

JavaScript in Plain
Language

A Self-Study Method

JSON and AngularJS Prep

by

Tony de Araujo

Technical Instructor

 New Jersey – USA

Fully updated on October
2015

ALSO BY TONY DE ARAU
JO

JavaScript
Objects Functions and Arrays Explained

Small
Projects to Learn JavaScript - Drawing Six 'Lucky' Numbers

AngularJS
Supplement: Easy Projects on Filters and Directives

copyright © Tony de Araujo

All Rights Reserved

To my family and
friends

all my readers, Amazon

and Amazon supporting staff...

Thank you so much!

This eBook works best when
using the free Kindle Reading App due to all the resources given and all
the linked exercises.

You can download an Amazon Kindle Reading App from the following link:

amazon.com/gp/digital/fiona/kcp-landing-page

Table of Contents

Introduction

What you
should know before reading this material

What is
JavaScript

PART I: AT
THE GATES OF ENLIGHTENMENT

1.1 The
browser interface

1.2 Material
and tools needed

1.3
Declaring a variable – an alias name for a memory location

About var

About the
variable name

About the
semicolon ;

Adding data
to variables

Changing the
value in the variable

Adding words
to a variable instead of numbers

Let’s talk
about strings

Which quotes
to use: single or double?

Assigning
variables to other variables

1.4 Lab work
1

Opening the
Console

Declaring
some variables

Inspecting
the data type of a variable

What is typeof?

Why it
“undefined” and what is undefined?

1.5
Manipulating variable data

Methods and
Properties

The DOT
operator

The Bracket
notation

An example
of a method

What’s with
the parentheses () ?

1.6 Lab work
2

Declaring
variables, assigning values, using basic properties and methods

1.7 Adding
some more JavaScript operators

+, -, +=,
-=, /, /=, %, *, *=

The + plus
operator

Using the +
plus operator to add two numbers

Using the +=
assignment operator

The ++
(double plus) incrementing operator

The –, --
and -= subtraction operators

The Division
/ or /= Operators

The Modulus
% Operator

The
Multiplication Operator *

1.8 Lab work
3

Part one:
working with +, += , ++ and --

Part two:
Working with *, /, *=, /= and %

1.9
Comparison operators and booleans

===, !==,
<, >, <=, >= true, false

What is a
Boolean?

1.10 Lab
work 4

Practicing
with ===, !==, <, >, <=, >= true, false.

1.11
Introducing console.log, alert, prompt, confirm

The
console.log

alert()

confirm()
and prompt()

1.12 Logical
Operators

And:
&&

Or: ||

Not: !

1.13 Lab
work 5

Getting
feedback from a user

PART II:
ENTERING THE SECOND REALM

2.1 Adding
more syntax

Code blocks
- Using an editor

Commenting
code

2.2
Conditional Branching

if, else
conditionals

Reviewing
if(), else

What about
else?

Adding a
second condition in the middle of if(), else

How to
physically write the braces in a conditional statement

When to use
an else if()

Is
Programming an Art or a Science?

2.3 The
anatomy of a function

Preliminary
things to know about a function

Scripting a
function

What is a
function call?

What is the
purpose of return?

What happens
to the data when a function returns?

2.4 Lab work
6

Create a
program to convert Fahrenheit to Celsius

Create a
program to convert Celsius to Fahrenheit

In
JavaScript a function always returns something

A program to
convert Fahrenheit to/from Celsius

2.5 Filling
out a form to request a loop

What no one
tells you about loops

2.6 The for
loop

2.7 Looping
over a string of characters

2.8 Lab work
7

Searching
for the position of a string character

Counting
numbers and declaring their odd/even quality

Counting
apples

2.9 Array
lists

Strings
versus arrays

Array syntax

Using push()
and unshift() to insert elements into an array

Printing
array items with a for loop

2.10 Lab
work 8

Creating a
method to add items into an array

Create a
generic method to print out the contents of an array

Extra bonus:
Create a generic method to add items into an array

2.11 Other
useful arrays methods

sort()

join()

indexOf()

pop() and
shift()

slice()

splice()

Splice lab
work

2.12 Lab
work 9

2.13 Lab
work 10

Building a
mechanism to fetch a variable from an array

Adding
French to the array

Printing out
the array contents

2.14
Unordered lists

Hashes,
objects, associative arrays, unordered lists

Creating an
object

Why should
we wrap key labels in double quotes?

Assigning new
key-value pairs to objects

Using dot
notation with objects

Spanning an
object declaration across multiple lines

What is a
property?

What is a
method?

Looping
through an object

Introducing
the for in loop

2.15 Lab
work 11 - redo lab work 10

Transforming
the for in loop into an object method

PART III:
STRENGTHENING THE WARRIOR'S ARSENAL

3.1 Taking
an inventory of what we’ve learned

3.2 More
about functions

What are
expressions and statements?

Assigning
functions to variables

What is an
anonymous function?

Using
variables as pointers

The balloon
concept

Function
parameters and arguments

The object
arguments

3.3
Manipulating variables with functions

Passing data
by value

Passing data
by reference

Functions
are closed- in structures

“This”
as an object placeholder

3.4 Lab work
12

Part A:
Expressions, statements, arguments

Part B:
Passing data by value and by reference

Part C: Find
and replace a word in a string

Part D:
Using a function to save and recall our code

Part E:
Making the search and replace more portable

3.5 More
branching techniques

The switch

3.6 Lab work
13

13a: Switch
- using Boolean matches

13b: Switch
- using literal matches

13c: A
repeating switch routine

13d: Using a
while loop to repeat the script

PART IV:
ENTERING THE THIRD REALM

4.1 About
this section

4.2 An
introduction to JSON

Use
jsonlint, a tool to check JSON validation

Assigning a
JSON object to a variable

Editing the
JSON object

JSON library
methods

JSON.stringify

Using a
second argument as a filter on stringify

Using a
third argument on stringify() for controlling white space

JSON.parse

In summary

Document-oriented
databases for JSON data

PART V:
DEFEATING THE DRAGON

5.3 First
solid steps into AngularJS

Intro

Directives

What is a
library?

What is a
directive?

What does
ng-app mean?

No more DOM
manipulation tasks

What is an
expression?

ng-init

ng-bind

ng-cloak:
Avoiding display flickering

5.4 Lab work
14

Part A:
Initializing an object and outputting its contents in a paragraph

Part B:
Initializing variables and outputting a calculation

5.5 Going a
step further into modularity

Assigning a
module name to ng-app

Configuring
a Module interface

5.6
Preparing to separate data from presentation

Creating a
controller

$scope

View

Controller

Your turn:
Add a controller to your exercise

Create a
program to convert Fahrenheit to Celsius

Placing the
controller on a separate file

The ng-model

Lab work,
creating the conversion script

More Project
Ideas

Directives
summary and resources

In
conclusion

Can you do
this for me?

Errata,
Contact, Updates

Introduction

This book is for everyone who wants to learn basic
programming using the JavaScript language without taking a formal course. It
may also serve as a classroom supplement for practicing and review.

 	The intended audience is beginning, intermediate, or an advanced
 reader looking to restudy the subject.

This book contains lots of exercises with answers and
explanations. Each section is one page or less long and each topic is followed
by lab work with links to raw files. There is also a forum board to
facilitate further reading and practice. Since all scripts are short, these
links are there just to clear any possible doubt you may have about your own
work.

I suggest spending at least 30 minutes per day reading and
practicing each chapter. Do not rush the material because the topics covered are
the foundation to master the language. Take time to absorb each concept. Do not
go into a new subject without taking a conscious break from the computer to do some
physical activity like for example a minor stretch.

Read each subtopic and do the exercises. Follow the book
from beginning to end; then later you may want to use this material as a
comprehensive reference to refresh your mind or for practicing purposes. For
further practicing refer to the dedicated forum platform presented later in the
book.

If you study every day you will complete the course in about
two weeks.

If you just read it as a review, you may finish it on a weekend’s
time.

The book takes advantage of your browser’s JavaScript Console.
I recommend using the Console from Google Chrome and I will explain how to
access it and use it for our purposes. Opera and Epic will work
the same way. Of course, you can utilize any other test method you wish as long
as you know how to access it. The new Microsoft Edge browser also has a
JavaScript Console accessed by the shortcut F12.

Besides recommending Google Chrome, I will also recommend
the usage of jsbeautifier (a very useful online editor), as well as my
own website forum where you will find all the linked exercises and further
reading and practicing materials.

Don’t worry about it for now; there will be plenty of
reference links posted at the appropriate time.

What you should know before reading this material

The only prerequisite for reading and practicing the
projects in this book is that you are familiar with basic computer skills such
as copy/paste and editing a line of text.

For a more complete experience you need access to the Internet.

You can always review the material offline but you will not
be able to access any of my sample files if you don’t go online.

In order to fully understand the last section of the
book which introduces AngularJS in plain words, you will need to know
basic HTML syntax like for example, understanding how a basic HTML page is
created, the HTML tag, the BODY tag, how to create a paragraph or a DIV – nothing
too complex.

The book will give you the foundation to become comfortable
with JavaScript so that you can advance firmly regardless of which area of the
language you plan to specialize on.

Basic math is a plus, but even if you think math is not your
call, all math examples are well explained in the book. No one should have any
problem with them.

The book will prepare you to understand modern JavaScript.
This includes a firm introduction to JSON and AngularJS
 in plain words, which will open doors and break down barriers for you to get
into those very hot technologies.

The Spiral approach for code learning

This eBook utilizes
the idea of a spiral approach for code learning as outlined below:

1- The
history of development is preserved.

2- Simple
solutions are provided first and then replaced by more advanced, robust
solutions.

3- Only
the concepts used in a spiral are explained, with links for further reading
material.

Each project conserves its incremental history as a snapshot
of something useful to review, like a spiral. The spiral approach is a technique
often used in teaching where first the basic facts of a subject are learned,
without worrying for detail. Then as learning progresses, more and more details
are introduced while at the same time they are related to the basics which are
reemphasized many times to help the internalization of concepts.

No memorization is needed.

 	The book must be read in sequence for a more effective,
 powerful and meaningful experience.

 	The exercises should be repeated not just right after
 finishing the current lab work, but also after finishing the whole section
 or reading the whole book.

 	Practice like you would be practicing guitar: every day
 and with intent. Think of JavaScript exercises as scales to be played.

 	After finishing an exercise, always think on how you would
 apply the concepts covered for a different recipe. Think like a master
 chef. Programing is like cooking.

 	Programming is also like plumbing. We create interfaces by
 facilitating connections.

 	Finally, programming is part science part art. It brings
 together the best of both worlds.

What is JavaScript

JavaScript is a programming language designed to interact
with the computer browser. There is currently no other language with the same
browser compatibility as JavaScript. Most of those languages trying to replace
JavaScript actually decompile
their code into JavaScript.

What is the difference between JavaScript and HTML?

HTML is a presentation markup language. It creates objects (container
boxes) that get displayed on the page. It does not make decisions based on user
interaction. HTML paints the computer screen.

JavaScript extends HTML in the sense that it makes the page
dynamic by interacting with the user based on certain conditions and outcomes.

In order to create outcomes and make decisions we need to
learn JavaScript syntax and that’s what this book is about.

In later chapters we will learn how to create modern web
interaction using one of the latest implementation techniques called AngularJS.

The book will not make you an expert in AngularJS. It will
however give you a very solid foundation to empower you and propel you forward
into more advanced concepts.

This book follows a hands-on approach. Please be prepared for
an extensive workout.

PART I: AT THE GATES OF ENLIGHTENMENT

“Empty your cup; return to the beginning”.

1.1 The browser interface

Every time we go online we get to use an interface
to communicate with the internet. This particular interface is known as “the browser” and its
purpose is to translate the incoming data from the outer world into our
computer screen. The most popular browsers are Internet Explorer (known as IE
and now replaced by Microsoft Edge), Google Chrome, Firefox, Opera and Safari
but there are hundreds of other browsers.

Browsers place text and images on the screen based on
instructions given by the programmer in a markup language known as HTML. Then this text and images
are rearranged or beautified by a styling language called CSS. Finally,
the website dynamically interacts with the user via JavaScript which is the
subject of this book.

JavaScript is a computer language designed to interact with
and recognized by all browsers. This means that we can create useful programs to
run in a browser by writing instructions in JavaScript.

Other programming languages don’t have this capability and they
need to run on special platforms acting as further interfaces to the browser
and they ask for JavaScript to assist them in this interaction. This is the
reason why JavaScript has become the most popular programming language on the internet. Computers use it,
websites use it, other software such as for example Photoshop, Word, PDF use
it, and last but not least, computer servers are starting to use it on their
own backend processing which is great news for the future of JavaScript.

JavaScript can be an easy language when learned the right
way, but it can also be a difficult language to learn because it is very
dynamic and rules change based on conditions on the ground.

No one can promise to teach you JavaScript since learning is
a personal experience. But I can promise you this: read the book in sequence,
think about each concept without memorizing it, do all the exercises, and you
will be a much better programmer by the time you reach the end of this very
short book.

As an author, I may be a programmer or a technical writer,
but above all, I am a technical Instructor. My writing experience comes from
teaching, coaching, and debugging code from thousands of students. When I write
about these concepts I always think about the struggling I’ve experienced when
I was learning this material, and the struggle I see on other students when
they ask for help. As I write, those problems come to the surface and I try to
address them ahead of time in order to prevent you from falling into common
traps.

1.2 Material and tools needed

All the exercises on this book will be tested using the
JavaScript Console from the Google Chrome’s browser. Occasionally I also use Opera
which works similarly. Please feel free to use any test console you so desire
since every browser has one. Firefox is also a good alternative but I find the
other two options cleaner and easier for beginners to code.

If you don’t have one of those browsers on your computer you
can download it from the links given below. I recommend using both of them.
Experimenting with different browsers is part of being web-savvy and a must for
web developers:

Google Chrome | Opera

1- To
access the console, load you Chrome browser or Opera, and then press the
following key sequence:

For Windows systems: CTRL SHIFT j

For Mac: CMD OPT j

This will bring up the console.

2- If
this is your first time using the console, you can detach the console
from the browser by clicking on the small square shown at the
bottom left of the console (in the latest browser this button seems to be on
the top right). Detaching the Console will give you more room on the screen
since you will be able to minimize the browser while keeping the console up.

3- Make
sure the tab on the top of the console is set to console and not to any
of the other available options.

4- You
may see a few error messages on the Console when
you first open it. This is normal. Just clear the screen by right-clicking
and selecting “Clear console”.

Let’s now read a few more pages and code mentally. We will
do some hands on work in a few minutes when we get to the Lab section.

1.3 Declaring a variable – an alias name for a
memory location

Preliminary information:

Browsers use computer memory. The more memory a computer
has, the faster the browser works. Since working memory is limited,
programs need to constantly rearrange data in memory by deleting what expires
and repositioning what is still in use.

When we program in JavaScript we store data in memory. This
data is short lived since once we close the browser or end the program, the
data is wiped out.

To temporarily store data in memory we need to label the
memory address location with a word that makes sense to humans, so that we can program
or manipulate that data. We can’t just tell the browser to store the string of
characters “hello world!” in memory by giving it the address of 0x7fffffff. Those days
are long gone as it would be too complex and unpractical as well as ever
changing since data is shifted around from location to location due to
automatic memory rearrangements. So to address this problem, we use names
as alias for assigned locations and allow the computer to manage the real
physical address of the data as it sees fit.

Those memory location aliases are called variables.
The reason they are called variables is twofold: the address of the data
can be changed without notice, and the data contained in each variable
can also be changed at any time. What remains constant is the variable name,
which is the only link humans have to this piece of memory real estate.

As for the change of a value in a variable, that may
be either done manually by the programmer further down the script instructions,
or automatically by JavaScript itself in a dynamic reassignment of values.

 	Know this: To create a memory variable we have to declare
 it (declaring a variable is like introducing the variable to JavaScript).
 Example:

var phoneBill;

(Just read along. You will have a chance to try it
yourself when we get to the Lab Work section at the end of the chapter. All
chapters are purposely short. This is the time to read and understand
conceptually. Then you will test yourself during lab. All lab exercises are
followed by the correct answers so that you can double check your work).

About var

Think of var as the command used to create a variable
(this helps you remember to use var when you introduce a variable.

Another thing that var does is to ground the
variable to the location where it is being introduced, sort of like
making it a local variable (more about that later).

About the variable name

After writing var we provide the variable name
which in our case is phoneBill. The name does not matter, it could have
been called x since JavaScript does not care about the ‘human
meaning’ we choose to give it.

However, JavaScript cares about the choice of characters we
use. Make sure the first character is a lowercase letter of the alphabet (the
lowercase is not mandatory, just good practice as you will see later). The
variable cannot start with a number or a symbol. Subsequent letters can be
numbers, but symbols are not allowed, ever, except for the underscore _.

 	In summary: always start your variable names with a lower
 case letter. Forget about the underscore as the first character because it
 is usually used in very special situations and therefore should not be
 considered for normal usage.

My own variable phoneBill has a capital B in the
middle. This is a common style of writing variable names. JavaScript doesn’t
care about styles, but it does make it easier for the human eye when it comes
to inspect the script.

Another popular way of writing names is with an underscore
separating the ‘human meaning’ of each word in the variable name. The reason
for the underscore is because spaces or dashes are not permitted in variable
names: phone_bill

 	Remember this: The ‘meaning of a word’ is only for
 human consumption. If instead of introducing phoneBill we introduced
 just x, JavaScript would have accepted it without
 complaining. When we program, we do it both for the computer to understand
 and also for a human to understand so that he/she can troubleshoot or
 update the program later. Choose your own style of writing variables and
 stick to it. Consistency is important. However, become familiar
 with all common styles because when you work in a team you need to adjust
 to an agreed common style for the whole team. Practice flexibility.

About the semicolon ;

The semicolon at the end of the statement tells
JavaScript that you are done declaring the variable:

var phoneBill;

The semicolon acts as a command terminator, or a
separator between two different and independent commands. In other words, we
are instructing JavaScript to stop and save that command or expression
as an independent instruction from the next upcoming instruction.

Going back to the variable name,

 	Keep this in mind: JavaScript is case sensitive.
 A and a have independent meanings in
 JavaScript. phoneBill and phonebill are not the same word.
 At this moment phoneBill is an existing declared variable, and phonebill
 is nothing, JavaScript will throw an error if you write phonebill by
 mistake instead of phoneBill since you have declared phoneBill as the
 variable, and not phonebill.

Of course we could also have two independent variables, one
named phoneBill and another named phonebill and that is the point, for
JavaScript they are two different words.

Adding data to variables

Once a variable is declared, a memory location is reserved
for that variable and then we can assign the variable to some data.

Isn’t it easier to just remember phoneBill rather
than making a written map of reserved memory locations?

To assign data into a variable we use the = operator:

phoneBill
= 200;

Do not use $ before 200. That would trigger an error.
You may use $ later when you output the data if you so wish, but not
when you enter your data into the computer memory. All JavaScript wants is the
number 200 in its pure form.

I have just saved the number 200 in a memory location listed
as phoneBill. Notice the semicolon at the end. It terminates my statement.

We could have declared and also included the data in just
one-step:

var
utilitiesBill = 400;

Sometimes we just want to tell JavaScript to reserve a
location under a certain name. Other times we reserve the location and fill it with
data all at once. Don’t worry about the size of memory needed. Contrary to
other languages, JavaScript is dynamic: it adjusts the memory automatically.

Changing the value in the variable

What if we want to change the value of our phoneBill from
200 to 150?

To change the value of a variable all we have to do is to reassign
it (no declaration needed):

phoneBill
= 150;

The 200 gets deleted and the computer memory at location phoneBill
now holds the value of 150.

 	Remember this: Never use
 var twice on the same variable name. If you use var
 as a prefix when you rewrite an existing variable, you wipe out the
 old variable since you have just re-declared the variable again. This may
 be something you want to do on purpose, but for the most part, this is not
 a common practice. I have seen this done many times as a mistake by new
 programmers.

Adding words to a variable instead of numbers

So far we have been assigning data of type number to
our variables. We can actually assign anything to a variable.

Since a variable is just a memory location, we can assign it
a string of characters also known as a value of type string,
or even other types of data such as arrays, functions, objects...
more about those later.

Let’s talk about strings

A string of characters can be assigned to a variable but we
need to let JavaScript know it is a string. The way we let it know, is by wrapping
our string of characters in quotes:

var
myName = "Tony";

Any word not wrapped in quotes is considered to be a reserved
term stored in the JavaScript library.

 	If I just write var myName = Tony; (with no
 quotes for the string ‘Tony’), JavaScript will check its library in the
 computer’s memory looking for a command or a variable named Tony.
 Since Tony does not exist as a reserved term, JavaScript will throw an
 error on the screen. Any word data needs to be wrapped in quotes.

After we declare the variable myName, the word myName then becomes
a reserved term until it gets wiped out from memory or until the program is
over. No quotes for variable names.

 	Remember this: Data of type string needs to
 be wrapped in quotes as opposed to declared variables names which are never
 written in quotes.

When I say “remember this” it doesn’t mean to memorize
it. It only means to focus a few seconds of extra attention to the statement
that is about to follow.

Which quotes to use: single or double?

In JavaScript, a pair of single or double quotes work the
same way. Just make sure the closing quote matches the style of the opening
quote. Some other languages act differently in single or double quotes; not
JavaScript.

Below you will find another variable declaration and
value assignment all at once. You will see how combining quotes can be useful.
I start with a single quote, followed by a double quote. However JavaScript
ignores the double quote because it knows the closing quote must by single in
order to match the opening quote:

var
quoteOfTheDay = '"living
is not essential; creating is essential" -
Fernando Pessoa';

 	Remember this: Never wrap a variable name in
 quotes. If you do that, you convert the name into a string. I mean,
 quoteOfTheDay and "quoteOfTheDay" don’t have the same meaning
 for JavaScript. The first one is a declared variable stored in the
 JavaScript temporary library. The second one is just a plain string of
 characters. JavaScript will not map it to the memory location assigned to quoteOfTheDay.

Assigning variables to other variables

We have seen already how to reassign a variable to a new
value:

phoneBill = 600;

Now, phoneBill is no longer 150. It holds the value of 600.

What about assigning a
variable to another variable?

It works the same way as assigning a regular value:

phoneBill =
quoteOfTheDay;

Note: No quotes are being used because both words are
previously declared variables. The real value, which is a string value, is
being passed inside of the variable quoteOdTheDay.

 	Remember this rule:

 Assignments work from right to left. What is
 on the right gets assigned to the left operand.

The value of phoneBill has now been changed from the
numeric 600 to the string "living is not essential; creating is
essential" - Fernando Pessoa.

Basically, JavaScript copied
the string value from quoteOfTheDay to phoneBill. We now have two
strings of the same value in two different memory locations. This copying is
not always true as we will see later. Copying only happens with primitive data types,
such as numbers and strings. When we reassign complex data such as arrays
and functions, also known as reference types, we
do not duplicate the data; we just point those two variables to the same data.
But this is an advanced concept. For now, just think of duplicating
variable values when we reassign a variable containing simple data to
another variable.

We will see more about primitive and reference
types later in the book. Sometimes I throw in terms without an explanation. The
idea is to get you used to the term as common language when you read
along and without memorizing it. A former introduction will happen at the
appropriate time. Occasionally you will see a link to sources such as
Wikipedia. The link is there in case you want to explore the topic further, but
no external link it essential in order to understand the material we are
covering. Wikipedia is my favorite source of general information for two
reasons: It gets updated quickly and it does not have annoying popup commercial
messages.

1.4 Lab work 1

Ready for some lab work?

Opening the Console

Almost all modern browsers have a test Console
built into the browser to assist us in debugging or experimenting with JavaScript.
All Consoles provide basically the same options once we have them open. The
biggest differences are how we access the Console and what the Console looks
like on the screen.

Select one of the following browsers. Download it if you
don’t have it installed on your computer. The reason to use one of these
browsers is so that my instructions may coincide with your actions as we code
along using the JavaScript Console that comes with it. Please feel free to use
any other Console if you so desire, but the way to access it may be different.

Google
Chrome.

Opera.

Open one of those two browsers and then press the following
key sequence to open the Console:

1- If you
are using Windows or Linux:

CTRL SHIFT j

If on a MAC:

CMD SHIFT j or ALT-CMD-j

Most likely a window will open at the bottom of your screen.

2- Make
sure the tab Console is selected.

If you get any error messages, just clear the screen
by right clicking on the white area and selecting “Clear
Console”. These errors will happen almost every time you open the
console because the Console is inspecting the current opened document, the one
you see on screen before you access the Console, and things may not be 100% as
expected by the Console, hence the error warnings. Just clear the message so
that we gain more window space.

3- If
you want (recommended), you can detach the Console from the browser and
minimize the browser so that it gets out of your way. After you detach the Console
for the first time, it will always stay detached unless you attach it again by
toggling the same button.

To detach the Console look for a double square icon
on the tab menu of the Console, and click on it. Now you should have two
different windows. Minimize the browser to get more room on your Console screen.

Declaring some variables

Let’s start coding...

1- Declare
variables x, y and z

(declaration only, no
assignments of values at this moment)

and press ENTER after each semicolon in order to activate the expression:

It should look like this:

var x;

var y;

var z;

You could also just use one var and separate the
variable names with a comma. That might save you some time if you are simultaneously
declaring a bunch of variables with no values given. Don’t forget the semicolon
at the end:

var
x, y, z;

2- Now,
declare another variable but assign a value at the same time.

I’m using variable a with the value of 347:

var
a = 347;

3- Declare
a variable b containing your first name (remember, your name is
a string of characters):

var
b = "Tony";

 	NOTE: You can read the value of each variable on
 the Console by just typing the variable name, followed by the semicolon,
 and pressing ENTER. Example:

 b;

 It should display "Tony";

Typing the variable by itself in order to get a value
displayed is only possible because we are using a test Console. In real
life we would have to use a print command as we will see later.

Inspecting the data type of a variable

Great! So far we have the following
variables declared:

x, y, z, a, b.

What kind of variable is variable b?
I mean, what type of data does it contain? We know b holds
your first name, right?

4- To
inspect the variable use the command typeof:

typeof
b;

It displays "string".
Variable b contains your first name in quotes and
therefore it is a string of characters.

5- What
about variable a?

typeof
a;

It displays "number". Variable a
contains the number 347 and therefore it contains data of type number.

 	NOTE: Did you notice how the Console tries to
 finish the word typeof ? If you don’t want to write the whole word
 yourself just press the TAB key as soon as you see the hint on the
 display. Or if you’re like me, you’d rather practice typing, just be aware
 of misspells. The automatic completion can become very handy to speed up
 programming and avoid typing mistakes, especially when it comes to long
 commands. Auto typing also helps us remember how each command is written.
 The test Console is really useful; I use it in real life hundreds of times
 a day because I’m constantly testing stuff.

What is typeof?

typeof is a unary operator. It is called unary (opposite
of binary) because it only takes one operand, the variable to the right of it.
An example of a binary operator would be the + sign where we need a left and a
right operands.

Let’s do a few more inspections.

6- What
type of data is contained in variables x, y, and z?
(test them all)

Answer to all: "undefined".

Why it “undefined” and what is undefined?

These variables hold the value of undefined because we
haven’t assigned any data to them yet.

JavaScript reserves some memory for each one of these
variables and puts a placeholder as data. This placeholder is of type
"undefined". It is still a value, a special value, and we
can take advantage of it for decision making as you will see later.

Clear the screen by right-clicking and selecting “Clear
console”. Note: Clearing the screen does not erase the variables from memory;
it only gives us more space on the screen.

Let’s assign some values to variables x, y,
z:

7- Assign
the following string value to x. Make sure to wrap your string of
characters with quotes:

x
= "The quick brown fox jumps over the lazy dog";

8- Verify
its type of value:

typeof
x;

It now displays "string"
as a type, rather than "undefined".

9- Assign
the variable b to variable y

(assignments go from right to left):

y
= b;

y should now contain
a copy of your first name just like b does, and its type
of value should also be "string".

 	Remember: Assignments work from the right operand
 to the left operand. Also, y and b values are independent of each other. The = sign does not mean equality, it
 means to assign right to left.

10- Assign a value of type number
(any number) to variable z.

 	Remember: numbers don’t take quotes. If you wrap a
 number in quotes it becomes a string of characters and you can’t perform
 any calculations with it.

11- For further practicing,
declare some new variables of your own, assign some data to them and check
their type of value.

Just like any other language, the only way to learn
JavaScript is to practice daily. Memorizing will not do it; just plain practice
will succeed and persist.

END OF LAB

1.5 Manipulating variable data

When we store a value in the computer’s memory under
JavaScript supervision, this value inherits some properties and methods
characteristic of the type of data the value represents.

Where do these properties/methods come from?

They exist in the JavaScript library located in your
browser. When we create a new instance of one of the common types, our instance
immediately inherits lots of tools we can use to help us program outcomes.

Methods and Properties

Properties
are qualities the new data inherits from its data type. It will make
more sense later.

Methods
are functionality that creates actions upon the data.

 	There is no need to memorize these terms. They will be
 repeated so many times that you will know them by heart before you finish
 reading the book. Just read along and understand the concepts. However, if
 you’re curious, each term has a link to Wikipedia where you can read to
 your heart’s delight.

To see an example of a property in action let’s declare a
new variable of the string type:

var
myName = "Tony";

Since "Tony" is of type string, there are
things I can do with this type of data, or things I can find out about string
data, such as its length in characters:

myName.length;

The Console will display 4 and it means that the value of
variable myName which is "Tony", is 4 characters long.

length is one of the properties inherited from the type
string. Other types of data also use this property because it comes very
handy in decision making as you will see over and over again.

Did you notice the dot between myName and length?

The DOT operator

The dot in myName.length glues variable myName
to its property length.

The Dot operator connects the variable to its property, or
the parent to the child. We place the root first, or the owner of the property.
Then map its members or children by using dots:

parent.child.grandchild;

or in a more explicit example:

window.myName.length;

window is actually the parent of variable myName. We
will come back to it in a while.

It’s almost like saying “What is the person’s name?”, Do you
see the ‘s? That ties the name to the person. The dot notation
works under the same principle.

In this case it is pretty simple: we start at the variable
name and go down one level to its property length. Other times the
targeting address may become more complex, perhaps another term or two down the
pipe. We will have a chance to work with the dot operator throughout the book.

When working with the dot operator we are using what
is called Dot Notation, but there is another alternative syntax which is
called Bracket Notation.

Please refer to the next page for a brief introductory explanation
of bracket notation.

The Bracket notation

I don’t mean to confuse you by mentioning two different
notations at the same time. We will be using bracket notation extensively
later. Consider this as a primer about it.

Instead of instead of: myName.length;

Type in your console the following:

myName["length"];

It displays the number 4, just like it did with Dot
Notation. Notice how length is wrapped in quotes inside of that bracket.
We are passing "length" as a string, or as a label, and JavaScript
will reconvert it back to its rightful rank of a property from its library.
There are advantages of using Bracket Notation because it is more versatile,
but don’t break your head over it just yet. We will use both Dot Notation and
Bracket Notation. Bracket Notation is mostly used in dynamic situations. You
will see later that Dot Notation is “hard wired” and Bracket Notation is “soft
wired” (when we don’t know the real value at the time of writing the code).

Sometimes we go out on the sedan, and other times we take
the pickup truck! It is the same thing with notation syntaxes.

An example of a method

The string data also inherits methods such as .toUpperCase():

myName.toUpperCase();

It displays "TONY" instead of "Tony".

Was the variable myName changed to uppercase?

No, it wasn’t. It only displayed it in upper case mode, but
the value remains as it was originally declared.

We could however convert the original value to uppercase by reassigning
the variable myName to itself as it gets transformed:

myName
= myName.toUpperCase();

Now myName contains "TONY" as its value.
The original Tony was discarded. Do you see how it happened? We assigned the
original variable to its own transformation. It’s almost like the dog that was
able to catch its own tail.

What’s with the parentheses () ?

toUpperCase is a method, it processes some action.
That sounds like a function, which we haven’t covered yet. The () represents action, or function processing,
or evaluation.

Whenever you see a pair of parentheses think of something
being evaluated by JavaScript, from which a result will be returned back.
In this case the data is being converted to uppercase; that’s the result of the
evaluation.

More about the parentheses later. Don’t worry about it for
now, juts acknowledge it and move forward.

Here’s another method: toLowerCase():

myName.toLowerCase();

Now the value of myName is "tony". Did you notice
the T is in lowercase? To transform a string to lowercase except the first character
would be called capitalizing. Unfortunately there is no direct method in
JavaScript to capitalize. It’s either all lower case or all uppercase. We can
do it with a combination
of methods but that is a bit advanced for now. Also, if you know CSS and
you are displaying the result in an HTML page you can always use the CSS text
transformation property capitalize.

 	Note: both words toUpperCase() and toLowerCase()
 have certain characters capitalized and others characters in lowercase,
 right? JavaScript is case sensitive, it sees A and a
 as two different characters.

The reason why I wrote toUpperCase
and toLowerCase in this way was not because camelCase is my preferred
writing style; it is because that is the correct name given to these methods by
JavaScript itself. If we write tolowercase, it will not work. As you
remember, typeof was all in lowercase, we couldn’t do typeOf. That
would not work. This is one of the reasons why the automatic completion feature
on the Console is very helpful: it takes the spelling doubts out of the
equation.

When you are finished with this book, if you want to study
all the properties and methods of all the types in JavaScript, you may consider
my other eBook which is a JavaScript follow up from this one:

JavaScript
Objects Functions and Arrays Explained.

There are plenty of exercises and projects in there.

 Speaking of exercises, let’s do some more lab work.

1.6 Lab work 2

Please fire up your JavaScript Console again

(CTRL SHIFT j or CMD SHIFT j or ALT-CMD-j).

Declaring variables, assigning values, using basic
properties and methods

(See the results on the next
page)

1- Declare
a variable named x and give it a string value of

"The quick brown fox jumps over the lazy dog".

2- Display
x;

3- Find
out the length of the data in variable x.

4- Display
x in uppercase. Hint: toUpperCase()

5- Now
convert the original x to uppercase, instead of just displaying
it.

6- Call
x again.

7- Finally
convert the variable x to lowercase again. Hint:
toLowerCase()

8- Call
x just to be sure.

9- BONUS:

Declare variable y and assign it the value of x,
but in uppercase.

10- Call y.

11- EXTRA, EXTRA BONUS:

Declare a variable named z and assign to it the numeric value of
the length of x.

12- Call z.

(See the results on the next
page. At this time, do the same exercises as you verify the answers on the next
page. Practice, practice, practice)

Results:

1- Declare
a variable named x and give it a string value of

"The quick brown fox jumps over the lazy dog":

var
x = "The quick brown fox jumps over the lazy dog";

2- Display
x:

x;

It displays "The quick
brown fox jumps over the lazy dog"

3- Find
out the length of the data in variable x:

x.length;

It displays 43, as of 43
characters including spaces.

4- Display
x in uppercase:

x.toUpperCase();

It displays "THE QUICK BROWN
FOX JUMPS OVER THE LAZY DOG"

5- Now
convert the original x to uppercase, instead of just displaying it:

x
= x.toUpperCase();

6- call
x again:

x;

It displays "THE QUICK BROWN
FOX JUMPS OVER THE LAZY DOG"

7- Finally
convert the variable x to lowercase again:

x
= x.toLowerCase();

8- Call
x just to be sure:

x;

It displays "the quick
brown fox jumps over the lazy dog"

9- BONUS:

Declare variable y and assign it the value of x,
but in uppercase.

var y = x.toUpperCase();

10- Call y:

y;

It displays "THE QUICK BROWN
FOX JUMPS OVER THE LAZY DOG"

11- EXTRA, EXTRA BONUS:

Declare a variable named z and assign to it the numeric value of
the length of x:

var z = x.length;

12- Call z:

z;

It displays 43, the value of z is 43.

END OF LAB

1.7 Adding some more JavaScript operators

+, -, +=, -=, /, /=, %, *, *=

+ If both operands are
numbers, it adds the left operand to the right operand.

If one or both operands are strings, it concatenates the two words or
characters.

- Subtracts the right numeric operand from left numeric
operand.

+= Adds left to right and
automatically assigns to the left**.

-= Subtracts right from left
and automatically assigns to the left**.

/ Divides the left operand by
the right operand.

/= Divides the left operand
by the right operand and automatically assigns the quotient to
the left operand**.

% modulu (fetches the
remainder of the left operand divided by the right operand).

* Multiplies the left operand
by the right operand.

*= Multiplies the left
operand by the right operand and automatically assigns the product to
the left operand**.

** Notice: Because +=.
-=, /= and *= are assignment operators, the left operand must be a variable, it
cannot be a direct number.

We will expand these concepts as we code along.

The + plus operator

The + sign has a dual function depending on the type of data
JavaScript is processing.

In a string type, the +
operator concatenates
words like in the following examples:

"Hello"
+ "World!";

JavaScript puts them together as "HelloWorld!"

If you really want to space out the words there are three
possible ways to accomplish the task:

(1)

"Hello" + " " + "World!";

(2)

"Hello " + "World!";

(3)

"Hello" + " World!";

On the first example I’ve added an independent blank
space by wrapping it in quotes.

On the second example I’ve placed a space after Hello and
before the closing quotation mark.

On the third example I’ve added a trailing space on the word
World!

The first example is useful when we add two variables
together because we cannot combine leading or trailing spaces with
variables due to lack of quotation marks.

Here’s what I mean:

var
x = "Hello";

var
y = "World!";

Now I concatenate both variables together and assign them to
some other variable:

var z
= x + y;

The result for z is "HelloWorld!". The only
way to add a space between x and y is to use the
first technique:

var z = x + " " + y;

Now z contains "Hello World!".

Using the + plus operator to add two numbers

When it comes to numbers, the + operator adds the operands
like shown on the following example:

3 +
4 + 5;

That expression will result in 12.

var a = 6;

var b = 10;

var c = a + b;

Variable c is assigned to 16 which is the sum of a
and b.

Using the += assignment operator

The += is
very useful. Suppose variable i has the value of 3, and you want
to add 7 to it, I mean 3 + 7:

var
i = 3;

We could do it this way:

i = i
+ 7;

That will assign variable i to 10.

However, this operation is so common (as you will see ahead),
that programmers created a shortcut operator, the +=
(call it plus equals and never write equals plus because
it will not work):

i
+= 3;

Whenever you see += it means to take the value of the left
operand and add the right operand to it.

So now i which was 10 is now 13. What happens
if I do it again?

i
+= 1;

Now i is 14.

What about this one:

i
+= i; <-- that’s i not 1.

The above example is the same as 14 + 14, which results in
28.

The += operator can also be used in strings to add more characters to the
right side of the original value:

var n
= "T";

n
+= "o"; <--
results in "To"

n
+= "n"; <--
results in "Ton"

n
+= "y"; <-- results
in "Tony"

This can be very useful in loops in order to automatically
construct a phrase or a list of names as we will see later.

The ++ (double plus) incrementing operator

Many times we want to increment the value by just 1 unit.
This is a very common technique in programming.

We could do it in three ways:

Assuming var x =
5;

x =
x + 1; <-- now x is 6

x
+= 1; <-- now x is 7

x++; <-- now x is 8

x++; <-- now x is 9

This last way of incrementing is limited to the value of 1
at a time. The other ways are more versatile since we can increment by as
much at a time as we wish. However, the ++ operator is extremely popular
in loops because loops normally (but not always) increment in single steps.
We will come back to it when we get to loop around a bit.

The –, -- and -= subtraction operators

The subtraction operator is only used in numbers. It cannot
be used to subtract characters from a string.

5 – 2; <-- The result is 3

Examples:

var
x = 100;

x -
5; <-- The result
is 95, but x is still 100 because it was not re-assigned.

x =
x – 5; <-- Now x
is 95.

var
y = x – 100; <--
The result for y is -5, because x is 95

We can also use the subtraction unary operator if we
want to subtract by 1:

y--; <-- now y is -6

This operator -- is the same as y = y -1 or y -= 1;

Read the -= as
“minus equals” (never as equals minus).

The Division / or /= Operators

To divide two numbers we use the forward slash:

8 / 4; <-- It results in 2

Examples:

var
x = 12;

var y = 3;

var
z = x / y;

Variable z gets assigned the division of 12 by
3, resulting in 4.

We could also assign the result of a division back to the
original variable:

x = x
/ 3;

or as a shortcut:

x
/= 3;

 The “divide/equals” is not used as much as += or -=
but it is good to know it exists.

The Modulus % Operator

Sometimes we don’t want the result of a division, I mean its
quotient. We may be looking for the remainder or the modulus
of the division. This is very common in programming so please make sure to
understand it.

When I divide 14 by 3, I get a result of 4 and also a
remainder of 2. If my intention is only to get the remainder I can ask
JavaScript to get the remainder with the modulus % operator:

14 % 3;

JavaScript divides the two numbers and displays the remainder
of the division which is 2.

The modulus becomes very handy for things like figuring out
odd and even numbers.

In 12 % 2,
the result is zero which tells me that 12 is an even number.

In 13 % 2,
the result is 1 which tells me that 13 is an odd number.

in 2014 % 4,
the result is 2 which tells me that 2014 is not a leap year since leap years
are divisible by 4.

In 2016 % 4,
the result is zero, which tells me that 2016 will is a leap year.

There are many applications for the modulus operator and we
will play with it on some exercises throughout the book.

The Multiplication Operator *

To multiply numbers or numeric variables we use the asterisk
because we can’t use the x symbol. x is normally used as a variable name. So in
computer science we use the asterisk to represent multiplication:

3 * 6; <-- results in 18

var
x = 7;

var
y = 5;

var
z = x * y; <-- results in
35

When it comes to assigning the result back to the original
variable we can do it in two different ways:

x = x
* 2; <-- x is now 14

or

x
*= 2; <-- x is now 14

1.8 Lab work 3

Let’s practice a bit to cement the concepts covered in this
chapter.

Please fire up your Console with CTRL SHIFT j

or CMD SHIFT j for Mac

or ALT-CMD-j.

Part one: working with +, += , ++ and --

1- Add 3
and 4

2- Declare
a variable x with the value of 3 and

a variable y with the value of 5.

Then create variable z and assign to it the sum of x
and y.

Call variable z, it
should contain the value 8.

3- x
is 3. Increment x to 4 using the unary operator ++.
Then call x to see the result.

4- Decrement
x by 1, using the unary operator --. Then call x
to see the result.

5- Concatenate
"Hello" to "World!". Make sure to include a
blank space between the two words.

6- Declare
a variable named myName and assign it only the first character
of your name.

7- Now
add the second character of your name to myName using the +=
operator.

8- Do
the same for all the other characters of your name. Call variable myName
to see the result.

(see the results on the next
page)

Part one results

1- Add 3
and 4:

3 + 4;

2- Declare
variable x with the value of 3, and variable y
with the value of 5. Then create variable z and assign to
it the sum of x and y. Call variable z,
it should contain the value 8.

var x = 3;

var y = 5;

var z = x + y;

z; <--- should be 8

3- x
is 3. Increment x to 4, using the unary operator ++.
Then call x to see the result.

x++; <-- Displays 3 (see note below)

x; <--- x is now 4

Note: You may see the number 3 displayed on the Console instead of 4. That is
just an automatic feedback from the Console. The ++ increment happens after
the feedback occurs. Had we programmed it as ++x instead of x++ the
increment would have happened before the automatic feedback from the Console.
The end result for the variable x is 4 in both ways. We will cover this in more
detail at a later lesson when we get to loops. For the most part stick to x++, it is the common way of writing it.

4- Decrement
x by 1 using the unary operator --. Then call x
to see the result.

x--;

x; <-- It displays 3.

5- Concatenate
"Hello" to "World!”. Make sure to include a blank
space between the two words.

"Hello" + " " +
"World!";

or this way:

"Hello " +
"World!";

or this way:

"Hello" + "
World!";

6- Declare
a variable named myName and assign it the first letter of
your name.

var myName = "T";

7- Now
add the second letter of your name to myName using the +=
operator.

myName += "o";

8- Do
the same for all the other letters of your name. Call variable myName to
see the result.

myName += "ny";

myName; <-- it displays "Tony".

Part two: Working with *, /, *=, /= and %

Clear the Console display by right clicking on it and select
“Clear Console”.

Let’s work with multiplication, division and modulus:

1- Declare
three variables: x = 12, y = 2 and z = 3

2- Declare
another variable, a, and assign to it the multiplication of y
by z. Call a to see if it holds the value 6.

3- Declare
variable b and assign it the result of the division of x
by a. Call b to inspect its result.

4- Reassign
b to the multiplication of itself. Use *= for that effect.
Now b should be 4.

5- Reassign
b to the division of itself. Use /=. Now b
should be 1.

6- The
value of x is 12. Use the modulus operator to grab
the remainder of dividing x by 2. Do not assign it to
anything, just display the result. It should be zero.

7- At
this moment x is still 12. Use the modulus operator
to see what the remainder is when we divide x by 5. It
should be 2 left.

(see the results on the next
page).

Part two results (answers):

1- Declare
three variables: x = 12, y = 2 and z = 3.

var x = 12;

var y = 2;

var z = 3;

2- Declare
another variable, a, and assign to it the multiplication of y
by z. Call a to see if it holds the value 6

var a = y * z;

a;

3- Declare
variable b and assign it the result of the division of x
by a. Call b to inspect its result, it should be 2.

var b = x / a;

b;

4- Reassign
b to the multiplication of itself. Use *= for that effect.
Now b should be 4.

b *= b;

5- Reassign
b to the division of itself. Use /=. Now b
should be 1.

b /= b;

6- The
value of x is 12. Use the modulus operator to grab
the remainder of dividing x by 2. Do not assign it to
anything, just display the result. It should be zero.

x % 2;

7- At
this moment x is still 12. Use the modulus operator
to see what the remainder is when we divide x by 5. It
should be 2 left.

x % 5;

There will be plenty more exercises to use these new skills
along with other more advanced ones.

Let’s keep going forward.

END OF LAB

1.9 Comparison operators and booleans

===, !==, <, >, <=, >= true, false

In math we use the equals sign to determine equality.

Not in JavaScript! In JavaScript the equals
sign is an assignment operator: it assigns the right operand
to the left operand:

x =
12;

In the example above, 12 is given to x. This is an
assignment, not a question to inspect equality.

To inspect equality, we use the triple = operator ===

x
=== 12;

The expression above is not an assignment, it is a question and the question is: “are the values
in x and in 12 the same?” in other words, does the variable x contain the numeric
value 12?

Every time JavaScript interpreter sees a triple equals (===), it always
evaluates and replies with a Boolean true
or a Boolean false.

What is a Boolean?

A Boolean
is a binary evaluation result that has one of two possible value outcomes:

true or false. In JavaScript a Boolean is a type
of value just like string, number, undefined, null, etc.

true and false are permanently
reserved words in JavaScript. We can literally write true and false without
quotes because JavaScript knows what they mean. However, if we ever write "true"
or "false" in quotes, JavaScript will assume it is a string
which has no value as a Boolean. So if you ever see "true" in
quotes, it is because that information is being spoken to a human being, not to
the computer itself. JavaScript only accepts true and false as
Boolean values when the terms are not wrapped in quotes and in lower case.

So, we could create a question on the console for
JavaScript to answer (this question is a command to get a Boolean result):

x === 12;

If we have previously declared x with the value of 12,
JavaScript will reply true because the statement is true.

Else, it will reply false, like in the
following example:

x === 14;

Question:

In x
=== 14 what would JavaScript say if x was not previously declared
as a variable?

Since x is not wrapped in quotes, it is not a string value
and therefore it must be a variable name. However JavaScript doesn’t find it in
its library because it hasn’t been declared.

In that case, instead of replying with a Boolean true
or false, JavaScript will throw an error like this:

ReferenceError: x is not defined

Let’s learn a few more comparison operators and ask more
questions to JavaScript.

Please remember, these symbols compare the left operand, to
the right operand.

Less than: <

Greater than: >

Less or equals than:
<=

Greater or equals
than >=

Not the same as: !==

Examples:

12 < 10; The Boolean
answer is false

12 > 10; The Boolean
answer is true

12 === 12; The Boolean
answer is true

12 ===
"12"; The Boolean answer is false*

12 !== 13; The Boolean
answer is true

12 !== 12; The Boolean
answer is false

12 <= 12; The Boolean
answer is true

12
= 12; The Boolean answer
is true

*Note: You may have seen double equals == used in JavaScript in
another book somewhere. In a different programming language that should be ok.
However, in JavaScript the double equals comparison operator is not
recommended. This is because in JavaScript the double equals == does not fully check the condition.
I mean it does not check the type of data the operands contain. That
could lead to errors because sometimes we have numbers in quotes which makes
them strings, a "12" is not the same value as 12. The first is a
string of characters and the second is a number.

In JavaScript always use the triple equals: === for comparing values.

1.10 Lab work 4

Practicing with ===, !==, <, >, <=, >=
true, false.

Go to your favorite JavaScript Console and create some
variables and values.

1- Ask
JavaScript if 12 is greater than 14.

Then ask if 12 is smaller than 14.

2- Declare
variable num with a value of 12.

Then declare variable num2 with the value of "12".

Later, ask if num is the same as num2.

3- Ask
if num is not the same as num2.

4- Ask
if 7 is greater or equals to 8.

Also if 7 is less or equals to 7.

5- What
is the difference between true and "true"?

6- Find
out the typeof true.

7- Find
out the typeof "true".

8- Find
the type of value "7".

9- Find
the type of value 8.

(see results on the next page).

Results:

1- Ask
JavaScript if 12 is greater than 14.

Then ask if 12 is smaller than 14.

12 > 14;

 false

12 < 14;

true

2-
Declare variable num with a value of 12.

Then declare variable num2 with the value of "12".

Later, ask if num is the same as num2.

var num = 12;

var num2 = "12";

num === num2;

false

3- Ask
if num is not the same as num2.

num !== num2;

true

4- Ask
if 7 is greater or equals 8.

Also if 7 is less or equals 7.

7 >= 8;

false

7 <= 7;

true

5- What
is the difference between true and "true"?

true is a reserved Boolean term.

"true" is just a string of characters.

6- Find
out the typeof true.

typeof true;

"boolean"

7- Find
out the typeof "true"

typeof "true";

"string"

8- Find
the type of value "7".

typeof "7";

"string"

9- Find
the type of value 8.

typeof 8;

"number"

1.11 Introducing console.log, alert, prompt,
confirm

So far we have been testing the value of variables by just
typing the name of the variable and pressing the ENTER key.

This works because we are using a test Console.

However, as our scripts get more complex we will need to
have a more explicit mechanism for outputting data to the screen.

That’s where console.log() comes handy .

The console.log

The Console has a way to explicitly log data to the screen
by using a mechanism called log().

The data to be displayed goes inside of the parentheses. If
this data is in the form of string we wrap it in quotes. However, if the
data comes from a variable or from a number, we always write the
variable name or the number without quotes.

Examples:

log(“Hello
bluebird”); <-- This will not work as written. Please wait
to read the note on the bottom of the page before you try it on your Console.

Another example is log(x). If x is a declared
variable, this will display the value of x. If x is not a variable,
JavaScript will throw an error because any word that is not a variable should
be in quotes like this: log("x").

We can also combine strings and variables:

Like for example:

var
x = "big bird";

log("Hello"
+ " " + x);

Which displays Hello big bird

Or if you remember, we could do it this way:

log("Hello
" + x);

NOTE:

log() by itself will not work. We need to use Dot
syntax to bind log() to the Console (lower c):

console.log("Hello
" + x);

That is the correct way of using log(), attaching
console to log() with dot syntax. Notice how console is in lower case.
The correct way to refer to the Console when programming is console in
lowercase. It is an object named console. Capitalization for console
will not work because JavaScript is case sensitive.

Here are some more examples:

console.log(
3 + 5); <-- It displays 8

console.log(
3 > 5); <-- It displays false

Or a combination of a string and a number comparison:

console.log("3
> 5 is " + (3 > 5));

It displays: 3 > 5 is false.

We will use console.log() extensively throughout the book.

alert()

Before console.log(), there was alert(). Contrary to console.log(),
alert() is a true JavaScript command (console.log is not really from the
JavaScript core, it is a method introduced by browsers and for test purposes).
Programmers were getting tired of having to create a popup box with alert() just
for testing a quick output, and that’s how console.log() was invented.

When we transfer a program from testing to production, we
need to convert all console.log()s into something that works with HTML, and
alert() is one of such output statements. There are many other output
implementations, which is a good thing since alert() is synonymous with ugly
advertisement popup boxes.

Just like log() is called from the Console, such as console.log("Hello!");
alert is called from object window, like this:

window.alert("hello!!");

Why window?

The object window is the mother of everything we do
on a browser. Even the Console itself runs under window. (no relation to
Microsoft Windows). The complete statement is actually:

window.console.log("hello!");

However, since we are coding inside of the Console, we don’t
really need to explicitly address the outer part of the Console in the browser.
I mean, console.log() is good enough since JavaScript starts looking from where
we are coding and moves outward from there. So it finds the command log()
as part of the Console. In any case, even alert does not need to use its
parent window in order to work (because Console is a child of window
and a child has access to its parent’s variables, properties and methods.).

This is the most popular way to code an alert:

alert("hello!");

We will have an opportunity to try using alert() on the next
lab assignment.

confirm() and prompt()

Another popular popup box is confirm()

Just like alert(), confirm() also comes from object window
and we normally code it like this:

confirm("are
you sure you want to proceed?");

It pops up a message and we click one of the two possible
buttons:

Ok or Cancel

Ok will return a Boolean true, and Cancel
will return a Boolean false. We don’t have to take advantage of
these Booleans, but we could and we will when we do a project on conditional
statements.

Another useful output method is prompt()
which also acts as an input method.

prompt() is very useful to gather information
from a user because prompt() will open a widow where the user can introduce
some data. We can then assign this data to a variable and use the value to
create some other outcome.

For example:

var
answer = prompt("yes or no?");

Then we could further manipulate the answer by evaluating it
with a Boolean result:

answer
=== "yes";

That is actually a question for which JavaScript will
answer back as true if the answer is "yes", or as false
if the answer is "no".

This will make more sense when we arrive a conditional
statements. I just don’t want to give you all the information in bulk when
you get there and that’s why I’m introducing these concepts right now.
Hopefully when we get to conditional statements you will remember the basic
ingredients used on a conditional recipe, but don’t break your head over
these concepts, we will revisit them again.

1.12 Logical Operators

And: &&,
Or: ||, Not: !

There are three logical operators in JavaScript.

And:
&&

With && both
operands need to be Boolean true in order to get a true output.

Examples:

(10
> 9) && (10 < 11);
<--- The JavaScript answer is true

because true and true is true.

(10
> 14) && (10 < 11);
<--- The JavaScript answer is false

because false and true is false.

5
=== 7 && 5 === 5;
<--- The JavaScript answer is false

5
=== "5" && 5=== 5;
<--- The JavaScript answer is false

5 ===
5 && 7 > 5; <---
The JavaScript answer is true

Or: ||

The two vertical bars denote an OR logical operator. In US
Windows you can access the || by pressing SHIFT and the last key on the right
at the row starting with qwerty.

With logical or ||, one of the operands needs to be true in
order to get a Boolean true as the output.

Normally JavaScript will not check the right operand in an
OR statement, if the left operand is already true. This is important to know, especially
when it comes to conditional decision making as we will see soon.

Examples:

(10
> 9) || (10 < 9);
<--- The JavaScript answer is true because the first
expression is true.

(10
< 9) || (10 > 9);
<--- The JavaScript answer is true because the second
expression is true.

(10
< 9) || (10 < 8);
<--- The JavaScript answer is false because none of the
expressions are true.

Not: !

The not ! operator is used to invert a
statement. In JavaScript any data value is considered true, with
the following exceptions:

Boolean false, the number zero, the value known as undefined, and the value known as null which we haven’t covered yet.

Let me declare a few variables and values in order to do
some tests:

var x = 3;

var y = 0;

var z = "Tony";

var
a;

Based on my first statement, is variable x true
or false? It is true because it has a value. On the other hand, variable
y is false.

Let me introduce a JavaScript method to find out when a
value is true or false: (we can use this method in our scripts
for decision making but it is not used that much. Just be aware of it):

Boolean();

And now we are going to compare the normal result of the
method with the result of inverting the question. Remember, we are asking
JavaScript to see if the statement is true or false, not to
inspect the variable and give us a value. It’s all about our statement inside
of the Boolean() method. Let’s try:

In for example, Boolean(x); We are asking the following:
“Is this true?”, “I say x exists as true, is my statement true?”, and then
JavaScript replies with true or false:

Boolean(x);
 <-- the statement is true
(since our x from the previous examples is 3)

Boolean(!x); <--
the statement is false (since x has a value, !x is a false statement)

Boolean(y); <-- the statement is false
(y is 0 and zero is false)

Boolean(!y); <-- the statement is true
(since y is 0, !y is a true statement)

Boolean(z); <-- the statement is true
(z is "Tony" and Tony is true)

Boolean(!z); <-- the statement is false
(since z has a value, the !z statement is false)

Boolean(a); <-- the statement is false
(a is undefined and we can’t say it is true)

Boolean(!a); <-- the a statement is true
(since a is undefined, !a is a true statement)

Let’s do some lab work to review all these concepts.

1.13 Lab work 5

Getting feedback from a user

In this lab session we will work together step by step. Please
turn on your JavaScript Console and play along with me:

1- Let’s
use prompt() to ask a visitor for his/her name:

prompt("What is your name");

2- A
popup window should appear on your browser after you press ENTER, asking for
your name.

Answer the question but do not
write your name in quotes. Being a text box you don’t need quotes. The
input mechanism will put the quotes automatically:

Write
Tony or your first name, and then press ENTER

Ok, what happened? Nothing much happened, right? The name
was displayed on the Console as an automatic feedback and that’s about it.

This is because we didn’t catch
the input name given by the user to the prompt() mechanism. In order to
grab the input name, we need to assign the result to a variable.

Let’s start from the beginning by doing it all over again:

3- Declare
a variable name userName and assign to it the same prompt()
as before. I’m not using the word name by itself because it is a
reserved word in the browser, which makes it a forbidden term to use as a
variable name):

var userName = prompt("What is your name?");

When the popup window appears type your first name on the
box and press ENTER.

We still can’t see the name, but on our next step we are
going to use console.log() to display the value of variable userName which
should be your first name. By the way, the
automatic feedback message was probably the term undefined, right?
That’s because the feedback happened when the variable was declared, and then
the assignment happened. You don’t need to know this; I just want to inform you
so that you don’t get distracted trying to figure out what really happened
there.

4- Use
console.log() to display the value of userName:

console.log(userName);

Mine displays Tony

If you get an error like for example "ReferenceError:
myName is not defined", make sure the name of the declared variable and
the variable name you used on the console.log() are the same. A common mistake
is to write username and then on the second time write userName.
As you know, they are not the same.

5- Let’s
make our output a bit prettier. Use console.log to display the following
sentence:

“Hi, Tony! Nice to meet you” where Tony
is the name you have entered on the prompt. You will have to use the variable userName
as a placeholder (see the next explanation).

console.log("Hi, " + userName + "! Nice to meet
you.");

Notice the white space after Hi, also notice that I
have used the variable userName instead of the real name. That’s because
as programmers we create scripts to work with any name, not just our name.
Always code generically!

6- Did
it work for you? Did you get the correct name displayed on your output
sentence?

Now it’s your
turn...

On the next few exercises you are going to repeat what we’ve
just done. Are you ready to do it on your own? Please read the following recipe
instructions and then program it yourself.

1- Declare
a variable color and assign to it a prompt() asking
a user to define his/her favorite color.

2- Program
a console.log that says Hmmm... orange is also one of my favorites!
where orange is the variable color which represents the color picked by the
user.

3- For
practicing purposes, add an extra line with a confirm() to
display this message:

“Are you ready for more JavaScript?”.

(See the results on the next page).

Results:

1- Declare
a variable color and assign to it a prompt() asking a user to
define his/her favorite color:

var color = prompt("What is your favorite color?");

2- Program
a console.log that says Hmmm... orange is also one of my favorites!
where orange is the color they have picked.

console.log("Hmmm... " + color + " is also one of
my favorites!");

3- For
practicing purposes, add an extra line with a confirm() to
display this message :

“Are you ready for more JavaScript?”:

confirm("Are you ready for more JavaScript?");

END OF LAB

Congratulations!

You should now be ready for the second level of this
programming adventure.

Let’s start by introducing conditional branching techniques so
that we can go a little faster on the highway!

Thanks for sticking around.

PART II: ENTERING THE SECOND REALM

“I try all night to play a pretty note.”

 Jimi Hendrix

2.1 Adding more syntax

Code blocks - Using an editor

Up this this point we have been writing one liner
statements and as soon as we press ENTER on the Console, the code gets
executed. We could actually write several lines of code in the Console by
holding the shift-key when we press Enter. That would take us to
the second line where we could continue writing our script. Although this works,
it is not an ideal arrangement. It is much better to write code on a text
editor and then copy/paste it to the Console when we are finished.

I’m sure you have some sort of a text editor on your
computer. Do not use Word or WordPad because they add
hidden formatting code which interferes with your script. Microsoft Windows
comes with Notepad. Notepad works and I use it hundreds of times
a day to filter out text as I copy from one source to paste onto another
because it strips any visible or hidden format. But I also use other free editors
such as the free Notepad++, Programmer's Notepad, and Brackets, to write real code.

NOTE: Since May 2015, Microsoft has release a really cool
free source code editor called Visual
Studio Code which works in Windows 7 and up, Linux and Mac. This is highly
recommended but for now I am going to recommend something much simpler to do
our exercises and you will see why. Please read on.

Of course you may use any one of your favorite plain
text editors, but let me introduce to you an online editor that comes really
handy because you don’t have to rely on your computer to get going. I use this
online tool many times a day because it also allows me to beautify the code
when I click the beautify button (creating proper white space):

jsbeautifier.org

Please Bookmark the site. The only disadvantage with
this arrangement is that you can’t save the code directly, but right now we are
not saving anything, we are experimenting and jsbeautifier works well for this
purpose because it actually teaches us how JavaScript syntax should be
presented.

What is a code block?

A code block is usually a collection of different statements
that come together to create a certain functionality. The best way to save
groups of code is by creating a function. We will get to play with
functions soon.

A code block is usually limited (surrounded) by an opening
curly brace {
and a closing curly brace }.

Here’s an example of a code block:

{

 var x = "Hello";

 console.log(x);

}

We will use code blocks from our next project on.

Commenting code

Sometimes we want to make a note in our code to explain the
purpose of a code line to another human being but we don’t want JavaScript to throw
an error when it sees our comment.

There are two ways to make comments:

1- Using
two forward slashes.

With this style of commenting we can’t press the Enter key and write a
second comment line. It must be done all in one continuous line:

// This is a comment. Hello fellow reader, how
are you?

2- Using
a forward slash and an asterisk to start the comment and an asterisk and a
forward slash to end the comment: /* */

This comment can span for as many lines as you wish:

/* With this comment I can comment a whole page

and create as many lines as I want. Once upon a time in a very far away land
called New Jersey, formerly known as Schejachbi, there was an American Indian
tribe known as Lenape... */

Let’s move on to conditional
branching which a very important step into real programming.

2.2 Conditional Branching

We have just learned how to get feedback from a user but we
could not do much with it because there were no tools to make decisions based
on the user’s given feedback. Well, we are going to get some of those tools
right now.

Suppose we ask a user if he/she wants to play along and
based on the user’s answer, we either keep playing or exit the program. It
sounds like we need to apply an if() else conditional code statement, right?

if, else conditionals

To make branching decisions in JavaScript we need to know
about the if(), else conditional statements.

Branching is when we either go this way, or go that way,
depending on the Boolean statement presented at the point of branching. In
other words, “if true go this way, else go that way”.

The basic if, else syntax is as
follows:

if(Boolean true) { do this stuff; } else { do that stuff; }

The else part is optional.

Notice the term Boolean true. This is a very
important concept that many code students miss at the beginning. Inside of the
parentheses we have a lock. Independently from what you write inside of
those parentheses, the condition must always evaluate to a Boolean true
in order to unlock the code within the subsequent curly braces. The Boolean true
is always the correct key to unlock the if() statement. JavaScript
will only execute the code on the next code block if that condition is true. On
the other hand, if the condition evaluates to false the code block will
be hidden from JavaScript, and JavaScript will exit or execute the next code
block if there is one available, example: else { }.

 	An if(), else statement is in a sense a
 logical OR (or XOR):

 Either the first code block is executed, or the else code block is
 execute, but never both.

 Notice how the else does not have a condition, it works
 automatically when and only when the Boolean if() evaluates to false.

So when the Boolean condition is false, JavaScript
jumps over the curly braces and moves on. In this case we can catch the JavaScript
execution with an optional else statement. The else
statement does not take conditions; it is just a catcher in case the
first condition is not met. We include an else option when we want
JavaScript to choose one of two paths.

Sometimes we want a certain code to execute only if a
condition is met, but we do not have an alternative condition. In this case, we
use the if(){} by itself without an else{}.

An if() statement by itself is like saying “Nothing
to do here. Let’s keep going” when the condition is false. Or “Wait!
There is something to do here. Let’s take a detour and do this thing before we
keep going” when the condition is true.

 	Please note: From now on, some lab work and theory
 lectures are going to coexist. Please code along as we discuss the
 subject. Part two is going to be a hands-on adventure.

Let’s construct an example just to see how the if(),
else works. Since some of these scripts span for several lines, I have
provided a link to an original file which is located on one of my support
websites. I recommend writing your own files because you will not master the
language if you copy/paste them, but at times it becomes convenient to just
copy and paste. Use your best judgment.

The link to the file on my server will be located below the
image, like in the example seen on the next page.

Let’s start coding:

1- On
your editor (or jsbeautifier.org), assign
a prompt() to a variable x.

In the prompt(), ask the user to say yes if he/she want to
continue,

or to say no, if he/she wants to leave the program.

Something like this:

var x =
prompt("Would you like to continue? yes or no");

2-
Construct an if(x
=== "yes") statement that prints to screen the message

"Ok, let's play!"

Otherwise, it prints to screen

"Ok, goodbye!"

After
you finish coding, if you are using jsBeautifier, press the button “Beautify
JavaScript”, or CTRL-ENTER to make your code more presentable. Notice how the
editor adjusts the spacing to conform to standard JavaScript styling.

See the image below.

Fig 1 See original file:(here) bit.ly/1uN96zN

3- Copy
your script from your own editor or from my own linked page and
paste it on the Console. Then press ENTER.

If you get an error, recheck your code. Debugging is what
programmers do best because that’s where they spend 90% of their time (see step
4 to learn how to repeat the execution on the Console).

When the prompt appears, type yes without quotes. If your script is well
constructed you should have the following printout on your Console:

Ok, let's play!

To copy the code from my own website, click on the 2-page
icon located to the right of the code script.

4- To
repeat the execution, focus your mouse on the Console and press
the Up Arrow. That will take you up to the last executed script. From
there, (you can edit it if you need to do so) and then press Enter to
run it again.

This time, answer no to the prompt question.

You should get: ok, goodbye! as a response.

5- Did
you notice how the prompt() takes you to the main browser but then you
have to look back at the console for an answer?

You could replace console.log() with confirm() or with alert()

in order to also get your answer on the browser.

Just for practicing purposes, change
your first console.log to confirm() and your second console.log()
to alert() . Don’t worry about this inconstancy, we are just
practicing.

Use the editor at jsbeautifier to write your script.

Then test both if, else outcomes like we did on steps 3 and 4:

confirm("Ok, let's play!");

alert("ok, goodbye!");

Reviewing if(), else

Inside of an if(){
do this stuff; } parentheses, we include a condition. Keep in mind that
it is not the condition itself that unlocks the code block: it is the
truthiness of the question you write in there that unlocks the code.

Examples:

if(10
=== 10){} <--
since 10 is the same as 10, JavaScript will evaluate the statement as true
and it unlocks the next code block.

if(10
=== "10"){} <--
since 10 is a number and "10" is a string, JavaScript
evaluates the statement as false and jumps over the next code
block without executing it.

var
x = 33;

if(x){} <--
since x has a value other than 0, undefined, or null,
the statement is true.

if(!x){} <-- since x has a value other than
0, undefined, or null, this statement is false.

var
y = "yes";

if(y
=== "yes"){}
<-- since the value of y is string yes, this statement
is true.

if(y
!== "yes"){} <--
since the value of y is yes, this statement is false.

if(y
=== "no"){}
<--- since the value of y is yes, this statement
is false.

if(y
=== "no" || y === "yes"){} <-- since one of the statement is true,
the statement is true.

if(y
=== "no" && y === "yes"){} <--- this statement is false
since one of the operands is false.

What about else?

else is optional. We can have an if() conditional
statement all by itself. However, we can’t have an else by itself
since else is just a catcher helper for when if() fails. Or in
other words, the alternate of if().

Adding a second condition in the middle of if(),
else

Sometimes an if(), else, is not enough to accommodate
all the outcomes. In that case there is an intermediate statement and it
takes a condition just like if() does.

This intermediate conditional is called else if()

Here’s the basic syntax:

Fig 2

How to physically write the braces in a conditional
statement

Notice the opening brace on line 1. This is the JavaScript
common way of doing it. If you come from an older language such as C , you may
be used to code the opening brace on the second line by itself. That is
perfectly fine. Whichever way you choose to use just make sure you don’t mix
styles.

Also, the closing brace is always at the beginning of
a line (example: lines 3, 5 and 7). After the if() closing brace we may
write the else on the same line, or the else if, when applicable,
and finish the line with an opening curly brace (see line 3).

The very final closing brace always stand on its own
(line 7). That is common to all languages that use braces. A very popular
mistake is to write the closing brace to the right of the last statement. That
is very ugly and very difficult to troubleshoot.

Sometimes you will find JavaScript conditionals without
braces and it also works. However I do not recommend such practice because it
leads to inconstancies and it may trigger an error sooner or later because the JavaScript
interpreter adds semicolons automatically when it thinks they are missing, and
the lack of a curly brace may trigger the interpreter to think that is has
reached the end of a statement. Until you master this styling concept use jsBeautifier
to style your code after you are done writing it.

When to use an else if()

Just like else, the else if()
does not exist without first having an if(). We can only have one
if() and one optional else, but we can have
as many else if()s as we wish.

Question:

What is the difference between coding else if()s
or just writing a new if() statement for a new subsequent condition?

Answer: It is a matter of semantics. When we
write several if()s, we are creating independent
statements. This means that JavaScript interpreter will evaluate all of them
and output all those that are true. On the other hand, when we have else
if()s after an if(), we are telling the JavaScript interpreter
that we want just one output since both conditions are tied together. In
other words, when the if() condition is true, output it and do
not execute the next else if() condition because we are done here.

 	Side note: When two conditions could possibly be
 true for both if() and else if(), try to write the most
 common condition first, in order to avoid an incorrect output.

Here’s what I mean: If we are probing for numbers that are
divisible by 3 or divisible by 5, or both, make sure the
divisibility 3 && 5 condition goes before the divisibility by 3 or by 5.

Let’s
practice some more:

1- Use
your editor to create this code, then paste it to the Console.

Declare a variable x and assign it the number 15.

Then create a condition that prints to the screen (console.log) one of the
following:

"yes, x is divisible by 3"

"yes, x is divisible by 5"

"yes, x is divisible by 3 and 5"

"No, x is not divisible by 3 nor 5"

Remember to use the modulus in order to see if x is
divisible by a certain number, like for example:

if (x % 3 === 0) Which means that if
the remainder is zero, x is divisible by 3, right?

See the next page for a script discussion and a link to my
own file.

Is Programming an Art or a Science?

There are many ways to finish the task. Programming is part
science and part art. In a way it is like planning and cooking a meal.

First we need to look at possible solutions. In this project
we probably need three conditional statements, which means that we may have to
employ some else if()s in the middle before we get to the catch
all else solution at the end. It’s a good idea to take a walk outside while
putting all the ingredients together in our mind for the recipe we are about to
create. Sketching the ingredients on a piece of paper also helps a bit (real
paper and pencil).

As mentioned before, we have to address the common condition
first, which is when x is divisible by both 3 and 5. That should become
our main if() condition. Then we create two additional else
if()s for numbers that are divisible by 3 or by 5.

Finally, we assign the output “No, x is not divisible by 3 nor 5"
to the catcher else.

2-
Let’s do the first condition and test:

Fig 3 (See original file: here) bit.ly/1uoc1N8

On line 1 I have declared variable x
with the value of 15.

On line 2 the && logical
operator is used to ask JavaScript if both left and right operands are true.
Notice how each operand has to be explicit. Many new programmers tend to write
it this way: x % 3 && 5 === 0, JavaScript will not understand
this syntax. An individual Boolean condition for each case is necessary.

We could wrap each operand in parentheses to make it easier
in the human eye:

if((x % 3 === 0)
&& (x % 5 === 0)){

If you do it this way, be sure to close all parentheses. There is an even
number of them.

On line 3, I used console.log to print the
appropriate message.

3- Test
your script to look for errors and to make sure you get the correct output. If
you wish, reassign x to another number, like for example, 14, and run the
conditional statement again. You can run it by using the Up Arrow key
until you get to the script, edit the variable x and press ENTER. When x
is 14 you will not get any output which means that JavaScript jumped over the
code block because the condition was no longer true. In that case
you will see an undefined message on the Console. That is ok, it is just
an automatic echo from the Console and it does not have any influence on your
script.

Note: Subdividing our code project into little test
steps is a good practice. There is nothing worse than spending an hour
coding a script only to realize in the end that it does not work.

4- Now
we are ready to create our first else if() statement.

Which one of these conditions should we do first:

the one that checks for divisibility by 3,

or the one checking divisibility by 5?

At this point it does not matter since we have resolved the
ambiguity of being divisible by both, but I would do it in numerical sequence writing
the 3 condition first. See lines 4 through 6 on the image below:

Fig 4 (See original file: here)
bit.ly/1uoc1N8

On line 4 notice how else if is coded to the
right of the brace that closes the previous if(). This is not mandatory
but it looks more professional.

On line 6 the curly brace closes the else if()
statement.

5- Paste
your script onto the Console and press ENTER to run it. You should still get
the first output because variable x is still 15 which makes the first condition
true.

In order to test the second condition, reassign variable x
to 9. To change the value of variable x press the Up Arrow key
until you see the whole script, then place your cursor at the variable
declaration, change the value to 9 and press ENTER.

Now we should get the second output: ‘x is divisible by 3’ because 9 is
divisible by 3.

6- It’s
time to write the final else if and also the catcher else
at the very end. See the next image:

Fig 5 (See original file: here)
bit.ly/1uoc1N8

On line 6 we can see the second else if()
condition.

On line 8, else finally catches anything that
is not divisible by 3 or divisible by 5. No condition is necessary since this
is the “all else” optional outcome. JavaScript will throw an error if we ever write
a condition for else.

On line 10 lies the last closing brace which closes
the else statement.

Don’t you feel like you are getting there? I hope so. Conditional
branching is an important part of creating real programs.

We will see how to code this script without using else
if() in a bit, just to illustrate another important concept: nested
conditionals. For now, let’s just take a break by doing something else.

2.3 The anatomy of a function

On the last exercise we kept pressing the Up Arrow to
recall the program in order to test it.

What if we didn’t have an Up Arrow? We would have to write
the script again and again, correct?

This is where functions come handy. Stop! Don’t think
of math when I mention functions in JavaScript. Think of functionality.
In JavaScript functions are containers of program routines. We could
have saved our if(), else script in a function and just recall it by calling
the function. That’s one word, versus 10 lines of text.

Preliminary things to know about a function

a) A
function is a closed container like the blue rectangle in the picture seen
below.

b) To
feed data into a function in order to be processed, we need one or more input
parameters.

c) To export
data from a function in order to reuse it, we need to implement an
interface called return, or alternatively assign
some outer variable to the new result.

Fig 6

Scripting a function

A representation of a function goes like this:

function funcName() {
stuff to do; }

The above function does not take any input data, it just
does stuff.

To create a function that takes an input parameter and
processes it, we need to include the parameter inside of the parentheses:

function funcName(inputParameter) { stuff to do; }

When we say to “call a function” it means to have the
function execute its magic. All we have to do to call a function, is to write
the function’s name and attach a pair of parentheses as a postfix :

funcName();

Or, if the function has an input parameter we must
include and argument that will replace the parameter:

funcName(123);

when 123 is a number.

or

funcName(x);

when x is a variable.

or

funcName("Tony");

When Tony is a string of characters.

Here’s a function arbitrarily named sizeMeUp that
converts a string value into uppercase:

function sizeMeUp(x){console.log(x.toUpperCase());}

Here, x is the input parameter that gets replaced by the
data we pass in when we call the function.

1- Calling
the function in order to up case "red white blue":

sizeMeUp("red white blue");

It displays RED WHITE BLUE.

Let’s go back
to our previous conditional exercise...

Remember how we had to use the Up Arrow in order to repeat
the code for another test run?

We could make things easier by inserting our conditional
exercise inside of a function because it saves us from having to retype the
script every time we need to test it.

All we have to do is to call the function by its name:

functionName();

Shall we redo it?

Here’s the previous script placed inside of a function named
test1:

 link (bit.ly/1wSjW9Z).

1- Copy
the code from the link and paste it on your Console.

(To copy the code from the
forum post, click on the two-page icon at the top right side of the code).

After pasting the code on the console, call the function and press ENTER:

test1();

2- Call
it again, and again until you realize that the output is always the same
because variable x never changes. Use the Up Arrow to recall the
function or just call the function manually by writing the function call
each time.

Don’t forget to include the parentheses ().

Another cool feature of a function is on the following
explanation:

We could create a temporary variable that could be modified by
some argument data we pass into the function when we call the function.

Don’t worry about understanding everything right now. We
will get there. Just go along with me and try the next step.

3- Let’s
modify the function by removing the permanent x variable
declaration on the top (before the function script), and placing x as an input
parameter. Also change the name of the function to test2. See the next image for more details:

Fig 7 (See original file: here) bit.ly/1wAbQjv

Now all we have to do is to call the function and pass in
a number so that we can test it:

4- Call
function test2 and see the results for each one of these numbers:
3,5,15,21:

test2(3);

test2(5);

test2(15);

test2(21);

test2(11);

etc.

The input parameter(s) of a function act as a temporary
internal variable. This is really useful because
we can send data into a function to be processed. That’s what happened during
our test2() function calls.

Once we master the basic syntax of a function we start to
create some real cool stuff.

Functions may still be confusing for you. I will cover all
the basics as we code along. It is not a difficult subject but it needs to be
approached in the proper sequence.

What is a function call?

A picture is worth a gazillion words:

Fig 8 (See original file: here.
) bit.ly/1raw6pT

Looking at figure 8, on the bottom left side we are calling
function addTen() and passing an argument data of 4 to the function
parameter n.

Then 4 will become the temporary value for parameter n,
and the sum of 10 + 4 is executed.

Finally, the return mechanism exports
the result which is the numeric value of 14.

We could have used a console.log(n + 10); but the
console.log would display the value on the screen without exporting it out of
the function. In other words, we would not be able to use the number 14 outside
of the function because console.log() does not export data, it actually
displays everything as a string value on the screen, even if it
looks like a number.

So, return is a very important mechanism in
functions. Actually it is native to functions. We cannot use the command return
outside of functions. JavaScript will not allow it.

What is the purpose of return?

The purpose of return is twofold:

a) To
export data from inside of a function in its raw form.

b) To stop
and end the function call. This is important. The return mechanism acts
as a break and ends the act of calling a function. Anything written in the
function below the return statement will not be processed because JavaScript
exits the function as it returns. After the function returns, the function
call is wiped out from the working memory. You don’t have to be concerned
with this at this moment but it is good to know that function calls don’t
linger in memory forever. They free up space by getting out of the way. This
could be a third reason to include your code inside of a function: memory
efficiency.

What happens to the data when a function returns?

If we want to reuse the data for further processing, we need
to catch the returned data.
Otherwise it just gets lost in space.

How do we catch the data being returned from a function?

One way to catch it is to assign the returned value to a
variable. In other words, assign the function call to a variable.

In the example of figure 8 (see the link below the image),
instead of just calling the function:

addTen(4);

We could assign it to some variable:

var y = addTen(4);

Now y holds the value 14. The function call
gets wiped out of memory but the value is retained by variable y.

 	In summary, data coming from a function
 needs to be returned and assigned to a variable if we need to use
 it further down the script. When we output data from a function via a
 console.log(), alert(), prompt() or confirm(), we are just displaying it,
 not retaining it.

2.4 Lab work 6

Ready for more lab work?

Create a program to convert Fahrenheit to Celsius

Operator precedence
determines the order in which operators are evaluated. JavaScript precedence is
close to math precedence:

 	Parentheses are evaluated before multiplication or
 division,

 and multiplication or division are evaluated before subtraction or
 addition.

 All being equal, operands are evaluated from left to right and from inside
 of parentheses out.

 ...nothing to memorize, just practice a lot.

The following is the formula to convert Fahrenheit to
Celsius:

Deduct 32 from the variable F,

then multiply the result by 5,

then divide the new result by 9.

We need to include the subtraction within parentheses so
that it is done first. Then write the multiplication next so that it is done
before the final division which should be placed on its right side. The formula
looks like this:

(f - 32) * 5 / 9

That was the hard part. Now let’s code.

1- Create
a function named f2c that takes 1 input
parameter called f.

2- Inside
of the function send the result of the formula to the screen.

In other words use console.log() to print
to screen. This is because we only want to display it, not to reuse it. Notice how
the input parameter’s name f coincides with the variable given to
our formula. That was done on purposes so the JavaScript interpreter knows
where to plug the input number we are going to give it when we call the
function.

3- Call
the function and pass in an argument of 212 degrees Fahrenheit. (write just the
number by itself). Your displayed answer should be 100.

See my own solution here (first script): f2c | bit.ly/1Dp2SKk

Create a program to convert Celsius to Fahrenheit

The formula to covert Celsius to Fahrenheit is

Multiply c by 9,

then divide the result by 5,

then add 32 to the new result.

There is no need to insert parentheses, just make sure the
multiplication comes first:

c * 9 / 5 + 32

1- Create
a function named c2f that takes 1
parameter called c.

2- Inside
of the function send the result of the formula to the screen.

In other words use console.log() to print to
screen.

3- Call
the function and pass in an argument of 100 degrees Celsius (just the number).

Your answer should be 212.

See my own solution here (second script): c2f | bit.ly/1Dp2SKk

Why are we using
console.log() instead of return?

As you may remember, console.log() was designed for quick
testing outputs. At this time we are not concerned with returning a value for
further processing. When we need to reuse a value we will use return
and assign the value to a variable.

However, please read the next topic for information about the
return mechanism.

In JavaScript a function always returns something

In case you are wondering whether the function call
gets cleared out of memory when we don’t explicitly use return, the
answer is yes, in JavaScript it does.

In JavaScript every function returns automatically when the
code interpreter reaches the closing brace, if not before.

When that happens, JavaScript will return the value of undefined
if a return statement was not manually written.

In production you will not visually see this automatic
return but on the test Console you will see undefined in the end if you
didn’t ask for a specific return. If your Console is still open, look at the
last function call. You will see the term undefined below the number
212.

This automatic return assures proper memory management.
Memory management is actually done by the browser, not by JavaScript. Different
browsers have different garbage
collection mechanisms.

A program to convert Fahrenheit to/from Celsius

In this project we are going to introduce a function with two
input parameters. The first input parameter will take a numeric value, and the
second input parameter will serve as a condition to toggle between Celsius and
Fahrenheit.

How will we toggle between Celsius and Fahrenheit?

We can use an if(), else if(), else statement:

a) If,
the user enters an f for Fahrenheit, the if() output will
convert Fahrenheit to Celsius.

b) Else
if, the user enters a c, the number gets converted from Celsius to
Fahrenheit.

c) Else,
the script will output something like

 "Sorry, that conversion is not supported".

When we create a function with multiple input parameters
like for example...

function test(x,y) {
return x - y; }

...we need to call the function and pass in
the data arguments in the proper sequence.

The value to be assigned to x (which is the
leftmost input parameter) should be written in the function call as the
first data argument. On the following function call, 10 is grabbed by parameter
x and 3 is grabbed by parameter y:

test(10,3);

Notice how we separate them by commas. Had I entered 3
first, 3 would become x and the output result would be incorrect.

Let’s start:

1- Create
a function named conversion that takes two input parameters named
num (reminds me of number), and degrees. Notice the comma
separating the input parameters:

function
conversion(num,degrees) { }

2- Inside
of the function create your first if() statement that says

if(degrees === "f") {

and then it console.logs the formula to convert Fahrenheit to Celsius.

The formula is (f - 32) * 5 / 9 However, please read the note below:

NOTE: you must replace the f
in the formula with our new generic input parameter num.

Bonus: add a + "c" just
before the closing parentheses of your console.log(). This is so that the
output will look like 100c. Do the same on your next step for "f".

3- Next
create the else if() statement that says

else if(degrees === "c") {

and then it console.logs the formula to convert Celsius to Fahrenheit.

The formula is c * 9 / 5 + 32

NOTE: you must replace the c
in the formula with our new generic input parameter num.

4- Finally,
create a catch all else statement that console.logs

"Sorry, that conversion is not supported".

5- Close
the function with a curly brace }.

6- Paste
your code onto the Console and test it with the following function calls:

conversion(212, "f"); <--
should result in 100c

conversion(100, "c"); <--
should result in 212c

conversion(300, "b"); <--
Should result in “Sorry, that
conversion is not supported”.

Remember, the character input is a string and it should be in quotes.

(See my own solution here (third script): conversion
| bit.ly/1Dp2SKk

Congratulations!

Don’t stop here!! Please take
a look at the next page for more practice ideas.

You need to start creating other
programs of your own.

Below please find some suggestions to create other conversions:

a) Perimeter

Suggested function design: calcPerimeter(length,width) {

Formula: length + length + width + width

b) kilometers
into miles

Suggested function design: kiloMiles(km) {

Formula: km * 0.6214

c) feet
to meters

Suggested function design: feetM(ft) {

Formula: ft * 0.3048.

Go for it : spend a few hours
creating new stuff.

If you would like to save your scripts, paste them onto a
plain text editor such as Windows NOTEPAD and save them with the extension of
.txt which represents the plain text format.

We will cover other ways of storing executable
JavaScript programs later.

END OF LAB

2.5 Filling out a form to request a loop

A loop is a subroutine that repeats
a sequence of programming instructions over and over until it gets a halt
command.

We have seen how to create a function to store code that
runs every time we call the function.

We can also store code in a loop that repeats itself for a
determined number of times. Then if we want to reuse the loop at will, we can
insert the loop into a function and call the function later at any time to run
the loop without having to re-write another loop script.

 	Beware of infinite loops.

Always make sure you design a way to stop the loop.
That should be your first decision when creating a loop: when and how should
this loop end? JavaScript will only end it when it runs out of memory. We
must instruct JavaScript to end it much earlier than that!

 	If you ever run into trouble while testing, click on the
 universal key sequence CTRL c
 to stop the program. Most of the times it will stop it.

How long do we want our loop to repeat itself? Just once, 5
times, 100 times, or until a certain condition happens like for example when the
value of a certain variable becomes something other than the original value.

All this sounds so abstract, right? Let’s remove the abstractness
out of the equation.

What no one tells you about loops

We don’t really create a loop ourselves. This mechanism
already exists in the JavaScript library located in your browser and it exists
in several different styles (for
loops, while loops, do while loops, etc.).

What we have to do is to fill in a request form for a
certain loop style, and then provide instructions to JavaScript for what
we want it to accomplish while the loop runs.

Yes, there are several styles of loops in the JavaScript
library. They all loop around but how they loop can make a difference in your
choice of loop style selection.

One common style is the for loop. The for
loop repeats itself for a determinate number of times.

Then we have the while loop. A while loop
repeats itself while something remains true. If that something is always true,
the while loop will run forever. Sometimes we want a loop to run forever, like
when the computer scans the keyboard waiting for a human to press a key. If the
human does not press a key any time soon, the while loop will keep scanning.
Don’t worry about memory because this type of scanning is not using much
memory, it is just looking around like a night watchman.

JavaScript also has in its library a loop style known as do
while. A do while loop is slightly different than the regular while.
The do part makes it run once whether the condition is true or
false.

Why does a do while loop run at least once? Because
the while condition part of the loop only shows up at the end of the
script. So JavaScript will run the loop and then at the end checks the
condition to see if it should run a second time. It is like saying “shoot
first and ask questions later”.

 	Remember: in order to use a loop we must fill in a loop
 style application.

We will cover all these styles of loops in due time. For now
let’s talk about the for loop.

Don’t burn your brains out trying to memorize something you
don’t yet need. This was just a brief introduction. Now let’s get our hands
dirty by creating loop projects.

2.6 The for loop

We are going to learn how to fill in the form request
for a loop in the style of a “for loop” because it will be used on our
next lab project.

The idea of a for loop is to repeat itself for a specified
amount of times.

The basic form declaration has a header
and a body as shown on the following pseudo code:

for (x starting at zero; and
for x less than 5; increment x) { execute
this code }

Fig 9

We have three instructions to be evaluated in this form,
hence the semicolon separating on the first two instructions (to make them
independent of each other).

for x starting at zero;

Here JavaScript stores x as a temporary variable with the
value of zero. The name x is unimportant, most programmers use the name i
instead. The correct script is

for(var x =
0; or for (var i = 0;
etc...

and for x less than 5;

At this point JavaScript evaluates this condition. Since x
is < 5 because it is zero, the condition is true and JavaScript
executes the code in the body once. The correct expression is:

x < 5;

increment x ++

After JavaScript runs the code block the first time
(step3), it returns to the for loop declaration and it increments the
value of x (step4). Now x is 1 instead of zero. The correct increment
script is:

x++ or x
= x +1

Since x++ is the last expression to be evaluated, the semicolon is not
necessary. Actually it is undesirable since it will trigger an error,
preventing JavaScript from running the code block because it thinks it is at
the end of the for loop. The first semicolon after x++ should be
at the end of the first executable statement inside of the body code block.

Once JavaScript runs the loop the first time, it returns to
the form for a second evaluation. The second evaluation will be as follows:

(For x starting at one; and for x less than 5; increment
x) { execute this code }.

On the second iteration x is 1 but still less than 5 and
therefore the code block is executed again, and x is incremented again at
the end. And so on until x becomes 5.

Let’s create a simple for loop
to see how it works.

The most common name for the temporary variable to be used
as x is i. Perhaps the reason is because it reminds us of the
word index. So let’s use the classic name i instead of x:

for(var i = 0; i
< 5; i++)

That is the header form which means:

for this declared variable i which starts with
the value of zero; as long as i is less than five; increment i by 1
after each loop cycle.

On line 2 we include the executable instructions in the code
block. These instructions will be repeated 5 times by JavaScript:

The following image illustrates the concept:

Fig 10

 	Please note: If you code this loop and paste it onto your
 console you may have a one line result with a prefix of (5) telling
 you that the Console ran it 5 times. This is normal behavior of Consoles.
 They don’t usually repeat the same output more than once in order to save
 display real estate, they just tell you how many times the loop ran with
 it, but in real life you would get five lines displayed. However, if the
 print is different for each time, then the Console displays all the 5
 iterations separately.

To see a real display of a loop at work, replace console.log("Say
hi to Mary!"); with

console.log(i);

Now it prints the value of variable i in each of the
loop repetitions and since the output is different each time, the Console must
display each one of the iterations.

If you want a more presentable output you can try this one:

console.log("the value of i is now
 " + i);

And you should get:

the value of i is now 0

the value of i is now 1

the value of i is now 2

the value of i is now 3

the value of i is now 4

It displays 0 through 4 because the count of i
started at 0 and the fifth time is 4. This is ok, it still loops 5 times.
However, if your intention is to display 1 through 5, then make i equals
1 from the start, instead of from zero.

2.7 Looping over a string of characters

Do you still remember bracket notation and dot
notation?

I introduced it on Part One, in the chapter Manipulating
variable data.

Let’s review and expand a bit more about the topic.

I’m going to declare variable x with "orange"
as the string value:

var
x = "orange";

The value "orange" is a collection of sequential characters
and each character has a location number starting at zero, like o is zero, r is
one, a is two, n is three, etc.

 We can use bracket notation to find the character
data in any location of the string:

x[location
Number]; <-- it
gives us the value inside of the location.

Example:

x[2];

It will display character "a" which
is the third character and position 2 (counting from zero)

I can’t use dot notation here because dot
notation does not accept numbers or symbols:

x.2 <--
this will give me an error.

What can we do with this bracket notation syntax?

Bracket notation allows us to address a specific character
on the string value.

Here’s an example of displaying character g
from variable x by sending x[4] via a console.log:

console.log(x[4]);

Here’s another example: characters ge:

console.log(x[4]
+ x[5]);

So with bracket notation we can probe into a string
of characters and fetch the contents of a location number.

What about dot notation?

Dot notation is good to grab properties of string values,
such as length, remember?

x.length;

or

 console.log(x.length);

 	Dot syntax cannot be used with numbers, symbols, and names
 which values are not yet known when the code is being written. This
 prevents Dot syntax from being used in loops since the value in a loop
 will change for each loop cycle. So when it comes to dynamic data, only
 Bracket syntax can be used.

2.8 Lab work 7

Searching for the position of a string character

In this project we will
have variable x assigned to "orange".

The idea is to search for character "g" and display its location on
the screen.

1- Declare
variable x and assign it the string "orange".

var x =
"orange";

2- Fill
in a for loop form,

starting with i = 0;

and the range of i
< x.length;

 	orange has 6 characters so x.length will be
 6 but we should not use number 6; we should program generically
 as much as we can because most of the times we don’t know the length of
 the value to be worked on.

3- In
the body of the for loop create an if() condition that probes for
the existence of character "g". The Boolean expression should look
like this:

if(x[i] ===
"g") {

 	In other words: if the character at current position i
 is g...

4- If
the condition is true, print the position number of "g" to the
screen.

5- Close
the if() condition and then close the loop.

6- Test
your code. It should display the number 4 as a result.

Extra practice:

a) Replace
"g" on the if() statement with another character not contained in "orange",
and create an else statement to catch it with the following output:

"That character was not
found!"

(See discussion and result on
the next page).

(Answer) Searching for the position of a character

See my own solution(s) here:

 forum
 | bit.ly/XScVak

1- Declare
variable x and assign it the string "orange".

var x =
"orange";

2- Fill
in a for loop form

starting with i = 0;

and the range of i< x.length;

for(var i = 0; i <
x.length; i++){

3- In
the body of the for loop create an if() condition that probes for
the existence of character "g".

if(x[i] ===
"g"){

4- If
the condition is true, print the position number of "g" to
the screen.

console.log(i);

5- Close
the if() condition and then close the loop.

 }

}

If something is not clear, please read the previous topic Looping
through a string of characters.

The last output, console.log(i);
displays the position number of the character we are looking for.

What is the purpose of this exercise?

There are many applications that use these concepts. Right
now I am preparing you to understand the next topic which will be about array
lists. By the time you get there you will not have to struggle with
concepts such as these.

For practicing purposes please do the next exercise on
your own.

Counting numbers and declaring their odd/even
quality

1- Create
a for loop that counts from 0 to 10

2- For
each count display their odd/even quality like for example:

1 is an odd number, 2 is an even number, etc.

See my own solution here (sample number 3):

odd/even
 | bit.ly/XScVak

Counting apples

1- Create
a for loop that counts up to 3 apples. Zero is not allowed and the output must
say 1 apple if it’s single apple, then 2 apples, and finally 3 apples.

Instead of using i as
a counter variable I am going to use a variable named apples.
Please feel free to use whatever you want. The goal for this exercise is to
practice more for loop constructs and to think on how would we
distinguish between a single output and a plural output.

See my own solution here on exercise number 4:

apples)
bit.ly/XScVak

END OF LAB

2.9 Array lists

Strings versus arrays

Up to now we have been working mostly with string
values. Here’s an example of a string value assigned to variable x which
has already been initialized by var :

x =
"orange";

As far character mapping is concerned, o is the first
character located in position zero, r is the second character located
in position 1, a is the third character located in position 2, etc.

Here’s another example:

y = "orange
banana apple";

In the above example, b is the eighth character (we
must count the white spaces) and it’s located in position number 7 (0,1,2,3,4,5,6,7).

What if we wanted to count the words instead of counting
the number of characters?

We can’t separate the words with individual quotes because
JavaScript will throw an error:

y =
"orange" "banana" "apple"; <-- this
would not work.

And even if we separate them with commas,

y = "orange","banana","apple";

JavaScript will first assign y to orange, then
reassigns y to banana, and finally to apple which, in the
end, will be the only value stored in y.

So in string values, mapping is limited to individual characters.
The whole string is considered one unit of multiple characters.

 	In short, if we want to save words as separately
 independent units on a variable, we need to use a different data type
 because string will not do it. One of such types is called an array
 (there are others).

The difference between an array type and a string
type is that we can store individual words. Another advantage of an array is
that we can also store values of type number, as well as other types
such as functions, objects and Booleans in individual
packets of the same variable.

Just like a string value, in arrays we also address each
position numerically starting from location zero. In fact, a string value is a
very simple array of individual characters.

Think of an array as a pocket
folder.

Each pocket is sequentially labeled and in each
pocket, we can store anything we want.

To retrieve the contents of each pocket we call the array
with bracket syntax and use the location number to address the data we
are trying to fetch.

Array syntax

To declare a value of type array we use a pair of
square brackets:

var x = [];

You may read on the web about bracket syntax as
being referred to as array syntax and the reason is that bracket syntax
comes from the idea of array pocket locations.

The above example is an empty array because it does not have
any data inside of the brackets, but the square brackets have instructed the JavaScript
interpreter to declare variable y as a type array.

Going back to our last string example, if we want to save
individually independent words we can declare and assign variable y in
the following manner:

 var y =
["orange","banana","apple"];

Now if we call y’s location number 2, we get "apple"
as a result:

y[2]; <-- it displays "apple"

or more implicitly:

console.log(y[2]);
<-- it displays apple

Knowing that our array y has three values spanning
from location zero to location 2, we can add more values to it by addressing
subsequent locations. Example:

y[3]
= "peach";

Now if we call variable y on the Console by typing y; we get:

["orange",
"banana", "apple", "peach"]

What happens if we reassign one of the existing locations
such as for example location zero?

y[0]
= "grape";

We overwrite the previous value because we have just
reassigned the location to a different value. The array will not shift
positions to accommodate one more items, it just deletes the existing value by
reassigning the location to something else.

Array y now still contains the previous number of
values as follows:

["grape",
"banana", "apple", "peach"]

 "orange" was deleted.

Using push() and unshift() to insert elements into
an array

As arrays get larger it becomes almost impossible to know
how many items the array contains which makes it very difficult to add new items
since when we add an item to a position in the array and this position is
already filled, JavaScript replaces the new item with the old item. The old
item is deleted from the array.

To prevent this deletion from happening, JavaScript has two
mechanisms that help us add items to an array: push and unshift.

Push()

The most common way of adding new items to an array is by
adding them to the very end of the list.

 	The array method push()
 adds items to the very end of the list.

Do you remember how we appended characters to a string by
using += ?

The problem with += is that it adds the new item to the last
item as one unit (by attachment).

For example, in

var y =["orange","banana","apple","peach"];

If we write y += "cherry";

we will get "orange, banana, apple, peachcherry"

and that’s not what we want to accomplish in an array,
right?

We want independent items.

 	The correct syntax to add items to the end of an array is
 as follows:

 y.push("cherry");

We call the array method push() with dot syntax and
pass in "cherry" as a data argument. It works just like calling a
function with an argument data.

Now the array contains one more element:

["orange",
"banana", "apple", "peach", "cherry"]

Let’s add one more item, avocado:

y.push("avocado");

Now array y contains the following items:

["orange", "banana", "apple",
"peach", "cherry", "avocado"]

The meaning of push:

Imagine a stack of bricks. When we place a new brick on the
stack it pushes down the others because of its weight. The top of the stack is
the last position of the array. We push it in order to insert a new item into
the stack.

Now, if you visualize the array in a horizontal manner
instead of vertically, the last item is on your right side.

We will use push() many times throughout the book since it
is the most common way to insert new array items.

unshift()

The method unshift() adds items to the beginning of
the array.

When we visualize the array vertically the beginning of the
array is the very bottom of it, and horizontally, it is the left most side of
the array.

Taking the last instance of array y from the
previous topic as an example, let’s add blueberry to the beginning of
the array:

 y.unshift("blueberry");

Array y is now:

["blueberry", "orange", "banana",
"apple", "peach", "cherry", "avocado"]

Notice how "orange" moved to position 1, or second
item, to give way to "blueberry" as the new position zero.

The meaning of unshift:

In order to insert a new brick at the bottom of the stack,
we need to unshift all the bricks up so that we can squeeze a new brick as the
first item of the stack since the first item is at the bottom.

On the other hand, when we do a push to insert a new item to
the top of the stack, we are actually shifting everything down as we push, even
though there is nowhere to go at the bottom. (Shift is actually used to remove
an item from the bottom as we will see later). When we remove the item the
bricks get shifted down but they are not being pushed because we are not
inserting a new item at the top of the stack. This is just to help you
understand the terms and where they came from. Don’t worry about shift
for now. I will cover it later.

Right now we know about push() and unshift().

Printing array items with a for loop

As you’ve probably noticed, the visual display of an array on
the screen when we call it by name is in its raw visual format:

["blueberry",
"orange", "banana", "apple", "peach",
"cherry", "avocado"]

How do we display the items by themselves?

We can use the array length property, and a for
loop, to do such thing.

The length property works just like it did for
strings. We can find out the length of an array by attaching .length to
the array variable name:

y.length; <-- it display the number 7

Now, as you remember from playing with the string
"orange" earlier (Lab work 7), when we know the length of the item we
are going to scan, we initialize a for loop in the following
manner:

for(var i = 0; i
< 7; i++) { do this stuff; }

However, for the most part we don’t know the length of the
item we are trying to scan and that’s when .length comes to the rescue:

for
(var i = 0; i < y.length; i++){ do this stuff; }

This last implementation is much more efficient because we
don’t have to worry about redoing the loop if the array ever changes length when
we delete or add new items to it.

The rest of the code needed to manipulate the array will go
where the “do this stuff” code block is. There we could print, search, or create
many other possible implementations. Also and as you know, the code block is
usually written on separate lines.

Here’s a sample loop to print all items to the screen:

Fig 11

On line 2 the console.log() is addressing each array
location. We accomplish this by assigning i as the number for the
location. In this way, as the loop counts the i numbers, it changes the
position of the y[i] and each items is displayed accordingly (and in
separate lines). Let’s try it next.

2.10 Lab work 8

Let’s do some programming to cement our understanding of the
array creation, addition of items, and traversing the array with a for
loop.

Please fire up your JavaScript Console and let’s get our
hands dirty!!

 	Try doing this exercises yourself by following the next 7
 steps, or jump to the guided exercise that follows in order to do it as I
 explain the concepts.

NOTE: These seven steps are not a project. Each step is an
independent exercise to see how each implementation is done.

Preliminary project

1- Create
an empty array assigned to a variable named misc

(short for miscellaneous).

2- Create
another array assigned to a variable named greekLetters,
and with the following items: "alpha", "beta",
"gamma", "delta"

3- Assign
the number 99 to the first position in array misc,

assign the word "bottles" to the second position in
array misc,

and assign the word "beers" to the ninth
position in array misc.

4- Print
to screen the length of array greekLetters.

5- Print
to screen the length of array misc.

Using push and unshift

6- Add
a new item "epsilon" to the end of array greekLetters.

7- Add
a new item "folk song" to the beginning of array misc.

(See my answers on the next page)

(Guided exercise) Preliminary project

1- Create
an empty array assigned to a variable named misc

(short for miscellaneous)

var misc = [];

2- Create
another array assigned to a variable named greekLetters,
and with the following items: "alpha", "beta", "gamma",
"delta"

var greekLetters = ["alpha", "beta",
"gamma", "delta"];

3- Assign
the number 99 to the first position in array misc,

assign the word "bottles" to the second position in
array misc,

and assign the word "beers" to the ninth
position in array misc.

misc[0] = 99; (no quotes for number)

misc[1] =
"bottles";

misc[8] = "beers";

4- Print
to screen the length of array greekLetters.

console.log(greekLetters.length); <-- results in 4

5- Print
to screen the length of array misc.

console.log(misc.length); <-- results in 9

Did you notice how we were able to add a ninth position to
the array misc?

Did you also notice how the array misc now has 9
items, which means that 6 items are reserved with the placeholder value of undefined?

Using push and unshift

6- Add
a new item "epsilon" to the end of array greekLetters.

greekLetters.push("epsilon");

7- Add
a new item "folk song" to the beginning of array misc.

misc.unshift("folk
song");

Practicing is the only way to get good at it.

Let’s practice with for loops on arrays
by wrapping functionality in functions and use some if else
conditionals in the mix. These projects will cover important concepts that can
be used often.

Creating a method to add items into an array

Ready for a simple challenge?

We are going to create a function that automatically adds an
item into the array when the function is called. This will allow us to practice
with array.length as an alternate solution for push.

 	Use your editor
 first before pasting onto the Console. Try doing this exercise by yourself
 first by following the next 5 steps, or jump to the guided exercise in
 order to do it as I explain the concepts:

1- Declare
an empty array assigned to the variable x.

2- Create
a function named addMe that automatically adds an item to array x:

a) Use
one input parameter called item.

b) In
the function body assign the input item to the first empty position in
the array, based on x.length.

x.length is always
one more number than the address of the last item. By assigning an item to
location [x.length] it will always match the next position available in the
array. Give it some thought and then look at my answer if you are unsure on how
to do it.

c) Also
inside of the function, create a console.log to print out the whole
array in its raw display form (no loops yet).

3- Paste
the script in the Console and

Call the function by passing in "grape" as an input item.

4- Then
Call the function again and pass in "apple" as an input item.

5- Do
the same for "banana".

(See the answer on the next page).

(Guided exercise) Create a method to add items
into an array

1- Declare
an empty array assigned to the variable x.

var x = [];

2- Create
a function named addMe that automatically adds an item to array x.

d) Use one
input parameter called item.

e) In
the function body assign the input item to the first empty position in
the array, based on x.length.

f) Also
inside of the function create a console.log to print out the whole array
in its raw display form (no loops yet).

Fig 12

On line 1 the array x was declared.

On line 3 a function addMe with item as an
input parameter was declared.

On line 4 whatever data is passed in when we call the
function, the data gets assigned to the maximum length of array x. As you know,
the length of an array always shows the number of items in existence. It so
happens that the number of items is always 1 more than the last location of the
last item. Therefore, the length of the array always corresponds to the
next position after the last existing location. So we can use this number to
calculate the next location available. This is actually what push() would do
automatically but here we are doing it manually in order to understand a bit
more about arrays.

On line 5 we print the array x to screen in its new raw
form.

3- Paste
your script on the Console and

Call the function by passing in "grape" as an input item.

Then Call the function and pass in "apple" as an input item.

Do the same for "banana".

addMe("grape");

addMe("apple");

addMe("banana");

The final result is: ["grape", "apple",
"banana"].

Great!

Whenever you’re ready, please move
on to the next page. We are going to create a method that prints out the items
of an array, any array. Coding generically is an important goal as
programmers.

Create a generic method to print out the contents
of an array

Generic is synonymous with portable. In programming scripts
should be made as portable as possible. It leads to reusability and memory
efficiency. By creating a portable array method we can use it with any array,
not just the one we are programming at the moment.

1- Create
a method (a method is a function mechanism) named printArray that takes
an input parameter arbitrarily named inputArray

2- Then
inside of the function create a for loop that initializes i
to zero and runs as long as i is less than the length of the array given
to inputArray.

3- In
the body of the loop, console.log the inputArray[i], this will
correspond to each item location of the given array, one at a time.

4- Close
the loop, close the function. You’re done.

Testing...

5- If
you still have array y on the console, print array y. If not, add
array y as shown below:

var y = ["grape",
"apple", "banana"];

6- Print
array y by calling the function printArray() and pass y
as an argument.

7- Create
several other arrays and use the generic printArray() method to print them.

(See my answer and a link to file on the next page).

(Guided exercise)

Create a generic method to print out the contents of an array

1- Create
a method (a method is a function mechanism) named printArray that
takes an input parameter arbitrarily named inputArray.

function printArray(inputArray) {

2- Then,
inside of the function create a for loop that initializes i to
zero; and runs as long as i is less than the length of the array given
to inputArray.

for(var i = 0; i< inputArray.length; i++){

3- In
the body of the loop, console.log inputArray[i], this will
correspond to each item of the given array, one at a time.

console.log(inputArray[i]);

4- Close
the loop, close the function. You’re done.

 }

}

5- If
you still have array y on the console, print array y. If
not, add array y as shown below and print it:

var y = ["grape", "apple",
"banana"];

6- Print
array y by calling the function printArray() and pass y
as an argument.

printArray(y);

7- Create
several other arrays and use the generic printArray() method to print
them.

See my file: forum.
(bit.ly/1rdSRuA).

Discussion

Generic methods are very useful. It is always a good idea to
save them for future use. However, since you are practicing, saving code for a
future copy/paste might not be as beneficial to you yet. Code snippets act like
recipes for cooking. There are many cookbooks for programmers out there and
although they may not help you at this moment, they may come handy in the
future. (Personally I don’t own any of those books since I enjoy creating my
own stuff but in a professional environment they can be useful, especially when
it comes to more advanced, time consuming implementations).

The inputArray parameter serves as a placeholder for
whatever array name you pass in when you call the function printArray.
Instead of printing the array to screen with a console.log() we could have done
something else with the array, like for example sorting it. We will get there when
I introduce more properties and array methods from the internal JavaScript
library.

Remember, this book is about learning how to use JavaScript,
it is not a dictionary of methods. You can always refer to my other eBook
for that purpose, but only after you finish this one.

Extra bonus: Create a generic method to add items
into an array

To do this exercise, go back to the first exercise of this
lab work (on Fig 12), and recreate it in a way that we could add items to any
array, not just the array x as the original example shows.

1- You need
to add two input parameters to the function I’m calling addMe2:

a) One input
for the array name

(I will call it inputArray),

b) and one
input for the item you want to add to the array

(I will call it inputItem).

2- Then
in the function body, create a script that assigns the location inputArray.length
to the new item (inputItem):

inputArray[inputArray.length]
= inputItem;

Note: Since the script gets a bit more complicated than
the original one, I am using names that make sense to humans in order to help
them understand what the script does. Even if we code for our own use (as
opposed to other people), we will not remember what it is when we return
tomorrow.

3- If
you wish, add a console.log(inputArray); to the function body in order
to monitor the output.

4- Finally,
create some empty arrays outside of the function, and then add items to each
one of them by calling the function.

Whenever you’re ready, please refer to my own script:

 forum board.
| bit.ly/1pnR5S8

END OF LAB

2.11 Other useful arrays methods

sort()

In order to sort the contents of an array we can use the
JavaScript library method sort():

Using the following array,

var
y = ["grape", "apple", "banana"];

We can sort it like this:

y.sort();

Or, for displaying purposes:

console.log(y.sort());

 	Please keep in mind that sorting is permanent, it affects
 the original array.

When it comes to strings, a string type value does
not have a method to sort because sorting needs to use individual elements and
a string is just one element all together. If you ever want to sort a string
you will have to convert it to an array, then sort it, and then reconvert to
string again.

We will actual do this exercise in a bit.

join()

The method join outputs an array value as a
string format:

Examples:

var
y = ["grape", "apple", "banana"];

y.join();

It outputs: "grape,apple,banana"

We can also use a parameter to determine what separates each
word.

Here are a few examples of separation methods:

 	Adding a pair of quotes as the parameter but without a
 space between quotes:

y.join("");

It outputs: "grapeapplebanana"

 	Adding a space in between quotes:

y.join(" ");

It outputs: "grape apple
banana"

 	Adding a comma and a space:

y.join(", ");

It outputs: "grape, apple,
banana"

 	Adding a dash in between the quotes:

y.join("/");

It outputs: "grape/apple/banana"

 	Adding a space, dash, space:

y.join(" / ");

It outputs: "grape / apple /
banana"

Notice that I have been writing “it outputs”. In
order to convert an array value into a string value we must catch the output by
assigning it to a variable. If we assign it to the original variable we convert
the array into a string. When we assign it to a different variable, we copy
the values into a string format. The original array remains intact.

What about sorting before converting to string?

 y.sort().join("
");

It converts to a sorted array, and then it outputs
a string:

"apple banana grape"

Notice the dot syntax at work for multiple attached
methods.

 	Important: Although join() does not affect
 the original array unless we assign the output to the original variable
 name, sort() works differently. When we sort an array, it
 physically rearranges the locations of each item. Sorting is permanent
 and it does not have to be explicitly assigned.

Example:

var
y = ["grape", "apple", "banana"];

y[0]; <-- It displays "grape"

Now we sort it (without an explicit assignment):

y.sort();

y[0]; <-- It displays "apple"

Sorting is permanent.

indexOf()

 	The indexOf() method returns the location position of an
 item.

 	If the item does not exist, it returns a -1.

This is a very useful method to check if a certain item
already exists in an array before we add it, or to search for a specific item
as we will see on the next lab work.

In the array

var
y = ["grape", "apple", "banana"];

y.indexOf("banana"); <-- returns 2 (for location 2)

y.indexOf("chestnut"); <--- returns -1 (as in ‘not found’)

Example:

In

var y =
["grape", "apple", "banana"];

We could see if chestnut exists and code a script to
dialog with the user:

if(y.indexOf("chestnut") < 0) {

 console.log("Not found, would you like to add it?");

}

It outputs:

“Not found, would you like to add it?”

Then we would write a script to add chestnut to the
array as we have done in a previous lab work.

 	The < 0 bit is to check if the indexOf
 is -1, which means that the item does not exist.

 	On the other hand, an index of zero or above, means
 that the item is already in the array.

 	Each index corresponds to an item location.

pop() and shift()

The opposite of push(), which is the method used to
add an item to the top or rightmost place in an array, is called pop().

Think of "Pop! Goes the Weasel"!

pop() removes one item from the very end of
the array.

In

var y = ["grape",
"apple", "banana"];

y.pop();

Will remove "banana". Now y is only ["grape", "apple"]

shift() is the opposite of unshift().

We unshift all items to insert an item at the bottom
or leftmost place.

When we remove an item from the bottom or leftmost place,
all the other items get shifted down.

Let’s remove "grape" which is currently the
first item in array y:

y.shift();

Notice how pop() and shift() don’t take any
argument in their parentheses. That’s because they specifically remove the last
or the first item, not a named item.

Do you still remember how to put the items back?

y.push("banana");

y.unshift("grape");

Now array y is back to its original state:

["grape",
"apple", "banana"]

slice()

The method slice() extracts specific items
from one array and outputs those items in the same format type: array.

This means that, if we catch the output by assigning
it to another variable, we create another array.

What is the difference between join() and slice()?

 	join() converts the output into a string value. We
 use the parentheses to determine how the string words will be separated.

 	slice() converts the output from an array into another array.
 Since we don’t need to determine how to separate the items because they
 are already separated, we take advantage of the parentheses to pass in
 some other parameters as follows:

myArray.slice(0,4); <-- zero is the first location to
be included in the output, and 4 is the first location to be excluded.

Example:

In

var
fruits = ["apples", "bananas", "blueberries",
"grapes", "avocado", "peaches"];

I am going to declare a new array an use slice() to extract
some fruit items from the fruits array:

var
pickedFruits = fruits.slice(0,4);

Array pickedFruits now contains:

["apples",
"bananas", "blueberries", "grapes"]

 	The two parameters (0,4) have the following meaning:

 The first parameter represents the first location to be extracted.

 The second parameter represents the first location
 to be excluded from extraction.

A (0,1) would extract just apples because it excluded
bananas, which is in position 1.

A (1,4) would extract bananas, blueberries, grapes,
because it extracts from position 1 (location one) which is bananas, and
it excludes from position 4 which is avocado.

For more advanced techniques on slice please refer to my
eBook

JavaScript
Objects Functions and Arrays Explained.

splice()

The Array method splice() is a very interesting one. Do you
still remember push() and unshift()? They add items to the end or
beginning of an array, right?

 	splice() adds items to a specific location in the array.

Let’s see how it works.

Depending on how many
arguments you use in the parenthesis, you can do the following:

a) Delete
items mode:

When you use only two arguments you are giving the index positions
in the following manner:

First argument: where the action is to start (inclusively),

Second argument: How many items will be removed.

In a way, having just two arguments
means to delete because there is nothing to add.

splice(0,3) (explanation further down the page)

b) Add
items mode,

If you insert more than two arguments, the third and
consecutive arguments are data to be inserted, and in that case
JavaScript assumes you want to insert items into the array.

splice(2,0,
"yellow")

In just add mode, the second
argument is zero, which means that no items will be deleted in
exchange for the items we are adding with the third and consecutive parameters.

or...

c) Replace
items mode.

If the second parameter in add mode is anything other
than zero, this number will indicate how many items will be deleted in
exchange for the items being added.

splice(2,1,
"yellow")

For example, splice(0,3) means to delete 3 items: the
first, the second and the third. Number 3 represents the quantity of items to
be removed. The number 3 coincides with the third item on the array but it is not
necessarily so. If we had splice(2,3) it would remove the third, fourth and
fifth items, which correspond to positions 2,3,4 and counting from zero.

 	The 3rd and
 consecutive arguments represent the items to be inserted.

For example,

splice(2,0, "yellow") means to insert yellow in position two (third
item) and unshift the others because the zero means that no items
are to be deleted.

splice(2,1, "yellow") it means to add yellow to position 2 (third
item) and remove whatever is there (this is a replacement due to the second
argument being anything other than zero).

See the next image for a better view of these concepts.

Fig 13

 	Please note that, unlike other implementations where we
 were displaying items, with splice() we are actually editing the
 original array. It is a permanent operation just like sort().

We could also use splice() to remove and transfer some items
into a new array (sort of what we did with slice(), except that now we are also
editing the original array)

Here’s an example using the following array:

var x
=["blue","red","green","violet","brown"];

a) Splitting
the array by copying the first three items into newArray before
deleting them:

var newArray = x.splice(0,3);

b) Call
array x:

x;

It returns ["violet", "brown"]

c) Call
array newArray:

newArray;

It returns ["blue", "red", "green"]

We have split the contents of x into two different
arrays. Had we used slice() instead of splice() we would still
have the original array x intact.

In summary, splice() is very versatile and it
can be used in place of push(), pop(), unshift() and shift() whenever we need
to address a specific position in the array instead of generically using the
end or the beginning of the array to insert or delete items.

If at this time your head is spinning with so much
information know that you’re not alone. You don’t really have to memorize these
methods. What you really need to do is to understand how they work. Then later
when you need to use them you can always come back and review the concepts one
more time. Eventually they will become part of your internal toolset. Just make
sure you understand how they work.

Let’s practice a bit more to make sure you get the idea!

Splice lab work

Let’s try a few samples to
illustrate the concept of splice().

Deleting items with splice():

1-
On your Console declare the following array:

var x =
["blue","red","green","violet","brown"];

2- Delete 3 items starting at positions 0 which is blue.

Exclude from deletion position 3, which violet:

x.splice(0,3);

We
have just deleted blue, red, green from array x.

3-
Call in the array:

x;

It returns
["violet", "brown"] because the original items in positions
0,1,2 were deleted.

Adding items with splice():

4- Let’s add our items back into the array, starting at position zero and
without deleting any items in exchange:

x.splice(0,0,
"blue","red","green");

5-
Call the array:

x;

returns ["blue", "red", "green",
"violet", "brown"].

We started at position zero
and added all the listed items, and deleted zero items.

You may not use splice() extensively on your programming but
it is a great tool to understand and call upon it when needed.

There are many more methods we can use with arrays. Learning
all of them at once is just overwhelming. It may be a good idea to acquire my
other book
about JavaScript library methods for reference purposes and for an easy
explanation on how they all work. If I thought it would help to include all the
other methods here at once, I would have done it. Of course you can always search
and hope not to get confused or sidetracked by some bogus explanation on the
internet. Knowing these tools is an important step to become a master in the
craft.

2.12 Lab work 9

NOTE: If you want to do this exercise along with me jump the
next 14 steps.

Reserve this page for future practice.

1- Take
the following array y as an example and sort the array:

var y =
["grape", "apple", "banana"];

2- Now
assign to a new array mySort, the contents of the sorted array y.

3- Test
mySort by displaying its contents on the Console.

4- Now,
display the array mySort in a string type format and

split the items with 1 blank space. Hint: use join().

5- Now,
instead of just displaying it, assign the items from mySort to a
new variable z, but in a string format.

Use a combination of space, forward slash, and space as a separator.

6- Call
z.

7- Use
the indexOf() method to find the position of "banana"
in array y.

8- Test
for the existence of "banana" in array y (use an if conditional
statement), and display the following message on the screen using console.log():

"banana is contained in array y"

9- Using
the same method as the last exercise, look for "chestnut",
then

display two messages, one for if() and another for else as
follows:

"chestnut is contained in array y"

else: "chestnut is not found in array y".

10- Remove the last item
of array mySort using pop():

11- Remove the first item
of array mySort using shift():

12- The array mySort
should now only contain "banana".

Add "chestnut" as the last item.

Use push().

mySort should now
have 2 items, ["banana", "chestnut"]

13- Using splice(), insert
"apple" in array mySort at position 1 (as a second item). Do
not delete any existing item.

mySort should now
contain ["banana", "apple", "chestnut"]

14- Using slice(), create
a new array named newArray with a copy of the second and third
items ("apple" and "chestnut") from mySort array.

The newArray should now contain ["apple",
"chestnut"].

(See my results on the next page.)

Answers to Lab work 9:

1- Take
the following array y as an example and sort the array:

var y = ["grape",
"apple", "banana"];

y.sort();

It returns ["apple",
"banana", "grape"]

2- Assign
a new array named mySort to the contents of a sorted array y:

var mySort = y.sort();

3- Test
mySort:

mySort;

It returns ["apple",
"banana", "grape"]

4- Now
display the array mySort is a string type format,

and split the items whit 1 blank space. Hint: use join():

mySort.join("
");

or you might have done this which is also correct:

console.log(mySort.join("
"));

It returns "apple banana
grape" in a string format.

5- Now,
instead of just displaying it, assign the items from mySort to a
new variable z, but in a string
format. Use a combination of space, forward slash, and space as a separator:

var z = mySort.join("
/ ");

6- Call
z:

z;

It returns "apple / banana /
grape"

7- Use
the indexOf() method to find the position of "banana"
in array y:

y.indexOf("banana");

It returns 1, which means that "banana"
exists and is located on position1 (second item).

8- Test
for the existence of "banana" in array y (use an if
conditional statement), and display the following message on the screen using
console.log():

"banana is contained in array y":

if(y.indexOf("banana")
>=0){

 console.log("banana is contained in array y");

}

It returns "banana is
contained in array y"

9- Using
the same method as the last exercise, look for "chestnut".

Then display two messages, one for if() and another for else as
follows:

"chestnut is contained in array y"

else: "chestnut is not found in array y":

if(y.indexOf("chestnut")
>=0){

 console.log("chestnut is contained in array y");

} else {

 console.log("chestnut is not found in array y");

}

It returns "chestnut is not
found in array y"

10- Remove the last item
of array mySort using pop():

mySort.pop();

It removes "grape"

11- Remove the first item
of array mySort using shift():

mySort.shift();

It removed "apple"

12- mySort should now only
contain "banana".

Add "chestnut" as the last item, using push():

mySort.push("chestnut");

mySort should now have 2
items, ["banana", "chestnut"]

13- Using splice(), insert
"apple" in array mySort at position 1 (as a second item) and

do not delete any existing item.

mySort.splice(1,0,"apple");

mySort should now contain ["banana",
"apple", "chestnut"]

14- Using slice(), create
a new array named newArray with a copy of the second and
third items ("apple" and "chestnut") from mySort
array:

var newArray =
mySort.slice(1,3);

The newArray now contains ["apple",
"chestnut"].

The argument 1 represents the second location from mySort, and argument
3 represents the exclusion which starts at location 3.

 	Yes, location 3 does not exist, but we had to cover
 location 2 in order to include chestnut. The exclusion started at
 location3, which is item 4.

It may be overwhelming at first.

Practice, practice, practice.

END OF LAB

2.13 Lab work 10

Building a mechanism to fetch a variable from an
array

This exercise will review variable assignments, and creating
arrays with variables as elements, plus function declarations, reassignment
of variables and the usage of indexOf.

The idea is to call
a function and select a language as an argument. Then, based on the language selected,
the correct sentence will be displayed. Does it sound interesting?

Example:

When calling show(english);

This sentence gets
displayed:

"The quick
brown fox jumped over the lazy dog".

 	Notice how english is not wrapped in quotes (and it
 is in lower case). That tells us that it must be a variable name, not a
 string.

I have used Google
Translate to convert my sentences from English to Portuguese and Spanish
(and later French). My apologies to native speakers if it sounds funny, it is
well intended.

Link to the convenient jsbeautify.

 	Please do the exercise
 on your own.

 A link to my own file will be given in the end.

 Interim files will also be available so that you can check your work.

1- Declare
three variables named

english, portuguese, spanish.

Respectively, assign to each one of them the following sentences:

(Link to convenient copy/paste:
raw file | bit.ly/1mpqCsr)

"The quick
brown fox jumped over the lazy dog"

"A ligeira raposa marrom saltou sobre o cão preguiçoso"

"El rápido zorro marrón saltó sobre el perro perezoso"

2- Declare
an array named langVersion with the following elements:

english, portuguese, spanish.

Remember, since these names are
already declared as variables, we should not write them in quotes, just
separate them with commas.

The purpose of this array is to
save each variable in a sequence. Couldn’t we just use the variables directly
and forget about the array? Yes, we could. However, in a large program those
variables will be saved along with many others and by creating an array we are
listing the variables related to language translation, which can be further
manipulated, edited, erased or even become part of a larger group of languages.
Of course there are other ways to do this but right now we are practicing with
arrays and it is a very important practice.

3- Declare
one more variable named sentence with the numeric value of 0.

This variable will be used to store
the location number of the language we are going to select from all the
languages in the array.

The reason why we are giving this
variable a value of zero is to tell JavaScript ahead of time that this variable
will be numeric. In reality JavaScript will change the type of value if needs
be, but it is a good practice to declare our intention, even if this intention
may only help a human inspecting the code, rather than helping JavaScript to
process it.

(Link to convenient copy/paste for
steps 1,2,3: raw file | bit.ly/1Dt7fnS)

4- Below
your current code, create a function named show.

The purpose of this function will
be to display the correct sentence based on the language we choose when we call
the function. The sentence will be picked from the array of languages.

function show() {}

5- Introduce
to the function an input parameter named language.

6- In
the function’s body, line 1, reassign the already declared variable sentence
to the location number of the language selected. We do this by using indexOf()
to find the location, like this:

sentence =
langVersion.indexOf(language);

Later, when we call the function,
like for example show(portugese),
the parameter language will be replaced by whatever language argument we
give to the function. And the indexOf(language)
will assign variable sentence with the correct array address for that
language.

7- Finally,
on the next line and still inside of the function body, write a console.log to
display the contents of the variable chosen when someone calls the function:

console.log(langVersion[sentence]);

From step 6 we know that variable sentence
is the location number of one of the items in the array.

8- Paste
your code on the Console and call the function show() to test
each sentence

(Note: if you get an error
thank the gods for the opportunity to do some debugging because it is a very
good practice):

show(english);

show(portuguese);

show(spanish);

You may see on your screen the term undefined after the output sentence. That is
normal in test Consoles. It is just telling us that the function show()
did not explicitly return anything and so, it automatically returns undefined
because JavaScript functions always return something.

See the final version on the following links:

 forum | raw text.

bit.ly/1r0Ho2D
| bit.ly/1mCJogu

Side note:

 	If something is not clear, do not move forward until you
 consciously frame a question. Stop, step back and try to see what each
 line is attempting to do. Try it 100 times if you need to do so. Then,
 when you think you know what it is that you don’t understand, move forward
 to see if understanding comes at the end of the assignment when you look
 at the script as a whole. Do not let it go if you have any doubts.
 Concepts need to be thought of; we can’t fly over them and think that we
 will get them later.

 	On the other hand, understanding comes in layers, but we
 consciously need to make sure we can continue our path even if we don’t
 fully grasp the idea about something. Ask yourself a question and give
 yourself an honest answer before moving forward. They say that the act
 of asking is in itself half of the answer and many times the answer
 becomes obvious when we properly frame the question.

Adding French to the array

Suddenly someone complains because there is not French
version of the Quick brown fox.

1- If
you still have your Console open, add a variable french at the prompt:

var french =

Don’t worry about being all the way
at the bottom of the script. We are just testing stuff. Notice how french
is in small letters.

Variables start with small letters.

2- Assign
the following line to variable french:

"Le renard brun rapide
saute par dessus le chien paresseux"

raw file. | bit.ly/1wGvYQS.

3- Now,
use the method push() to insert the variable french into
the array langVersion.

langVersion.push(french);

4- Test
the script by calling

show(french);

 	See final version here:

 forum
 | raw text.

 bit.ly/1r0Ho2D |
 bit.ly/1mCJogu

Printing out the array contents

Do you still remember how to create a for loop? for
loops are great to traverse array elements.

In this project we are going to create a for loop to console.log
the items from array langVersion just to illustrate a point leading
us to our next topic.

If you don’t have the previous script on your Console, copy
it from the previous page all the way at the bottom, and paste it on the
Console. Then proceed to step 1:

1- Create
a for loop to print the array elements to screen.

I will use the common designation i as a variable for the counter,

and langVersion.length as the limiter for my loop repetition.

2- In
the loop body, console.log the contents of the array.

This is accomplished by dynamically addressing langVersion[i],

which is the current location of each element as the loop repeats itself.

 	See my script on the forum
 (the fourth script shown) | bit.ly/1r0Ho2D

 or as a raw file | bit.ly/1DtOsZu

Did you notice how the variable names are not being
printed?

The only thing we get displayed is the text value
from each variable.

That’s because each variable name is instantly evaluated by JavaScript and the value to which the
variable points to is the one that JavaScript fetches and displays on the
screen.

What if we just wanted a list
of the variable names as shown on the array?

To get those labels (english, portuguese, etc) we would need
to write console.log(i) by itself, instead of console.log(langVersion[i]).
However, that would only print 0,1,2,3. Not the name of the variables, right?

I really would like to display my labels. How can we list
those?

That will be covered on the next topic. You see, arrays
work great and are frequently used but they are not always the best data structure for the job
at hand. When it comes to labels such as the names of those variables, an unordered
list may be more appropriate, as opposed to an ordered list like
an array.

Let’s move forward and talk about unordered lists. If they
are unordered we don’t address them numerically, right?

Let’s see how we handle unordered lists. They are really
popular and useful.

END OF LAB

2.14 Unordered lists

 	We have seen how the numeric data structure of
 type array stores data in its ‘pockets’. The first item goes on
 pocket zero, the second item on pocket 1, the third item goes on
 pocket 2, etc.

 	The location of the last item of an array is always the length
 of the array minus 1. Do not memorize this fact, just
 understand that locations start counting from zero. This is great to know
 if we ever need to manually add an item to the array. As for automatically
 adding new items, we may use push() to insert them at the end, or unshift()
 to place them at the beginning, or if we want to insert an item in a
 specific location we can use splice(). On the other hand, to delete
 items we use pop() if the item is at the end, shift() if at
 the beginning, and the versatile splice() if we want to delete an
 item from a specific location.

 	As for scanning arrays, we traverse the array with a for
 loop in order to print its contents, and we also know that the
 JavaScript library has many other methods we can use for further manipulating
 arrays. Some of these methods were covered in this book, and the other
 more advanced methods may be read on my “explained”
 eBook.

In this topic we are going to work with unordered lists.

In unordered lists all item locations are labeled
with a string value.

We call them unordered lists because each pocket is
literally labeled. This label can be a single character, or a word, or even a
number (however if you use numbers as labels, know that they are not sequential
and they are treated as characters as opposed to arrays which are always
numerically sequential).

In truth, the unordered list is unordered because
JavaScript maps the label to the item. In the end, these are all arrays,
even if such characteristic becomes hidden from the programmer.

In an official array we don’t have to name the address or
pocket label because it is numerically assumed, like for example:

var myArray =
["duck", "lettuce", "sapphire"];

For unordered lists we need to label the location of
the item, I mean the pocket where the item is stored. That can be advantageous
for certain applications:

var x = {"animal": "duck", "vegetable": "lettuce", "mineral": "sapphire"};

Notice how the assignment to each item is made like: "animal": "duck",

"animal" is the label and "duck"
is the value.

There is a colon : separating the two, rather than an =.

 We use the curly braces to wrap the list, as
opposed to the square braces which are reserved to arrays.

 	Please note: The quotes wrapping the label are
 optional, but not the quotes wrapping the string value, those are
 mandatory because in our example we are using string values.

 More about that later.

Hashes, objects, associative arrays, unordered
lists

In JavaScript all these names are synonymous. Each programming
language uses a different terminology to represent unordered lists.

Java uses HashMap, HashTable.

C# uses HashTable, Dictionary.

Python uses dict.

Ruby uses Hash.

Object-c uses NSDictionary.

C++ uses std::unordered_map.

And JavaScript uses object.

Did I just say object? Personally I don’t like the name
designation because, in JavaScript, almost everything is an object. Arrays are
also objects, and so are functions. However, the name of object in JavaScript
has become synonymous with unordered lists.

Another popular name is associative arrays.
Some languages actually have associative arrays. In JavaScript an associative
array which is an array with key-value pair association, is
called an object. However the reason why an associative array is often
called an object is because objects in the sense of the term are made with
associative arrays. As far as JavaScript is concerned, all these names are unordered
lists and we call them objects.

Hopefully this clears up some of the confusion by knowing
that they all mean the same thing, but please keep in mind that things
are not that simple, there is a lot more to this subject than what this book
calls for.

 	From now on and for simplicity’s sake, we are going to
 call any key-value pair structure an object.

Creating an object

An object is a collection of values.

These values can be a mix of anything: strings, numbers,
Boolean expressions, variables, arrays, functions and (often) other similar objects.

JavaScript is very versatile in that aspect. The size of a
list of values can shrink or expand at any time. We will see how to do all these,
like creating, editing, adding new items, deleting items, searching and
printing items in the next few pages. Most of these techniques have already
been introduced to you and you will remember them as we approach each one of
them.

Declaring an object and assigning values at the same
time:

var x = {"animal":
"duck", "vegetable": "lettuce", "mineral":
"sapphire"};

What do we have above?

We have a variable named x that points to a
data structure of type object. We know it is an object because of the
curly braces wrapping the data: { }.

 The variable x and the data structure in itself are
in separate (and different) parts of the memory. They are independent of each
other. This memory independence also happens for arrays and functions,
but there is no separation of variable name and value when we declare a simple string
or a numeric variable; those reside on the same location as the variable
name. We will cover a bit more about it later.

So now we have an object assigned to variable x.

Since the data structure is divided into key-value
pairs we can address the values by calling the corresponding keys. Think
of the key as the label for the value.

Instead of x[0]; we now can (and must) do it this
way:

x["animal"];

It displays "duck". By the way, when using
bracket notation, the quotes wrapping the label are mandatory. Notice
how "animal" is wrapped in quotes. Labels are strings values.
Now if you ever use a number as a key (and you can do it), you may also wrap it
in quotes or you may not. JavaScript allows numbers to be written in both
styles on bracket notation (but numbers are rarely used as
labels).

Why should we wrap key labels in double quotes?

Normally, when we create an object we don’t really have
to wrap the key portion of a property in quotes and you may see it more
often that way (no quotes). Example:

var example = {animal: "duck", vegetable: "lettuce"};

As you see, there are no quotes for animal and for vegetable
in the object declaration.

However, wrapping key labels with double
quotes is being used more and more in modern technology, thanks to the advent
of JSON which is being applied
everywhere. We will cover the basics of JSON on a later chapter.

So if you are beginning to learn object notation, you might
as well develop the habit of double quoting keys when you declare an object.

The above example should then look like the following:

var example = {"animal": "duck", "vegetable": "lettuce"};

Do it as you wish but please keep this concept in mind.

Assigning new key-value pairs to objects

Let’s do some lab work...

1-
On your Console, create a new and empty object:

var crazyList = { };

Do you still remember how to check the type of a variable
with typeof (covered on Lab work 1)?

2- Let’s
check the typeof crazyList:

typeof crazyList;

It displays "object".
We have an empty object.

3- Now
we add some values by assigning them to key labels:

crazyList["flower"]
= "daisy";

Object
crazyList now contains {flower: "daisy"}

4- Let’s
add another key-value pair:

crazyList["drink"]
= "water";

crazyList now has two values:

{flower: "daisy", drink: "water"}

As a curiosity, notice how JavaScript is placing the new
items to the right of the last item. However, it doesn’t really matter where
the items are being placed since, unlike arrays, we don’t need such information
in order to access those items.

5- Now
we’re going to add some numeric keys just to see what happens

(not a common implementation):

crazyList[2] = "front
teeth";

crazyList is now holding 3 items:

{2: "front teeth", flower: "daisy", drink: "water"}

Do you see how the numeric key was placed to the left of all
the string type keys?

Again, this has no meaning to us because it is not really consistent.

6- Let’s
add two other numeric keys:

crazyList["1"]
= "flying bird";

and

crazyList[3] =
"is a crowd";

Now crazyList contains:

{1: "flying bird", 2: "front teeth", 3: "is a crowd", flower: "daisy", drink: "water"}

So we see that when the key is numeric, the item is placed on
the left side and also in numeric sequence. When the key is a string value, the
item is placed after the last rightmost item.

Also notice how I wrapped ["1"] in quotes. That
was just to show that, when it comes to numeric keys, they can be wrapped or
not. It is up to you.

 	The sequential positioning of key-value pairs has no value
 for us at this moment. It was just mentioned as a curiosity. Please don’t
 try to memorize such characteristic since this is an unordered list and we
 will pick items by calling their labels at will.

Using dot notation with objects

On the previous example we had used bracket notation to call
the labels that correspond to each object property (the value).

We can also use dot notation to represent
object properties.

This is actually a very popular way to address items of
an object. In truth, we need to become very familiar with both styles of
writing because, as much as dot notation is popular, sometimes it cannot be
used. On the other hand, if you only use bracket notation your code will look different
than the norm and someone will ask you why such style of writing. It is worth
learning how to write certain expressions in dot notation and others in bracket
notation. Practice will tell you which one to use and when.

Here’s what you should know about the differences between
these two styles of coding:

 	Dot notation will not work with numbers.

 	Dot notation will not work with dynamic
 variables (those that change dynamically such as a counter representing a
 key in a key-value pair when traversing an object with a loop).

 	In summary, dot notation can only be used when the
 property name is a valid identifier of a property and as long as this
 identifier is not numeric.

Think of dot notation as hardwired
(the value must be known when dot notation is used), and bracket notation
as soft wired (the value can dynamically change
or be unknown at the time the code is presented to the JavaScript interpreter).

How do we use dot notation to address an item in an
object?

Let’s repeat our previous examples using dot notation
instead of bracket notation:

1-
Create a new and empty object:

var crazyList = { };

2- Let’s
add some values by assigning them to key labels:

crazyList.flower =
"daisy";

Now crazyList contains {flower:
"daisy"}

Notice how in dot notation a key is written without quotes.
This is because flower is already in memory as a declared key to a
property in object crazyList. In bracket notation however, we always
include the key string names in quotes, like "flower". In dot notation
quotes are not valid.

This crazyList."flower"= would
result in an error

3- Add
another key-value pair:

crazyList.drink =
"water";

Now crazyList contains:

{flower: "daisy", drink: "water"}

4- Add
a numeric key using dot syntax:

crazyList.2 =
"front teeth";

We get
the following error as a result:

SyntaxError: Unexpected number

 Numbers are not allowed in dot syntax. It needs to be done
this way:

crazyList[2] =
"front teeth";

In summary:

We can declare an empty object by assigning a pair of
curly braces to a variable:

var z = { };

Then we can add items by providing a key and a value
in either dot notation or bracket notation:

z.rent = 750;

z["gasBill"]
= 300;

And now we have {rent: 750, gasBill: 300}

Or

We can declare an object and assign items to it all at once:

var
b = {"color": "red", "fabric": "cotton"};

And now we have {color: "red", fabric:
"cotton"}.

Spanning an object declaration across multiple
lines

Up to this point our objects have been short and one liners.
For the most part however, objects are more complex and span over several lines
of code.

There is no difference between a single line object and a
multiple line object. The second style of writing objects is just easier for
the eye, but JavaScript does not care one way or the other.

1- Here’s
an example of a multiple line syntax style. Please write the code along with
me just for practicing purposes. There is also a link to a raw file below
the image:

Fig 14 see raw file | bit.ly/ZbwxY3.

Notice the commas. Just like in a single line object,
all elements are separated by a comma except the last item. If you write
a comma there (after the last item) you will get an error because the JavaScript
interpreter will expect another element to its right (or in this case below it).

Notice the quotes on numbers 2014
and 67,000. The reason I added quotes is because
I don’t plan to do any calculations with these numbers, so I’ve decided to
treat them as strings. This is optional; you could skip the quotes and make
them properties of type number. As for number 9,
I’ve decided to keep it as a numeric property in case I want to calculate the
average rating for all the cars in the lot. This gives us two possible
approaches on how to write number properties.

Also, as explained before, technologies using JSON (
JavaScript Object Notation) want the key to be in double quotes so I have
placed "make", "model", "color", etc in double
quotes. In this way this script becomes machine independent, sort of like when
one writes in xml notation. By writing it this way we can send the data to any
machine that reads JSON and it will be understood. Quotes in keys are
optional. Do it as you wish.

What is a property?

A property is what we call the data elements from an
object.

We could call them variables since they are not static
(their values can be changed at any time), or just object elements, but in
object oriented language they are called object properties.

 	Object properties are the data contained in an
 object and they are represented by a

 name: value pair, also known as a key: value
 pair.

Think of an object as the owner of its name: value pair
components. These components are properties of the object, just like my car,
bike and scuba equipment are my properties.

var tony = {"transportation": "car", "Computer":
"desktop pc"}

An object may also own some methods.

Let’s talk about methods next.

 	Don’t get wrapped into this terminology trying to memorize
 what is called what. That will slow you down. Just move along and let
 your brain assimilate these terms based on practicing, not based on
 memorization.

What is a method?

A method is a property that executes an action on behalf
of the object. If the property is not a “thing” but an action
waiting to be called upon, then it is a method.

Take for example a desktop computer as an object; we could
say that the display, the keyboard and the mouse are some of the properties of
the desktop computer. Then we could also say that Firefox and Chrome browsers,
as well as Microsoft Word are methods of the desktop computer because these
properties have functionality, they don’t exist in the physical sense, we need
to call them like we call a function, in order to use them. They represent some
of the methods of a desktop computer. Their existence is based on the execution
of some program routine.

When we mention “execution” we immediately thing of
functions, but there is a difference between what a function is and what a
method is:

 	A method may contain one or more functions.

 Do you see the difference? A function could be a method of
an object, but it is not necessarily a method in itself. A method is a
collection of functionality to accomplish a task on behalf of an object. Like a
method to print out a list of contents, or a method to update the contents of
an object, or a method to sort the contents, or a method to identify the person
asking for the contents of an object, and so on.

Let’s add a method to our car object.

2- If
you’ve been coding along with me, add a new comma to rating: 9,
because we are about to add one more property, the method printRating.
(use the editor).

3- Assign
to label printRating a function that prints on screen the following
message:

"The car rates " + car.rating + " out of 10"

Fig 15 see raw file. | bit.ly/1C6I5d5.

4- Let’s
play with this object a bit. Paste the object script from this last raw file
(or your own script) on the Console.

5- Print
the car’s rating:

car.printRating();

Notice how we call() a method
from an object. It starts like when we call any other property but then we add
a pair of parentheses () which creates a function action. What would
happen if we excluded the parentheses? It would just print the contents of key printRating
which are the explicit description of the function. That can be handy sometimes
when we want to assign the same functionality to another variable, but in order
to get an action we need to use the parentheses.

6- What
about bracket notation? How would we call the method printRating using bracket
notation? Methods are best called with dot notation
because it is an easier syntax as you will see why next, but it is good to
understand how the logic goes and here it is:

car["printRating"]();

Not as pretty as in dot syntax,
right? Notice how the parentheses go outside of the brackets. So this is one
area where dot syntax is mostly used. Bracket syntax is reserved more for the dynamic
calling of a property. We use bracket syntax with for loops because
there, each property needs to be accessed dynamically as the loop goes around.

Let’s do that!

Looping through an object

Suppose you are aware of an object existence but you don’t
really know what properties it contains.

You can loop through the object to find its properties.

Introducing the for in loop

This loop is written specifically for the object we’ve been
discussing:

See original file here: raw file
| bit.ly/1C6I5d5

The loop goes like this:

for(var k
in car){

 console.log(k);

}

The for in loop
is a variation of the regular for loop in the sense that some
functionality is already preprogrammed in the JavaScript library. Let’s explore
it line by line:

for(var
k in car) --- k is a variable introduced by the
programmer. Its purpose is to temporarily grab and hold the key label for
each loop count (the label that matches the location number in each loop cycle).

Let me explain: objects are in a sense just like arrays. The
only difference is how the keys are mapped. In arrays, JavaScript maps each
location as location 0,1,2, 3, etc. But in unordered lists or objects where
keys are being used, JavaScript maps the internal location (whatever location
it is) to the key that was originally declared for any given data value.

So, the purpose of variable k is to count each
location (one per cycle) and at the same time, to grab the key name that
corresponds to the given count, so that we can get to the data value assigned
to it. It’s not k that does all these. It is JavaScript that provides
such information and stores it in k.

As for the name k, we could use any name, such as for
example i but k makes more sense because in fact,
JavaScript will temporarily store the key values on variable k,
one key per loop iteration. So the letter k reminds us of what is
being stored there, a temporary location instance. You may also see it on the
field or in other texts as key, prop, or property.

(Why am I telling you all this? because I don’t want you to start
reading posts on the web and think that there are a thousand different kinds of
for in loops. There is only one for in loop and each developer
gets creative with temporary variable names).

Going back to our “for k in car”, in this example we
have a dedicated for in loop because we know the name of the
object, car. We could however make this loop generic and
substitute car with another temporary variable to act as a placeholder,
like for example a parameter from a function. Then we could insert the real
object name as an argument when we call the function, and the function would
substitute the placeholder with the correct object name. We will try
that on another exercise.

console.log(k)
--- This line is used to print all key names
as they are passed to variable k. If however, we wanted to print the values
instead of the keys, we need to address each key-value pair dynamically using
bracket syntax:

console.log(car[k]);

JavaScript evaluates car[k] and replaces it with the
value of the property corresponding to the dynamic label instance in k.

 	Notice the lack of quotes on "k". k is a
 declared variable.Variables never take quotes because that will make them
 a string and JavaScript will think it is a different identifier other than
 the one we intend to target. k is a variable, "make" or "color"
 are not variables, they are real keys and a key is a string. Those would
 be wrapped in quotes if used in bracket notation: car["color"].

Also, remember that dot notation will not work here.
This is because the loop is dynamically addressing the key values by
mapping k to the key, and dot notation only accepts the real key name.
Remember: hard wire versus soft wire.

1- So
let’s paste the object on the Console, then paste the for in loop
just to print the key names

 	Here’s the complete raw file | bit.ly/1rjbSvB.

You should see the following keys
displayed:

make

model

color

year

mileage

rating

printRating

2- Replace
(k); with (car[k]); on your console log.
Remember, you can move up in the Console by click on the Up Arrow, then
modify the script and press ENTER.

Now the printout should look like
this:

console.log(car[k]);

And the printout should be:

Subaru

Outback

blue

2014

67,000

9

function () {

 console.log("The car rates " + car.rating + " out of
10");

 }

Of course we could have made it prettier by adding the key,
like for example in this way:

console.log(k
+ ": " + car[k]);

And that would give us:

make: Subaru

model: Outback

color: blue

year: 2014

mileage: 67,000

rating: 9

printRating: function () {

 console.log("The car rates " + car.rating + " out of
10");

 }

NOTE: I will show how to
exclude the printRating method from the printout in a future exercise.

P.S.

In case you’re wondering about it, I don’t really know the rating for an Outback,
the number 9 is just for practicing purposes only.

2.15 Lab work 11 - redo lab work 10

Do you still remember when in Lab 10 we displayed “The
quick brown fox jumps over the lazy dog” in English, Portuguese, Spanish
and French?

There were four variables: english, portuguese, spanish and
french. Then we added the variables to an array of variable names.

The problem we encountered was attempting to list the array
contents as variable names, or as key-value pairs, like for
example:

english: “The quick brown fox jumps over the lazy dog”.

We could not dynamically display the variable name
from the array, just the values themselves. This is because JavaScript treated
the variable as an expression and gave us the evaluation result, which
was the data inside of the variable. (Expressions will be further explained on the next topic).

Well, now we can! All we have to do is, instead of declaring
separate variables, we declare them as properties of an object.

Let’s do this:

1- Create
an object named langVersion.

2- Assign
to this object four property keys: english, portuguese, spanish, french.

3- For
each key add the correct value based on the following text:

 raw file | bit.ly/1rt9dzZ

Do not declare the variables, use property keys instead as seen on the
raw file.

4- You
should now have a complete object.

Next create a for in loop outside of the object, to print
out the contents of the object. The display of each property should look
something like this:

english:
"The quick brown fox jumped over the lazy dog";

 	See my own results here:

 forum
 | bit.ly/1tWQddJ

 or the raw file version | bit.ly/1ofRRkS.

Transforming the for in loop into an object method

5- Once
you have finished the project and everything is working, reengineer the for
in loop so it becomes an internal method of object langVersion
as follows:

a) Add a new comma after
the original last property in the object so that you can write another property
below it.

b) Give this new property a
label named list so that you can call the method later,

c) And then write a
function as the value for list.

Inside of the function place your current for in loop.

6- Paste
your little program on the Console and

call the method to see how it prints:

langVersion.list();

 	Compare your results with mine here:

 forum
 | bit.ly/1uUYgbd

 raw file | bit.ly/1rl24Bl

Your listing displays all the properties including the
method and its internal script, right?

We can tweak the list method to filter out methods
from printing as part of the list.

If you want to eliminate the method from the printed list you
can use a conditional statement to filter out anything that is not of string
type since list() is a function. The logic behind it goes like this: “if the
type of property is a 'string', print it”.

Do you still remember how to use typeof? We
covered it on Lab work 1:

When we write:

typeof
"tony";

JavaScript replies with "string".

7- Reengineer
the loop once again so that

if (typeof
langVersion[k] === "string") {

console.log the desired output. No else is needed for this one..

 	Compare your results with mine here:

 forum
 | bit.ly/1tWSDsR

 raw file | bit.ly/1pqbvtZ

In summary, there are times to use an array data
structure, and there are times when an object data structure is more
appropriate. In the end, both arrays and objects are lists from the
JavaScript library wearing different customs.

In arrays we use a regular for loop and with
objects we use a for in loop which is a for loop
preconfigured to print out label names and with no length value declaration
necessary.

If you want further practice visit the new forum as I will
expand the subject there. Also my other eBook
has many real life exercises to drill and expand this subject.

END OF LAB

PART III: STRENGTHENING THE WARRIOR'S ARSENAL

JavaScript is an instrument that needs to be played.

3.1 Taking an inventory of what we’ve learned

Give me 5 minutes and I’ll tell you everything I know!

Sometimes it feels like that, right?

Well, we have covered quite a lot:

The purpose of variables; The type of data
assigned to variables; How we introduce a variable name to JavaScript by
prefixing it with var; How a simple variable data known as a primitive
value is stored in the same location as its variable name, as opposed to
complex variables known as reference variables, which are stored on a
separate memory location than the variable name that points to them...

We have seen how a data structure such as an array
acts as a numerically indexed list of items, and how to use the for
loop to traverse (scan) the array and manipulate each one of its
elements based on the array.length property.

We have used push() and unshift()
to insert new items into an array, and pop() and shift()
to remove items from the array.

We have also experimented with splice() to
remove, replace or add new items into any specific location of an array, and
how we can copy a whole section of the array into another array by using slice().

What about sorting arrays with sort()? And how to use
join() to convert an array into a string.

Last but not least, we have seen how indexOf()
can be useful to find the location number of a certain item, or to check if the
item has already been inserted in the array.

So much we’ve learned in such a short time!

What about objects?

We know that almost everything in JavaScript is an object of
some sort, but normally we refer to objects when we talk about unordered
lists, those lists indexed by key labels.

The items in an object, which are called properties,
can be addressed by either dot syntax or by bracket syntax. Some
of the properties are called methods because they represent
functionality and functionality involves at least one function mechanism.

The for in loop is a variation of a for
loop specifically created to traverse over objects. The temporary counter
variable serves to dynamically store the key names of each property so that we
can manipulate the data, such as printing to screen.

We know that dot syntax does not work with dynamic
representations of properties. Also when we print a list of properties, we can
filter out the methods by creating a condition for output with a typeof
verification.

In the process of learning all these we also learned about conditional
statements by using if, else if, else.

Boolean true and false were introduced and we
learned that, in JavaScript, every value is considered true except
Boolean false, number zero, or the values undefined and null.

Functions are mechanisms that save executable code. In a
sense, a function does not hold a value, it holds a potential value that only
materializes when we call the function. A function can have input parameters as
temporary placeholders for data being passed into the function when the
function is called. Of course we can also have functions that do not take any
data, they just perform a certain task.

We know that the return mechanism is the only
true raw output from a function and we need to catch this returned data
if we want to reuse it somewhere else before it gets lost in cyberspace.

Another way to output data from a function is to internally
reassign an outer variable, since functions have access to outer variables. As
for console.log(), it is just a way to display data on the screen
and always in a string type format.

And there you have it, close to 200 pages of fun in a
nutshell.

3.2 More about functions

What are expressions and statements?

We have been using the terms expression and statement
throughout the book in an informal way. It is time to stop and think about
these terms because they have specific meanings.

 	A statement is a complete command which instructs the
 computer to carry out a specific task. It’s usually written in one line
 (but not always) and terminated by a semicolon.

Examples of statements:

var z = 1 + 2 + 3;

console.log("Hello
World");

if(z > 2) {

 console.log("yes it is");

}

In the last example, the statement starts at if
and ends at the semicolon. If you place the semicolon prematurely you
will get an error. That is a common mistake when we first start programming.

We have also mentioned several times “the return
statement”. Aside from a return being only allowed in functions, it is
written as a statement:

return 3 + 4;

Many times statements are compounded into a group of multiple
statements in which case we use the curly braces to wrap the compound
statements:

if(z > 2) {

 console.log("yes it is");

 console.log("z is greater than 2");

 console.log("z is also the last word of the alphabet");

}

Notice how the last curly brace does not terminate
with a semicolon. The only time a semicolon is placed after a curly is
when we assign a code block to a variable like for example when we
create and object.

Then we have expressions.

An expression is anything that evaluates to
a one unit. Like for example, when JavaScript sees 3 + 4 it actually
see 7. JavaScript looks at the expression and
simplifies the expression into 1 unit. Just like statements, expressions
are everywhere and they can be one and the same.

Examples:

var x = 4;

Above, var x = 4; is a statement and also an expression.
Actually we have two expressions. JavaScript looks at the code and subdivides
the expressions into:

1- x,
which results in 4 when evaluated, and

2- 4,
which results in itself. JavaScript looks a 4 and it expresses 4 as a result.

if(10 < 11) { //
do something; }

Above, if(10 <
11) is an expression because JavaScript does not see the literal 10<11, it only sees true or false,
one or the other. JavaScript does not really care for 10<11 in itself, it looks at it and internally
replaces it with a Boolean true.

 	This is a very important concept in order to understand
 the language: We write expressions, and JavaScript stores the result of
 their evaluation.

Of course 10 and 11 are individual expressions in their own
right, but they are not as important as the combination of 10<11. JavaScript interprets it and
saves it as just plain true.

Now, look at the semicolon on the previous if() example.
That’s where the statement ends, it starts on if and it ends at ..thing;

What about a function? Is it an expression in itself?

Take for example the following function:

function
x (num1, num2){

 return num1 + num2;

}

The above function by itself does not evaluate to anything.
It could potentially evaluate to the sum of num1 + num2 but only when the
function is called upon:

x(2,4);

The function when called evaluates to 6.

How does it evaluate to 6 when we call function x with
arguments 2 and 4?

num1 becomes an expression and it evaluates to 2.

num2 becomes an expression which evaluates to 4.

num1 + num2 become an expression which evaluate to 6.

Expression evaluation is an important concept in order to
truly understand JavaScript (or any other language for that matter).

In the next topic we will see how to assign a function to a
variable, making the combination of function and variable, an expression.

Remember, to declare a variable we start with var.
To declare a function we start with function:

var x = 33;

function y (){ }

Next we are going to see how to assign a function as a
value to a variable and answer a few of common questions you may have.

Assigning functions to variables

Up to this point we have been declaring functions in the
following literal manner:

function x () {
return 5; }

However, we could also assign a function to a variable like
this:

var
x = function { return 5; };

Notice the semicolon at the end. This is because the whole
variable declaration is in itself a statement. Statements are complete command
sentences given to JavaScript and they usually terminate with a semicolon which
separates them from the next statement.

Wait, I still don’t get it. I don’t see a semicolon on a
function declaration like we have done before. Why does this one get a
semicolon?

The semicolon has nothing to do with the function. A
function in itself is not a complete command statement until it is called in.
When we call a function, like for example x(); we add a semicolon. The earlier semicolon in
question had to do with the variable assignment. When we assign a value
to a variable we terminate the assignment with a semicolon because the
assignment is a command sentence, or an expression.

The same goes for any other assignment such as an array:

var
y = [1,2,3];

Or as for object assignments:

var
z = {"color":
"green"};

Or function assignments:

var
z = function(){ return 5; };

What is an anonymous function?

In the previous example, the function is known to be an anonymous
function because it has no proper name. z is
just some variable that points to it.

However, without z the function ceases to exist because the
browsers will clear it from memory since it has nothing point at it. Any loose
objects in memory get discarded because they cannot be identified (remember
functions are also objects).

Using variables as pointers

Speaking of pointers, the previous variable z points to the
function assigned to it. We could use more than one pointer by assigning the
“contents” of z to another variable.

Take for example the following function
assignment:

var z = function(){ return 7; };

Now assign a to
z and b to a to
see what happens:

var a = z;

var b = a;

Remember, assignments are from right to left.

What is the content of
variable z?

The content of variable z is function(){
return 7; }. That’s right, the function script (the string of
words and symbols that make up the function) is the content of variable z, or
what z evaluates to by itself. The only time we get the value 7 is when we call
the function by post fixing a pair of parentheses to z: z();

Because the value of z is a function script,
when we assign z to a, or z to b,
we are assigning the script of the function. This is very powerful in
JavaScript because it means that we can plug in an existing function anywhere
in the program and as many times as we need to.

Now we are able to call the function with any of the three
variables:

a(); // returns 7

b(); // returns 7

z(); // returns7

In summary

Remember, an expression is anything that evaluates to a
one unit. This unit is what JavaScript actually sees from the code we
write, not what the code looks like to the human eye. As programmers we need to
think like a computer by knowing what the computer is going to see when it
encounters an expression.

1- What
is the value of expression z?

Ans: function(){ return
7; }

2- What
is the value of z();

Ans: 7

3-
What is the value of expression a?

Ans: function(){
return 7; }

4- What
is the value of expression a()?

Ans: 7

5- What
is the value of expression b?

Ans: function(){
return 7; }

6- What
is the value of expression b()?

Ans: 7

And just to solidify the concept, here’s a question
unrelated to our examples:

7- What
is the value of expression if(10 > 5)?

Ans: true

true is what JavaScript sees when we write (10 > 5),
which by the way, an expression in an if() statement is actually a
question as far as JavaScript is concerned.

The balloon concept

Question:

If a function was a balloon tied by three strings, z, a,
b, what would happen to the balloon if we cut off string z?

Answer:

Nothing would happen to the balloon, it would stay the same
because a and b still hold the balloon.

What would happen then if we cut both a and b
from the balloon? The balloon would fly away.

If the balloon was our function it would also fly away, it
would be put in garbage
collection mode to be wiped out from memory by the browser.

In the next few exercises we will practice with function expressions
(those assigned to variables) instead of function declarations (the syntax
style we had first learnt). Bear in mind that one function or another will
yield the same result, but it is important to become with both styles.

Function parameters and arguments

A function can have input parameters so that when we
call the function we pass in data arguments. Many times programmers use
the same term for both meanings, either parameter or arguments and it has been
accepted as such, but this is the definition: we give arguments to parameters
when we call the function. A parameter is a physical thing, an interface, an
input mechanism, a temporary variable that gets deleted once the function ends
its execution.

The sequence of our data arguments when we call the function
will always coincide with the physical sequence of the input parameter in the
function parentheses.

For example:

var x = function(num1, num2){

return num1 - num2;

};

The sequence of passing data into inputs num1 and num2
matters because the function’s internal program is wired to the layout sequence
of the input parameters:

x(5,
3);

It will return the value 2 because 5 – 3 = 2

However, if we call the function and write the arguments in
reverse order:

x(3,5);

The function will return the value -2 because
3 -5 = -2

In short, when we call the function, the sequence of
arguments needs to be observed.

 	What happens if we call the function and pass in three
 arguments instead of two?

x(5,3,4);

The result will be 2, as of 5 -3 = 2. The last
argument (4) is ignored because there is no provision to do anything with it
within the function.

 	What happens if we call the function with just one
 argument even though the function is hardwired with two input parameters?

x(5);

In our case it returns NaN, which is a
JavaScript property that stands for Not-a-Number, or not a valid number. That’s
because the output became the subtraction of 5 – num2 and num2
was not assigned to anything and remained "undefined" which is
its original value.

For example, in

var
x = function(input1, input2){

return input1 + input2;

};

If I call the function with two arguments:

x("Tony",
"deAraujo");

I get an output of "TonydeAraujo".

If on the other hand I only use one argument, it assumes the
first input parameter, and the other input parameters will be undefined:

x("Tony");

It outputs "Tonyundefined".

 	We can program as many as 256 input parameters in a
 function.

Do not memorize all these, juts take the time to understand
it and move forward.

The object arguments

The input parameters are written into a function by the
programmer because he/she wants to have some sort of sequence of data input and
for the most part this works out greatly.

However, JavaScript functions have another way to accept
arguments via an object that belongs to (and only to) functions: the
object arguments (use the plural name).

The object arguments acts like an array in the sense
that it can be addressed numerically, but it is not a full featured array
because it only inherits
some functionality from the array family, not all of its library.

Let’s see how this object
works.

var x = function(){

return arguments[0] + arguments[1].toUpperCase();

};

The above function has no input parameters specified.
However, it outputs the first argument we give to it when we call the function,
as well as the second argument in upper case which goes on position 1
(remember, locations are zero based just like in arrays):

x("tony",
"dearaujo");

It returns: "tonyDEARAUJO"

So we can still program our functions as we wish and with no
specified input parameters. Just use the arguments object to numerically
address each data element.

I go into much more detail about the arguments object on my
other book
which, although written earlier, it could be considered a second volume for
this one.

3.3 Manipulating variables with functions

Passing data by value

Up to this point we have used input parameters to hardwire
and interface that inserts data into functions. These interfaces serve as a
bridge between the outer world and the inner works of a function.

Then, we realized that we don’t have to explicitly write
parameters in order to input data into the function since we can program the object
arguments to grab any argument we include when we call the function.

Here’s something new to keep
in mind:

When we pass arguments to a function, like for example:

x(2,3);

The input parameters of the function make a copy
of the data. They don’t really use the same data we write as arguments. This is
because the function call resides on a separate memory area than the function
itself. Later, if you read volume two you will see that this area of
memory where we call functions or assign strings or numbers, is called the stack,
and functions (as well as all other objects) reside in another area called the heap.
There is no connection between these two areas. Hence the reason why the data
is copied or facsimiled.

When we copy data, we are adding values to memory. This type
of passing data from one mechanism to another is called passing by value,
or by adding more value to memory sort of speaking.

Another common data transfer done by value is when we
assign a string or numerical variable to another variable. As you know from an
earlier chapter, primitive variables (those holding strings or numbers) keep
the value in their own memory location. Take for example the following
variables:

var x = 33;

var y = x;

x holds 33 and y also holds 33.
But these are different 33 values. Data has been passed by value
because we added new data into memory.

Passing data by reference

Complex values such as functions, arrays and objects, reside
in the heap while the variable that points to them resides in the stack.
Unlike simple values, these values and their variables are two separate
entities.

Because they are two separate entities, when we assign a
variable pointing to a complex data structure to another variable, the values are
not copied and therefore this exchange is not passed by value. The only thing
we are doing is to assign the reference or passing by reference so that
both variables now point at the same value:

Take for example the array a:

var a = [1,2,3,4];

Now assign the same variable to another variable:

var b = a;

We do not duplicate the contents of the array, function or
object. We now have two variables pointing at the same data. Remember
the balloon with three strings z, a, b?

So when we edit a value in array a, we are in
fact also changing the value of array b, or vice versa
since they both point to the same array.

That is called passing data by reference. There is no
duplication; these variables just refer to the same data. If we delete one of
the variables or assign it to something else, the data remains untouched
because there is another variable holding it in place like it happened with the
balloon.

Functions are closed- in structures

In JavaScript, a function is the only data structure able to protect
its data from the outer world.

What does that mean?

It means that if we declare a variable inside of a function,
it can’t be seen from the global scope (outside of the function).

The global scope is in itself an inner scope if we compare
it to outer worlds, like for example another webpage on a different tab. Everything
we do on a web page is done under the window object which wraps
the whole page. This has nothing to do with the name Windows from Microsoft. window
here refers to the browser displaying of a page, the shell, and it is called window
in any computer system.

The window object is, as far as a web page is concerned, the
outer world or the global scope of the page. Anything declared under the
window object is a property or method of the object window.

We could actually think of the window object as a function
that creates everything else inside it.

When we declare a variable, like for example

var
x = 33;

We are creating this variable in the global scope, which
means that the parent of variable x is object window. To call this
variable, we write:

x;

And it displays 33. But we could also call it like in the
following example and it would work the same:

window.x;

By using dot syntax we are making sure we call the
correct variable x, not some other x from the outer galaxies. For
the most part window is understood and we don’t have to write it down, as we
have seen throughout the book.

And what are those different galaxies? You might ask.

Remember when I said that we could think of the window
object as a big function that holds all the web page functionality
inside of itself and it protects it from other webpages?

Well, I didn’t put it quite like that but it serves the
purpose which is to say that every function acts as a protective parent for its
own data. In JavaScript functions are closed in data structures.

We could actually declare another variable x inside of a
function because JavaScript will accept it without conflict, even knowing that there
is another x declared as a global variable. This is because the global scope
does not see the inner x from the function.

However, the function can see the outer variable x.
That’s right! Functions have access to global variables because functions are their
siblings. A function can see the outer variable world, but the outer world
cannot see what’s inside of a function. The siblings of a function can
see the function, but they cannot see what is inside of the function. The good
news is that JavaScript always picks the closest identifier called upon.
I mean, if we would call x from within the function, JavaScript would grab the
first x that sees which is the one inside of the function. So, even if there
was another x outside of the function and knowing that the function has access
to it, the inner x would be JavaScript’s first choice if we ever addressed x
from within the function.

For example:

var x = 33;

var test = function(){

 var x = 5;

 return x;

};

Call function test:

test();

It returns 5.

So, how would we address the outer x from inside
of the function if we wanted to use its value in the function?

window.x
would come to mind.

We will see next how to access the global x from
within the function.

“This” as an object placeholder

What if we wanted to return the outer variable x,
instead of the inner x like we did on the previous example?

In that case we would have to use dot syntax to
address the global x:

var x = 33;

var test = function(){

var x = 5;

return window.x;

};

test();

Now it returns 33, which is the outer x, not
the inner x which is 5. That’s because window.x
addresses the global variable x which is a child of object window.

Because JavaScript is very dynamic and also because we
should write code as portable as possible (one that could apply to any object,
not just the window object), programmers have come up with a generic
placeholder to properly address the object currently calling the variable.

This placeholder is the word this.

If we substitute the expression window.x for this.x,

at the time of execution JavaScript will search for the object owning
the property being called upon, and substitutes the placeholder this
for the correct name, which in our case is object window.

But you might ask, isn’t function test also an object and if
so, isn’t the owner of this.x the function itself, instead of
object window?

Not really (but it is a great question). Who is the
owner of the act of calling function test()?

Ans: The object window owns the command test().

Now if function test(){} was a method inside of some
other object, then this would
no longer represent window, it would represent the other object.

Just as an example please look at this sample script:

var
x = 33;

var myObject = {

 x: 7,

 test: function() {

 var x = 5;

 return this.x;

 }

};

There, we have a global x with the value of 33, another x with
the value of 7 that belongs to myObject , and another x with the
value of 5 inside of the function belonging to myObject.

When we call the method test():

myObject.test();

It prints out 7 which is the second x, the one that belongs
to myObject. window is no longer the immediate owner of this.x
because myObject is.

I have underlined earlier that this
gets assigned “at the time of execution”, not only because the substitution
happens at the time of execution and not any earlier, but also because the
object owning the property may change from the time the property was declared
to the time the property is being called upon. JavaScript is a dynamic language
and we need to be careful with our assumption of what is going to happen
dynamically. We will see ownership confusion happening and how to tackle each
situation as we code more advanced scripts (for more of that please read JavaScript
Objects Functions and Arrays Explained).

Here’s the original function written in a more portable
format where this replaces window:

var x = 33;

var test = function(){

 var x = 5;

 return this.x;

};

test(); (It
returns 33 instead of 5).

3.4 Lab work 12

Part A: Expressions, statements, arguments

(A link to my answers will be posted at the end of this
page. You may actually navigate to the forum to mentally answer the questions
because the answers are not visible until you click on the individual answer
button.)

Let’s review some of the concepts we have covered in this
section. Please try to answer all questions before you check my answers.

In general an expression is something JavaScript summarizes
into one unit, and a statement is a complete sentence representing a
command and terminated by a semicolon.

1- In
the following example what are the expression(s) and what are the statement(s)?

if(10
< 11) {

console.log("I love JavaScript");

}

2- In
the following function assignment what is the value of variable addTwo
and what is the value of addTwo with post-fixed parentheses addTwo()?

var
addTwo = function (){

return 3 + 2;

};

3- In
the declaration of the above source code, which section of addTwo is
known as an anonymous function?

4- On
the function assignment from question 2, if I assign variable addTwo
to a new variable x, and then later I reassign addTwo
to the number 33, what will the value of both variable x and
variable x() become?

5- What
are function input parameters and why do we need parameters at all?

6- The
object arguments is native to functions. How would we write two console.log
statements, one to display the first value from object arguments,
and the other to display the third value from object arguments of
a function?

 	Answers and further explanation can be found here:

 forum
 | bit.ly/1qqmwvg

Part B: Passing data by value and by reference

(A link to my answers will be posted at the end of this
page. You may actually navigate to the forum to mentally answer the questions
because the answers are not visible until you click on the individual answer
button)

1- Below,
I have declared two variables. Variable b which has a numeric
value of 33, and variable a which is assigned to the value of variable
b:

var b = 33;

var a = b;

a) Was
this an assignment by value or an assignment by reference?

b) What
happens to the value of variable a, if I add 1 to b?

2- Below
I have declared and assigned two variables. The first variable, c,
is assigned to an array. The second variable, d, is assigned to a
function.

var c = [1,2,3];

var d = function(){ return 9;};

a) Suddenly,
I assign the value of c to d, like d = c; What is now
the value of d? What happens to the previous value of d
after the reassignment?

b) What
is then the value of d if I reassign c to value null?

c = null;

3- In
the following script, what will be the output of function myCastle()
when we call it?

var f = 33;

var myCastle = function() {

 var f = "Santarem";

 return f;

};

myCastle();

4- How
would you rewrite the script to output the outer variable f, instead of the
inner variable f?

5- Which
object acts as the parent for all global variables in a normal web page?

6- What
data structure in JavaScript has the capability of wrapping its elements in a
private manner?

 	Answers and further explanation can be found here:

 forum
 | bit.ly/1rm2pUg.

Part C: Find and replace a word in a string

The goal for this project is to create a mechanism that finds
a word in a paragraph and replaces it with another word. The idea is to replace
brown with red on the following paragraph:

"The quick brown
fox jumps over the lazy dog."

The tools to use are as follows:

 	Several variable names to be used as helpers:

 paragraph – assigned to
 the original paragraph.

 tempArray – assigned to the
 result of converting the string to array.

 oldWord – assigned to the
 word "brown", the one we search for in order to replace.

 newWord – assigned to the word "red",
 the one we want to use as a replacement.

 	split()
 which converts the string into an array of separate words.

 The result of splitting the string will be assigned to an array called tempArray.

 (The reason for converting the string sentence into an array of words is
 so that we can target the desired word to replace).

 	A for loop. The loop will traverse the array
 in order to find the targeted word and replace it.

 	join()
 which will later reconvert the array back to string.

We first split into array, then search and replace, then
convert back to string and assign the result back to the variable paragraph.

Finally we use console.log which prints
variable paragraph displaying the end result.

It may sound complicated but it becomes easier after doing it
the first time.

Here’s a recipe guide:

Declare the original string variable.

Convert the variable into individual words.

Introduce the word that needs to be found.

Introduce the new word to replace the existing word

Iterate over the array to find and to replace the word

Reconvert the modified array to string by assigning it to the original variable

Display your results

Take your time to think about it. Should you need an editor
use jsbeautifier.org to write your script. Then paste it onto the
Console for testing purposes.

 	For a quick peek or further explanation and my own final
 version of this project please refer to the

 forum
 board | bit.ly/1pqFAcC.

 Or just the raw file | bit.ly/1uVMHjS.

Part D: Using a function to save and recall our
code

Great job! Now let’s take it one step further:

Let’s save the script in a function called findReplace.

The idea is to convert both variables oldWord and newWord
into input parameters, instead of declaring them in the script like we’ve done
before. This makes our search and replace more flexible because from this point
on we can search for any word and replace it with any other word we want.

Use either choice of function style:

function findReplace
() { }

or

var findReplace = function() { };

I will use the first option but either one will be fine.

Don’t forget to include the input parameters.

Once you’re done, call the function by choosing any word and
replacing it with any other word of your choice.

Examples:

findReplace("brown",
"red");

findReplace("quick", "slow");

findReplace("dog", "cat"); ... you will have a
problem with this one because of the dot at the end of the paragraph.

 	For a quick peek or further explanation and my own final
 version of this project please refer to the

 forum
 board | bit.ly/1rtG4EK.

 or just the raw file | bit.ly/1ypiKg3

Part E: Making the search and replace more portable

On the previous project we created an automatic find and
replace script, but it only worked with variable paragraph. It
would be nice to have a portable function so that we can apply it to other
variables or even to loose strings.

At this point it should be obvious the importance of using
functions to create methods that can be reused in more than one application.

In order to make the project more portable we need to add a third
input parameter, one which represents the targeted variable or just any
string value for that matter.

1- All
we have to do is to add a third input parameter and replace all the paragraph
instance names from inside of the function, to this new input parameter’s name.

I have called my input parameter data.

 	For a quick peek or further explanation and my own final
 version of this project please refer to the

 forum
 board | bit.ly/1mqMRhT.

 Or just the raw file. | bit.ly/1uijwc9.

If you can’t think of an example to test your scrip please
look at the forum board for two samples of test data. You should find them
right below the script we have just discussed.

p.s. I’m so happy that you have made it this far, thank
you!

We’re almost done with the JavaScript lectures and exercises. Then, JSON and
AngularJS will be optional studies that you can tackle later on if you need to
take a break. However, please keep this truth in check: “out of sight, out of
mind”. You will forget if you don’t keep practicing regularly, then you will
have to read the book from the beginning again.

3.5 More branching techniques

The switch

So far we have learned about the if(),
possible else if() and optional else conditional
statements, right?

if(true) {

// do this;

} else if(true) {

// do that;

} else {

// do this one
instead;

}

You can do any possible outcome by using the above powerful
combination of if, elses.

Sometimes however, a different kind of branching makes more
sense. I’m talking about the one known as Switch and I just want
to make sure it is explained in case you need to use it.

It is called switch because there are several
possible outcomes from which JavaScript makes an executable decision. These
possible outcomes are all in off state, and JavaScript will turn one
on based on a matching Boolean condition, as we you’ll see next.

Here’s the layout diagram:

Fig 16

On line 1 we declare a switch. This switch function method
takes a condition from which JavaScript will compare all the outcomes in order
to select one of the possible executions.

In our generic example (based on the cases we have), the
“condition to match” should be substituted by either a 1, 2, or 3, so it
matches one of the cases presented. If any of these cases matches the
condition, JavaScript executes the code given by the case. The Boolean true is what unlocks the case.

Example: if the correct case is
3, JavaScript will ask:

“is it 1? Ans: false”,

is it 2? Ans: false”,

is it 3? Ans: true”, run the code,

BREAK and END.

After the execution of a case, JavaScript exits the switch
due to the break command that follows. If we don’t include the break
command, then JavaScript will search for more possible results and you may have
several correct answers instead of just one. And even if there are no other
correct answers, JavaScript still reads all the other conditions which could be
a time delay if the switch has thousands of possibilities programmed in it. So
the break is a very important implementation.

Whenever there are no conditions that match, the optional default
takes over as the final and true option and its code is executed. Notice
that I did not include a break after default. You could, but it is not
necessary because JavaScript exits the switch at this time anyway.

For further reading please visit this
post | bit.ly/1r4XRCL
on the forum. Let’s practice a bit with switches.

3.6 Lab work 13

13a: Switch - using Boolean matches

This script will
employ a switch with 4 possible outcomes. The user will try to guess a number,
and the program will display a feedback message of either, too low, too
high, right! or That’s not a number:

1- Create
a switch inside of a function named guessNum.

2- This
function takes one input parameter, num .

3- The
switch should be hard wired to true.

Example: switch(true) *

4- The cases
should have the following conditions:

num <= 3
displays "too low"

num >=5
displays "too high"

num === 4
displays "right, the number was 4"

for default use "That's not a number"

5- Call
the function by passing a numeric argument like for example:

guessNum(2);

guessNum(7);

guessNum(4);

guessNum("a");

 	For a quick peek or further explanation and my own final
 version of this project please refer to the

 forum
 board | bit.ly/1qqwkWc

 or just the raw file | bit.ly/1r50ODq

 	* Think of expressions.

 num <= 3 will
 be converted to true or false. The same goes
 for all the other cases and therefore the switch to match should be a
 Boolean true.

13b: Switch - using literal matches

On this next project
we are going to use the following:

 	A function named myFavColor,

 	A prompt() to get
 an input from the user,

 which will be converted to lower case so it matches

 one of the cases. (JavaScript is case sensitive).

 	Some confirm()
 outputs so that we don’t always use console.log,

 	And some meaningful
 statements about color.

The statements are as follows (you can always make
your own

or copy from this

raw file | bit.ly/1ypn1A2):

 	Green is the color of balance and growth.

 	Blue is the color of trust and peace.

 	Indigo is the color of intuition.

 	Purple is the color of the imagination.

 	Orange is the color of social communication and optimism.

 	Sorry, that color is not in the system yet!

1- Please
remember: the purpose of creating a function is to recall the program without
having to retype it again. It works great for testing purposes and in real life
as well. So the whole switch should be wrapped in a function. Please feel free
to choose the function style you prefer, a function declaration, or a function
expression which is the one assigned to a variable.

I will use the first method:

function
myFavColor() {}

2- Inside
of the function, the prompt() will be assigned to variable color.

I will convert the input from the user into all lowercased letters so
that it matches my cases which will be in all in small letters.

var color = prompt("Enter your favorite
color").toLowerCase();

3- The
switch expression should be the value of the variable color:

switch (color) { }

4- Each
case needs to be in small letters because the input will be converted to
lowercase:

case
"green":

5- The
output from each case should be a confirm() followed by a break:

confirm("Green is
the color of balance and growth.");

break;

6- When
no color matches, the default execution takes over and it could be
something like the following (no break is necessary):

default:

confirm("Sorry, that color is not in the system yet!");

7- Finally,
don’t forget the two closing braces: one for the switch and another for the
function (the ones shown in red on the top of this page , steps 1 and 3).

 	For a quick peek or further explanation and my own final
 version of this project please refer to the

 forum
 board | bit.ly/ZcaDUC

 or just the raw file | bit.ly/1DwVBsd

To test your script just call the function and follow the
prompts:

myFavColor();

13c: A repeating switch routine

Sometimes we want the script to run repeatedly such as for
example in a game, until we purposely decide to exit.

In order to make our previous script repeatable all we have
to do is to call the function myFavColor() just before we close the
function, and the function will trigger a new instance of the game.

When I first introduced the confirm() mechanism I had
mentioned that confirm() can return a Boolean true if we press OK, or a Boolean false if we press Cancel. We can catch this returned data to
trigger the new function call, and one way to do it is to add the
following code just before closing the outer function (the variable name replay
is arbitrary):

var
replay = confirm("click ok to play again, or cancel to exit")

 if (replay === true) {

 myFavColor();

}

} <-- this curly
brace is already there, it is the very last brace on the bottom.

So in a sense we grab the Boolean true from the
confirm mechanism and reuse it to call myFavColor();

 	For a quick peek or further explanation and my own final
 version of this project please refer to the

 forum
 board | bit.ly/1ogVffh

 or just the raw file | bit.ly/1vdaYQT

13d: Using a while loop to repeat the script

We have not covered while loops. The only loops we have
covered were the for loop for arrays and the for in loop
for objects. There are many different styles of loops and they are all based on
the for loop we first learned.

A while loop is one that runs indefinitely
until something triggers the loop to exit.

A popular example of a while loop is the mechanism that
scans the computer keyboard. The wile loop keeps reading the input from the
keyboard until it gets a signal from one of the keys which in turn triggers
another mechanism.

The design for a while loop is as follows:

while(this Boolean
expression is true){

// do this stuff;

// something to change the condition to false in order to end the loop;

}

Until that something triggers a Boolean false, the while
loop will always run.

We can use this while loop on our previous color description
game to run the switch forever until the user clicks on the confirm()’s cancel
button. In this way we don’t have to recall the function again, all we have to
do is to keep asking the user to enter his/her favorite color, until the user
press the cancel button.

So where do we implement the change from Boolean true,
to Boolean false?

We implement it on each case because only one case will
apply. When the user confirms the output message for the case, the user also has
a chance to press cancel when he/she wants to exit the game. Until the user presses
cancel the game will go on forever.

Please look at the next image to see what I mean:

Fig 17

On line 3 we encapsulate the whole switch mechanism inside
of a while loop.

While replay is true (which is its initial state),
the switch will run and the loop will restart the switch again and again until
we press Cancel. Pressing ENTER is equivalent to pressing OK and that means to
run another cycle. Eventually we get tired of playing the game and press the Cancel
option on the confirm box which will trigger JavaScript to exit the loop.

Notice how the value of variable replay, which is
originally a Boolean true, is renewed each time an output message is
prompted. This gives the user the opportunity to opt out of the game.

It looks more professional than the previous script we had
done and if you are interested on creating games this can become handy.

 	After you code your own version of it you can compare it
 with mine on the

 forum
 board | bit.ly/1DwVNYo.

 or just the raw file | bit.ly/1sWgeWf

PART IV: ENTERING THE THIRD REALM

Please note:

The book is getting long! If you wish to take a break, this
is the right time to do so because what we are going to cover next is
supplemental, but not part of the JavaScript syntax core.

On the other hand, if you are in a hurry to get to AngularJS
you can safely jump over JSON for the moment and go to PART V: DEFEATING THE
DRAGON.

JSON is a necessary topic to know about since you will be
using it sooner or later, but it is not needed for what we are covering on PART
V.

I hope your time has been productive and I’m really grateful
for the investment and trust you placed in this material.

Tony
de Araujo

4.1 About this section

We have covered a lot of JavaScript territory and there is
so much more to write about. However, it is not a good idea to do it all at once
because it loses its efficiency and defeats the purpose. This is the reason why
I have subdivided JavaScript into several different booklets: to give the
reader time to digest all the data covered in each publication. Continual
practice and repetition with conscious awareness expansion seems to be a better
way to go.

JavaScript
Objects Functions and Arrays Explained goes into more detail about each
JavaScript Library method, as well as providing more advanced practice of concepts.
If you did all the exercises covered up to this point, you should be more than
ready to tackle the other volume.

Another very popular and very inexpensive eBook for
practicing purposes is Draw
Six Lucky Numbers, which covers loops, random numbers and it reviews
functions and arrays. This is a quick project for a Sunday afternoon.

Now we have come to a cross
roads.

The rest of this book will be introducing two very hot
technologies that every JavaScript intermediate to advanced programmer should
know:

JSON (JavaScript Object Notation)
is a way of formatting data to become machine independent. This format is in
many ways replacing XML and being used in modern web programming. In a sense I
have been introducing it from the beginning of the book so this material should
look familiar to you and therefore it will be a relatively short section.

The final area of coverage is about Google’s framework library
AngularJS, which is based on JavaScript.

This library is revolutionizing the way we build websites
and although still in its infancy, it has already made a permanent impact and
you will see why as you get to it. By the time you finish the next few chapters
you will be able to implement dynamic data into your basic webpage in an easy
and comprehensive way.

Please keep in mind that I am only introducing AngularJS, this
is not a complete book about it since the topic spans over several volumes.
What I hope to achieve by writing this material, is to empower you to pursue
further studies of AngularJS. This information will unlock what I consider the
hardest part of getting into AngularJS, the very first steps. Through the
exercises and explanations given you should be able to easily conquer this
first barrier.

4.2 An introduction to JSON

JavaScript Object Notation, JSON (it is
pronounced J SON), is an open standard format that uses human-readable text to
transmit data objects consisting of key-value pairs (JavaScript objects).
It has become an alternate technology to XML in its use for transmitting data
between a server and web application. The term ‘alternate’ may be outdated
because nowadays JSON is the preferred method for web services.

The reason why I am introducing JSON at this point is
because at the time of this writing JSON has become the must know subset of
JavaScript if one wants to build modern web pages and web apps. It should be
now part the any web literacy curriculum.

JSON has achieved such popularity that other languages are
now implementing it in their own vocabulary.

The good news is that you have already been prepared for
this technology throughout the book and it is just a matter of becoming more
aware of its existence.

JSON format is syntactically the same as when we create lists,
being it numeric as an array or with key-value pairs as in an object. We can
also combine the two formats to create a more complex JSON data structure.

 The following is a collection of data written in the JSON
format:

{

"firstName": "Tony",

"lastName": "deAraujo",

"age": 99

}

Or we can also have an array:

[1, "hello", 33]

Please note: If you are planning to convert an array
into a JSON format, avoid using mixed array data types like the array I’ve just
shown you. This is because JSON is supposed to be a language neutral
data exchange protocol and many programming language do not allow mixed arrays
(those containing mixed value types) and this would cause confusion. The
following would be ok because numbers are seen as strings (compare with my
previous example):

["1",
"hello", "33"]

Going back to our first example on the top, notice how there
is no variable assignment to the JSON object or array. The JSON part of the
object is the one that gets exported into other systems in a seamless manner.

When writing in JSON format we must wrap the key in double
quotes. Since we have used double quotes from the very beginning we should have
no problems with that.

JSON will throw an error if keys are not wrapped in double
quotes. Single quotes will not work.

Also none of these data structures terminate with a
semicolon. This is not a variable assignment. JSON data is assigned to a variable
at its destination so that we can manipulate the data, but the data in itself
is exported without variables. The outer most tags wrapping the whole data
structure must be curly braces, like in an object format.

In a more complex design you may see an array of objects.
Arrays work out great to gather a bunch of objects that belong to a certain
class criteria:

Fig 18 (note: missing
outer curly braces and a key for the array. See explanation below.)

This is the data that can be portable from machine to
machine. However, this is not yet a valid JSON object and using it like
this can lead to an unsecure transmission. It needs outer curly braces
and a key name for the array in order to become a good JSON data format as we
will see on the next image.

By writing it this way (plus the outer curly braces) we can
feed it into any machine able to translate JSON data into their own machine
format, much like XML doe except that JSON is easier to implement.

For a while now, web pages have been communicating with the
server by exchanging JSON data. What I mean is that the page loads on your
browser and every time you click on a dynamic field, the page remains the same
but the data is updated via a JSON data format exchange. This is one of the
reasons why becoming aware of this technology is a must.

 	Keep this in mind: JSON-formatted text is also
 syntactically legal JavaScript code. However, the opposite or other way
 around may not be true. This is the reason why, when we learned to create
 objects earlier, I chose to wrap the keys in double quotes, making it
 legal syntax for both JavaScript and JSON.

The next image will show a more extensive example of a JSON
object. You will see the outer object subdivided into two key names: staff
and management.

Each one of these keys, staff/management, will have an array
as a value. The arrays will contain several individual records in the form of
objects. Each object represents an employee from either staff or management.
Let’s look at the image:

Fig 19 see raw file | bit.ly/1uF1qNH

Do you see how that is done? There are two properties: staff
and management.

In our example, the property staff contains an
array of people assigned to it, and each person is also an object with
its own data. Right now we only have "Tony" as staff and we only have
"Judy" as management, but we could add a comma after the
closing brace from "Tony" or from "Judy", and add another
person to each array, as you will see on the picture further down the page.

Don’t get confused here. Arrays are not necessary in order
to create JSON data structures. We can have arrays, strings, numbers and
objects, represented in a JSON structure. Every identifier needs to be wrapped
in double quotes, except for numbers in which quotes are optional. (As noted
earlier, always double quote numbers if they are contained in an array, in
order to comply with programming languages that forbid mixed arrays).

Use jsonlint, a tool to check JSON validation

In order to see if a code block is syntactically well
written in JSON we can check it with an online tool called jsonlint (jsonlint.com). This tool becomes an important
check in order to avoid errors or unsecured JSON data scripts.

Practicing exercise:

1- Copy
the code from the previous image and paste it on the box at jsonlint.
Then click validate. If everything is well written, you should see a
green bar across the page.

2- Try
removing a brace, or adding a variable name, or a semicolon just to see if it
still validates.

Assigning a JSON object to a variable

Now, if we want to manipulate this data after we receive it at
the destination, we need to assign it to a variable. The variable will point to
the data in memory so that we can address it. That’s when JavaScript comes in:
We move data around in the JSON format, and at the destination we assign the
data to a variable if we want to further manipulate the data.

The next extended image will show how we can assign a variable
to the JSON object.

Remember, when writing your code, if you want to validate
your JSON data with jsonlint, you must do it
before assigning the JSON data to a variable and before adding the semicolon at
the end to terminate the statement.

Fig 20 see raw file | bit.ly/1DwXd57.

3- On
this step extend your own object with more data, or copy it from the raw file
below image 20.

If you are writing your own script
and want to validate it with jsonlint, do it before adding the
variable (ex: var employees =) and last semicolon, then assign
the variable employees to the object.

Now that we have assigned the JSON object to the variable employees,
we can edit, add, delete and display the data or
part of the data because the object has a name we can refer to.

Editing the JSON object

The property key staff has an array assigned
to it. The decision to have an array was so that we could include several
objects as part of staff. Each person in the array is an object in
itself. The same goes for key management which is also a property
of the object employees.

Practicing exercise:

4- If
you haven’t done so, copy the raw file and paste it onto your JavaScript
Console.

5- How
would we address staff in order to get a list of its members?

We could use dot syntax in the following manner:

employees.staff;

That would give us a list of employees from the staff array.
Your Console might display a short version of it, something like object,
object, object, which represents each employee, but in real life
you would get the complete list. To see the contents of each object, just click
on it (see the image below). That’s how the Console treats the output.

Fig 21

NOTE: The proto property is a list of all the methods from
the JavaScript library that apply to this object. Just ignore it because it has
nothing to do with JSON and it is not portable. I cover all these library
methods on the Volume
2 book.

6- How
would we address the first object in the staff array?

employees.staff[0];

Explanation:

We start with the outer object which is employees, and then address its staff
member. Then, since staff holds as array of inner objects, we address
the first element of the array which is at location zero, and the result
is as follows:

Object {firstName:
"Tony", lastName: "deAraujo", age: 99}

7- Now
try addressing the object in the array held by staff at the position containing
Mary. She is the third element of the staff array, which corresponds to
position 2.

See the result here: raw file |
bit.ly/1sWuXAy.

8- And
how would we add a new employee to the staff class?

This is the new employee we need to add:

"firstName":"Loren", "lastName":"Santos",
"age":29

Since Loren is an object that needs
to be added to an array, we could use the array method push() to push it
into staff: (see raw file | bit.ly/1wKTPPB
).

employees.staff.push({"firstName":"Loren",
"lastName":"Santos", "age":29});

9- Try
adding a new member to employees management, like for example:

"firstName":"Peter", "lastName":"Jones",
"age":55

When finished, try addressing (displaying)
this new member at its location in the array assigned to management.

See raw file | bit.ly/1tXHoQM

10- Call the employees property
management to see what it contains:

Great! Now let’s just look at two useful methods to work
with JSON data structures.

JSON library methods

JavaScript has two functions to parse regular JavaScript
into a JSON format, or vice versa. Once data is converted into a JSON format we
can send the data across the globe into other machines.

Let’s see how they basically work.

JSON.stringify

The function stringify compresses the object
by stripping its white space and converting it into a string so it can be exported.

Taking for example our previous object employees (as
seen on image 20), we can strigify it like this:

var
myString = JSON.stringify(employees);

I have assigned the result to variable myString (any name
will do) which is now a string variable and contains the following data:

"{"staff":[{"firstName":"Tony","lastName":"deAraujo","age":99},{"firstName":"John","lastName":"Smith","age":33},{"firstName":"Mary","lastName":"Adams","age":29}],"management":[{"firstName":"Judy","lastName":"Garland","age":43}]}"

Now this string of data is ready to be sent via http
or any other method to a different location or machine. Any programming language
with a way to decode JSON (convert to or read to JSON) will be able to use this
data.

NOTE(1): If you want to validate this data with
JSONLINT.com you need to exclude the variable name and the outer quotes.

NOTE(2): When using stringify, functions (methods)
inside of the original object will not be included. This is intentionally done.
The only data that gets stringified are the string key/value pairs which are
wrapped in quotes (as well as numbers).

NOTE(3): There is a way to prevent JSON from
compressing the data. That implementation will be discussed when we cover the
third argument for stringify, a few pages from now.

Using a second argument as a filter on stringify

NOTE: If this is too
much information for now, just read it, understand it, be aware of it and
return when you want to revisit the subject.

The method stringify can take a second argument to filter
out everything except what we want to include during stringify. This second argument
can be an array, or it can be a function, depending on what we
are trying to accomplish.

(a) When using an
array as a filter

When we use and array as second argument, we pick and
choose the data we want to strigify.

As always, the first argument is the object name being used.
When the second argument is an array, JavaScript only strigifies the key/values
provided in that array. The array acts as an inclusive filter.

For example, I want to stringify just the array staff
and only just the first name of each employee:

var
someString = JSON.stringify(employees, ["staff",
"firstName"]);

JavaScript captures staff and grabs its firstName
property. The result of this serialization is as follows:

"{"staff":[{"firstName":"Tony"},{"firstName":"John"},{"firstName":"Mary"}]}"

Here’s another example where age is also included (but
not lastName):

var
someString = JSON.stringify(employees, ["staff",
"firstName", "age"]);

What if we want the first name of both staff and
management?

var
someString = JSON.stringify(employees, ["staff",
"management", "firstName"]);

It results in:

"{"staff":[{"firstName":"Tony"},{"firstName":"John"},{"firstName":"Mary"}],"management":[{"firstName":"Judy"}]}"

NOTE: If you try validating this result with jsonlint in its raw format, it will fail. The
reason is that we need to strip the outer quotation marks (the ones making this
whole script a string). Once you remove the outer quotes you will get a green light
from jsonlint. There is a method to convert this string back into an object.
This method will be discussed on the next chapter.

Try this
one on your own:

If you want some practice, try stringifying both staff
and management but only the last name and age of each employee.
Use a variable name of your choice.

(b) When using a
function as a filter

So far we have used an array as a second argument for stringify.
That allowed us to pick and choose which elements we wanted to include
in the stringification.

With a function as a second parameter we can do the
opposite, exclude elements, or modify how certain elements will be
represented.

The function takes two arguments in its input parameters.
The first argument is the key and the second argument is the value.
These two parameters will represent every key and every value of the JSON
object. In other words, because we are grabbing each key and each value for
evaluation before processing, we can write a script in the body that addresses
specific keys and specific values, as the function scans each key and each
value (see the image below).

When it comes to parameter names, it doesn’t matter what you
call them, what matters is their position which needs to be (key, value). You
can call them (k,v) or (x,y), or anything else.

As an example, the following image uses the function filter
to exclude the age from the stringification:

Fig 22 see raw file | bit.ly/1v71zuT.

What happens here is that an undefined value
will not be included as a JSON file because in JSON, undefined represents
and empty key/value pair, so age will be stripped from the output.

As another example, let’s say that you want to show the
label age but with a value of n/a. You could change the return
value from undefined which strips the key, to the following:

return
"n/a";

Now "age" will show "n/a" as a value.

Great!

Moving along, what about programming the opposite, like for example
when we receive JSON data and want to reconvert it back into an object?

We will look at the reconversion in a few minutes but let’s
first discuss how to prevent stringify() from compressing the
data (I mean how to keep the original white space), because it completes our
discussion on the function stringify().

Using a third argument on stringify() for controlling
white space

Even if we don’t want to use a second argument to filter out
the data (like for example an array or a function as explained on the previous
page), we could still use a third argument (or parameter) to control the
white spacing when we stringify.

Taking for example our original employees object (see
raw file | bit.ly/1DwXd57),
instead of stringifying it like we did before:

var
myString = JSON.stringify(employees);

We could instead, add a third argument, which would activate
the third input parameter of function stringify:

var
myString = JSON.stringify(employees, null, 4);

And the output would look like in this raw file | bit.ly/1oh4ts1.

First, notice how we made JavaScript read the third argument
without having a second argument:

 	We made the second argument null. That works
 because now we can have a third argument.

Second, the number 4 is the number of indented spaces. There
is no provision for adding lines but JavaScript automatically adds lines when
we ask for indentation. The maximum number is 10.

Did you notice the second sample on the raw file? It shows dots
instead of spaces.

That was done by substituting the third argument from a number
to a string:

var
myString = JSON.stringify(employees, null, "...");

This last one will not validate if you test it on jsonlint,
but it serves to illustrate the third argument in stringify.

JSON.parse

To convert the string back into an object just like we had
it before, we use the method JSON.parse.

See raw file: myString
| bit.ly/1rtZclU.

var myEmployees =
JSON.parse(myString);

Variable myEmployees is now an object with the same
values as our original employees object.

Note: You will get an error if the data being parsed is not
a valid JSON.

Properties of non-array objects are not guaranteed to be
stringified in any particular order (which makes sense since key-value pairs
don’t really need a numeric order). Do not rely on ordering of properties
within the same object when stringifying.

In summary

I hope this introduction to JSON has given you the taste for
it and inspire you to start your own data import export projects.

Here are a few useful links:

 	JSON.org, the official
 website.

 	JSONLint, the JSON
 validator tool.

 	Wikipedia,
 an independent reference of resources.

 	Mozila
 Foundation, a good glossary and resource center.

 	JSON vs XML – A
 comparison of these two technologies written by JSON.org.

Before we move on, let me just include a brief introduction
of another technology where JSON really shines: NoSQL.

Document-oriented databases for JSON data

Modern web applications have data needs that relational
databases like MySQL may have trouble delivering. A massive change is underway
and is disrupting the database world as we know it. Today, three interrelated trends
are Big Data, Big Users, and Cloud Computing – all pushing the adoption of
NoSQL technology.

What is NoSQL?

“A NoSQL or Not Only SQL database provides a mechanism for
storage and retrieval of data that is modeled in means other than the tabular
relations used in relational databases.”

Wikipedia.

The reason for the term "Not only SQL" database is
to emphasize that they may support SQL-like query languages.

NoSQL is increasingly used in real-time web
applications (example: Facebook’s news feed and Twitter).

NoSQL are document-oriented databases. Compared to
relational databases, a collection of data could be considered analogous to a table
and a document analogous to a record (a document could be encapsulated and
encoded in one of the standard formats such as XML or JSON).

A list of NoSQL databases can be found here: nosql-database.org.

A good starting point if you want to get into this
technology right away is to download CouchDB,
which stores data as JSON and it can be queried in JavaScript . You can use it
on your local computer and learn its operation from there. CouchDB is an Open
Source project supported by Apache. A collection of basic lessons can be found
here: Guides.

PART V: DEFEATING THE
DRAGON

Welcome to modern DOM scripting.

October 2015

5.3 First solid steps into AngularJS

Intro

AngularJS is a framework for developing dynamic web pages.
It was created by Google to address multiple problems with conventional web
design. As many other developers, I believe AngularJS is the hottest technology
available and the future of web design, and because it is backed by Google,
there will be plenty of resources to make it stick.

In a way, AngularJS extends HTML attributes, giving them
superpowers thanks to the library provided by AngularJS. The library is
connected to your webpage via a link just like you would do for CSS or
JavaScript.

HTML was designed for static pages. AngularJS is what HTML could
have been if it was designed for modern applications.

At this point you really need to know basic HTML because we
will be working with a standard HTML page. You don’t need to be an expert, the
very basic stuff will do. If you need to refresh your mind or learn from
scratch, give Codecademy a visit. You
may see me there at times as a moderator, especially on their JavaScript
exercises, but their HTML tutorial is pretty cool and free!!

Links of interest (for future reference):

AngularJS.org | Wikipedia | Documentation.

Before you get yourself lost reading their material let’s
become familiar with the basic setup and what it can do for a web developer
trying to design a more dynamic web page.

Welcome to modern web design!

Directives

How does AngularJS extend HTML capabilities?

First we provide a link on the web page to the AngularJS’ library,
just like we would link to a JavaScript or a CSS file.

Then the page becomes linked to this huge plethora of
methods that can be used by you.

Let’s suppose that we want to supercharge a DIV and nothing
else on the page, like for example, you want to create a box in your web page
with some dynamic data.

After linking to the library, all we have to do is to apply
a directive to the DIV. The directive is ng-app, which makes
this DIV an application controlled by AngularJS. The ng-app directive tells
AngularJS that this DIV needs to be scanned for possible AngularJS
functionality. We will see how this works in a moment.

If we want the whole page to be scanned and mapped,
we apply the same directive to the HTML tag instead of applying it to a
DIV. Actually, any HTML tag able to be a container can become an Angular
supercharged element without even affecting the rest of the page. We could use
a paragraph tag, or a form tag, or an ordered list. For the most part however,
AngularJS is so friendly that we don’t mind associating the whole page to it.

Please look at the following image to have a better idea of
what I mean:

Fig 23 see raw file | html

The above image is a basic HTML page with nothing in the
BODY but the word hello.

Well, that is not true. At the bottom of the BODY (as the
last thing to be written in the body) we also have a link to the AngularJS
library which should be (as of October 2015):

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.7/angular.min.js"></script>

You can also substitute the http for an https.

In the future, to get the latest link version, go to angularJS.org and click on Download. A
window will pop up with different ways of accessing the library. Copy the link
on the CDN window and paste it in your web page inside of the opening script
tag as shown above. For our exercises you don’t have to do this step, just copy
the raw file (see link below the image) as your starting HTML skeleton page.

The reason to include the link to the library at the very
bottom of the BODY container is to make sure that all the HTML elements load
into the browser before calling the library. As an alternative we could include
the link in the HEAD section like we normally do for CSS, but then we would
have to make sure that there were no side effects by calling the library
prematurely.

On line 6 I have included a directive ng-app.
That will tell AngularJS that everything within the <html> and </html>
tags can use the tools available at Google’s AngularJS library. In other words,
the whole HTML page has been extended with more functionality. The trick is to
know what functionality is available and what we can do with it.

There is a lot to learn about it and I will provide links
for further studies after we conquer the biggest barrier: The first
step toward AngularJS’ world.

What is a library?

A library is a collection of functions which are useful when
writing web applications. They can be called when needed.

What is a framework?

A framework is a particular implementation of a web
application. In a framework your code fills in the details. The framework is in
charge and it calls into your code when it needs something “app” specific.

What is a directive?

A directive is something that introduces new functionality
to the existing standard syntax. It expands the syntax's capability, it’s a way
of teaching an old dog new tricks. By attaching a directive to an existing HTML
tag, the behavior of that tag changes by what is written on the Angular's
library under the name of such directive. In some cases directives specify
global behavior, while in other cases they only affect a local section, such as
a block of programming code.

AngularJS teaches the browser new syntax through constructs
called directives.

If you ever built web applications before, Angular will be a
total new paradigm. If you are new to web design, AngularJS will teach you
modern and best practices and consider yourself lucky because you don’t have to
forget the old in order to learn the new.

Yes there is a price to pay at first, you lose flexibility.
What you gain in return is consistency, speed of development, and something
that works today and tomorrow. You no longer need to know how to build a motor
in order to drive the car, but the more you know the better you will take
advantage of what the car has to offer. AngularJS is not an easy technology to
learn, but if you have made it up to here in this book, then you have gotten
the discipline and skill to learn and master AngularJS.

What does ng-app mean?

It just tells the browser to use AngularJS as the root of
the page, or as the root of the DIV, depending where we insert the ng-app tag.
In this way everything will be relative to AngularJS which provides core
functionality to your page.

In this example,

<html
ng-app>

The whole page uses AngularJS as its root.

In this example,

<div
ng-app>

Only this DIV uses AngularJS as its root. The rest of the
web is not aware of AngularJS.

We can also name the application we are building by adding
the app name to the directive:

<html
ng-app="myApp">

This becomes very useful as you will see soon.

Because the application name inclusion on the ng-app
directive is very common, you will see the following syntax in many articles
out there:

<html
ng-app="">

That’s another way of writing a directive with no name,
instead of just writing ng-app by itself

 	Note: Do not include a name unless such name exists
 as a Module because AngularJS will not work. We haven’t covered
 Modules yet so, for now, we only use ng-app by itself, and it is
 perfectly fine to do so even in production.

 	Note: Notice how ng-app="" does
 not have a blank space between quotes. A blank space would be considered a
 name (even if blank) and a Module under that name would have to be
 created. Again, let’s just use ng-app by itself for now.

No more DOM manipulation tasks

The Document Object Module or DOM is the map layout
of all existing HTML tags or nodes. In order to write a result of a JavaScript
program in a web page we need to address the DOM location where we want to
implement the scripted result. This has always been a problem due to browser
inconstancies and implementation errors. Then jQuery was
invented. jQuery is a library of methods used to address the DOM. When properly
implemented, jQuery works great. Unfortunately the usage of jQuery has become
a problem because many users do not learn JavaScript, they just memorize jQuery
solutions and jQuery is manually driven leading to implementation errors.

AngularJS has come to the rescue. The low level
implementation will no longer be done by the programmer him/herself; it will be
done by AngularJS based of the programmer’s expressive desires for a certain
outcome. The programmer has become a plumber; it plugs in the correct directive
for the desired outcome. This will assure best practices and error free
implementations. With AngularJS you are freed from low level manipulation tasks
and you can use your extra time to think of solutions instead of code grammar
and security implementations.

Of course, if you know jQuery you can still use it with AngularJS,
but I suspect that AngularJS will develop more and more ways to avoid some of
the jQuery popular implementations.

In AngularJS, the only place where an application touches
the DOM is within directives. If however you need to access the DOM
directly you can still do it through the writing of custom directives | bit.ly/1tYW95Q

Ok, we now know a bit about directives.
Let’s review the meaning of expressions so that we can expand our
AngularJS topic.

What is an expression?

Do you remember from a previous chapter what expressions were?

An expression is something JavaScript evaluates to a single
value.

2 + 5;

// evaluates to 7

"tony"

// evaluates to tony

"hello".toUpperCase();

// evaluates to "HELLO"

and so on...

If, on our web page we have an expression that needs to be
passed into AngularJS in order to be evaluated by the JavaScript interpreter, we
do so by wrapping it in double braces:

{{ this expression }}

AngularJS will write the result of a JavaScript evaluation
exactly where the braces are located on the web page. This is not an AngularJS invention;
it has been implemented by other libraries away before AngularJS. Just take a
quick look at Mustache
| bit.ly/1DxihbF.

Let’s play with a couple of examples. It will not be
anything practical but it serves to familiarize us with passing expressions to AngularJS.

Note: You still can use jsbeautifier.org as an editor but
unfortunately you cannot save your files unless you paste your code onto
another plain text editor. NOTEPAD comes to mind. If you’ve done HTML before
you probably already have a favorite editor that you can use.

1- First
we fetch our sample HTML script:

raw file

2- Paste
it onto a local editor like for example Windows NOTEPAD (I also use the free and colorful
Programmer’s Notepad from pnotepad.org).
Save it as an HTML file. I will call my file ang2.htm.
Make sure you create a new folder just for our examples.

3- To
test it, go to your file list and double click on the file. Since it is an HTML
file it will open in the browser and you should see the word hello.

4- Now
that we know the file works, let’s go back to the editor and add an
expression. Replace the word hello with the following sentence and
expression:

Convert the expression tony to
uppercase: {{"tony".toUpperCase();}}

5- Save
the file, refresh your browser or reopen the file, and you should see the word
TONY in upper case.

See the image below for an explanation:

Fig 24 see raw file | html

The HTML script is still the same as before. We only
replaced the word hello with the sentence seen on line 11, followed by {{"tony".toUpperCase();}}.

Anything written inside of the double curly braces is to be
evaluated by JavaScript.

Do you see yourself adding JavaScript evaluation results to
your existent HTML pages?

Even if you don’t make the whole page an AngularJS app, you
could still reserve one paragraph or one DIV for some output you may need to
ask AngularJS to process.

On the next image we have the same script but this time I only
reserved one little space inside of a DIV for AngularJS processing, instead of
declaring the whole web page as an AngularJS app:

Fig 25 see raw file | html

From line 8 through 12 I declared a DIV and assigned it to AngularJS
by including the directive ng-app.

On line 10, I wrote a message in plain text, and then
I included 10 + 9 inside of the double braces. This will instruct AngularJS to have
this expression evaluated by JavaScript.

I didn’t write any JavaScript code. AngularJS took care of
the internal process. This is programming at a higher level of abstraction. Do
we still need to know JavaScript? Of course we do! Your knowledge of JavaScript
will become necessary when we go beyond this simple testing.

Do I always have to include my expressions on my web
page?

No, we are doing it just for testing and understanding purposes
before introducing the module and controller. But yes, you can always do this
in production and it should work for simple stuff.

ng-init

Let’s introduce another directive so that we have more tools
to play with.

 	An ng-app directive initializes the AngularJS
 application.

 	An ng-init directive initializes some data
 to be used on the application.

Let’s see how ng-init works in its simplest form:

1- Open
your basic HTML script and modify the HTML tag to contain a second directive as
follows:

<html ng-app ng-init="city='Harrisburg';
state='Pennsylvania'">

2- Then
in the body write the following:

Do you know {{city}} is the capital of {{state}}?

3- Save
it as ang5.html and test it.

You should see the following sentence on your browser
display:

Do you know Harrisburg is the capital of Pennsylvania?

Fig 26 raw file | html

Do you see what happened?

We initialized two variables by using ng-init:
city and state, and then we were able to process them via two
expression tags on the HTML output. There was no need to address the DOM with
complicated scripting. There are better ways to do this but right now the
purpose is to become familiar with the AngularJS’ basic tools.

By initializing the arguments city and state
on the HTML tag they became available to use on the web page. However these
variables are normally placed on a separate sheet.

ng-bind

Just to illustrate the purpose of the double curly braces,
let’s write the same script in a different way: by using a directive
called ng-bind.

6- I’m
only doing it for variable city and not for variable state just
to show how both will work:

Do you know is the capital of {{state}}?

And the display will be:

Do you know Harrisburg is the capital of Pennsylvania?

Actually, AngularJS always replaces the curly braces with
ng-bind in its internal process. If you don’t mind writing the extra
SPAN tag this actually works a bit faster. When you refresh the page (CTRL
f5 on Windows) and focus on the output, you will see that Harrisburg shows
up immediately, whereas Pennsylvania will first show the braces and then it
converts to the proper word. It happens very fast but you might be able to
catch it.

What does ng-bind do?

It binds data source to target. No need
to play the getElementById DOM game anymore.

There is a lot more to know about AngularJS binding but we
need to go slow and just grasp enough to understand what comes next. It is like
that famous expression “Rome wasn’t
built in a day”.

ng-cloak: Avoiding display flickering

When using the curly braces {{ }} instead of
you may notice a quick flicker on the display because the curly braces have not
yet been evaluated by AngularJS.

If that becomes a problem for you, include the link to the
library in the HEAD section instead of the BODY section. This way, the curly
braces will be evaluated before the browser displays the document. Including
the link in the head may have some side effects, depending on the complexity of
your page, hence the reason why more and more developers are moving library
links to the bottom of the page.

If you are embedding AngularJS on a page but you have no
access to the HEAD script, then you may use ng-bind instead of
the curly braces, or you could use ng-cloak.

Since ng-cloak involves CSS, I am not going to
describe here. Please check the following link for a full description of this
implementation:

docs.angularjs.org/api/ng/directive/ngCloak.
| bit.ly/1pcTqjF

5.4 Lab work 14

Part A: Initializing an object and outputting its
contents in a paragraph

Speaking of binding, let’s “bind” to memory all we have
covered so far by doing a few exercises.

This is actually a familiar exercise from our JavaScript lab
sessions. Here we are going to initialize an object called colors.
The object contains the following properties:

a)

"green":
"green is the color of balance and growth.",

"blue": "blue is the color of trust and peace.",

"indigo": "indigo is the color of intuition"

Then we will get the following display on the browser:

b)

The color green is the color of balance and growth.

The color blue is the color of trust and peace.

The color indigo is the color of intuition.

The directives we are going to use are:

ng-app, ng-init=' ' and the double brace {{ }} expressions where the output display
evaluation will take place.

Notice how ng-ini is using single quotes. This
is because the object colors we are going to insert inside of the
quotes have in itself double quotes. By using single quotes for the init
we assure that JavaScript does not get confused and abort the expression
prematurely.

Please refer to the following link if you want to copy the opening
HTML tag with both ng-app and ng-init plus the object code
block: this raw

Try not to copy/paste it before you attempt to create your
own version of it, or take just a quick look to refresh your mind and then try
doing it yourself.

Let’s start. (On the next page please find
step by step instructions).

1- Create
a basic HTML page (as we’ve done before).

See the starter raw file

If you are not using the starter raw file make sure you do the following:

a) In the HTML opening tag insert a directive to allow AngularJS to manage your
web page.

b) On the bottom of the BODY container insert the URL for the AngularJS library.

2- After
the ng-app directive, but still inside of the HTML opening tag,

add a ng-init=' '

inside of the ' ' insert an object named colors with the
properties described on the previous page under exhibit a.

For your convenience I have included a file of the raw text to be inserted as
an object from which you can copy/paste:

raw file

3- In
the BODY section add three paragraphs, one for each color.

See the first sample for the color green below:

<p>The color
{{colors.green}}</p>

4- Save
it as ang7.html or any other name you prefer.

Open it on your browser.

It should look like this: html

5- A
whole script and further explanation can also be seen at the

forum |
bit.ly/1rk2jLx

Part B: Initializing variables and outputting a
calculation

In this new exercise we want to initialize two variables,

length=9 and width=3

and then output the following paragraph:

If the length is
9 and the width is 3, the perimeter is 24.

Please remember that where it says 9 and 3, the dynamic
markup should be written like

{{length}} and {{width}}

which is later replaced by the value assigned to each variable.

As for the total 24, it should be the perimeter of the
rectangle. You can use your own formula.

I am going to use length * 2 + width * 2 as my expression.

 After finishing your script please compare it with mine
here:

 forum |
bit.ly/1rk2KW8
| raw file | html

END OF LAB

5.5 Going a step further into modularity

Assigning a module name to ng-app

Modular programming is a design technique that emphasizes splitting
the functionality of a program into independent modules and in such a way that
each module contains everything necessary to execute only one aspect of the desired
outcome.

A module is a container for the different parts of an app
including related controllers, services, filters and directives.

Your web page app is a
module.

In our web page when we declared ng-app on the HTML
tag, we are actually creating a module (ours has been an unnamed module).
The reason why we have not given a name to our test web page (or module) is
because, once named, it stops working until we configured the module
interface, which means to officially register this module with
AngularJS by writing a declaration inside of a <script></script>
block.

That’s why we kept our AngularJS declaration as simple as
possible by only declaring:

<html ng-app>

However, it is a common best practice to name the web page by
giving it a module name like for example:

<html ng-app="nameOfTheModule">

nameOfTheModule is the identity of this web page in
reference to AngularJS and you use any name you want.

Besides being a best practice to name a module, it is
actually mandatory if you make your page more complex beyond what we have done
so far. Of course, for quick testing purposes we can just create an unnamed
ng-app like this:

<html ng-app="">

Be careful here, if you use quotes but no name, make
sure there is no space between quotes because that space will confuse AngularJS
to think the module is named and you will get an error because there is no such
name on file.

My favorite test syntax is still ng-app (or data-ng-app
for HTML5 validation compatibilities). I only use the extension when I really
have a Module name to include, which is what we are going to do next.

Configuring a Module interface

Once we assign a name to our ng-app we have to
configure the Module.

Take for example the last exercise we did, (Part B:
Initializing variables and outputting a calculation). This exercise is simple
enough to help us understand how to configure the app name module:

Fig 27 (no app module name
yet)

In the picture above, the ng-app has no name and it works
just fine.

If however we insert a name to the <html ng-app> such as for example

<html
ng-app="myFirstAppModule">

the page will stop working until we configure the Module
interface.

One way to configure the app module is to open a new <script></script>
container just below the link to AngularJS at the bottom of the BODY of your
HTML page.

In the script container we then assign a function call
to some variable (like for example x). This particular function or method comes
from the Angular library and its name is module.
Example:

var
x = angular.module();

An image of this assignment can be seen below but first let
me just finish the explanation of this assignment.

After we assign the module() to variable x we
then include the name of the app as the first argument of the
method module(). The second argument is an empty array and it should
look as follows:

var
x = angular.module("myFirstAppModule",[]);

Traditionally the x variable is named after
the module and we would have two myFirstAppModule words in this declaration (a repetition of these terms would not conflict since they
are on different areas of the code but it would help knowing what the variable
x was used for). However, since the name match is not mandatory I have
called it x in order to purposely illustrate where the module name goes and
the fact that it has nothing to do with the variable.

This declaration is good enough to bring our ng-app back to
life for now.

Please study the following image carefully.

Fig 28 (after giving
ng-app a name we then register the name as a module)

Try it yourself. Get your original file (original raw file), add a
name to your ng-app and register the module with Angular by writing the
declaration at the bottom of the BODY. Notice how the name of the module is
introduced on the function module() within quotes. It is passed in as a
string.

If you need help please look at my own file here:

final raw file.

Further explanation:

Look at the variable x declaration. x
gets assigned to a function that belongs to object angular. This
function which is called module() takes two arguments. The first
argument is a string containing the name of the module we are declaring.
Then, separated by a comma, we have an empty array. They both need to be
declared.

The purpose of the array is to include future
dependencies for the module being created. Sometimes we want to use other
sub modules in order to enhance this particular module. Since using other
related modules is very common, the second argument was hardwired and it needs
to be included when we declare a new module. In our case we just write the
array as an empty array and that will work for us. If however you skip
the [], the module will not work. We must place those two brackets in there.

5.6 Preparing to separate data from presentation

Creating a controller

Congratulations, we are moving steadily into a practical
presentation of AngularJS. Please be patient, we’re almost done.

Up to this point we have been initializing dynamic data with
ng-init. This may come handy sometimes but it is not an ideal
implementation.

Fig 29 (ng-init will be
replaced by a controller at the bottom of the page)

We need to move towards a separation of files residing in
properly labeled folders, but we are not there yet. I mean, we should be able
to visualize the whole picture in just one page before we start splitting the
code into different files, and that’s what we are doing in this course:
learning the basic parts of an Angular app. If we split code into folders at
this level of understanding it just adds unnecessary complication and we do not
want to go there right now.

What we’re going to do next is to stop writing our data on
the top of the page with ng-init and move the data object into the
bottom of the BODY section (inside of the same script we inserted our module
declaration). Our JavaScript code will be written inside of a controller, which is a special AngularJS function,
(a method or property of the module we have just created).

So, right now we are going to split the body of the web page
into the following conceptual areas:

a) The
standard HTML markup and its regular data, the one that does not
need any influence from AngularJS. This data could actually be anywhere across
the page because dynamic data will be wrapped into code blocks as you will see.

b) The
area where we want AngularJS to display some dynamic data. This area is
known as a view. AngularJS injects
into the page a number of mini dynamic views that blend along with the
rest of the HTML presentation. It could be just one view, or many views
depending on what you really want to do. Think of it as a script that we embed
into the page, just like we do with pictures or with videos from YouTube.

c) The
area where we create JavaScript code. We call this area a controller. The area is surrounded by the tag <script></script> just
like the link to the framework is. The idea of the controller at this point is
to store data and functionality like we did with ng-init. The controller
is a function and inside of the function we have our dynamic data. Remember, we
use functions to store code that can run when called upon.

We are going to remove the ng-init from our previous
exercise and insert the data into the controller but first let’s look at the
basic structure of a controller. Let’s start with the image of an empty
controller:

Fig 30 (controller is a
child of module x. JavaScript code goes in the controller)

The controller function is a child of module which in our
example is assigned to variable x in order to make it easy to implement the
controller (x becomes a shortcut to the whole module declaration). So, the
module myFirstAppModule is assigned to x and from variable
x we extract a controller [line
3]. Inside of the controller method we have two parameters. The first
parameter is the name we are giving to the controller and in a string type
format (I’m calling it 'myFirstController'); the second parameter is an AngularJS
object called $scope. $scope is an
Angular object that keeps track of all data and properties we are going to send
to the web page as we will see shortly. Notice how all this code is inside of
the SCRIPT tag [lines 1 and 7] where
the ng-app="myFirstAppModule" module was declared.

AngularJS magically makes available to the HTML view
(the view assigned to this controller) whatever code and data we write inside
of the controller and assign to object $scope.

We could say that $scope is
the glue between the controller and the page view. The
controller wants nothing to do with the page view because it is supposed to be
generically written. I mean, we could have several different views using the
same data from the controller: one view for a desktop screen, another view
for a mobile phone, etc. It is up to $scope to interface with the
external world of views and AngularJS provides such functionality in the
background.

Before we do the exercise let me summarize some concepts to
help you further understand what is going on.

$scope

$scope is an object that maps the whole page (the
DOM) and creates properties that can be addressed. In a sense it is like the
DOM in parallel. Later you will see that we add $scope to our controller and
then can add variables and functions into $scope which in turn will be
available to the web page app. (Note: The $
looks like an “S”, right? that reminds us that $scope is an AngularJS service).

View

View is the area of the application that will be placed on
display. Just like images, videos or other embedded text, we could have several
views on one page and they may be hardwired or linked from a different source.
Contrary to the HTML standard presentation, view data is not persistent
which means that it varies based on the logic provided by $scope (coming from
the assigned controller), or the behavior of a user interacting with the page.
A view is created by standard HTML elements in combination with AngularJS’
enhancements from data binding and directives and curly braces {{}}.

 	Any complex logic should be placed in the controller and
 let $scope manage the feeding of this logic into the view. This
 does not mean that a view can’t have any logic; simple expressions can be
 placed in the view as we have done before during our first exercises.

Controller

The controller is where we program the JavaScript code to be
executed when the page runs.

The controller’s purpose is to provide the logic required by
AngularJS in order to initialize the object $scope, which is the object
that maps the webpage like a DOM.

Before using a controller with $scope, we were using a
simple ng-init to save and initialize our data but that was a
very limited implementation. $scope is a more powerful object and the most
appropriate way to declare our properties and methods.

This next image shows how and where we implement the data we
previously assigned to ng-init:

Fig 31

As you can see, all the JavaScript code is treated as a property
child of $scope. AngularJS will grab both length and width and
saves them as part of $scope (remember, $scope will manage the DOM which is how
and where things are displayed).

There is only one thing left. We now have an app name
and we have a controller with some JavaScript variables to be processed.
But how does AngularJS know where to display those variables in the
paragraph when we open the page?

As a reminder, this is what we had in the HTML BODY of the old
exercise:

Fig 32

The answer is, we should wrap the whole paragraph in a DIV and
assign the DIV to the controller which is called myFirstController:

Fig 33 (we wrap the
paragraph in a div assigned to myFirstController)

Your turn: Add a controller to your exercise

At this time let’s modify our previous exercise to add a
controller to it.

Here’s the original raw file as we left it after
adding the module myFirstAppModule.

1- Add
the controller to the script container, one line below the module declaration
as seen on figure 30.

2- Assign
length and width to $scope as seen on figure 31 and then remove
the ng-init from your page.

3- Wrap
your paragraph in a DIV and assign the DIV to the controller as seen on figure
33.

4- Test
your HTML Angular app. Here’s my own version of it:

raw file | html.

We now have a complete simple Angular app.

Alternate way to code length and
width

Another way to include the length and width on
our exercise is by making them properties of some object like for example myPerimeter
and then write them inside of the controller as follows:

$scope.myPerimeter =
{

 "length": 9,

 "width": 3

};

Instead of using $scope.length
=9; and $scope.width =3;

In the HTML view we
would write them as

{{myPerimeter
.length}},{{ myPerimeter .width}}

 and the formula: {{myPerimeter.length
* 2 + myPerimeter.width * 2}}

Let’s
keep practicing by creating a few cool mini projects.

Create a program to convert Fahrenheit to Celsius

We are not going to create this program from scratch because
we have done earlier on Lab work 6 when learning JavaScript.

See forum | bit.ly/1Dp2SKk

raw file | bit.ly/1ruKrzi.

What we are going to do is to create an app to
display the result on an HTML page.

The idea is to practice setting up AngularJS on the page as
well as practicing ways to include code implementations in the controller.

Here’s the recipe menu for my sample:

Module name: myAppModule

Controller’s name: myController

Variable to display the result: result (hint: it
will be $scope.result in the controller).

Sentence to be dynamically displayed:

100 degrees Fahrenheit is 37.778 Celsius.

NOTE: make sure you change the original f2c(212) to f2c(100) when calling the function.

Are you ready for the challenge?

Please do the exercise yourself. Here’s a summarized
guideline:

1- Create
your HTML skeleton.

Here’s our starter file: raw
file.

2- Link
to AngularJS (if you’re using the starter file this is already done).

3- Add
the ng-app directive (already done) and name it myAppModule.

4- Below
the link to AngularJS add a new Script container and declare your module in
there. (I’m assigning mine to variable x).

5- Add
your controller below the module declaration. The name of the controller is
myController and it belongs to variable x. Also in its parameters it shows a
string with the name of the controller and after separating with a comma, a
second parameter introduces a function which passes in $scope.

6- Add
the Fahrenheit to Celsius conversion function to the controller.

Here we have a few alternatives. Let me explain:

a) First
get a copy of the original JavaScript script here: raw file.

b) We
need to replace console.log with return because we are catching
the result and sending it to $scope so that it can be displayed.

c) Now
we have two options (see steps c through f):

We could assign function f2c as a property of $scope this
way:

$scope.f2c
= function(f){return ((f-32) * 5 / 9);}

d) Then, when
we get to the HTML page view, we can implement the result this way:

{{f2c(100)}}

e) OR
(and this is a better way because it avoids using JavaScript in the HTML view),
we can insert the original function inside of the controller (except for the
console.log), and then assign to $scope a variable such as for example result,
with the result of a function call.

x.controller('myController',
function($scope){

function f2c(f){

 return (f-32) * 5 / 9;

}

$scope.result = f2c(100);

f) If
we use option (e), we then apply variable result in the view like this:

{{result}}

7- In
the BODY of the HTML page create a view by adding a DIV container.

Link the opening DIV tag to ng-controller="myController"

8- Inside
of the DIV container add the paragraph with the following message:

<p>100 degrees Fahrenheit is {{YOUR CODE HERE}}
Celsius.</p>

9- Where
it says YOUR CODE HERE, replace it with option (d) or option (f) based on the
way you programmed your controller’s JavaScript as stated in (c) or (e).

10- Save and test your app. The
display result should be

100 degrees Fahrenheit is 37.77777777777778 Celsius

When you’re done, compare it with my result here:

forum
| bit.ly/1ruKCKT

raw file |

html |

Suggestion: Try to convert some of the other JavaScript exercises
into Angular. You may not get a perfect solution but you will get plenty of
practice.

Placing the controller on a separate file

Now that we have logically separated the controller and view
units (both part of the module), we can safely place the controller and module
configuration on a separate file. This is by no means the end of the story,
perhaps just the beginning.

On simple applications we can just leave it on the same page
as we have done earlier. However, as versatile developers we need to practice
separation of concerns in order to get ready for bigger things.

It’s pretty easy. Let’s take for example the exercise we
just finished (Fahrenheit to Celsius):

 raw file |

1- Save
it under a different name, like for example f2cfinal.html

Now we can edit the file:

2- Copy
and cut (delete) all the contents inside of the <script></script>
where the controller and module configuration are. Just leave the SCRIPT tags
by themselves so that we can add a link to the separate file.

3- Paste
the contents on a new file and save it as mycontroller.js
(or any other name).

Notice the .js extension. Make sure the
file is on the same folder as f2cfinal.html.

4- Go
back to f2cfinal.html and in the opening SCRIPT tag
that belonged to the controller, type the path to the new file which should be
the following including the script tags:

<script
src="mycontroller.js"></script>

5- Save
and test.

Compare with my result here:

raw file |

.js file |

html |

Additional
information

For updates and further exploration of controllers (aside
from what is covered in this eBook) please visit the following post at
JSplain.com: Notes
on controllers.

The ng-model

AngularJS can sometimes be really simple.

Please take a look at the following script based on the JavaScript
exercise we did on Part C:

Fahrenheit
to Celsius / to Fahrenheit conversion | bit.ly/ZQgTRW

Do you still remember how we did the JavaScript raw version
of this algorithm?

To refresh your mind see the third example shown in
the forum:

Lab 6 | bit.ly/1Dp2SKk

Now, back to the first link on the top, it looks pretty cool
and it is being displayed on a web page. When we change the value inside of the
text box, it converts the value to Celsius or Fahrenheit automatically.

Let’s take a look at the script to see what it was done to
it. It is much simpler than our original JavaScript version from lab 6.

In the forum you will find a live demo and the script
right below it. Please read the explanation for each line of code:

forum
board | bit.ly/ZQieYU.

After reading the description in the forum and play with the
demo a bit, please return back here for some lab work. We are going to do this
project in less than 10 minutes, promise!

Lab work, creating the conversion script

Did you notice there is no controller or module
declared for the temperature conversion program?

AngularJS can many times save us hours of work and it is
getting better as they improve their game. For the job at hand all we need are
a few tools (and an introduction to the ng-model directive):

a) A
link to the library

b) An
ng-app directive

c) An
ng-model directive.

d) A few
double curly braces

e) And
two HTML input boxes.

Ready to begin?

1- Let’s
get our basic HTML script:

raw file |

2- Save
it as conversions.html

3- In
the BODY, replace hello with one DIV containing two other DIVs inside
it:

<div>

<div> </div>

<div> </div>

</div>

4- If you
are not using my given starter file, make sure to include an ng-app
directive on your opening HTML tag (or on a DIV that wraps the view).

5- On the
top most opening DIV tag from step 3, declare an ng-init to initialize two
variable as shown below (the init is because we are not going to use a
controller in this project):

<div ng-init="f=32;c=0">

At this point we should have the following on the HTML page:

a) The link
to AngularJS’ library (it came with the skeleton script),

b) The ng-app
directive somewhere on the page,

c) And
the ng-init to introduce variables f and c
to AngularJS.

6- Just
for testing purposes let’s write some curly braces inside of the DIV container
like this (any of the DIV containers):

{{f -c + f}}

Then save it and open it on your browser.

 	If you see this: {{f -c + f}} on display, you have a problem.
 Inspect your code to see what is missing or misspelled.

 	If you see the number 64 displayed, then
 your script is working so far.

Once your script is working properly, remove the curly
braces and continue the project. Early testing is always a good idea in order
to save loads of time and headaches later. We should test in gradual stages
before we move on to the next implementation phase. This way we always know
where the problem might reside.

7- The
next step is to design the first input box.

Inside of the container created by the second pair of DIVs,

write an input box of type number.

(About input boxes: HTML
input | bit.ly/1qy2lvA
)

Also include a description on the left side. Here’s my example:

Fahrenheit to Celsius:
<input type="number">

NOTE: You may be accustomed to use self-closing tags like
this />. It works either way. With the advent of HTML5 I prefer to write
without self-closing.

8- Great,
now let’s add an ng-model to the input box and assign it to
variable f:

Fahrenheit
to Celsius: <input type="number" ng-model="f">

If you have read my explanation about ng-model on the
forum demo you will know that the directive ng-model is an
object that saves the data inputted by the user, and links it (or binds
it) to the variable assigned to this ng-model, the =”someName” part of this
declaration (sort of what prompt() does in JavaScript when is assigned to a
variable). In this case it is variable f which although it
defaults to 32, it can be changed by the input data the user enters on this
text box and thanks to the binding provided by ng-model.

 	Do not confuse these terms: model versus module.

Module is the complete
application. Model is a little object that saves data and binds it to
some variable. There could be hundreds of little models in one Module.

9- Let’s
finish this line by adding the curly double braces to the right of the
HTML input box.

Inside of the braces include the
formula to convert from Fahrenheit to Celsius:

{{(f-32)
* 5 / 9}}c

NOTE: The little c
on the right is just a character to tell the user that this result is in
Celsius. It has nothing to do with the variable c previously declared.

The whole line should look like this:

Fahrenheit to Celsius: <input type="number" ng-model="f">
{{(f-32) * 5 / 9}}c

10- Save it and test it.

At this time all your DIVs should look like the following:

<div ng-app ng-init="f=32;c=0">

<div>

Fahrenheit to Celsius: <input
type="number" ng-model="f"> {{(f-32) * 5 / 9}}c

</div>

<div></div>

</div>

11- Now, let’s write the input
box for the conversion of Celsius to Fahrenheit.

On the next DIV container write the
following code:

<div>

Celsius to Fahrenheit: <input
type="number" ng-model="c"> {{c * 9 / 5 + 32}}f

</div>

12- Test it, test both
conversions.

The final result can be seen on the

Forum
board | bit.ly/ZQieYU.

Would you like extra
practice?

You can add an extra box and initialize another variable
like for example k:

Here are some possible
conversion formulas:

a) Kelvin
to Fahrenheit: (K - 273.15) * 9/5 + 32

b) Kelvin
to Celsius: K - 273.15

More Project Ideas

For more project ideas please visit the following link on
the forum board created for this book

Project
Ideas In Angular

Directives summary and resources

As a review, here are some of the directives we have covered,
along with other useful directives and their respective official page link.

I will continue to explain these and other directives by
posting examples on the JSplain forum for further practicing:

Forum
thread starter | bit.ly/1roi5qc

For Modules/Controllers:

 	ng-app,
 or data-ng-app or ng-app="appName"

 	ng-controller

For Data Binding:

 	ng-init

 	ng-model

 	ng-bind

For DOM Traversing:

 	ng-hide

 	ng-show

 	ng-view

 	ng-repeat

For Events:

 	ng-mouseenter

 	ng-click

 	ng-keypress

For a quick sample of a module and controller configurations
see one of our exercises here:

Forum | bit.ly/1ve4e66.

In conclusion

Thank you for staying with me until the end of this project.
I always feel a bit emotional when I get to this part.

There is so much I haven’t written about JavaScript and
AngularJS, but we need to take a break in order to digest all we have covered
in this book.

It is my belief that I have provided the necessary boost for
you to feel empowered and continue your own journey, and if you ever have a
question that I may be able to help, I’m only a click away on the new
forum platform purposely created for this project.

Please take the time to reread this book and practice all
the exercises again.

If you feel like expanding your JavaScript understanding, my
other eBook
is all about the JavaScript library methods, objects, closures and memory
management.

As for AngularJS, it is a whole new world and there is so
much to write about it. We have covered the hardest part of learning to use
AngularJS, the very initial concepts.

Update: There is a new
supplemental exercise eBook if you want to do more AngularJS exercises. Please
take a look:

AngularJS
Supplement: Easy Projects on Filters and Directives

Thank you dear reader, I hope this has been time well spent.

Tony de Araujo

New Jersey, USA

Amazon
Profile | amzn.to/1wMqHrb.

Can you do this for me?

Word-of-mouth is crucial for any author to succeed. If you
enjoyed the book, please consider leaving a comment at Amazon. Even if it's
only a line or two, it would be a huge help.

Here’s my profile at Amazon from which you can find this
book:

 	US: http://www.amazon.com/Tony-de-Araujo/e/B00D7V08WY

 	UK: http://www.amazon.co.uk/Tony-de-Araujo/e/B00D7V08WY

 	DE: http://www.amazon.de/Tony-de-Araujo/e/B00D7V08WY

 	FR: http://www.amazon.fr/Tony-de-Araujo/e/B00D7V08WY

 	NL: http://www.amazon.nl/JavaScript-Plain-Language-Self-Study-AngularJS-ebook/dp/B00NQERIEI/

 	IN: http://www.amazon.in/gp/product/B00NQERIEI

 	AU: http://www.amazon.com.au/gp/product/B00NQERIEI

 	MX: http://www.amazon.com.mx/gp/product/B00NQERIEI

 	JP: http://www.amazon.co.jp/gp/product/B00NQERIEI

 	ES: http://www.amazon.es/gp/product/B00NQERIEI

I may not have a profile in all global areas but you can
always find my eBook at your local Amazon.

Thank you so much.

Tony de Araujo

Technical Instructor,

USA

.

Errata, Contact, Updates

JSplain.com
is a forum dedicated to the material covered on this eBook.

In there you will find a section for announcements and
updates:

jsplain.com/javascript/index.php/Board/8-JSPL-Book-Announcements

bit.ly/1redx6M

Please register if you would like to be notified of any
update or enhancements.

(The link to login or register is located on the top left
of the forum board)

“For the things we have to learn before we can do them,
we learn by doing them.”

― Aristotle, The Nicomachean Ethics

