

	
	

Linux	Command	Line:
FAST	and	EASY!

-Linux	Commands,	Bash	Scripting	Tricks,
Linux	Shell	Programming	Tips	and	Bash

One-Liners
	

By	Matthew	Gimson
Copyright©2015	Matthew	Gimson

All	Rights	Reserved

Copyright	©	2015	by	Matthew	Gimson

	

All	 rights	 reserved.	 No	 part	 of	 this	 publication	 may	 be	 reproduced,	 distributed,	 or
transmitted	 in	 any	 form	 or	 by	 any	 means,	 including	 photocopying,	 recording,	 or	 other
electronic	 or	 mechanical	 methods,	 without	 the	 prior	 written	 permission	 of	 the	 author,
except	 in	 the	 case	 of	 brief	 quotations	 embodied	 in	 critical	 reviews	 and	 certain	 other
noncommercial	uses	permitted	by	copyright	law.

	

Table	of	Contents

Introduction

Chapter	1-	Definition

Chapter	2-	Linux	Command	Line	Commands
Changing	Directories

Copying	file

The	less	command

ln	command

locate	command

logout	command

ls	command

more	command

mv	command

shutdown	command

sudo	command

cal	command

date	command

grep	command

tail	command

wc	command

last	command

Chapter	3-	Bash	scripting	Tricks

Brace	Expansion

Command	Substitution

Command	History

Loops

Chapter	4-	Linux	shell	programming
Loops	in	Shell

for	Loop

while	Loop

Case	statement

if-else-fi	for	decision	making

Chapter	5-	Bash	One-liners
Working	with	files

Conclusion

	

Disclaimer

While	 all	 attempts	 have	 been	 made	 to	 verify	 the	 information	 provided	 in	 this	 book,	 the	 author	 does	 assume	 any

responsibility	for	errors,	omissions,	or	contrary	interpretations	of	the	subject	matter	contained	within.	The	information

provided	in	this	book	is	for	educational	and	entertainment	purposes	only.	The	reader	is	responsible	for	his	or	her

own	actions	and	the	author	does	not	accept	any	responsibilities	for	any	liabilities	or	damages,	real	or	perceived,

resulting	from	the	use	of	this	information.

The	 trademarks	 that	 are	used	 are	without	 any	 consent,	 and	 the	publication	of	 the	 trademark	 is	without	permission	or

backing	by	the	trademark	owner.	All	trademarks	and	brands	within	this	book	are	for	clarifying	purposes	only	and	are	the

owned	by	the	owners	themselves,	not	affiliated	with	this	document.

	

	

Introduction
	

	

Linux	 is	 a	 common	 operating	 system	 for	 computers,	 and	 especially	 the	 server
computers.	The	funny	thing	with	it	is	that	people	view	Linux	as	a	very	complex	operating
system	which	 is	 not	 the	 case.	This	 is	why	most	 computer	 novice	users	 don’t	 like	using
Linux	on	their	computers.	However,	this	is	not	the	case.	Just	like	the	Windows	OS,	Linux
is	 an	 easy-to-use	 operating	 system.	All	 one	 needs	 to	 have	 is	 interest	 in	 learning	 it.	The
operating	system	itself	is	very	secure,	meaning	that	hackers	will	find	it	almost	impossible
to	hack	into	it.

	

The	various	distributions	of	Linux	use	almost	the	same	commands.	These	commands	can
be	written	 using	 the	 same	 syntax	 and	 they	 run	 successfully	 on	 various	 distributions	 of
Linux.	 However,	 some	 of	 them	 will	 need	 to	 be	 altered	 slightly	 so	 that	 they	 can	 be
compatible.	You	should	identify	the	right	distribution	for	yourself	and	your	computer	and
install	 it	 on	 your	 system.	 The	 right	 choice	 for	 you	 in	 this	 case	 will	 depend	 on	 the
distribution	that	you	will	feel	comfortable	to	work	with.	Other	than	installing	the	operating
system	directly	onto	your	hard	disk,	you	can	choose	to	run	it	on	virtual	box	or	VMware
player.	This	can	help	in	saving	on	the	available	computer	space,	hence	important.

	

Chapter	1-	Definition
	

	

Linux	 is	 an	 open-source	 operating	 system	 for	 computers.	 It	 was	 developed	 to
provide	a	Unix-like	 free	and	open	source	operating	system	for	computers.	The	kernel	 is
the	main	component	of	Linux	operating	 system	and	 its	 first	version	was	 released	 in	 the
year	 1991	 by	 Linus	 Torvalds.	 People	 rarely	 use	 Linux	 operating	 system	 on	 desktop
computers.	This	operating	system	has	shown	a	wide	use	on	server	computers.	The	reason
is	 due	 to	 its	 high	 level	 of	 security.	 For	 instance,	 those	 who	 have	 worked	 with	 server
computers	 running	Linux,	you	must	have	 realized	 that	 the	operating	system	supports	no
graphics.

	

After	booting	up	the	computer,	what	you	are	provided	with	is	just	a	blinking	cursor.
You	 then	have	 to	provide	commands	 to	 the	 terminal.	This	 is	of	great	advantage	when	 it
comes	 to	 ensuring	 security	 of	 the	 system.	 Note	 that	 graphics	 and	 any	 other	 additional
feature	 added	 to	 the	 operating	 system	 are	 an	 advantage	 to	 the	 hacker	 as	 they	 can	 gain
access	into	the	system	via	this	feature.	If	you	don’t	the	commands	used	on	the	command
line,	 then	 definitely	 you	 be	 stuck.	 However,	 the	 desktop	 versions	 of	 Linux	 supports
graphics.

	

There	are	various	distributions	of	Linux,	commonly	known	as	Linux	Distros.	These
include	Ubuntu,	Khali,	Red	Hat,	Fedora,	Mint,	Centos,	SUSE	and	others.	These	Distros
exhibit	 numerous	 similarities	 although	 there	 are	 fewer	 differences	 amongst	 themselves.
This	involves	even	the	commands	used	on	their	terminals.	For	enterprise	distributions	of
Linux	such	as	Red	Hat,	a	subscription	fee	must	be	paid	for	you	to	enjoy	the	services	that
they	offer.	This	includes	even	updating	of	the	OS.

	

The	development	of	Linux	began	in	the	year	1983	when	Richard	Stallman	thought
of	the	idea	of	developing	a	completely	free	Unix-like	operating	system.	This	also	marked
the	beginning	of	the	Gnu	project.	By	the	year	1990,	the	essential	components	of	this	OS
such	 as	 the	 compilers,	 libraries,	 shell	 and	 the	 text	 editors	were	 created.	Other	 complex
components	of	this	operating	system	such	as	drivers	for	devices,	kernel	and	the	daemons
were	developed	later.

	

The	 development	 of	 the	 Linux	 Kernel	 began	 in	 the	 year	 1991.	 This	 was	 after
Richard	Stallman	attended	University	of	Helsinki.	The	user	 interface	of	Linux	operating
systems	supports	either	graphics	or	command	line.	In	desktop	versions,	both	the	graphical
user	interface	and	the	command	line	are	supported.	The	GUI	is	made	the	default	although
you	can	still	access	the	command	line.

	

Chapter	2-	Linux	Command	Line	Commands
	

	

Let	us	explore	the	Linux	commands	ranging	from	the	basic	ones	which	are	necessary
for	 you	 to	 begin	 to	 the	 complex	 ones.	 To	 open	 the	 command	 line,	 right	 click	 on	 your
Desktop	and	select	“Open	Terminal”.	If	this	is	not	available,	find	Applications	at	the	top
of	your	desktop.	After	clicking	on	this,	select	Accessories.	Choose	“Open	terminal”.	Open
a	text	editor	of	your	choice	such	as	Gedit	or	Vim.	To	open	the	Gedit	text	editor,	just	search
for	 it	 from	 the	search	bar.	Type	“text	editor”	on	 this	 search	bar	 and	you	will	 find	 it.	To
open	Vim,	commonly	known	as	vi	editor,	on	the	command	line,	type	the	command:

	

														vi	filename

	

where	filename	is	the	name	of	the	file.	I	have	called	my	file	myfile.	On	pressing	the	enter
key,	the	vi	editor	will	be	opened.	Now	you	can	add	some	text	of	your	choice	to	the	file.
Note	 that	 to	 change	 from	 command	 mode	 in	 vi	 editor,	 you	 have	 to	 press	 the	 letter	 i,
otherwise,	you	will	not	be	able	to	add	any	text	to	the	file.

The	text	should	be	as	follows:

	

														The	Linux	command	line	is

														a	very	powerful	tool	for	programmers.

														Much	can	be	achieved	with	it.

	

You	 can	 then	 save	 the	 file	 to	 somewhere	 where	 you	 can	 easily	 access	 such	 as	 on	 the
desktop.	In	vi	editor,	just	press	the	Esc	key	followed	by	typing	wq.	This	will	save	the	file.

	

On	the	command	line,	type	the	following	command	and	then	press	the	enter	key:

	

														cat	myfile

	

On	 pressing	 the	 enter	 key,	 the	 text	 you	 added	 on	 your	 file	 will	 be	 displayed	 on	 the
standard	output.	This	is	illustrated	in	the	figure	below:

	

														

	

This	shows	 that	 the	cat	command	displays	 the	contents	of	a	 file	on	 the	standard	output.
However,	use	it	to	display	the	contents	of	a	short	file.

																																																							

Changing	Directories
	

	

Sometimes,	you	might	need	to	change	your	working	directory.	This	can	be	achieved	via
the	terminal	using	the	cd	(change	directory)	command	as	shown	below:

	

														cd	/home

	

The	command	above	will	change	the	working	directory	to	home	directory	and	relative	to
root	 due	 to	 the	 use	 of	 the	 forward	 slash,	 that	 is,	 /.	 Regardless	 of	 the	 current	 working
directory,	the	above	command	will	be	executed.	Type	the	following	command:

	

														cd	httpd

	

After	pressing	the	enter	key,	the	full	working	directory	will	become	/home/httpd,	meaning
that	we	have	changed	to	the	httpd	directory	but	relative	to	the	/home	directory.	To	change
back	to	the	user’s	home	directory,	use	the	following	command:

	

														cd	~

	

The	user’s	home	directory	 is	 the	 /home/username	directory,	where	 the	username	will	be
the	name	you	have	used	on	the	computer.	Notice	that	we	have	used	the	symbol	~,	known
as	the	tilde	symbol.	In	Linux,	it	symbolizes	the	user’s	home	directory.

																																																							

Copying	file
	

	

In	Linux,	the	command	cp	(copy	files),	is	used	for	copying	files.	In	copying,	a	duplicate	of
the	original	file	is	made	at	the	location	being	specified,	meaning	that	the	initial	file	is	not
deleted.	To	make	a	duplicate	a	duplicate	of	the	file	myfile,	run	the	following	command:

	

	

														cp	myfile	myfile2

	

	

The	 above	 command	will	 create	 a	 duplicate	 of	 the	 file	myfile	 and	name	 it	myfile2.	 The
files	will	be	similar	but	with	a	difference	in	their	naming.	However,	it	is	risky	to	run	the
above	command.	This	is	because	in	case	the	file	myfile2	already	exists	in	the	directory,	it
will	be	overwritten	without	a	warning.	To	take	care	of	this,	the	–i	option	should	be	used	as
shown	below:

	

														cp	–i	myfile	myfile2

	

If	the	file	myfile2	already	exists	in	the	directory,	then	we	warned	before	it	is	overwritten,
which	is	a	very	good	idea.

You	might	need	to	copy	all	files	contained	in	a	certain	directory	to	another	directory.	This
can	be	done	using	the	following	command:

	

cp	–dpr	originaldirectory	finaldirectory

	

The	files	will	then	be	copied	from	the	originaldirectory	to	the	finaldirectory.	They	will	not
be	deleted	from	the	latter.	The	–dpr	option	is	very	important	as	it	plays	the	following	role:

	

														-d-	for	preservation	of	links.

														-p-	for	preservation	of	file	attributes.

														-r-	for	recursive	copying.

	

If	 you	 don’t	 specify	 the	 above	 options,	 the	 default	 ones	 will	 be	 applied.	 This	 is	 not
recommended	as	you	might	need	to	preserve	the	links	and	file	attributes	which	might	not
be	done	with	the	default	options.

	

Each	mounted	file	system	has	used	some	space	on	the	disk.	To	know	the	amount	of	this
space	for	each	file	system,	use	the	command:

	

														df

																																																							

The	less	command
	

	

This	command	is	almost	similar	to	the	“more”	command	with	the	difference	in	that,	with
this	command	one	will	be	able	to	move	the	page	up	and	down	through	the	file.	Consider
the	command	below:

	

														less	myfile

	

After	pressing	the	enter	key,	the	contents	of	the	file	myfile	will	be	displayed.

																																																									

ln	command
	

	

To	 create	 a	 symbolic	 link	 to	 your	 file,	 use	 the	 command	 ln.	 Type	 the	 command	 shown
below:

	

														ln	–s	myfile	mlink

	

The	above	command	will	create	a	symbolic	link	called	mlink	to	link	to	the	file	myfile.	To
show	that	two	files	are	different	and	contain	different	inodes,	use	the	command

	

ln	–i	myfile	mlink

																																									

locate	command
	

	

If	 you	 need	 to	 search	 in	 a	 database,	 use	 the	 locate	 command.	 Consider	 the	 command
shown	below:

	

														slocate	–u

	

The	command	will	create	a	database	and	name	it	slocate.	The	problem	is	that	the	process
might	take	a	long	time	so	patience	will	be	required.	But	the	command	is	important	since
you	 can’t	 search	 for	 a	 file	without	 having	 run	 it.	 Ever	 heard	 of	 cron?	 This	 is	 used	 for
scheduling	 tasks.	 This	 will	 run	 the	 above	 command	 periodically	 so	 you	 might	 not	 be
needed	to	do	so.	Type	the	command	shown	below	and	run	it:

	

														locate	whois

	

The	 command	 above	 will	 search	 for	 all	 the	 files	 contained	 in	 your	 system	 and	 whose
names	contain	the	string	“whois”.	

																																									

logout	command
	

	

This	command	just	logs	out	the	currently	logged	in	user.	Open	the	terminal	and	type	the
following:

	

														logout

	

Once	you	have	 typed	 the	above	command,	 just	press	 the	enter	key.	You	will	notice	 that
you	will	be	logged	out	of	the	system	and	then	finally	you	will	be	on	the	login	screen.

																																																							

ls	command
	

	

Use	this	command	to	list	the	files	which	are	contained	in	a	particular	directory,	ls	means
list.	 The	 command	 has	 many	 options	 associated	 with	 it,	 which	 needs	 to	 be	 well
understood.	Type	the	command	shown	below	and	the	press	the	enter	key:

	

														ls

	

The	command	will	list	all	the	files	which	are	contained	in	your	current	directory.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

The	 above	 figure	 shows	 the	 files	 contained	 in	my	 directory.	 However,	 if	 this	 directory
contains	files	whose	name	starts	with	a	dot	(.),	they	will	not	be	listed	with	this	command.
You	 also	 notice	 that	 with	 the	 above	 command,	 only	 a	 few	 details	 about	 the	 file	 are
provided.	 Suppose	 you	want	 to	 know	 the	 size	 of	 the	 file,	 the	 day	 it	was	made	 and	 the
ownership	 permissions	 associated	 with	 it,	 you	 can	 achieve	 this	 with	 the	 following
command:

	

														ls	–al

	

	

As	you	can	see	in	the	figure	above,	the	output	is	more	detailed.	The	first	part	starts	with
either	a	“d”	or	a	–	(dash),	where	“d”	means	that	it	is	a	directory,	while	“-“	means	that	it	is
a	 file.	The	“rwx”	 stands	 for	permissions,	where	r	 is	 for	 read	permission,	w	 is	 for	write
permission	 whereas	 x	 means	 execute	 permission.	 The	 size	 of	 the	 file	 and	 the	 date	 of
creation	are	also	shown.

																																																																					

more	command
	

	

With	this	command,	the	contents	of	a	file	will	be	sent	to	the	screen.	This	will	be	done	one
page	at	a	time.	The	command	is	also	applicable	on	piped	output.

	

Type	and	run	the	command	shown	below:

	

														more	/etc/profile

	

The	 above	 command	will	 output	 the	 contents	 of	 the	 file	 /etc/profile.	 This	 file	 contains
details	about	the	users	of	the	system.	On	pressing	the	enter	key,	the	following	will	be	the
output:

	

Note	 that	 this	 is	a	built-in	 file	 so	 it	 comes	with	 the	OS	 itself.	The	 file	also	contains	 too
much	content	which	cannot	fit	on	a	single	page.	With	the	above	command,	these	will	be
displayed	one	page	at	a	time.	Type	the	command	below	and	run	it:

	

														ls	–al	|	more

	

The	 output	will	 be	 the	 files	 contained	 in	 that	 directory.	 This	 output	will	 then	 be	 piped
through	the	more	command.	Since	the	output	is	large,	it	will	be	listed	one	page	at	a	time.

mv	command
	

	

The	command	mv	 is	 used	 for	moving	or	 renaming	 files,	mv	 stands	 for	move.	Type	 the
command	shown	below:

	

																												mv	–i	myfile	file

	

The	command	will	rename	the	file	myfile	 to	 file,	meaning	 that	 it	will	have	been	moved.
This	 is	 the	 simplest	 way	 on	 how	 to	 rename	 files	 in	 Linux.	 Consider	 the	 following
command:

	

mv	/directory1/myfile

	

The	 above	 command	 will	 move	 the	 file	myfile	 from	 the	 directory	 “directory1”	 to	 the
current	 working	 directory.	 This	 is	 very	 simple	 and	 it	 shows	 the	 power	 of	 the	 mv
command.

	

The	question	is,	what	is	working	directory?	This	is	the	directory	you	are	currently	working
in.	To	know	the	directory	you	are	working	in,	use	the	following	command:

	

																												pwd

	

Just	press	the	enter	key	as	usual.	The	output	will	be	the	directory	you	are	working	on.	This
command	is	used	for	 that	purpose	 in	case	you	don’t	know	the	directory	you	are	 in.	pwd
means	print	working	directory.

shutdown	command
	

	

Use	 this	 command	 whenever	 you	 want	 to	 shut	 down	 your	 system.	 Run	 the	 command
shown	below:

	

shutdown	–h	now

	

On	 running	 the	 above	 command,	 you	will	 notice	 that	 the	 system	will	 halt	 immediately,
that	is,	it	will	shut	down.	Consider	the	next	command:

	

shutdown	–r	now

	

The	 above	 command	 shuts	 down	 the	 system	 and	 then	 boots	 it	 again,	meaning	 that	 it	 is
used	to	reboot	the	system.

	

You	might	need	to	check	the	commands	which	you	have	run	previously.	The	reason	might
be	that	you	have	changed	something	and	now	you	want	to	undo	the	change.	To	see	the	list
of	these	commands,	run	the	history	command	as	shown	in	the	figure	below:

														

	

The	above	figure	shows	the	commands	which	I	have	run	recently.

sudo	command
	

sudo	 stands	 for	 super	 user	 do.	 With	 this	 command,	 any	 user	 can	 execute	 his	 or	 her
commands	 as	 a	 super	 user.	 The	 sudoers	 file	 defines	 all	 this.	 Sensitive	 commands,
especially	those	which	alter	the	file	systems	of	the	Linux	OS	can	only	be	executed	using
this	 command.	 The	 su	 command	 enables	 you	 to	 login	 as	 a	 super	 user	 while	 the	 sudo
command	borrows	the	privileges	of	a	super	user.

	

To	update	the	system,	you	must	use	the	sudo	command	as	shown	below:

	

														sudo	apt-get	update

	

If	this	is	the	first	time	for	you	to	run	the	command,	you	will	be	prompted	to	enter	the	sudo
password.	To	run	the	above	command,	you	must	be	connected	to	the	internet,	otherwise,
you	will	 get	 an	 error.	 In	Linux,	 the	 updates	 are	 fetched	 from	what	we	 call	 repositories.
This	is	where	the	Linux	development	team	uploads	any	latest	updates	regarding	to	various
ditros	of	Linux.

	

To	upgrade	the	system,	run	the	following	command:

	

														sudo	apt-get	upgrade

	

The	above	command	will	upgrade	the	version	of	OS	that	you	are	using	on	your	system.
Again,	you	must	be	connected	to	the	internet.	Notice	that	in	Red	Hat	Linux,	this	command
is	substituted	by	the	yum	command,	so	the	sudo	command	is	not	supported	in	Red	Hat
Linux.

mkdir	command
	

mkdir	 stands	 for	 make	 directory.	 It	 is	 used	 for	 creating	 new	 directory.	 If	 the	 folder
representing	the	directory	is	in	existence,	you	will	get	an	error	informing	of	the	same.	Let
me	create	a	directory	and	call	it	myfiles.

	

														mkdir	myfiles

	

The	 above	 command	 shows	 that	 I	 will	 create	 a	 directory	 named	 myfiles.	 This	 can	 be
illustrated	in	the	figure	shown	below:

	

Notice	after	creating	the	directory	then	I	use	the	list	command,	the	directory	will	be	listed
in	 the	 available	 directories.	This	 shows	 that	 it	 has	 been	 created.	 If	 the	 above	 command
fails	to	run,	precede	it	by	the	sudo	command	and	provide	for	the	password	if	prompted	to
do	so.

																																																							

cal	command
	

	

This	command	shows	the	month	of	a	particular	year.	This	year	can	be	the	current	one,	the
past	or	 even	 the	advancing	one.	 Just	open	 the	command	prompt	 and	 type	 the	 command
cal.	Press	the	enter	key:

	

																																										

	

As	seen,	it	shows	the	date	of	the	day,	and	it	is	correct.	Now,	let	us	show	the	month	May	of
the	year	1980,	which	is	a	past	year:

	

																																										

	

You	can	also	show	the	month	a	future	year	as	shown	below:

																																										

																																																							

	

date	command
	

	

In	case	you	need	to	display	the	current	time	and	date,	use	this	command	as	shown	below:

	

														

	

On	 executing	 the	date	 command,	 the	 current	 date	 and	 the	 time	will	 form	 the	 output	 as
shown	 in	 the	 figure	 above.	 However,	 you	 might	 find	 that	 the	 date	 on	 your	 system	 is
wrong.

	

It	is	possible	to	set	it	via	the	command	line	as	shown	below:

	

														date	–set=’1	April	2015	19:30’

	

Once	you	have	run	the	command	shown	above,	the	date	will	be	set	to	1st	April	2015	and
the	time	will	be	set	to	19:50	hours.

																																																							

grep	command
	

	

Sometimes,	you	might	need	to	search	for	a	pattern	or	a	string	from	a	certain	file.	In	most
cases,	the	various	Distros	of	Linux	come	installed	with	this	command.

	

However,	it	is	also	possible	to	install	it	in	case	you	find	it	not	installed	using	the	following
command:

	

sudo	apt-get	install	grep
	

If	you	are	using	Red	Hat,	install	it	using	the	command:

	

														yum	install	grep
	

	

Remember	that	we	created	our	file	and	named	it	myfile	with	the	following	content:

	

														

	

We	want	to	search	through	it	using	the	grep	command.	To	search	for	the	word	powerful	in
the	file,	the	following	approach	should	be	used:

	

														grep	‘powerful’	myfile

	

This	is	illustrated	using	the	figure	shown	below:

	

														

	

The	command	outputs	the	line	of	the	file	with	the	search	word	and	makes	the	search	word
red	 in	 color.	 This	 differentiates	 it	 from	 the	 rest	 of	 the	words.	Notice	 the	 search	 is	 case
sensitive.

Let	us	search	for	the	word	‘Powerful’	rather	than	‘powerful’:

	

As	shown	in	the	above	output,	there	exists	no	word	‘Powerful’	in	the	file.	This	is	because
we	have	made	the	p	uppercase.	However,	it	is	possible	to	make	the	search	case	insensitive.
This	can	be	achieved	using	the	–i	option	as	shown	below:

	

														

	

The	–i	makes	the	words	‘powerful’	and	‘Powerful’	the	same,	hence	we	will	get	our	result.

	

To	perform	a	multiple	search,	which	means	that	you	will	search	for	several	words	in	a	file
at	once,	we	can	still	use	the	grep	command.	This	is	demonstrated	below.

	

Notice	 that	 in	 the	 figure	 above,	we	 are	 searching	 for	 two	words,	 that	 is,	 command	and
powerful.	The	–e	option	makes	it	possible	for	us	to	search	for	more	than	one	word	at	once.
Don’t	confuse	the	purpose	of	the	–i	option	as	it	only	makes	the	search	case	insensitive.

The	grep	command	can	also	be	used	 to	mean	 the	opposite	of	your	specification.	This	 is
illustrated	below:

	

														

	

From	 the	 figure	 shown	 above,	 we	 have	 searched	 using	 the	 word	 ‘tool’	 as	 our	 search
criteria.	 The	 command	will	 only	 return	 the	 lines	without	 the	word	 ‘tool’.	This	 explains
why	the	second	line	of	the	file	is	not	part	of	the	output.	The	result	has	been	achieved	using
the	 –v	 option,	 which	 returns	 the	 opposite	 of	 the	 search	 criteria.	 The	 –i	 is	 for	 case
insensitive	search,	so	let	it	not	confuse	you.

To	 know	 the	 number	 of	 the	 line	 of	 the	 file	 containing	 the	 word	 ‘powerful’,	 use	 the
command	shown	below:

	

														grep	–in	‘powerful’	myfile

	

	

Consider	the	command	shown	below	and	its	output:

	

grep	–iB1	‘can’	myfile

	

The	command	above	outputs	the	following:

	

														

	

The	command	outputs	the	exactly	one	line	which	is	above	the	line	with	our	search	criteria
‘can’.	This	is	because	we	have	used	1.	If	we	used	two,	the	output	would	be	as	follows:

	

														

																																																							

tail	command
	

	

A	very	popular	command	in	Linux	which	is	used	to	give	the	last	part	of	a	file.	It	gives	only
the	last	10	lines	of	the	file	that	you	specify.	If	you	need	to	get	the	last	10	lines	of	the	file
myfile,	use	the	following	command:

	

														tail	myfile

	

However,	 we	 have	 added	 only	 three	 lines	 to	 the	 file.	 This	means	 that	 the	 result	 of	 the
above	 command	will	 be	 the	 three	 lines	 of	 the	 file.	 If	 it	 had	more	 than	 10	 lines,	 then	 it
would	output	only	the	last	10	lines.	You	should	also	specify	the	extension	of	the	file	name.
A	good	example	is	if	it	is	a	c	file,	add	a	.c	extension	to	the	file	name.

	

However,	the	last	10	lines	of	the	file	is	the	default	setting	of	the	tail	command.	One	has
the	choice	of	specifying	the	number	of	lines	that	they	want	to	form	the	output.

	

Consider	the	command	below	and	its	output:

	

														tail	myfile	–n	2

	

	

As	shown,	we	have	specified	that	we	want	to	output	only	the	last	2	lines	of	the	file	myfile.
This	is	what	forms	our	output.	The	–n	option	when	used	with	this	command	specifies	the
number	of	lines	that	will	form	the	output.

Consider	the	command	shown	below:

	

														tail	-f	myfile	|	grep	24.13.152.12

	

Notice	that	we	are	piping	the	output	from	the	tail	command	into	the	grep	command.	The
command	 above	 can	 be	 used	 to	monitor	 updates	 being	made	 on	 the	 file	myfile	 in	 real
time,	that	is,	just	as	they	happen.	The	last	10	lines	of	the	file	and	any	new	lines	added	to	it
will	be	piped	to	the	grep	command.	The	grep	command	then	has	 the	task	of	outputting
these	on	the	standard	window.	Note	that	only	the	lines	with	the	above	specified	address,
that	is,	24.13.152.12	will	be	printed	on	the	standard	output.

	

The	command	can	be	used	to	display	the	last	part	of	the	file	in	relation	to	its	size	rather
than	the	number	of	lines.	The	size	is	usually	specified	in	bytes.	To	print	the	last	5	bytes	of
the	file	myfile,	use	the	following	command:

	

														tail	–c5	myfile

	

														

The	output	implies	that	only	the	word	“it”	and	the	full	stop	(.)	form	the	last	5	bytes	of	the
file.	It	is	also	possible	to	combine	the	above	option	with	the	plus	(+)	symbol	to	print	the
bytes	from	a	certain	byte.

Consider	the	command	shown	below:

	

														tail	–c+10	first

	

The	above	will	print	the	last	bytes	of	the	file,	starting	from	the	10th	byte.	The	output	will

be	as	shown	below:

	

														

													

	

wc	command
	

	

wc	stands	for	wall	count.	This	command	is	used	to	count	the	lines	contained	in	a	certain
file.	To	know	the	number	of	lines	contained	in	the	file	myfile,	run	the	following	command:

	

																												wc	–l	<myfile

	

The	command	outputs	the	following:

	

														

	

The	command	gives	the	number	of	lines	contained	in	the	file	myfile,	which	are	only	three
lines.	In	case	you	also	need	to	get	the	name	of	the	file,	use	the	following	command:

	

														wc	–l	myfile

	

														

	

Run	the	command	shown	below:

	

														wc	myfile

	

The	following	will	form	the	output	from	the	file:

	

														

	

The	command	will	show	the	number	of	lines	in	the	file,	the	number	of	words	contained	in
the	file,	the	size	of	the	file	in	bytes	and	the	name	of	the	file.	These	have	been	displayed	in
the	order	mentioned,	where	3	is	the	number	of	lines	in	the	file,	17	is	the	total	number	of
words	 in	 the	 file,	 95	 is	 the	 size	 of	 the	 file	 in	 bytes	 and	 finally	we	 have	 the	 file	 name.
However,	some	people	might	easily	be	confused	by	the	above.

	

It	becomes	easy	when	you	split	the	above	output	as	shown	below:

	

														wc	–c		myfile–	this	will	output	the	total	bytes	making	up	the	file.

wc	–w	myfile–	outputs	the	number	of	words	contained	in	the	file.

wc	–m		myfile–	will	output	the	number	of	characters	making	up	the	file.

	

If	you	can’t	memorize	the	order	used	in	the	first	command,	then	it	is	advisable	you	use	the
simple	and	alternative	option	above.

																																																							

last	command
	

	

This	command	is	useful	when	you	want	to	know	the	users	who	have	recently	logged	into
your	system.	This	is	very	useful	in	the	industry	for	security	purposes.	A	user	won’t	deny
having	logged	into	the	system	at	a	certain	time.	Open	the	command	line	and	type	in	the
command	last.	Observe	the	output:

														

	

The	command	shows	 the	name	of	 the	user	and	other	details	 including	 the	 terminal	 they
were	logged	on	and	the	time	in	which	they	logged	in.	In	case	any	of	the	users	is	still	in,
you	will	be	notified	of	it.	The	difference	between	when	the	user	was	lastly	logged	in	and
logged	out	will	also	be	shown.	Notice	that	only	the	last	100	logins	will	be	displayed.

The	command	is	also	associated	with	the	following	options:

	

1.	 –R-	this	will	make	sure	that	the	host	name	is	not	displayed.
2.	 –d	–	this	is	used	when	doing	remote	login.	The	ip	address	which	identifies	the	host

name	is	translated	into	the	hostname	itself.
3.	 –a	–	this	will	display	the	name	of	the	host	in	output’s	last	column.
4.	 –x-	 shows	 the	 shutdown	 history	 and	 how	 changes	 have	 been	 made	 on	 the	 run

levels.
5.	 –i-	displays	the	ip	address	of	the	host	login	in	remotely.	The	ip	address	is	usually

in	dots	and	number	format.
6.	 –F-	the	times	and	dates	of	full	logins	and	logouts	into	the	system	ware	displayed.
7.	 –w-	the	names	of	the	user	and	the	domain	name	are	displayed	as	the	output.

	

Chapter	3-	Bash	scripting	Tricks
	

	

Bash	 stands	 for	Bourne	 Again	 shell,	 and	 in	 most	 Linux	 distros,	 it	 forms	 the	 default
shell.	Many	Unix	and	Linux	users	really	like	it	due	to	its	user-friendliness.	In	this	chapter,
we	are	going	to	learn	about	the	Bash	shell.

	

																																																																						Brace	Expansion
	

A	list	of	strings	is	used	as	arguments	in	this	case.	These	strings	are	separated	using	comas.
There	should	be	no	space	after	the	comma.	Example:

	

echo	{John,Julius,Jacob}

	

														

	

From	the	figure,	you	can	see	the	output.	Just	the	arguments	we	provided	in	the	braces.

	

Now,	type	the	following	on	the	command	line:

	

														echo	John,Julius,Jacob

	

The	 output	will	 just	 be	 the	 same	 as	 in	 the	 first	 example	 above.	 I	 am	 sure	 that	 you	 are
seeing	no	usefulness	of	the	braces.	Consider	the	example	shown	below:

	

														echo	{John,Julius,Jacob}David

	

Maybe	the	three	are	sons	of	David.	Observe	the	output:

	

														

	

You	have	now	seeing	how	useful	 the	braces	 are	 in	bash	 scripting.	They	are	very	useful

when	the	list	placed	in	the	braces	should	occur	after,	inside	or	before	another	string.	In	the
case	above,	these	should	occur	before	the	string	David.

	

The	above	can	be	implemented	in	another	way	as	follows:

	

														echo	David{John,Julius,Jacob}

	

The	following	will	form	the	output	of	the	above	script:

														

	

As	you	can	see,	the	list	specified	inside	the	braces	occurs	after	the	string	“David”.

	

It	is	also	possible	to	place	the	list	in	between	two	strings.	This	is	illustrated	below:

	

														echo	David{John,Julius,Jacob}Mercy

	

The	following	will	be	the	output:

	

The	 words	 in	 the	 list	 have	 been	 sandwiched	 between	 the	 two	 strings	 that	 we	 have
specified.	 Again,	 make	 sure	 that	 you	 don’t	 include	 space	 at	 all.	 There	 are	 no	 spaces
between	the	arguments	nor	between	the	braces	and	the	strings.	Including	this	might	lead	to
an	error	or	an	undesired	output.

	

However,	if	you	need	to	use	a	space,	make	use	that	you	also	use	double	quotes	as	shown

below:

	

														echo	“{John,Julius,Jacob}	David”

	

	

The	following	will	be	the	output	of	the	above:

	

				

	

You	might	 need	 such	 like	 output,	 so	 that’s	 how	 to	 get	 it.	 Consider	 the	 example	 given
below:

	

																												echo	{“John	“,“Julius	“,“Jacob	“}	David

	

The	above	will	give	the	following	as	the	output:

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	

Braces	can	also	be	nested,	whereby	braces	are	placed	within	other	braces	as	shown	below:

	

														echo	{{a,b,c},a,b,c}

	

The	following	will	be	the	output	of	the	above	example:

	

														

	

Consider	the	example	shown	below:

	

														echo	{{6,7,8}1,2,3)

	

The	output	will	be	as	follows:

														

	

The	 question	 is	 where	 is	 this	 trick	 that	 is	 brace	 expansion	 applied.	 Of	 course,	 when
making	a	backup	of	a	file,	you	will	need	to	use	this	 trick	hence	it	 is	very	important.	An
example	of	this	is	given	below:

	

														cp	/etc/httpd/conf/httpd.conf{,.backup}

	

In	the	above	example,	we	are	backing	up	the	httpd.config	file.

														Command	Substitution
	

	

This	 is	 also	 another	 useful	 bash	 scripting	 trick.	 It	 includes	 the	 use	 of	 the	 $	 sign	 and
parenthesis	on	the	standard	output	to	enclose	any	command	which	is	aimed	at	generating
output.	This	trick	is	applied	when	assigning	some	value	to	a	variable.

	

You	can	assign	the	date	to	a	variable	as	follows:

	

														date	+%d-%b-%Y

	

The	above	will	give	you	the	current	date	as	shown	below:

	

														

	

This	can	also	be	achieved	using	the	following:

	

														echo	$today

							today=$(date	+%d-%b-%Y)

	

	

The	 output	 will	 just	 be	 the	 same.	 To	 get	 information	 about	 multiple	 RPM	 packages
simultaneously,	you	can	also	use	command	substitution.

	

	

Command	 substitution	 can	 also	 be	 achieved	 after	 surrounding	 a	 command	 using	 back
quotes.	This	can	be	illustrated	using	the	example	shown	below:

	

	

														day=`date	+%d-%b-%Y`

														echo	$day

	

The	above	will	give	the	following	as	the	final	result:

	

	

														

	

	

The	current	date	will	be	displayed.	With	the	above	style,	commands	can	easily	be	nested
and	they	will	become	easy	to	read.

	

	

The	output	from	a	certain	command	can	also	be	directed	to	a	certain	file.	This	can	be	done
as	shown	below:

	

	

														find	/	-name	file	>	result.txt

	

	

In	 the	 above	 example,	we	 are	 redirecting	 the	 output	 from	 the	 command	 find	 to	 the	 file
result.txt.

	

	

However,	you	will	notice	that	error	messages	will	be	produced.	If	you	are	not	interested	in
these,	you	can	also	redirect	them	to	a	file.	A	2	in	front	of	the	redirection	symbol	can	assist
in	this.

	

	

They	 can	 also	 be	 redirected	 to	 /dev/null	 if	we	 are	 not	 interested	 in	 them	 at	 all.	 This	 is
illustrated	below:

	

	

														find	/	-name	file	2>	/dev/null

	

	

The	location	of	the	file	“file”	will	be	shown	without	the	error	messages,	2	stands	for	the
standard	error	output	stream.	Most	Linux	commands	redirect	their	errors	here,	whereas	the
correct	output	which	is	send	to	the	standard	output	is	represented	using	1.

	

	

Consider	the	commands	shown	below:

	

	

																find	/	-name	file	>	result.txt

																	find	/	-name	file	1>	result.txt

	

	

Some	could	think	that	the	above	commands	are	different.	However,	they	are	just	the	same.
The	1	represents	the	normal	standard	output.

	

	

You	may	need	to	save	both,	that,	the	error	message	and	the	standard	output	to	a	file.	Cron
jobs	are	usually	used	for	this	purpose.	This	can	be	achieved	as	shown	below:

	

	

														find	/	-name	file	>	result.txt	2>	result.txt

	

	

Notice	that	both	output	streams	have	been	directed	to	the	same	file.	However,	the	above	is
tiresome.	It	can	be	achieved	with	much	simplicity	as	shown	below:

	

	

														find	/	-name	file	>	result.txt	2>&1

	

	

In	the	example	just	above,	we	have	used	an	ampersand	to	tie	the	standard	error	stream	and
the	standard	output	stream.	After	this,	the	standard	error	will	go	to	wherever	the	standard
output	goes.	Again	the	syntax	used	in	the	example	above	as	it	is	very	important.

	

You	might	 also	 be	 interested	 in	 piping	 the	 output	 to	 another	 command.	 This	 is	 shown
below:

	

	

														find	-name	file.sh	2>&1	|	d	/tmp/result2.txt

	

	

The	above	line	will	work	just	as	it	is	expected.	Now	consider	the	line	shown	below:

	

														find	-name	file.sh	|	d	/tmp/result2.txt	2>&1

	

	

On	running	the	above	line,	you	will	notice	that	it	won’t	work	as	it	is	expected.	This	is	in
contradiction	to	the	other	line.

	

																																									

Command	History
	

	

With	Bash,	you	can	search	 through	 the	commands	 that	have	been	 run	 recently.	You	can
then	use	 the	up	and	down	arrow	keys	so	as	 to	navigate	 through	 these	commands.	 If	 the
command	you	are	looking	for	was	executed	between	the	last	10-20	executed	commands,
then	this	will	be	easy	for	you.

If	you	want	 to	search	interactively,	meaning	that	suggestions	for	what	you	are	searching
for	will	be	provided,	just	press	Ctrl-R.

	

	

The	prompt	will	then	be	changed	to	the	following:

	

	

														(reverse-i-search)`’:

	

	

You	can	 then	start	 typing	 the	 letters	of	your	command.	You	will	notice	 that	you	will	be
provided	with	suggestions.	However,	the	suggestions	will	only	include	the	recently	types
and	related	commands.

	

	

In	my	case,	after	pressing	the	Ctrl-R,	and	then	typing	ech,	the	following	is	the	suggestion:

	

	

														

	

	

He	above	shows	that	 the	command	I	ran	recently	containing	 the	words	ech	 is	 the	“echo
day”	command.

	

	

To	execute	the	command,	just	press	the	enter	key	and	it	will	be	executed.	If	you	need	to	do
some	editing	to	the	command,	just	press	the	left	or	right	arrow	keys.	The	command	will	be
placed	on	the	normal	prompt	and	then	you	will	be	able	to	edit	it.

																																										

Loops
	

	

With	Bash,	it	is	possible	for	you	to	create	loops	on	the	command	line.	However,	this	is	not
suitable	is	the	code	is	large	or	too	complex.	On	the	command	line,	loops	can	be	written	in
two	different	ways.	The	first	way	 involves	separating	 the	different	 lines	of	code	using	a
semicolon.	To	create	a	loop	that	will	back	up	all	the	files	contained	in	a	certain	directory,
this	can	be	done	as	follows	using	this	method:

	

	

																												for	doc	in	*;	do	cp	$doc	$doc.bak;	done

	

	

The	above	line	of	code	will	back	up	all	the	files	in	the	directory.	Rather	than	separating	the
lines	using	a	semicolon,	a	secondary	prompt	can	be	used.	This	can	be	done	by	pressing	the
enter	key	once	you	are	through	with	each	single	line.	Once	you	have	pressed	the	enter	key,
Bash	 will	 understand	 that	 you	 want	 to	 create	 a	 loop	 and	 it	 will	 provide	 you	 with	 a
secondary	prompt.

	

	

You	can	then	enter	your	second	line.	This	is	illustrated	below:

	

	

														for	doc	in	*

														>	do	cp	$doc	$doc.bak

														>	done

	

	

Sometimes,	your	Linux	system	can	run	out	of	memory.	This	means	 that	you	will	not	be

able	 to	 execute	 your	 commands	 including	 the	 simple	 ones	 such	 as	 ls	 and	 the	 ones	 for
changing	 directories.	 If	 ls	 fails	 and	 you	 want	 to	 vie	 the	 files	 contained	 in	 a	 particular
directory,	then	this	can	be	achieved	as	follows:

	

	

														for	doc	in	*;	do	echo	$doc;	done

	

	

This	will	solve	the	ls	problem.	This	shows	the	power	of	bash	scripting.

	

Chapter	4-	Linux	shell	programming
	

	

In	Linux,	it	is	very	easy	to	create	shell	scripts.	With	shell	programming,	we	can	group
multiple	commands	in	a	chain	and	then	execute	them	to	obtain	the	desired	output.	Let	us
begin	by	writing	out	first	script.	Open	your	editor	of	choice;	I	am	using	the	vi	editor.	Add
the	following	shell	program	to	the	file:

	

	

														#!/bin/bash

														Echo	“Hello	World”

	

	

The	above	is	an	example	of	a	shell	program.	Save	the	file	and	give	it	the	name	hello.sh.
Notice	 that	we	have	used	 the	 .sh	extension	 to	 imply	 that	 it	 is	a	shell	program.	Now,	 the
next	step	is	to	make	the	script	executable.	This	can	be	achieved	as	follows:

	

	

Open	the	command	prompt	and	type	the	following	command:

	

														chmod	744	hello.sh

	

After	 running	 the	 above	 command,	 an	 executable	 of	 the	 file	 hello.sh	 will	 be	 created,
chmod	stands	for	change	mode.

	

	

744	refers	to	the	permissions,	and	we	have	used	this	to	add	an	execute	permission	to	the
file.	Since	we	have	made	the	program	executable,	we	now	need	to	execute	it.

	

	

This	can	be	achieved	by	running	the	following	command	on	the	terminal:

	

	

														./hello.sh

	

	

After	running	the	above	command,	the	following	output	will	be	observed	on	the	standard
output:

	

	

														

	

	

The	command	outputs	a	text	written	“Hello	World”.	Remember	that	this	is	the	text	that	we
command	the	echo	command	to	output.

	

#!/bin/bash	is	called	the	shebang	is	used	to	precede	shell	programs.

	

	

To	add	comments	to	your	program,	precede	them	with	a	pound	sign	(#).

	

	

Consider	the	shell	program	shown	below:

	

	

#!	/bin/bash

echo	“Hey	$USER”

echo	 “Hello,	 i	 am”	 $USER	 “The	 following	 are	 the	 processes	 running
currently”

echo	“List	of	running	processes:”

ps

	

	

You	can	write	and	run	the	program.	The	following	output	will	be	observed	after	running
the	program:

	

	

As	 shown	 in	 the	above	 figure,	 the	program	outputs	your	name.	 It	 also	 shows	 the	 list	of
processes	which	are	currently	running	on	your	system.

	

	

Now,	let	us	write	a	more	interactive	program.	Write	the	code	shown	below	and	run	it:

	

	

#!	/bin/bash

echo	“Enter	your	name”

read	name;

echo	“welcome	Mr.	/Mrs.	$name	“;

echo	“Thanks	Mr./Mrs.	$name.	You	have	provided	us	with	your	names”;

echo	“–––––––––––––––––––––—”

echo	“Mr.	/Mrs.	$name,	good	bye	friend”

	

	

After	running	the	above	program,	the	following	output	will	be	observed:

	

	

	

As	seen,	you	are	prompted	 to	provide	your	name.	This	has	been	achieved	by	use	of	 the
read	 command,	 which	 prompts	 users	 to	 provide	 their	 input.	 This	 input	 has	 then	 been
displayed	alongside	some	other	text.

																																									

Variables	in	Shell

	

	

The	two	types	of	shell	variables	are:

	

	

1.		 	 	 	 	 	 System	 variables-	 these	 are	 created	 and	 maintained	 by	 the	 OS.	 They	 are
defined	in	upper	case.
2.							User	Defined	Variables-	the	user	creates	and	maintains	these.	They	are	defined
in	lower	case	letters.

	

	

The	following	are	some	of	the	system	variables	in	shell:

	

BASH-	the	shell	name.

HOME-	our	home	directory

LOGNAME-	our	login	name.

PATH-	our	setting	for	the	path.

USERNAME-	the	currently	logged	in	user.

COLUMNS-	number	of	columns	making	up	our	screen.

OSTYPE-	the	type	of	the	OS	we	are	running.

PWD-	the	current	working	directory.

	

	

The	above	shows	only	a	sample	of	the	system	variables.	In	case	you	want	to	print	any	of
the	above	variables,	use	the	echo	and	the	$	sign	command	as	shown	below:

	

	

echo	$HOME

echo	$PWD

	

	

The	next	part	is	on	how	to	work	with	user	defined	variables.

	

	

Use	the	following	syntax	to	define	a	user	defined	variable:

	

	

																																										variable	name=value

	

	

The	name	refers	 to	 the	name	 to	be	used	 to	 refer	 to	 the	variable.	The	value	 is	what	 it	 is.
This	is	usually	a	number	or	a	string.	Example:

	

	

														num=10

														name=Mary

	

Tips	when	naming	variable

	

	

1.							There	should	be	no	spaces	on	either	sides	of	the	equal	sign.	Example:

	

	

														num=12-	this	is	right

														num=	12-	this	is	wrong

														num	=12-	this	is	wrong

														num	=	12-	this	is	wrong

	

	

2.		 	 	 	 	 	 The	 name	 of	 the	 variable	 should	 begin	 with	 an	 underscore	 or	 of	 the
alphanumeric	characters.	This	should	then	be	followed	by	any	of	the	alphanumeric
characters.	The	following	are	examples	of	valid	variables:

	

	

														PWD

														SYSTEM_VERSION

														num

	

	

3.							The	names	of	variables	are	case	sensitive.	Example:

	

														Num=2

														num=6

														nUm=9

														nuM=10

														NUM=90

	

	

The	above	shows	that	the	above	variable	names	are	not	equal.	To	print	any	of	the
above,	also	make	sure	that	you	specify	correctly.	For	example,	to	print	10,	use	the
following	code:

	

	

														echo	$nuM

	

	

4.							To	define	null	variables,	do	the	following:

	

														num=

														num=””

	

	

To	print	it,	use	the	following	code:

	

E=echo	$num

	

However,	note	that	nothing	will	be	displayed	since	the	variable	is	null.

	

5.		 	 	 	 	 	Some	 characters	 should	 not	 be	 used	 to	 name	 variables.	 These	 include	 the

asterisk	(*)	and	the	question	mark	(?).

																																									

Loops	in	Shell
	

	

A	loop	represents	a	group	of	instructions	executed	repeatedly.

	

for	Loop
	

	

This	loop	follows	the	following	syntax:

	

	

for	{	name	of	the	variable}	in	{list	}

do

execute	the	items	in	the	list	one	after	another	until	finished.

done

	

	

Consider	the	program	shown	below:

	

														for	j	in	1	2	3	4	5

														do

														echo	“Test	for	the	for	loop”

														done

	

After	running	the	above	program,	you	will	observe	the	following	as	the	output:

	

	

																												

	

	

What	the	program	does	is	that	it	begins	by	defining	the	variable	j	and	sets	its	value	from	1
to	5.	The	line	echo	“Test	for	the	for	loop”		of	the	program	will	then	be	executed	5	times
since	the	value	of	j	will	increment	up	to	a	maximum	of	5.	This	explains	the	source	of	the
output.

while	Loop
	

	

The	while	loop	in	shell	takes	the	following	syntax:

	

	

																									while	[condition]

																																																	do

																																										1st	command

																																										2nd	command

																																										3rd		command

																																																											..

																																																											….

																																																			done

	

	

As	long	as	the	condition	that	you	have	specified	is	true,	the	loop	will	execute.

Case	statement
	

	

It	is	also	common	in	Linux.	One	can	use	it	rather	than	the	if-else	statement.

	

	

It	takes	the	following	syntax:

	

														case		$name_of_the_variable		in

1st	pattern)			command

…

..

command;;

2nd	pattern)			command

…

..

command;;

nth	pattern)			command

…

..

command;;

*)													command

…

..

command;;

esac

	

	

Notice	that	we	start	with	case	but	we	end	with	an	esac	statement.	Consider	the	example
shown	below:

	

	

if	[-y	$1]
then
		r=”the	vehicle	is	unknown”
elif	[-x	$1]
then
		r=$1
fi

case	$r	in
			“lorry”)	echo	“For	$r	10	per	k/m”;;
			“merc”)	echo	“For	$r	80	per	k/m”;;
			“corolla”)	echo	“For	$r	15	per	k/m”;;
			“motorbyke”)	echo	“For	$r	5	per	k/m”;;
			*)	echo	“we	can’t	obtain	a	$r	for	you”;;
esac

	

if-else-fi	for	decision	making
	

	

The	 command	 if-else-fi	 can	 be	 used	 in	 shell	 programming	 for	 the	 purpose	 of	 decision
making.	The	programmer	specifies	a	condition	and	once	met,	a	command	is	executed,	if
not	met,	the	other	command	is	executed.	It	takes	the	following	syntax:

	

	

if	condition

then

the	condition	is	zero

execute	commands	until	you	meet	the	else	statement

else

if	the	condition	is	false

							execute	commands	until	you	find	the	fi	statement													

fi

	

Consider	the	example	shown	below:

	

	

#!/bin/bash
if	[$#	-eq	0]
then
echo	“$0	:	an	integer	must	be	supplied”
exit	1
fi

if	t	$2	-gt	0
then
echo	“$2	is	a	positive	number”
else
echo	“$2	is	a	negative	number”
fi

	

If	the	command	line	is	not	given,	then	an	error	will	be	printed,	that	is,	an	integer	must	be
supplied.	The	next	part	involves	checking	the	number	of	arguments	that	have	been	passed.
If	we	passed	any	argument,	then	the	“if	“will	turn	out	to	be	false	and	true	otherwise.	The
exit	1	statement	will	terminate	the	program	after	a	successful	execution.

	

Chapter	5-	Bash	One-liners
																																									

	

Working	with	files
	

	

1.		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Truncating	the	size	of	a	file	to	0	 (emptying)	-	 the	redirection
command	is	used	in	this	case.	If	the	file	exists,	then	its	size	is	truncated	to	zero
whereas	 if	 it	 does	not	 exist,	 it	 is	 created.	Note	 the	operator	opens	 the	 file	 for
writing.

	

	

														$	>	file

	

	

To	create	a	 file	containing	a	content	of	choice	or	 replacing	 the	file’s	contents,
use	the	following	command:

	

	

														$	echo	“string	to	replace”	>	file

	

	

The	string	that	you	specify	in	between	the	quotes	will	act	as	the	replacement				
string.

	

2.																											Adding	a	string	to	your	file-	the	on-liner	uses	the	output	redirection
operator	>>	to	append	some	content	to	your	file.	Example:

	

	

$	echo	“content	to	be	appended”	>>	file

	

	

In	case	 the	operator	fails	 to	find	the	file,	anew	one	is	created.	After	 the	string
has	been	appended	to	the	file,	a	new	line	will	follow	it.

To	avoid	this,	use	the	–n	option	as	shown	below:

	

	

														$	echo	-n	“content	to	be	appended”	>>	file

	

	

3.																											Assign	the	first	line	of	a	file	to	a	variable-	in	this	case,	you	need	to
read	 the	 first	 line	of	 the	 file	and	 then	assign	 this	 line	 to	a	variable.	The	 input
redirection	operator	<	is	used.

	

	

Consider	the	line	of	code	shown	below:

	

														$	read	-r	myline	<	file

	

myline	 is	a	variable.	The	command	read	will	 read	only	 the	first	 line	of	 the	file
and	place	it	in	the	variable	myline.	The	–r	option	will	ensure	that	 this	line	is	read
raw.

	

	

4.																											Reading	a	file-	a	read	command	can	be	combined	with	the	while
loop	so	as	to	read	a	file	line-by-line.	This	is	illustrated	below:

	

	

														while	read	-r	myline;	do

																												#	perform	something	on	the	variable	myline

														done	<	file

	

	

A	code	of	failure	will	be	returned	when	the	read	command	meets	end-of-failure.
The	while	loop	will	then	halt.

	

	

Notice	that	we	have	placed	<	file	at	the	end.	To	avoid	this,	pipe	the	file’s	content	to
a	while	loop	as	shown	below:

	

	

														cat	file	|	while	IFS=	read	-r	myline;	do

																												#	perform	something	on	the	variable	myline

														done

	

5.		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Read	any	 line	of	a	 file	and	assign	 it	 to	a	variable	 -	external
programs	 assist	 the	 bash	 to	 read	 the	 lines	 of	 a	 program.	 Consider	 the	 code
shown	below:

	

	

														$	read	-r	rline	<	<(shuf	file)

	

	

Shuf	is	available	on	modern	Linux	systems	and	helps	in	this.	The	above	code	will	read	a
random	line	of	a	file	and	assign	it	to	the	variable	rline.

	

	

6.																											To	extract	a	tar	archive,	use	the	following	command:

	

	

tar	xvf	b.tar	

	

	

7.																											To	find	the	number	of	lines	common	between	two	files:

	

sort	doc1	doc2	|	uniq	–d

	

8.																											To	randomize	the	lines	of	a	file:

	

shuf	filename.txt

	

9.																											To	sum	a	certain	column:

	

awk	‘{	sum+=$1}	END	{print	sum}’	document.txt

	

Conclusion
	

	

It	can	be	concluded	 that	Linux	 is	an	open	source	operating	system	and	 it	has	various
distributions.	 The	 idea	 behind	 development	 of	 Linux	 was	 to	 develop	 a	 free	 Unix-like
operating	 system	for	computers.	Each	of	 the	Linux	distributions	comes	 in	 two	versions,
that	 is,	 the	 server	 and	 the	desktop	versions.	The	desktop	versions	 support	both	 the	GUI
and	the	command	line.

	

By	default,	one	accesses	the	GUI	after	login	into	the	system.	The	command	line	can	then
be	 launched	 if	 needed.	 The	 server	 versions	 of	 these	 distributions	 support	 only	 the
command	line.	No	graphics	in	Linux	servers.	The	purpose	of	this	is	to	ensure	security	of
these	 systems	since	hackers	usually	 take	advantage	of	any	 feature	added	 to	 this	 system.
This	explains	why	you	should	be	familiar	with	the	Linux	commands.

	

The	Linux	command	Line	can	be	used	for	nearly	everything	needed	in	the	system.	One
earns	much	respect	in	the	society	when	they	become	experts	in	using	the	Linux	command
line.	With	shell	scripting,	programmers	can	put	together	multiple	commands	and	run	them
simultaneously	 so	 as	 to	 achieve	 the	 desired	 output.	 This	 also	 saves	 on	 time	 and	 space
available	on	the	system.	Shell	scripts	are	preceded	by	the	shebang.

	

This	alerts	the	system	a	shell	scripts	is	just	to	be	executed.	These	must	be	made	executable
and	then	execution	will	take	place	after	this.	Bash	stands	for	Bourne	Again	Shell.	It	is	the
default	shell	in	most	Linux	distribution.	Bash	scripts	are	run	on	the	command	line,	and	one
can	achieve	much	with	 them,	and	know	much	about	 the	system.	Bash	on-liners	are	also
important	in	Linux.	One	can	use	them	to	play	around	with	their	files.

Thank	you!

	

We	would	like	to	thank	you	for	buying	this	book.	Hope	you	found	it	helpful	in	your
now	EASY	and	FAST	programming	life	development.	And	we	are	happy	to	recommend
you	some	other	books	from	this	author:

	

1.	 Linux	Command	Line:	Become	a	Linux	Expert!	(Input/Output
Redirection,	Wildcards,	File	Security,		Processes	Managing,	Shell
Programming	Advanced	Features,	GUI	elements,	Useful	Linux
Commands)

http://www.amazon.com/gp/product/B00XGUO4E4?
Version=1&*entries*=0

http://www.amazon.com/gp/product/B00XGUO4E4?*Version*=1&*entries*=0

2.	 PHP	and	MySQL	Programming	for	Beginners:	A
Step	by	Step	Course	From	Zero	to	Professional
	

http://www.amazon.com/gp/product/B00XQBYXVW?
Version=1&*entries*=0
	

http://www.amazon.com/gp/product/B00XQBYXVW?*Version*=1&*entries*=0

3.	 	Python	Programming:	Getting	started	FAST	With
Learning	of	Python	Programming	Basics	in	No	Time.

http://www.amazon.com/gp/product/B00WUNSH6Y?
Version=1&*entries*=0
	

http://www.amazon.com/gp/product/B00WUNSH6Y?*Version*=1&*entries*=0

	

4.	ANDROID	PROGRAMMING:	Complete
Introduction	for	Beginners	-Step	By	Step	Guide	How
to	Create	Your	Own	Android	App	Easy!
http://www.amazon.com/gp/product/B00WPK68IQ?*Version*=1&*entries*=0

http://www.amazon.com/gp/product/B00WPK68IQ?*Version*=1&*entries*=0

	

5.																								ANDROID	GAME	PROGRAMMING:
COMPLETE	INTRODUCTION	FOR	BEGINNERS:
STEP	BY	STEP	GUIDE	HOW	TO	CREATE	YOUR
OWN	ANDROID	APP	EASY!

http://www.amazon.com/gp/product/B011R2H2JQ?*Version*=1&*entries*=0

http://www.amazon.com/gp/product/B011R2H2JQ?*Version*=1&*entries*=0

6.	 DOCKER:	Everything	You	Need	to	Know	to	Master	Docker	(Docker
Containers,	Linking	Containers,	Whalesay	Image,	Docker	Installing	on
Mac	OS	X	and	Windows	OS)

	

http://www.amazon.com/gp/product/B013X2RPT0?*Version*=1&*entries*=0

	

http://www.amazon.com/gp/product/B013X2RPT0?*Version*=1&*entries*=0

7.	Docker:	Docker	Guide	for	Production	Environment
(Programming	is	Easy	Book	8)
	

http://www.amazon.com/gp/product/B01452V9IA?*Version*=1&*entries*=0

	

http://www.amazon.com/gp/product/B01452V9IA?*Version*=1&*entries*=0

8.	 Excel	VBA	Programming:	Learn	Excel	VBA	Programming	FAST
and	EASY!	(Programming	is	Easy	Book	9)

	
http://www.amazon.com/gp/product/B014DIPGVW?*Version*=1&*entries*=0

	

http://www.amazon.com/gp/product/B014DIPGVW?*Version*=1&*entries*=0

9.	VAGRANT:	Make	Your	Life	Easier	With	VAGRANT.
Master	VAGRANT	FAST	and	EASY!	(Programming	is
Easy	Book	10)

	

http://www.amazon.com/gp/product/B0151GIRCA?*Version*=1&*entries*=0

	

http://www.amazon.com/gp/product/B0151GIRCA?*Version*=1&*entries*=0

10.	SCALA	PROGRAMMING:	Learn	Scala	Programming	FAST	and	EASY!
(Programming	is	Easy	Book	11)

http://www.amazon.com/gp/product/B0151TBXEQ?*Version*=1&*entries*=0

	

11.	NODE.	JS:	Practical	Guide	for	Beginners	(Programming	is	Easy	Book	12)

http://www.amazon.com/gp/product/B01588CXAS?*Version*=1&*entries*=0

http://www.amazon.com/gp/product/B01588CXAS?*Version*=1&*entries*=0

12.	IOS	8	APP	DEVELOPMENT.	Develop	Your	Own	App	FAST	and	EASY!

http://www.amazon.com/gp/product/B015CMEJVQ?*Version*=1&*entries*=0

	

	Introduction
	Chapter 1- Definition
	Chapter 2- Linux Command Line Commands
	Changing Directories
	Copying file
	The less command
	ln command
	locate command
	logout command
	ls command
	more command
	mv command
	shutdown command
	sudo command
	cal command
	date command
	grep command
	tail command
	wc command
	last command

	Chapter 3- Bash scripting Tricks
	Brace Expansion
	Command Substitution
	Command History
	Loops

	Chapter 4- Linux shell programming
	Loops in Shell
	for Loop
	while Loop
	Case statement
	if-else-fi for decision making

	Chapter 5- Bash One-liners
	Working with files

	Conclusion

