

	
Introduction	To
HTML	&	CSS:

Learn	To	Code	Websites	Like	A	Pro

	
	

	
By	Danny	Ajini

Of	Climb	New	Heights	LLC.

ClimbNewHeights.com

http://www.climbnewheights.com/

Table	Of	Contents
Chapter	1:	Start	Here

Chapter	2:	Understanding	HTML

Chapter	3:	Understanding	CSS

Chapter	4:	Where	To	Write	Your	Code

Chapter	5:	Browsers

Chapter	6:	HTML	Structure

Chapter	7:	CSS	Structure

Chapter	8:	Common	HTML	Elements	&	Their	Rules

Chapter	9:	Common	CSS	Styles	And	Their	Rules

Chapter	10:	Getting	Started

Chapter	11:	Preparing	Images	For	The	Internet

Chapter	12:	Manipulating	Placement	Of	HTML	Objects

Chapter	13:	Margins	And	Padding

Chapter	14:	Other	Types	Of	Positioning	Techniques

Chapter	15:	Fonts,	Fonts,	Fonts!

Chapter	16:	Semantic	Code

Chapter	17:	Using	Color

Chapter	18:	CSS	Sprites

Chapter	19:	Element	States

Chapter	20:	Handy	Things	To	Consider

Chapter	21:	Flash,	Javascript	&	CSS	Animations

Chapter	22:	Validation	&	Troubleshooting

Chapter	23:	Minified	HTML/CSS

Chapter	24:	Grid	Systems

Chapter	25:	Responsive	Web	Design

Chapter	26:	The	Favicon

Conclusion	&	Next	Steps

	

Chapter	1:	Start	Here!
I	know	what	you’re	thinking,	“Oh,	an	introduction…SKIP!”		However,	I’d	advise	you	not
to	skip	this	introduction	because	I’m	not	going	to	babble	on	about	my	qualifications	or
some	heartfelt	story	about	how	my	HTML/CSS	book	cured	a	dying	man	of	his	ailments.

Rather,	I	just	wish	to	give	this	book	a	little	bit	of	context.

As	with	most	things	in	life,	coding	a	website	may	seem	extremely	difficult	from	the
outside	looking	in.		However,	once	you	know	the	tricks	of	the	trade	it’ll	be	a	piece	of	cake
for	you.

If	you’ve	taken	a	good	look	around	on	the	internet	then	you	may	have	noticed	that	there
are	many	different	styles	of	website.		Everything	from	centered	1-page	sites	to	websites
with	a	sidebar	navigation	all	the	way	to	websites	built	entirely	from	Flash	animations.

I	mention	this	because	this	brings	up	the	point	that	there	is	more	than	one	way	to	code	a
website.		Which	we	will	get	to	later	in	the	book.

Brief	Intro	To	Website	Design	History
Disclaimer:	This	brief	history	is	only	based	on	my	own	observations.		Since	this	isn’t
essential	to	the	book	I	won’t	waste	any	time	looking	up	dates,	gathering	references	or	fact
checking.		You’ll	simply	have	to	take	this	at	face	value.

The	advent	of	the	internet	brought	about	very	ugly	websites.		Originally	website	designers
would	rely	on	a	very	outdated	technique	of	laying	out	their	websites	using	what	are	known
as	“tables”.	You	may	be	familiar	with	tables	because	they	are	used	in	Microsoft	Word.	

Essentially	the	tables	would	serve	to	segment	content	on	the	page	and	allow	the	user	to
have	2	&	3	column	layouts	which	are	still	very	much	used	today.

Once	this	obsession	with	tables	died	down	a	bit,	website	designers	then	switched	to	laying
out	their	websites	using	what	are	known	as	“divs”.		A	div	is	another	HTML	“tag”	which
allows	users	to	segment	content	as	they	see	fit.	

I	should	also	mention	that	for	a	while	there,	Flash	became	extremely	popular.		Flash	was
loved	by	many	because	it	allowed	the	designer	to	place	objects	wherever	they	wanted
without	code,	to	create	amazing	animations,	and	do	things	that	simply	weren’t	possible
using	HTML,	CSS	or	Javascript.

This	brings	us	to	today.		With	the	advent	of	HTML5	and	CSS3	(the	latest	versions	of
HTML	&	CSS)	website	designers	are	able	to	create	awesome	animations	and	do	things
that	were	never	possible	in	the	past	without	either	Flash	animations	or	the	usage	of
Javascript.

Today,	with	the	rising	popularity	of	mobile	and	tablet	devices,	mobile	website	design	as
well	as	adaptive	web	design	are	becoming	the	new	standard	which	will	take	us	into	the
websites	of	the	future.

What	I	Hope	To	Accomplish	With	This	E-book
It	is	my	hope	that	someone	who	is	unfamiliar	with	HTML/CSS	can	pick	up	this	e-book
and	use	it	to	get	a	solid	understanding	of	coding	a	website	with	HTML	&	CSS.	

I	want	to	cover	all	the	bases	of	HTML/CSS	without	going	overboard.		Please	note	that	this
subject	is	very	vast	and	I	will	be	covering	a	few	of	the	things	that	are	necessary	to	get
started.

Please	note	however,	that	I	am	extremely	long	winded.		That	being	said,	I	know	that	this	is
supposed	to	be	an	introductory	book	but	along	the	way	I	will	be	giving	you	some	of	the
seeds	of	knowledge	necessary	to	help	you	towards	your	second	phase	of	website	building.

That’s	when	you	graduate	from	coding	a	static	page	to	full	fledged	responsive	website
design.

There	are	many	resources	on	the	internet	which	can	help	you	learn	how	to	build	a
website.		However,	none	of	these	resources	will	give	you	the	edge	that	can	only	be	gained
by	years	of	experience,	hours	of	troubleshooting	as	well	as	yelling	at	your	computer
screen	which	I	hope	to	impart	on	you.

	

That	being	said	let’s	begin!

Chapter	2:	Understanding	HTML
So	they	say	that	the	difference	between	a	master	and	a	novice	is	that	the	master	knows	the
tricks	of	the	trade.	It’s	the	tiny,	subtle	things	that	the	master	knows	that	gives	him	the	edge
over	the	novice.	

You	may	not	know	this,	but	anyone	who	has	ever	used	a	computer	(even	one	without
internet)	has	probably	used	and	manipulated	HTML.

HTML	means	“HyperText	Markup	Language”	FYI.

If	you	have	ever	used	Microsoft	Word,	then	you	have	most	likely	come	in	contact	with	a
multitude	of	HTML	elements	and	you	didn’t	even	realize	it.

These	include:

Headings	(Heading	1	through	Heading	6)
Tables
Ordered	Lists	(A	list	with	numbered	bullet	points)
Unordered	Lists	(This	list	is	an	example)
Links	(Surely	you’ve	encountered	a	Word	document	with	a	link	to	a	website)

I’m	sure	there	are	a	few	more	examples	but	are	the	stand	out	elements	which	I	knew	most
people	would	be	familiar	with.

And,	just	like	a	Word	document,	a	website	can	be	extremely	bland	with	no	styling…or
you	can	use	your	imagination	and	jazz	it	up	a	bit	using	fancy	fonts,	colored	text,	images,
backgrounds,	etc!

Figure	2.1	–	On	the	left	is	a	website	and	on	the	right	is	the	same	website	minus	the	CSS.

CSS	stands	for	“Cascading	Style	Sheet”	and	when	people	refer	to	CSS	they	will	often	talk
about	the	“stylesheet”	which	is	the	document	containing	the	CSS	code.	As	you	can	see
above	in	Figure	2.1,	on	the	left	you	have	a	website	which	consists	of	HTML	&	CSS.		And
on	the	right	you	have	the	EXACT	SAME	WEBSITE,	however	I	deleted	the	stylesheet.

The	HTML	includes	all	of	the	elements	that	are	on	the	page	IE:	the	pictures,	the	words,
the	links,	etc.	and	the	CSS	is	the	code	that	the	website	designer	uses	to	denote	the	color,
orientation,	font,	etc.	

As	you	can	see	the	website	on	the	right	(minus	the	CSS)	looks	very	much	like	something

you	could	create	in	Microsoft	Word.	

And	much	like	Microsoft	word	elements,	each	HTML	element	comes	preset	with	styles.	

For	example	if	you	were	to	take	a	word	and	link	it	to	a	website,	it	becomes	blue	and
underlined.		If	you	were	to	begin	typing,	the	words	would	begin	in	the	upper	left	portion
of	the	document	using	a	Times	New	Roman	font	and	utilizing	a	12	point	font.

The	reason	why	I	mention	the	link	and	paragraph	style	attributes	in	Microsoft	Word	is
because	they	are	almost	identical	to	the	default	appearances	of	“unstyled”	HTML
elements.

Chapter	3:	Understanding	CSS
So	as	I	mentioned	above	CSS	stands	for	Cascading	Style	Sheets.		It’s	what	you	will	be
using	as	a	beginning	website	designer/	developer	to	give	your	websites	some	flavor.	

It’s	the	tool	that	you	will	use	to	transform	a	page	which	resembles	the	ugliest	of	Word
documents	into	a	beautiful	and	interactive	work	of	art!

As	I	mentioned	before,	HTML	elements	all	have	their	default	styles.

Links	look	like	this.

Paragraphs	and	other	unstyled	text	default	to	Times	New	Roman	(or	Macintosh
equivalent)	16	point	font.

Unordered	lists
end	up	looking
like	this.

It	will	be	your	responsibility	to	take	these	elements	and	style	them	to	your	desire	utilizing
CSS.

Things	You	Can	Do	With	CSS

Change	the	background	of	the	page	(Many	options	including	tiled	image,	gradient,
image/	background	color	combo,	solid	color,	etc)
Change	the	orientation/	position	of	an	element
Change	fonts,	font	size,	font	color
Give	elements	background	images

In	all	honesty,	there	is	almost	no	limit	to	what	you	can	do	visually	to	a	website	using	CSS.	
And	with	the	advent	of	CSS3	there	is	all	types	of	cool	things	that	you	can	do	such	as
creating	animations	to	happen	when	the	user	hovers	over	an	element,	rounded	corners	on
elements,	text	shadows,	etc!

Chapter	4:	Where	to	Write	Your	Code
Before	we	go	any	further	on	our	journey	we	have	to	discuss	what	you	will	be	using	to
code	the	websites	that	you	design.	

I	personally	use	Dreamweaver	to	do	all	of	my	coding.		It’s	not	what	I	personally
recommend.		I	mostly	use	it	because	it	came	with	Adobe	Creative	Suite,	something	that	I
personally	use	because	it’s	required	for	my	profession.

However,	you	can	edit	almost	any	type	of	code	using	the	standard	text	editor	that	comes
with	your	computer.	

With	a	Windows	based	computer	you	can	use	Notepad	to	write,	view	or	edit	almost	any
type	of	computer	code	you	could	ever	wish	to	manipulate.		On	a	Mac	the	equivalent	is
TextEdit.	

It’s	crazy	that	the	simplest	program	on	your	computer	gives	you	the	ability	to	code	the
most	beautiful	websites.	

Essentially,	the	code	editor	that	you	use	is	irrelevant.		If	you	use	a	simple	code	editor	then
you	have	the	potential	to	become	much	more	proficient	in	writing	code	because	you	won’t
have	any	crutches	to	rely	on.

If	you	spend	your	time	writing	code	with	a	simple	text	editor,	you	will	most	likely	end	up
having	to	reference	almost	every	bit	of	code	that	you	write	or	commit	the	code	to	memory.

Free	Code	Editors
Although	memorizing	code	will	make	you	an	exceptional	website	developer	the	purpose
of	this	book	isn’t	to	deter	you	from	getting	your	feet	wet	with	HTML/CSS.

Therefore	I’ll	give	you	a	few	options	that	you	can	use	if	you	don’t	have	the	option	to	use	a
paid		program.

Of	course	by	the	time	you	read	this	e-book	there	may	be	more	options	so	don’t	be	afraid	to
Google!

Notepad	(TextEdit	on	Mac)	-	No	frills	text	editor.	Be	prepared	to	Google	every	step
of	the	way.
Notepad++	-	This	is	a	free,	open	source	download	that	is	essentially	a	simple	text
editor	with	a	few	features	which	will	make	your	life	easier.
TextWrangler	–	Similiar	to	Notepad++	but	is	Mac	only	and	not	open	source.

What	Is	The	Deal	With	Code	Editors???
If	you’re	completely	new	to	code.	Then	you	may	be	asking	yourself,	“how	is	the	code
editor	that	I	use	important	in	anyway?”

Basically,	the	code	editor	that	you	use	can	make	your	life	easier.		And	you	yourself	can
make	your	own	life	easier	by	paying	attention	to	the	tips	that	I’ll	give	you	in	the	chapter
about	“semantic”	code.

Back	to	the	topic	at	hand,	the	editor	that	you	use	can	help	you	in	a	number	of	ways.	

For	instance,	check	out	Figure	4-1.		The	language	that	you’re	looking	at	is	CSS.		You	may
not	be	able	to	tell,	but	I’ve	decided	to	target	the	“body”	of	the	HTML	document.		Then	I
decided	to	target	the	“background-color”	of	said	body.

Colors	on	the	internet	are	normally	based	on	a	hexidecimal	system	and	each	color
designation	begins	with	a	hash	marking.		For	instance	“#ffffff”	designates	white.		(We’ll
get	into	that	more	later.)

Figure		4.1	–	I	begin	to	specify	a	background	color	and	a	helper	window	pops	up	to	assist
me	in	choosing	a	color.

But	as	you	can	see,	as	soon	as	I	began	to	type	the	hash	mark,	a	helping	hand	popped	up	to
help	me	choose	a	color.	

This	is	just	one	example	of	how	the	text	editor	that	you	choose	can	help	you	get	the	job
done.

Essentially,	the	best	text	editors	can	help	you	to	remember	tidbits	of	code,	help	you	to
keep	your	code	organized	and	assist	you	when	you	forget	essential	pieces	of	code.

	

Chapter	5:	Browsers
I	know	you’re	eager	to	start	learning	about	website	building	however,	the	topic	of
browsers	is	one	of	the	most	important	pieces	to	the	puzzle.

An	internet	browser	is	simply	the	portal	that	you	choose	to	help	you	view	the	abomination
which	has	come	to	be	known	as	the	internet.

And	just	as	the	program	you	choose	to	write	your	code
can	help	you	get	an	edge,	so	can	your	browser.

As	of	today,	the	most	popular	internet	browsers	are	Internet	Explorer,	Firefox,	Opera,
Chrome	&	Safari.

Why	Do	Browsers	Matter?
If	you	are	going	to	be	coding	websites	it’s	important	to	have	multiple	browsers	to	test	your
websites	in.

Not	every	browser	displays	the	same	font	in	the	same	way	and	some	browsers	have
slightly	different	protocols	for	displaying	certain	objects.

Just	as	I	mentioned	before	about	how	Microsoft	Word	has	certain	styles	that	they	apply	to
different	objects.		Each	browser	also	abides	by	certain	styles	for	different	HTML	elements.

And	while	each	browser	has	almost	the	same	relative	styles	for	each	element,	there	are
some	subtle	differences	between	browsers	which	can	throw	off	your	layout.

Often	times	the	problem	browser	will	be	Internet	Explorer.		This	is	because	Microsoft
abides	by	a	different	set	of	rules	pertaining	to	the	way	it’s	browser	renders	certain	HTML
elements.	

You	may	think	that	this	isn’t	an	issue	because	you	personally	use	Chrome,	Firefox	or
Safari.

In	reality,	what	you	don’t	know	is	that	a	majority	of	people	NEVER	upgrade	their	browser
from	the	default	one	their	computer	comes	with.		And	since	the	majority	of	people	use
Windows,	this	means	that	a	majority	of	people	not	only	use	Internet	Explorer	but	a	good
chunk	of	those	people	have	an	OUTDATED	version	of	Internet	Explorer.

Only	in	recent	years	has	Internet	Explorer	caught	up	with	the	modern	browser	world	and
begun	to	acknowledge	modern	website	design	techniques	and	render	the	new	website
design	features	in	their	own	browsers.

What	this	means	is	that	a	good	chunk	of	internet	users	world	wide	are	viewing	websites	on
a	completely	outdated	and	(for	lack	of	a	better	word)	non-compliant	browser.

This	makes	coding	HTML/CSS	super	fun!!!	(sarcasm)

What	Browsers	To	Download
The	browsers	that	I	personally	recommend	to	download	are:

Internet	Explorer
Firefox
Chrome

If	you	are	a	Windows	user	and	are	concerned	about	not	having	Safari,	don’t	be.		Google
Chrome	is		using	an	open	source	web	browsing	system	called	“WebKit”	which	is	what
Safari	uses.		Keep	that	word	WebKit	in	the	back	of	your	head	because	it	will	come	up	later
when	we	start	coding	with	CSS.

If	you	are	a	Mac	user	you	should	definitely	download	Internet	Explorer	so	that	you	can
make	sure	your	websites	perform	as	intended	on	Windows.

Between	all	of	the	browsers	mentioned	above	you	will	have	a	pretty	good	idea	of	how
your	websites	will	perform	for	the	myriad	of	internet	users	out	there.

Advantages	To	Certain	Internet	Browsers
I	personally	crack	open	Google	Chrome	whenever	I	am	going	to	begin	a	heavy	session	of
coding.	
Figure	5.1	–	I	right	clicked	on	the	broken	image	and	go	to	inspect	element	to	see	what’s	wrong.

This	is	because	Google	Chrome
has	more	intuitive	and	user	friendly	code	diagnostic	capability.

In	the	image	above	you’ll	see	that	there	are	4	broken	images	in	the	box	labeled	“Advertise
Here”.		In	Google	Chrome,	if	I	see	an	element	that	is	behaving	strange	all	I	need	to	do	is
right	click,	followed	by	Inspect	Element.

Figure		5.2	–	Once	I	click	inspect	element	this	window	pops	up	and	gives	me	some	helpful	information.

Once	I	click	“Inspect	Element”	then	this	extremely	helpful	“Developer	Tools”	window
pops	up.	

The	red	“x”	with	the	number	in	the	corner,	lets	me	know	when	files	which	the	document
says	are	supposed	to	accompany	this	file	are	missing.

I	can	see	that	the	images	which	aren’t	showing	up	are	a	result	of	a	broken	path.	

A	few	things	that	I	want	to	quickly	mention:

1.	 Almost	every	modern	browser	has	some	sort	of	“Developer	Tools”	option	however,	I
happen	to	think	Google	Chrome’s	version	is	the	most	helpful	and	easiest	to	use.	
Google	Chrome’s	Developer	Tools	window	is	also	very	cool	because	it	allows	you	to
edit	HTML	&	CSS	directly	in	the	Developer	Tools	window	so	you	can	experiment
with	your	code	before	you	actually	put	it	to	use	on	your	website.	

2.	 As	you	can	see,	when	I	“inspected	the	element”	the	panel	on	the	right	tells	me	every
CSS	style	associated	with	the	element	in	question.		If	there	was	a	style	which	I
happened	to	write	incorrectly	the	Developer	Tools	window	would	let	me	know	by
putting	a	slash	through	the	CSS	rule.		This	lets	me	know	that	the	CSS	statement	is
not	currently	being	used	because	it	is	written	incorrectly.

3.	 These	developer	tools	options	are	extremely	helpful	and	have	many	more	capabilities
than	I	even	know	about	or	have	the	time	to	mention.		If	you	end	up	becoming	serious
about	coding,	than	you	should	make	a	conscious	effort	to	learn	more	about	what
functionality	the	developer	tools	can	offer	you.

One	thing	that	is	pretty	cool	about	Firefox	is	this	3D	view	option.		I’m	not	exactly	sure
how	useful	it	is.		However,	it	can	help	you	to	understand	the	hierarchy	of	the	page	as	well
as	show	you	where	there	may	be	errors	in	terms	of	elements	placed	incorrectly	inside
other	elements.

In	all	honesty,	when	I	tried	to	initialize	the	3D	view	on	my	own	computer	a	window
popped	up	letting	me	know	that	3D	view	has	failed	and	to	check	the	troubleshooting	page
on	Firefox’s	website.		I	suspect	it’s	because	of	my	graphic	card.		However,	here	is	a
picture	of	what	the	Firefox	3D	view	looks	like.
Figure	5.3	–	The	3D	view	option	in	Firefox	is	super	cool!

Chapter	6:	HTML	Structure
Before	you	begin	to	get	acquainted	with	HTML	you	need	to	know	a	bit	about	the	structure
of	HTML	elements.

Beginning	And	Ending	HTML	Tags
Any	element	that	can	be	wrapped	around	something	has	a	beginning	tag	and	an	ending
tag.	The	beginning	tag	will	be	encapsulated	with	using	“less	than”	and	“greater	than”
symbols	(<	>)	the	ending	tag	will	be	encapsulated	with	the	same	symbols	with	the
addition	of	a	forward	slash	(</	>).

Examples:

<body>This	is	the	body	tag,	it	is	the	body	of	the	HTML	document	and	all	HTML
elements	which	are	to	be	featured	on	the	page	are	between	the	beginning	and	ending	of
this	element.</body>

<p>This	is	a	paragraph	tag.		All	text	that	you	wish	to	be	included	in	this	paragraph	go
here.</p>

Self	Contained	HTML	Tags
Elements	that	are	self	contained	end	themselves	using	a	forward	slash	located	right	before
the	ending	“>”	symbol.

Below	is	a	“break”	tag.		The	break	tag	is	used	to	cause	a	sentence	to	go	to	the	next	line,	or
free	up	some	space	in	your	document.	The	break	tag	can	be	used	just	like	the	enter	key
does	when	typing	in	a	Microsoft	Word	document.

In	the	past	using	
	used	to	be	acceptable,	valid	HTML	however	in	recent	years	you
need	to	end	the	tag	within	itself	(as	seen	below	with	a	space	and	a	forward	slash).	

Example:

	

Below	is	a	“horizontal	rule”	tag.		This	HTML	element	creates	a	horizontal	line	on	the
page.		Since	this	line	cannot	be	wrapped	around	any	other	HTML	elements,	it	is	self
contained.		Below	is	an	example	of	a	horizontal	rule.

Example:

<hr	/>

	

Chapter	7:	CSS	Structure
CSS	can	be	a	little	bit	more	complicated	because	there	are	many	CSS	declarations	that	you
can	make	and	each	declaration	has	it’s	own	set	of	rules.	

However,	there	is	a	few	things	that	never	change	when	it	comes	to	CSS	so	I’ll	share	them
with	you	now	so	that	you	can	have	a	better	understanding	before	we	start	jumping	head
first	into	the	subject.

CSS	follows	the	structure	that	you	see	below.	CSS	is	written	like	this	when	you	declare
your	CSS	in	the	head	of	the	document	or	in	a	separate	document.
Figure		7.1	–	Below	you	can	see	the	structure	of	CSS	stylings.

Some	people	like	to
write	their	CSS	directly	in	the	HTML	element	itself	it	is	known	as	“inline	CSS”.	Below	is
an	example.	

With	inline	CSS	styles	there	is	no	question	as	to	the	element	being	targeted	so	the
targeting	as	well	as	the	brackets	get	omitted.		However	the	CSS	property,	the	colon,	the
CSS	property	declarations	and	the	ending	semi-colon	are	all	there.

Best	practice	with	CSS	is	to	keep	all	your	CSS	in	a	separate	document	and	link	the
document	to	your	HTML.		However,	as	you	can	see	there	are	a	few	different	ways	to	write
your	CSS.		To	save	time	and	to	avoid	confusion	we	will	be	just	covering	how	to	write	your
CSS	in	a	separate	document.

Inline	styles	are	kind	of	frowned	upon	because	they	can	increase	load	times	in	websites
and	are	seen	as	being	amateur-ish.

Targeting	An	HTML	Element
In	order	to	begin	to	write	a	CSS	declaration	about	any	element,	you	must	first	tell	the	CSS
document	which	element	to	target.

Broad	Example
If	you	wanted	to	target	every	instance	of	a	particular	HTML	element	you	would	begin
your	CSS	declaration	with	the	name	of	that	element.

Examples:

body	(Targets	the	body	of	the	HTML	document	and	all	elements	contained	within)
h1	(Targets	all	h1	header	elements	in	the	document)
a	(Targets	all	links)

Targeting	An	Element	by	“Class”
Another	way	to	target	elements	is	to	give	them	classes.		Classes	allow	you	to	target
elements	based	not	on	the	type	of	HTML	element	but	by	the	classes	that	you	wish	to	give
those	elements.	

Classes	are	great	because	they	allow	you	to	style	objects	with	more	precision.

Below	is	an	example	of	giving	an	HTML	element	a	class.

	

As	you	can	see,	in	order	to	give	an	element	a	class
you	must	add	“class=”,	followed	by	the	class	name	in	quotation	marks.

In	order	to	target	a	class,	it’s	very	similar	to	targeting	an	HTML	element.		Except	you	use
the	name	of	the	class	with	a	period	in	front	of	it.

Below	is	an	example	of	targeting	an	HTML	element	by	class.

Targeting	An	Element	By	ID
Classes	are	cool	because	you	can	have	as	many	elements	on	a	page	as	you	want	with	the
same	class.

However,	there	comes	a	time	when	maybe	there	is	only	one	element	on	the	page	which
you	want	to	give	a	bit	of	significance	to.

An	ID	is	a	way	to	target	an	HTML	element.		However,	there	can	only	be	1	element	with
the	same	ID	per	page.	

Sure	you	can	have	multiple	elements	with	the	same	ID	on	the	same	HTML	page.	
However,	when	you	go	to	validate	the	document	it	will	show	as	invalid	in	an	HTML
validation	program,	as	this	is	not	a	valid	HTML	technique.

To	give	an	HTML	element	an	ID	it	is	very	similar	to	the	class	declaration.

Giving	an	HTML	element	an	ID	is	almost	identical	to
giving	an	HTML	element	a	class.		Except,	instead	of	typing	“class	=‘class	name’”	you
simply	type	“id=‘id	name’”.

Targeting	the	element	with	CSS	is	almost	identical	as	well.		Except,	instead	of	putting	a
period	before	the	id	name	you	use	a	hash	mark	(#).

Nested	CSS	Targeting
To	target	elements	inside	other	elements	simply	declare	the	elements	from	biggest	to
smallest	separated	by	a	space.	For	example	to	target	an	image	wrapped	in	a	link	you
would	target	those	elements	by	using	“a	img”.		Keep	in	mind	you	can	get	as	deep	as	you
want	with	nested	CSS	targeting.	

As	long	as	the	element	you	are	targeting	is	wrapped	in	the	elements	you	specified	your
styles	will	effect	the	element	in	question.

Advanced	CSS	Targeting
With	the	advent	of	CSS3	there	has	become	a	few	more	ways	to	target	HTML	elements	in
order	to	style	them.

For	example,	in	HTML	there	are	a	few	different	elements	that	all	use	the	same.

If	you’re	reading	this	book	than	chances	are	you’ve	been	around	the	block	a	few	times	and
seen	various	things	on	the	internet.		One	of	the	most	common	elements	in	websites	is	the
web	form.

You’ve	most	likely	seen	a	few	web	forms	in	your	day	because	there	is	always	some
advertiser	or	business	that	wants	you	to	fill	out	and	submit	a	form.

The	“input”	element	is	an	extremely	versatile	element.		This	one	element	can	be	used	as	a
text	field	in	a	form,	as	well	as	a	date	field,	a	phone	number	field	AND	a	submit	button!

This	brings	us	to	our	next	question,	but	how	do	you	style	a	certain	type	of	“input”	element
whithout	disrupting	other	elements	which	you	don’t	want	to	tamper	with?

What	you	see	above	is	a	little	bit	of	an	advanced	CSS	declaration.	

As	you	can	see	I’m	targeting	multiple	HTML	elements	with	the	same	CSS	declaration	by

separating	each	individual	HTML	element	with	a	comma.

I’m	also	targeting	two	different	types	of	inputs	(type=”text”	as	well	as	type=”date”)	using
brackets.

And	you	may	not	fully	grasp	this	yet.		However,	I’m	targeting	EVERY	input	with	the	type
equal	to	“text”	EXCEPT	ones	where	the	class	is	“s”.		And	I’m	doing	this	using
“:not(element	in	question)”.

There	are	a	few	other	advanced	techniques	to	target	HTML	elements	however,	I	don’t
want	to	overload	you.		We’ll	just	cover	some	of	the	basic	building	blocks	to	get	you	going.

CSS	Hierarchy
CSS	is	called	Cascading	Style	Sheets	because	the	rules	set	for	CSS	“cascade”	down	the
document	into	other	elements.		For	example,	CSS	styles	that	are	lower	in	the	document
will	over	power	styles	that	are	higher	in	the	document.		A	style	on	line	1	will	be
overpowered	by	a	style	on	line	365	that	targets	the	same	element	for	instance.		That	means
if	you	were	to	declare	the	default	font-family	for	the	document	to	be	be	Arial,	then	later	on
in	the	document	you	specify	Tacoma,	than	the	latter	style	would	take	effect.

CSS	styles	that	are	more	specific	in	their	CSS	targeting	will	over	power	styles	that	are
more	vague	in	their	targeting.		For	example	a	CSS	style	directed	at	all	paragraph	tags	will
be	overpowered	by	a	CSS	style	directed	at	all	paragraph	tags	with	a	class	or	id	of	your
choice.

If	you	are	targeting	one	HTML	object	and	you	give	the	object	two	conflicting	styles	the
browser	will	render	the	style	that	is	lower	in	the	document.		For	example	if	you	give	all
headings	a	margin	of	10	pixels	and	then	later	say	that	all	headings	should	have	a	margin	of
15	pixels,	the	browser	will	render	the	latter	style.

If	the	HTML	object	itself	has	an	inline	style	than	in	most	cases	the	inline-style	will	be
rendered.	An	example	of	an	inline	style	would	be	as	follows:

In	most	cases	all	of	these	conflicting	styles	can	be	bypassed	with	a	declaration	of
“!important”	before	the	closing	semi-colon	of	the	CSS	declaration.

	

Chapter	8:	Common	HTML	Elements	&	Their	Rules
Divs

A	div	is	essentially	an	HTML	element	which	is	used	to	hold	other	objects.		I	believe	that
div	is	short	for	division.	Divs	are	important	for	laying	out	websites.		Since	the	word	div	is
not	very	descriptive,	HTML5	has	spawned	new	kinds	of	divs	with	different	names.		These
new	“div-like”	elements	are	called:	header,	nav,	section,	aside,	article,	details,	footer,	and
summary.

To	use	a	div	simply	use	this	beginning	and	ending	tag	to	wrap	around	the	elements	you
wish	to	organize.		Div’s	are	block	level	elements,	which	you	will	learn	about	later	on	in
the	book.

<div>Div	content	goes	in	here.</div>

The	format	is	the	same	with	the	new	HTML5	elements.

<header>Header	content	goes	in	here.</header>

Heading
Headings	are	just	as	they	sound.		They	are	text	headings	which	range	in	size	from	H1-H6.	
H1	being	the	largest	and	most	important	in	the	eyes	of	search	engines	to	H6	being	the
smallest	and	least	important.

To	use	a	heading	simply	wrap	the	heading	text	with	beginning	and	ending	header	tags.
Headings	are	block	level	elements.		This	may	be	obvious	but	don’t	mismatch	the	tags	for
the	heading.

<h1>This	is	an	H1	heading.</h1>

<h2>This	is	an	H2	heading.</h2>

…

<h6>This	is	an	H6	heading.</h6>

Images
Images	are	also	pretty	self	explanatory.		Images	are	“inline	block”	level	elements.		To	keep
your	code	valid,	make	sure	every	image	you	use	in	your	document	has	an	“alt”	specified.	
The	“alt”	attribute	is	important	for	when	your	image	fails	to	load	for	any	number	of
reasons.	The	alt	attribute	is	also	useful	for	visually	impaired	website	visitors.		In	both
cases	the	images	would	show	the	alternative	text	which	describes	the	image	so	they	can
get	a	better	feel	for	what	the	website	is	about.

To	use	an	image	simply	use	the	following	format.

Obviously	the	path	should	point	to	the	place	where	the	image	is	located	and	the	alternative
text	should	be	replaced	with	actual	alternative	text.		Since	images	can’t	wrap	around	other
elements	the	image	tag	ends	itself,	as	you	can	see	with	the	forward	slash	before	the	ending
“greater	than”	symbol	(>).

Quick	note:	your	code	will	still	be	valid	if	you	leave	the	alt	attribute	blank.		However,	this
isn’t	the	best	practice.		Essentially	it	is	the	alt	attribute	itself	that	makes	the	image	valid
and	not	the	text	inside.

Paragraphs,	Spans	&	Blockquotes
A	paragraph	is	exactly	that…a	paragraph.		I	will	note	that	some	people	use	unorthodox
practices	such	as	using	a	paragraph	tag	as	a	div.		A	paragraph	is	a	block	level	element.		To
use	a	paragraph	simply	wrap	the	text	in	the	following	HTML	tags.

<p>Your	paragraph	text	goes	here.</p>

A	span	is	what	you	use	when	you	have	a	piece	of	text	which	you	wish	to	make	special	in
some	way.		Spans	are	inline	elements	and	are	normally	wrapped	in	block	level	elements,
such	as	paragraphs	for	example.

To	use	a	span,	wrap	your	span	text	in	the	following	HTML	tags.

Span	text	goes	here.

A	blockquote	is	normally	used	when	quoting	something	from	another	source	or	a	person.
A	blockquote	is	a	block	level	element	and	can	be	wrapped	around	other	block	level
elements.

To	use	a	blockquote	simply	wrap	your	blockquote	in	the	following	HTML	tags.

<blockquote>Blockquote	text	goes	here.</blockquote>

Unordered	and	Ordered	Lists
If	you’ve	used	Microsoft	Word	than	surely	you’ve	encountered	unordered	and	ordered
lists.		Unordered	lists	are	bulleted	lists	and	ordered	lists	are	numbered.		Both	of	which	are
block	level	elements.

This	may	seem	weird	to	you,	however	most	people	use	an	extremely	styled	unordered	list
for	their	navigation	bars.		This	is	because	an	unordered	list	is	specified	for	use	with	a	list
and	a	navigation	bar	is	essentially	a	list	of	links.	

To	use	an	unordered	list	use	the	following	format.

List	Item	Goes	Here

List	Item	Goes	Here

List	Item	Goes	Here

List	Item	Goes	Here

UL	means	unordered	list	while	LI	means	list	item.

To	use	an	ordered	list	use	the	following	format.

List	Item	1	Goes	Here

List	Item	2	Goes	Here

List	Item	3	Goes	Here

List	Item	4	Goes	Here

OL	means	ordered	list	while	LI	means	list	item.

Links
Links	make	the	internet	go	around.		Links	are	inline-elements.		To	use	a	link	use	the
following	format.

Text,	image,	or	whatever	you	wish	to	link	goes	here.

Obviously	keep	in	mind	that	the	word	path	should	be	replaced	with	the	url	which	you	wish
to	link	to.

Tables
In	the	past	people	would	lay	out	entire	websites	using	tables.		Today	however,	that
technique	is	frowned	upon.		Tables	are	great	for	keeping	information	neat	and	tidy.	Tables
are	block	level	elements.

To	use	a	table	use	the	following	format.

<table>
<th>
			<td>Jill</td>
			<td>Smith</td>	
			<td>50</td>
</th>
<tr>
			<td>Eve</td>
			<td>Jackson</td>	
			<td>94</td>
		</tr>
</table>

	

TH	stands	for	table	header,	TR	stands	for	table	row	and	TD	stands	for	table	data.	
Essentially	listing	the	top	row	as	a	table	header	isn’t	necessary	as	all	rows	can	just	be
labeled	as	table	rows.		However,	if	you	wish	to	style	the	top	row	using	CSS	you	may	want
to	utilize	the	TH	tag	as	it	will	make	it	easier	to	target	the	top	row.

Forms
Forms	are	a	little	beyond	the	scope	of	this	book.		Not	because	forms	are	difficult	to	use	but
because	they	normally	require	a	bit	of	Javascript	or	other	type	of	code	to	work.		I	won’t	go
on	to	mention	much	about	this.		However,	I	will	just	give	you	a	quick	tip	and	say	that	in
order	for	a	text	area	to	be	valid	code	you	must	specify	a	cols	and	rows	attribute.		This

essentially	gives	the	text	area	a	width	and	height	however	you	can	later	manipulate	these
dimensions	with	CSS	if	you	wish.

Chapter	9:	Common	CSS	Styles	And	Their	Rules
I	will	go	into	a	few	different	CSS	techniques	in	greater	detail	later	in	the	book	so	for	now
I’ll	just	list	a	couple	of	the	important	CSS	declarations	and	their	rules.

Color
The	color	attribute	always	denotes	the	color	of	the	text.		To	use	the	color	attribute	simply
use	the	following	format.		Black	is	default	when	it	comes	to	color,	unless	you’re	talking
about	a	link.

color:	#000000;

Later	on	in	the	book	I’ll	explain	how	HTML	color	works	and	how	to	use	the	hexadecimal
system	for	specifying	colors.		You	can	specify	color	using	the	hexadecimal	system,	rgb	or
even	list	them	by	name.

Fonts
There	are	a	ton	of	CSS	declarations	which	deal	with	fonts.		We’re	going	to	briefly	touch
upon	a	few.

font-family:	1st	choice,	2nd	choice,	last	resort;

Fonts	are	specified	by	family.		More	on	this	later.

font-size:	12px;

Font	size	can	be	specified	by	pixel	size,	em’s,	you	can	even	specify	by	using	adjectives
(large,	small,	etc.)

font-weight:	bold;

Font	weight	can	be	specified	by	hundreds	(100,200,300,	up	to	900).		100	being	the
thinnest	and	900	being	the	thickest.		You	can	also	specify	font	weight	by	using	bold,
bolder,	lighter	&	normal.

text-transform:	uppercase;

Using	text-transform	you	can	specify	that	you	want	a	particular	block	of	text	to	be
uppercase	or	lowercase.		The	text	will	then	be	rendered	in	that	specific	case	regardless	of
how	it’s	written	in	the	actual	HTML	document.

line-height:	14px;

Using	line-height	you	can	specify	the	height	between	lines	of	text.	You	can	specify	the
amount	using	pixels,	ems,	etc.

Height	&	Width
You	can	specify	height	and	width	for	various	objects.		You	can	use	pixels,	em’s,
percentages,	etc.	as	the	unit	of	measurement.	To	use	height	and	width	use	these	formats:

height:	100px;

width:	50%;

	

Borders

There	may	come	a	time	when	you	want	to	give	something	a	border.		You	can	specify	all	4
borders	at	once	or	you	can	specify	one	border	at	a	time.	(There	may	be	alternative	ways	to
specify	the	border	however,	we’ll	just	use	the	basics	for	now.)

border:	1px	solid	#ffffff;

To	specify	a	border,	begin	with	the	border	width	in	pixels,	followed	by	the	style	(options
include:	solid,	dotted,	dashed,	thin,	inset,	etc.),	followed	by	the	color.	To	specify	a	border
on	a	specific	side	use:

border-right:	1px	solid	#ffffff;

border-left:	1px	solid	#ffffff;

border-top:	1px	solid	#ffffff;

border-bottom:	1px	solid	#ffffff;

Margins	&	Padding
I	go	into	more	detail	later	on	in	the	book.	However,	margins	form	invisible	barriers
between	objects.

Padding	is	essentially	like	a	margin	however	it	works	as	an	internal	barrier	for	objects
inside	of	an	HTML	element.		For	example,	if	you	have	a	div	with	a	padding	of	10	pixels
all	the	way	around.		Any	object	inside	of	the	div	won’t	be	able	to	get	within	10	pixels	of
the	edge.

I	list	out	how	to	use	these	in	detail	later	in	the	book.

Floats
Some	HTML	elements	naturally	stack	on	top	of	each	other	because	they	use	up	all	the
width	allotted	to	them	and	some	do	not.		In	order	to	alleviate	this	for	times	when	you	have
two	objects	that	stack	and	wish	to	have	them	side	by	side,	you	can	use	floats.

To	float	an	object	use	the	following	format:

float:	left;

You	can	either	float	an	object	left,	right	or	none.	

A	float	basically	tells	a	stack-able	HTML	element	that	it	should	only	take	up	as	much
horizontal	space	as	it	actually	needs	rather	than	hogging	up	all	the	horizontal	space.		Then
it	tells	the	element	to	begin	stacking	either	left,	right	or	center.

Display
You	can	use	the	display	attribute	to	display	a	block	level	element	as	inline,	and	inline
element	as	block	or	not	at	all.

To	use	this	feature	use	the	following	format:

display:	block;

Your	options	here	include	block,	inline,	inline-block,	as	well	as	none.		“Display:none;”	is
for	when	you	don’t	want	to	display	an	object	at	all.

Overflow
There	might	come	a	time	when	you	have	a	div	which	you	have	specified	a	width	or	height
for,	and	you	have	placed	an	object	inside	of	the	div	which	extends	past	the	boundaries	of
its	containing	element.

In	this	case	you	have	an	overflow.		To	style	this	use	the	following	format:

overflow:	scroll;

Your	options	here	include:	scroll	(which	places	scroll	bars	inside	the	element),	hidden
(which	hides	the	excess)	as	well	as	visible	(this	shows	the	excess).

Position
Later	on	I’ll	give	you	my	technique	for	laying	out	a	website.	However,	there	are	a	few
different	positioning	declarations.

To	use	the	position	declaration	use	the	following	format:

position:	relative;

Position	has	a	few	options,	such	as	relative	(relative	to	it’s	current	position),	fixed	(fixed	in
one	position	relative	to	the	browser	window	and	doesn’t	move)	and	absolute	(this	is	an
absolute	position	based	on	any	containing	elements.)

When	you	use	the	position	property	you	must	then	specify	the	position	based	on	the
distance	from	either	the	top,	left,	right	or	bottom.

You	do	so	using	the	following	format:

top:	10px;

You	can	use	any	combination	of	top,	left,	right	or	bottom	and	use	any	valid	unit	of
measure	you	wish.	IE:	pixels,	points,	ems,	etc.

Things	To	Remember
There	are	honestly	too	many	CSS	declarations	to	mention	here.	You’ll	have	to	learn	more
as	you	go	along.		Some	other	great	CSS	declarations	include	border-radius	which	gives
you	rounded	corners	as	well	as	some	of	the	CSS3	transitions	and	animations	which	are	a
little	more	advanced.

Some	things	to	remember	are:

You	can’t	have	more	than	one	background	image	on	a	particular	object
HTML	objects	inherit	default	styles
Child	elements	inherit	styles	from	parent	elements
Styles	that	are	lower	in	the	stylesheet	override	styles	which	are	higher	up	in	the
stylesheet	(unless	!important	is	used	directly	before	the	ending	semi-colon)
You	only	have	to	specify	as	much	CSS	as	you	need	to.		For	example	if	an	object
inherited	a	style	that	you	like,	you	don’t	have	to	redefine	the	style.		Only	use	as	much
CSS	as	needed.

	

Chapter	10:	Getting	Started
Ok,	now	that	we’ve	gotten	a	few	of	the	lesser	boring	facts	out	of	the	way	we	can	begin	to
get	our	hands	dirty	a	bit.

Anyone	can	read	a	book	about	coding	a	website	however,	it’s	not	until	you’ve	taken	that
knowledge	and	began	to	apply	it	that	your	journey	actually	begins.

The	Mockup
I	begin	each	website	that	I	build	with	a	mockup.		A	mockup	is	essentially	a	Photoshop
document	of	what	the	home	page	of	your	website	is	going	to	look	like.
Figure	10.1	–	Below	is	a	mockup	I	created	for	a	friend’s	website.

As	you	can
see	in	Figure	10.1	this	is	an	example	of	a	mockup.		It’s	a	website	design	that	I	was
messing	around	with	for	a	friend	who	happens	to	loves	a	good	bargain.	

It’s	the	website	that	I	will	be	using	as	an	example	throughout	this	e-book	because	it’s	just	a
simple	2	column	website.

The	mockup	is	extremely	important	because	it	serves	as	the	blue	print	to	your	website.

Once	you	have	a	mockup,	you	are	ready	to	begin	coding!

Setting	Up	Your	Website	Folder
I’m	going	to	be	honest	here.		When	it	comes	to	building	a	website,	the	sky	is	the	limit.	

You	don’t	have	to	format	the	folder	that	holds	your	website	EXACTLY	as	I	say.	

You	don’t	have	to	format	your	code	the	way	that	you	see	in	my	examples.	

However,	if	you	keep	your	HTML	documents	clean	and	easy	to	understand.		If	you	keep
your	folders	clean	and	organized.		If	you	keep	all	your	images	in	one	folder.		These	are	all
practices	which	will	help	you	to	code	in	a	professional	manner.	

That	being	said,	we’re	going	to	set	up	a	folder	for	your	first	HTML/CSS	experiments.

1.	 Create	a	folder	name	it	“website”
2.	 In	that	folder	create	2	folders

1	called	“css”
1	called	“images”

The	CSS	folder	will	store	your	CSS	files	and	your	Images	folder	will	store	your	image
files.

Setting	Up	Your	HTML	&	CSS	Documents
Once	you’re	ready	to	begin,	open	up	your	code	editor	of	your	choice	and	create	two
documents.

The	first	one	will	be	named	index.html	and	the	second	one	will	be	named	style.css.		When
it	comes	to	HTML,	the	“index”	usually	denotes	the	“home	page”	and	when	you	upload
HTML	to	a	server	the	server	will	serve	the	index	as	the	home	page.

Save	this	index	file	in	the	root	folder	that	you	just	created,	called	“website”.	The	CSS
stylesheet	will	be	saved	in	the	CSS	folder.

Setting	up	your	HTML	Document
Since	the	advent	of	HTML5,	HTML	documents	have	become	much	more	streamlined.	
Below	you’ll	see	the	bare	minimum	that	you	need	to	have	on	your	page	to	have	a	valid
HTML	document.

	

<!DOCTYPE	html>
<html	lang=“en”>
<head>
				<meta	charset=“utf-8”>		
				<title>Here	Is	Where	You	Put	The	Title	Of	Your	Website</title>
				<!—[if	lt	IE	9]>

<script	src=“http://html5shiv.googlecode.com/svn/trunk/html5.js”></script>

<![endif]—>
</head>
<body>
				
</body>
</html>

Open	up	your	index.html	and	type	the	above	code	into	your	document.		This	is	a
barebones	HTML	document	and	pretty	much	everything	that	you	see	above	is	required	to
have	a	valid	HTML	document.		(In	the	past	a	valid	HTML	document	would	have	included
a	lot	more	declarations.)

DOCTYPE	=	The	document	type
HTML	LANG	=	“en”	(English)	Note	that	the	HTML	tag	begins	at	the	top	of	the
document	and	ends	at	the	bottom	to	wrap	up	the	document.
Head	=	The	place	where	your	page	title,	links	to	CSS	style	sheets,	Javascript	code,
and	other	miscellaneous	code	that	is	important	for	your	website	but	isn’t	necessary
for	the	aesthetics	of	your	website.
<!—[if	lt	IE	9]>	=	The	code	that	follows	this	is	to	allow	for	HTML5	elements	to
work	in	older	Internet	Explorer	browsers.		I’m	not	sure	that	this	line	of	code	is
necessary	to	have	a	valid	document,	however	it	doesn’t	hurt	to	add	it.		“if	lt	IE	9”
means	if	later	than	Internet	Explorer	9.		The	entire	block	of	code	basically	means,	if
the	browser	viewing	this	document	is	Internet	Explorer	and	if	it	is,	if	it’s	older	than
Internet	Explorer	than	use	this	document	linked	here.
Body	=	In	between	the	opening	and	closing	body	tag	is	where	your	HTML	goes.

Linking	Your	CSS	Stylesheet
Unlike	the	HTML	document	the	CSS	document	doesn’t	need	as	many	declarations	or
requirements.		The	style	sheet	is	basically	up	to	you	to	style	your	HTML	however	you
wish.		(That’s	not	to	say	that	you	don’t	have	to	use	valid	CSS.)

In	order	for	your	CSS	styles	to	have	any	effect	on	your	HTML	document	you	need	to	link
the	stylesheet	to	it.

Go	to	your	“index.html”	and	add	the	line	of	code	which	is	featured	below	in	bold.

	

<!DOCTYPE	html>
<html	lang=“en”>
<head>

				<meta	charset=“utf-8”>		
				<title>Here	Is	Where	You	Put	The	Title	Of	Your	Website</title>

<link	href=“css/style.css”	rel=“stylesheet”	type=“text/css”	/>
				<!—[if	lt	IE	9]>

<script	src=“http://html5shiv.googlecode.com/svn/trunk/html5.js”></script>

<![endif]—>
</head>
<body>
				
</body>
</html>

	

This	line	of	code	links	the	stylesheet	to	your	HTML	document.		The	href	is	the	path	to	get
to	the	document	you	are	trying	to	link.	

Tying	It	All	Together
Now	that	you	have	a	blank	HTML	document	and	a	stylesheet	linked	to	it,	you’re	ready	to
rock!

The	best	practice	when	coding	a	website	is	to	have	the	HTML	&	CSS	documents	open	in
your	text	editor	while	you	have	the	website	opened	in	a	browser.

Having	the	website	open	in	a	browser	is	essential	because	you	want	to	be	able	to	refresh
the	document	to	see	the	changes	you	make	take	effect.		You	can	open	the	HTML
document	in	a	browser	by	right-clicking	the	file	and	going	to	“Open	With”	and	choose	the
browser	of	your	choice.

One	thing	that	I	like	to	do	to	make	sure	the	CSS	document	really	is	linked	to	my	HTML
document	is	to	denote	a	color	for	the	background	to	see	if	it	takes	effect.

Go	to	your	stylesheet	and	type	the	following.

	

body

{

background-color:#000000;

}

	

Then	once	you’ve	saved	the	stylesheet	document	you	can	refresh	your	browser	and	check
to	see	that	the	background	of	the	document	has	indeed	changed.

The	color	code	#000000	should	denote	black.		Essentially	you	can	put	any	6	digit
combination	of	letters	and	numbers	there.		However,	if	you	make	it	#ffffff	then	the
background	will	be	white	and	you	won’t	know	if	your	changed	actually	took	effect
because	that	is	already	the	default	background	color.

Backgrounds
I	wasn’t	sure	initially	how	to	structure	this	e-book.		However,	I’ve	realized	that	the	best
way	to	go	about		teaching	my	knowledge	of	HTML/CSS	was	to	go	through	some	of	the
most	useful	properties	and	drop	tiny	morsels	of	wisdom	along	the	way.	

I	know	I	mentioned	that	you	should	start	each	website	off	with	a	mockup.	However,	in	this
case	since	you’re	just	learning	it’s	not	necessary.

If	you’ve	been	following	so	far	you	should	have	a	blank	HTML	document	with	a	black	(or
possibly	other	color)	background.

Go	to	your	CSS	document	and	make	it	blank	again.

When	it	comes	to	doing	anything	HTML/CSS	related,	there	are	many	ways	to	do	every
task.

That	being	said,	we’re	going	to	cover	a	few	different	ways	to	accomplish	the	same	goal,
giving	our	blank	website	a	super	cool	background!

Tiled	Backgrounds
One	of	the	most	popular	background	options	is	your	standard	tiled	background.

One	of	my	favorite	websites	for	getting	cool
backgrounds	for	my	projects	is	www.subtletepatterns.com,	go	there	and	download	a
background	of	your	choice	and	save	it	in	your	images	folder.

I	choose	the	very	first	pattern	that	I	saw,	called	“paisley”	and	you	can	see	the	pattern	over
to	your	right.

This	pattern	is	seamless,	meaning	when	you	tile	this	pattern	it	will	create	a	seamless
background	which	is	perfect	for	website	backgrounds.	

In	order	to	tile	this	background	we	will	have	to	edit	our	CSS	stylesheet	to	reflect	the
changes	that	we	wish	to	make.

Open	up	your	stylesheet	and	then	add	the	following	code	to	add	your	tiled	background.

body

{

background-image:url(../images/paisley.png);

}
Figure	10.2	–	Below	is	an	HTML	document	with	a	tiled	background.

http://www.subtletextures.com/

Of
course	you	should	change	“images”	to	the	title	of	your	images	folder	if	you	chose	to	name
your	folder	differently,	as	well	as	change	the	name	of	your	actual	image	file	to	match	the
file	you	have	chosen.

Above	is	the	result	of	my	tiled	background.

As	I	mentioned	before	with	HTML	elements	all	having	default	styles	applied	to	them,
CSS	styles	have	default	properties	associated	with	them	as	well.

For	instance	having	a	declaration	for	a	“background-image”	always	denotes	that	the
background	image	will	be	tiled	unless	you	declare	otherwise.	

You’ll	see	in	a	minute	what	other	background	option	choices	you	have	at	your	disposal.

A	quick	note	about	declaring	paths.

Essentially,	because	our	CSS	file	and	our	images	are	in	different	folders	then	we	have	to
denote	that	in	the	path	declaration.

body

{

background-image:url(../images/paisley.png);

}

The	“../”	in	front	of	the	path	is	there	in	order	to	tell	the	stylesheet	that	the	path	to	the
image	is	not	in	the	same	folder	but	is	one	folder	up	relative	to	the	CSS	folder.

When	working	locally	on	your	computer	you	will	be	dealing	with	what’s	known	as
“relative”	path	declarations.	This	means	that	your	paths	will	be	based	on	where	they	are	in
relation	to	the	current	folder.

When	you	begin	to	upload	your	files	to	the	internet	you	will	be	doing	most	of	the	same.	
However,	there	may	come	a	time	when	you	will	need	to	use	an	absolute	path	declaration.

One	example	would	be	the	one	you	witnessed	above	in	the	head	of	the	HTML	document.

<script	src=“http://html5shiv.googlecode.com/svn/trunk/html5.js”></script>

Because	the	Javascript	file	above	is	not	relative	to	your	website	and	is	located	on	it’s	own
url,	you	will	need	to	declare	the	path	beginning	with	the	url.	

Simply	put,	the	path	will	need	to	be	denoted	beginning	with
“http://www.example.com/the-folder-in-question…”

Gradient	Fun!
Ok,	as	I	mentioned	above,	background	images	are	tiled	unless	you	specify	otherwise.	
Figure	10.3	–	Below	are	two	gradient	examples.	On	the	left	is	a	gradient	tiled	on	the	y-axis	and	on	the	right	is	a	gradient
tiled	on	the	x-axis.

You
can	make	a	linear	gradient	in	one	of	two	ways.		I	used	only	a	simple	black	to	white
gradient	to	illustrate	my	point.		However,	you	can	get	as	crazy	as	you	wish	with	your
gradient.		You	can	even	do	circular	gradients.	(I’ll	show	you	how	after	this	later)

In	order	to	accomplish	to	top	to	bottom	gradient	you’ll	need	an	image	to	tile	on	it’s	x-axis
(left	and	right).		Since	it	repeats	itself	left	and	right	the	image	only	needs	to	be	1	pixel
wide	(you	should	always	be	concerned	with	using	as	little	images	as	possible	to	save	load
time!)

Choose	your	two	favorite	colors	to	create	a	gradient.	Create	a	file	in	Photoshop	that	is
around	400	pixels	tall	and	1	pixel	wide	and	fill	the	file	with	your	gradient.
Figure	10.4	–	Here	I	am	creating	a	1	pixel	wide	image	which	will	serve	as	my	gradient.

I	decided	to	use
black	and	blue	for	mine.

Save	your	image	in	your	images	folder	and	be	sure	to	remember	the	name	and	the
extension.

Go	to	your	stylesheet	and	type:

body

{

background-image:url(../images/gradient.png);

background-repeat:repeat-x;

}

Obviously	replace	“gradient.png”	with	your	filename	and	extension.	

This	is	the	result…
Figure	10.5	–	Below	is	the	result	of	my	tiled	gradient.

Now,	I	know	what
you’re	thinking…I	messed	up.		However,	I	wanted	to	show	you	this	to	illustrate	my	next
point.

We	declared	a	background	image	and	told	it	to	tile	on	the	x-axis.		It	did,	however	the
default	for	the	background	is	still	white	and	therefore	there	is	white	showing	below	where
the	image	was	tiled.

In	order	to	fix	this	we’ll	have	to	also	specify	a	background	color	along	with	the
background	image	so	the	gradient	will	look	fluid.	Let’s	use	our	Photoshop	eye-dropper
tool	in	order	to	get	the	color	code	we	need!
Figure	10.6	–	Below	I’m	using	the	eye	dropper	tool	to	get	to	figure	out	the	color	at	the	very	bottom	of	my	gradient.		This
will	help	me	to	declare	a	background	color	and	blend	my	gradient	in	with	the	page.

As	you	can	see	above	we	used	the	color	picker	tool	to	find	the	code	for	the	color	that	we
need.		Now	we	can	fix	our	gradient	and	make	it	continuous!

Go	to	your	CSS	and	add:

body

{

background-image:url(../images/gradient.png);

background-repeat:repeat-x;

background-color:#00aeef;

}

Obviously	replace	the	hexcode	number	with	the	color	which	you	need.
Figure	10.7	–	Below	is	my	new	beautiful	continuous	gradient!

And
our	gradient	is	now	fixed!

Using	the	above	logic	we	can	create	a	left	to	right	gradient	by	following	the	same	steps.	
Except	in	this	case	we	use	an	image	that	is	1	pixel	tall	and	“X”	pixels	wide.		And	instead
of	saying	“background-repeat:	repeat-x;”	we	change	it	to	“background-repeat:	repeat-y”.

Not	only	do	we	have	control	over	how	the	background	repeats	but	we	also	have	control
over	the	position.		The	default	position	for	a	background	is	always	in	the	upper	left	corner.

This	allows	for	a	variety	of	different	options.

	
Figure	10.8	–	Getting	funky	with	the	gradients.	This	gradient	runs	along	the	right	side	of	the	browser	window!

For
example,	the	above	gradient	would	be	created	with	a	1	pixel	tall	by	“X”	pixels	wide	image
which	is	repeating	on	the	y-axis	and	the	background-position	is	“right”.

The	code	would	look	like	this.

body

{

background-image:url(../images/gradientexample.png);

background-repeat:repeat-y;

background-color:#00aeef;

background-position:right;

}

If	you’re	worried	about	memorizing	each	CSS	declaration,	don’t.		Each	of	these	things	can
be	Googled	at	a	later	date	if	you	forget.		The	most	important	thing	is	that	you	understand
the	underlying	principals	and	see	what	is	possible	using	HTML/CSS.

Radial	Gradients	&	Image-less	Gradients
The	following	gradient	options	have	only	been	available	recently.		HTML5	and	CSS3
have	brought	along	many,	extremely	cool	features	that	were	once	only	available	using
Javascript	or	extremely	image-heavy	solutions.	

However,	now	we	have	the	ability	to	create	radial	gradients	and	image-less	gradients	using
only	CSS!		The	only	downside	to	this	solution	is	that	it	isn’t	compatible	with	older
versions	of	Internet	Explorer.		However,	as	time	progresses,	the	older	versions	of	IE	will
die	off	and	worrying	about	cross	browser	compatibility	will	be	a	thing	of	the	past.

I	personally	use	this	website	http://www.colorzilla.com/gradient-editor/	to	create	my
gradients.		I	found	it	by	Googling	“gradient	generator”	and	it’s	the	first	organic	search
result.
Figure	10.9	–	This	“Ultimate	CSS	Gradient	Generator”	is	awesome	for	creating	image-less	gradients	of	all	types!.

This
website	is	awesome	because:

It	allows	you	to	edit	the	gradient	just	like	you	would	using	image	editing	software
You	can	change	the	orientation	of	the	gradient	from	vertical,	horizontal,	diagonal	as
well	as	radial
The	CSS	is	generated	for	you	and	they	included	CSS	declarations	for	the	most
common	browsers	as	well	as	a	backwards	compatible	solution	for	older	IE	browsers
They	have	pre-made	gradients
Best	of	all	it	saves	you	a	ton	of	time

Once	you’ve	created	a	gradient	you’re	happy	with,	simply	copy	the	CSS	and	paste	it	into
your	style	sheet.

http://www.colorzilla.com/gradient-editor/

Non-repeating	Background	Images
Above	I’ve	mentioned	a	few	techniques	for	creating	background	effects.		However,	there
may	come	a	time	when	you	want	an	element	to	have	just	one	picture	as	it’s	background.

You	may	want	the	picture	to	be	featured	in	the	bottom	right	corner.		Or	you	may	want	a
heading	to	have	a	background	image	just	to	the	left	of	the	text.

In	order	to	do	this	you	need	to	give	the	element	a	background	image	as	stated	above.
However,	we	need	to	state	that	the	background	should	not	repeat.

Finally	we	can	specify	a	position	for	the	background.			Options	for	placing	the	background
image	include	top,	bottom	or	center	followed	by	left	or	right.	You	can	use	a	combination
of	two	positions	when	it	makes	sense.		For	example,	“top	right”	or	“bottom	left”.

Keep	in	mind	that	if	you’re	placing	a	background	image	in	a	text	element	and	you	want
the	image	to	be	to	the	left	of	your	text,	you	will	have	to	use	padding	in	order	to	make	sure
that	your	text	doesn’t	cover	the	background	image.	Also,	if	your	text	isn’t	as	tall	as	your
image	you	will	have	to	use	padding	to	make	sure	the	background	image	doesn’t	get
clipped.

Above	is	the	CSS	that	I	started	with
and	below	is	the	result.

As	you	can	see	my	text
is	a	little	too	close	to	the	picture	so	to	alleviate	that	I	have	to	give	it	a	little	bit	more
padding	on	the	left	side.

Above	is	the	result.		Obviously	we	probably	don’t	want	to	use	Times	New	Roman
however,	we’ll	learn	about	fonts	a	little	later	in	the	book.

Chapter	11:	Preparing	Images	For	The	Internet
So	hopefully	if	you’re	reading	this	book	you	have	a	little	bit	of	knowledge	of	graphic
design.		And	hopefully	you	have	some	type	of	image	editing	software.

I’ll	be	using	Photoshop	to	show	you	how	to	prepare	images	for	the	internet.

This	is	extremely	handy	to	know	and	is	normally	something	that	you	would	learn	through
trial	and	error.

72	DPI
If	you’re	a	graphic	designer	or	come	from	a	print	background	than	you	may	be	familiar
with	image	resolution.

Typically,	when	working	with	images	that	are	being	prepared	for	print	the	standard
resolution	is	300dpi.	However,	when	it	comes	to	the	internet	most	images	are	72	dpi.		In
some	rare	instances	you	may	encounter	pictures	with	resolutions	which	are	upwards	of
around	90	something	dpi,	72	being	the	standard.

You	also	want	to	make	sure	that	the	images	are	saved	using	the	correct	file	extension	and
that	you	are	optimized	for	the	file	extension	you’ve	chosen.

Most	Common	Image	Extensions
The	most	common	image	extensions	that	you	will	deal	with	when	it	comes	to	creating
(pixel	based)	images	for	the	web	are	.jpg,	.gif	and	.png.	Of	course	you	also	have	.svg’s
which	are	“Scalable	Vector	Graphics”	however	we	won’t	be	dealing	with	those	for	the
time	being.

Each	of	these	extensions	have	their	advantages	and	disadvantages	when	it	comes	to	saving
certain	types	of	images.

When	it	comes	to	the	internet,	how	you	save	your	images	matters.		If	you	save	your	file	in
a	format	that	isn’t	optimal	for	the	image	you’re	saving	then	it	will	take	longer	to	load.

When	To	Use	A	.JPG
A	.jpg	is	best	for	when	the	image	you	are	trying	to	save	is	photographic	in	nature.

What	I	mean	by	that,	is	if	the	image	is	made	from	thousands	of	tiny	pixels	of	varying	color
and	shade	than	saving	it	as	a	.jpg	will	be	the	best	option	for	you.
Figure	11.1	–	As	you	can	see	this	image	is	made	up	of	thousands	of	tiny	squares	of	color.

As	you	can	see	from	the	image	above,	that	tiny	spot	on	that	dog’s	forehead	alone	has	so
much	variance	in	the	color	from	pixel	to	pixel	that	saving	this	image	as	a	.png	or	.gif	will
cause	your	website	to	load	extremely	slow.

Saving	your	photographic	images	as	a	.jpg	is	great	because	in	photo	editing	programs	such
as	Photoshop,	it	gives	you	the	option	to	lower	the	quality	of	the	image	so	that	the	file	will
be	smaller.

You	are	able	to	lower	the	quality	of	the	image	and	see	how	the	final	image	will	be
effected,	as	well	as	how	long	the	image	will	take	to	load	BEFORE	you	actually	save	the
file.

What	I	like	to	do	is	lower	the	image	quality,	while	watching	the	estimated	load	time	of	the
image.		This	allows	me	to	get	the	image	to	a	point	where	the	image	quality	is	acceptable,
while	the	image	load	time	is	not	excessive.

I	took	this	same	image	above	(it	is	1920x1080	pixels	this	is	very	large	for	internet
pictures)	and	using	the	“Save	For	Web	And	Devices”	menu	in	Photoshop	figured	out	how
long	this	same	image	would	take	to	load	using	the	most	common	file	extensions.
Figure	11.2	–	Below	you	can	see	a	preview	of	the	load	time	on	the	puppy	picture	using	various	image	extensions.

As	you
can	see,	for	the	same	exact	image,	saving	this	image	as	a	.png	would	cause	this	image	to
take	402	seconds	@	56.6	Kbps,	a	.gif	would	take	190	seconds	and	a	.jpg	at	100%	quality
would	take	114	seconds.

Keep	in	mind	the	.png	and	.gif	could	be	altered	to	load	in	less	time	however	the	image
quality	would	drastically	suffer	but,	the	.jpg	could	be	lowered	in	quality	with	minimal
difference	in	the	final	product	and	still	load	extremely	fast.	

.PNG’s	And	.GIF’s
.PNG’s	and	.GIF’s	are	best	used	when	the	image	in	question	is	based	on	areas	of	solid
color	rather	than	thousands	of	pixels	of	various	color.
Figure	11.3	–	Since	the	image	below	is	based	off	blocks	of	solid	color	a	.png	or	.gif	file	extension	would	work	best.

The	picture	above	would	be	better	suited	to	be	saved	as	either	a	.gif	or	a	.png.		If	the	image
were	to	be	animated	it	would	most	certainly	be	saved	as	a	.gif	because	.gif’s	support
animation.

Both	.gif	and	.png	support	transparent	objects,	however	.png	is	much	better	at
transparency.

You	probably	can’t	tell	by	looking	at	the	above	picture	however	it	has	a	transparent
background.		When	you	try	to	save	an	object	with	a	transparent	background	as	a	.jpg	the
transparent	part	will	be	turned	white.

Let’s	do	the	same	experiment	as	we	did	with	the	dog	pictures.

As	you
can	see,	when	trying	to	save	the	above	image	as	a	.jpg	at	100%	image	quality	the	image
will	take	more	than	twice	the	amount	of	time	it	would	have	taken	the	.gif	and	.png	to
load.		Not	to	mention	the	fact	that	the	.gif	and	the	.png	will	have	transparency.

Also	not	to	mention	the	fact	that	if	if	you	did	try	to	save	the	above	image	as	a	.jpg	and	you
tried	to	lower	the	quality	in	order	to	save	load	time,	this	would	happen.
Figure	11.4	–	When	attempting	to	save	this	image	as	a	.jpg	some	mild	“compression	artifacts”	beings	to	appear.

As	you
can	see,	I	lowered	the	quality	of	the	image	down	to	31%.		At	31%	quality	the	image	takes
4	seconds	to	load.		And	as	you	can	see,	lowering	the	quality	of	the	image	has	caused	the
image	to	suffer	greatly.

If	you’ll	look	at	the	areas	on	the	image	that	I	have	circled	you	can	see	subtle	variances	in
the	color	of	the	individual	pixels	causing	an	extremely	ugly	effect	to	take	place.

This	is	known	as	a	.jpg	“artifact”.

A	Word	About	Transparency
When	I	was	going	to	college	to	learn	about	website	design.		I	created	a	website	for	a
school	project.		The	website	had	an	image	with	a	transparent	background	featured	in	front

of	a	colored	background.

When	I	looked	closer	I	noticed	that	there	were	tiny	pixels	around	the	edge	of	the
transparent	image	which	weren’t	quite	right.

In	order	to	illustrate	the	problem,	I’ll	create	a	web	page	with	a	red	background,	save	the
image	above	as	a	.png	as	well	as	a	.gif	and	place	the	image	on	the	page	to	show	you	the
issue	I	was	having.
Figure	11.5	–	The	small	amount	of	white	pixels	surrounding	the	picture	below	is	an	issue	of	“matting”.

This	is
what	happens	when	you	save	the	image	as	a	.gif.		As	you	can	see	there	are	white	pixels
surrounding	the	image	in	certain	places.

Now,	let’s	try	the	same	thing	with	a	.png.
Figure	11.6	–	Same	image	saved	as	a	.png.		The	.png	offers	superior	transparency	without	having	to	mess	around	with
“matting”.

As	you

can	see	the	image	now	doesn’t	have	those	pesky	pixels	there	anymore!

But	what	caused	this?

In	all	honesty,	this	was	a	problem	which	effected	me	for	a	while	when	I	first	started	web
design.		And	even	when	I	asked	my	teacher	at	the	time	he	seemed	to	be	of	no	help.

What	I’ve	found	is	that	this	effect	is	caused	because	of	what	is	known	as	“anti-aliased”
pixels.		When	it	comes	to	transparent	pixel	based	pictures.		The	pixels	around	the	outside
of	the	image	can’t	be	a	solid	color.		If	that	were	the	case	then	the	outer	edge	of	the	image
would	look	“blocky”.

The	image	to	the	right	illustrates	this	fact.		It’s	a
little	hard	to	create	rounded	edges	and	beautiful,	picturesque	photographs	using	only	tiny
squares	of	color.		So	in	order	to	alleviate	this	problem,	anti-aliasing	is	done	and	it
essentially	creates	half	filled	in	pixels	around	the	edge	of	the	image	to	create	the	illusion
of	a	smooth	edge.

This	causes	problems	when	it	comes	to	saving	transparent	images	because	if	you	try	to
save	this	image	as	a	.gif	these	anti-aliased	pixels	will	have	a	white	background	by	default.	

This	causes	the	effect	that	you	saw	above	with	the	white	pixels	around	our	cat	image.	
However,	when	saving	your	transparent	images	in	.gif	as	well	as	.png	format	you	have	the
option	to	choose	a	“matte”	that	is	a	background	color	for	those	anti-aliased	pixels.

That	way,	if	you	want	to	use	a	transparent	image	on	a	red	background	you	can	specify	red
as	the	matte	color	so	the	anti-aliased	pixels	will	be	less	noticeable.

Of	course	you	can	skip	all	this	by	saving	the	image	as	a	.png-24	which	has	superior
transparency	abilities.		However,	high	quality,	transparent	.png’s	can	sometimes	take	a
long	time	to	load.

For	this	reason,	I	use	a	website	called	www.tinypng.com	to	lower	the	file	size	on	my
transparent	.png’s	as	well	as	all	my	.png’s	in	general.
Figure	11.7	–	The	car	image	below	had	an	extremely	large	file	size	before	I	used	tinypng.com	to	compress	it.

http://www.tinypng.com/

Tiny	PNG	is	great	for	when
you	have	a	.jpg	quality	image	that	you	still	want	to	have	superior	transparency.		The	car	in
the	above	website	is	fully	transparent,	including	the	shadow	the	car	is	casting	as	well	as
the	light	rays	coming	from	behind	the	car.		Saving	a	transparent	image	like	this	will	cause
the	image	to	take	a	long	time	to	load.		However,	with	image	compression	software	it’s	a
piece	of	cake!

Chapter	12:	Manipulating	Placement	Of	HTML	Objects
Knowing	how	to	place	objects	where	you	want	them	is	extremely	important	when	it
comes	to	designing	a	website	the	way	you	want	it	to	look.

In	order	to	do	this	however,	you	must	first	know	a	little	bit	about	how	HTML	objects
behave.

HTML	objects	are	either	considered	to	be	“inline”	or	“block”	level	elements.

Inline	vs.	Block	Level	Elements
In	order	to		illustrate	the	difference	between	an	inline	element	and	a	block	level	element
I’ll	be	creating	different	HTML	elements	on	a	blank	page	and	then	inspecting	them	using
Google	Chrome’s	element	inspect	option.
Figure	12.1	–	I	clicked	“inspect	element”	on	the	Heading	1	tag	at	the	top	of	the	page	to	show	you	that	block	level
elements	take	up	as	much	horizontal	space	as	possible.	Even	though	the	text	itself	only	utilizes	about	1/16th	of	the	page	it
is	still	causing	elements	below	it	to	be	placed	on	the	next	line.

It	is	a	little
hard	to	tell,	but	I	filled	the	page	with	a	bunch	of	block	level	elements	and	a	few	inline
elements.

The	difference	between	a	block	level	element	and	an	inline	element	is	that	a	block	level
element	will	take	up	as	much	space	as	it	needs	vertically	and	as	much	space	as	it	can
horizontally.

As	you	can	see	I	have	inspected	the	H1	tag	(that’s	whats	known	as	a	heading	1)	and	the
blue	and	pink	region	illustrate	the	amount	of	space	that	the	object	takes	up.		Clearly,	the
“Heading	1”	element	is	taking	up	the	entire	width	of	the	page.

If	I	were	to	put	the	same	H1	tag	in	a	container	which	spanned	only	half	the	width	of	the
browser	window	the	H1	tag	would	still	take	up	as	much	room	as	it	could	horizontally.	
Except	in	that	case	it	would	be	limited	by	it’s	container	which	only	allows	it	to	take	up
half	the	width	of	the	browser	window.

The	page	above	has	mostly	block	level	elements	and	as	you	can	see	they	stack	on	top	of
each	other.	

The	very	last	line	however,	has	3	different	inline	elements.		Let’s	choose	the	“inspect
element”	option	to	learn	more	about	the	nature	of	those	inline	elements.
Figure	12.2	–	I	clicked	“inspect	element”	on	a	span	element.	The	line	with	the	span	element	contains	3	different	span
elements.		Notice	that	they	are	all	on	the	same	line.		This	is	because	they	are	inline	elements.

The
very	last	line	of	the	document	includes	3	“span”	tags.		A	span	is	a	type	based	element
which	holds	less	significance/	importance	than	a	paragraph	which	could	be	considered	the
span’s	older	brother.

As	you	can	see	as	I	inspected	the	span	element,	the	element	itself	takes	up	only	as	much
space	as	it	needs	to.		This	is	the	same	with	all	inline	elements.

The	relationship	between	block	level	and	inline	level	elements	is	important	to	know
because	there	may	come	a	time	where	you	want	to	have	two	block	level	elements	directly
next	to	each	other.

Or	there	may	come	a	time	where	you	want	to	display	an	inline	element	as	though	it	were	a
block	level	element.

Inline-block	Elements
Inline-block	elements	are	inline	elements	that	have	a	width	and	a	height,	rather	than	only
taking	up	as	much	space	as	necessary.		This	is	something	that	is	encountered	rarely	but	is
still	great	to	know	and	another	tool	in	your	arsenal.

“Floating”	Elements
Before	we	get	too	deep	into	this	I’ll	show	you	basically	how	people	normally	set	up
websites.

I	will	do	so	by	taking	a	mockup	which	I’ve	already	done	and	using	a	yellow	outlins	to
show	the	different	dividing	boxes	which	I	used	to	create	the	layout.

In	modern	website	development	people	use	what	is	known	as	a	“div”	to	separate	and
layout	their	content.

A	div	is	a	block	level	HTML	element	and	is	very	handy	for	laying	out	websites	if	you
know	how	to	manipulate	them.
Figure	12.3	–	I	wrapped	every	div	this	page	contains	in	a	yellow	box	to	illustrate	laying	out	a	website.

If
you’re	a	little	confused	than	that’s	great!		It	means	you	understand	how	a	block	level
element	works.

If	you’re	not	confused	than	basically	each	of	these	boxes,	based	on	the	way	they’re
supposed	to	behave	should	be	stacked	on	top	of	each	other.		In	fact	they	would	be,	if	it
weren’t	for	CSS.

Let’s	revisit	the	picture	we	saw	earlier	in	the	book.

As	you	can	see	the	image	on	the	right
is	the	exact	same	code	with	the	CSS	removed.	

So	this	tells	us	is	that	with	CSS	we	are	able	to	lay	out	objects	the	way	we	want	them.

If	you	want	two	block	level	elements	to	sit	side	by	side	then	they	need	to:

1.	 Each	element	needs	to	have	a	specified	width.	Block	level	elements	usually	take
up	as	much	room	as	they	can	horizontally	so	without	a	specified	width	they	will
just	stack	on	top	of	each	other.

2.	 The	combined	width	of	all	the	elements	to	be	placed	side	by	side	can	not	be
greater	than	the	width	of	the	containing	element.	Let’s	say	you’re	making	a
website	that	is	1,000	pixels	wide.	You	can’t	create	two	600	pixel	wide	div’s	and
expect	them	to	stack	side	by	side.		Also,	you	can’t	have	two	500	pixel	wide	divs
with	10	pixel	margins	and	expect	them	to	stack	side	by	side	because	the
combined	width	plus	the	10	pixel	margins	will	make	the	total	width	of	the
objects	520	pixels.

3.	 The	objects	need	to	be	“floated”.		A	float,	is	a	CSS	style	declaration	which	tells	the
object	to	basically	stack	horizontally	to	either	the	right	or	left.	This	is	based	on
whether	you	specify	the	object	float	either	right	or	left.		The	CSS	declaration	looks
like	this.

Div

{

float:left;

}

You	can	also	specify	that	there	be	no	float	by	typing	(float:none;).	This	practice	of	floating
objects	is	extremely	important	for	modern	website	design.		In	the	past	people	would	have
to	use	tables	to	get	the	same	type	of	effect.

“Clearing”	Elements
Floats	and	clears	go	hand	in	hand.		Let’s	say	that	you	have	two	floating	objects	inside	of	a
container	object.

Using	CSS	you	have	specified	a	red	background	for	the	container	element	and	the	two
floating	objects	don’t	have	any	kind	of	background.

The	container	object	is	wrapped	around	both	objects	so	what	will	the	background	of	the
entire	area	be?		If	you’re	a	logical	person	than	you	would	assume	that	since	the	container
has	a	red	background	that	the	background	of	the	entire	area	would	be	red.

However,	since	floating	objects	don’t	behave	quite	like	block	level	elements	anymore	they
don’t	trigger	the	container	element	to	wrap	completely	around	both	floating	elements.

I	know	it	sounds	a	little	confusing	so	I’ll	just	illustrate	it.
Figure	12.3	–	Below	are	two	divs	side	by	side	inside	of	a	container	div.	I	specified	for	the	container	div	to	have	a	red
background	however	there	is	no	background	color	present…what	gives???

Ok,	so
above	you’ll	see	the	result	of	what	I	was	talking	about.

I	created	a	div	with	a	class	of	container.		I	said	for	the	div	to	be	1,000	pixels	wide	and	be
centered	in	the	middle	of	the	page.	

Within	that	container	div	I	created	two	divs	which	are	supposed	to	have	a	width	of	50%
and	are	to	be	floated	left.

They	are	stacked	side	by	side	however	the	container	isn’t	wrapped	around	them.		We
know	this	because	the	container	div	is	supposed	to	have	a	red	background.	

Let’s	use	the	“inspect	element”	option	to	see	what	happened	to	our	container	div.
Figure	12.4	–	I	clicked	“inspect	element”	on	the	container	div	only	to	see	that	it	isn’t	wrapped	around	the	elements
inside	it.

As	you
can	see	the	container	is	not	wrapping	around	the	two	div’s	which	are	inside	of	it.

The	reason	for	this	is	because	the	HTML	document	doesn’t	really	see	floating	objects	as	if
they	were	there.

It’s	a	little	hard	to	explain	so	let’s	put	a	block	level	element	after	our	two	floating	divs	and
see	what	happens.
Figure	12.4	–	It’s	beginning	to	look	a	little	better,	we	can	see	the	red	background	but	it	isn’t	completely	covering	the
elements	inside	it.

I
placed	a	H1	tag	after	both	divs	and	as	you	can	see	the	container	now	sees	that	there	is	a
block	level	element	inside	it	and	wraps	around	it.	

You	may	be	wondering	why	the	H1	tag	didn’t	go	below	both	of	the	floating	divs.

This	is	because,	just	like	we	write	from	left	to	right.	HTML	goes	from	left	to	right.		And	if
you	don’t	specify	otherwise	each	element	will	try	to	go	directly	into	the	upper	left	corner
of	the	screen.

In	order	for	the	H1	tag	we	just	placed	in	the	document	to	go	beneath	the	two	floating
objects,	we	have	to	use	another	CSS	property	called	a	“clear”.

I	purposely	put	half	as	many	objects	into	the	right	column	div	as	the	left	column	div	so	it
would	be	shorter.		And	because	there	is	nothing	there	to	tell	the	H1	tag	to	clear	both	of
those	floating	elements,	it	goes	to	the	nearest	upper	left	corner	that	is	available.

The	clear	property	has	a	few	different	options.		You	can	either	clear	objects	to	the	left,	to
the	right,	or	both.

Now,	let	me	give	that	H1	tag	a	class	of	clear.		And	then	I	can	use	CSS	to	specify	that	any
element	with	a	class	of	clear	should	clear	“both”.

Above
is	the	HTML	as	well	as	the	CSS	that’s	involved.		And	below	is	the	result.

As	you
can	see,	floats	and	clears	are	extremely	helpful	when	it	comes	to	laying	out	websites.	

Next	we	will	learn	about	margins	and	padding	which	will	also	be	helpful	when	it	comes	to
lay	outs	as	well	as	styling	objects	the	way	you	want	them	to	look.

Chapter	13:	Margins	And	Padding
Margins	and	padding	are	both	extremely	powerful	tools.		Both	of	which	do	almost	the
same	thing	with	a	few	minor	differences.

Margins
A	margin	works	to	basically	serve	as	a	barrier,	pushing	objects	away	from	other	objects.

If	you	set	a	margin	of	10	pixels	to	an	object	that	means	that	no	other	HTML	element	can
get	within	10	pixels	of	that	element.	

While	margins	don’t	add	to	the	actual	size	of	the	element,	they	do	sort	of	add	size	to	the
coverage	of	the	element.

For	example,	if	you	were	to	have	a	containing	div	which	you	specified	to	be	1,000	pixels
wide.		Then	you	placed	two	floating	divs	inside	the	container.		Each	of	the	two	floating
divs	were	said	to	have	a	width	of	500	pixels.		Then	both	divs	would	fit	directly	side	by
side	with	each	other	in	the	container.

However,	if	you	were	to	give	both	of	the	floating	divs	a	margin	of	10	pixels,	they	would
stack	on	top	of	each	other	because	they	wouldn’t	have	enough	room	to	fit	side	by	side.
Figure	13.1	–	These	two	divs	are	supposed	to	sit	side	by	side	inside	of	a	1,000	pixel	wide	container.	Each	div	is	500
pixels	wide.		However,	now	because	each	div	has	a	margin	of	10	pixels	around,	they	don’t	fit	next	to	each	other	anymore.

Above
is	the	same	website	from	earlier.		However	instead	of	the	containing	div	having	a	red
background	I	gave	each	of	the	floating	divs	a	red	background,	as	well	as	a	margin	of	10
pixels	around	the	entire	border.

As	you	can	see,	even	though	the	width	I	specified	was	50%	they	don’t	fit	side	by	side
anymore	because	of	the	margins.		And	as	you	can	see	by	the	“inspect	element”	tool	in
Google	Chrome,	it	illustrates	the	margin	using	that	peach	type	color.

Padding
Padding	is	almost	identical	to	margins,	except	padding	works	inside	the	element.	If	you
were	to	specify	a	10	pixel	padding	to	an	element,	the	element	would	grow	10	pixels	on
each	side.		Also,	no	element	would	be	able	to	get	within	10	pixels	of	the	edge	of	the
element.

In	the	above	example	you	can	see	that	the	text	inside	each	div	actually	touches	the	edge	of
the	div	itself.		This	isn’t	very	attractive,	so	let’s	give	those	div’s	a	padding	of	10	pixels	so
we	can	see	what	happens	when	we	do!
Figure	13.2	–	I	gave	this	div	a	padding	of	10	pixels	all	around	and	clicked	“inspect	element”.

As	you
can	see	the	text	is	not	touching	the	edge	anymore.		Google	Chrome	uses	a	green	color	to
denote	padding	however	you	aren’t	able	to	tell	in	this	example	because	it’s	being
overpowered	out	by	the	red	background	of	the	divs.

Specifying	Margin	&	Padding
Specifying	margins	and	padding	both	work	the	same	way.	Keep	in	mind	you	can	specify
your	margin	size	in	a	variety	of	increments	including	px,	pt,	cm,	etc.

The	simplest	ways	to	specify	margin	and	padding	is	as	follows.

You	can	go	a	little	further	and	simplify	it.

	

You	can	go	even	further	to	simplify	it.

And	of	course	you	have	the	furthest
simplification.

Negative	Margins
There	may	come	a	time	when	you	want	to	position	an	object	and	you	find	no	better
alternative.		This	is	when	you	can	use	negative	margins.

Before	I	even	mention	how	or	why	you	would	want	to	use	them	I’ll	say	that	this	isn’t	the
most	professional	option.		However,	I	have	been	known	to	use	this	“HTML	cheat	code”
from	time	to	time.

In	all	honesty,	you	probably	won’t	find	an	excuse	to	pull	this	trick	out	of	your	hat	until
you	become	a	little	bit	more	advanced	as	a	website	designer.

And	I	can’t	think	of	an	example	that	would	be	understandable	to	the	person	who	is	just
getting	acquainted	with	HTML/	CSS.

I’ve	used	a	negative	margin	in	the	past	when	dealing	with	code	that	I’m	using	in	my
website	that	I	haven’t	written.		And	for	some	reason	I	can’t	get	a	particular	object	to	be
where	I	want	it	to	be	using	conventional	means.		That’s	when	I’ll	begin	to	start	messing
with	a	negative	margin	in	order	to	push	an	object	to	go	where	I	want	it	to	go.

Centering	Objects	With	Margin
This	is	one	of	the	most	widely	used	HTML/CSS	techniques.		I	personally	use	this	in	just
about	EVERY	website	I’ve	ever	done.

Website	designers	use	this	in	order	to	center	the	website	content	in	the	middle	of	the	page.

As	you	can	see,	I’ve	created	a	class	called	“container”	and	specified	a	margin	of	“0	auto”.	
What	this	means	is	that	on	the	top	and	bottom	of	this	“container”	there	should	be	a	margin
of	0	pixels	and	on	the	left	and	right	the	margin	should	auto	regulate.

This	is	a	great	technique	however,	don’t	go	thinking	that	you	can	center	ANY	object	using
this	technique.

In	order	for	this	technique	to	work:

The	object	needs	to	be	a	block	level	element	(or	at	least	specified	to	display	block
using	CSS)
The	object	needs	to	have	a	width	specified
The	object	can’t	be	floated
The	object	can’t	have	a	fixed	or	absolute	position	(we’ll	cover	that	next)

Chapter	14:	Other	Types	Of	Positioning	Techniques
In	all	honesty,	I	try	to	use	floats	to	layout	most	of	my	websites.		However,	there	are	some
exceptions	that	pop	up	from	time	to	time.

Relative	Positioning
This	type	of	positioning	is	relative	to	the	object’s	original	position.	

Basically	after	you’ve	laid	out	some	objects	on	the	page.		You	may	find	that	a	particular
object	is	not	exactly	where	it	needs	to	be.	

Using	relative	positioning,	you	simply	specify	that	the	position	of	that	element	is
“position:	relative;”	and	then	you	are	able	to	move	it	based	on	it’s	original	position.		You
can	say	“top:	10px”	or	whatever	the	case	may	be	using	“top,	bottom,	right	&	left”.

Absolute	Positioning
Absolute	positioning	is	absolute,	however	it	is	based	on	any	parent	elements.		For	instance
if	you	want	to	position	an	object	“absolutely”	and	that	object	was	inside	of	a	div.		The
position	you	specify	will	be	relative	to	that	div.	

If	the	object	is	not	wrapped	in	other	elements	it	will	be	relative	to	the	HTML	page	itself.	

Absolutely	positioned	elements	don’t	have	any	effect	on	other	elements.		They	won’t	push
any	other	elements	out	of	the	way	and	are	basically	taken	out	of	the	general	“flow”	of	the
document.

Fixed	Positioning
Fixed	positioning	is	relative	to	the	browser	window	itself.		In	other	words	when	you	open
your	web	browser,	depending	on	your	screen	size,	if	the	browser	is	minimized	or	full
screen,	etc.

As	you	scroll	a	fixed	position	element	won’t	move.		I’ve	used	this	in	the	past	for	times
when	I	wanted	the	background	of	the	page	to	be	a	fixed	image	and	I	didn’t	want	the	image
to	scroll	as	the	page	scrolled.

I’ve	also	used	this	for	a	social	media	sharing	box	which	was	affixed	to	the	side	of	the
browser	window.	

Other	uses	you	might	have	seen	before	include	the	arrow	at	the	bottom	right	of	the	screen
that	pops	up	when	you’ve	scrolled	a	significant	amount.	(The	button	that	allows	you	to
quickly	scroll	up	to	the	top	of	the	page.)

Using	Positioning
In	order	to	use	this	type	of	positioning	you	simply	have	to	specify	the	positioning	type
using	CSS.

One	line	of	CSS	will	be	dedicated	to:

position:	(relative,	fixed	or	absolute);

Followed	by	lines	of	code	which	will	tell	WHERE	to	position	the	element	based	on:	top,
right,	left,	and	bottom.	You	are	able	to	use	pixels,	points,	Em’s,	etc.	as	your	unit	of
measure.

Chapter	15:	Fonts,	Fonts,	Fonts!
Alright,	so	if	you	have	a	background	in	graphic	design	you	would	know	that	a	serif	font	is
one	with	tiny	pointy	things	at	the	tips	of	the	letter.	Serif	fonts	are	great	for	print	because
the	serifs	seem	to	blend	the	words	together	and	are	said	to	make	it	easier	for	the	reader.

However,	on	the	internet,	where	everything	is	made	up	of	pixels,	serif	fonts	are	not	ideal.	
Not	saying	you	shouldn’t	use	them,	however	if	you’re	going	to	use	a	serif	font	it’s	better
to	use	them	for	only	headers	or	special	type	elements	rather	than	body	text.

The	reason	for	this	is	because	pixels	are	square	and	when	translating	tiny	squares	into	a
serif	font,	the	font’s	often	get	lost	in	translation.		This	is	where	the	term	“web	safe	fonts”
comes	into	play.

How	Declaring	Fonts	Works
So,	keep	in	mind	that	Times	New	Roman	(or	equivalent)	is	the	default	font	unless
specified	otherwise.		This	means	that	unless	you	want	to	use	Times	New	Roman	you’ll
definitely	need	to	specify	which	font	you’d	like	to	use.

Fonts	get	specified	by	family.	To	specify	which	fonts	you	want	to	use	you	start	off	with
the	CSS	declaration	“font-family”.

As	you
can	see	my	text	editor	is	trying	to	provide	me	with	a	list	of	suggestions.

	

Above	is	the	typical	font
declaration.		You	basically	list	your	options	separated	by	a	colon.	The	first	on	the	list	is	the
prioritized	font,	followed	by	all	of	your	second	choices	and	finally	either	serif,	sans-serif
or	cursive	depending	on	the	font	family.	

What	this	does	is,	no	matter	what	fonts	the	person	has	on	their	computer	you	will	have	a
greater	chance	of	having	the	type	be	rendered	the	way	you	want	it.	

In	the	above	example,	if	the	person	has	Arial	than	the	computer	will	render	the	font	as
Arial.		If	the	person	is	using	a	Mac,	then	they	probably	don’t	have	Arial	and	in	that	case
the	computer	would	render	the	font	as	Helvetica.		And	if	all	else	fails,	the	computer	would
just	use	the	default	sans-serif	font.

Most	of	the	default/classic	declarations	only	have	3	options,	however	you	can	specify	as
many	“fall	back”	fonts	as	you’d	like.

Other	Font	Methods
Obviously,	not	everyone	will	want	to	use	“normal”	fonts	for	their	web	design	projects.	
Some	people	will	want	to	use	special	fonts	because	it	fits	in	with	their	design,	or	company
branding,	etc.

There	are	a	few	other	options	for	creating	websites	using	special	fonts.		Of	which	I’ll	be
covering	the	one	that	I	use	most	often.

Google	Fonts
Google	has	a	library	of	web	safe	fonts	listed	at	www.google.com/fonts	where	you	can	find
a	font	that	you	like	and	use	it	on	your	web	page.
Figure	15.1	–	Below	is	the	Google	web	font	archive	located	at	www.google.com/fonts.

Above
is	a	screen	shot	of	Google’s	font	website.		On	here	you	can	choose	the	font	you	want	to
use,	as	well	as	the	weights	of	the	font	that	you	want	to	use.		(The	weight	is	the	thickness	of
the	font.)

I	will	warn	you	however,	the	more	Google	fonts	as	well	as	the	more	weights	that	you
choose	for	your	project	the	longer	it	will	take	your	website	to	load.

In	order	to	use	Google	fonts,	simply	choose	the	font	you	wish	to	use.		Google	will	give
you	the	link	to	a	CSS	stylesheet	that	you	will	have	to	link	to	in	the	header	of	your
document.		Then	you	will	need	to	use	the	font-declaration	that	they	give	you	whenever
you	want	to	use	the	font.
Figure	15.2	–	I	am	able	to	use	as	many	font	weights	as	I	wish.		However	on	the	right,	the	page	load	graphic	will	tell	me
how	much	load	time	the	fonts	will	add	to	my	site.

http://www.google.com/fonts

As	you
can	see	above	once	you’ve	chosen	the	font,	you	can	choose	the	font	weights	you	wish	to
use.		Then	Google	updates	the	Page	Load	Tool	to	let	you	know	how	much	the	fonts	will
effect	page	load	time.

Once	you’re	done,	scroll	down	to	see…

I’m
pretty	sure	I’ve	mentioned	this	but	different	browsers	render	the	EXACT	same	font
DIFFERENTLY.		This	is	important	to	know	because	what	looks	great	in	one	browser	may
look	totally	weird	in	another	if	the	font	is	of	a	slightly	different	size.

Let’s	check	out	how	the	same	font	renders	in	Firefox,	Google	Chrome	and	Internet
Explorer.		Keep	in	mind	that	these	fonts	are	supposedly	“Google”	fonts.		I	think	you’ll	be
surprised!

Above
you’ll	see	Open	Sans,	rendered	in	Google	Chrome,	Firefox	as	well	as	Internet	Explorer.	
As	you	can	see	each	font	appears	slightly	different.		Each	line	of	text	is	a	different	length
even	though	each	line	contains	the	EXACT	same	characters.

And	the	funniest	thing…Google	Chrome	isn’t	the	best	at	displaying	it’s	own	font.		Internet
Explorer,	the	worst	browser	of	all	time,	is	arguably	the	best	at	displaying	fonts.

Google	Font	Disclaimer
This	is	another	tip	that	I’ve	learned	through	experience.		Some	Google	fonts	such	as
Oswald	will	display	oddly	if	you	have	the	font	downloaded	on	your	computer.	

What	I’ve	found	is	that	some	Google	fonts,	Oswald	in	particular	will	display	only	the	top
half	of	the	font	when	you	are	using	a	medium	weight	font.		
Figure	15.3	–	Below	is	a	firearms	blog	which	utilizes	Oswald	in	a	medium	weight.	Only	the	top	half	of	the	text	is
displayed.

If	you	happen	to	notice	this,
you	can	remedy	this	by	using	a	different	font	weight.		However,	just	realize	that	you	are
noticing	this	glitch	because	you	have	the	font	downloaded	on	your	own	computer	and	that
most	internet	users	will	not	have	this	problem…unless	they	are	also	web	designers.		As	of
today,	I	believe	this	issue	happens	mostly	with	Firefox.

Chapter	16:	Semantic	Code
Semantic	code	is	basically	the	act	of	making	sure	that	the	code	that	you	write	is	easily
understandable	to	anyone	who	wants	to	work	with	it.	

In	the	past	(some	people	including	myself	still	use	this	today),	people	would	lay	out	their
websites	using	divs	and	give	the	divs	classes	according	to	their	function.	The	divs	would
be	named	header,	nav,	sidebar,	footer,	etc.

However,	with	the	advent	of	HTML5	new	div-“like”	elements	have	emerged.		These	new
HTML5	elements	basically	work	exactly	the	same	as	a	div	however	they	are	more
semantic,	as	they	are	named	after	their	function.

The	new	elements	are	named	header,	nav,	aside,	section,	article,	summary,	details	and
footer.		Because	older	versions	of	Internet	Explorer	don’t	recognize	these	elements	people
often	add	the	code	directly	beneath	this	sentence	to	the	head	of	their	document	to	alleviate
this	problem.

<!—[if	lt	IE	9]>

<script	src=“http://html5shiv.googlecode.com/svn/trunk/html5.js”></script>

<![endif]—>

You	may	remember	the	above	code	from	the	HTML5	document	I	had	you	set	up	earlier.	

Writing	Semantic	Code
When	coding	websites,	I	recommend	that	you	always	keep	the	concept	of	semantic	code
in	the	back	of	your	mind.

You	never	know	when	a	website	that	you	have	worked	on	in	the	past	may	need	to	be
worked	on	by	someone	else.	

In	order	to	make	sure	that	your	websites	are	easily	understandable	make	sure	to:

Use	logical	names	when	giving	classes	and	id’s	to	HTML	elements
Use	the	above	mentioned	HTML5	elements	to	mark	the	important	sections	of	your
document
Use	HTML	as	well	as	CSS	comments	whenever	necessary	in	order	to	help	people
understand	what’s	going	on	in	the	document

HTML	&	CSS	Comments
HTML	&	CSS	comments	can	help	you	to	break	up	the	clutter	of	messy	HTML	&	CSS
documents	and	help	you	to	better	understand	the	code.

The	format	for	an
HTML	comment	is	located	in	the	picture	below.Above	you’ll	see	an	extremely	old
fashioned	layout.		It’s	an	example	of	a	website	that	was	laid	out	using	tables.	

HTML	techniques	have	come	a	long	way	since	these	days.		However,	the	format	for
writing	an	HTML	comment	is	still	the	same.

To	write	a	comment	in	CSS	the	format	is	illustrated	in	the	picture	below.

The	CSS
comments	are	highlighted	in	the	above	picture.		I	think	CSS	comments	are	great	when	you
have	a	specific	section	of	your	website	that	a	large	chunk	of	CSS	styles	correspond	to.	
You	can	place	a	CSS	comment	at	the	beginning	and	end	of	the	chunk	of	code	to	let	others
know	what	the	styles	were	meant	for.

Chapter	17:	Using	Color
In	most	cases	when	you	need	to	specify	a	color,	you	will	be	using	a	hexadecimal	system.
You	can	see	the	format	for	specifying	these	colors	below.

	

Hexadecimal	colors,	are	based	off	of	6	numbers/
letters	as	the	name	suggests.		The	characters	used	in	hexadecimal	colors	range	from	a-z
and	0-9.		Smaller	numbers	indicate	darker	colors	while	larger	numbers	indicate	brighter
colors.

This	is	because	computer	colors	are	based	off	an	additive	color	system.		That	is,	a	system
where	color	is	made	by	adding	light.		The	more	light	added	of	each	color	the	brighter	the
color	will	be.	

In	the	image	above	you	can	see	the	color	code	for	black.		As	you	can	see	there	is	0	red,	0
green	and	0	blue	which	results	in	a	black	screen.		Whereas	full	red,	full	green	and	full	blue
would	result	in	white.

Also	in	the	image	above	you	can	see	that	a	6	character	color	code	can	be	converted	to	a	3
character	color	code	if	it	is	made	up	of	3	groups	of		matching	characters.		For	example
#330011	can	be	shortened	to	#301,	#999999	can	be	shortened	to	#999	and	#FFFFFF	can
be	shortened	to	#FFF.		However,	#030303	or	#996500	cannot	be	shortened.

Essentially	numbers	0-9	indicate	levels	of	color	from	low	to	high.		Equal	amounts	of	red,
green	and	blue	create	either	white,	black	or	a	shade	of	gray.		#000000	indicates	a	color	of
black	because	it	uses	equal	parts	(zero)	red,	green	and	blue	whereas	#FFFFFF	indicates
white	because	it	is	equal	parts	(F	possibly	stands	for	“full”	in	this	case)	red,	green	and
blue.

Also,	you	can	get	pure	red,	green	or	blue	by	specifying	them	to	be	full	while	the	other	two
colors	are	specified	to	be	zero.		For	example,	to	specify	red	you	could	say	#FF0000	(or
#F00)	which	means	full	red,	0	green	and	0	blue.		Obviously,	there	are	many	more	hues	of
red,	green	and	blue	available	however,	this	is	for	when	you	want	to	use	the	purest	form	of
each.

Hexadecimal	Color	Usage
One	of	the	most	common	uses	of	this	hexadecimal	color	code	is	when	you	are	specifying	a
font	color.		You	can	do	this	by	using	the	CSS	declaration	(color:	#000000;)	where
#000000	is	the	color	of	your	choice.	

Other	uses	for	specifying	color	can	come	in	handy	when	specifying	background	color
(background-color:	#000000).		As	well	as	when	specifying	the	color	of	a	border	(border:
1px	solid	#000000;)

RGB	Color	Code
Sometimes,	you	will	need	to	specify	color	using	a	RGB	color	system.	These	instances
occur	much	less	frequently	than	the	hexadecimal	system.

Instances	where	you	would	use	this	happen	mostly	with	new	CSS3	declarations	such	as
when	specifying	opacity,	you	need	to	use	the	RGBa	code	followed	by	the	opacity	using	a
decimal	system.		Or	when	specifying	a	CSS3	gradient.

I	won’t	get	into	specifics	on	when	to	use	them	because	you	can	easily	find	out	how	to	use
them	when	the	time	arises	using	a	quick	Google	search.

The	way	to	specify	RGB	colors	are	as	follows:

Each	number	can	be	any	value	from	0-255.	0
being	none	and	255	being	full.		Same	rules	apply	as	the	hexadecimal.		For	example
rgb(255,0,0)	is	pure	red	and	rgb(25,25,25)	is	some	light	shade	of	gray.

Opacity:	RGBA	Color	Code
With	HTML5	and	CSS3	we	now	have	options	for	declaring	opacity.		RGBA	is	essentially
the	same	declaration	as	RBG	however	there	is	one	more	object	that	gets	declared	and
that’s	the	opacity.		The	opacity	level	goes	from	0.0	–	0.1.		0.0	being	0	percent	and	1.0
being	100	percent.	The	format	looks	like	this.

Specifying	Color	By	Name
Recently,	you	have	been	able	to	specify	colors	by	name.		However,	this	is	fairly	new	to
CSS3	and	I	haven’t	gotten	used	to	using	it,	nor	have	I	used	it.	

Correction,	I	use	it	only	when	specifying	a	color	as	“transparent”	(AKA	no-color).

Check	it	out	and	get	comfortable	with	it	if	you	wish!		As	I	mentioned	earlier,	there’s	more
than	one	way	to	skin	a	cat	when	it	comes	to	HTML/CSS!

Using	The	Correct	Color	From	Your	Mockup
After	you’ve	created	your	mockup	in	Photoshop,	you’re	going	to	want	to	get	the	correct
colors	to	specify	in	your	CSS.		Luckily,	this	is	very	easy	to	do.

Simply	use	the	eye-dropper	tool	to	grab	the	color	then	double	click	on	the	foreground
color	which	pops	up	(this	should	be	the	color	you	chose).	The	resulting	dialogue	window
should	have	both	the	hexadecimal	color	code	as	well	as	the	levels	of	red,	green	&	blue	to
use	for	rgb	color	codes.
Figure	17.1	–	In	Photoshop,	you	can	use	the	Color	Picker	window	to	figure	out	what	hexidecimal	or	RGB	color	codes	to
specify	in	your	CSS	document.

Chapter	18:	CSS	Sprites
The	more	images	you	use	as	well	as	the	size	of	the	images	makes	for	a	slow	loading
website.

In	order	to	combat	this	phenomena,	some	people	utilize	a	concept	known	as	CSS	sprites.	
A	CSS	sprite	is	when	you	have	multiple	images	in	one	image.		So	rather	than	loading	a
bunch	of	tiny	images	the	browser	has	to	load	1	slightly	larger	image	which	results	in	faster
load	time.	Normally	these	sprites	are	PNG	format	because	PNG’s	support	superior
transparency	capabilities.

I	love	to	use	CSS	sprites	when	dealing	with	social	media	icons.		
Figure	18.1	–	Below	is	an	image	that	I	setup	to	be	used	as	a	CSS	sprite	image.	Notice	the	rulers	are	visable	and	the
guides	are	being	used.		This	makes	it	easier	for	me	to	use	actual	coordinates	in	my	CSS	declarations.

Above
you’ll	see	an	example	of	a	CSS	sprite	image	that	I	created.		I	created	black	and	white
versions	of	the	same	social	media	icons	as	well	as	red	versions	which	would	be	used	when
the	user	hovers	over	the	icons.

As	you’ll	notice	I	made	use	of	the	Photoshop	guides	and	the	ruler	is	set	to	pixels.		This	is
important	because	these	coordinates	will	be	of	use	to	us	later.

Using	CSS	Sprites
To	use	a	CSS	sprite	you	need	to	specify	how	tall	and	wide	the	image	will	be	then	you	must
specify	the	background	image	plus	the	coordinates	(from	the	left	as	well	as	top	of	the
image).

a.social

{

height:65px;

width:65px;

display:block;

float:left;

margin:0	5px	10px	0;

}

As	you	can	see	above,	I	gave	the	links	which	will	be	my	social	media	CSS	sprites	a	class
of	“social”.		Then	I	proceeded	to	give	each	a	height	and	width	of	65	pixels.		I	said	for	the
links	to	display	block	because	otherwise	a	link	would	be	an	inline	element.

Each	link	will	float	left	so	that	they	will	line	up	next	to	each	other	left	to	right,	and	then	I
specified	a	margin.

Then	each	individual	symbol	needed	to	specify	the	background	as	well	as	the	coordinates.

.fbblack

{

background:url(../images/socialsprite.png)	0	0;

}

Above	you’ll	see	the	CSS	for	the	black	Facebook	icon.		The	“0	0”	means	that	the	image
begins	0	pixels	from	the	left	as	well	as	0	pixels	from	the	top.

.twblack

{

background:url(../images/socialsprite.png)	-65px	0;													

}

Above	you’ll	see	the	CSS	for	the	black	Twitter	icon.		The	“-65px	0”	means	that	the	image
begins	65	pixels	from	the	left	and	0	from	the	top.

And	finally	I	specified	a	“hover	state”	for	each	of	the	icons.		I’ll	show	you	how	I	did	that
and	we’ll	talk	about	element	states	next!

.fbblack:hover,	.fbwhite:hover

{

background:url(../images/socialsprite.png)	0	-130px;													

}

Above	is	the	hover	state	for	the	black	Facebook	icon	as	well	as	the	white	Facebook	icon.		I
made	the	graphic	so	that	both	white	and	black	social	media	icons	would	have	a	red	hover
state,	which	is	why	both	of	these	use	the	same	background	image	and	CSS	sprite
coordinates.

As	you	can	see	above,	the	red	hover	state	is	0	pixels	from	the	left	and	130	pixels	from	the
top.

This	topic	may	be	confusing	to	some	so	don’t	be	afraid	to	do	a	little	bit	of	your	own
research	as	well	as	experimentation	to	learn	more.		I	mostly	wanted	to	tell	you	about	this
technique	so	you’d	have	it	as	part	of	your	arsenal.

Chapter	19:	Element	States
Interactive	elements	such	as	links	and	inputs	(search	bars,	text	boxes,	etc)	have	what	are
known	as	different	“states”.

Because	of	this,	you	are	able	to	style	the	“state”	of	each	element	using	CSS.	

Before	I	confuse	you	any	further	the	states	I’m	referring	to	are:

Active
Hover
Focus
Visited

Figure	19.1	–	When	you	write	click	an	element	inside	the	Developer	Tools	window	in	Google	Chrome	you	can	“force	an
element	state”	that	is,	cause	an	element	to	behave	as	if	it	is	displaying	a	state	of	your	choice.		This	is	useful	when	trying
to	style	a	specific	element	state.

Above	is
a	screenshot	of	the	Google	Chrome	developer	tools	and	this	is	another	reason	why	I	love
Chrome	so	much	for	coding	websites.		After	you	right	click	and	“inspect	element”	on	an
object.	You	can	right	click	in	the	developer	tools	window	and	go	to	“force	element	state”
followed	by	the	state	you	want	to	see.

This	is	great	for	testing	your	CSS,	because	as	I	mentioned	before	you	can	style	all	of	these
element	states	using	CSS.

Active
Active	refers	to	an	active	link.

Hover
Hover	refers	to	a	link	or	object	that	is	being	hovered	over	with	the	cursor.

Focus
Focus	refers	to	an	input	element	which	is	currently	active.		For	example	when	you’re
filling	out	a	form	and	you	hit	the	tab	button.		The	next	form	field	to	get	the	blinking	cursor
in	it	is	the	field	that	has	“focus”.

Visited
Visited	refers	to	a	link	that	you	previously	visited.	

Styling	Element	States
In	order	to	style	these	element	states	you	simply	need	to	target	the	HTML	element	using
either	a	class,	id	or	other	technique	followed	by	a	colon	and	the	element	state.	

An	example	of	this	would	be	from	the	CSS	sprite	chapter	where	I	specified	the	portion	of
the	image	to	display	for	a	regular	social	media	icon	versus	a	social	media	icon	the	user	is
hovered	over.

	

Chapter	20:	Handy	Things	To	Consider
There	are	a	few	CSS	styles	which	make	it	into	every	stylesheet	that	I	write	for	a	number	of
reasons.	We’ll	go	over	those	now.

Handy	Internet	Explorer	Style
When	you	wrap	an	image	with	a	link,	Firefox	and	Google	Chrome	don’t	have	an	issue
with	this.		However,	for	some	reason,	older	versions	of	Internet	Explorer	absolutely	LOVE
to	place	an	ugly	blue	border	around	all	images	wrapped	in	links.
Figure	20.1	–	Older	versions	of	Internet	Explorer	used	to	place	an	ugly	blue	border	around	any	images	that	are	wrapped
in	links.		Using	developer	tools	in	Internet	Explorer	I	was	able	to	display	the	page	as	if	it	was	rendered	in	an	older
version	of	Internet	Explorer.		The	red	circle	is	around	the	area	in	the	developer	tools	window	in	Internet	Explorer	where
you	can	manipulate	the	display	to	reflect	older	browser	versions.

Apparently,	they	fixed	this	issue	in	newer	versions	of	Internet	Explorer.		However	when
you	hit	F12	you	can	open	the	developer	tools	window.		I	used	the	window	to	show	what
the	website	would	look	like	using	Internet	Explorer	8.	

As	you	can	see	there	is	a	blue	border	around	the	image.		In	order	to	combat	this	I	add	the
following	style	to	EVERY	stylesheet	I	write.

a	img

{

border:0	none	transparent;													

}

It	targets	all	img	(images)	wrapped	in	an	a	(link).		In	case	you	don’t	understand	the	CSS
declaration,	the	standard	protocol	for	defining	a	border	is	“border:	(width	in	pixels)
(style:solid,	dotted,	dashed)	(color);”.		So	I	specified	a	border	0	pixels	wide,	no	style	and
the	color	to	be	“transparent”.

Global	Resets
So	as	I	mentioned	earlier,	each	HTML	element	has	a	default	style	attached	to	it.		Different
browsers	have	a	bit	of	leeway	when	deciding	how	each	element	should	be	displayed.	

For	this	reason	many	people	link	to	a	CSS	stylesheet	known	as	a	“reset”.		This	stylesheet
basically	styles	each	element	in	a	way	which	is	uniform	across	all	modern	browsers.

I	don’t	feel	like	this	is	necessary.		However	I	do	use	the	following	style	in	all	my
stylesheets.

html,	body

{

margin:0;

padding:0;

}

Some	people	like	to	add	“*”	along	with	html	and	body.		The	asterisk	is	what’s	known	as	a
“wild-cat”	and	basically	targets	EVERY	element.		However,	I	feel	that	just	denoting	html
and	the	body	element	is	good	enough.

Default	Link	Hover	Styles
When	you	begin	to	get	fancy	with	your	link	styling.		Don’t	forget	to	style	the	“hover”
state.	

Oftentimes	you’ll	finish	making	a	link	look	like	a	super	cool	button	and	then	you’ll	go	to
test	it	out	and	say…”oh	crap,	when	I	hover	over	this	button	the	text	turns	blue	and	get’s	an
underline”.

To	combat	this	make	sure	you	specify	a	font	color	for	the	hover	state	as	well	as	specify
“text-decoration:	none;”	if	you	don’t	want	there	to	be	an	underline.

Default	Font
By	default,	the	font	will	be	Times	New	Roman	(or	Mac	equivalent).		To	get	around	this
you	can	specify	the	default	font	of	your	choice	at	the	top	of	your	stylesheet	by	targeting
the	“body”	with	the	font-family	of	your	choice.

body

{

font-family:	Arial,	Helvetica,	Sans-serif;

}

Chapter	21:	Flash,	Javascript	&	CSS	Animations
In	the	past,	the	only	way	to	utilize	simple	and	even	some	complex	animations	was	to	use
either	Flash	or	Javascript.		However,	with	the	advent	of	CSS3,	now	animations	can	be
done	using	CSS	alone!

This	is	great	news	because	Apple	products	hate	flash	and	some	browsers	(especially
Internet	Explorer)	tend	to	block	Javascript.

Keep	in	mind	however	that	these	animations	may	not	have	support	in	older	Internet
Explorer	browsers.		However,	what	else	is	new.		Internet	Explorer	tends	to	not	work	with	a
lot	of	cool	HTML/CSS	features.

I	won’t	go	into	extreme	details	on	how	to	use	CSS	animations.		However,	just	keep	it	in
the	back	of	your	mind	that	it	is	possible	to	animate	the	color,	position,	etc	of	elements
using	CSS	exclusively.

You	can	even	set	time	delays,	animation	speed,	and	other	aspects	of	the	animation	which
were	never	possible	using	CSS!

	

Chapter	22:	Validation	&	Troubleshooting
There	comes	a	time	in	every	web	designers	life	when	they	have	absolutely	no	idea	why
their	code	isn’t	working.

Luckily	I	have	a	few	different	solutions	for	you.

Developer	Tools
One	of	the	first	things	that	I	do	when	faced	with	problem	is	to	use	developer	tools	in	the
browser	that	I’m	viewing	the	website	in.

Pretty	much	every	modern	browser	is	equipped	with	developer	tools	to	help	you	figure	out
your	code.

Google	Chrome	happens	to	be	my	favorite	because	you	are	able	to	edit	the	HTML	and
CSS	directly	in	the	developer	tools	window	and	preview	the	changes	before	you	commit
them	to	your	document.

If	you	notice	that	a	certain	CSS	style	isn’t	working	correctly,	check	your	developer	tools
and	see	if	there	is	something	wrong.

Google	Chrome’s	developer	tools	window	will	put	a	slash	through	any	CSS	style	that
either:

Is	written	incorrectly
Is	meant	for	a	different	browser	(some	CSS	styles	aren’t	global	yet	so	they	have
different	prefixes	for	Mozilla	and	WebKit	based	browsers)		Google	Chrome	will	put
a	slash	through	all	Mozilla	based	styles

Figure		22.1	–		The	Developer	Tools	window	is	telling	me	that	the	style	is	not	taking	effect	for	some	reason,	the	caution
symbol	next	to	the	style	lets	me	know	it’s	invalid.

Above	you	can	see	that	there	is	a
little	caution	symbol	and	a	slash	through	the	incorrectly	defined	style.		I	tried	to	define	a
style	for	links	wrapped	in	images.		I	gave	them	a	border	1	pixel	wide,	with	a	thin	style
then	I	purposely	spelled	turquoise	wrong	so	the	style	would	be	invalid.

Developer	tools	will	also	let	you	know	if	you	forgot	to	link	a	file,	if	the	file	path	is	invalid,
etc.

W3C	Validator
The	second	way	to	diagnose	your	HTML/CSS	is	to	validate	it.		W3C	stands	for	World
Wide	Web	Consortium	and	all	HTML	has	standards.

When	you	are	having	a	particularly	difficult	time	with	your	code	it	helps	to	validate	the
code	and	see	if	it	throws	any	errors.		Sometimes	your	code	isn’t	behaving	properly
because	it	is	invalid.

Simply	go	to	http://validator.w3.org	(or	Google	W3C	validator)	and	there	are	a	few
different	ways	to	submit	your	code.		
You	can	either	submit	the	entire	url,	you	can	submit	by	file	upload	or	you	can	simply	copy
your	entire	HTML	document	and	paste	it	into	the	textbox.

Once	W3C	validator	checks	your	code	they’ll	let	you	know	if	you	have	a	missing	tag,	if
you	have	a	mismatched	tag	or	if	you	did	anything	else	that	is	against	protocol.

http://validator.w3.org/

	

Chapter	23:	Minified	HTML/CSS
Up	until	this	point,	I’ve	given	you	a	ton	of	information	on	writing	code	as	well	as	the
ability	to	inspect	other	peoples	code	using	web	browser	developer	tools.		I	felt	that	it	may
be	necessary	to	include	a	little	tid-bit	on	minified	HTML/CSS.

As	I	mentioned	earlier,	the	formatting	of	your	HTML/CSS	is	mostly	for	you	and	other
developers	that	may	touch	your	code.		Neatly	formatting	your	code	makes	it	easier	to	read,
understand	and	edit.

However,	this	neat	formatting	is	for	humans	only.		The	browser	is	a	machine	and	that
properly	formatted	code	amounts	for	little	to	the	browser	except	pesky	white	space
surrounding	the	code	that	it	is	trying	to	read.	

For	this	reason,	many	people	tend	to	minify	their	HTML	and	CSS.		What	this	means	is
they	format	their	code	without	unnecessary	white	space.
Figure	23.1	–	Below	is	minified	CSS.	Minified	CSS	takes	less	time	for	the	browser	to	load.

Above	you’ll	see	an	image
of	some	minified	CSS.	As	you	can	tell	it’s	very	difficult	to	read	for	human	eyes	however,
for	an	internet	browser	this	minified	CSS	can	save	load	time	over	a	non-minified
stylesheet.

As	you	become	more	advanced		in	your	coding	skills	you	may	choose	to	minify	your
code.		There	are	plenty	of	CSS	and	HTML	minifying	code	generators	that	make	it	easy	by
doing	all	the	minifying	for	you.

I	personally	don’t	minify	my	HTML	however	I	use	http://www.cssminifier.com	to	minify
my	CSS	stylesheets.

When	minifying	code,	make	sure	to	keep	a	non-minified	version	on	file	just	in	case	any
mishaps	occur.

http://www.cssminifier.com/

Chapter	24:	Grid	Systems
I	wanted	to	briefly	touch	on	grid	systems	because	when	I	first	started	out	I	used	to	love
this	grid	system	known	as	the	960	grid	system.

My	very	first	websites	were	all	1,000	pixels	wide	and	I	used	to	have	to	use	my	best
judgment	to	come	up	with	widths	for	items	in	my	layouts.		For	example	if	I	was	doing	a
two	column	layout,	I	would	probably	use	an	700	pixel	wide	content	area	and	a	300	pixel
wide	side	bar.

Then	I	found	the	960	grid	system.		The	idea	behind	it	was	that	960	pixels	was	the	perfect
balance	between	older	computer	monitors	which	normally	maxed	out	at	around	1,000
pixels	wide	and	newer	computers	with	full	resolution	screens.

Having	a	container	of	960	pixels	showed	up	well	on	almost	all	monitors	and	the	number
960	is	divisible	by	more	numbers	than	say	1,000	for	instance.		That	way	you	could	have,
up	to	12	equally	sized	columns.

Why	Grid	Systems?
The	reason	why	I’m	mentioning	grid	systems	is	for	2	reasons:

1.	 Grid	systems	make	it	easier	for	the	website	designer	for	a	number	of	reasons.
They	normally	come	with	a	Photoshop	document	based	on	the	dimensions	of	the
grid	so	that	you	can	lay	out	websites	with	ease	and	not	have	to	worry	as	much	about
the	dimensions	because	they’re	already	accounted	for.
They	save	time	because	the	website	designer	doesn’t	have	to	spend	as	much	time
thinking	of	how	wide	particular	objects	are	going	to	be,	thinking	of	class	names	to
name	divs	of	varying	sizes,	or	doing	math	to	get	correct	dimensions.

2.	 Grid	systems	paved	the	way	for	Bootstrap.		Bootstrap	is	a	responsive	grid	system
that	is	used	by	many	web	designers	today,	including	me!

I	will	briefly	mention	that	after	the	popularity	of	the	960	grid	system	died	off,	a	new	grid
system	emerged	for	a	moment.		This	new	grid	system	was	based	off	a	1,200	pixel	wide
container.		I	believe	the	reasoning	behind	this	was	the	fact	that	computer	monitors	were
becoming	wider	and	older	computer	monitors	were	being	phased	out.

If	you	want	to	check	out	the	960	grid	system	simply	visit	http://960.gs.

	

http://960.gs/

Chapter	25:	Responsive	Web	Design
Once	you	have	a	solid	grasp	on	general	website	design,	responsive	website	design	will	be
easy	for	you	to	pick	up.	

I	recommend	messing	around	with	just	pages	which	don’t	respond	to	the	width	of	the
browser	window	before	you	try	to	incorporate	any	responsive	web	design	techniques	in
your	arsenal	however.

But,	I	want	you	to	get	the	most	out	of	this	e-book	so	we’ll	touch	on	a	few	of	the
cornerstones	of	responsive	web	design.

The	Viewport
One	difference	between	static	and	responsive	website	design	is	the	fact	that	with
responsive	design	you	need	to	designate	that	the	width	of	the	screen	should	be	the	width
of	the	website.	

You	do	this	by	adding	a	declaration	to	the	head	of	the	document.		Also	in	this	declaration
you	can	specify	if	the	user	can	zoom	in	as	well	as	how	much	they	can	zoom.

<meta	name=“viewport”	content=“width=device-width,	initial-scale=1”>

Above	is	an	example	of	one	of	these	declarations.

Specifying	Widths
In	static	website	design,	when	we	create	a	2	column	layout,	we	think	of	how	wide	we	want
our	columns	to	be	in	pixels	and	create	them.

However,	when	it	comes	to	responsive	design,	static	widths	don’t	cut	it.	

When	you	want	the	widths	of	objects	to	change	with	the	width	of	the	browser	window	it’s
imperative	to	designate	widths	in	percentages.

This	way	your	website	stays	in	proportion	whether	the	device	is	1,200	pixels	wide	or	350
pixels	wide.

Responsive	Images
The	width	of	your	images	is	also	important	because	as	the	screen	gets	smaller	your	images
obviously	can’t	be	full	resolution	or	else	your	end	user	will	have	to	scroll	on	their	phone	to
see	the	entire	picture.

To	alleviate	this	you	need	to	specify	a	width	or	maximum	width	of	100%	or	less.		The
height	can	be	auto	regulating	by	simply	specifying	that	the	width	be	“auto”.		That	is,	an
automatic	height	relative	to	the	current	width.

Responsive	Type
Obviously	when	your	screen	is	wide	all	Heading	1	elements	can	be	large,	however	when
you	view	the	same	website	on	a	smaller	screen	that	heading	will	most	likely	take	up	the
entire	screen.

Since	this	isn’t	the	most	aesthetic	way	to	build	a	website,	some	people	like	to	specify	their
font	sizes	in	em’s	rather	than	pixels.

I	for	one	don’t	like	to	do	this	so	I	use	the	next	topic	to	alleviate	this.

Responsive	Navigation
Obviously	when	your	screen	reaches	a	point	below	1,000	pixels	you	can’t	have	a	wide
navigation	bar	anymore.		At	some	point	the	width	of	the	browser	will	be	too	narrow	to
support	your	navigation	bar.

However,	don’t	fear	because	there	are	a	variety	of	responsive	navigation	solutions	to
choose	from.		All	you	have	to	do	is	Google	it!

Break	Points	&	Media	Queries
These	next	two	topics	go	hand	in	hand.	

I	will	also	mention	that	if	you’re	going	to	be	doing	responsive	web	design	you	NEED	to
download	a	resolution	plugin.		That	is,	a	plugin	that	tells	you	the	width	of	the	browser
window	at	any	given	time.

The	reason	for	this	is	when	you’re	dealing	with	a	responsive	website,	as	you	make	the
browser	window	smaller	you	need	to	see	exactly	WHEN	the	website	begins	to	look	weird.

Then	you	can	say	with	authority,	“ok	when	the	website	is	less	than	1,000	pixels	wide	this
object	get’s	knocked	out	of	place.”	This	is	what’s	known	as	a	“break	point”.

You	can	then	specify	a	“media	query”	that	says,	when	the	browser	window	is	less	than
1,000	pixels	width	than	do	this.		Obviously	this	can	be	anything	you	want	it	to	be	because
you	will	be	specifying	your	will	using	CSS.

The	way	media	queries	work	is	you	can	either	say:	when	the	browser	is	below	this	width
do	this,	when	the	browser	is	above	this	width	do	this	or	when	the	browser	is	between	this
width	and	this	width	do	this.

When	the	browser	is	below	this	width	do	this.

	

@media	only	screen	and	(max-width	:	320px)	{

/*	Styles	Go	In	Here	*/

}

	

When	the	browser	is	above	this	width	do	this.

	

@media	only	screen	and	(min-width	:	321px)	{

/*	Styles	Go	In	Here	*/

}When	the	browser	is	below	this	width	and	above	this	width	do	this.

	

@media	only	screen	and	(min-device-width	:	768px)	and	(max-device-width	:	1024px){

/*	Styles	Go	In	Heret	*/

}

Something	To	Remember
Remember	that	media	queries	should	go	at	the	end	of	your	CSS	document	because	when	it
comes	to	CSS	the	things	at	the	bottom	hold	more	precedence	than	the	things	at	the	top	of
the	document.

As	the	browser	window	get’s	smaller	the	media	queries	that	pertain	to	that	browser	width

will	begin	to	take	effect	and	the	CSS	styles	that	pertain	to	wider	screens	fall	back.

If	you	encounter	a	particularly	difficult	CSS	style	that	doesn’t	take	effect	and	you’ve	tried
everything	and	done	your	“developer	tools”	research,	than	you	can	add	“!important”	just
before	the	semi-colon	of	the	CSS	style	declaration.		“!important”	gives	the	CSS	style
precedence	over	any	other	inherited	styles.

Chapter	26:	The	Favicon
The	icing	on	the	cake	to	your	website	is	the	favicon.		That	is	the	little	16x16	pixel	image
that	is	associated	with	your	website	and	gets	saved	with	the	title	of	your	website	when
someone	adds	your	site	to	their	favorites.

To	create	a	favicon,	simply	create	a	16x16	pixel	document	in	Photoshop	or	the	image
editing	software	of	your	choice.		Create	an	icon	to	represent	your	website.		Since	you	will
need	to	save	the	file	as	a	.png,	your	favicon	can	be	transparent.

I	then	use	http://favicon-generator.org/	to	generate	my	favicon.		I	save	the	resulting	file	in
the	root	folder	of	my	website.		The	favicon	extension	is	.ico	and	the	favicon	generator
website	also	gives	you	the	code	that	you	need	to	attach	your	favicon	to	your	site.		That
code	goes	into	the	head	of	your	documents.
Figure		26.1	–	This	website	changed	since	I	first	started	using	it.		However,	when	creating	your	favicon,	make	sure	to
select	the	“Generate	only	16x16	favicon.ico”.	This	saves	you	from	downloading	unnecessary	files	that	you	don’t	need.

http://favicon-generator.org/

Conclusion	&	Next	Steps
I	hope	you’ve	enjoyed	my	e-book.		I	sincerely	hope	that	I’ve	given	you	a	solid	foundation
of	knowledge	to	build	upon.	

Going	forward,	there	are	some	amazing	resources	online	for	learning	about	HTML,	CSS
as	well	as	Javascript.

One	of	my	favorite	websites,	where	I	learned	a	majority	of	my	coding	knowledge	was	a
website	called	www.w3cschools.com.		There	you’ll	find	easy	tutorials	about	pretty	much
anything	you	could	want	to	know	related	to	code.		Including	your	next	steps	which	will	be
to	get	further	acquainted	with	HTML	&	CSS	as	well	as	learn	about	Bootstrap	(widely	used
responsive	grid	system)	and	responsive	web	design.

When	you	are	in	a	bind,	don’t	forget	to	use	your	Google	skills.	

There	you’ll	find	resources	from	a	few	of	my	other	favorite	websites.		One	of	which	is
called	www.stackoverflow.com.		This	website	is	basically	a	forum	of	experienced	code
ninjas	answering	each	others	questions	pertaining	to	code.

Another	one	of	my	favorite	websites	is	www.css-tricks.com.	There	you’ll	find	tons	of
great	resources	related	to	HTML	&	CSS.

Before	I	conclude	this	book.		I’m	going	to	give	you	one	of	the	most	important	tips	in	this
entire	book.		This	is	one	of	the	tips	which	makes	me	such	a	fast	coder.	

Every	time	you	Google	an	HTML	element	or	CSS	style,	if	you	find	yourself	looking	up
the	same	stuff	over	and	over.		After	a	while,	try	to	commit	it	to	memory.		The	more	stuff
you	commit	to	memory	the	faster	you	will	be	because	you	can	spend	less	time	on	the
internet	trying	to	find	out	how	to	write	code	and	more	time	actually	writing	code.

Thank	you	so	much	for	reading!

http://www.w3cschools.com/
http://www.stackoverflow.com/
http://www.css-tricks.com/

	Chapter 1: Start Here
	Chapter 2: Understanding HTML
	Chapter 3: Understanding CSS
	Chapter 4: Where To Write Your Code
	Chapter 5: Browsers
	Chapter 6: HTML Structure
	Chapter 7: CSS Structure
	Chapter 8: Common HTML Elements & Their Rules
	Chapter 9: Common CSS Styles And Their Rules
	Chapter 10: Getting Started
	Chapter 11: Preparing Images For The Internet
	Chapter 12: Manipulating Placement Of HTML Objects
	Chapter 13: Margins And Padding
	Chapter 14: Other Types Of Positioning Techniques
	Chapter 15: Fonts, Fonts, Fonts!
	Chapter 16: Semantic Code
	Chapter 17: Using Color
	Chapter 18: CSS Sprites
	Chapter 19: Element States
	Chapter 20: Handy Things To Consider
	Chapter 21: Flash, Javascript & CSS Animations
	Chapter 22: Validation & Troubleshooting
	Chapter 23: Minified HTML/CSS
	Chapter 24: Grid Systems
	Chapter 25: Responsive Web Design
	Chapter 26: The Favicon
	Conclusion & Next Steps

