit:
 ugi=bob ip=/10.1.1.1 cmd=get_table : db=default tbl=sample_07

Reviewing the audit events in Example 8-10 shows several things. First, the audit
events themselves are tagged with org.apache.hadoop.hive.metastore.HiveMetaS
tore.audit. This makes it a little easier to search the log specifically for audit events.
Next, you will notice a slight difference in these audit events and the audit events we
have seen previously with regard to user identification. With Hive, only the username
is shown instead of the full Kerberos UPN. In each audit event, the action performed
by the user is identified by the cmd field. As you can see, the show tables; query gen‐
erates two audit events: get_database and get_tables. The actual SQL query to
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count rows generates a single audit event, which is for get_table. As with previous
audit events in other components, the IP address of the user executing the action is
given.

Cloudera Impala Audit Logs
Impala audit events are logged into dedicated audit logs used by each Impala daemon
(impalad). The audit log directory location is specified using the flag
audit_event_log_dir. A typical choice is the directory /var/log/impalad/audits.
These logfiles are rolled after they reach a certain “size” dictated by a number of lines,
as specified using the flag max_audit_event_log_file_size. A reasonable setting is
5,000 lines. For the Impala example, we will assume that the exact same assumptions
are made as the Hive example. The results of these actions are shown in
Example 8-11.

Example 8-11. Impala daemon audit log

....
{"1396114935263":{"query_id":"914b9eb1591546f0:ff4419eab4de439c",
 "session_id":"e643b5e102f653ec:94e0a3d4b3646ca3",
 "start_time":"2014-03-29 17:42:15.201945000","authorization_failure":false,
 "status":"","user":"bob","impersonator":null,"statement_type":"SHOW_TABLES",
 "network_address":"::ffff:10.1.1.1:47569","sql_statement":"show tables",
 "catalog_objects":[]}}

{"1396115148996":{"query_id":"97443eddd3c172fd:34fe3f37c84d6ea8",
 "session_id":"e643b5e102f653ec:94e0a3d4b3646ca3",
 "start_time":"2014-03-29 17:45:48.850540000","authorization_failure":false,
 "status":"","user":"bob","impersonator":null,"statement_type":"QUERY",
 "network_address":"::ffff:10.1.1.1:47569","sql_statement":
 "select count(*) from sample_07","catalog_objects":
 [{"name":"default.sample_07","object_type":"TABLE","privilege":"SELECT"}]}}
....

Reviewing Example 8-11 immediately shows that the audit events are in a much dif‐
ferent format than other Hadoop components. These audit events are logged in JSON
format, which makes it a little more difficult for human-readability, but allows for
easy consumption by an external tool. The first audit event shows the type of action
taken by the user under the statement_type field, namely SHOW_TABLES. This infor‐
mation is also available in the sql_statement field, which shows the exact query that
Bob made. The second audit event shows the type of action taken as QUERY.
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HBase Audit Logs
HBase logs audit events into a separate logfile, which can be configured in the associ‐
ated log4j.properties file. HBase architecture is such that clients contact only the spe‐
cific server that is responsible for the specific action taken, so audit events are spread
out throughout an HBase cluster. For example, creating, deleting, and modifying
tables is an action that the HBase Master is responsible for. Operations such as scans,
puts, and gets are specific to a given region in a table, thus a RegionServer captures
these events.

For HBase to log audit events, the log4j properties need to be set. The hook to set
this up is the log4j.logger.SecurityLogger and Example 8-12 shows how to do it.

Example 8-12. HBase log4j.properties

# other logging settings omitted
log4j.logger.SecurityLogger=TRACE, RFAS
log4j.additivity.SecurityLogger=false
log4j.appender.RFAS=org.apache.log4j.RollingFileAppender
log4j.appender.RFAS.File=${log.dir}/audit/SecurityAuth-hbase.audit
log4j.appender.RFAS.layout=org.apache.log4j.PatternLayout
log4j.appender.RFAS.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n
log4j.appender.RFAS.MaxFileSize=${max.log.file.size}
log4j.appender.RFAS.MaxBackupIndex=${max.log.file.backup.index}

For our example here, the following actions are performed:

• The HBase superuser creates a table called sample
• The HBase superuser grants RW access to user Alice on the sample table
• The HBase superuser grants R access to user Bob on the sample table
• Alice tries to create a new table called sample2, but is denied access
• Alice puts a value into the sample table
• Alice scans the sample table
• Bob scans the sample table
• Bob tries to put a value into the sample table, but is denied access

HBase audits can be narrowed down to a specific class, namely SecurityLog
ger.org.apache.hadoop.hbase.security.access.AccessController, as with the
log events in other components. This class is repeated throughout the logs, but is
omitted in Examples 8-13 and 8-14 for brevity. Also, these examples have been for‐
matted for readability.
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Example 8-13. HBase master audit log

2014-12-27 21:05:56,938 TRACE Access allowed for user hbase; reason:
  Global check allowed; remote address: /10.6.9.74; request: createTable;
  context: (user=hbase@EXAMPLE.COM, scope=sample, family=cf, action=CREATE)
2014-12-27 21:06:09,484 TRACE Access allowed for user hbase; reason:
  Table permission granted; remote address: /10.6.9.74;
  request: getTableDescriptors; context: (user=hbase@EXAMPLE.COM,
  scope=sample, family=, action=ADMIN)
2014-12-27 21:06:16,620 TRACE Access allowed for user hbase; reason:
  Table permission granted; remote address: /10.6.9.74;
  request: getTableDescriptors; context: (user=hbase@EXAMPLE.COM,
  scope=sample, family=, action=ADMIN)
2014-12-27 21:07:02,102 TRACE Access denied for user alice; reason:
  Global check failed; remote address: /10.6.9.74; request:
  createTable; context: (user=alice@EXAMPLE.COM, scope=sample2,
  family=cf, action=CREATE)

What we can see in Example 8-13 is that table creation events are clearly logged. The
hbase user is allowed access, whereas Alice is denied access to create a table. Also
shown in this logfile is that the actual granting of permissions is not obvious in the
log. While the action is logged as an ADMIN action, and it has the same scope as for the
sample table, there is no indication of which user the table permissions were granted
to. This is a limitation in HBase that will likely be improved in a future release.

Example 8-14. HBase region server audit log

2014-12-27 21:07:15,411 TRACE Access allowed for user alice; reason:
  Table permission granted; remote address: /10.6.9.74; request: put;
  context: (user=alice@EXAMPLE.COM, scope=sample,
  family=cf:col1, action=WRITE)
2014-12-27 21:07:18,705 TRACE Access allowed for user alice; reason:
  Table permission granted; remote address: /10.6.9.74; request: scan;
  context: (user=alice@EXAMPLE.COM, scope=sample, family=cf, action=READ)
2014-12-27 21:07:47,263 TRACE Access allowed for user bob; reason:
  Table permission granted; remote address: /10.6.9.74; request: scan;
  context: (user=bob@EXAMPLE.COM, scope=sample, family=cf, action=READ)
2014-12-27 21:07:57,756 TRACE Access denied for user bob; reason:
  Failed qualifier check; remote address: /10.6.9.74; request: put;
  context: (user=bob@EXAMPLE.COM, scope=sample, family=cf:col1, action=WRITE)

From Example 8-14, the read and write actions attempted by Alice and Bob are
clearly identified. It provides the pertinent information about the table, column fam‐
ily, and column, as well as the reason for why the action was allowed or denied.

Accumulo Audit Logs
Similar to HBase, Accumulo can be configured to log audit events to a separate log‐
file. Because Accumulo clients aren’t required communicate with a single, central
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server for every access, audit logs are spread throughout the cluster. For example,
when you create, delete, or modify a table, that action will be logged by the Accumulo
Master, whereas operations such as scans and writes are logged by the TabletServer
handling the request.

The default Accumulo configuration templates have audit logging turned off. You can
turn on logging by setting the log level of the Audit logger to INFO in the audi‐
tLog.xml log4j configuration file. Example 8-15 shows a sample auditLog.xml configu‐
ration file with audit logging turned on.

Example 8-15. Accumulo auditLog.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

  <!--  Write out Audit info to an Audit file -->
  <appender name="Audit" class="org.apache.log4j.DailyRollingFileAppender">
    <param name="File"
     value="/var/log/accumulo/accumulo01.example.com.audit"/>
    <param name="MaxBackupIndex" value="10"/>
    <param name="DatePattern" value="'.'yyyy-MM-dd"/>
    <layout class="org.apache.log4j.PatternLayout">
      <param name="ConversionPattern"
       value="%d{yyyy-MM-dd HH:mm:ss,SSS/Z} [%c{2}] %-5p: %m%n"/>
    </layout>
  </appender>
  <logger name="Audit"  additivity="false">
    <appender-ref ref="Audit" />
    <!-- Change level from OFF to INFO. default:<level value="OFF"/> -->
    <level value="INFO"/>
  </logger>

</log4j:configuration>

Accumulo audits both system administration actions and normal user access. Every
audit includes operation status (success, failure, permitted, or denied) and the user
performing the action. Remote requests also include the client address. Failed
requests log the exception that caused the failure. Individual actions differ in the
details they provide, but generally they include details such as the target or targets of
an action and relevant parameters such as the range of rows and columns accessed.
See Table 8-1 for a list of the actions that Accumulo logs.
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Table 8-1. Accumulo’s audited actions

Action Description

authenticate A user authenticates with Accumulo

createUser An admin creates a new user

dropUser An admin drops a user

changePassword An admin changes a user’s password

changeAuthorizations An admin changes a user’s authorizations

grantSystemPermission An admin grants system permissions to a user

grantTablePermission An admin grants permissions to a user on a table

revokeSystemPermission An admin revokes system permissions to a user

revokeTablePermission An admin revokes permissions to a user on a table

createTable A user creates a table

deleteTable A user deletes a table

renameTable A user renames a table

cloneTable A user clones a table

scan A user scans a range of rows

deleteData A user delete’s a table

bulkImport A user initiates a bulk import of data

export A user exports a table from one cluster to another

import A user imports an exported table

Now let’s see what the audit logs will look like after some actions are performed. Our
examples will include the results after running the following actions:

• The Accumulo root user creates a user called alice
• The Accumulo root user creates a user called bob
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• The Accumulo root user creates a table called sample
• The Accumulo root user grants Table.READ and Table.WRITE access to user
alice on the sample table

• The Accumulo root user grants Table.READ access to user bob on the sample
table

• Alice tries to create a new table called sample2, but is denied access
• Alice puts a value into the sample table
• Alice scans the sample table
• Bob scans the sample table
• Bob tries to put a value into the sample table, but is denied access

The audit logs shown in Examples 8-16 and 8-17 have been formatted for readibility
but are otherwise unmodified.

Example 8-16. Accumulo master audit log

2014-12-27 16:40:11,673/-0800 [Audit] INFO : operation: permitted;
    user: root; action: createTable; targetTable: sample;
2014-12-27 16:40:28,563/-0800 [Audit] INFO : operation: denied;
    user: alice; action: createTable; targetTable: sample2;

In Example 8-16, we can see that the table creation operations are clearly logged. The
root user is permitted to perform the createTable action while alice is denied. The
other administrative actions appear in the TabletServer log.

Example 8-17. Accumulo TabletServer audit log

2014-12-27 16:39:49,262/-0800 [Audit] INFO : operation: success;
    user: root: action: createUser; targetUser: alice; Authorizations: ;
2014-12-27 16:40:02,226/-0800 [Audit] INFO : operation: success;
    user: root: action: createUser; targetUser: bob; Authorizations: ;
2014-12-27 16:40:13,226/-0800 [Audit] INFO : operation: success;
    user: root: action: grantTablePermission; permission: READ;
    targetTable: sample; targetUser: alice;
2014-12-27 16:40:13,292/-0800 [Audit] INFO : operation: success;
    user: root: action: grantTablePermission; permission: WRITE;
    targetTable: sample; targetUser: alice;
2014-12-27 16:40:13,442/-0800 [Audit] INFO : operation: success;
    user: root: action: grantTablePermission; permission: READ;
    targetTable: sample; targetUser: bob;
2014-12-27 16:40:30,529/-0800 [Audit] INFO : operation: permitted;
    user: alice; action: scan; targetTable: sample; authorizations: ;
    range: (-inf,+inf); columns: []; iterators: []; iteratorOptions: {};
2014-12-27 16:40:43,180/-0800 [Audit] INFO : operation: permitted;
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    user: bob; action: scan; targetTable: sample; authorizations: ;
    range: (-inf,+inf); columns: []; iterators: []; iteratorOptions: {};

Example 8-17 shows the output of the TabletServer audit log. We can see the crea
teUser actions, the user that was created, and the authorizations that were assigned to
that user. We can also see the grantTablePermission actions along with the permis‐
sion granted, the target table, and the target user. Finally, we can see that the two scan
actions includes the details of the query: the row range, columns, and iterators used.
Notably missing are the write operations. This is a current gap in Accumulo’s auditing
framework. We also don’t see the authentication events because they are logged by the
shell itself.

Sentry Audit Logs
In Chapter 7, we saw that the latest version of Sentry uses a service to facilitate
authorization requests and manage interaction with the policy database. Auditing
events that come as a result of modifying authorization policies is extremely critical
in the accounting process. In order to do that, Sentry needs to be configured to cap‐
ture audit events. sentry.hive.authorization.ddl.logger logger class is the one
that needs to be configured. Example 8-18 shows how this can be done.

Example 8-18. Sentry server log4j.properties

# other log settings omitted
log4j.logger.sentry.hive.authorization.ddl.logger=${sentry.audit.logger}
log4j.additivity.sentry.hive.authorization.ddl.logger=false
sentry.audit.logger=TRACE,RFAAUDIT
sentry.audit.log.maxfilesize=256MB
sentry.audit.log.maxbackupindex=20
log4j.appender.RFAAUDIT=org.apache.log4j.RollingFileAppender
log4j.appender.RFAAUDIT.File=${log.dir}/audit/sentry-audit.log
log4j.appender.RFAAUDIT.layout=org.apache.log4j.PatternLayout
log4j.appender.RFAAUDIT.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n
log4j.appender.RFAAUDIT.MaxFileSize=${sentry.audit.log.maxfilesize}
log4j.appender.RFAAUDIT.MaxBackupIndex=${sentry.audit.log.maxbackupindex}

Now that Sentry is set up to log audit events, let’s look at an example. For this exam‐
ple, Alice is a Sentry administrator and Bob is not. Alice uses the beeline shell to
create a new role called analyst, assign the role to the group analystgrp, and grant
SELECT privileges on the default database to the role. Next, Bob tries to create a new
role using the impala-shell, but is denied access. Example 8-19 shows the record of
these actions.
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Example 8-19. Sentry server audit log

2015-01-02 11:17:10,753 INFO ddl.logger:
  {"serviceName":"Sentry-Service","userName":"alice","impersonator":
  "hive/server1.example.com@EXAMPLE.COM","ipAddress":"/10.6.9.74",
  "operation":"CREATE_ROLE","eventTime":"1420215430742","operationText":
  "CREATE ROLE analyst","allowed":"true","databaseName":null,
  "tableName":null,"resourcePath":null,"objectType":"ROLE"}
2015-01-02 11:17:37,537 INFO ddl.logger:
  {"serviceName":"Sentry-Service","userName":"alice","impersonator":
  "hive/server1.example.com@EXAMPLE.COM","ipAddress":"/10.6.9.74",
  "operation":"ADD_ROLE_TO_GROUP","eventTime":"1420215457536",
  "operationText":"GRANT ROLE analyst TO GROUP analystgrp","allowed":"true",
  "databaseName":null,"tableName":null,"resourcePath":null,"objectType":"ROLE"}
2015-01-02 11:17:52,408 INFO ddl.logger:
  {"serviceName":"Sentry-Service","userName":"alice","impersonator":
  "hive/server1.example.com@EXAMPLE.COM","ipAddress":"/10.6.9.74",
  "operation":"GRANT_PRIVILEGE","eventTime":"1420215472407","operationText":
  "GRANT SELECT ON DATABASE default TO ROLE analyst","allowed":"true",
  "databaseName":"default","tableName":"","resourcePath":"","objectType":"PRINCIPAL"}
2015-01-02 11:33:20,199 INFO ddl.logger:
  {"serviceName":"Sentry-Service","userName":"bob","impersonator":
  "impala/server1.example.com@EXAMPLE.COM","ipAddress":"/10.6.9.73",
  "operation":"CREATE_ROLE","eventTime":"1420216400199","operationText":
  "CREATE ROLE temp","allowed":"false","databaseName":null,"tableName":null,
  "resourcePath":null,"objectType":"ROLE"}

As you can see from the logs, the actual audit record is in JSON format. This makes
for easy consumption by external log aggregation and management systems, which
are important in larger enterprises.

Log Aggregation
Audit logs often span across many, if not all, nodes in the cluster. The sheer number
of nodes multiplied by the individual audit log files generated can be a large under‐
taking to make sense of what is happening. It is typical, and highly recommended, to
use some kind of log aggregation system to pull audit events from all of the nodes in
the cluster into a central place for storage and analysis. There certainly are Hadoop-
specific options out there that overlay additional intelligence as to what is going on
the cluster. Even so, general-purpose log aggregation systems already in place in the
enterprise can be a great way to manage Hadoop audit logs.

Another interesting option for log aggregation is to ingest them back into the Hadoop
cluster for analysis. Security use cases for Hadoop are common and analyzing audit
events from Hadoop fits the bill as well. As shown in this chapter, audit events are
generally in a structured form and make for easy querying using SQL tools like Hive
or Impala.
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Summary
In this chapter, we took a look at several of the components in the Hadoop ecosystem
and described the types of audit events that are recorded when users interact with the
cluster. These log events are critical for accounting to ascertain what regular users are
doing, but also to discover what unauthorized users are attempting to do. Although
the Hadoop ecosystem does not have native alerting capabilities, the structure of the
log events are conducive to allow additional tools to consume the events in a more
general way. Active alerting is a newer capability that is still being worked on in the
Hadoop ecosystem. Still, many general-purpose log aggregation tools possess the
capabilities to alert when certain criteria are met, with many of these tools being com‐
mon in the enterprise.

All of the auditing capabilities covered in this chapter wrap up the accounting portion
of AAA. In the next part of the book, we will dive into how actual data, the lifeblood
of Hadoop and big data, is secured.

Summary | 187





PART III

Data Security





CHAPTER 9

Data Protection

—By Eddie Garcia

So far, we have covered how Hadoop can be configured to enforce standard AAA
controls. In this chapter, we will understand how these controls, along with the CIA
principles discussed in Chapter 1, provide the foundation for protecting data. Data
protection is a broad concept that involves topics ranging from data privacy to
acceptable use. One of the topics we will specifically focus on is encryption.

Encryption is a common method to protect data. There are two primary flavors of
data encryption: data-at-rest encryption and data-in-transit encryption, also referred
to as over-the-wire encryption. Data at rest refers to data that is stored even after
machines are powered off. This includes data on hard drives, flash drives, USB sticks,
memory cards, CDs, DVDs, or even some old floppy drives or tapes in storage boxes.
Data in transit, as its name implies, is data on the move, such as data traveling on the
Internet, a USB cable, a coffee shop WiFi, cell phone towers, or from a remote space
station to Earth.

Encryption Algorithms
Before diving into the two flavors of data encryption, we’ll briefly discuss encryption
algorithms. Encryption algorithms define the mathematical technique used to
encrypt data. A common encryption algorithm is the Advanced Encryption Standard,
or AES. It is a specification established by the U.S. National Institute of Standards and
Technology (NIST) in FIPS-197.

Describing how AES encryption works is beyond the scope of this text, and we rec‐
ommend Chapter 4 of Understanding Cryptography by Christof Paar and Jan Palzl
(Springer, 2010). Other common encryption algorithms include DES, RC4, Twofish,
and Blowfish.
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When encrypting data, key size is important. In general, the larger the key, the harder
it is to crack. On the downside, encrypting data with larger keys is slower. When deal‐
ing with extremely small data, the encryption key should not be larger than the data
itself.

When using AES, the commonly supported sizes are 128-bit, 192-bit, and 256-bit
keys. The industry standard today is AES-256 (256-bit key) encryption, but history
has shown that this can and will change. At one point, DES and triple DES (three
rounds of DES) was the industry standard, but with today’s computers both can be
easily cracked with brute force.

Because of the performance overhead that encryption incurs, chip vendors created
on-hardware functions to improve the performance of encryption. These enhance‐
ments can yield several orders of magnitude of improvement over software encryp‐
tion. One popular hardware encryption technology is Intel’s AES-NI.

With a basic understating of the encryption methods and algorithms, we can now dig
a little deeper into two of the methods: full disk and filesystem encryption. These are
much easier to implement because they do not require special hardware.

Encrypting Data at Rest
Let’s say Alice places a message for Bob on a USB stick and hands it to him. But Bob
somehow in his excitement misplaces the USB stick and Eve happens to find it. Eve,
being curious, connects the USB and attempts to read the contents. Luckily, Alice
encrypted the message; otherwise, it would have been an embarrassing situation for
her. In this simple example, encryption has helped assure the confidentiality of the
message. Nobody but Bob knows the password to decrypt the data.

At the core of the Hadoop ecosystem is HDFS, which is the filesystem for many other
components. Until recently, encrypting data in HDFS was not natively supported,
which means that other methods of encryption needed to be adopted.

Over the years, there have been many cases of sensitive data
breaches as a result of laptops and cell phones misplaced during
transport, improper hard drive disposal, and physical hardware
theft. Data-at-rest encryption helps mitigate these types of breaches
because encryption makes it more difficult (but not impossible) to
view the data.

In addition to native HDFS encryption, we will explore three other options, but we
will not go into depth for every method because some are vendor specific. These
methods work transparently below HDFS and thus don’t require any Hadoop-specific
configuration. All of these methods protect data in the case of a drive being physically
removed from a drive array:
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Encrypted drives
This method is completely independent of the operating system. The physical
drives on which HDFS stores its data support encryption natively. One limitation
is that encrypted drives don’t offer protection for data from rogue users and pro‐
cesses running on the system.

Full disk encryption
This method typically works at system boot. This method does not require spe‐
cial drives or hardware like encrypted drives do. Several implementations of this
technology exist, and typically vary by operating system. Some full disk encryp‐
tion methods support operating system root partition encryption, while other
methods only support encryption of the data partitions or volumes where the
HDFS blocks are stored. Full disk encryption also has the limitation of encrypted
drives in that it does not offer protection for data from rogue users and processes
running on the system.

Filesystem encryption
This method works at the operating-system level. This method also does not
require special drives or hardware. Several implementations of this technology
exist and vary by operating system. Filesystem encryption of the root partition is
not supported because it becomes a chicken and the egg situation; the encrypted
OS would need to boot to decrypt the OS. One of the benefits of filesystem
encryption is that it offers protection for data against rogue users and processes
running on the system. If an encrypted home directory is protected by a pass‐
word known to a user and that user has not logged on to the system since boot, it
would be impossible for a rogue user or process to gain access to the key to
unlock the user’s data, even as root.

Encryption and Key Management
Production Hadoop clusters typically have 8–12 drives per node across hundreds to
thousands of nodes. Extending data-at-rest encryption to additional components
beyond HDFS increases the potential complexity. As you begin rolling out encryp‐
tion, it’s important to consider additional questions:

• How do you configure more than one disk partition with encryption?
• How can you avoid providing passwords at boot time or in clear text scripts?

Ultimately, the hard part of large-scale at-rest encryption is key management. Native
HDFS data-at-rest encryption, as we’ll discuss in the next section, uses a combination
of collocating encrypted keys with the file metadata and reliance on an external key
server for managing key material. The other encryption-at-rest technologies dis‐
cussed also require the use of a key management service at scale.
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Picking a vendor for your key management system is complicated and we can’t pro‐
vide a recommendation for your environment. However, here are some key criteria to
consider:

• Does the solution support hardware security modules?
• How scalable is the solution (number of keys as well as key retrieval per second)?
• Does the solution support Hadoop standards (e.g., KeyProvider interface)?
• How easy is it to manage authorization controls for hundreds or thousands of

keys?

If you’re using a prepackaged Hadoop distribution, the easiest way to find vendors for
key management systems is to look at the security vendors that are certified by your
Hadoop vendor.

HDFS Data-at-Rest Encryption
Starting with Hadoop 2.6, HDFS supports native encryption at rest. This feature is
not considered full disk encryption or filesystem encryption. Rather it is another var‐
iation typically called application-level encryption. In this method, data is encrypted at
the application layer before it is sent in transit and before it reaches storage. This
method of encryption runs above the operating system layer and no special operating
system packages or hardware are required other than what is provided by Hadoop.
For more details on the design of native HDFS encryption beyond the description
given here, you can read the HDFS Data at Rest Encryption Design Document.

Within HDFS, directory paths that require encryption are broken down into encryp‐
tion zones. Each file in an encryption zone is encrypted with a unique data encryption
key (DEK). This is where the encryption zone distinction matters. The plain text
DEKs are not persisted. Instead, a zone-level encryption key called an encryption zone
key (EZK), is used to encrypt the DEK into an encrypted DEK (EDEK). The EDEK is
then persisted as an extended attribute in the NameNode metadata for a given file.

HDFS encryption zones provide a tool for mirroring external security domains. Take
a company with multiple divisions that need to maintain some division-only datasets.
By creating an encryption zone per division, you can protect data on a per-division
basis without the overhead of keeping a unique key per file in an authenticated key‐
store.

If the EDEK is stored in the HDFS metadata, where are the EZKs stored? These keys
need to be kept secure because compromising an EZK provides access to all data
stored in that encryption zone. To prevent Hadoop administrators from having access
to the EZKs, and thus the ability to decrypt any data, the EZKs must not be stored in
HDFS. EZKs need to be accessed through a secure key server. The key server itself is a
separate piece of software that handles the storage and retrieval of EZKs. In larger
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enterprises, the actual storage component is handled by a dedicated hardware security
module (HSM). With this deployment, the key server acts as the software interface
between the clients requesting keys and the backend secure storage.

In order to have a separation of duties, there needs to be an intermediary between
HDFS, HDFS clients, and the key server. This is solved with the introduction of the
Hadoop Key Management Server (KMS). The KMS handles generating encryption
keys (both EZKs and DEKs), communicating with the key server, and decrypting
EDEKs. The KMS communicates with the key server through a Java API called the
KeyProvider. The KeyProvider implementation and configuration is covered a bit
later.

To better understand what is happening, let’s take a look at the sequence of events that
happens when an HDFS client is writing to a new file that’s stored in an encryption
zone in HDFS:

1. The HDFS client calls create() to write to the new file.
2. The NameNode requests the KMS to create a new EDEK using the EZK-id/

version.
3. The KMS generates a new DEK.
4. The KMS retrieves the EZK from the key server.
5. The KMS encrypts the DEK, resulting in the EDEK.
6. The KMS provides the EDEK to the NameNode.
7. The NameNode persists the EDEK as an extended attribute for the file metadata.
8. The NameNode provides the EDEK to the HDFS client.
9. The HDFS client provides the EDEK to the KMS, requesting the DEK.

10. The KMS requests the EZK from the key server.
11. The KMS decrypts the EDEK using the EZK.
12. The KMS provides the DEK to the HDFS client.
13. The HDFS client encrypts data using the DEK.
14. The HDFS client writes the encrypted data blocks to HDFS.

The sequence of events for reading an encrypted file is:

1. The HDFS client calls open() to read a file.
2. The NameNode provides the EDEK to the client.
3. The HDFS client passes the EDEK and EZK-id/version to the KMS.
4. The KMS requests the EZK from the key server.
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5. The KMS decrypts the EDEK using the EZK.
6. The KMS provides the DEK to the HDFS client.
7. The HDFS client reads the encrypted data blocks, decrypting them with the

DEK.

In both the read and write sequences, HDFS authorization was not mentioned.
Authorization checks still happen before the file can be created or opened. The
encryption/decryption steps only happen after the HDFS authorization checks.

Because the KMS plays such an important role in HDFS encryp‐
tion, this component should not be collocated on servers running
other Hadoop ecosystem components, or servers used as edge
nodes for clients. There needs to be a proper security separation of
duties, and isolation between encryption key operations and other
operations.

Because the communication between the KMS and both the key server and HDFS cli‐
ents involves passing encryption keys, it is absolutely paramount that this communi‐
cation also be encrypted using TLS. We will see how to do this in the next section.

Configuration
We have covered a lot in this section about HDFS encryption, but so far we have not
discussed how any of this actually gets configured. In the core-site.xml on each HDFS
node and client node, set the following parameter:

hadoop.security.key.provider.path

The URI for the KeyProvider to use when interacting with encryption keys as a
client. Example: kms://https@kms.example.com:16000/kms.

On the HDFS server (NameNode and DataNode) side, the following properties are
available:

dfs.encryption.key.provider.uri

The URI for the KeyProvider to use when interacting with encryption keys used
when reading and writing to an encryption zone. Example: kms://

https@kms.example.com:16000/kms.

hadoop.security.crypto.cipher.suite

Cipher suite for the crypto codec. Default: AES/CTR/NoPadding

hadoop.security.crypto.codec.classes.aes.ctr.nopadding

Comma-separated list of crypto codec implementations for AES/CTR/NoPad‐
ding. The first implementation will be used if available; others are fallbacks.
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Default: org.apache.hadoop.crypto.OpensslAesCtrCryptoCodec,
org.apache.hadoop.crypto.JceAesCtrCryptoCodec

hadoop.security.crypto.jce.provider

The JCE provider. Default: None

hadoop.security.crypto.buffer.size

The buffer size used by CryptoInputStream and CryptoOutputStream. Default:
8192

As you can see, the HDFS configuration is minimal. HDFS uses sensible defaults for
the cryptography aspect of it, so the only requirement to enable HDFS encryption is
to set the first two configurations, namely hadoop.security.key.provider.path
and dfs.encryption.key.provider.uri.

In order to configure the Hadoop KMS, the configuration filekms-site.xml is used.
Configure the following properties on the Hadoop KMS node:

hadoop.kms.key.provider.uri

The URI for the EZK provider. Example: jceks://file@/var/lib/kms/

kms.keystore.

hadoop.kms.authentication.type

The authentication mechanism to use. Example: simple or kerberos

hadoop.kms.authentication.kerberos.keytab

The location of the Kerberos keytab file to use for service authentication

hadoop.kms.authentication.kerberos.principal

The SPN that the service should use for authentication. Example: HTTP/kms.exam
ple.com@EXAMPLE.COM.

hadoop.kms.authentication.kerberos.name.rules

Kerberos auth_to_local rules to use. Example: DEFAULT

hadoop.kms.proxyuser.<user>.groups

The list of groups that <user> (e.g., hdfs, hive, oozie) is allowed to impersonate

hadoop.kms.proxyuser.<user>__.hosts++
The list of hosts from which <user> (e.g., hdfs, hive, oozie) is allowed to imperso‐
nate
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An example is listed in the KMS configuration properties that
shows the ability to use a file-based KeyProvider. This is just a Java
keystore file that stores EZKs. While this is a quick and easy way to
get up and running with HDFS encryption, it is only recom‐
mended in POC or development environments for testing. Using a
file-based KeyProvider collocates the KMS and key server func‐
tions on the same machine, which does not offer the desired secu‐
rity separation of duties or the ability to enforce additional
isolation controls. Also, the key storage is just a basic file on disk.
As mentioned before, most enterprises will want to utilize a sepa‐
rate service as the KeyProvider, which uses a more secure storage
for EZKs, such as what is provided by HSMs.

As you can see from the KMS configuration, strong authentication with Kerberos is
possible. This is absolutely the recommended configuration. Non-Kerberos deploy‐
ment should not be used due to the sensitivity of what the KMS is providing. The
actual KMS operates over the HTTP protocol, so Kerberos authentication with KMS
clients happens over SPNEGO. For this reason, the Kerberos principal that the KMS
uses should be of the HTTP/kms.example.com@EXAMPLE.COM variety, which uses the
HTTP service name.

We mentioned briefly in the last section that setting up the KMS with TLS wire
encryption is important. To do this, set two environment variables for the KeyStore
and password in kms-env.sh. The KeyStore file is just a Java KeyStore and the loca‐
tion of it is specified with the KMS_SSL_KEYSTORE_FILE environment variable. If this
KeyStore is protected with a password (and it should be!), specify the password in the
KMS_SSL_KEYSTORE_PASS environment variable.

KMS authorization
The KMS, like other Hadoop components, has the ability to restrict access to certain
functions through the use of access control lists (ACLs). The file kms-acls.xml stores
information about which users and groups can perform which functions with the
KMS. Example 9-1 shows an example of one.

Example 9-1. KMS kms-acls.xml

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
  <property>
    <name>hadoop.kms.blacklist.CREATE</name>
    <value>hdfs supergroup</value>
  </property>
  <property>
    <name>hadoop.kms.blacklist.DELETE</name>
    <value>hdfs supergroup</value>
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  </property>
  <property>
    <name>hadoop.kms.blacklist.ROLLOVER</name>
    <value>hdfs supergroup</value>
  </property>
  <property>
    <name>hadoop.kms.blacklist.GET</name>
    <value>hdfs supergroup</value>
  </property>
  <property>
    <name>hadoop.kms.blacklist.GET_KEYS</name>
    <value>hdfs supergroup</value>
  </property>
  <property>
    <name>hadoop.kms.blacklist.SET_KEY_MATERIAL</name>
    <value>hdfs supergroup</value>
  </property>
  <property>
    <name>hadoop.kms.blacklist.DECRYPT_EEK</name>
    <value>hdfs supergroup</value>
  </property>
  <property>
    <name>default.key.acl.MANAGEMENT</name>
    <value> infosec</value>
  </property>
  <property>
    <name>default.key.acl.GENERATE_EEK</name>
    <value>hdfs supergroup</value>
  </property>
  <property>
    <name>default.key.acl.DECRYPT_EEK</name>
    <value> hadoopusers</value>
  </property>
  <property>
    <name>default.key.acl.READ</name>
    <value> infosec</value>
  </property>
</configuration>

Each of the entries in Example 9-1 have a value format of user1,user2

group1,group2, just like as described in “Service-Level Authorization” on page 101.
You’ll notice the usage of blacklists. In order to enforce the separation of Hadoop
administrators from the actual data, Hadoop administrators should not have the abil‐
ity to interact and perform operations on the KMS. Hadoop administrators that are
part of the supergroup have the ability to traverse the entire HDFS directory tree.
Encrypted data should not be able to be decrypted by administrators of the cluster, so
blacklisting these users is important.

Keep in mind that the Hadoop KMS is a general-purpose key management server.
The keys it works with have no meaning or difference in how they are handled. This
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means that EZKs and DEKs are equivalent from the KMS point of view. This is why
using KMS ACLs is important. For example, by default the CREATE operation
returns the actual key material. This is bad if regular users are able to retain the actual
EZK, as it can be used to decrypt EDEKs for the entire encryption zone.

Allowing any user to create keys opens up several potential security
risks. For example, a rogue user could easily write a script to con‐
tinually create new keys until the KMS and/or key server fails, such
as running out of storage. This effectively creates a denial-of-
service scenario that prevents all encrypted data from being acces‐
sible! Use restrictive KMS ACLs to authorize only a small set of
security administrators the ability to create and manage keys.

It is recommended to come up with (at least) three different roles to apply ACLs to:
Hadoop administrators, security administrators, and regular users. With this model,
Hadoop administrators only need the ability to request the KMS to generate new 
EDEKs. The security administrators are responsible for creating and maintaining
EZKs. Lastly, regular users of the cluster are only able to request the KMS decrypt a
provided EDEK.

Following this model, Example 9-1 shows that Hadoop administrators, namely the
hdfs user and the supergroup group, are blacklisted from all the operations that are
unnecessary. Furthermore, the infosec group is the only group allowed to perform the
MANAGEMENT and READ functions. Lastly, the hadoopusers group is allowed to perform
the DECRYPT_EEK function, but nothing else.

While Example 9-1 shows default ACLs, denoted by the prefix default.key.acl, it is
also possible to define ACLs to specific keys by name, such as key.acl.foo.READ
where foo is the name of the key. We’ll discuss how the keynames come into the pic‐
ture in the next section, which covers HDFS encryption client operations.

Client operations
So far we’ve covered HDFS encryption both from a workflow perspective and a con‐
figuration perspective. Now we need to look at the actual client operations to set this
all up. First, let’s start with the creation of a new EZK. To do this, use the hadoop key
command, which outputs details of the key created and the KMS that performed the
request:

[bob@server1 ~]$ hadoop key -create myzonekey
myzonekey has been successfully created with options
 Options{cipher='AES/CTR/NoPadding', bitLength=128, description='null', attr
ibutes=null}.
KMSClientProvider[https://kms.example.com:16000/kms/v1/] has been updated.
[bob@server1 ~]$
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Now we can create a new encryption zone in HDFS. To do this, use the hdfs crypto
command:

[bob@server1 ~]$ hdfs dfs -mkdir /myzone
[bob@server1 ~]$ hdfs crypto -createZone -keyName myzonekey -path /myzone
[bob@server1 ~]$ hdfs crypto -listZones
/myzone   myzonekey
[bob@server1 ~]$

From here, HDFS clients can read and write files in the /myzone directory and have
them be transparently encrypted or decrypted.

HDFS encryption zone creation requires an empty directory. It is
not possible to create an encryption zone on a directory that
already has data in it. To encrypt data that already resides in HDFS,
rename the desired directory to a temporary name, create the
desired directory again, set up the encryption zone, and copy the
data back into the zone. Keep in mind that the original data was
persisted to disk unencrypted. Rewriting the data as encrypted
does not remove the original exposure of the unencrypted sensitive
data on disk.

MapReduce2 Intermediate Data Encryption
When HDFS encryption is enabled, it is important that temporary, intermediate ver‐
sions of the data also be protected. It is possible to encrypt the intermediate output
from MapReduce jobs, but there are some caveats:

• Intermediate data encryption is on a per-job basis (client configuration)
• Users might not know that the source data came from an encryption zone

— Users might not enable intermediate data encryption properly
— Users might disable intermediate data encryption because of performance

impacts
• Intermediate data encryption is only available for MR2 not MR1

The job configuration properties shown in Table 9-1 are used to enable intermediate
data encryption.
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Table 9-1. Intermediate data encryption properties

Property Description

mapreduce.job.encrypted-intermediate-data Set to true to enable (default: false)

mapreduce.job.encrypted-intermediate-data-key-

size-bits

The key length size for encryption (default: 128)

mapreduce.job.encrypted-intermediate-

data.buffer.kb

The buffer size to use in KB (default: 128)

It is certainly desirable to have intermediate data encryption that is both enforced and
enabled when actually necessary. We hope that in a later Hadoop release this imple‐
mentation will improve such that MapReduce tasks will encrypt intermediate files
automatically if it detects that it is reading data sourced from an encryption zone, and
that this feature is not able to be overridden by a client.

Impala Disk Spill Encryption
Impala has the ability to encrypt data that is spilled to disk when all of the data being
processed cannot fit in memory. Without disk spill encryption, sensitive data could
be written back to disk unencrypted. This poses a risk to the sensitive data and
defeats the advantages of encrypting the data in the first place.

To configure Impala daemons to protect data it spills to disk, the following startup
flags are needed:

disk_spill_encryption

Set this to true to turn on the encryption of all data spilled to disk during a
query. Default: false. When data is about to be spilled to disk, it is encrypted
with a randomly generated AES 256-bit key. When read back from disk, it’s
decrypted.

disk_spill_integrity

Set this to true to turn on an integrity check of all data spilled to disk during a
query. Default: false. When data is about to be spilled to disk, a SHA256 hash of
the data is taken. When read back in from disk, a SHA256 is again taken and
compared to the original. This prevents tampering of data spilled to disk.

Full Disk Encryption
If you’re using a version of HDFS that doesn’t support native encryption or if you
need to encrypt the data used by other Hadoop ecosystem components, then you
might want to consider full disk encryption or filesystem encryption. Let’s take a look
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at full disk encryption using the Linux Unified Key Setup (LUKS). In addition to
LUKS, there are several products for full disk encryption. We will focus on LUKS, as
it is a common open source tool for enabling full disk encryption on Linux.

Data encryption is not something you want to experiment with in
production or on real data. A mistake could cause your data to be
permanently unrecoverable.

Most LUKS implementations use cryptsetup and dm-crypt found in Linux distribu‐
tions:

• cryptsetup provides the user space tools to create, configure, and administer the
encrypted volumes

• dm-crypt provides the Linux kernel space logic to encrypt the block device

In Example 9-2, we show how to configure LUKS on a device using the command
line. Some Linux distributions have tools that allow for simple configuration during
OS installation. This can be as easy as checking a box or selecting an option to enable
full-disk encryption when setting up storage drives, adding additional drives, or re-
partitioning existing drives. This hides all the complexity of using cryptsetup and
dm-crypt. We encourage you to use the distribution-provided tools when possible.

When you set up LUKS on a device, data on the device is overwrit‐
ten. If you’re setting up LUKS on a device that already has data,
first make a backup of the entire device and then restore the data
after LUKS is configured. Exercise caution when performing the
LUKS configuration.

Example 9-2. LUKS encryption

1. Install crypsetup.
On CentOS/RHEL:
[root@hadoop01 ~]# yum install cryptsetup-luks

On Debian/Ubuntu:
[root@hadoop01 ~]# apt-get install cryptsetup

2. Set up the LUKS storage device.
[root@hadoop01 ~]# cryptsetup -y -v luksFormat /dev/xvdc
WARNING!
========
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This will overwrite data on /dev/xvdc irrevocably.

Are you sure? (Type uppercase yes): YES
Enter LUKS passphrase:
Verify passphrase:
Command successful.

3. Open the device and map it to a new device:
[root@hadoop01 ~]# cryptsetup luksOpen /dev/xvdc data1

This creates a new mapping device on /dev/mapper/data1.
4. Clear all the data on the device (this is mainly to clear the header, but it’s a good

security practice to clear it all):
[root@hadoop01 ~]# dd if=/dev/zero of=/dev/mapper/data1

The preceding operation is writing zeros over the entire stor‐
age device so it can take minutes to hours to complete,
depending on the size of the device and the speed of your sys‐
tem.

5. When the dd command completes, you can create your filesystem; in this case,
we will use ext4, but you can also use XFS or your desired filesystem format:
[root@hadoop01 ~]# mkfs.ext4 /dev/mapper/data1

6. Now that you have an encrypted device with a filesystem, you can mount it like a
regular filesystem:
[root@hadoop01 ~]# mkdir /data/dfs/data1
[root@hadoop01 ~]# mount /dev/mapper/data1 /data/dfs/data1
[root@hadoop01 ~]# df -H
[root@hadoop01 ~]# ls -l /data/dfs/data1

7. Repeat the previous steps for your other drives mounted on /data/dfs/data[2-N]
and then install Hadoop using /data/dfs/data[1-N] for HDFS storage.

This example is meant to be just that, an example. It does not cover many other
aspects such as how you might provide the password on boot or how to perform
backups. What happens if you need to add a drive? What if you want to resize the
partition? These are all questions that you should consider for any production
deployment.
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Filesystem Encryption
There are many products that provide filesystem encryption, but we will focus on
eCryptfs because it is a common open source filesystem encryption solution for
Linux.

eCryptfs has two main components, ecryptfs-utils and ecryptfs:

• ecryptfs-utils provides the user space tools to create, configure, and adminis‐
ter the encrypted directories

• ecryptfs provides the Linux kernel space logic to layer the encrypted filesystem
over the directories on the existing filesystem

In Example 9-3, we show you how to configure eCryptfs using the command line.
Some Linux distributions have tools that allow for simple configuration during OS
install. This can be as easy as checking a box or selecting an option to set up storage
drives, add additional drives, or repartition existing drives. This hides all the com‐
plexity of using ecryptfs-utils and ecryptfs for you. We encourage you to use the
distribution-provided tools when possible.

Example 9-3. eCryptfs encryption

1. Install ecryptfs-utils.
On CentOS/RHEL:
[root@hadoop01 ~]# yum install ecryptfs-utils

On Debian/Ubuntu:
[root@hadoop01 ~]# apt-get install ecryptfs-utils

2. Mount a new encrypted filesystem over your empty HDFS data directory.
[root@hadoop01 ~]# mount -t ecryptfs /data/dfs/data1 /data/dfs/data1
Select key type to use for newly created files:
1) passphrase
2) tspi
3) openssl
Selection: 1
Passphrase:

Select cipher:
1) aes: blocksize = 16; min keysize = 16; max keysize = 32 (not loaded)
2) blowfish: blocksize = 16; min keysize = 16; max keysize = 56 (not loaded)
3) des3_ede: blocksize = 8; min keysize = 24; max keysize = 24 (not loaded)
4) twofish: blocksize = 16; min keysize = 16; max keysize = 32 (not loaded)
5) cast6: blocksize = 16; min keysize = 16; max keysize = 32 (not loaded)
6) cast5: blocksize = 8; min keysize = 5; max keysize = 16 (not loaded)
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Selection [aes]: aes

Select key bytes:
1) 16
2) 32
3) 24
Selection [16]: 32
Enable plaintext passthrough (y/n) [n]: n
Enable filename encryption (y/n) [n]: n
Attempting to mount with the following options:
ecryptfs_unlink_sigs
ecryptfs_key_bytes=32
ecryptfs_cipher=aes
ecryptfs_sig= 9808e34a098f3814
WARNING: Based on the contents of [/root/.ecryptfs/sig-cache.txt],
it looks like you have never mounted with this key
before. This could mean that you have typed your
passphrase wrong.
Would you like to proceed with the mount (yes/no)? : yes
Would you like to append sig [9808e34a098f3814] to
[/root/.ecryptfs/sig-cache.txt]
in order to avoid this warning in the future (yes/no)? : yes
Successfully appended new sig to user sig cache file
Mounted eCryptfs

During the mount command, you’ll be prompted for the size of
the key in bytes. Previously, we described the desired key size
as 256 bits. Because there are 8 bits in a byte, we will select a
32-byte key.

3. Repeat the preceding steps for your other drives mounted on /data/dfs/data[2-N]
and then install Hadoop using /data/dfs/data[1-N] for HDFS storage.

This example does not cover other aspects like how to provide the password on boot,
how to perform backups, or what happens if the password is forgotten. These are
additional considerations to make when rolling out an encryption solution at such a
large scale.

Important Data Security Consideration for Hadoop
If you are configuring encryption for data at rest for Hadoop, you should take notice
that sensitive data may not only land in HDFS, but in other areas such as shuffles,
spill fills, temporary files, logfiles, swap files, indexes, and metadata stores that run on
MySQL, PostgreSQL, SQLite, Oracle, or Derby. In Chapter 10, we will cover some of
the areas where Hadoop offers encryption for those other data sets outside of HDFS.
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Encrypting Data in Transit
In the previous section, we described how you can proect data at rest with encryp‐
tion, but what about data while it’s being transmitted over the network? Let’s start
with an abstract example. When Alice and Bob were children, they liked to exchange
notes in class. Because they didn’t always sit next to each other, they often had to trust
other children to pass the notes along. How would they deal with nosy kids that
might want to read the note before passing it, or worse, what happens if the teacher
catches them and reads the note aloud to the whole class?

Being a clever kid, Alice came up with her own alphabet with symbols that map one-
to-one to letters in the English alphabet. Instead of writing their messages using
English letters, they use this custom alphabet. Alice and Bob can exchange a copy of
the mapping in advance or even memorize the alphabet (there are only 26 symbols
after all). Now when they send their notes, only those with a copy of the alphabet map
can read them.

This method is simple and effective, but it’s not absolutely secure. More sophisticated
methods might include having multiple alphabets or the same alphabet with random‐
ized mappings along with a key that tells the recipient which mapping to use. This is
probalby overkill for passing notes, but it becomes very important when designing
encryption systems for data in transit.

Transport Layer Security
Transport Layer Security (TLS) is a cryptographic protocol for encrypting data in
transit. TLS replaced the Secure Socket Layer (SSL), an early standard for encrypting
data in transit. TLS was first defined in RFC 2246 based on the SSL 3.0 protocol
designed by Paul Kocher. Given the shared history of TLS and SSL, the two are often
used interchangeably even though they are not the same. It is also common to use the
same library for implementing either SSL or TLS. For example, the OpenSSL library
includes implementations of SSL 2.0 and 3.0, as well as TLS 1.0, 1.1, and 1.2.

Whereas Chapter 4 is a protocol for enabling strong authentication, SSL/TLS are pro‐
tocols for securing data as it moves through the network. While most commonly
associated with web traffic in the form of the HTTPS protocol, SSL/TLS are generic
protocols that can be used to secure any socket connection. This lets you create an
encrypted pipe that other protocols can then be layered on top of. In the same way
that Kerberos clients rely on trusting the KDC, clients using SSL/TLS trust a central
certificate authority (CA).

The following are basic concepts that underpin SSL/TLS:

Encrypting Data in Transit | 207



Private key
An asymmetric encryption key that is known only to the owner of a signed certif‐
icate.

Public key
An asymmetric encryption key that is shared publicly and can be used to encrypt
data that is only decryptable by the corresponding private key.

Certificate signing request (CSR)
A cryptographic message sent to a certificate authority to apply for a specific
identity.

Signed certificate
The result of sending the CSR to the CA. The signed certificate includes a copy of
the public key that was generated alongside the private key. It is possible to use
certificates that are self-signed rather than signed by a CA, but this is only recom‐
mended for test and development systems.

PKCS #12
A file format that bundles the private key and the signed certificate.

While there are many technical details of SSL/TLS that we will not cover here, there
are a few things you should understand which are covered in the following basic
workflow example.

Generating a new certificate

1. An administrator for the service seeking to accept SSL/TLS connections gener‐
ates a public and private key pair.

2. The administrator then generates a CSR and sends it to the CA.
3. The CA validates the identity of the server/service (and sometimes business

entity), and then generates a signed certificate.
4. The administrator of the service can then install the signed certificate.

SSL/TLS handshake

1. Alice connects to the Bob service, which presents an SSL/TLS certificate to Alice.
2. Alice looks up the CA certificate that signed Bob’s certificate in her chain of trus‐

ted third parties.
3. Alice and the Bob service exchange public keys, and then agree to a newly cre‐

ated symmetric encryption key for the current session.
4. Alice sends messages to the Bob service that are encrypted in transit by the

securely exchanged symmetric key.
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5. If Eve captures the packet of messages going from Alice to Bob, she is unable to
decrypt them because she does not possess the symmetric key.

One well-known implementation of this scheme is the RSA key exchange algorithm.
In this method, private and public key pairs are generated, followed by a secure
exchange of public keys, which allows the two parties to send encrypted messages
that only the intended recipients can decrypt.

RSA comes from the surname initials of Ron Rivest, Adi Shamir,
and Leonard Adlemanwho, who wrote a paper on this algorithm
while at MIT in 1977. As you can see in this book, along with Ker‐
beros, many security technologies we use today originate from
MIT.

For a more in-depth understanding on SSL/TLS, we recommend reading Network
Security with OpenSSL by John Viega, Matt Messier, Pravir Chandra (O’Reilly), and
Chapter 14, “SSL and HTTPS,” in Java Security, Second Edition by Scott Oaks
(O’Reilly).

Hadoop Data-in-Transit Encryption
Hadoop has several methods of communication over the network, including RPC,
TCP/IP, and HTTP. API clients of MapReduce, JobTracker, TaskTracker, NameNode
and DataNodes use RPC calls. HDFS clients use TCP/IP sockets for data transfers.
The HTTP protocol is used for MapReduce shuffles and also by many daemons for
their web UIs.

Each of these three network communications have a different in-transit encryption
method. We will explore the basics of these next, and in Chapter 10 we will cover a
detailed example of Flume SSL/TLS configuration. In Chapters 11 and 12, we also
cover the use of SSL/TLS with Oozie, HBase, Impala, and Hue.

Hadoop RPC Encryption
Hadoop’s RPC implementation supports SASL, which in addition to supporting
authentication, provides optional message integrity and encryption. Hadoop uses the
Java SASL implementation, which supports the following modes:

• auth, for authentication between client and server
• auth-int, for authentication and integrity
• auth-conf, for authentication, integrity, and confidentiality

RPC protection in Hadoop is configured with the hadoop.rpc.protection property
in the core-site.xml file. This property can be set to the values:
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• authentication, the default, puts SASL into auth mode and provides only
authentication

• integrity puts SASL into auth-int mode and adds integrity checking in addi‐
tion to authenticaiton

• privacy puts SASL into auth-conf mode and adds encryption to ensure full con‐
fidentiality

To configure Hadoop RPC protection, set the value in your core-site.xml as shown
here (keeping in mind that all daemons need to be restarted for it to take effect):

<property>
  <name>hadoop.rpc.protection</name>
  <value>privacy</value>
</property>

HDFS data transfer protocol encryption
When HDFS data is transferred from one DataNode to another or between DataNo‐
des and their clients, a direct TCP/IP socket is used in a protocol known as the HDFS
data transfer protocol. The Hadoop RPC protocol is used to exchange an encryption
key for use in the data transfer protocol when data transfer encryption is enabled.

To configure data transfer encryption, set dfs.encrypt.data.transfer to true in the
hdfs-site.xml file. This change is required only on the DataNodes. RPC will be used to
exchange the encryption keys, so ensure that RPC encryption is enabled by setting
the hadoop.rpc.protection configuration to privacy, as described earlier. The
encryption algorithm should also be configured to use AES. In the following code, we
configure AES encryption:

<property>
  <name>dfs.encrypt.data.transfer</name>
  <value>true</value>
</property>
<property>
  <name>dfs.encrypt.data.transfer.cipher.suites</name>
  <value>AES/CTR/NoPadding</value>
</property>
<property>
  <name> dfs.encrypt.data.transfer.cipher.key.bitlength</name>
  <value>256</value> <!-- can also be set to 128 or 192 -->
</property>

Setting AES encryption using the dfs.encrypt.data.trans

fer.cipher.suites setting is a more recent Hadoop feature, added
in version 2.6. For earlier releases, you can set
dfs.encrypt.data.transfer.algorithm to 3des (default) or rc4
to choose between triple-DES or RC4 respectively.
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You will need to restart your DataNode and NameNode daemons after this is set to
take effect. The entire process can be done manually, and Hadoop distributions might
also offer automated methods to enable HDFS data transfer encryption.

Hadoop HTTP encryption
When it comes to HTTP encryption, there is a well-known and proven method to
encrypt the data in transit using HTTPS, which is an enhancement of HTTP with
SSL/TLS. While HTTPS is very standardized, configuring it in Hadoop is not. Several
Hadoop components support HTTPS, but they are not all configured with the same
steps.

As you may recall from the description of the basic SSL/TLS concepts, a few addi‐
tional files are required, like private keys, certificates, and PKCS #12 bundles. When
using Java, these files are stored in a Java keystore. Many of the HTTPS configuration
steps for Hadoop generate these objects, store them in the Java keystore, and finally,
configure Hadoop to use them.

Some Hadoop components are both HTTPS servers and clients to other services. A
few examples are:

• HDFS, MapReduce, and YARN daemons act as both SSL servers and clients
• HBase daemons act as SSL servers only
• Oozie daemons act as SSL servers only
• Hue acts as an SSL client to all of the above

We will not cover HTTPS configuration in depth. Instead we will focus on the Map‐
Reduce encrypted shuffle and encrypted web UI configuration as a starting point to
configure other components.

Encrypted shuffle and encrypted web UI
Encrypted shuffle is supported for both MR1 and MR2. In MR1, setting the
hadoop.ssl.enabled property in the core-site.xml file enables both the encrypted
shuffle and the encrypted web UI. In MR2, setting the hadoop.ssl.enabled property
enables the encrypted web UI feature only; setting the mapreduce.shuf

fle.ssl.enabled property in the mapred-site.xml file enables the encrypted shuffle
feature.

When configuring HTTPS, just as with Kerberos, it is important to
set up all your servers with their full hostnames and to configure
DNS to resolve correctly to these names across the cluster.
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For both MR1 or MR2, set the ssl property in core-site.xml; this will enable the
encrypted web UI. For MR1, this also enables the encrypted shuffle:

<property>
  <name>hadoop.ssl.enabled</name>
  <value>true</value>
  <final>true</final>
</property>

For MR2 only, set the encrypted shuffle SSL property in mapred-site.xml:
<property>
  <name>mapreduce.shuffle.ssl.enabled</name>
  <value>true</value>
  <final>true</final>
</property>

You can also optionally set the hadoop.ssl.hostname.verifier property to control
how hostname verification happens. Valid values are:

DEFAULT

The hostname must match either the first CN or any of the subject-alt names. If a
wildcard exists on either the CN or one of the subject-alt names, then it matches
all subdomains.

DEFAULT_AND_LOCALHOST

This behaves the same as DEFAULT with the addition that a host of localhost,
localhost.localdomain, 127.0.0.1, and ::1 will always pass.

STRICT

This behaves like DEFAULT, but only matches wildcards on the same level. For
example, *.example.com matches one.example.com but not two.one.exam
ple.com.

ALLOW_ALL

Accepts any hostname. This mode should only be used in testing because it is not
secure.

For example, to support default plus localhost mode, set the following:

<property>
  <name>hadoop.ssl.hostname.verifier</name>
  <value>DEFAULT_AND_LOCALHOST</value>
  <final>true</final>
</property>

You will also need to update your ssl-server.xml and ssl-client.xml files. These files are
typically located in the /etc/hadoop/conf directory. The settings that go into the ssl-
server.xml file are shown in Table 9-2.
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Table 9-2. Keystore and Truststore settings for ssl-server.xml

Property Default
value

Description

ssl.server.key

store.type

jks The keystore file type

ssl.server.key

store.location

NONE The path to the keystore file; this file should be owned by the mapred
user and the mapred user must have exclusive read access to it (i.e.,
permission 400)

ssl.server.key

store.password

NONE The password to the keystore file

ssl.server.trust

store.type

jks The truststore file type

ssl.server.trust

store.location

NONE The path to the truststore file; this file should be owned by the mapred
user and the mapred user have exclusive read access to it (i.e., permission
400)

ssl.server.trust

store.password

NONE The password to the truststore file

ssl.server.trust

store.reload.interval

10000 Number of milliseconds between reloading the truststore file

An example, fully configured ssl-server.xml file looks like this:

<configuration>
  <!-- Server keystore -->
  <property>
    <name>ssl.server.keystore.type</name>
    <value>jks</value>
  </property>
  <property>
    <name>ssl.server.keystore.location</name>
    <value>/etc/hadoop/ssl/server/hadoop01.example.com.jks</value>
  </property>
  <property>
    <name>ssl.server.keystore.password</name>
    <value>super-secret-squirrel</value>
  </property>

  <!-- Server truststore -->
  <property>
    <name>ssl.server.truststore.type</name>
    <value>jks</value>
  </property>
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  <property>
    <name>ssl.server.truststore.location</name>
    <value>/etc/hadoop/ssl/server/truststore.jks</value>
  </property>
  <property>
    <name>ssl.server.truststore.password</name>
    <value>changeit</value>
  </property>
  <property>
    <name>ssl.server.truststore.reload.interval</name>
    <value>10000</value>
  </property>
</configuration>

The settings that go into the ssl-client.xml file are shown in Table 9-3.

Table 9-3. Keystore and truststore settings for ssl-client.xml

Property Default
value

Description

ssl.client.keystore.type jks The keystore file type.

ssl.client.keystore.loca

tion

NONE The path to the keystore file; this file should be owned by the mapred
user and all users that can run a MapReduce job should have read
access (i.e., permission 444).

ssl.client.keystore.pass

word

NONE The password to the keystore file.

ssl.client.trust

store.type

jks The truststore file type.

ssl.client.trust

store.location

NONE The path to the keystore file; this file should be owned by the mapred
user and all users that can run a MapReduce job should have read
access (i.e., permission 444).

ssl.client.trust

store.password

NONE The password to the truststore file.

ssl.client.trust

store.reload.interval

10000 Number of milliseconds between reloading the truststore file.

An example, fully configured ssl-client.xml file looks like this:

<configuration>
  <!-- Client keystore -->
  <property>
    <name>ssl.client.keystore.type</name>
    <value>jks</value>
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  </property>
  <property>
    <name>ssl.client.keystore.location</name>
    <value>/etc/hadoop/ssl/client/hadoop01.example.com.jks</value>
  </property>
  <property>
    <name>ssl.client.keystore.password</name>
    <value>super-secret-squirrel</value>
  </property>

  <!-- Client truststore -->
  <property>
    <name>ssl.client.truststore.type</name>
    <value>jks</value>
  </property>
  <property>
    <name>ssl.client.truststore.location</name>
    <value>/etc/hadoop/ssl/client/truststore.jks</value>
  </property>
  <property>
    <name>ssl.client.truststore.password</name>
    <value>changeit</value>
  </property>
  <property>
    <name>ssl.client.truststore.reload.interval</name>
    <value>10000</value>
  </property>
</configuration>

When configuring SSL/TLS, be sure to disable the clear text serv‐
ices. For example, if a service runs on HTTP port 80 and HTTPS is
configured and running on port 443, be sure to disable the HTTP
service running on port 80. For a stronger level of protection, you
can configure a firewall, such as the iptables software firewall, to
disable access to port 80.

After you set up your ssl-server.xml and ssl-client.xml files, you need to restart all the
TaskTrackers in MR1 and NodeManagers in MR2 for the changes to take effect.

Data Destruction and Deletion
When dealing with data security, how you delete the data is important. If you happen
to reuse servers in your cluster that may have previously been used with sensitive
data, you will want to destroy the data first—for instance, in Example 9-2, we used dd
to zero out the LUKS partition.

You can do a more thorough destruction of data using the GNU shred utility. The
shred utility will overwrite a file or device with random patterns to better obfuscate
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the previous data that was written. You can pass shred a number of iterations to run,
with three passes being the default. The old DoD 5220.22-M standard mandated that
a 7-pass overwrite was required to securely erase sensitive data. The most secure
mode implements the Gutmann method, which requires 35 passes using a combina‐
tion of random data and specially selected data patterns.

Performing 35 overwrite passes on a large disk is a time-consuming operation.
Assuming your disk can write at a sustained 100 MB/s, it will take over 200 hours, or
roughly 8.5 days, to fully overwrite a 2 TB drive 35 times. When dealing with a cluster
of hundreds of machines and thousands of disks, this is a huge undertaking even if
you perform the sanitization in parallel.

DoD standards have advanced in recent years to the point where no amount of over‐
write is sufficient for particularly sensitive data. In these cases, only degaussing or
physical destruction is acceptable. It’s also important to remember that a damaged
drive cannot be overwritten, so degaussing or physical destruction are the only
options. For large clusters where you expect disk failures to be common and data to
be sufficiently sensitive, a physical destruction plan should be in place. There are
many facilities where drives can be physically destroyed, and some companies offer
on-site services where they will bring shredding equipment to you.

Summary
In this chapter, we discussed how encryption is used to protect data from unauthor‐
ized access by users and administrators of a Hadoop cluster. We compared and con‐
trasted protecting data at rest and data in transit. We described how HDFS has
recently added native data-at-rest encryption along with alternative approaches appli‐
cable to earlier versions, as well as to data that lives outside of HDFS. We also showed
how intermediate data that is generated during a data processing job or query can
also be encrypted to provide end-to-end protection.

Next, we discussed methods of protecting data in transit starting with Hadoop RPC
encryption. We followed this with protection of data from HDFS clients to DataNo‐
des and between DataNodes in the form of HDFS data transfer protocol encryption.
We also discussed how to encrypt the HTTP endpoints and the MapReduce shuffle
with SSL/TLS. Lastly, we described extending the protection of data to the operational
end of life for hardware by describing methods of permanent data destruction.

The next two chapters will explore holistically securing your Hadoop environment by
extending data security to your data ingest pipeline and client access, respectively.

216 | Chapter 9: Data Protection



CHAPTER 10

Securing Data Ingest

The preceding chapters have focused on securing Hadoop from a storage and data
processing perspective. We’ve assumed that you have data in Hadoop and you want to
secure access to it or to control how users share analytic resources, but we’ve neglec‐
ted to explain how data gets into Hadoop in the first place.

There are many ways for data to be ingested into Hadoop. The simplest method is to
copy files from a local filesystem (e.g., a local hard disk or an NFS mount) to HDFS
using Hadoop’s put command, as shown in Example 10-1.

Example 10-1. Ingesting files from the command line

[alice@hadoop01 ~]$ hdfs dfs -put /mnt/data/sea*.json /data/raw/sea_fire_911/

While this method might work for some datasets, it’s much more common to ingest
data from existing relational systems or set up flows of event- or log-oriented data.
For these use cases, users use Sqoop and Flume, respectively.

Sqoop is designed to either pull data from a relational database into Hadoop or to
push data from Hadoop into a remote database. In both cases, Sqoop launches a Map‐
Reduce job that does that actual data transfer. By default, Sqoop uses JDBC drivers to
transport data between the map tasks and the database. This is called generic mode
and it makes it easy to use Sqoop with new data stores, as the only requirement is the
availability of JDBC drivers. For performance reasons, Sqoop also supports connec‐
tors that can use vendor-specific tools and interfaces to optimize the data transfer. To
enable these optimizations, users specify the --direct option to enable direct mode.
For example, when enabling direct mode for MySQL, Sqoop will use the mysqldump
and mysqlimport utilities to extract from or import to MySQL much more efficiently.
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Flume is a distributed service for efficiently collecting, aggregating, and moving large
volumes of event data. Users of Flume deploy agents, which are Java processes that
transfer events. An event is the smallest unit of data that flows through Flume. Events
have a binary (byte array) payload and an optional set of attributes defined by string
key/value pairs. Each agent is configured with sources, sinks, and a channel. A source
is a component that consumes events from an external data source; a source can
either pull events from the external source or it can have events pushed to it by the
external source. The Flume source connects to a channel, which makes the event
available for consumption by a sink. The channel is completely passive in that it
accepts events from sources and keeps them until they are consumed by a sink. A
Flume sink transfers the event to an external data store or process.

Flume includes an AvroSource and an AvroSink that uses Avro RPC to transfer
events. You can configure the AvroSink of one Flume agent to send events to the
AvroSource of another Flume agent in order to build complex, distributed data flows.
While Flume also supports a wide variety of sources and sinks, the primary ones used
to implement inter-agent data flow are the AvroSource and AvroSink, so we’ll restrict
the rest of our discusion to this pair. The reliability of Flume is determined by the
configuration of the channel. There are in-memory channels for data flows that pri‐
oritize speed over reliability, as well as disk-backed channels that support full recover‐
ability. Figure 10-1 shows a two-tier Flume data flow showing the components
internal to the agents as well as their interconnection.

Figure 10-1. Flume architecture

Because Sqoop and Flume can be used to transfer sensitive data, it is important to
consider the security implications of your ingest pipeline in the context of the overall
deployment. In particular, you need to worry about the confidentiality, integrity, and
availability (CIA) of your ingest pipeline. Confidentiality refers to limiting access to
the data to a set of authorized users. Systems typically guarantee confidentiality by a
combination of authentication, authorization, and encryption. Integrity refers to how
much you can trust that data hasn’t been tampered with. Most systems employ check‐
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sums or signatures to verify the integrity of data. Availability refers to keeping infor‐
mation resources available. In the context of data ingest, it means that your ingestion
system is robust against the loss of some capacity and that it has the ability to pre‐
serve in-transit data while it’s dealing with the outage of some downstream system or
service.

Integrity of Ingested Data
The value of an analytic process is directly tied to the value of the data and data is
only of value if it can be trusted. Thus, the integrity of data is essential. Hadoop is a
complex, distributed system, so it’s not surprising that data ingest flows are often
equally complex and distributed. That means there are multiple places where data can
be worked with, corrupted, and tampered with. Your specific threat model will deter‐
mine the level of integrity your ingest pipeline requires. Most use cases are concerned
with accidentally corrupted data, and for those a simple checksum of records or files
is sufficient. To prevent tampering by malicious users, you can add cryptographic sig‐
natures and/or encryption of records.

One of the primary ways that Flume guarantees integrity is through its built-in, relia‐
ble channel implementations. Flume channels present a very simple interface that
resembles an unbounded queue. Channels have a put(Event event) method for
putting an event into a channel and a take() method for taking the next event from
the channel. The default channel implementation is an in-memory channel. This
implementation is reliable but only so long as the Flume agent stays up. This means
that in the event of a process or server crash, data will be lost. Furthermore, because
the events never leave memory, Flume assumes that events can’t be tampered with
and does not calculate or verify event checksums.

For users that care about reliable delivery of events and integrity, Flume offers a file-
based channel. The file channel essentially implements a write-ahead log that is per‐
sisted to stable storage as each event is put into the channel. In addition to persisting
the events to disk, the file channel calculates a checksum of each event and writes the
checksum to the write-ahead log along with the event. When events are taken from
the channel, the checksum is verified to ensure that the event has not been corrupted.
This provides some integrity guarantees but is limited to the integrity of the event as
it passes through the channel. Currently, Flume does not calculate checksums when
passing events from one agent to another from the AvroSink to the AvroSource. TCP
will still protect against accidental corruption of packets, but a man-in-the-middle
who is able to manipulate packets could still corrupt data in a manner that is not
detected. In the next section, we’ll see that Flume does have the ability to encrypt the
RPC protocol, which would prevent undetected corruption by a man-in-the-middle
attack.
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Before moving on to the integrity offered by Sqoop, let’s quickly cover how Flume
approaches availability. Flume lets users build a distributed data flow that guarantees
at-least-once delivery semantics. Strictly speaking, Flume is available from the point-
of-view of a particular data source as long as the first agent that communicates with
the external source is available. As events proceed from agent to agent, any downtime
of a downstream agent can be handled by using a failover sink processor that targets
two or more downstream Flume agents as the target. You can also have both failure
handling and load balancing by using the load balancing sink processor. This pro‐
cessor will send events to a set of downstream sinks in either a round robin or ran‐
dom fashion. If the downstream sink fails, it will retry with the next sink.

Both of these mechanisms improve availability of the overall data flow, but they don’t
guarantee availability of any particular event. There is a proposal to add a replicating
channel that would replicate events to multiple agents before acknowledging the
source, but until that is in place, events will be unavailable while nodes in the Flume
cluster are down. No events will be lost unless the stable storage where the file chan‐
nel logs data is unrecoverable. When building an ingest flow, it’s important to keep
these considerations in mind. We’ll go into more detail on these kinds of trade-offs in
“Enterprise Architecture” on page 235.

Unlike Flume, Sqoop does not have built-in support to verify the integrity of imports.
Sqoop does have the advantage of having the same process pull data from the data‐
base as writes the data to HDFS. This means the probability of data corruption is rela‐
tively lower than it is with a complex Flume flow. As we’ll see in the next section, it is
possible to guarantee confidentiality with Sqoop by enabling SSL encryption. This
will also improve integrity by making it much more difficult to tamper with records
as they transit the network, but does nothing to prove that what made it to HDFS
matches what was stored in the database. The current state of the art for verifying a
Sqoop import is to round-trip the table—from the database, to Hadoop, and back to
the database. You can then checksum the original table and the round-tripped table
to verify that no data was lost. Unfortunately, this is a very expensive process and may
require multiple full table scans depending on your database’s checksum capabilities.

Data Ingest Confidentiality
Determining the level of confidentiality that your ingest flow requires depends on the
type of data you’re ingesting, the threat models that you’re concerned with, and any
regulatory requirements you may need to adhere to. While data is being ingested, it’s
vulnerable to be viewed by unauthorized persons while it is transiting the network
and while it is staged on intermediate servers. Even when running on a trusted, cor‐
porate network, there may be certain classes of data that must always be encrypted to
prevent unauthorized users that might have the access to sniff network traffic from
seeing sensitive data. Likewise, the administrators of the servers that data transits
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through might not be authorized to access some of the data that is being ingested. In
those cases, it is useful to encrypt the data prior to it hitting stable storage in order to
prevent that unauthorized access.

Flume Encryption
)To solve the problem of unauthorized access to data as it transits the network, Flume
supports enabling SSL encryption on your AvroSource and AvroSink. In addition to
providing encryption, you can configure the AvroSource and AvroSink with trust
policies to ensure that a sink is only sending data to a trusted source. Let’s suppose we
want to send events from a Flume agent running on flume01.example.com to a sec‐
ond agent running on flume02.example.com. The first thing we have to do is create
an RSA private key for flume02 using the openssl command-line tool, as shown in
Example 10-2.

Example 10-2. Creating a private key

[alice@flume02 ~]$ mkdir certs
[alice@flume02 ~]$ cd certs
[alice@flume02 certs]$ openssl genrsa -des3 -out flume02.key 1024
Generating RSA private key, 1024 bit long modulus
...............................................................................
........++++++
.....................++++++
e is 65537 (0x10001)
Enter pass phrase for flume02.key:
Verifying - Enter pass phrase for flume02.key:
[alice@flume02 certs]$

In Example 10-3, we generate a certificate signing request so that a certificate can be
issued to the private key we just created.

Example 10-3. Creating a certificate signing request

[alice@flume02 certs]$ openssl req -new -key flume02.key -out flume02.csr
Enter pass phrase for flume02.key:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
---
Country Name (2 letter code) [XX]:US
State or Province Name (full name) []:California
Locality Name (eg, city) [Default City]:San Francisco
Organization Name (eg, company) [Default Company Ltd]:Cluster, Inc.
Organizational Unit Name (eg, section) []:
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Common Name (eg, your name or your server's hostname) []:flume02.example.com
Email Address []:admin@example.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
[alice@flume02 certs]$

Once we have the certificate signing request, we can generate a certificate signed by a
trusted key. In our example, we don’t have a root signing authority, so we’ll just create
a self-signed certificate (a certificate signed by the same key that requested the certifi‐
cate). In a real deployment, you’d send the certificate signing request to your corpo‐
rate signing authority and they would provide the signed certificate. A self-signed
certificate will work just fine for Example 10-4.

Example 10-4. Creating a self-signed certificate

[alice@flume02 certs]$ openssl x509 -req -days 365 -in flume02.csr \
  -signkey flume02.key -out flume02.crt
Signature ok
subject=/C=US/ST=California/L=San Francisco/O=Cluster, Inc./CN=flume02.cluster.
com/emailAddress=admin@example.com
Getting Private key
Enter pass phrase for flume02.key:
[alice@flume02 certs]$

We will be configuring the AvroSink on flume02 to use the key and certificate we’ve
just made, but first we need to create a truststore that flume01 will be able to use to
verify the authenticity of our key. In a real deployment, this truststore could be loaded
with the certificate authority (CA) certificate of your corporate signing authority or a
sub CA that is only trusted by your Flume cluster. This time we’ll use Java’s keytool to
import the certificate into a Java truststore.

Example 10-5. Creating a Java truststore

[alice@flume02 certs]$ keytool -import -alias flume02.example.com \
  -file flume02.crt -keystore flume.truststore
Enter keystore password:
Re-enter new password:
Owner: EMAILADDRESS=admin@example.com, CN=flume02.example.com, O="Cluster, Inc.
", L=San Francisco, ST=California, C=US
Issuer: EMAILADDRESS=admin@example.com, CN=flume02.example.com, O="Cluster, Inc
.", L=San Francisco, ST=California, C=US
Serial number: 86a6cb314f86328b
Valid from: Tue Jun 24 11:31:50 PDT 2014 until: Wed Jun 24 11:31:50 PDT 2015
Certificate fingerprints:
  MD5:  B6:4A:A7:98:9B:60:3F:A2:5E:0B:BA:BA:12:B4:8D:68
  SHA1: AB:F4:AB:B3:2D:E1:AF:71:28:8B:60:54:2D:C1:C9:A8:73:18:92:31
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  SHA256: B1:DD:C9:1D:AD:57:FF:47:28:D9:7F:A8:A3:DF:9C:BE:30:C1:49:CD:85
:D3:95:AD:95:36:DC:40:4C:72:15:AB
  Signature algorithm name: SHA1withRSA
  Version: 1
Trust this certificate? [no]:  yes
Certificate was added to keystore
[alice@flume02 certs]$

Before we can use our certificate and key with Flume, we need to load them into a file
format that Java can read. Generally, this will be either a Java keystore .jks file or a
PKCS12 .p12. Because Java’s keytool doesn’t have support for importing a separate key
and certificate, we’ll use openssl to generate a PKCS12 file and configure Flume to
use that directly, as shown in Example 10-6.

Example 10-6. Creating a PKCS12 file with our key and certificate

[alice@flume02 certs]$ openssl pkcs12 -export -in flume02.crt \
  -inkey flume02.key -out flume02.p12 -name flume02.example.com
Enter pass phrase for flume02.key:
Enter Export Password:
Verifying - Enter Export Password:
[alice@flume02 certs]$

Prior to configuring Flume to use our certificate, we need to move the PKCS12 file
into Flume’s configuration directory, as shown in Example 10-7.

Example 10-7. Moving PKCS12 file to /etc/flume-ng/ssl

[root@flume02 ~]# mkdir /etc/flume-ng/ssl
[root@flume02 ~]# cp ~alice/certs/flume02.p12 /etc/flume-ng/ssl
[root@flume02 ~]# chown -R root:flume /etc/flume-ng/ssl
[root@flume02 ~]# chmod 750 /etc/flume-ng/ssl
[root@flume02 ~]# chmod 640 /etc/flume-ng/ssl/flume02.p12

In Example 10-8, you’ll see that we also need to copy the truststore to flume01.exam
ple.com so that the sink will know it can trust the source on flume02.example.com.

Example 10-8. SCP truststore to flume01.example.com

[root@flume02 ~]# scp ~alice/certs/flume.truststore flume01.example.com:/tmp/

Next, in Example 10-9, we move the truststore into Flume’s configuration directory.

Example 10-9. Moving truststore to /etc/flume-ng/ssl

[root@flume01 ~]# mkdir /etc/flume-ng/ssl
[root@flume01 ~]# mv /tmp/flume.truststore /etc/flume-ng/ssl
[root@flume01 ~]# chown -R root:flume /etc/flume-ng/ssl
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[root@flume01 ~]# chmod 750 /etc/flume-ng/ssl
[root@flume01 ~]# chmod 640 /etc/flume-ng/ssl/flume.truststore

Now that the PKCS12 and truststore files are in place, we can configure Flume’s
source and sink. We’ll start with the sink on flume01.example.com. The key configu‐
ration parameters are as follows:

ssl

Set to true to enable SSL for this sink. When SSL is enabled, you also need to
configure the trust-all-certs, truststore, truststore-password, and
truststore-type parameters.

trust-all-certs

Set to true to disable certificate verification. It’s highly recommended that you set
this parameter to false, as that will ensure that the sink checks that the source it
connects to is using a trusted certificate.

truststore

Set this to the full path of the Java truststore file. If left blank, Flume will use the
default Java certificate authority files. The Oracle JRE ships with a file called
$JAVA_HOME/jre/lib/security/cacerts, which will be used unless a site-specific
truststore is created in $JAVA_HOME/jre/lib/security/jssecacerts.

truststore-password

Set this to the password that protects the truststore.

truststore-type
Set this to JKS or another supported truststore type.

Example 10-10 shows an example configuration.

Example 10-10. Avro SSL sink configuration

a1.sinks = s1
a1.channels = c1
a1.sinks.s1.type = avro
a1.sinks.s1.channels = c1
a1.sinks.s1.hostname = flume02.example.com
a1.sinks.s1.port = 4141
a1.sinks.s1.ssl = true
a1.sinks.s1.trust-all-certs = false
a1.sinks.s1.truststore = /etc/flume-ng/ssl/flume.truststore
a1.sinks.s1.truststore-password = password
a1.sinks.s1.truststore-type = JKS

On flume02.example.com, we can configure the AvroSource to use our certificate
and private key to listen for connections. The key configuration parameters are as fol‐
lows:
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1 To make setup of dm-crypt/LUKS easier, you can use the cryptsetup tool. Instructions for setting up dm-
crypt/LUKS using cryptsetup are available on the cryptsetup FAQ page.

ssl

Set to true to enable SSL for this sink. When SSL is enabled, you also need to
configure the keystore, keystore-password, and keystore-type parameters.

keystore

Set this to the full path of the Java keystore.

keystore-password

Set this to the password that protects the keystore.

keystore-type

Set this to JKS or PKCS12.

Example 10-11. Avro SSL source configuration

a2.sources = r1
a2.channels = c1
a2.sources.r1.type = avro
a2.sources.r1.channels = c1
a2.sources.r1.bind = 0.0.0.0
a2.sources.r1.port = 4141
a2.sources.r1.ssl = true
a2.sources.r1.keystore = /etc/flume-ng/ssl/flume02.p12
a2.sources.r1.keystore-password = password
a2.sources.r1.keystore-type = PKCS12

In addition to protecting your data over the wire, you might need to ensure that data
is encrypted on the drives where Flume writes events as they transit a channel. One
option is to use a third-party encryption tool that supports full disk encryption on the
drives your Flume channel writes to. This could also be done with dm-crypt/LUKS.1

However, full disk encryption might be overkill, especially if Flume is not the only
service using the log drives or if not all events need to be encrypted.

For those use cases, Flume offers the ability to encrypt the logfiles used by the file
channel. The current implementation only supports AES encryption in Counter
mode with no padding (AES/CTR/NOPADDING), but it is possible to add additional
algorithms and modes in the future. Flume currently only supports the JCE keystore
implementation (JCEKS) as the key provider. Again, nothing precludes adding sup‐
port for additional key providers but it would require a modification to Flume itself,
as there is not currently a pluggable interface for adding key providers. Despite these
limitations, Flume does support key rotation to help improve security. Because the
file channel logfiles are relatively short lived, you can rotate keys as frequently as nec‐
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essary to meet your requirements. In order to ensure that logfiles written with the
previous key are still readable, you must maintain old keys for reading while only the
newest key is used for writing.

To set up Flume’s on-disk encryption for the file channel, start by generating a key, as
shown in Example 10-12.

Example 10-12. Generating the key for on-disk encrypted file channel

[root@flume01 ~]# mkdir keys
[root@flume01 ~]# cd keys/
[root@flume01 keys]# keytool -genseckey -alias key-0 -keyalg AES -keysize 256 \
  -validity 9000 -keystore flume.keystore -storetype jceks
Enter keystore password:
Re-enter new password:
Enter key password for <key-0>
 (RETURN if same as keystore password):
Re-enter new password:
[root@flume01 keys]#

In our example, we set the keystore password to keyStorePassword and the key pass‐
word to keyPassword. In a real deployment, stronger passwords should be used. Key‐
tool won’t show what you are typing nor will it show the familiar asterisk characters,
so type carefully. You can also provide the keystore password and key password on
the command line with -storepass keyStorePassword and -keypass keyPassword,
respectively. It’s generally not recommended to include passwords on the command
line, as they will typically get written to your shell’s history file, which should not be
considered secure. Next, let’s copy the keystore to Flume’s configuration directory in
Example 10-13.

Example 10-13. Copying the keystore to Flume’s configuration directory

[root@flume01 ~]# mkdir /etc/flume-ng/encryption
[root@flume01 ~]# cp ~/keys/flume.keystore /etc/flume-ng/encryption/
[root@flume01 ~]# cat > /etc/flume-ng/encryption/keystore.password
keyStorePassword
^D
[root@flume01 ~]# cat > /etc/flume-ng/encryption/key-0.password
keyPassword
^D
[root@flume01 ~]# chown -R root:flume /etc/flume-ng/encryption
[root@flume01 ~]# chmod 750 /etc/flume-ng/encryption
[root@flume01 ~]# chmod 640 /etc/flume-ng/encryption/*
[root@flume01 ~]#

Notice that we also created files that contain the keystore password and key pass‐
words. Where the listing shows ^D, you should hold down the Control key and type
the letter D on the keyboard. Generating these files helps to keep the passwords pro‐
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tected, as they won’t be accessible to the same users that can read Flume’s configura‐
tion file. Now we can configure Flume to enable encryption on the file channel, as
shown in Example 10-14.

Example 10-14. Encrypted file channel configuration

a1.channels = c1
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /data/01/flume/checkpoint
a1.channels.c1.dataDirs = /data/02/flume/data,/data/03/flume/data
a1.channels.c1.encryption.cipherProvider = AESCTRNOPADDING
a1.channels.c1.encryption.activeKey = key-0
a1.channels.c1.encryption.keyProvider = JCEKSFILE
a1.channels.c1.encryption.keyProvider.keyStoreFile =
  /etc/flume-ng/encryption/flume.keystore
a1.channels.c1.encryption.keyProvider.keyStorePasswordFile =
  /etc/flume-ng/encryption/keystore.password
a1.channels.c1.encryption.keys = key-0
a1.channels.c1.encryption.keys.key-0.passwordFile =
  /etc/flume-ng/encryption/key-0.password

Examples 10-14 through 10-16 show some configuration settings
(a1.channels.c1.encryption.keyProvider.keyStorePassword
File, a1.channels.c1.encryption.keys.key-0.passwordFile)
split across two lines. These are meant to improve readability of the
examples, but are not valid for a Flume configuration file. All set‐
ting names and values must be on the same line.

Over time, it might become necessary to rotate in a new encryption key to mitigate
the risk of an older key becoming compromised. Flume supports configuring multi‐
ple keys for decryption while only using the latest key for encryption. The old keys
must be maintained to ensure that old logfiles that were written before the rotation
can still be read. We can extend our example in Example 10-15 by generating a new
key and updating Flume to make it the active key.

Example 10-15. Generating a new key for on-disk encrypted file channel

[root@flume01 ~]# keytool -genseckey -alias key-1 -keyalg AES -keysize 256 \
  -validity 9000 -keystore /etc/flume-ng/encryption/flume.keystore \
  -storetype jceks
Enter keystore password:
Enter key password for <key-1>
 (RETURN if same as keystore password):
Re-enter new password:
[root@flume01 ~]# cat > /etc/flume-ng/encryption/key-1.password
key1Password
^D
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[root@flume01 ~]# chmod 640 /etc/flume-ng/encryption/*
[root@flume01 ~]#

Now that we’ve added our new key to the keystore and created the associate key pass‐
word file, we can update Flume’s configuration to make the new key the active key, as
shown in Example 10-16.

Example 10-16. Encrypted file channel new key configuration

a1.channels = c1
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /data/01/flume/checkpoint
a1.channels.c1.dataDirs = /data/02/flume/data,/data/03/flume/data
a1.channels.c1.encryption.cipherProvider = AESCTRNOPADDING
a1.channels.c1.encryption.activeKey = key-1
a1.channels.c1.encryption.keyProvider = JCEKSFILE
a1.channels.c1.encryption.keyProvider.keyStoreFile =
  /etc/flume-ng/encryption/flume.keystore
a1.channels.c1.encryption.keyProvider.keyStorePasswordFile =
  /etc/flume-ng/encryption/keystore.password
a1.channels.c1.encryption.keys = key-0 key-1
a1.channels.c1.encryption.keys.key-0.passwordFile =
  /etc/flume-ng/encryption/key-0.password
a1.channels.c1.encryption.keys.key-1.passwordFile =
  /etc/flume-ng/encryption/key-1.password

Here is a summary of the parameters for configuring file channel encryption:

encryption.activeKey

The alias for the key used to encrypt new data.

encryption.cipherProvider

The type of the cipher provider. Supported providers: AESCTRNOPADDING

encryption.keyProvider

The type of the key provider. Supported providers: JCEKSFILE

encryption.keyProvider.keyStoreFile

The path to the keystore file.

encryption.keyProvider.keyStorePasswordFile

The path to a file that contains the password for the keystore.

encryption.keyProvider.keys

A space-delimited list of key aliases that are or have been the active key.

encryption.keyProvider.keys.<key>.passwordFile

An optional path to a file that contains the password for the key key. If omitted,
the password from the keystore password file is used for all keys.
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1 The Sqoop examples are based on the Apache Sqoop Cookbook by Kathleen Ting and Jarek Jarcec Cecho
(O’Reilly). The example files and scripts used are available from the Apache Sqoop Cookbook project page.

2 If SSL has not yet been configured for MySQL, you can follow the instructions in the MySQL manual.

Sqoop Encryption
Unlike Flume, Sqoop does not have its own native support for encryption over the
wire. This isn’t surprising because Sqoop relies on standard JDBC drivers and/or
optimized connectors that are database specific. However, Sqoop can be configured to
connect to a database that supports SSL with SSL enabled. This will enable encryption
for data that flows through the JDBC channel.

This support is not necessarily limited to the generic JDBC implementation. If the
tool that is used to implement --direct mode supports SSL, you can still encrypt
data even when using the direct connector.

Let’s take a look at how we can use SSL to encrypt traffic between Sqoop and MySQL.1

Examples 10-17 and 10-18 assume that SSL is already configured for MySQL.2 If you
have not already done so, download the MySQL JDBC drivers from MySQL’s connec‐
tor download page. After you download the connector, install it in a location to make
it available to Sqoop, as shown in Example 10-17.

Example 10-17. Installing the MySQL JDBC driver for Sqoop

[root@sqoop01 ~]# SQOOP_HOME=/usr/lib/sqoop
[root@sqoop01 ~]# tar -zxf mysql-connector-java-*.tar.gz
[root@sqoop01 ~]# cp mysql-connector-java-*/mysql-connector-java-*-bin.jar \
  ${SQOOP_HOME}/lib
[root@sqoop01 ~]#

When the driver is in place, you can test the connection by using Sqoop’s list-
tables command, as shown in Example 10-18.

Example 10-18. Testing SSL connection by listing tables

[alice@sqoop01 ~]$ URI="jdbc:mysql://mysql01.example.com/sqoop"
[alice@sqoop01 ~]$ URI="${URI}?verifyServerCertificate=false"
[alice@sqoop01 ~]$ URI="${URI}&useSSL=true"
[alice@sqoop01 ~]$ URI="${URI}&requireSSL=true"
[alice@sqoop01 ~]$ sqoop list-tables --connect ${URI} \
  --username sqoop -P
Enter password:
cities
countries
normcities
staging_cities
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visits
[alice@sqoop01 ~]$

The parameters that tell the MySQL JDBC driver to use SSL encryption are provided
as options to the JDBC URI passed to Sqoop:

verifyServerCertificate

Controls whether the client should validate the MySQL server’s certificate. If set
to true, you also need to set trustCertificateKeyStoreUrl, trustCertificate
KeyStoreType, and trustCertificateKeyStorePassword.

useSSL

When set to true, the client will attempt to use SSL when talking to the server.

requireSSL

When set to true, the client will reject connections if the server doesn’t support
SSL.

Now let’s try importing a table over SSL in Example 10-19.

Example 10-19. Importing a MySQL table over SSL

[alice@sqoop01 ~]$ URI="jdbc:mysql://mysql01.example.com/sqoop"
[alice@sqoop01 ~]$ URI="${URI}?verifyServerCertificate=false"
[alice@sqoop01 ~]$ URI="${URI}&useSSL=true"
[alice@sqoop01 ~]$ URI="${URI}&requireSSL=true"
[alice@sqoop01 ~]$ sqoop import --connect ${URI} \
  --username sqoop -P --table cities
Enter password:
...
14/06/27 16:09:07 INFO mapreduce.ImportJobBase: Retrieved 3 records.
[alice@sqoop01 ~]$ hdfs dfs -cat cities/part-m-*
1,USA,Palo Alto
2,Czech Republic,Brno
3,USA,Sunnyvale
[alice@sqoop01 ~]$

You can see that it is as simple as once again including the SSL parameters in the
JDBC URI. We can confirm that the SSL parameters are used while the job executes
by looking at the configuration of the job in the Job History Server’s page, as shown
in Figure 10-2.
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Figure 10-2. Job History Server page showing use of SSL JDBC settings

In the previous example, we set verifyServerCertificate to false. While this is
useful for testing, in a production setting we’d much rather verify that the server we’re
connecting to is in fact the server we expect it to be. Let’s see what happens if we
attempt to set that parameter to true in Example 10-20.

Example 10-20. Certificate verification fails without a truststore

[alice@sqoop01 ~]$ URI="jdbc:mysql://mysql01.example.com/sqoop"
[alice@sqoop01 ~]$ URI="${URI}?verifyServerCertificate=true"
[alice@sqoop01 ~]$ URI="${URI}&useSSL=true"
[alice@sqoop01 ~]$ URI="${URI}&requireSSL=true"
[alice@sqoop01 ~]$ sqoop list-tables --connect ${URI} \
  --username sqoop -P
Enter password:
14/06/30 10:52:29 ERROR manager.CatalogQueryManager: Failed to list tables
com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: Communications link failure

The last packet successfully received from the server was 1,469 milliseconds ago.  Th
e last packet sent successfully to the server was 1,464 milliseconds ago.
 at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
...
 at org.apache.sqoop.Sqoop.main(Sqoop.java:240)
Caused by: javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorExcep
tion: PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderExc
eption: unable to find valid certification path to requested target
...
[alice@sqoop01 ~]$

Unsurprisingly, this didn’t work, as Java’s standard certificate truststores don’t include
our MySQL server’s certificate as a trusted certificate. The key error message to look
for when diagnosing these kinds of trust issues is unable to find valid certifica
tion path to requested target. That basically means that there is no signing path
from any of our trusted certificates to the server’s certificate. The easiest way to rem‐
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edy this is to import the MySQL server’s certificate into a truststore and instruct the
MySQL JDBC driver to use that truststore when connecting, as shown in
Example 10-21.

Example 10-21. Listing tables with a local truststore

[alice@sqoop01 ~]$ keytool \
  -import \
  -alias mysql.example.com \
  -file mysql.example.com.crt \
  -keystore sqoop-jdbc.ts
Enter keystore password:
Re-enter new password:
Owner: EMAILADDRESS=admin@example.com, CN=mysql.example.com, O="Cluster, Inc.",
L=San Francisco, ST=California, C=US
Issuer: EMAILADDRESS=admin@example.com, CN=mysql.example.com, O="Cluster, Inc."
, L=San Francisco, ST=California, C=US
Serial number: d7f528349bee94f3
Valid from: Fri Jun 27 13:59:05 PDT 2014 until: Sat Jun 27 13:59:05 PDT 2015
Certificate fingerprints:
  MD5:  38:9E:F4:D0:4C:14:A8:DF:06:EC:A5:59:76:D1:0C:21
  SHA1: AD:D0:CB:E2:70:C1:89:83:22:32:DE:EF:E5:2B:E5:4F:7E:49:9E:0A
  Signature algorithm name: SHA1withRSA
  Version: 1
Trust this certificate? [no]:  yes
Certificate was added to keystore
[alice@sqoop01 ~]$ URI="jdbc:mysql://mysql01.example.com/sqoop"
[alice@sqoop01 ~]$ URI="${URI}?verifyServerCertificate=true"
[alice@sqoop01 ~]$ URI="${URI}&useSSL=true"
[alice@sqoop01 ~]$ URI="${URI}&requireSSL=true"
[alice@sqoop01 ~]$ URI="${URI}&trustCertificateKeyStoreUrl=file:sqoop-jdbc.ts
[alice@sqoop01 ~]$ URI="${URI}&trustCertificateKeyStoreType=JKS"
[alice@sqoop01 ~]$ URI="${URI}&trustCertificateKeyStorePassword=password"
[alice@sqoop01 ~]$ sqoop list-tables --connect ${URI} \
  --username sqoop -P
Enter password:
cities
countries
normcities
staging_cities
visits
[alice@sqoop01 ~]$

Here, we first create a truststore with the MySQL server’s certificate and then we
point the MySQL JDBC driver to the truststore. This requires us to set some addi‐
tional parameters in the JDBC URI, namely:

trustCertificateKeyStoreUrl

A URL pointing to the location of the keystore used to verify the MySQL server’s
certificate.
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trustCertificateKeyStoreType

The type of the keystore used to verify the MySQL server’s certificate.

trustCertificateKeyStorePassword

The password of the keystore used to verify the MySQL server’s certificate.

Notice that we specify the location of the truststore with a relative file:<URI>. This
will become important in the next example. Now that we can list tables, lets try doing
an import in Example 10-22.

Example 10-22. Importing tables with a truststore

[alice@sqoop01 ~]$ URI="jdbc:mysql://mysql01.example.com/sqoop"
[alice@sqoop01 ~]$ URI="${URI}?verifyServerCertificate=true"
[alice@sqoop01 ~]$ URI="${URI}&useSSL=true"
[alice@sqoop01 ~]$ URI="${URI}&requireSSL=true"
[alice@sqoop01 ~]$ URI="${URI}&trustCertificateKeyStoreUrl=file:sqoop-jdbc.ts"
[alice@sqoop01 ~]$ URI="${URI}&trustCertificateKeyStoreType=JKS"
[alice@sqoop01 ~]$ URI="${URI}&trustCertificateKeyStorePassword=password"
[alice@sqoop01 ~]$ sqoop import \
  -files sqoop-jdbc.ts \
  --connect ${URI} \
  --username sqoop \
  -P \
  --table cities
Enter password:
...
14/06/30 10:57:13 INFO mapreduce.ImportJobBase: Retrieved 3 records.
[alice@sqoop01 ~]$

Not much has changed, except we’re using the same URI as the last list-tables
example and we’ve added a -files command-line argument. The -files switch will
place the list of files into Hadoop’s distributed cache. The distributed cache copies the
files to each node in the cluster and places them in the working directory of the run‐
ning task. This is useful, as it means our specification for the trustCertificateKeyS
toreUrl works for both the local machine and all of the nodes where tasks are
executed. That is why we wanted the truststore to be in the working directory where
we launched the Sqoop job.

Encryption support is not limited to generic mode. In particular, MySQL’s direct
mode uses the mysqldump and mysqlimport tools, which support SSL. Let’s see how
we’d enable SSL in direct mode in Example 10-23.

Example 10-23. Importing tables with a truststore using direct mode

[alice@sqoop01 ~]$ URI="jdbc:mysql://mysql01.example.com/sqoop"
[alice@sqoop01 ~]$ URI="${URI}?verifyServerCertificate=true"
[alice@sqoop01 ~]$ URI="${URI}&useSSL=true"
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[alice@sqoop01 ~]$ URI="${URI}&requireSSL=true"
[alice@sqoop01 ~]$ URI="${URI}&trustCertificateKeyStoreUrl=file:sqoop-jdbc.ts"
[alice@sqoop01 ~]$ URI="${URI}&trustCertificateKeyStoreType=JKS"
[alice@sqoop01 ~]$ URI="${URI}&trustCertificateKeyStorePassword=password"
[alice@sqoop01 ~]$ sqoop import \
  -files sqoop-jdbc.ts,mysql.example.com.crt \
  --connect ${URI} \
  --username sqoop \
  -P \
  --table cities \
  --direct \
  -- \
    --ssl \
    --ssl-ca=mysql.example.com \
    --ssl-verify-server-cert
Enter password:
...
14/06/30 15:32:43 INFO mapreduce.ImportJobBase: Retrieved 3 records.
[alice@sqoop01 ~]$

Again, this is very similar to our last example. The main differences are that we added
mysql.example.com.crt to the -files switch so that the nodes will have the PEM-
formated certificate file that will be required by the mysqldump tool. We also added
the --direct switch to enable direct mode. Finally, we added a -- switch followed by
--ssl, --ssl-ca=mysql.example.com, and --ssl-verify-server-cert. The --

switch indicates that all following arguments should be passed to the tool that imple‐
ments direct mode. The rest of the arguments will be processed by mysqldump to
enable SSL, set the location of the CA certificate, and to tell mysqldump to verify the
MySQL server’s certificate.

Ingest Workflows
So far, we’ve looked at how data is commonly ingested into a Hadoop environment
and the different options for confidentiality, integrity, and availability for those ingest
pipelines. However, ingesting data is typically part of an overall ETL process and
additional considerations must be made in the context of the overall ETL flow.

One detail that we glossed over is where tools like Sqoop are launched from. Typically,
you want to limit the interfaces that users have access to. As described in “Remote
Access Controls” on page 43, there are numerous ways that access to remote proto‐
cols can be secured, and the exact architecture will depend on your needs. The most
common way of limiting access to edge services, including ingest, is to deploy serv‐
ices like Flume and Sqoop to edge nodes. Edge nodes are simply servers that have
access to both the internal Hadoop cluster network and the outside world. Typical
cluster deployments will lock down access to specific ports on specific hosts through
the use of either host or network firewalls. In the context of data ingest, we can
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restrict the ability to push data to a Hadoop cluster through the edge nodes while still
deploying pull-based mechanisms, such as Sqoop, to perform parallel ingest without
opening up access to sensitive Hadoop services to the world.

Limiting remote login capabilities to only edge nodes goes a long way toward mitigat‐
ing the risk of having users be physically logged into a Hadoop cluster. It allows you
to concentrate your monitoring and security auditing while at the same time reducing
the population of potential bad actors. When building production data flows, it’s
common to set up dedicated ETL accounts or groups that will execute the overall
workflow. For organizations that require detailed auditing, it’s recommended that
actions be initiated by individual user accounts to better track activity back to a per‐
son.

In addition to Flume and Sqoop, edge nodes may run proxy services or other remote
user protocols. For example, HDFS supports a proxy server called HttpFS, which
exposes a read/write REST interface for HDFS. Just as with HDFS itself, HttpFS fully
supports Kerberos-based authentication, and the same authorization controls built
into HDFS apply when it’s accessed through HttpFS. Running HttpFS on an edge
node can be useful for allowing limited access to the data stored in HDFS and can
even be used for certain data ingest use cases.

Another common edge node service is Oozie. Ooze is a workflow execution and
scheduling tool. Complex workflows that combine Sqoop jobs, Hive queries, Pig
scripts, and MapReduce jobs can be composed into single units and can be reliably
executed and scheduled using Oozie. Oozie also provides a REST interface that sup‐
ports Kerberos-based authentication and can be safely exposed to an edge node.

For some use cases, it is necessary to stage files on an edge node before they are
pushed into HDFS, HBase, or Accumulo. When creating these local disk (or some‐
times NFS-mounted) staging directories, it is important to use your standard operat‐
ing system controls to limit access to only those users authorized to access the data.
Again, it’s useful to define one or more ETL groups and limit the access to raw data to
these relatively trusted groups.

Enterprise Architecture
This discussion of data ingest helps to illustrate a useful point: Hadoop is never
deployed in a vacuum. Hadoop necessarily integrates with your existing and evolving
enterprise architecture. This means that you can’t consider Hadoop security on its
own. When deciding how to secure your cluster, you must look at the requirements
that already apply to your data and systems. These requirements will be driven by
enterprise security standards, threat models, and specific dataset sensitivity. In partic‐
ular, it doesn’t make sense to lock down a Hadoop cluster or the data ingest pipeline
that feeds the cluster if the source of the data has no security wrapped around it.
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This is no different than when data warehousing systems were introduced to the
enterprise. In a typical deployment, applications are tightly coupled with the transac‐
tional systems that back them. This makes security integration straightforward
because access to the backend database is typically limited to the application that is
generating and serving the data. Some attention to security detail gets introduced as
soon as that transactional data is important enough to back up. However, this is still a
relatively easy integration to make, because the backups can be restricted to trusted
administrators that already have access to the source systems.

Where things get interesting is when you want to move data from these transactional
systems into analytic data warehouses so that analysis can be performed independ‐
ently of the application. Using a traditional data warehouse system, you would com‐
pare the security configuration of the transactional database with the features of the
new data warehouse. This works fine for securing that data once it’s in the warehouse
and you can apply the same analysis to the database-based authorization features
available in Sentry. However, care must be taken in how the data is handled between
the transactional system and the analysis platform.

With these traditional systems, this comes down to securing the ETL grid that is used
to load data into the data warehouse. It’s clear that the same considerations that you
make to your ETL grid would apply to the ingest pipeline of a Hadoop cluster. In par‐
ticular, you have to consider when and where encryption was necessary to protect the
confidentiality of data. You need to pay close attention to how to maintain the integ‐
rity of your data. This is especially true of traditional ETL grids that might not have
enough storage capacity to maintain raw data after it has been transformed. And
lastly, you care about the availability of the ETL grid to make sure that it does not
impact the ability of the source systems or data warehouse to meet the requirements
of their users. This is exactly the same process we went through in our discussion of
data ingest into Hadoop in general, and with Flume and Sqoop in particular.

Again, this works in both directions. It doesn’t make sense to apply security controls
to Hadoop at ingest or query time that are not maintained in source systems, just as it
doesn’t make sense to leave Hadoop wide open after careful work has gone into
designing the security protections of your existing transactional or analytic tools. The
perfect time to consider all of these factors is when you’re designing your ingest pipe‐
line. Because that is where Hadoop will integrate with the rest of your enterprise
architecture, it’s the perfect time to compare security and threat models and to care‐
fully consider the security architecture of your overall Hadoop deployment.

Summary
In this chapter, we focused on the movement of data from external sources to
Hadoop. After briefly talking about batch file ingest, we moved on to focus on the
ingestion of event-based data with Flume, and the ingestion of data sourced from
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relational databases using Sqoop. What we found is that these common mechanisms
for ingest have the ability to protect the integrity of data in transit. A key takeaway
from this chapter is that the protection of data inside the cluster needs to be extended
all the way to the source of ingest. This mode of protection should match the level in
place at the source systems.

Now that we have covered protection of both data ingestion and data inside the clus‐
ter, we can move on to the final topic of data protection, which is to secure data
extraction and client access.
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CHAPTER 11

Data Extraction and Client Access Security

One of the core philosophies of Hadoop is to bring processing to the data rather than
the other way around, so our focus has been on how security works inside the cluster.
In this chapter, we’ll cover the last mile of securing a Hadoop cluster, namely securing
client access and data extraction. While most of the processing of Hadoop data is
done on the cluster itself, users will access that data via external tools, and some use
cases, such as an enterprise data warehouse, require extracting potentially large vol‐
umes of data for use in specialized tools.

The most basic form of client access comes in the form of command-line tools. As we
described in “Edge Nodes” on page 42, it’s common for clusters to limit external
access to a small set of edge nodes. Users use ssh to remotely log into an edge node
and then use various command-line tools to interact with the cluster. A brief descrip‐
tion of the most common commands is shown in Table 11-1.

Table 11-1. Common command-line tools for client access

Command Description

hdfs dfs -put <src> <dst> Copy a local file into HDFS

hdfs dfs -get <src> <dst> Download a file from HDFS to the local filesystem

hdfs dfs -cat <path> Print the contents of a file to standard out

hdfs dfs -ls <path> List the files and directories in a path

hdfs dfs -mkdir <path> Make a directory in HDFS

hdfs dfs -cp <src> <dst> Copy an HDFS file to a new location
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Command Description

hdfs dfs -mv <src> <dst> Move an HDFS file to a new location

hdfs dfs -rm <path> Remove a file from HDFS

hdfs dfs -rmdir <path> Remove a directory from HDFS

hdfs dfs -chgrp <group> <path> Change the group of a file or directory

hdfs dfs -chmod <mode> <path> Change the permissions on a file or directory

hdfs dfs -chown <owner>[:<group>] 

<path>

Change the owner of a file or directory

yarn jar <jar> [<main-class>] <args> Run a JAR file, typically used to launch a MapReduce or other
YARN job

yarn application -list List running YARN applications

yarn application -kill <app-id> Kill a YARN application

mapred job -list List running MapReduce jobs

mapred job -status <job-id> Get the status of a MapReduce job

mapred job -kill <job-id> Kill a MapReduce job

hive Start a Hive SQL shell (deprecated; use beeline instead)

beeline Start a SQL shell for Hive or Impala

impala-shell Start an Impala SQL shell

hbase shell Start an HBase shell

accumulo shell Start an Accumulo shell

oozie job Run, inspect, and kill Oozie jobs

sqoop export Export a table from HDFS to a database

sqoop import Import a table from a database to HDFS

240 | Chapter 11: Data Extraction and Client Access Security



1 Refer back to Table 4-1 for a refresher on TGTs.

Hadoop Command-Line Interface
The core Hadoop command-line tools (hdfs, yarn, and mapred) only support Ker‐
beros or delegation tokens for authentication. The easiest way to authenticate these
commands is to obtain your Kerberos ticket-granting ticket1 using kinit before exe‐
cuting a command. If you don’t obtain your TGT before executing a Hadoop com‐
mand, you’ll see an error similar to Example 11-1. In particular, you’re looking for the
message failed to find any Kerberos tgt.

Example 11-1. Executing a Hadoop command with no Kerberos ticket-granting ticket

[alice@hadoop01 ~]$ hdfs dfs -cat movies.psv
cat: Failed on local exception: java.io.IOException: javax.security.sasl.SaslExc
eption: GSS initiate failed [Caused by GSSException: No valid credentials provid
ed (Mechanism level: Failed to find any Kerberos tgt)]; Host Details : local hos
t is: "hadoop01.example.com/172.25.2.196"; destination host is: "hadoop02.exampl
e.com":8020;

Now let’s see what happens after Alice first obtains her TGT using kinit

(Example 11-2).

Example 11-2. Executing a Hadoop command after kinit

[alice@hadoop01 ~]$ kinit
Password for alice@EXAMPLE.COM:
[alice@hadoop01 ~]$ hdfs dfs -cat movies.psv
1|Toy Story (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Toy%20Story%20(
...

This time the command completes successfully and prints the contents of the file
movies.psv. One of the advantages to using Kerberos for authentication is that the
user doesn’t need to authenticate individually for each command. If you kinit at the
beginning of your session or have your Linux system configured to obtain your Ker‐
beros TGT during login, then you can run any number of Hadoop commands and all
of the authentication will happen behind the scenes.

While not typically done, it is possible for command-line tools to authenticate with
HDFS using delegation tokens. In order to fetch a delegation token, you need to be
authenticated with Kerberos. HDFS provides a command-line tool for fetching a del‐
egation token to a file. That token can then be used for subsequent HDFS commands
by setting the HADOOP_TOKEN_FILE_LOCATION environment variable. See Example 11-3
for an example using delegation tokens.
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Example 11-3. Executing a Hadoop command using delegation tokens

[alice@hadoop01 ~]$ kinit
Password for alice@EXAMPLE.COM:
[alice@hadoop01 ~]$ hdfs fetchdt --renewer alice nn.dt
14/10/21 19:19:32 INFO hdfs.DFSClient: Created HDFS_DELEGATION_TOKEN token 2 for
 alice on 172.25.3.210:8020
Fetched token for 172.25.3.210:8020 into file:/home/alice/nn.dt
[alice@hadoop01 ~]$ kdestroy
[alice@hadoop01 ~]$ export HADOOP_TOKEN_FILE_LOCATION=nn.dt
[alice@hadoop01 ~]$ hdfs dfs -cat movies.psv
1|Toy Story (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Toy%20Story%20(
...

Delegation tokens are completely separate from Kerberos-based authentication. Once
issued, a delegation token is valid for 24 hours by default and can be renewed for up
to 7 days. You can change how long the token is initially valid for by setting
dfs.namenode.delegation.token.renewal-interval, which is expressed as the
amount of time in milliseconds the token is valid before needing to be renewed. You
can set dfs.namenode.delegation.token.max-lifetime to change the max renewal
lifetime of a token. This setting is also in milliseconds. These tokens are separate from
the Kerberos system, so if your Kerberos credentials are revoked in the KDC, your
delegation tokens will continue to remain valid for their designated lifetime. There is
no administrative way to forcibly revoke delegation tokens.

The Hadoop command-line tools don’t have their own authorization model. Rather,
they rely on the cluster configuration to control what users can access. For a refresher
on Hadoop authorization, refer back to “HDFS Authorization” on page 97, “Service-
Level Authorization” on page 101, and “MapReduce and YARN Authorization” on
page 114.

Securing Applications
When developing an application there are a lot of design choices that must be made,
such as what framework to use for the user interface or what system to use for back‐
end storage. One of the most critical factors in application design is how to secure an
application. This is often made more complicated by the large number of interfaces
that the application will integrate with.

There are generally two schools of thought when it comes to where data authoriza‐
tion should take place. On the one hand, security in general (and authorization in
particular) is viewed as an application-level concern. This view makes sense as appli‐
cations typically have a lot more context with respect to how data should be con‐
trolled. The downside to punting authorization to applications is that it means each
application has to re-implement common services. Over time, databases evolved so
that the database can store and enforce authorization controls while letting the appli‐
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cation push authorization labels down to the database. This was one of the major
motivations for adding cell-level visibility tags to Accumulo and cell-level ACLs and
visibility tags to HBase.

Closely related to where authorization decisions are made is how deep do user
accounts go? Historically, databases have maintained their own private identity direc‐
tories. This often made it complicated to try and replicate each user in a corporate
directory in the database. Accumulo still uses its own identity directory so it shares
this drawback. In response to this, many application developers adopted a pattern
where the database would store application-level accounts and it was the application’s
responsibility to downgrade its access to take advantage of database-level authoriza‐
tions.

The ability to downgrade access is why Accumulo requires users to pass in a list of
authorizations when accessing Accumulo via the Java API. This allows an application
to perform authentication with the end user and to look up the user’s authorizations
using a central service. The application will then pass these end user authorizations
when reading data. Accumulo will automatically intersect the application’s authoriza‐
tions with the end user’s authorizations. This means that you can control the maxi‐
mum level of data that an application can access while still providing end users with
finer-grained access based on their individual level.

Ultimately, it’s an application developer’s prerogative how deep they want end-user
authentication to go. Over time, as applications and the Hadoop-based data stores
integrate into the same identity directories, it will be easier for application developers
to make an informed design decision. This is not an area of security where one size
fits all, and it’s constantly evolving.

HBase
In Chapter 5, we saw how to configure HBase to use Kerberos for authentication.
HBase clients can access HBase via the shell, the Java API, or through one of the
HBase gateway servers. All of the client access APIs support Kerberos for authentica‐
tion and require that the user first obtain a Kerberos TGT before connecting.

The method of client access depends on your use case. For database administrative
access such as creating, modifying, or deleting tables, the HBase shell is commonly
used. When using MapReduce or another data processing framework, access is
through the Java API. Other types of HBase applications may use the Java API
directly or access HBase through a gateway. It’s especially common to use one of the
gateway APIs when accessing HBase from a language other than Java. The gateways
also provide a choke point for administrators to restrict direct access to HBase. Next,
we’ll see how to securely interact with HBase via the shell before discussing how to
configure the HBase gateways with security.
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HBase Shell
When using the shell, the user typically obtains their TGT by executing kinit. If you
try to run the shell without running kinit, you’ll see something similar to
Example 11-4. What you’re looking for is again the Failed to find any Kerberos
tgt at the end of the stack trace.

Example 11-4. Using the HBase shell with no Kerberos ticket-granting ticket

[alice@hadoop01 ~]$ hbase shell
14/11/13 14:45:53 INFO Configuration.deprecation: hadoop.native.lib is depre
cated. Instead, use io.native.lib.available
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 0.98.6, rUnknown, Sat Oct 11 15:15:15 PDT 2014

hbase(main):001:0> list
TABLE
14/11/13 14:46:00 WARN ipc.RpcClient: Exception encountered while connecting
 to the server : javax.security.sasl.SaslException: GSS initiate failed [Cau
sed by GSSException: No valid credentials provided (Mechanism level: Failed
to find
any Kerberos tgt)]
14/11/13 14:46:00 FATAL ipc.RpcClient: SASL authentication failed. The most
likely cause is missing or invalid credentials. Consider 'kinit'.
javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSExcepti
on: No valid credentials provided (Mechanism level: Failed to find any Kerberos tgt)]
...

ERROR: No valid credentials provided (Mechanism level: Failed to find any Ke
rberos tgt)

Here is some help for this command:
List all tables in hbase. Optional regular expression parameter could
be used to filter the output. Examples:

  hbase> list
  hbase> list 'abc.*'
  hbase> list 'ns:abc.*'
  hbase> list 'ns:.*'

hbase(main):002:0>

Now let’s try that again in Example 11-5, but this time we’ll obtain our TGT using
kinit before executing the shell.
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Example 11-5. Using the HBase shell after kinit

[alice@hadoop01 ~]$ kinit
Password for alice@EXAMPLE.COM:
[alice@hadoop01 ~]$ hbase shell
14/11/13 14:53:56 INFO Configuration.deprecation: hadoop.native.lib
 is deprecated. Instead, use io.native.lib.available
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 0.98.6, rUnknown, Sat Oct 11 15:15:15 PDT 2014

hbase(main):001:0> list
TABLE
analytics_demo
document_demo
2 row(s) in 3.1900 seconds

=> ["analytics_demo", "document_demo"]
hbase(main):002:0> whoami
alice@EXAMPLE.COM (auth:KERBEROS)
    groups: alice, hadoop-users

hbase(main):003:0>

The HBase shell doesn’t have unique authorization configuration and all access will
be authorized per the configuration of HBase authorization. See “HBase and Accu‐
mulo Authorization” on page 126 for a refresher on HBase authorization.

HBase REST Gateway
HBase ships with two implementations of gateway servers, a REST server and a Thrift
server. Both implementations allow access to HBase from languages other than Java
and they both support authentication, impersonation, and confidentiality in the form
of encryption. The decision of which gateway to deploy depends on the needs of
application developers. Direct access to a gateway from a web application via Java‐
Script will typically use the REST interface, whereas access from other languages will
typically use the Thrift API. Now let’s see how to configure the REST gateway with
authentication.

The first step is to create a Kerberos principal for the REST gateway to talk to the rest
of HBase. This is a service principal and should include the hostname of the server
running the REST gateway—for example, rest/rest.example.com@EXAMPLE.COM
where rest.example.com is replaced with the fully qualified domain name of the
server the REST gateway is run on. After creating the principal and exporting a key‐
tab file with the principal’s key, you need to configure the REST server to use Ker‐
beros to talk to a secure HBase cluster. Let’s set the following in the hbase-site.xml file:

  <property>
    <name>hbase.rest.keytab.file</name>
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    <value>/etc/hbase/conf/hbase-rest.keytab</value>
  </property>
  <property>
    <name>hbase.rest.kerberos.principal</name>
    <value>rest/_HOST@EXAMPLE.COM</value>
  </property>

If HBase authorization is turned on, you also need to create a top-level ACL for the
principal the REST server is using. Assuming you want to grant everything (includ‐
ing administrative access) through the REST gateway, then you would use the HBase
shell to execute the following (see “HBase and Accumulo Authorization” on page 126
for a refresher on HBase authorization):

hbase(main):001:0> list grant 'rest', 'RWCA'

If you used a different principal name, then replace rest with the short name for
your principal. The next step is to enable authentication with REST clients through
SPNEGO/Kerberos. Per the SPNEGO specification, you need to create a principal
with the format HTTP/rest.example.com@EXAMPLE.COM where rest.example.com is
replaced with the fully qualified domain name of the server the REST gateway is run
on. Let’s set the following in hbase-site.xml to turn on authentication:

  <property>
    <name>hbase.rest.authentication.type</name>
    <value>kerberos</value>
  </property>
  <property>
    <name>hbase.rest.authentication.kerberos.principal</name>
    <value>HTTP/_HOST@EXAMPLE.COM</value>
  </property>
  <property>
    <name>hbase.rest.authentication.kerberos.keytab</name>
    <value>/etc/hbase/conf/hbase-rest.keytab</value>
  </property>

In this example, we configured the REST authentication keytab to the same location
as the HBase authentication keytab. This means that you either need to export both
keys at the same time or use ktutil to combine the keys for both principals into a
single keytab file. Alternatively, you can use different keytab files for the REST client
authentication and the HBase authentication.

The REST server always authenticates with HBase using the hbase.rest.ker
beros.principal, but it will perform actions on behalf of the user that authenticated
with the REST server. In order to do this, the REST server must have privileges to
impersonate other users. We can use the same hadoop.proxyuser.<proxy>.groups
and hadoop.proxyuser.<proxy>.hosts settings we described in “Impersonation” on
page 82. As a refresher, these settings control which users the proxy user can imperso‐
nate and which hosts they can impersonate from. The values of those settings are
comma-separated lists of the groups and hosts, respectively, or * to mean all groups/
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hosts. For example, if you want the rest user to impersonate any users in the hbase-
users group from any host, you’d add the following on the hbase-site.xml file on the
HBase Master:

  <property>
    <name>hadoop.security.authorization</name>
    <value>true</value>
  </property>
  <property>
    <name>hadoop.proxyuser.rest.groups</name>
    <value>hbase-users</value>
  </property>
  <property>
    <name>hadoop.proxyuser.rest.hosts</name>
    <value>*</value>
  </property>

The REST server also supports remote REST clients impersonating end users. This is
called two-level user impersonation because the REST client impersonates a user who
is then impersonated by the REST server. This lets you run an application that
accesses HBase through the REST server where the application can pass user creden‐
tials all the way to HBase. This level of impersonation is enabled by setting
hbase.rest.support.proxyuser to true. You can control which end users an appli‐
cation accessing the REST server can impersonate by setting the hadoop.prox
yuser.<app user>.groups configuration setting. Let’s say we have an application
called whizbang that can impersonate any of the users in the whizbang-users group.
We would set the following in the hbase-site.xml file on the REST server:

  <property>
    <name>hbase.rest.support.proxyuser</name>
    <value>true</value>
  </property>
  <property>
    <name>hadoop.security.authorization</name>
    <value>true</value>
  </property>
  <property>
    <name>hadoop.proxyuser.whizbang.groups</name>
    <value>whizbang-users</value>
  </property>
  <property>
    <name>hadoop.proxyuser.whizbang.hosts</name>
    <value>*</value>
  </property>

Figure 11-1 shows how two-level impersonation works through the HBase REST
server. The end user, Alice, authenticates with an LDAP username and password to
prove her identity to Hue (1). Hue then authenticates with Kerberos using the hue/
hue.example.com@EXAMPLE.COM principal and passing a doAs user of alice (2).
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Finally, the HBase REST server authenticates with Kerberos using the rest/
rest.example.com@EXAMPLE.COM principal and passing a doAs user of alice (3). This
effectively propagates Alice’s credentials all the way from the user to HBase.

Figure 11-1. Two-level user impersonation

The REST server supports encrypting the connection between clients and the REST
server by enabling TLS/SSL. We can enable SSL by setting hbase.rest.ssl.enabled
to true and configuring the REST server to use a Java keystore file with the private
key and certificate. If our keystore is in /etc/hbase/conf/rest.example.com.jks and the
key and keystore use the password secret, then we’d set the following in the hbase-
site.xml file on the REST server:

  <property>
    <name>hbase.rest.ssl.enabled</name>
    <value>true</value>
  </property>
  <property>
    <name>hbase.rest.ssl.keystore.store</name>
    <value>/etc/hbase/conf/rest.example.com.jks</value>
  </property>
  <property>
    <name>hbase.rest.ssl.keystore.password</name>
    <value>secret</value>
  </property>
  <property>
    <name>hbase.rest.ssl.keystore.keypassword</name>
    <value>secret</value>
  </property>

If the REST server certificate isn’t signed by a trusted certificate, then you need to
import the certificate into the Java central truststore using the keytool command-line
tool:

[hbase@rest ~]$ keytool -import -trustcacerts -file rest.example.com.crt \
  -keystore $JAVA_HOME/jre/lib/security/cacerts
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The preceding keytool command imports a certificate into Java’s
central trusted certificates store. That means that any certificate
you import will be trusted by any Java application—not just HBase
—that is using the given JRE.

HBase Thrift Gateway
Like the REST gateway, the HBase Thrift gateway supports user authentication with
Kerberos. The first step is to create a Kerberos principal for the Thrift gateway to talk
to the rest of HBase. This is a service principal and should include the hostname of
the server running the Thrift gateway (e.g., thrift/thrift.example.com@EXAM
PLE.COM). After creating the principal and exporting a keytab file with the principal’s
key, you need to configure the Thrift server to use Kerberos to talk to a secure HBase
cluster. Let’s set the following in the hbase-site.xml file:

  <property>
    <name>hbase.thrift.keytab.file</name>
    <value>/etc/hbase/conf/hbase.keytab</value>
  </property>
  <property>
    <name>hbase.thrift.kerberos.principal</name>
    <value>thrift/_HOST@EXAMPLE.COM</value>
  </property>

If HBase authorization is turned on, you also need to create a top-level ACL for the
principal the Thrift server is using. Assuming you want to grant everything, includ‐
ing administrative access, through the Thrift gateway, then you would use the HBase
shell to execute the following:

hbase(main):001:0> list grant 'thrift', 'RWCA'

At this point, the Thrift gateway will be able to access a secure HBase cluster but won’t
do user authentication. You need to set hbase.thrift.security.qop to one of the
following three values to enable authentication:

auth

Enable authentication

auth-int

Enable authentication and integrity checking

auth-conf

Enable authentication, confidentiality (encryption), and integrity checking

As with the REST gateway, we need to enable the Thrift user to impersonate the users
that authenticate with the Thrift gateway. Again, we’ll use the hadoop.proxyuser set‐
tings in the HBase Master’s hbase-site.xml file:
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  <property>
    <name>hadoop.security.authorization</name>
    <value>true</value>
  </property>
  <property>
    <name>hadoop.proxyuser.thrift.groups</name>
    <value>hbase-users</value>
  </property>
  <property>
    <name>hadoop.proxyuser.thrift.hosts</name>
    <value>*</value>
  </property>

Unlike the REST gateway, the Thrift gateway does not support application users
impersonating end users. This means that if an application is accessing HBase
through the Thrift gateway, then all access will proceed as the app user. In the upcom‐
ing HBase 1.0, the ability for the Thrift gateway to do impersonation is being added
when the Thrift gateway is configured to use HTTPS as the transport. The work for
this is being tracked in HBASE-12640.

Figure 11-2 shows how impersonation works with the Thrift gateway. Suppose you
have a web application that uses the Thrift gateway to access HBase. The user, Alice,
authenticates with the web application using PKI (1). The application then authenti‐
cates with the Thrift gateway using Kerberos (2). Because one level of impersonation
is supported, the Thrift gateway authenticates with HBase using the thrift/
thrift.example.com@EXAMPLE.COM principal and a doAs of app (3). HBase won’t
know that the original end user was Alice and it will be up to the web application to
apply additional authorization controls before showing results to Alice. Take a look
back at Figure 11-1 and compare and contrast one-level and two-level user imperso‐
nation.

Figure 11-2. Thrift gateway application-level impersonation
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Accumulo
Accumulo client access can be achieved with two mechanisms: the shell and the
proxy server. The Accumulo shell is similar to the HBase shell, whereas the proxy
server is similar to the HBase thrift server gateway.

Accumulo Shell
Unlike HBase, Accumulo uses usernames and passwords for authentication. Support
for Kerberos authentication of clients is coming in Accumulo 1.7.0 and is tracked in
ACCUMULO-1815. That means that clients must provide both when connecting to
Accumulo. When using the Accumulo shell, you can pass a username with the -u or
--user command-line parameters or you can let it default to the Linux username
where you’re running the shell. If you don’t pass any parameters, Accumulo will
prompt you for the password on stdin. Alternatively, you can have the password pro‐
vided on the command line, in a file, or in an environment variable. These methods
are enabled by passing the -p or --password parameters with an option of pass:<lit
eral password>, file:<path to file with password>, or env:<environment
variable with password>, respectively. You can also change the user after launching
the Accumulo shell using the user command. The user will be prompted for their
password. See Example 11-6 to see the various methods of passing a password to the
Accumulo shell. Notice that when the wrong password is provided, the shell will print
the message Username or Password is Invalid.

Example 11-6. Authenticating with the Accumulo shell

[alice@hadoop01 ~]$ accumulo shell
Password: ***
2014-11-13 15:19:54,225 [shell.Shell] ERROR: org.apache.accumulo.core.client
.AccumuloSecurityException: Error BAD_CREDENTIALS for user alice - Username
or Password is Invalid
[alice@hadoop01 ~]$ accumulo shell
Password: ******

Shell - Apache Accumulo Interactive Shell
-
- version: 1.6.0
- instance name: accumulo
- instance id: 382edcfb-5078-48b4-8570-f61d92915015
-
- type 'help' for a list of available commands
-
alice@accumulo> quit
[alice@hadoop01 ~]$ accumulo shell -p pass:secret

Shell - Apache Accumulo Interactive Shell
-
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- version: 1.6.0
- instance name: accumulo
- instance id: 382edcfb-5078-48b4-8570-f61d92915015
-
- type 'help' for a list of available commands
-
alice@accumulo> quit
[alice@hadoop01 ~]$ accumulo shell -p file:accumulo_pass.txt

Shell - Apache Accumulo Interactive Shell
-
- version: 1.6.0
- instance name: accumulo
- instance id: 382edcfb-5078-48b4-8570-f61d92915015
-
- type 'help' for a list of available commands
-
alice@accumulo> quit
[alice@hadoop01 ~]$ accumulo shell -p env:ACCUMULO_PASS

Shell - Apache Accumulo Interactive Shell
-
- version: 1.6.0
- instance name: accumulo
- instance id: 382edcfb-5078-48b4-8570-f61d92915015
-
- type 'help' for a list of available commands
-
alice@accumulo> user bob
Enter password for user bob: ***
bob@accumulo>

The Accumulo shell doesn’t have unique authorization configuration and all access
will be authorized per the configuration of Accumulo authorization. See “HBase and
Accumulo Authorization” on page 126 for a refresher on Accumulo authorization.

Accumulo Proxy Server
Accumulo has a service called the proxy server, which is similar to HBase’s Thrift
gateway. The proxy server can be deployed to any server where the Java client API
would work. Specifically, that means the server must be able to communicate with the
Accumulo Master, ZooKeeper quorum, NameNodes, and DataNodes. The configura‐
tion for the Accumulo proxy server is set in the $ACCUMULO_HOME/proxy/proxy.prop
erties file. The protocolFactory determines the underlying Thrift protocol that will
be used by the server and the clients. Changing this setting must be coordinated with
the protocol implementation that clients are using. If you need to support multiple
Thrift protocols, you should deploy multiple proxy servers.
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The other setting that must be synced between clients and the proxy server is the
tokenClass. The proxy server doesn’t authenticate clients directly and instead passes
the authentication token provided by the user to Accumulo for authentication. If you
need to support multiple types of authentication tokens simultaneously, you need to
deploy multiple proxy servers.

An example proxy.properties file is shown here:

protocolFactory=org.apache.thrift.protocol.TCompactProtocol$Factory
tokenClass=org.apache.accumulo.core.client.security.tokens.PasswordToken
port=42424
instance=accumulo-instance
zookeepers=zoo-1.example.com,zoo-2.example.com,zoo-3.example.com

Because Accumulo passes the authentication token from the application accessing the
proxy server to Accumulo, you get the equivalent of one level of impersonation, as
shown in Figure 11-2. Accumulo supports downgrading the access of the application
user, so it’s possible for the web application to look up Alice’s authorizations and have
Accumulo’s authorization filter limit access to data that Alice is authorized for.

Oozie
Oozie is a very important tool from a client access perspective. In addition to being
the workflow executor and scheduler for your cluster, Oozie can be used as a gateway
service for clients to submit any type of job. This allows you to shield direct access to
your YARN or MR1 servers from clients while still allowing remote job submission. If
you choose to use this style of architecture, it’s very important to secure your Oozie
server by enabling authentication and authorization. We previously described how to
configure Kerberos authentication in “Oozie” on page 92 while authorization was
detailed in “Oozie Authorization” on page 125.

Once those features are enabled on the server side, they can be used by clients with
little additional configuration. To authenticate with Oozie, you simply need to have a
Kerberos TGT cached on your workstation. This can easily be handled by running
kinit before issuing an Oozie command from the command line. If you run an
Oozie command and see an error that says Failed to find any Kerberos tgt, then
you probably didn’t run kinit:

[alice@edge01 ~]$ oozie jobs -oozie http://oozie01.example.com:11000/oozie
Error: AUTHENTICATION : Could not authenticate, GSSException: No valid crede
ntials provided (Mechanism level: Failed to find any Kerberos tgt)
[alice@edge01 ~]$ klist
klist: No credentials cache found (ticket cache FILE:/tmp/krb5cc_1236000001)
[alice@edge01 ~]$ kinit
Password for alice@EXAMPLE.COM:
[alice@edge01 ~]$ oozie jobs -oozie http://oozie01.example.com:11000/oozie
No Jobs match your criteria!
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While we’ve configured Oozie with authentication and authorization, we haven’t done
anything to guarantee confidentiality of the communication between the Oozie client
and the Oozie server. Fortunately, Oozie supports using HTTPS to encrypt the con‐
nection and provide integrity checks. In order to enable HTTPS, you must get a cer‐
tificate issued to the Oozie server by your certificate authority. See “Flume
Encryption” on page 221 for an example of creating a self-signed certificate.

Once your certificate authority has issued a certificate and you have the certificate
and private key in a PKCS12 file, you can import the certificate and private key into a
Java keystore file. In the following example, we use the same pass phrase, secret, for
both the keystore and the certificate’s private key:

[root@oozie01 ~]# mkdir /etc/oozie/ssl
[root@oozie01 ~]# keytool -v -importkeystore \
  -srckeystore /etc/pki/tls/private/oozie01.example.com.p12 \
  -srcstoretype PKCS12 \
  -destkeystore /etc/oozie/ssl/oozie01.example.com.keystore -deststoretype JKS \
  -deststorepass secret -srcalias oozie01.example.com -destkeypass secret
Enter source keystore password:
[Storing /etc/oozie/ssl/oozie01.example.com.keystore]
[root@oozie01 ~]# chown -R oozie:oozie /etc/oozie/ssl
[root@oozie01 ~]# chmod 400 /etc/oozie/ssl/*
[root@oozie01 ~]# chmod 700 /etc/oozie/ssl

Next, set the environment variables that control the keystore location and password
in the oozie-env.sh file:

export OOZIE_HTTPS_KEYSTORE_FILE=/etc/oozie/ssl/oozie01.example.com.keystore
export OOZIE_HTTPS_KEYSTORE_PASS=secret

The keystore password used here will be visible to anyone that can
perform a process listing on the server running Oozie. You must
protect the keystore file itself with strong permissions to prevent
users from reading or modifying the keystore.

Before you configure Oozie to use HTTPS, you need to make sure the Oozie server
isn’t running. To configure Oozie to use HTTPS, run the following command:

[oozie@oozie01 ~]$ oozie-setup.sh prepare-war -secure

Now if you start the server it will use HTTPS over port 11443. The port can be
changed by setting the OOZIE_HTTPS_PORT environment variable in the oozie-env.sh 
file.

On client machines that will be accessing Oozie, you can simply change the Oozie
URL to https://oozie01.example.com:11443/oozie on the command line. For example:

[alice@edge01 ~]$ oozie jobs -oozie https://oozie01.example.com:11443/oozie
No Jobs match your criteria!
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If you get a SSLHandshakeException error instead of the expected output as shown
here:

[alice@edge01 ~]$ oozie jobs -oozie https://oozie01.example.com:11443/oozie
Error: IO_ERROR : javax.net.ssl.SSLHandshakeException: sun.security.validato
r.ValidatorException: PKIX path building failed: sun.security.provider.certp
ath.SunCertPathBuilderException: unable to find valid certification path to
requested target

Then it means your Oozie server is using a certificate that isn’t signed by a trusted
certificate authority. This can happen if you’re using a self-signed certificate or an
internal CA that isn’t signed by one of the root CAs. Let’s say we have a certificate
authority for the EXAMPLE.COM realm in a file called example-ca.crt. Because we’ll be
importing this into Java’s central truststore, this certificate will be trusted by all Java
applications running on this server, not just Oozie. We can import the certificate into
Java’s central truststore using the following command:

[root@edge01 ~]# keytool -import -alias EXAMPLE.COM -file example-ca.crt \
  -keystore ${JAVA_HOME}/jre/lib/security/cacerts
Enter keystore password:
Owner: CN=Certificate Authority, O=EXAMPLE.COM
Issuer: CN=Certificate Authority, O=EXAMPLE.COM
Serial number: 1
...
Trust this certificate? [no]:  yes
Certificate was added to keystore

The default password for the Java cacerts file is changeit. If Oozie is configured
with HA, then you need to configure your load balancer to do TLS pass-through.
This will allow clients to see the certificate presented by the Oozie servers and won’t
require the load balancer to have its own certificate. When you’re doing TLS pass-
through, you should either use a wildcard certificate or certificates with subject alter‐
nate names that include the load balancer’s fully qualified domain name as a valid
name.

Sqoop
In Chapter 10, we discussed how to protect the confidentiality, integrity, and availa‐
bility of your data ingest pipeline. The same principles hold for securing data extrac‐
tion pipelines. In the case of Sqoop, confidentiality isn’t provided by Sqoop itself but
it may be provided by the drivers that Sqoop uses to talk to an RDBMS server. In
“Sqoop Encryption” on page 229, we showed how you can configure the MySQL
driver to use SSL to encrypt traffic between the MySQL server and the tasks executed
by Sqoop. You can use the same parameters to encrypt the data during an export as
shown in Example 11-7.
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Example 11-7. Exporting a MySQL table over SSL

[alice@sqoop01 ~]$ hdfs dfs -cat cities/*
1,USA,Palo Alto
2,Czech Republic,Brno
3,USA,Sunnyvale
[alice@sqoop01 ~]$ URI="jdbc:mysql://mysql01.example.com/sqoop"
[alice@sqoop01 ~]$ URI="${URI}?verifyServerCertificate=false"
[alice@sqoop01 ~]$ URI="${URI}&useSSL=true"
[alice@sqoop01 ~]$ URI="${URI}&requireSSL=true"
[alice@sqoop01 ~]$ sqoop export --connect ${URI} \
  --username sqoop -P --table cities \
  --export-dir cities
Enter password:
...
14/06/28 17:27:22 INFO mapreduce.ExportJobBase: Exported 3 records.
[alice@sqoop01 ~]$

SQL Access
As described in Chapter 1, there are two popular ways for accessing Hadoop data
using SQL: Hive and Impala. Both Hive and Impala support both Kerberos and
LDAP-based username/password authentication. Users don’t typically interact with
Hive or Impala directly and instead rely on SQL shells or JDBC drivers.

The rest of this section covers configuring Impala and Hive with their supported
authentication protocols and how to pass authentication details as a client. Authoriza‐
tion for Impala and Hive is provided by Sentry, which is covered in Chapter 7.

Impala
Impala can be configured to use Kerberos-only, LDAP-only, or both LDAP and Ker‐
beros for authentication. When Impala is run on a Hadoop cluster that has Kerberos
enabled, it must be configured with Kerberos so that Impala can securely communi‐
cate with HDFS and YARN.

Using Impala with Kerberos authentication
When Kerberos is enabled for communication with Hadoop, then Kerberos-based cli‐
ent authentication is automatically enabled. Impala uses command-line parameters
for configuration. You should set the --principal and --keytab_file parameters on
the impalad, statestored, and catalogd daemons. The --principal should be set
to the Kerberos principal that Impala uses for authentication. This will typically be of
the format impala/<fully qualified domain name>@<realm> where <fully quali
fied domain name> is the host name of the server running impalad and <realm> is
the Kerberos realm. The first component of the principal, impala, must match the
name of the user starting the Impala process. The --keytab_file parameter must
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point to a keytab file that contains the previously mentioned principal and the HTTP
principal for the server running impalad. You can create a keytab file with both prin‐
cipals from two independent keytabs using the ktutil command, as shown in
Example 11-8.

Example 11-8. Merging the Impala and HTTP keytabs

[impala@impala01 ~]$ ktutil
ktutil: rkt impala.keytab
ktutil: rkt http.keytab
ktutil: wkt impala-http.keytab
ktutil: quit

To make it easier to configure, you can set the command-line parameters that the
impalad process uses by setting the IMPALA_SERVER_ARGS,
IMPALA_STATE_STORE_ARGS, and IMPALA_CATALOG_ARGS variables in the /etc/default/
impala file. Example 11-9 shows how to enable Kerberos for Impala.

Example 11-9. Configuring Impala with Kerberos authentication

IMPALA_SERVER_ARGS="${IMPALA_SERVER_ARGS} \
  --principal=impala/impala01.example.com@EXAMPLE.COM \
  --keytab_file=/etc/impala/conf/impala-http.keytab"

IMPALA_STATE_STORE_ARGS="${IMPALA_STATE_STORE_ARGS} \
  --principal=impala/impala01.example.com@EXAMPLE.COM \
  --keytab_file=/etc/impala/conf/impala-http.keytab"

IMPALA_CATALOG_ARGS="${IMPALA_CATALOG_ARGS} \
  --principal=impala/impala01.example.com@EXAMPLE.COM \
  --keytab_file=/etc/impala/conf/impala-http.keytab"

If users access Impala behind a load balancer, then the configuration changes slightly.
When building the combined keytab, you also need to include the keytab for the
proxy server principal and you need to add the --be_principal parameter. The --
be_principal is the principal that Impala uses for talking to backend services like
HDFS. This should be set to the same value that --principal was set to before, and
--principal should be changed to the principal for the load balancer. If your load
balancer is on the impala-proxy.example.com server then you would set the
IMPALA_SERVER_ARGS as shown in Example 11-10.

Example 11-10. Configuring Impala behind a load balancer with Kerberos
authentication

IMPALA_SERVER_ARGS="${IMPALA_SERVER_ARGS} \
  --principal=impala/impala-proxy.example.com@EXAMPLE.COM \
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  --be_principal=impala/impala01.example.com@EXAMPLE.COM \
  --keytab_file=/etc/impala/conf/impala-http.keytab"

Impala supports using YARN for resource management via a project called Llama.
Llama mediates resource management between YARN and low-latency execution
engines such as Impala. Llama has two components, a long-running application mas‐
ter and a node manager plug-in. The application master handles reserving resources
for Impala while the node manager plug-in coordinates with the local Impala daemon
regarding changes to available resources on the local node.

When enabling Kerberos for Impala, you must also configure Kerberos for Llama by
configuring the following properties in the llama-site.xml file.

lama.am.server.thrift.security

Set to true to enable Thrift SASL/Kerberos-based security for the application
master.

llama.am.server.thrift.security.QOP

Set the quality of protection when security is enabled. Valid values are auth for
authentication only, auth-int for authentication and integrity, and auth-conf for
authentication, integrity, and confidentiality (encryption).

llama.am.server.thrift.kerberos.keytab.file

Set the location of the application master keytab file. If this is a relative path, then
it it is looked up under the Llama configuration directory.

llama.am.server.thrift.kerberos.server.principal.name

The fully qualified principal name for the Llama application server. This setting
must include both the short name and the fully qualified hostname of the server
running the Llama application master.

llama.am.server.thrift.kerberos.notification.principal.name

The short name used for client notifications. This short name is combined with
the client hostname provided by the impalad process during registration. You can
override the hostname that the impalad process registers with by configuring the
--hostname parameter in the IMPALA_SERVER_ARGS variable.

Example 11-11 shows a snippet of the llama-site.xml file configured to enable Ker‐
beros security.

Example 11-11. Configuring Llama application master with Kerberos authentication

  <property>
    <name>llama.am.server.thrift.security</name>
    <value>true</value>
  </property>
  <property>

258 | Chapter 11: Data Extraction and Client Access Security



    <name>llama.am.server.thrift.kerberos.keytab.file</name>
    <value>/etc/llama/conf/llama.keytab</value>
  </property>
  <property>
    <name>llama.am.server.thrift.kerberos.server.principal.name</name>
    <value>llama/llama.example.com@EXAMPLE.COM</value>
  </property>
  <property>
    <name>llama.am.server.thrift.kerberos.notification.principal.name</name>
    <value>impala</value>
  </property>

Once Impala is configured to use Kerberos authentication, then clients can authenti‐
cate by having a cached Kerberos TGT (i.e., running kinit before executing the
shell). Example 11-12 shows Alice obtaining her Kerberos TGT and then authenticat‐
ing with Kerberos using the Impala shell.

Example 11-12. Impala shell with Kerberos authentication

[alice@hadoop01 ~]$ kinit
Password for alice@EXAMPLE.COM:
[alice@hadoop01 ~]$ impala-shell -i impala-proxy
Starting Impala Shell without Kerberos authentication
Error connecting: TTransportException, TSocket read 0 bytes
Kerberos ticket found in the credentials cache, retrying the connection with a s
ecure transport.
Connected to impala-proxy:21000
Server version: impalad version 2.0.0 RELEASE (build ecf30af0b4d6e56ea80297df218
9367ada6b7da7)
Welcome to the Impala shell. Press TAB twice to see a list of available commands.

Copyright (c) 2012 Cloudera, Inc. All rights reserved.

(Shell build version: Impala Shell v2.0.0 (ecf30af) built on Sat Oct 11 13:56:06
 PDT 2014)
[impala-proxy:21000] > show tables;
Query: show tables
+-----------+
| name      |
+-----------+
| sample_07 |
| sample_08 |
+-----------+
Fetched 2 row(s) in 0.18s
[impala-proxy:21000] >

When using Kerberos authentication with JDBC drivers, you need to first obtain a
Kerberos TGT and then include the name of the Impala principal in the connection
string. Example 11-13 shows how to set up the JDBC connection string for Kerberos
authentication with Impala.
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Example 11-13. JDBC connection string for Kerberos authentication

// Start with the basic JDBC URL string
String url = "jdbc:hive2://impala-proxy.example.com:21050/default";

// Add the Impala Kerberos principal name, including the FQDN and realm
url = url + ";principal=impala/impala-proxy.example.com@EXAMPLE.COM";

// Create the connection from the URL
Connection con = DriverManager.getConnection(url);

Using Impala with LDAP/Active Directory authentication
Impala can also be configured to use an LDAP directory, such as Active Directory, for
authentication. The advantage of LDAP authentication is that it doesn’t require that
clients be able to obtain their Kerberos credentials before connecting to Impala. This
is especially useful for business intelligence tools which may not have native support
for Kerberos-based authentication. LDAP authentication is configured independently
of Kerberos although the two are typically configured together as it doesn’t make that
much sense to enable authentication for Impala when Hadoop doesn’t have authenti‐
cation enabled.

You can enable LDAP authentication by setting the --enable_ldap_auth and --
ldap_uri parameters on the impalad daemons. When configuring LDAP authentica‐
tion you can optionally set bind parameters depending on the type of LDAP provider
you’re using. If you’re using Active Directory, you often don’t need additional config‐
uration, but you can explicitly set the domain name so that the username used to
bind to AD will be passed as user@<domain name>. The domain name is set by speci‐
fying the --ldap_domain parameter. For OpenLDAP or freeIPA, you can configure a
base distinguished name and the username used to bind to LDAP will be passed as
uid=user,<base dn>. This setting is enabled by specifying the --ldap_baseDN
parameter. If your LDAP provider doesn’t use uid=user to specify the username in
distinguished names, then you can provide a pattern that will become the distin‐
guished name. The pattern works by replacing all instances of #UID with the user‐
name prior to binding. This setting is enabled by specifying the
--ldap_bind_pattern parameter.

Regardless of the LDAP provider, it’s strongly recommend that you use TLS to
encrypt the connection between Impala and the LDAP server. This can be done by
either using an ldaps:// URL or by enabling StartTLS. You can enable StartTLS by
setting the --ldap_tls parameter to true. For either mode, you have to configure the
certificate authority (CA) certificate so that Impala trusts the certificate used by the
LDAP server. You can set the --ldap_ca_certificate parameter to configure the
location of the CA certificate.
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Refer to Examples 11-14 through pass:[11-16 for sample configuration when using
Active Directory, OpenLDAP, and custom LDAP providers, respectively.

Example 11-14. Configuring Impala with Active Directory

IMPALA_SERVER_ARGS="${IMPALA_SERVER_ARGS} \
  --enable_ldap_auth=true \
  --ldap_uri=ldaps://ad.example.com \
  --ldap_ca_certificate=/etc/impala/pki/ca.crt \
  --ldap_domain=example.com"

Example 11-15. Configuring Impala with OpenLDAP

IMPALA_SERVER_ARGS="${IMPALA_SERVER_ARGS} \
  --enable_ldap_auth=true \
  --ldap_uri=ldaps://ldap.example.com \
  --ldap_ca_certificate=/etc/impala/pki/ca.crt \
  --ldap_baseDN=ou=People,dc=example,dc=com"

Example 11-16. Configuring Impala with other LDAP provider

IMPALA_SERVER_ARGS="${IMPALA_SERVER_ARGS} \
  --enable_ldap_auth=true \
  --ldap_uri=ldaps://ldap.example.com \
  --ldap_ca_certificate=/etc/impala/pki/ca.crt \
  --ldap_bind_pattern=user=#UID,ou=users,dc=example,dc=com"

Specify the -l command-line option to the impala-shell to connect to Impala using
LDAP authentication. You’ll be prompted for the user password before the connec‐
tion is complete. If you want to connect as a user other than current Linux user, you
can specify the -u option to change the username. Example 11-17 shows how to
authenticate using LDAP with the Impala shell.

Example 11-17. Impala shell with LDAP/Active Directory authentication

[alice@hadoop01 ~]$ impala-shell -i impala-proxy -l
Starting Impala Shell using LDAP-based authentication
LDAP password for alice:
Connected to impala-proxy:21000
Server version: impalad version 2.0.0 RELEASE (build ecf30af0b4d6e56ea80297d
f2189367ada6b7da7)
Welcome to the Impala shell. Press TAB twice to see a list of available commands.

Copyright (c) 2012 Cloudera, Inc. All rights reserved.

(Shell build version: Impala Shell v2.0.0 (ecf30af) built on Sat Oct 11 13:5
6:06 PDT 2014)
[impala-proxy:21000] > show tables;
Query: show tables
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+-----------+
| name      |
+-----------+
| sample_07 |
| sample_08 |
+-----------+
Fetched 2 row(s) in 0.16s
[impala-proxy:21000] >

If you’re connecting to Impala using JDBC drivers, then you pass the username and
password to the DriverManager when getting a connection. Example 11-18 shows
how to connect using the JDBC driver with LDAP authentication.

Example 11-18. JDBC connection string for LDAP/Active Directory authentication

// Use the basic JDBC URL string
String url = "jdbc:hive2://impala-proxy.example.com:21050/default";

// Create the connection from the URL passing in the username and password
Connection con = DriverManager.getConnection(url, "alice", "secret");

Using SSL wire encryption with Impala
The methods described so far have covered different ways for clients to authenticate
with Impala. It is also important to set up a protected channel for data transfers
between clients and Impala. This is even more critical when the data processed by
Impala is sensitive, such as data that requires at-rest encryption. Impala supports SSL
wire encryption for this purpose. Example 11-19 shows the necessary startup flags.

Example 11-19. Configuring Impala with SSL

IMPALA_SERVER_ARGS="${IMPALA_SERVER_ARGS} \
  --ssl_client_ca_certificate=/etc/impala/ca.cer \
  --ssl_private_key=/etc/impala/impala.key \
  --ssl_server_certificate=/etc/impala/impala.cer

The ssl_private_key, ssl_server_certificate, and ssl_client_ca_certificate
paths must all be readable by the impala user, and the certificates must be in PEM
format. It is recommended to restrict the permissions of the private key to 400.

When Impala is set up with SSL, clients must also know how to connect properly. The
--ssl option tells the impala-shell to enable SSL for the connection, and the
--ca_cert argument specifies the certificate authority chain (in PEM format) to use
to verify the certificate presented by the Impala daemon you are connecting to.
Example 11-20 shows what this looks like when using both Kerberos authentication
and SSL wire encryption.
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Example 11-20. Impala shell with SSL and Kerberos

alice@hadoop01 ~]$ impala-shell -i impala-proxy -k --ssl --ca_cert /etc/impala/ca.pem
Starting Impala Shell using Kerberos authentication
SSL is enabled
Connected to impala-proxy:21000
Server version: impalad version 2.0.0 RELEASE (build ecf30af0b4d6e56ea80297d
f2189367ada6b7da7)
Welcome to the Impala shell. Press TAB twice to see a list of available commands.

Copyright (c) 2012 Cloudera, Inc. All rights reserved.

(Shell build version: Impala Shell v2.0.0 (ecf30af) built on Sat Oct 11 13:5
6:06 PDT 2014)
[impala-proxy:21000] > show tables;
Query: show tables
+-----------+
| name      |
+-----------+
| sample_07 |
| sample_08 |
+-----------+
Fetched 2 row(s) in 0.16s
[impala-proxy:21000] >

Hive
The old, deprecated Hive command-line tool, hive, does not support direct authenti‐
cation or authorization with Hive. Instead, it either directly accesses data on HDFS or
launches a MapReduce job to execute a query. This means it follows the same rules as
the Hadoop commands described before and only supports Kerberos and delegation
tokens. In general, the hive command is deprecated and users should use beeline 
instead.

When using beeline or JDBC drivers, users connect to the HiveServer2 daemon
which handles query parsing and execution. HiveServer2 supports Kerberos, LDAP,
and custom authentication plug-ins. Only one authentication provider can be config‐
ured at a time, so administrators need to choose the preferred authentication mecha‐
nism to use when configuring the HiveServer2 daemon. A workaround for this
limitation is to run multiple HiveServer2 daemons that share the same Hive meta‐
store. This requires that end users connect to the correct HiveServer2 depending on
their authentication needs. The authentication mechanism for HiveServer2 is config‐
ured in the hive-site.xml file. See Table 11-2 for a description of the HiveServer2
authentication configuration properties.
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Table 11-2. Configuration properties for HiveServer2 authentication

Property Description

hive.server2.authentication Client authentication type. Valid values: NONE, LDAP, KERBEROS, CUS
TOM

hive.server2.authentica

tion.kerberos.principal

The Kerberos principal for the HiveServer2 daemon

hive.server2.authentica

tion.kerberos.keytab

The keytab used to authenticate with the KDC

hive.server2.thrift.sasl.qop The SASL quality of protection to use with Kerberos connections; valid values
are auth for authentication only, auth-int for authentication and
integrity checks, and auth-conf for authentication, integrity, and
confidentiality (encryption)

hive.server2.use.SSL Set to true to enable TLS between clients the HiveServer2 daemon

hive.server2.keystore.path The path to a Java keystore file with the private key to use with TLS

hive.server2.keystore.password The password for the Java keystore file

hive.server2.authentica

tion.ldap.url

The URL to the LDAP/Active Directory server; only used if
hive.server2.authentication is set to LDAP

hive.server2.authentica

tion.ldap.Domain

The Active Directory domain to authenticate against; only used if
hive.server2.authentication.ldap.url points to an AD
server

hive.server2.authentica

tion.ldap.baseDN

The base distinguished name to use when hive.server2.authenti
cation.ldap.url points to an OpenLDAP server

hive.server2.custom.authentica

tion.class

The name of a class that implements the org.apache.hive.ser
vice.auth.PasswdAuthenticationProvider interface; used
when hive.server2.authentication is set to CUSTOM

Using HiveServer2 with Kerberos authentication
Configuring HiveServer2 with Kerberos authentication follows the same pattern as
with the core Hadoop services described in “Configuration” on page 83. Namely, we
need to set the authentication type to Kerberos and set the Kerberos principal and
keytab. When setting the Kerberos principal, we can use the _HOST wildcard place‐
holder. This will automatically be replaced with the fully qualified domain name of
the server running the HiveServer2 daemon. An example snippet of the hive-site.xml
file enabling Kerberos authentication is shown in Example 11-21.
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Example 11-21. Configuration for Kerberos authentication with HiveServer2

  <property>
    <name>hive.server2.authentication</name>
    <value>KERBEROS</value>
  </property>
  <property>
    <name>hive.server2.authentication.kerberos.principal</name>
    <value>hive/_HOST@EXAMPLE.COM</value>
  </property>
  <property>
    <name>hive.server2.authentication.kerberos.keytab</name>
    <value>/etc/hive/conf/hive.keytab</value>
  </property>

JDBC clients connecting to a Kerberos-enabled HiveServer2 daemon need to have a
valid Kerberos TGT, and need to add the principal of the HiveServer2 daemon to
their connection string. Example 11-22 shows how to create a connection string for
Kerberos authentication.

Example 11-22. JDBC connection string for Kerberos authentication

// Start with the basic JDBC URL string
String url = "jdbc:hive2://hive.example.com:10000/default";

// Add the Hive Kerberos principal name, including the FQDN and realm
url = url + ";principal=hive/hive.example.com@EXAMPLE.COM";

// Create the connection from the URL
Connection con = DriverManager.getConnection(url);

The Beeline shell uses the Hive JDBC driver to connect to HiveServer2. You need to
obtain your Kerberos TGT using kinit and then connect using the same JDBC con‐
nection string shown earlier in order to use Kerberos authentication with Beeline. See
Example 11-23 for an example. Even though you’re using Kerberos for authentica‐
tion, Beeline will prompt for a username and password. You can leave these blank
and just hit Enter, as shown in the example.

Example 11-23. Beeline connection string for Kerberos authentication

[alice@hadoop01 ~]$ kinit
Password for alice@EXAMPLE.COM:
[alice@hadoop01 ~]$ beeline
Beeline version 0.13.1 by Apache Hive
beeline> !connect jdbc:hive2://hive.example.com:10000/default;principal=hive/hiv
e.example.com@EXAMPLE.COM
scan complete in 2ms
Connecting to jdbc:hive2://hive.example.com:10000/default;principal=hive/hive.ex
ample.com@EXAMPLE.COM
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Enter username for jdbc:hive2://hive.example.com:10000/default;principal=hive/hi
ve.example.com@EXAMPLE.COM:
Enter password for jdbc:hive2://hive.example.com:10000/default;principal=hive/hi
ve.example.com@EXAMPLE.COM:
Connected to: Apache Hive (version 0.13.1)
Driver: Hive JDBC (version 0.13.1)
Transaction isolation: TRANSACTION_REPEATABLE_READ
0: jdbc:hive2://hive.example.com> show tables;
+------------+--+
|  tab_name  |
+------------+--+
| sample_07  |
| sample_08  |
+------------+--+
2 rows selected (0.261 seconds)
0: jdbc:hive2://hive.example.com>

Using HiveServer2 with LDAP/Active Directory authentication
HiveServer2 also supports username/password authentication backed by LDAP. To
use LDAP-based authentication, set the authentication type to LDAP, configure the
LDAP URL, and then either set a domain name or base distinguished name for bind‐
ing. The domain name is used when you’re binding against an Active Directory
server while the base DN is used for other LDAP providers such as OpenLDAP or
freeIPA.

By default, the connection between clients and HiveServer2 are not
encrypted. This means that when you’re using either LDAP or a
custom authentication provider, the username and password could
be intercepted by a third party. When using a non-Kerberos
authentication provider, it’s strongly recommended to enable
HiverServer2 over-the-wire encryption using TLS, as shown in
“HiveServer2 over-the-wire encryption” on page 269.

Regardless of the LDAP provider, it’s strongly recommend that you use LDAPS
(LDAP over SSL) rather than straight LDAP. This will ensure that communication
between HiveServer2 and the LDAP server is encrypted. In order to use LDAPS, you
need to make sure that LDAP server certificate or the CA signing certificate is loaded
into a Java truststore. This can either be the system-wide Java truststore located at
$JAVA_HOME/jre/lib/security/cacerts or a specific truststore for use with Hive. If
using a specific truststore, you need to set the javax.net.ssl.trustStore and
javax.net.ssl.trustStorePassword system properties. This can be done by setting the
HADOOP_OPTS variable in the hive-env.sh file similar to Example 11-24.
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Example 11-24. Setting the LDAPS truststore for Hive

HADOOP_OPTS="-Djavax.net.ssl.trustStore=/etc/pki/java/hive.truststore"
HADOOP_OPTS="${HADOOP_OPTS} -Djavax.net.ssl.trustStorePassword=secret"

The truststore password used here will be visible to anyone that can
perform a process listing on the server running HiveServer2. You
must protect the truststore file itself with strong permissions to
prevent users from modifying the truststore.

If you’re configuring HiveServer2 to authenticate against an Active Directory server,
then you need to set the hive.server2.authentication.ldap.Domain setting in
hive-site.xml to your AD domain name in addition to the common LDAP settings.
See Example 11-25 for an example configuration.

Example 11-25. Configuration for Active Directory authentication with HiveServer2

  <property>
    <name>hive.server2.authentication</name>
    <value>LDAP</value>
  </property>
  <property>
    <name>hive.server2.authentication.ldap.url</name>
    <value>ldaps://ad.example.com</value>
  </property>
  <property>
    <name>hive.server2.authentication.ldap.Domain</name>
    <value>example.com</value>
  </property>

If you’re using another LDAP provider, such as OpenLDAP or freeIPA, then you need
to set the hive.server2.authentication.ldap.baseDN property rather than the
domain name. The base DN will depend on your environment, but the default for
common OpenLDAP installations is ou=People,dc=example,dc=com where dc=exam
ple,dc=com will be replaced with your LDAP server’s domain components. Typically,
this is the domain name of the LDAP server. For freeIPA, the default base DN will be
cn=users,cn=accounts,dc=example,dc=com. Again, substitute in the domain com‐
ponents for your environment. A complete configuration example is provided in
Example 11-26.

Example 11-26. Configuration for LDAP authentication with HiveServer2

  <property>
    <name>hive.server2.authentication</name>
    <value>LDAP</value>
  </property>
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  <property>
    <name>hive.server2.authentication.ldap.url</name>
    <value>ldaps://ldap.example.com</value>
  </property>
  <property>
    <name>hive.server2.authentication.ldap.baseDN</name>
    <value>ou=People,dc=example,dc=com</value>
  </property>

Some versions of Hive (notably Hive 0.13.0 and 0.13.1) have a bug
where they won’t use Kerberos authentication to communicate with
Hadoop when the authentication type is set to something other
than KERBEROS. When using these versions of Hive, you should
only use Kerberos for authentication.

Connecting to HiveServer2 when configured for LDAP/Active Directory authentica‐
tion is easily handled by passing the username and password to the DriverManager
when getting a connection. See Example 11-27 for an example.

Example 11-27. JDBC connection string for LDAP/Active Directory authentication

// Use the basic JDBC URL string
String url = "jdbc:hive2://hive.example.com:10000/default";

// Create the connection from the URL passing in the username and password
Connection con = DriverManager.getConnection(url, "alice", "secret");

Connecting with Beeline is much the same way. This time, you’ll enter the username
and password when prompted following the !connect command. See Example 11-28
for an example.

Example 11-28. Beeline connection string for LDAP/Active Directory authentication

[alice@hadoop01 ~]$ beeline
Beeline version 0.13.1 by Apache Hive
beeline> !connect jdbc:hive2://hive.example.com:10000/default
scan complete in 2ms
Connecting to jdbc:hive2://hive.example.com:10000/default
Enter username for jdbc:hive2://hive.example.com:10000/default: alice
Enter password for jdbc:hive2://hive.example.com:10000/default: ******
Connected to: Apache Hive (version 0.13.1)
Driver: Hive JDBC (version 0.13.1)
Transaction isolation: TRANSACTION_REPEATABLE_READ
0: jdbc:hive2://hive.example.com> show tables;
+------------+--+
|  tab_name  |
+------------+--+
| sample_07  |
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| sample_08  |
+------------+--+
2 rows selected (0.261 seconds)
0: jdbc:hive2://hive.example.com>

Using HiveServer2 with pluggable authentication
Hive has a pluggable interface for implementing new authentication providers. Hive
calls this authentication mode CUSTOM and it requires a Java class that implements the
org.apache.hive.service.auth.PasswdAuthenticationProvider interface. This
interface defines an authenticate(String user, String password) method that
you implement to verify the supplied username and password. As its name suggests,
this pluggable interface only works with authentication providers that use usernames
and passwords for authentication. You configure this mode by setting the authentica‐
tion type to CUSTOM and setting the authentication class. You also have to add the JAR
file with your class in it to Hive’s classpath. The easiest way is to add the path to your
JAR to the hive.aux.jars.path setting in hive-site.xml. This property takes a
comma-delimited list of full paths to JARs. See Example 11-29 for an example config‐
uration.

Example 11-29. Configuration for pluggable authentication with HiveServer2

  <property>
    <name>hive.server2.authentication</name>
    <value>CUSTOM</value>
  </property>
  <property>
    <name>hive.server2.custom.authentication.class</name>
    <value>com.example.my.whizbang.AuthenticationProvider</value>
  </property>
  <property>
    <name>hive.aux.jars.path</name>
    <value>file:///opt/hive-plugins/whizbang-1.0.jar</value>
  </property>

The connection settings for custom authentication is the same as for LDAP/Active
Directory-based authentication. See Examples 11-18 and 11-28 for a illustration of
this.

HiveServer2 over-the-wire encryption
The Hive JDBC driver supports two methods of enabling encryption over the wire.
The method you use will depend on the method of authentication you’re using and
your version of Hive. When you use Kerberos authentication, the Hive JDBC driver
uses SASL to perform the Kerberos authentication. SASL supports integrity checks
and encryption when doing authentication based on a configuration setting called the
quality of protection. To enable encryption, set the SASL QOP to auth-conf, which is
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short for authentication with confidentiality. See Example 11-30 to see how to config‐
ure HiveServer2 to use SASL for encryption.

Example 11-30. Configuring HiveServer2 to use SASL encryption

  <property>
    <name>hive.server2.thrift.sasl.qop</name>
    <value>auth-conf</value>
  </property>

When the SASL QOP is enabled on the server side, you need to make sure the client
sets it to the same value. This can be done by adding the option sasl.qop=auth-conf
to the JDBC URL. Example 11-31 shows how to use SASL encryption with Beeline.

Example 11-31. Beeline connection string with SASL encryption

[alice@hadoop01 ~]$ beeline
Beeline version 0.13.1 by Apache Hive
beeline> !connect jdbc:hive2://hive.example.com:10000/default;principal=hive/hiv
e.example.com@EXAMPLE.COM;sasl.qop=auth-conf
scan complete in 4ms
Connecting to jdbc:hive2://hive.example.com:10000/default;principal=hive/hive.ex
ample.com@EXAMPLE.COM;sasl.qop=auth-conf
Enter username for jdbc:hive2://hive.example.com:10000/default;principal=hive/hi
ve.example.com@EXAMPLE.COM;sasl.qop=auth-conf:
Enter password for jdbc:hive2://hive.example.com:10000/default;principal=hive/hi
ve.example.com@EXAMPLE.COM;sasl.qop=auth-conf:
Connected to: Apache Hive (version 0.13.1)
Driver: Hive JDBC (version 0.13.1)
Transaction isolation: TRANSACTION_REPEATABLE_READ
0: jdbc:hive2://hive.example.com> show tables;
+------------+--+
|  tab_name  |
+------------+--+
| sample_07  |
| sample_08  |
+------------+--+
2 rows selected (0.261 seconds)
0: jdbc:hive2://hive.example.com>

If you’ve configured Hive to use username/password-based authentication, such as
LDAP/Active Directory, then Hive will no longer use SASL to secure the connection.
That means an alternative is needed to enable encryption. Starting with Hive 0.13 and
later, you can configure Hive 0.13 or later to use TLS/SSL for encryption. Before you
can configure Hive to use TLS, you need the private key and certificate for your
server in a Java keystore file. Assuming that you already have your private key and
certificate in a PKCS12 file, you can import them into a Java keystore following the
process shown in Example 11-32. Hive requires that the private key’s password be set
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to the same as the keystore’s password. We handle that in the example by setting both
-deststorepass and -destkeypass on the command line. In addition, we provided
the -srcalias parameter for the key/certificate we’re importing.

A note on Hive versions

Setting the SASL QOP property is only available in Hive 0.12.0 or
later, and support for TLS encryption requires Hive 0.13.0 or later.

Example 11-32. Importing a PKCS12 private key into a Java keystore

[root@hive ~]# mkdir /etc/hive/ssl
[root@hive ~]# keytool -v -importkeystore \
  -srckeystore /etc/pki/tls/private/hive.example.com.p12 -srcstoretype PKCS12 \
  -destkeystore /etc/hive/ssl/hive.example.com.keystore -deststoretype JKS \
  -deststorepass secret -srcalias hive.example.com -destkeypass secret
Enter source keystore password:
[Storing /etc/hive/ssl/hive.example.com.keystore]
[root@hive ~]# chown -R hive:hive /etc/hive/ssl
[root@hive ~]# chmod 400 /etc/hive/ssl/*
[root@hive ~]# chmod 700 /etc/hive/ssl

After creating our Java keystore, we’re ready to configure Hive to use it. Set the con‐
figuration properties shown in Example 11-33 in the hive-site.xml file for Hive‐
Server2.

Example 11-33. Configuring HiveServer2 to use TLS for encryption

  <property>
    <name>hive.server2.use.SSL</name>
    <value>true</value>
  </property>
  <property>
    <name>hive.server2.keystore.path</name>
    <value>/etc/hive/ssl/hive.example.com.keystore</value>
  </property>
  <property>
    <name>hive.server2.keystore.password</name>
    <value>secret</value>
  </property>

TLS cannot be configured when using Kerberos for authentication.
If you’re using Kerberos for authentication, then use SASL QOP for
encryption and use TLS otherwise.
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Finally, we need to enable TLS on the client side by adding ssl=true to the JDBC
URL. If your certificate is not signed by a central certificate authority, then you also
need to specify a truststore in the JDBC URL. When we configured Hive to use
LDAPS, we created a truststore that we can reuse here by copying the truststore file to
the client server and setting the sslTrustStore and trustStorePassword parameters
in the JDBC URL. See Example 11-34 for a full example of using TLS for encryption
with Beeline.

Example 11-34. Beeline connection string with TLS

[alice@hadoop01 ~]$ beeline
Beeline version 0.13.1 by Apache Hive
beeline> !connect jdbc:hive2://hive.example.com:10000/default;ssl=true;sslTrustS
tore=/etc/pki/java/hive.truststore;trustStorePassword=secret
scan complete in 3ms
Connecting to jdbc:hive2://hive.example.com:10000/default;ssl=true;sslTrustStore
=/etc/pki/java/hive.truststore;trustStorePassword=secret
Enter username for jdbc:hive2://hive.example.com:10000/default;ssl=true;sslTrust
Store=/etc/pki/java/hive.truststore;trustStorePassword=secret alice
Enter password for jdbc:hive2://hive.example.com:10000/default;ssl=true;sslTrust
Store=/etc/pki/java/hive.truststore;trustStorePassword=secret **********
Connected to: Apache Hive (version 0.13.1)
Driver: Hive JDBC (version 0.13.1)
Transaction isolation: TRANSACTION_REPEATABLE_READ
0: jdbc:hive2://hive.example.com> show tables;
+------------+--+
|  tab_name  |
+------------+--+
| sample_07  |
| sample_08  |
+------------+--+
2 rows selected (0.261 seconds)
0: jdbc:hive2://hive.example.com>

WebHDFS/HttpFS
Hadoop has two methods of exposing a REST interface to HDFS: WebHDFS and
HttpFS. Both systems use the same API so the same client can work with either; the
difference is in how they’re deployed and where the access to data lives. WebHDFS
isn’t actually a separate service and runs inside the NameNode and DataNodes.
Because WebHDFS runs on the NameNode and DataNodes, it’s not suitable for users
that don’t have direct access to the cluster. In practice, WebHDFS is most commonly
used to provide version-independent access for bulk access utilities such as DistCp,
the distributed copy command. See Example 5-10 in Chapter 5 for the example con‐
figuration for WebHDFS.
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In contrast, HttpFS runs as a gateway service similar to the HBase REST gateway. The
first step of configuring HttpFS with authentication is to configure HttpFS to use Ker‐
beros to authenticate against HDFS:

  <property>
    <name>httpfs.hadoop.authentication.type</name>
    <value>kerberos</value>
  </property>
  <property>
    <name>httpfs.hadoop.authentication.kerberos.principal</name>
    <value>httpfs/httpfs.example.com@EXAMPLE.COM</value>
  </property>
  <property>
    <name>httpfs.hadoop.authentication.kerberos.keytab</name>
    <value>httpfs.keytab</value>
  </property>

Next, we set the authentication method that the HttpFS server will use to authenticate
clients. Again we use Kerberos, which will be implemented over SPNEGO:

  <property>
    <name>httpfs.authentication.type</name>
    <value>kerberos</value>
  </property>
  <property>
    <name>httpfs.authentication.kerberos.principal</name>
    <value>HTTP/httpfs.example.com@EXAMPLE.COM</value>
  </property>
  <property>
    <name>httpfs.authentication.kerberos.keytab</name>
    <value>httpfs.keytab</value>
  </property>
  <property>
    <name>httpfs.authentication.kerberos.name.rules</name>
    <value>DEFAULT</value>
  </property>

Lastly, we need to configure HttpFS to allow the Hue user to impersonate other users.
This is done with the typical proxy user settings—for example, the following settings
will allow the hue user to impersonate users from any host and in any group:

  <property>
    <name>httpfs.proxyuser.hue.hosts</name>
    <value>*</value>
  </property>
  <property>
    <name>httpfs.proxyuser.hue.groups</name>
    <value>*</value>
  </property>
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Summary
In this chapter, we took a deep dive into how clients access a Hadoop cluster to take
advantage of the many services it provides and the data it stores. What is immediately
obvious is that securing this access is a daunting task because of the myriad of access
points available to clients. A key theme throughout, however, is that clients must obey
the established authentication and authorization methods, such as those provided by
Kerberos and LDAP.

We also spent some time on how users get data out of the cluster with Sqoop, Hive,
Impala, WebHDFS, and HttpFS. While the Hadoop ecosystem itself has grown over
the years, so too has the wide ecosystem of business intelligence, ETL, and other
related tools that interact with Hadoop. For this reason, having a solid grasp on data
extraction capabilities of the platform and the modes to secure them is critical for an
administrator to understand.
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CHAPTER 12

Cloudera Hue

Hue is a web application that provides an end-user focused interface for a large num‐
ber of the projects in the Hadoop ecosystem. When Hadoop is configured with Ker‐
beros authentication, then Hue must be configured with Kerberos credentials to
properly access Hadoop. Kerberos is enabled by setting the following parameters in
the hue.ini file:

hue_principal

The Kerberos principal name for the Hue, including the fully qualified domain
name of the Hue server

hue_keytab

The path to the Kerberos keytab file containing Hue’s service credentials

kinit_path

The path to the Kerberos kinit command (not needed if kinit is on the path)

reinit_frequency

The frequency in seconds for Hue to renew its Kerberos tickets

These settings should be placed under the [[kerberos]] subsection of the [desktop]
top-level section in the hue.ini file. See Example 12-1 for a sample Hue kerberos con‐
figuration.

Example 12-1. Configuring Kerberos in Hue

[desktop]
[[kerberos]]
hue_principal=hue/hue.example.com@EXAMPLE.COM
hue_keytab=/etc/hue/conf/hue.keytab
reinit_frequency=3600
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Hue has its own set of authentication backends and authenticates against Hadoop and
other projects using Kerberos. In order to perform actions on behalf of other users,
Hadoop must be configured to trust the Hue service. This is done by configuring
Hadoop’s proxy user/user impersonation capabilities. This is controlled by setting the
hosts Hue can run on and the groups of users that Hue can impersonate. Either value
can be set to * to indicate that impersonation is enabled from all hosts or from all
groups, respectively. Example 12-2 shows how to enable Hue to impersonate users
when accessing Hadoop from the host hue.example.com and for users in the hadoop-
users group.

Example 12-2. Configuring Hue User Impersonation for Hadoop in core-site.xml

  <property>
    <name>hadoop.proxyuser.hue.hosts</name>
    <value>hue.example.com</value>
  </property>
  <property>
    <name>hadoop.proxyuser.hue.groups</name>
    <value>hadoop-users</value>
  </property>

HBase and Hive use the Hadoop impersonation configuration, but Oozie must be
configured independently. If you want to use Oozie from Hue, you must set the
oozie.service.ProxyUserService.proxyuser.<user>.hosts and oozie.ser

vice.ProxyUserService.proxyuser.<user>.groups properties in the oozie-site.xml
file. Example 12-3 shows how to enable Hue to impersonate users when accessing
Oozie from the host hue.example.com and for users in the hadoop-users group.

Example 12-3. Configuring Hue user impersonation for Oozie in oozie-site.xml

  <property>
    <name>oozie.service.ProxyUserService.proxyuser.hue.hosts</name>
    <value>hue.example.com</value>
  </property>
  <property>
    <name>oozie.service.ProxyUserService.proxyuser.hue.groups</name>
    <value>hadoop-users</value>
  </property>

If you’re using the Hue search application, you also need to enable impersonation in
Solr. This is done by setting the SOLR_SECURITY_ALLOWED_PROXYUSERS,
SOLR_SECURITY_PROXYUSER_<user>_HOSTS, and SOLR_SECURITY_PROX

YUSER_<user>_GROUPS environment variables in the /etc/default/solr file. See
Example 12-4 for a sample configuration to enable impersonation from the host
hue.example.com and for users in the hadoop-users group.
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Example 12-4. Configuring Hue user impersonation for Solr in /etc/default/solr

SOLR_SECURITY_ALLOWED_PROXYUSERS=hue
SOLR_SECURITY_PROXYUSER_hue_HOSTS=hue.example.com
SOLR_SECURITY_PROXYUSER_hue_GROUPS=hadoop-users

Hue HTTPS
By default, Hue runs over plain old HTTP. This is suitable for proofs of concept or for
environments where the network between clients and Hue is fully trusted. However,
for most environments it’s strongly recommended that you configure Hue to use
HTTPS. This is especially important if you don’t fully trust the network between cli‐
ents and Hue, as most of Hue’s authentication backends support entering in a user‐
name and password through a browser form.

Fortunately, Hue makes configuring HTTPS easy. To do so, you simply configure the
ssl_certificate and ssl_private_key settings, which are both under the desktop
section of the hue.ini file. Both files should be in PEM format and the private key can‐
not be encrypted with a passphrase. See Example 12-5 for a sample configuration.

Example 12-5. Configuring Hue to use HTTPS

[desktop]
ssl_certificate=/etc/hue/conf/hue.crt
ssl_private_key=/etc/hue/conf/hue.pem

Hue does not currently support using a private key that is protected
with a passphrase. This means it’s very important that Hue’s private
key be protected to the greatest extent possible. Ensure that the key
is owned by the hue user and is only readable by its owner (e.g.,
chmod 400 /etc/hue/conf/hue.pem). You might also configure
filesystem-level encryption on the filesystem, storing the private
key as described in “Filesystem Encryption” on page 205. In cases
where Hue is on a server that has other resources protected by
TLS/SSL, it’s strongly recommended that you issue a unique certifi‐
cate just for Hue. This will lower the risk if Hue’s private key is
compromised by protecting other services running on the same
machine.

Hue Authentication
Hue has a pluggable authentication framework and ships a number of useful authen‐
tication backends. The default authentication backend uses a private list of usernames
and passwords stored in Hue’s backing database. The backend is configured by setting
the backend property to desktop.auth.backend.AllowFirstUserDjangoBackend
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1 You can execute the config_help command with either /usr/share/hue/build/env/bin/hue config_help
or /opt/cloudera/parcels/CDH/lib/hue/build/env/bin/hue config_help depending on how Hue was
installed.

2 See RFC 4178 for a description of the SPNEGO pseudo-mechanism.
3 See Microsoft’s MSDN article for details.

under the [[auth]] subsection of the [desktop] section. See Example 12-6 for a sam‐
ple hue.ini file where the backend is explicitly set. Because this is the default, you can
also leave this setting out entirely.

Example 12-6. Configuring the default Hue authentication backend

[desktop]
[[auth]]
backend=desktop.auth.backend.AllowFirstUserDjangoBackend

Hue also has support for using Kerberos/SPNEGO, LDAP, PAM, and SAML for
authentication. We won’t cover all of the options here, so refer to the config_help
command for more information.1

SPNEGO Backend
Simple and Protected GSSAPI Negotiation Mechanism (SPNEGO)2 is a GSSAPI
pseudo-mechanism for allowing clients and servers to negotiate the choice of authen‐
tication technology. SPNEGO is used any time a client wants to authenticate with a
remote server but neither the client nor the server knows in advance the authentica‐
tion protocols the other supports. The most common use of SPNEGO is with the
HTTP negotiate protocol first proposed by Microsoft.3

Hue only supports SPNEGO with Kerberos V5 as the underlying mechanism. In par‐
ticular this means you can’t use Hue with the Microsoft NT LAN Manager (NTLM)
protocol. Configuring SPNEGO with Hue requires setting the Hue authentication
backend to SpnegoDjangoBackend (see Example 12-7), as well as setting the
KRB5_KTNAME environment variable to the location of a keytab file that has the key for
the HTTP/<fully qualified domain name>@<REALM> principal. If you’re starting Hue
by hand on the server hue.example.com and your keytab is located in /etc/hue/conf/
hue.keytab, then you’d start Hue as shown in Example 12-8.

Example 12-7. Configuring the SPNEGO Hue authentication backend

[desktop]
[[auth]]
backend=desktop.auth.backend.SpnegoDjangoBackend
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Example 12-8. Setting KRB5_KTNAME and starting Hue manually

[hue@hue ~]$ export KRB5_KTNAME=/etc/hue/conf/hue.keytab
[hue@hue ~]$ ${HUE_HOME}/build/env/bin/supervisor

In order to use SPNEGO, you also need to have a TGT on your desktop (e.g., by run‐
ning kinit) and you need to use a browser that supports SPNEGO. Internet Explorer
and Safari both support SPNEGO without additional configuration. If you’re using
Firefox, you first must add the server or domain name you’re authenticating against
to the list of trusted URIs. This is done by typing about:config in the URL bar, then
searching for network.negotiate-auth.trusted-uris, and then updating that pref‐
erence to include the server name or domain name. For example, if you wanted to
support SPNEGO with any server on the example.com domain, you would set
network.negotiate-auth.trusted-uris=example.com. If you see the message 401
Unauthorized while trying to connect to Hue, you likely don’t have your trusted URIs
configured correctly in Firefox.

SAML Backend
Hue also supports using the Security Assertion Markup Language (SAML) standard
for single sign-on (SSO). SAML works by separating service providers (SP) from iden‐
tity providers (IdP). When you request access to a resource, the SP will redirect you to
the IdP where authentication will take place. The IdP will then pass an assertion vali‐
dating your identity to the SP who will grant access to the target resource. The Wiki‐
pedia article on SAML has more details, including a diagram showing the steps of the
SAML process.

When configured with the SAML authentication backend, Hue will act as a service
provider and redirect to your identity provider for authentication. Configuring Hue
to use SAML is more complicated than the other authentication backends. Hue has to
interact with a third-party identity provider so some of the details will depend on
which identity provider you’re using. Also, Hue doesn’t ship with several of the
dependencies required to use SAML. So we’ll start by installing the required depen‐
dencies by following the steps in Example 12-9.

Example 12-9. Install dependencies for SAML authentication backend

[root@hue ~]# yum install swig openssl openssl-devel gcc python-devel
Loaded plugins: fastestmirror, priorities
Loading mirror speeds from cached hostfile
 * base: mirror.hmc.edu
 * extras: mirrors.unifiedlayer.com
 * updates: mirror.pac-12.org
...
Complete!
[root@hue ~]# yum install xmlsec1 xmlsec1-openssl
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Loaded plugins: fastestmirror, priorities
Loading mirror speeds from cached hostfile
 * base: mirror.hmc.edu
 * extras: mirrors.unifiedlayer.com
 * updates: mirror.pac-12.org
...
Complete!
[root@hue ~]# $HUE_HOME/build/env/bin/pip install --upgrade setuptools
Downloading/unpacking setuptools from https://pypi.python.org/packages/sourc
e/s/setuptools/setuptools-7.0.tar.gz#md5=6245d6752e2ef803c365f560f7f2f940
  Downloading setuptools-7.0.tar.gz (793Kb): 793Kb downloaded
...
Successfully installed setuptools
Cleaning up...
[root@hue ~]# $HUE_HOME/build/env/bin/pip install -e \
  git+https://github.com/abec/pysaml2@HEAD#egg=pysaml2
Obtaining pysaml2 from git+https://github.com/abec/pysaml2@HEAD#egg=pysaml2
  Updating ./build/env/src/pysaml2 clone (to HEAD)
...
Successfully installed pysaml2 m2crypto importlib WebOb
Cleaning up...
[root@hue ~]# $HUE_HOME/build/env/bin/pip install -e \
  git+https://github.com/abec/djangosaml2@HEAD#egg=djangosaml2
Obtaining djangosaml2 from git+https://github.com/abec/djangosaml2@HEAD#egg=
djangosaml2
  Cloning https://github.com/abec/djangosaml2 (to HEAD) to ./build/env/src/d
jangosaml2
...
Successfully installed djangosaml2
Cleaning up...

This will install some development tools and then install the Python modules
required to work with SAML. After installing the dependencies, you need to down‐
load the metadata file from your identity provider. The details will vary depending on
which identity provider you’re using. For the Shibboleth Identity Provider, you can
use curl to download the metadata to /etc/hue/saml/metadata.xml.

[root@hue ~]# mkdir /etc/hue/saml
[root@hue ~]# curl -k -o /etc/hue/saml/metadata.xml \
  https://idp.example.com:8443/idp/shibboleth

You also need a certificate and private key to sign requests with. This has to be a key
trusted by your identity provider to sign requests, so you might not be able to just
reuse the same key and certificate you used when enabling HTTPS for Hue. For our
purposes, we’ll assume that the key and certificate have been created and placed into
the /etc/hue/saml/key.pem and /etc/hue/saml/idp.pem files, respectively. All that’s left is
to configure Hue itself. See Example 12-10 for the relevant sections from the /etc/hue/
conf/hue.ini file.
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Example 12-10. Configuring the SAML Hue authentication backend

[desktop]
[[auth]]
backend=libsaml.backend.SAML2Backend

[libsaml]
xmlsec_binary=/usr/bin/xmlsec1
create_users_on_login=true
metadata_file=/etc/hue/saml/metadata.xml
key_file=/etc/hue/saml/key.pem
cert_file=/etc/hue/saml/idp.pem

There are additional optional configuration parameters that can be set in the saml
configuration group. The full list of configuration parameters is shown here:

xmlsec_binary

Path to the xmlsec1 binary, which is the executable used to sign, verify, encrypt,
and decrypt SAML requests and assertions. Typically /usr/bin/xmlsec1.

create_users_on_login

Create Hue users upon login. Can be true or false.

required_attributes

Attributes Hue demands from the IdP. Comma-separated list of attributes. Exam‐
ple: uid,email

optional_attributes

Attributes Hue can handle from the IdP. Comma-separated list of attributes.
Handled the same way as required_attributes.

metadata_file

Path to the metadata XML file from the IdP. The file must be readable by the hue
user.

key_file

PEM-formatted key file.

cert_file

PEM-formatted X.509 certificate.

user_attribute_mapping

Maps attributes received from the IdP (specified in required_attributes,
optional_attributes, and the IdP config) to Hue user attributes. Example:
{uid:'username’, email: email}
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authn_requests_signed

Sign authentication requests. Can be true or false. Check the documentation of
your IdP to see if this setting is required.

logout_requests_signed

Sign logout requests. Can be true or false. Check the documentation of your
IdP to see if this setting is required.

LDAP Backend
The final authentication method we’ll cover is using LDAP/Active Directory to verify
usernames and passwords. There are two ways to configure Hue’s LDAP backend.
The first is to perform an LDAP search to find the distinguished names (DN) of users
and then use the DN to bind to LDAP. The second is to provide Hue with a DN pat‐
tern which is filled in with a username, and then a bind is performed without a
search.

When configuring Hue with search bind, you must set search_bind_authentication
to true, ldap_url, and the base_dn setting in the ldap subsection of the desktop
section. You also must set the user_filter and user_name_attr settings in the users
subsection of the ldap subsection of the desktop section. You should also set the
group_filter, group_name_attr, and group_member_attr settings in the groups
subsection of the ldap subsection of the desktop section so that you can import
LDAP groups as Hue groups.

A snippet of a hue.ini configuration file configured to do LDAP authentication with a 
search bind is shown in Example 12-11. In this example, the LDAP server is running
with LDAPS on ldap.example.com. This LDAP server stores users and groups under
a base DN of cn=accounts,dc=example,dc=com. Finally, user accounts are in object
Class=posixaccount and groups are in objectClass=posixgroup. A complete
description of all of the LDAP-related settings is shown in Table 12-1.

Example 12-11. Configuring the LDAP Hue authentication backend with search bind

[desktop]
[[auth]]
backend=desktop.auth.backend.LdapBackend

[[ldap]]
ldap_url=ldaps://ldap.example.com
base_dn="cn=accounts,dc=example,dc=com"
search_bind_authentication=true
ldap_cert=/etc/hue/conf/ca.crt
use_start_tls=false
create_users_on_login=true
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[[[users]]]
user_filter="objectClass=posixaccount"
user_name_attr="uid"

[[[groups]]]
group_filter="objectClass=posixgroup"
group_name_attr="cn"
group_member_attr="member"

If you prefer to use a direct bind, then you must set search_bind_authentication to
false and set either nt_domain or ldap_username_pattern depending on whether
you’re using Active Directory or another LDAP provider, respectively. You must still
configure the search-related settings (e.g., user_filter, user_name_attr, etc.) as
those will be used when syncing users and groups from LDAP. If we want to use the
same server setup as before but use direct bind instead of search bind, we would use a
configuration similar to Example 12-12. Again, the full set of LDAP configuration
parameters is shown in Table 12-1.

Example 12-12. Configuring the LDAP Hue authentication backend with direct bind

[desktop]
[[auth]]
backend=desktop.auth.backend.LdapBackend

[[ldap]]
ldap_url=ldaps://ldap.example.com
base_dn="cn=accounts,dc=example,dc=com"
search_bind_authentication=false
ldap_username_pattern="uid=<username>,cn=users,cn=accounts,dc=example,dc=com"
ldap_cert=/etc/hue/conf/ca.crt
use_start_tls=false
create_users_on_login=true

[[[users]]]
user_filter="objectClass=posixaccount"
user_name_attr="uid"

[[[groups]]]
group_filter="objectClass=posixgroup"
group_name_attr="cn"
group_member_attr="member"
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Table 12-1. Configuration properties for Hue LDAP authentication

Section Property Description

desktop.auth backend The authentication backend to use (set to desk
top.auth.backend.LdapBackend)

desktop.ldap ldap_url The LDAP server URL (use ldaps:// for secure LDAP)

desktop.ldap base_dn The base LDAP distinguished name to use for LDAP
search

desktop.ldap bind_dn The distinguished name to bind as when searching
LDAP; only required when anonymous searching is
disabled on your LDAP server

desktop.ldap bind_password The password for the bind_dn user; only required
when anonymous searching is disabled on your LDAP
server

desktop.ldap create_users_on_login Set to true to create users the first time they login; if
this is set to false, an administrator will have to
manually add a user to Hue before they can log in with
their LDAP credentials

desktop.ldap search_bind_authenti

cation

Set to true to use search bind; false enables direct
bind

desktop.ldap ldap_username_pattern The pattern used to construct distinguished names
from usernames—it must contain the string <user
name>, which will be replaced with the username of
the user to construct the final DN; only used when you
configure Hue with direct bind (i.e.,
search_bind_authentication=false)

desktop.ldap nt_domain The NT domain of the Active Directory server; only used
when you configure Hue with direct bind (i.e.,
search_bind_authentication=false)

desktop.ldap ldap_cert The location of the CA certificate used to verify the
LDAP server’s certificate

desktop.ldap use_start_tls Set to true to use StartTLS; set to false when using an
ldaps:// URL for ldap_url

desktop.ldap.users user_filter The base filter to use when searching for users
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Section Property Description

desktop.ldap.users user_name_attr The username attribute in the LDAP schema (this is
typically sAMAccountName for Active Directory and
uid for other LDAP directories)

desktop.ldap.groups group_filter The base filter to use when searching for groups

desktop.ldap.groups group_name_attr The group name attribute in the LDAP schema (this is
typically cn)

desktop.ldap.groups group_member_attr The LDAP attribute that specifies members of a group
(this is typically member)

One thing you’ll notice in Examples 12-11 and 12-12 is that we set ldap_cert to
point to a CA certificate. This is needed because we configured the LDAP URL using
the ldaps:// scheme. It’s strongly recommended that you use either LDAPS or
StartTLS. When using StartTLS, configure the LDAP URL with the ldap:// scheme
and set use_start_tls to true.

Hue Authorization
Hue has two types of user accounts: regular users and superusers. Regular users are
governed by an access control list (ACL)–based authorization system that controls
which application permissions are available to which groups. Hue superusers can:

• Add and delete users
• Add and delete groups
• Assign permissions to groups
• Change a user into a superuser
• Import users and groups from an LDAP server
• Install the example queries, tables, and data
• View, submit, and modify any Oozie workflow, coordinator, or bundle
• Impersonate any user when viewing and modifying Sentry permissions
• Impersonate any user when viewing and modifying HDFS ACLs
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The Hue superuser is not the same as the HDFS superuser. The
HDFS superuser is the user that runs the NameNode daemon, typi‐
cally hdfs, and has permission to list, read, and write any HDFS
files and directories. If you want to perform HDFS superuser
actions from Hue, you need to add a user with the same username
as the HDFS superuser. Alternatively, you can set the HDFS super
group to assign a group of users HDFS superuser privileges. See
“HDFS Authorization” on page 97.

Each Hue application defines one or more actions that users can perform. Authoriza‐
tion is controlled by setting an ACL per action that lists the groups that can perform
that action. Every application has an action called “Launch this application” which
controls which users can run that application. Several applications define additional
actions that can be controlled.

The permissions granted in Hue only grant privileges to invoke the
given action from the given Hue app. The user performing an
action will still need to be authorized by the service they’re access‐
ing. For example, a user might have permissions for the “Allow
DDL operations” in the Metastore app, but if she doesn’t have the
ALL privilege on the database in Sentry, she won’t be able to create
tables.

The HBase app defines the “Allow writing in the HBase app” action, which gives per‐
missions to add rows, add cells, edit cells, drop rows, and drop cells from the HBase
app. The Metastore app defines the “Allow DDL operations” action, which gives per‐
mission to create, edit, and drop tables from the metastore browser. The Oozie app
defines the “Oozie Dashboard read-only user for all jobs,” which grants permission to
have read-only access to all workflows, coordinators, and bundles, regardless of
whether they’re shared. The Security app defines the “Let a user impersonate another
user when listing objects like files or tables” action. This action lets the user imperso‐
nate other users and see what tables, files, and directories that user has access to.

Granting permission for the “Let a user impersonate another user
when listing objects like files or tables” can expose information that
would otherwise not be available. In particular, it allows a user to
impersonate a user that has access to see files in a directory for
which the logged-in user is not authorized. Permissions to perform
this action should be granted sparingly. It’s also worth warning that
Hue superusers also have access to impersonate users in the Secu‐
rity app. Thus care should also be taken in making a user a Hue
superuser.
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The Useradmin app defines the “Access to profile page on User Admin” action, but
this action is deprecated and can be safely ignored.

Hue SSL Client Configurations
In this Hue section, we have covered a lot of pertinent security configurations, but
certainly have not exhaustively covered how to set up and configure Hue in the gen‐
eral case, which we deem out of scope for this book. However, one important aspect
to explain is how to properly set up Hue when the various underlying components
are set up with SSL wire encryption. If Hadoop, Hive, and Impala have SSL enabled,
Example 12-13 shows the snippets that are necessary.

Example 12-13. Hue SSL client configurations

# Non-SSL configurations omitted for brevity
[beeswax]
[[ssl]]
enabled=true
cacerts=/etc/hue/ca.cer
key=/etc/hue/host.key
cert=/etc/hue/host.cer
validate=true
[impala]
[[ssl]]
enabled=true
cacerts=/etc/hue/ca.cer
key=/etc/hue/host.key
cert=/etc/hue/host.cer
validate=true

In both the Hive and Impala configurations, the validate option specifies whether
Hue should check that the certificates presented by those services are signed by an
authority in the configured certificate authority chain.

In addition to what is shown in the example, an environment variable
REQUESTS_CA_BUNDLE needs to point to the location on disk where the SSL certificate
authority chain file is (in PEM format). This is used for the Hadoop SSL client to
HDFS, MapReduce, YARN, and HttpFS.

Summary
In this chapter, we took a close look at Hue’s important role in allowing end users to
access several different ecosystem components through a centralized web console.
With Hue, users are able to log in once to a web console, with the rest of their cluster
actions performed via impersonation from a Hue system user.
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This chapter closes our review of data security components. From here, we can take
what we have learned throughout the book and put it all together by walking through
case studies using real-world scenarios.
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PART IV

Putting It All Together





CHAPTER 13

Case Studies

In this chapter, we present two case studies that cover many of the security topics in
the book. First, we’ll take a look at how Sentry can be used to control SQL access to
data in a multitenancy environment. This will serve as a good warmup before we dive
into a more detailed case study that shows a custom HBase application in action with
various security features in place.

Case Study: Hadoop Data Warehouse
One of the key benefits of big data and Hadoop is the notion that many different and
disparate datasets can be brought together to solve unique problems. What comes
along with this are different types of users that span multiple lines of business. In this
case study, we will take a look at how Sentry can be used to provide strong authoriza‐
tion of data in Hive and Impala in an environment consisting of multiple lines of
business, multiple data owners, and different analysts.

First, let’s list the assumptions we are making for this case study:

• The environment consists of three lines of business, which we will call lob1,
lob2, and lob3

• Each line of business has analysts and administrators
— The analysts are defined by the groups lob1grp, lob2grp, and lob3grp
— The administrators are defined by the groups lob1adm, lob2adm, and lob3adm
— Administrators are also in the analysts groups

• Each line of business needs to have its own sandbox area in HDFS to do ad hoc
analysis, as well as to upload self-service data sources
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• Each line of business has its own administrators that control access to their
respective sandboxes

• Data inside the Hive warehouse is IT-managed, meaning only noninteractive
ETL users add data

• Only Hive administrators create new objects in the Hive warehouse
• The Hive warehouse uses the default HDFS location /user/hive/warehouse
• Kerberos has already been set up for the cluster
• Sentry has already been set up in the environment
• HDFS already has extended ACLs enabled
• The default umask for HDFS is set to 007

Environment Setup
Now that we have the basic assumptions, we need to set up the necessary directories
in HDFS and prepare them for Sentry. The first thing we will do is lock down the
Hive warehouse directory. HiveServer2 impersonation is disabled when enabling
Sentry, so only the hive group should have access (which includes the hive and
impala users). Here’s what we need to do:

[root@server1 ~]# kinit hive
Password for hive@EXAMPLE.COM:
[root@server1 ~]# hdfs dfs -chmod -R 0771 /user/hive/warehouse
[root@server1 ~]# hdfs dfs -chown -R hive:hive /user/hive/warehouse
[root@server1 ~]#

As mentioned in the assumptions, each line of business needs a sandbox area. We will
create the path /data/sandbox as the root directory for all the sandboxes, and create
the associated structures within it:

[root@server1 ~]# kinit hdfs
Password for hdfs@EC2.INTERNAL:
[root@server1 ~]# hdfs dfs -mkdir /data
[root@server1 ~]# hdfs dfs -mkdir /data/sandbox
[root@server1 ~]# hdfs dfs -mkdir /data/sandbox/lob1
[root@server1 ~]# hdfs dfs -mkdir /data/sandbox/lob2
[root@server1 ~]# hdfs dfs -mkdir /data/sandbox/lob3
[root@server1 ~]# hdfs dfs -chmod 770 /data/sandbox/lob1
[root@server1 ~]# hdfs dfs -chmod 770 /data/sandbox/lob2
[root@server1 ~]# hdfs dfs -chmod 770 /data/sandbox/lob3
[root@server1 ~]# hdfs dfs -chgrp lob1grp /data/sandbox/lob1
[root@server1 ~]# hdfs dfs -chgrp lob2grp /data/sandbox/lob2
[root@server1 ~]# hdfs dfs -chgrp lob3grp /data/sandbox/lob3
[root@server1 ~]#
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Now that the basic directory structure is set up, we need to start thinking about what
is needed to support Hive and Impala access to the sandbox. After all, these sand‐
boxes are the place where all the users will be doing their ad hoc analytic work. Both
the hive and impala users need access to these directories, so let’s go ahead and set
up HDFS-extended ACLs to allow the hive group full access:

[root@server1 ~]# hdfs dfs -setfacl -m default:group:hive:rwx /data/sandbox/lob1
[root@server1 ~]# hdfs dfs -setfacl -m default:group:hive:rwx /data/sandbox/lob2
[root@server1 ~]# hdfs dfs -setfacl -m default:group:hive:rwx /data/sandbox/lob3
[root@server1 ~]# hdfs dfs -setfacl -m group:hive:rwx /data/sandbox/lob1
[root@server1 ~]# hdfs dfs -setfacl -m group:hive:rwx /data/sandbox/lob2
[root@server1 ~]# hdfs dfs -setfacl -m group:hive:rwx /data/sandbox/lob3
[root@server1 ~]#

Remember, the default ACL is only applicable to directories, and it
only dictates the ACLs that are copied to new subdirectories and
files. Because of this fact, the parent directories still need a regular
access ACL.

The next part we need to do is to make sure that regardless of who creates new files,
all the intended accesses persist. If we left the permissions as they are right now, new
directories and files created by the hive or impala users may actually be accessible by
the analysts and administrators in the line of business. To fix that, let’s go ahead and
add those groups to the extended ACLs:

[root@server1 ~]# hdfs dfs -setfacl -m default:group:lob1grp:rwx \
  /data/sandbox/lob1
[root@server1 ~]# hdfs dfs -setfacl -m default:group:lob1adm:rwx \
  /data/sandbox/lob1
[root@server1 ~]# hdfs dfs -setfacl -m default:group:lob2grp:rwx \
  /data/sandbox/lob2
[root@server1 ~]# hdfs dfs -setfacl -m default:group:lob2adm:rwx \
  /data/sandbox/lob2
[root@server1 ~]# hdfs dfs -setfacl -m default:group:lob3grp:rwx \
  /data/sandbox/lob3
[root@server1 ~]# hdfs dfs -setfacl -m default:group:lob3adm:rwx \
  /data/sandbox/lob3
[root@server1 ~]# hdfs dfs -setfacl -m group:lob1grp:rwx /data/sandbox/lob1
[root@server1 ~]# hdfs dfs -setfacl -m group:lob1adm:rwx /data/sandbox/lob1
[root@server1 ~]# hdfs dfs -setfacl -m group:lob2grp:rwx /data/sandbox/lob2
[root@server1 ~]# hdfs dfs -setfacl -m group:lob2adm:rwx /data/sandbox/lob2
[root@server1 ~]# hdfs dfs -setfacl -m group:lob3grp:rwx /data/sandbox/lob3
[root@server1 ~]# hdfs dfs -setfacl -m group:lob3adm:rwx /data/sandbox/lob3
[root@server1 ~]#

Now that we have all the extended ACLs set up, let’s take a look at one of them:

[root@server1 ~]# hdfs dfs -getfacl -R /data/sandbox/lob1
# file: /data/sandbox/lob1
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# owner: hdfs
# group: lob1grp
user::rwx
group::rwx
group:hive:rwx
group:lob1adm:rwx
group:lob1grp:rwx
mask::rwx
other::---
default:user::rwx
default:group::rwx
default:group:hive:rwx
default:group:lob1adm:rwx
default:group:lob1grp:rwx
default:mask::rwx
default:other::---
[root@server1 ~]#

We have handled all of the tenants in the cluster, so let’s make sure we also create a
space in HDFS for the ETL noninteractive user to use:

[root@server1 ~]# hdfs dfs -mkdir /data/etl
[root@server1 ~]# hdfs dfs -chown etluser:hive /data/etl
[root@server1 ~]# hdfs dfs -chmod 770 /data/etl
[root@server1 ~]# hdfs dfs -setfacl -m default:group:hive:rwx /data/etl
[root@server1 ~]# hdfs dfs -setfacl -m group:hive:rwx /data/etl
[root@server1 ~]# hdfs dfs -setfacl -m default:user:etluser:rwx /data/etl
[root@server1 ~]# hdfs dfs -setfacl -m user:etluser:rwx /data/etl
[root@server1 ~]# hdfs dfs -getfacl /data/etl
# file: /data/etl
# owner: etluser
# group: hive
user::rwx
user:etluser:rwx
group::rwx
group:hive:rwx
mask::rwx
other::---
default:user::rwx
default:user:etluser:rwx
default:group::rwx
default:group:hive:rwx
default:mask::rwx
default:other::---
[root@server1 ~]#

The next step is to start doing some administration tasks in Hive using the beeline
shell. We will use the hive user, because by default it is a Sentry administrator, and
can thus create policies.
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You can use a properties file for beeline to specify connection
information. This makes it much easier than remembering the syn‐
tax or looking at your bash history.

The beeline.properties file we will use is shown in Example 13-1. Note that the user‐
name and password are required but unused for the actual authentication because
Kerberos is enabled.

Example 13-1. beeline.properties file

ConnectionURL=jdbc:hive2://server1.example.com:10000/;principal=
  hive/server1.example.com@EXAMPLE.COM
ConnectionDriverName=org.apache.hive.jdbc.HiveDriver
ConnectionUserName=.
ConnectionPassword=.

[root@server1 ~]# kinit hive
Password for hive@EXAMPLE.COM:
[root@server1 ~]# beeline
...
beeline> !properties beeline.properties
...
> CREATE ROLE sqladmin;
> GRANT ROLE sqladmin TO GROUP hive;
> GRANT ALL ON SERVER server1 TO ROLE sqladmin;
> CREATE DATABASE lob1 LOCATION '/data/sandbox/lob1';
> CREATE DATABASE lob2 LOCATION '/data/sandbox/lob2';
> CREATE DATABASE lob3 LOCATION '/data/sandbox/lob3';
> CREATE DATABASE etl LOCATION '/data/etl';

Now that we have the administrator role and databases created, we can set up the
Sentry policies that will provide authorization for both Hive and Impala to end users:

> CREATE ROLE lob1analyst;
> GRANT ROLE lob1analyst TO GROUP lob1grp;
> GRANT ALL ON DATABASE lob1 TO ROLE lob1analyst;
> CREATE ROLE lob1administrator;
> GRANT ROLE lob1administrator TO GROUP lob1adm WITH GRANT OPTION;
> GRANT ALL ON DATABASE lob1 TO role lob1administrator;
> CREATE ROLE lob2analyst;
> GRANT ROLE lob2analyst TO GROUP lob2grp;
> GRANT ALL ON DATABASE lob2 TO ROLE lob2analyst;
> CREATE ROLE lob2administrator;
> GRANT ROLE lob2administrator TO GROUP lob2adm WITH GRANT OPTION;
> GRANT ALL ON DATABASE lob2 TO ROLE lob2administrator;
> CREATE ROLE lob3analyst;
> GRANT ROLE lob3analyst TO GROUP lob3grp;
> GRANT ALL ON DATABASE lob3 TO role lob3analyst;
> CREATE ROLE lob3administrator;
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> GRANT ROLE lob3administrator TO GROUP lob3adm WITH GRANT OPTION;
> GRANT ALL ON DATABASE lob3 TO ROLE lob3administrator;
> CREATE ROLE etl;
> GRANT ROLE etl TO GROUP etluser;
> GRANT ALL ON DATABASE etl TO ROLE etl;

Another important requirement we listed in the assumptions is that users should able
to upload self-service files to their respective sandboxes. To allow users to leverage
these files in Hive and Impala, they also need some URI privileges. We will also go
ahead and provide write privileges so that users can also extract data out of Hive and
into the sandbox area for additional non-SQL analysis:

> GRANT ALL ON URI 'hdfs://nameservice1/data/etl' TO ROLE etl;
> GRANT ALL ON URI 'hdfs://nameservice1/data/sandbox/lob1' TO ROLE lob1analyst;
> GRANT ALL ON URI 'hdfs://nameservice1/data/sandbox/lob1'
  TO ROLE lob1administrator;
> GRANT ALL ON URI 'hdfs://nameservice1/data/sandbox/lob2' TO ROLE lob2analyst;
> GRANT ALL ON URI 'hdfs://nameservice1/data/sandbox/lob2'
  TO ROLE lob2administrator;
> GRANT ALL ON URI 'hdfs://nameservice1/data/sandbox/lob3' TO ROLE lob3analyst;
> GRANT ALL ON URI 'hdfs://nameservice1/data/sandbox/lob3'
  TO ROLE lob3administrator;

The URI paths shown use the HDFS HA nameservice name. If you
do not have HA set up, you will need to specify the NameNode
fully qualified domain name explicitly, including the port (8020).

User Experience
With the environment fully up, ready, and outfitted with our full set of HDFS privi‐
leges and Sentry policies, let’s look at what end users see with these enforcements in
place. First, we will look at what a user in the sqladmin role sees:

[root@server1 ~]$ kinit hive
Password for hive@EXAMPLE.COM:
[root@server1 ~]$ beeline
...
> !properties beeline.properties
...
> SHOW DATABASES;
+----------------+
| database_name  |
+----------------+
| default        |
| etl            |
| lob1           |
| lob2           |
| lob3           |
+----------------+

296 | Chapter 13: Case Studies



> quit;
[root@server1 ~]$

As you can see, the sqladmin role is allowed to see every database that we set up. This
is expected because the sqladmin role has been granted full access to the SERVER
object. Next, we will take a look at what a user assigned the etl role sees:

[root@server1 ~]$ kinit etluser
Password for etluser@EXAMPLE.COM:
[root@server1 ~]$ beeline
...
> !properties beeline.properties
...
> SHOW DATABASES;
+----------------+
| database_name  |
+----------------+
| default        |
| etl            |
+----------------+
> USE lob1;
Error: Error while compiling statement: FAILED: SemanticException
 No valid privileges (state=42000,code=40000)
> quit;
[root@server1 ~]$

This time, the user does not see the full list of databases in the metastore. Instead, the
user sees only the databases that contain objects that they have some access to. The
example shows that not only are objects the user does not have access to hidden from
the user, but that they are denied access even if the user requests the object by name.
This is exactly what we expect to happen.

Now let’s say that the table sample_07 in the etl database needs to be made available
to the lob1analyst role. However, the caveat is that not all of the columns can be
shared. For that, we need to create a view that contains only the columns we intend to
make visible to the role. After creating this view, we grant access to it for the lob1ana
lyst role:

[root@server1 ~]$ kinit hive
Password for hive@EXAMPLE.COM:
[root@server1 ~]$ beeline
...
> !properties beeline.properties
...
> USE etl;
> CREATE VIEW sample_07_view AS SELECT code, description, total_emp
  FROM sample_07;
> GRANT SELECT ON TABLE sample_07_view TO ROLE lob1analyst;
> quit;
[root@server1 ~]$
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After completing these tasks, we can test access with a user that is assigned to the
lob1analyst role:

[root@server1 ~]$ kinit lob1user
Password for lob1user@EXAMPLE.COM:
[root@server1 ~]$ beeline
...
> !properties beeline.properties
...
> SHOW DATABASES;
+----------------+
| database_name  |
+----------------+
| default        |
| etl            |
| lob1           |
+----------------+
> USE etl;
> SHOW TABLES;
+-----------------+
|    tab_name     |
+-----------------+
| sample_07_view  |
+-----------------+
> SELECT * FROM sample_07 LIMIT 1;
Error: Error while compiling statement: FAILED: SemanticException
 No valid privileges (state=42000,code=40000)
> quit;
[root@server1 ~]$ hdfs dfs -ls /data/etl
ls: Permission denied: user=lob1user, access=READ_EXECUTE, inode="/data/etl":
 etluser:hive:drwxrwx---:group::---,group:hive:rwx,
 default:user::rwx,default:group::---,default:group:hive:rwx,
 default:mask::rwx,default:other::---
[root@server1 ~]$

As shown, the lob1user is able to see the etl database in the listing. However, notice
that within the database only the sample_07_view object is visible. As expected, the
user is unable to read the source table either with SQL access, or from direct HDFS
access. Because we saw some “access denied” messages in this example, let’s inspect
what shows up in the logfiles, starting with the HiveServer2 log:

2015-01-13 19:31:40,173 ERROR org.apache.hadoop.hive.ql.Driver: FAILED:
 SemanticException No valid privileges
org.apache.hadoop.hive.ql.parse.SemanticException: No valid privileges
        at org.apache.sentry.binding.hive.HiveAuthzBindingHook.
         postAnalyze(HiveAuthzBindingHook.java:320)
        at org.apache.hadoop.hive.ql.Driver.compile(Driver.java:457)
        at org.apache.hadoop.hive.ql.Driver.compile(Driver.java:352)
        at org.apache.hadoop.hive.ql.Driver.compileInternal
         (Driver.java:995)
        at org.apache.hadoop.hive.ql.Driver.compileAndRespond
         (Driver.java:988)
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        at org.apache.hive.service.cli.operation.SQLOperation.prepare
         (SQLOperation.java:98)
        at org.apache.hive.service.cli.operation.SQLOperation.run
         (SQLOperation.java:163)
        at org.apache.hive.service.cli.session.HiveSessionImpl.
         runOperationWithLogCapture(HiveSessionImpl.java:524)
        at org.apache.hive.service.cli.session.HiveSessionImpl.
         executeStatementInternal(HiveSessionImpl.java:222)
        at org.apache.hive.service.cli.session.HiveSessionImpl.
         executeStatement(HiveSessionImpl.java:204)
        at org.apache.hive.service.cli.CLIService.executeStatement
         (CLIService.java:168)
        at org.apache.hive.service.cli.thrift.ThriftCLIService.
         ExecuteStatement(ThriftCLIService.java:316)
        at org.apache.hive.service.cli.thrift.TCLIService$Processor
         $ExecuteStatement.getResult(TCLIService.java:1373)
        at org.apache.hive.service.cli.thrift.TCLIService$Processor
         $ExecuteStatement.getResult(TCLIService.java:1358)
        at org.apache.thrift.ProcessFunction.process
         (ProcessFunction.java:39)
        at org.apache.thrift.TBaseProcessor.process(TBaseProcessor.java:39)
        at org.apache.hadoop.hive.thrift.HadoopThriftAuthBridge20S$Server
         $TUGIAssumingProcessor.process(HadoopThriftAuthBridge20S.java:608)
        at org.apache.thrift.server.TThreadPoolServer$WorkerProcess.run
         (TThreadPoolServer.java:244)
        at java.util.concurrent.ThreadPoolExecutor.runWorker
         (ThreadPoolExecutor.java:1145)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run
         (ThreadPoolExecutor.java:615)
        at java.lang.Thread.run(Thread.java:745)
Caused by: org.apache.hadoop.hive.ql.metadata.AuthorizationException:
         User lob1user does not have privileges for QUERY
        at org.apache.sentry.binding.hive.authz.HiveAuthzBinding.authorize
         (HiveAuthzBinding.java:317)
        at org.apache.sentry.binding.hive.HiveAuthzBindingHook.
         authorizeWithHiveBindings(HiveAuthzBindingHook.java:502)
        at org.apache.sentry.binding.hive.HiveAuthzBindingHook.
         postAnalyze(HiveAuthzBindingHook.java:312)
        ... 20 more

Next, we see the access-denied audit event that showed up in the NameNode audit
log:

2015-01-13 20:01:15,005 INFO FSNamesystem.audit: allowed=false
  ugi=lob1user@EXAMPLE.COM (auth:KERBEROS)
 ip=/10.6.9.73
  cmd=listStatus src=/data/etl dst=null perm=null

Summary
This basic case study has shown how to look at protecting data with both Sentry poli‐
cies coupled with HDFS-extended ACLs. This example is purposefully basic, but it
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still illustrates how it is necessary to think about data organization as a key factor in
multitenancy. Having a clear structure of how data resides in HDFS makes for easy
security administration.

Case Study: Interactive HBase Web Application
A common use case for Hadoop is to build scale-out web applications. HBase has a
number of features that make it ideal for interactive scale-out applications:

• A flexible data model that supports complex objects with rapidly evolving sche‐
mas

• Automatic repartitioning of data as nodes are added or removed from the cluster
• Integration with the rest of the Hadoop ecosystem allowing offline analysis of

transactional data
• Intra-row ACID transactions
• Advanced authorization capabilities for various applications

For our purposes, we’re most interested in the last feature in the list. For interactive
applications, you often have to control which users have access to which datasets. For
example, an application like Twitter has messages that are fully public, messages that
are restricted to a whitelist of authorized users, and messages that are fully private.
Being able to flexibly manage authorization in the face of such dynamic security
requirements requires the use of a database that is equally dynamic.

In this case study, we’ll take a look at an application for storing and browsing web
page snapshots. This case study is built on top of an open source, HBase-based web
application example from The Kite SDK. The original example works in a standalone
development mode, as an application deployed on OpenShift, and as a production
application deployed on an HBase cluster. Due to limitations of the MiniHBaseClus
ter class that is used for development mode and OpenShift deployments, our version
will only work on production, secured HBase clusters. The full source code for our
version of the example is available in the GitHub source code repository that accom‐
panies this book.

Design and Architecture
Let’s start by taking a look at the architecture of the web page snapshot demo shown
in Figure 13-1. The web application gets deployed to an edge node. The user connects
to the application through their browser and provides a URL to either take a new
snapshot or view existing snapshots. When a new snapshot is taken, the web applica‐
tion downloads the web page and metadata and stores them in HBase. When a snap‐
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shot is viewed, the web application retrieves the page metadata and the snapshot of
the page contents from HBase and displays it in the browser.

Figure 13-1. Web application architecture

Before we dive into the security requirements, let’s take a look at the data model used
by the example. Each web page is uniquely identified by a URL and each snapshot is
further identified by the time the page was fetched. The full list of fields in the data
model are shown in Table 13-1.

Table 13-1. Web page snapshot data model

Field Type Description

url String The URL of the web page

fetchedAt long The UTC time that this page was fetched

fetchTimeMs int The amount of time it took to fetch the web page, in ms

size int The size of the web page

title String The title of the HTML page, if one exists

description String The description from the HTML meta tag

keywords List<String> The keywords from the HTML meta tag

outlinks List<String> The URLs of pages this page links to

content String The content of the web page

HBase stores data as a multidimensional sorted map. This means we need to map the
fields of our records to the row key, column family, and column-qualifier keys that
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HBase uses to sort data. For our use case, we want each row in HBase to be keyed by
URL and the time the snapshot was fetched. In order to make the most recent snap‐
shot sort first, we will reverse the order of the fetchedAt timestamp before using it in
the row key by subtracting it from Long.MAX_VALUE, and we show that as <rev fetch
edAt> in Figure 13-2. Each field will correspond to a single column in HBase so we
define a mapping from each field name to a column family and column qualifier.
Figure 13-2 shows how the row key is mapped and a sample of field mappings to
HBase columns.

Figure 13-2. Original HBase data model mapping

Security Requirements
At this point, we’re ready to add security features to the demo. By default, all of the
fields in the snapshots are accessible to any user. For our use case, we want to lock
down the content of the pages by default and only allow access if we request a snap‐
shot to be made public. We could use cell-level security and keep the same data model
that we used before, but that is probably overkill for our use case. Instead, we’ll mod‐
ify the data model slightly.

In particular, we’ll add a field to our model called contentKey. The contentKey will
be used as the column qualifier for storing content. We’ll use the username as the
contentKey for private snapshots and the special value public for public snapshots.
We’re now want to store the content of each snapshot under a potentially different
column qualifier, so we’ll change the type of the content field to Map<String,
String>. The updated mapping configuration is shown in Figure 13-3.
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Figure 13-3. Updated HBase data model mapping

Before continuing, let’s come up with a list of the security requirements we want to
enforce in our application:

1. The content of private snapshots is only accessible by the user who took the snap‐
shot

2. The content of public snapshots is visible to all users
3. The metadata of all snapshots is visible to all users
4. Users authenticate with the application using HTTP basic authentication
5. The application impersonates the authenticated user when communicating with

HBase
6. Authorization is enforced at the HBase level

Cluster Configuration
With these requirements in hand, we can start configuring our cluster. Requirement
five (5) implies that the application needs to authenticate with HBase. In order for
HBase authentication to be enabled, we must first enable Hadoop authentication. To
meet requirement six (6), we also have to enable HBase authorization. HBase authori‐
zation is also required to meet requirements one (1) and two (2). Requirement three
(3) implies that we’ll allow all users access to the metadata fields. The fourth (4)
requirement applies to the web application itself and the application server, Tomcat
for our purposes, used. We’re now ready to plan our configuration steps:

1. Configure Hadoop authentication (see “Configuration” on page 83)
2. Configure HBase authentication (refer to “Securing Apache HBase” in The

Apache HBase Reference Guide)

Case Study: Interactive HBase Web Application | 303

http://hbase.apache.org/book.html#security
http://hbase.apache.org/book.html
http://hbase.apache.org/book.html


3. Configure HBase authorization by adding the following to hbase-site.xml:
  <property>
    <name>hbase.coprocessor.region.classes</name>
    <value>
      org.apache.hadoop.hbase.security.access.AccessController,
      org.apache.hadoop.hbase.security.token.TokenProvider
    </value>
  </property>
  <property>
    <name>hbase.coprocessor.master.classes</name>
    <value>
     org.apache.hadoop.hbase.security.access.AccessController
    </value>
  </property>
  <property>
    <name>hbase.coprocessor.regionserver.classes</name>
    <value>
     org.apache.hadoop.hbase.security.access.AccessController
    </value>
  </property>
  <property>
    <name>hbase.security.exec.permission.checks</name>
    <value>true</value>
  </property>

4. Create a Kerberos principal to perform HBase administration functions:
kadmin: addprinc hbase@EXAMPLE.COM
WARNING: no policy specified for hbase@EXAMPLE.COM; defaulting to no \
policy
Enter password for principal "hbase@EXAMPLE.COM":
Re-enter password for principal "hbase@EXAMPLE.COM":
Principal "hbase@EXAMPLE.COM" created.
kadmin:

5. Create a Kerberos principal for the application and export the key to a keytab:
kadmin: addprinc web-page-snapshots@EXAMPLE.COM
WARNING: no policy specified for web-page-snapshots@EXAMPLE.COM;
defaulting to no policy
Enter password for principal "web-page-snapshots@EXAMPLE.COM":
Re-enter password for principal "web-page-snapshots@EXAMPLE.COM":
Principal "web-page-snapshots@EXAMPLE.COM" created.
kadmin: ktadd -k app.keytab web-page-snapshots
Entry for principal web-page-snapshots with kvno 4, encryption type
des3-cbc-sha1 added to keytab WRFILE:app.keytab.
Entry for principal web-page-snapshots with kvno 4, encryption type
arcfour-hmac added to keytab WRFILE:app.keytab.
Entry for principal web-page-snapshots with kvno 4, encryption type
des-hmac-sha1 added to keytab WRFILE:app.keytab.
Entry for principal web-page-snapshots with kvno 4, encryption type
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des-cbc-md5 added to keytab WRFILE:app.keytab.
kadmin:

6. Copy the keytab file into the home directory of the application user
7. Grant the application principal create table permissions:

[app@snapshots ~]$ kinit hbase
Password for hbase@ENT.CLOUDERA.COM:
[app@snapshots ~]$ hbase shell
14/11/13 14:45:53 INFO Configuration.deprecation: hadoop.native.lib is
deprecated. Instead, use io.native.lib.available
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 0.98.6, rUnknown, Sat Oct 11 15:15:15 PDT 2014

hbase(main):001:0> grant 'web-page-snapshots', 'RWXCA'
0 row(s) in 4.0340 seconds

hbase(main):002:0>

8. Create the HBase tables:
[app@snapshots ~]$ kinit -kt ~/app.keytab web-page-snapshots
[app@snapshots ~]$ export KITE_USER_CLASSPATH=/etc/hadoop/conf
[app@snapshots ~]$ export \
ZK=zk1.example.com,zk2.example.com,zk3.example.com
[app@snapshots ~]$ kite-dataset create \
  dataset:hbase:${ZK}:2181/webpagesnapshots.WebPageSnapshotModel \
  -s src/main/avro/hbase-models/WebPageSnapshotModel.avsc
[app@snapshots ~]$ kite-dataset create \
  dataset:hbase:${ZK}:2181/webpageredirects.WebPageRedirectModel \
  -s src/main/avro/hbase-models/WebPageRedirectModel.avsc
[app@snapshots ~]$

9. Grant users alice and bob access to the public tables/columns:
[app@snapshots ~]$ kinit -kt ~/app.keytab web-page-snapshots
[app@snapshots ~]$ hbase shell
14/11/13 14:45:53 INFO Configuration.deprecation: hadoop.native.lib is
deprecated. Instead, use io.native.lib.available
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 0.98.6, rUnknown, Sat Oct 11 15:15:15 PDT 2014

hbase(main):001:0> grant 'alice', 'RW', 'webpagesnapshots', 'content',
'public'
0 row(s) in 2.9580 seconds

hbase(main):002:0> grant 'alice', 'RW', 'webpagesnapshots', '_s'
0 row(s) in 0.1640 seconds

hbase(main):003:0> grant 'alice', 'RW', 'webpagesnapshots', 'meta'
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0 row(s) in 0.2100 seconds

hbase(main):004:0> grant 'alice', 'RW', 'webpagesnapshots', 'observable'
0 row(s) in 0.1600 seconds

hbase(main):005:0> grant 'alice', 'RW', 'webpageredirects'
0 row(s) in 0.1600 seconds

hbase(main):006:0> grant 'alice', 'RW', 'managed_schemas'
0 row(s) in 0.1570 seconds

hbase(main):007:0> grant 'bob', 'RW', 'webpagesnapshots', 'content',
'public'
0 row(s) in 0.1920 seconds

hbase(main):008:0> grant 'bob', 'RW', 'webpagesnapshots', '_s'
0 row(s) in 0.1510 seconds

hbase(main):009:0> grant 'bob', 'RW', 'webpagesnapshots', 'meta'
0 row(s) in 0.2100 seconds

hbase(main):010:0> grant 'bob', 'RW', 'webpagesnapshots', 'observable'
0 row(s) in 0.1640 seconds

hbase(main):011:0> grant 'bob', 'RW', 'webpageredirects'
0 row(s) in 0.1590 seconds

hbase(main):012:0> grant 'bob', 'RW', 'managed_schemas'
0 row(s) in 0.1870 seconds

hbase(main):013:0>

10. Grant alice and bob access to their private columns:
[app@snapshots ~]$ kinit -kt ~/app.keytab web-page-snapshots
[app@snapshots ~]$ hbase shell
14/11/13 14:45:53 INFO Configuration.deprecation: hadoop.native.lib is
deprecated. Instead, use io.native.lib.available
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 0.98.6, rUnknown, Sat Oct 11 15:15:15 PDT 2014

hbase(main):001:0> grant 'alice', 'RW', 'webpagesnapshots', 'content',
'alice'

0 row(s) in 2.8890 seconds

hbase(main):002:0> grant 'bob', 'RW', 'webpagesnapshots', 'content',
'bob'
0 row(s) in 0.1600 seconds
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hbase(main):003:0>

11. Add the following parameters to hbase-site.xml on all of the HBase nodes to
enable user impersonation by the web-page-snapshots principal:

  <property>
    <name>hadoop.proxyuser.web-page-snapshots.groups</name>
    <value>*</value>
  </property>
  <property>
    <name>hadoop.proxyuser.web-page-snapshots.hosts</name>
    <value>*</value>
  </property>

There are additional application configuration steps that are
unique to the design and implementation of the demo application.
The full set of steps for running the demo are available in the proj‐
ect’s README on GitHub.

Implementation Notes
In adding security to our application, we made a number of implementation changes.
The full set of changes can be viewed by comparing our demo with the original Kite
SDK example, but we’ll summarize the key changes here. The first modification was
the addition of a Kerberos login module to obtain a Kerberos TGT using the applica‐
tion’s keytab. This module is loaded by Spring before initializing the rest of the web
application. Here is an abbreviated version of the module without logging or error
checking:

public class KerberosLoginService {

  public KerberosLoginService(String applicationPrincipal,
      String applicationKeytab) throws IOException {

    if (UserGroupInformation.isSecurityEnabled()) {
      UserGroupInformation.loginUserFromKeytab(applicationPrincipal,
          applicationKeytab);
    }
  }
}

The key takeaways are that we first check that security on our cluster has been
enabled before using the loginUserFromKeytab() method on the UserGroupInforma
tion class. This method will obtain our Kerberos TGT using the keytab file.
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The second change required from a Hadoop security standpoint is modifying the Web
PageSnapshotService to impersonate the authenticated user when communicating
with HBase. To accomplish, this we use the doAs() method of the UserGroupInforma
tion object that represents the proxy user we want to impersonate. Here is an exam‐
ple of adding impersonation to one of the methods of the WebPageSnapshotService:

  private WebPageSnapshotModel getWebPageSnapshot(String url,
      final long ts, final String user) throws IOException {
    WebPageSnapshotModel snapshot = null;
    final String normalizedUrl = normalizeUrl(url, user);

    UserGroupInformation ugi = UserGroupInformation.createProxyUser(user,
        UserGroupInformation.getLoginUser());
    snapshot = ugi.doAs(new PrivilegedAction<WebPageSnapshotModel>() {

      @Override
      public WebPageSnapshotModel run() {
        Key key = new Key.Builder(webPageSnapshotModels(user))
            .add("url", normalizedUrl)
            .add("fetchedAtRevTs", Long.MAX_VALUE - ts).build();
        return webPageSnapshotModels(user).get(key);
      }
    });

    return snapshot;
  }

The final required modification is to switch from using a single, shared connection to
HBase to creating a connection per user. This is required due to the way the HBase
client caches connections. The most important takeaways are to create per-user con‐
nections and to set the hbase.client.instance.id to a unique value in the Configu
ration object that HBase will end up using. For this application, we created a utility
method to create and cache our connections:

  private synchronized RandomAccessDataset<WebPageSnapshotModel>
    webPageSnapshotModels(String user) {

    RandomAccessDataset<WebPageSnapshotModel> dataset =
        webPageSnapshotModelMap.get(user);

    if (dataset == null) {
      Configuration conf = new Configuration(
          DefaultConfiguration.get());
      conf.set("hbase.client.instance.id", user);
      DefaultConfiguration.set(conf);

      dataset = Datasets.load(webPageSnapshotUri,
          WebPageSnapshotModel.class);
      webPageSnapshotModelMap.put(user, dataset);
    }
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    return dataset;
  }

Summary
In this case study, we reviewed the design and architecture of a typical interactive
HBase application. We then looked at the security considerations (authentication,
authorization, impersonation, etc.) associated with our use case. We also described
changes to the data model necessary to support our authorization model. Next, we
summarized the security requirements that we wanted to add to the application, fol‐
lowed by the steps necessary to configure our cluster to meet our security require‐
ments. Finally, we described elements of the application implementation that required
changes to support the security requirements.
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Afterword

Hadoop has come a long way since its inception. As you have seen throughout this
book, security encompasses a lot of material across the ecosystem. With the boom of
big data and the impact it’s having on businesses that quickly adopt Hadoop as their
data platform of choice, it is no wonder that Hadoop and its wide ecosystem have
moved rapidly. That being said, Hadoop is still very much in its infancy. Even with
the many security configurations available, Hadoop has much to do until it’s on the
level of relational databases and data warehouses to fully meet the needs of enterpri‐
ses that have billions of dollars on the line with their data management.

The good news is that because of Hadoop’s massive growth in the marketplace, secu‐
rity deficits in the product are rapidly being filled. We leave you with some things that
are either in development right now (possibly even completed by the time this is pub‐
lished), as well as features on the horizon that will be a part of the Hadoop ecosystem
in the not too distant future.

Unified Authorization
One of the hardest jobs a Hadoop security administrator has is to keep track of how
the myriad of components handles access controls. While we dedicated a good deal of
coverage to Apache Sentry as a centralized authorization component for Hadoop, it is
not there yet in terms of providing authorization across the entire ecosystem. This
will happen in the long term—and it needs to. Security administrators and auditors
alike need to have a single place they can go to view and manage all policies related to
user authorization controls. Without this, it is simply too easy to make mistakes along
the way.

In the very near term, Apache Sentry will have authorization integration for HDFS.
This will allow for a unified way to define policies for data access when data is shared
between components. For example, if data is loaded into the Hive warehouse and is
controlled by Sentry policies, how is that handled with MapReduce access? As we saw
in Chapter 13, this involved using HDFS-extended ACLs. With HDFS integration
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with Sentry, this is not necessary. Instead, HDFS paths can be specified as controlled
by Sentry, thus authorization decisions are determined by Sentry policies, not stan‐
dard POSIX permissions or extended ACLs.

Also on the horizon for Sentry is integration with HBase. We saw in Chapter 6 that
authorization policies are stored in a special table in HBase, and managed via the
HBase shell by default. This is a good candidate to migrate the policy store to Sentry
instead.

Data Governance
This book did not cover the larger topic of data governance, but it did go into a sub‐
topic of it that relates to accounting. As we saw in Chapter 8, there are audit logs in
many different places that capture activity in the cluster. However, there is not a cen‐
tralized place to capture auditing holistically, nor is there a place to perform general
data governance tasks such as managing business metadata, viewing linkages and lin‐
eage, or managing data retention. These features are prominently covered in the tra‐
ditional data warehouse. For Hadoop to reach the next level of security as a whole,
data governance needs to be addressed far better than it is today.

Native Data Protection
In addition to encryption, Hadoop needs native methods for masking and tokeniza‐
tion. While masking can be done creatively using UDFs or specialized views, it makes
more sense to provide the ability to mask data on the fly based on predefined policies.
This is available today from other commercial products, but we believe a native capa‐
bility should be included as part of Hadoop. Tokenization is not currently possible at
all in Hadoop without commercial products. Tokenization is important for data sci‐
entists especially because they might not need to see specific values of data, but do
need to preserve linkages and other statistical properties in order to do analysis. This
is not possible with masking, but is possible with tokenization.

Final Thoughts
Hadoop and big data are exciting markets to be in. While it might be a bit scary for
some, especially seasoned security professionals who are accustomed to more unified
security features, we hope this book has shed some light on the state of Hadoop secu‐
rity and shown that even a large Hadoop cluster with many components can be pro‐
tected using a well-planned security architecture.
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