

For	Pauline

Mo	shíorghrá

And	to	thank	her	for	all	her	help	and	support	over
these	many	many	years.

Without	 that	 I	 would	 have	 achieved
much	less	in	my	life.

Published	by	Lindentree	Associates	©	2015

The	rights	of	James	E	Cooling	to	be	identified	as	author	of	this	work	has	been	asserted	by
him	in	accordance	with	the	Copyright,	Design	and	Patents	Act	1988.

Table	of	Contents
Dedication
Glossary
Preface

///

Chapter	1	Modelling	-	What	and	why
1.1	Why	bother	to	model	in	the	first	place?
1.2	What	we	can	learn	from	modelling
1.3	Modelling	the	qualities	of	systems

1.3.1	Introduction
1.3.2	Structure
1.3.3	Processing
1.3.4	Interactions
1.3.5	Dynamic	behaviour
1.3.6	Usage

1.4	The	modelling	of	software	-	key	aspects
1.4.1	The	software	machine	and	object-oriented	techniques
1.4.2	Modelling	OO	software	with	UML	diagrams	-	a	broad
perspective

Review

Chapter	2	Diagramming	techniques	-	The	world	in	pictures
2.1	Diagrams	-	why?

2.1.1	Introduction
2.1.2	Reality,	modelling	and	diagrams
2.1.3	Diagrams	as	a	design	tool
2.1.4	Diagrams	for	design	documentation
2.1.5	Diagrams	for	maintenance
2.1.6	Diagrams	for	communication

2.2	The	essentials	of	software	diagrams
2.2.1	Fundamentals
2.2.2	Basic	qualities

Review

Chapter	3	Diagramming	and	UML	-	a	broad	perspective
3.1	Setting	the	groundwork
3.2	Software	diagramming	-	a	historical	prelude.

3.2.1	The	evolution	of	software	diagramming	-	the	embedded
world
3.2.2	The	evolution	of	software	diagramming	-	the	MIS	world
3.2.3	Enter	UML

3.3	UML	-	a	simple	overview

3.4	UML	-	assumptions,	issues	and	remedies.
3.4.1	Underlying	assumptions	of	the	UML	specification
3.4.2	UML	issues
3.4.3	UML	and	domain-specific	issues
3.4.4	Employing	UML	in	real-time	systems

Review

Chapter	4	-	The	structural	design	model
4.1	Some	important	preliminaries
4.2	Objects	and	their	classes	-	the	‘simple’	model	of	OO	design
4.3	Collaborating	objects

4.3.1	The	design	models
4.3.2	Coding	aspects	of	associations	-	C++	examples

4.4	Modular	objects
4.5	Software	reuse	-	inheritance

4.5.1	General	aspects
4.5.2	Implementation	inheritance	(subclassing)
4.5.3	Interface	inheritance	(subtyping)
4.5.4	Interface	inheritance	-	flexibility	aspects

4.6	Building	connectable	structures	-	composite	structures,	parts	and	ports
4.6.1	Setting	the	scene
4.6.2	The	composite	structure	-	why?
4.6.3	Wiring	objects	together	using	Ports.

4.7	Building	larger	modular	structures	-	components
4.7.1	Some	background
4.7.2	Components	-	constructs	and	notation
4.7.3	Practical	aspects	of	using	components

4.8	Packages,	artifacts	and	deployments
4.8.1	Why	things	need	to	be	organized
4.8.2	Packages	and	package	diagrams
4.8.3	Artifacts
4.8.4	Deployment	diagrams	and	nodes

Review

Chapter	5	-	The	behavioural	interactions	model
5.1	Object	types	and	their	interactions
5.2	Modelling	interactions	-	the	basics	of	sequence	diagrams

5.2.1	Introduction
5.2.2	Basics	of	UML	sequence	diagrams
5.2.3	CASE	tool	issues
5.2.4	Some	lesser-used	constructs

5.3	Modelling	interactions	-	efficiently	handling	sequence	diagrams
5.3.1	Brief	introduction
5.3.2	Diagram	maintenance
5.3.3	Diagram	navigation
5.3.4	Diagram	comprehension

5.4	Modelling	the	timing	of	interactions
5.5	The	communication	diagram
Review

Chapter	6	-	The	behavioural	dynamics	model
6.1	Introduction	to	dynamical	modelling

6.1.1	The	basics	of	state	modelling.
6.1.2	State	machine	fundamentals

6.2	Transition-related	behaviour
6.3	State	related	behaviour
6.4	Combining	state-related	and	transition-related	behaviours
6.5	States	and	substates	-	composite	states

6.5.1	Composite	states	and	sequential	state	machines
6.5.2	Concurrent	state	machines

6.6	Minor	topics	-	diagram	simplification	and	decluttering
6.6.1	History	pseudostate
6.6.2	Junction	and	choice	pseudostates

6.7	Code-related	aspects
Review

Chapter	7	-	The	processing	model
7.1	Introduction	to	process	modelling
7.2	Basics	of	UML	process	modelling	-	activity	diagrams

7.2.1	Introduction	to	activity	diagrams
7.2.2	Using	signals
7.2.3	Important	but	lesser-used	constructs

7.3	Why	program	structure	diagrams?
7.4	Structuring	and	decomposing	activity	diagrams
7.5	Applying	activity	diagram	symbols	to	interaction	overview	diagrams
7.6	Code-related	aspects	of	program	design
Review

Chapter	8	-	The	usage	model
8.1	Introduction	to	usage	modelling	-	use	case	analysis
8.2	Describing,	structuring	and	packaging	use	cases
Review

Chapter	9	-	Practical	diagramming	issues
9.1	Setting	the	scene
9.2	Building	well-structured	embedded	software
9.3	Using	the	right	diagrams	-	1

9.3.1	General	comment
9.3.2	Usage
9.3.3	Structure
9.3.4	Behaviour	and	interactions
9.3.5	Behaviour	and	dynamics

9.3.6	Processing
9.4	Using	the	right	diagrams	-	2
Review

Chapter	10	-	Outline	guide	to	UML	notation
10.1.	Overview	of	the	diagram	set

UML	2	diagrams	as	specified	in	the	UML	superstructure
document
UML	2	diagrams	-	an	application-based	view

10.2.	Activity	diagrams
Activity	diagram	symbols	(basic)
Simple	activity	diagram	example
Activity	diagram	describing	sequential	and	parallel	processing
Activity	diagram	swimlanes	(activity	partitions)

10.3.	Artifacts
Examples	of	artifacts
A	package	and	its	corresponding	artifact
Relating	packages,	artifacts	and	dependencies

10.4.	Class	diagrams
Class	symbol
Associations	and	multiplicity
Composite	aggregation	example
Inheritance	example

10.5.	Component	diagrams
The	component	-	external	view
Wiring	components	together	using	assembly	connectors
Component	containing	components

10.6.	Deployment	diagrams
Nodes	and	system	architecture
Example	node	types
Example	deployment	diagram

10.7.	Interaction	diagrams
UML	message	notations
UML	sequence	diagrams	and	object	lifelines
Sequence	diagram	interaction	fragment
Interaction	overview	diagram
Combined	fragment	specifying	alternative	courses	of	action
Combined	fragment	specifying	optional	actions
Combined	fragment	specifying	a	loop
Sequence	diagram	-	example	timing	information
Timing	details	of	object	behaviour	-	the	state	lifeline	diagram

10.8.	Object	diagrams
Example	class	and	object	notation	-	single	class
Example	object	and	class	diagram	-	multiple	classes
Object	communication	diagram
Composite	object

10.9.	Composite	structure	diagrams
Composite	object	diagram	showing	roles
Composite	structure	diagram
Composite	structure	diagrams	and	ports
Interfaces	on	ports

10.10.	Package	diagrams
Basic	package	diagrams
Packaging	classes
Package	dependencies

10.11.	State	diagrams
Basic	UML	notation	for	state	machines
Events	and	responses
State	diagrams	and	guards
Transition	caused	by	time	elapse
Do	activity	within	a	state
Entry	action
Exit	action
State	machine	-	self-transitions
Combined	transition	and	state	related	behaviour
Refinement	and	substates
Entry	and	exit	points
Concurrent	state	modelling	in	UML
State	model	of	parallel	processing
Receive	and	send	signals
Junction	pseudo-states
Choice	pseudo-state

10.12.	Use	case	diagrams
The	components	of	the	use	case	model
Example	use	case	diagrams
The	include	relationship
The	extend	relationship
Use	case	behaviour	-	state	machine	description
Use	cases	and	packages

Reference	material
Index

GLOSSARY	OF	TERMS

AADL	Architecture	Analysis	and	Design	Language

ADC	Analogue	to	Digital	Converter

CAN	Controller	Area	Network

CASE	Computer	Aided	Software	Engineering

COM	Component	Object	Model

CORBA	Common	Object	Request	Broker	Architecture

COTS	Commercial	Off	The	Shelf

DAC	Digital	to	Analogue	Converter

DCOM	Distributed	COM

EA	Enterprise	Architect

EJB	Enterprise	JavaBeans

FSM	Finite	State	Machine

HMI	Human-Machine	Interaction

IDE	Integrated	Development	Environment

IDL	Interface	Definition	Language

LIN	Local	Interconnect	Network

MARTE	Modelling	and	Analysis	of	Real-Time	and	Embedded	Systems

MDA	Model-Driven	Architecture

MIS	Management	Information	Systems

.NET	Not	an	acronym	-	is	a	programming	framework	developed	by	Microsoft

OMG	Object	Management	Group

OO	Object	Orientation

OOD	Object	Oriented	Design

OOP	Object	Oriented	Programming

OS	Operating	System

PSM	Platform-Specific	Model

RTES	Real-Time	Embedded	System

RTOS	Real-Time	Operating	System

RUP	Rational	Unified	Process

SAE	Society	of	Automotive	Engineers

SysML	Systems	Modeling	Language

UML	Unified	Modeling	Language

	
Preface

Modelling	software	with	pictures

UML	diagramming	for	real-time	embedded	systems.

Another	book	in	the	series	‘The	engineering	of	real-time	embedded	systems’

What	is	this	book	series	about?

These	books	set	out	 to	provide	a	 firm	foundation	 in	 the	knowledge	and	skills	needed	 to
develop	and	produce	real-time	embedded	systems.	They	fall	into	two	categories.

	
Those	providing	a	solid	grounding	in	the	fundamentals	of	the	subject.
Those	 showing	 the	 application	 of	 specific	 design	 and	 development
techniques.

Engineers	 from	 the	 well-established	 professions	 (electronic,	 mechanical,	 aeronautical,
etc.)	 fully	 understand	 the	 distinction	 between	 these	 two	 aspects.	Moreover,	 experienced
engineers	recognize	that	to	effectively	apply	your	skills	you	must	truly	have	a	good	grasp
of	 fundamentals.	 Regrettably,	 this	 view	 is	 sadly	 lacking	 in	 the	 area	 of	 Software
Engineering.

What	is	this	book	about?

The	aim	here	is	to	show	embedded	software	engineers	how	to	model	their	designs	using
diagrams	 in	an	effective,	clear	and	useful	way.	The	 term	‘diagramming’,	as	used	 in	 this
text,	implicitly	means	‘modelling’.

A	key	aspect	in	all	of	this	is	the	sensible	application	of	a	set	of	diagrams	defined	within
the	Unified	Modelling	Language	(UML)	standard.

Who	is	this	book	written	for?

Those	 designing	 -	 or	 who	 intend	 to	 design	 -	 software	 for	 real-time	 embedded	 systems
(RTESs).

Why	is	there	a	need	for	a	book	like	this	one?

There	are	two	particular	reasons	for	producing	this	book.	First,	many	embedded	systems
developers	need	to	be	convinced	that	diagramming	is	not	only	useful;	 it	also	helps	us	to
produce	 reliable	 software	which	 is	 delivered	 on	 time	 and	 at	 the	 right	 price.	 Second,	 to
show	 that	 it’s	 not	 enough	 just	 to	 use	 diagrams;	 it	 is	 essential	 that	 they	 be	 used	 in	 an
organized,	professional	and	rigorous	manner.

Why	is	diagramming	so	important?

No	 matter	 what	 activity	 you’re	 engaged	 in,	 be	 it	 sports,	 hobbies	 or	 work,	 you	 should
always	have	a	clear	idea	of:

	
What	you’re	doing	and
Why	you’re	doing	it.

You	will	soon,	we	hope,	see	how	powerful	and	useful	diagramming	can	be	to	help	you	in
answering	these	questions.	But	be	careful	when	you	begin	to	use	diagramming;	it’s	all	too
easy	 to	get	 enmeshed	 in	detail	 and	 lose	 sight	of	 the	bigger	picture.	To	use	 a	 cliché,	we
can’t	see	the	wood	for	the	trees.

So	what	 is	 the	 ‘wood’	 here?	Quite	 simply,	 it’s	why	we	 use	 diagrams	 in	 the	 design	 and
development	process?	In	essence	they	help	us	to:

	
Analyze	and	evaluate	something	that	already	exists.
Analyze	and	evaluate	something	that’s	proposed.
Develop	design	solutions	to	meet	particular	objectives.
Specify	what	is	to	be	designed.
Specify	what	is	to	be	built.

Now,	 does	 this	 mean	 that	 each	 activity	 uses	 a	 unique	 set	 of	 diagrams?	 Not	 so.	 For
example,	the	sequence	diagram	(which	you	will	meet	in	later	in	the	book)	can	be	used	in
numerous	phases	of	a	development	project

To	 be	 effective	 as	 a	 designer	 it’s	 not	 enough	 to	 know	 what	 a	 diagram	 does;	 it’s	 also
important	to	know	how	to	use	it	effectively.	And	to	do	that	you	really	need	to	understand
the	fundamentals	of	diagramming	and	diagramming	techniques.

Why	has	diagramming	been	such	a	neglected	topic?

In	 the	 early	 days	 of	 computers,	 diagramming	 didn’t	 figure	 as	 an	 important	 topic	 in	 the
design	process.	Further,	the	only	pictorial	method	used	was	that	of	the	flow	chart.	At	that
time	 there	was	 little	 distinction	 between	 programming	 and	 design	 (nor,	 for	 that	matter,
between	programmers	and	designers).	The	design	and	development	process	usually	went
something	as	follows:

	

Programmers	thought	about	the	problem	to	be	solved.
They	wrote	lines	of	code	to	solve	it.
The	code	was	 tested	and	modified	until	 it	was	correct	 (or	 appeared	 to	be
so).
This	source	code	was	released	as	the	system	documentation.

Sometimes,	in	a	token	gesture	to	appease	senior	management	(or	the	customer),	a	system
flow	chart	was	produced.	Whether	it	represented	what	went	on	in	the	program	is	another
matter.	And	the	sad	fact	is	that	this	describes	the	ethos	that	still	pervades	many	parts	of	the
embedded	world.

Fortunately,	 in	 recent	 years	 a	 revolution	 has	 taken	 place	 concerning	 the	 use	 of
diagramming	for	software.	 In	 the	 IT	world	 the	major	driving	force	 for	 this	has	been	 the
widespread	 adoption	 of	 UML.	 As	 a	 result,	 practically	 all	 modern	 software	 tools	 use
diagrams	as	an	integral	part	of	the	design	and	development	process.

Alternatives	to	this	book?

Or	 to	 put	 it	 another	 way,	 are	 there	 cheaper	 or	 no-cost	 ways	 of	 getting	 the	 information
contained	here?	The	answer,	as	far	as	UML	is	concerned,	is	mainly	‘yes’.	Generally	there
are	three	options	open	to	you:

	
First,	you	could	download	a	copy	of	the	UML	specification	document	from
the	Object	Management	Group	(OMG)	website.
Second,	you	could	 trawl	across	 the	 internet,	 seeking	out	articles,	 tutorials
and	the	like	relating	to	UML.
Third,	 if	 you	 have	 a	UML	 computer-aided	 software	 engineering	 (CASE)
tool,	use	the	documentation	supplied	with	it.

These	options	aren’t,	of	course,	mutually	exclusive.

Well,	 this	 is	fine	as	far	as	 it	goes.	Because,	 in	reality,	 there	are	drawbacks	with	all	 three
methods.	 More	 will	 be	 said	 in	 a	 moment	 about	 UML;	 but	 if	 you	 check	 out	 the
specification	 using	 DrivelDefence	 (from	 the	 Plain	 English	 Campaign,
www.plainenglish.co.uk)	you’ll	get	some	idea	of	what	you’re	faced	with.

There	is	a	great	deal	of	useful	information	to	be	found	on	the	Internet.	Unfortunately	there
is	also	a	 lot	of	dross.	A	further	problem	is	 that	even	the	good	web	postings	 tend	to	deal
with	 individual	 diagramming	 aspects;	 there	 is	 a	 lack	 of	 a	 ‘joined-up’	 process.	 And
regrettably,	the	amount	of	material	dealing	directly	with	embedded	design	aspects	is	quite
small	indeed.

CASE	tool	material	can	be	extremely	useful.	But,	be	careful	with	this.	There	may	be	tools
that	support	all	the	features	of	UML,	but	we	just	haven’t	found	them	yet.	In	general	you
will	 be	 limited	 by	 the	 tool	 facilities.	 Moreover,	 many	 tools	 provide	 vendor-specific
extensions	 to,	 and	 variations	 on,	 the	 UML	 specification.	 Lastly,	 with	 the	 high-end

embedded	 tools	you	get	a	 tool-specific	design	process	as	well	as	a	design	notation	 (and
these	 are	 inseparable).	 This	 often	 results	 in	 designers	 ending	 up	 with	 a	 rather	 narrow,
parochial,	view	of	software	design	principles	and	practices.	 It’s	easy	 to	end	up	knowing
what	to	do	but	not	why	you’re	doing	it.

UML;	the	answer	to	a	maiden’s	prayer?

At	this	point	I	want	to	inject	a	personal	note	into	the	book.	It’s	important	for	you	to	realize
that	the	presentation	here	of	UML	is	essentially	my	view	of	the	topic.	I	haven’t	in	any	way
modified	the	defined	syntax	of	the	specification;	rather	it’s	a	case	of	emphasizing	a	subset
of	the	full	range	of	diagrams.	This	includes:

	
Selecting	the	diagrams	most	useful	for	RTESs	work.
Specifying	where	these	diagrams	may,	or	should,	be	used.
Showing,	 where	 possible,	 how	 to	 use	 these	 diagrams	 in	 an	 integrated
fashion.

In	the	years	after	UML	arrived	it	was	promoted	in	an	almost	evangelical	manner.	All	sorts
of	claims	were	made	concerning	its	power,	effectiveness	and	‘richness’	(a	dreadfully	over-
used	word).	The	 first	 release,	at	version	0.8,	 left	me	distinctly	underwhelmed.	From	my
experience	 of	 using	 software	 diagrams	 in	 embedded	 systems	 design	 for	 many	 years,	 I
found	that	it	didn’t:

	
Offer	a	great	deal	to	the	embedded	world	and
Give	much	idea	on	how	to	effectively	use	the	diagrams.

So,	many	years	later,	how	do	things	fare?	Well,	UML	does	provide	us	with	a	good	range
of	useful	diagrams,	though	there	are	still	a	few	gaps	(UML	enthusiasts	insist	that	you	can
fill	 these	 gaps	 by	 adapting	 standard	 diagrams;	myself,	 I’d	 rather	 use	 the	 proper	 types).
Tool	support	is	extensive,	ranging	from	very	low-cost	drawing	packages	through	low-cost
CASE	tools	to	very	expensive	integrated	development	environments	(IDEs).	And	it	is,	by
far,	the	most	widely-used	non-propriety	software	diagramming	technique.	All	in	all,	good
reasons	to	consider	using	UML	in	your	projects.

Well,	that’s	fine	as	far	as	it	goes.	But	embedded	developers	new	to	the	topic	still	have	to
overcome	three	major	hurdles:

	
What	diagrams	to	use.
When	to	use	them	and
How	to	use	them	effectively.

This	book	aims	to	answer	these	questions,	providing	sensible,	useful	and	logical	guidance
for	the	reader.	If	it	fails	to	do	this,	the	fault	is	entirely	mine.

A	brief	look-ahead.

The	 content	 of	 this	 book	 falls	 into	 two	 quite	 distinct	 categories.	 The	 first,	 covered	 by
chapters	1	to	3,	is	a	‘selling’	mission,	to	try	to	make	you	understand	why	it	really	is	a	good
idea	 to	use	modelling	methods	 in	your	designs.	The	 rest	of	 the	book	 shows	how	 to	put
these	ideas	into	practice	when	designing	software.

Chapter	 1	 sets	 out	 to	 show	 how	 much	 can	 be	 achieved	 by	 using	 modelling	 in	 your
projects.	It	discusses	this	in	the	broader	engineering	sense,	identifies	the	key	model	types
and	shows	how	these	can	be	applied	to	software	projects.

Chapter	2,	Diagramming	techniques,	is	complementary	to	the	modelling	chapter.	It	revisits
some	 of	 the	 material	 discussed	 in	 that	 chapter,	 but	 now	 emphasizes	 the	 diagramming
aspects.	 It	 discusses	 a	 whole	 range	 of	 issues,	 showing	 just	 what	 a	 powerful	 tool
diagramming	is.

The	aim	of	chapter	3	is	to	provide	you	with	a	very	broad	overview	of	UML:	its	history,	the
rationale	for	its	development	and,	most	important,	some	of	its	limitations	and	weaknesses.
But	 its	real	purpose	 is	 to	give	you	the	confidence	to	use	UML	diagrams	in	a	considered
and	selective	way:	not	just	blindly	doing	things	‘because	they’re	in	the	manual’.

The	next	set	of	chapters	is	organized	on	a	model-by-model	basis,	following	the	grouping
defined	in	chapter	1.	The	diagrams	described	are	those	that	we	have	found	to	be	especially
useful	 in	 the	 development	 of	RTESs.	 This	 isn’t	 limited	 to	 just	 the	 syntax	 and	 semantic
aspects	 (such	 information	 is	widely	available)	but	also	 tries	 to	 show	how	and	why	such
diagrams	are

A	really	important	caveat	-	why	this	book	might	not	be	for	you.

This	book	doesn’t	deal	with	software	design	per	se.	However,	the	choice	of	diagrams	and
their	usage	is	most	definitely	affected	by	the	design	techniques	employed.	In	my	view	the
key	to	producing	correct,	well	structured,	robust	and	maintainable	embedded	software	is
clear;	 it	 is	 the	 structuring	 of	 software	 systems	 as	 sets	 of	 cooperating,	 communicating
software	machines.	And	in	an	OO	(object-oriented)	context,	for	‘software	machine’	read
‘object’.

Now	 this	 has	 resulted	 in	 us	 taking	 an	 object-first	 approach	 to	 designing	 software	 (very
different	to	the	de-facto	position	of	traditional	OO	methods,	the	class-first	technique).	So
for	us	object	design	and	implementation	is	seen	as	‘the	big	pole	in	the	tent’,	 the	class	is
heavily	de-emphasized.	 If,	however,	you	believe	 that	 the	class-first	approach	 is	 the	right
one	to	use,	then	don’t	waste	your	money	on	this	book.	There	is	a	great	deal	of	material	out
there	 that	 should	 be	 helpful:	 personally	 I	 believe	 that	 Martin	 Fowler’s	 book	 (see
Acknowledgements)	is	the	outstanding	one.

Acknowledgments.

The	inspiration	for	this	book	was	the	work	of	Martin	Fowler	and	his	book	‘UML	Distilled’
(ISBN	0-321-19368-7).	The	book	itself	is	excellent,	something	I	myself	would	have	been
quite	proud	of.	What	 really	grabbed	my	attention	was	his	 statement	 ‘My	 intention	 is	 to
find	that	fraction	of	the	UML	that	is	most	useful	and	tell	you	just	that’.	In	the	context	of
the	monster	UML	2.0,	this	was	a	brave	position.

Whilst	 the	 book	 is	 a	 first-class	 one	 it	 is	written	more	with	 the	 general	 software	market
(e.g.	IT,	databases,	web	working)	in	mind.	My	hope	is	that	this	book	will	do	the	same	job
for	the	embedded	world.

Good	reading,	ladies	and	gentlemen.	I	wish	you	well.

Jim	Cooling

Markfield,	2015

///

Chapter	1	Modelling	-	What	and	why

The	objectives	of	this	chapter	are	to:

	
Define	what,	in	general,	we	mean	by	the	modelling	of	real	systems.
Explain	what	prompts	us	to	model	systems	in	the	first	place.
Show	why,	to	fully	describe	real	systems,	a	variety	of	models	is	needed.
Illustrate	the	fundamentals	of	these	models,	showing	how	and	why	we	use
them.
Describe	 how	 software-specific	modelling	 aspects	 relate	 to	 these	 general
principles	and	practices.

1.1	Why	bother	to	model	in	the	first	place?
The	 ‘meat’	 of	 this	 book	 is	 all	 to	 do	 with	 UML	 diagrams	 and	 diagramming.	 Yet	 it’s	 a
mistake	to	treat	the	production	of	these	diagrams	as	an	end	in	itself	(though	that	seems	to
be	 the	 case	 with	 some	 organizations).	 No,	 they	 are	 a	 means	 to	 an	 end,	 which	 is	 the
modelling	of	software	systems.

One	of	 life’s	great	 truisms;	doing	pointless	 things	 is	a	 total	waste	of	 time,	energy,	effort
and,	 in	 a	 job	 setting,	 money.	 So,	 why	 bother	 to	 spend	 our	 precious	 resources	 on	 the
modeling	of	systems?	Good	question.	However,	 to	answer	that,	we	first	need	to	be	clear
what	we	mean	by	models	and	modelling.

A	model,	 in	our	view,	 is	a	‘representation	of	reality’.	Though	that	sounds	pretty	abstract
(and	not	especially	helpful)	 it	actually	gets	 to	 the	heart	of	 the	matter.	Now,	let’s	make	it
more	 meaningful	 by	 looking	 at	 a	 couple	 of	 tangible	 items.	 First,	 figure	 1.1	 gives	 an
example	of	one	reality,	a	Spitfire	aircraft.	By	contrast,	figure	1.2	depicts	a	physical	model
of	the	Spitfire,	a	specific	representation	of	the	real	thing.

Figure	1.1	Spitfire	aircraft

Figure	1.2	Spitfire	model	aircraft

	 That,	 for	 example,	 represents	 things	 from	 the	 point	 of	 view	 of	 aircraft	 operators,
maintainers,	 etc.	 Of	 course,	 if	 we	 were	 aeromodellers,	 the	 model	 itself	 would	 be	 our
‘reality’,	one	representation	of	this	being	the	‘construction	plan’	of	figure	1.3.

Figure	1.3	Spitfire	model	construction	plan

	To	summarize;	what	all	this	shows	is	that	the	‘reality’	of	interest	depends	on	the	nature	of
our	work;	the	representation	used	depends	on	what	aspect	of	this	reality	that	we	wish	to
show.	And	as	 for	 ‘modelling’?	 It’s	nothing	more	 than	 the	work	 involved	 in	producing	a
model.

To	see	why	modelling	can	be	a	valuable	tool,	let’s	look	at	some	examples	of	its	use.

(a)	 In	 the	 late	 1990’s	 aviation	 experts	 identified	 loss-of-control	 as	 a	major	 factor	 of	 the
fatal	 accident	 rate	 of	 aircraft.	 As	 a	 result	 a	 study	 was	 launched	 to	 investigate	 the
aerodynamic	characteristics	of	large	airplanes	at	upset	flight	conditions.	This	involved	the
use	 of	 extensive	 wind	 tunnel	 testing	 of	 models	 that	 were	 representative	 of	 modern
transport	aircraft,	figure	1.4

Figure	1.4	Wind	tunnel	test	of	an	aircraft	model

	This	is	an	excellent	illustration	of	using	modelling	to	evaluate	the	behaviour	of	existing

systems:	analysis.

(b)	Something	 familiar	 to	all	of	us:	 the	weather	 forecast.	Yet	 this	 is	another	example	of
modelling,	as	the	forecast	is	really	the	output	of	a	weather	model,	figure	1.5.

Figure	1.5	Weather	model

What	we	have	here	is	a	second	important	use	of	modelling:	prediction.

(c)	The	MS	Tûranor	PlanetSolar	is	the	largest	solar-powered	boat	in	the	world,	which	in
2012	 became	 the	 first	 solar	 electric	 vehicle	 to	 circumnavigate	 the	 globe.	 Shown	 here
(figure	 1.6)	 is	 a	 large-scale	 model	 of	 the	 vessel,	 used	 for	 proof-of-concept	 work.	 This
work	evaluates,	amongst	other	things,	performance	improvement.

Figure	1.6	Model	of	autonomous	semi-robotic	test	boat

(d)	It’s	well	known	that	auto	manufacturers	produce	clay	models	(figure	1.7)	of	vehicles	to
evaluate,	mainly,	their	styling	(‘styling	sells	cars’	is	an	old	saying	of	the	car	industry).	This
is	not	 a	 cheap	process,	 yet	 it’s	 very	widely	used	 in	 that	 industry	 (even	 in	 these	days	of
computer-aided	 design).	 Why?	 Because,	 according	 to	 Alan	 Biggs	 a	 design-modelling
manager	for	Ford,	‘No	one	is	willing	to	sign	off	a	production	car	looking	at	a	picture’.

Figure	1.7	Modelling	a	car	with	clay

	Once	styling	decisions	have	been	finalized	the	clay	model	can	be	used	to	define	what	is	to
be	built.	For	example,	it	can	be	scanned	for	dimensional	information	that	can	then	be	used
to	produce	the	bodywork	for	production	cars.	This	is	a	further	example	of	the	application
of	modelling:	specification.

These	 modelling	 applications	 are	 not	 necessarily	 mutually	 exclusive.	 And	 in	 some
situations	we	may	find	ourselves	using	all	four	as	part	of	a	project.	For	example	we	may
start	 off	 by	 analyzing	 the	 aerodynamic	 behaviour	 of	 an	 aircraft	 to	 set	 a	 baseline	 of
knowledge.	 If	 improvements	 are	 needed	 then	 the	 model	 may	 be	 modified	 until	 its
behaviour	 and	 performance	 match	 our	 aims.	 Finally	 this	 information	 can	 be	 used	 to
generate	an	engineering	specification	for	future	manufacturing	purposes.

Thus	 to	 summarize;	 four	major	 uses	 of	modelling	 are	 analysis,	 prediction,	 performance
improvement	and	specification.

1.2	What	we	can	learn	from	modelling
Let	us	assume	you’re	now	convinced	that	modelling	could	actually	be	helpful.	Then	your
next	step	is	to	try	to	pin	down	clearly:

	
The	reasons	for	using	the	models	and
The	benefits	that	will	result	from	this.

To	answer	these	questions	consider	the	example	shown	in	figure	1.8,	a	brief	description	of

its	operation	being	given	below.

Figure	1.8	Automated	materials	handling

	 This	 shows	 an	 automated	 materials	 handling	 device	 that	 uses	 two	 robots:	 a	 pallet
transport	 robot	 and	 a	 materials	 loader/unloader	 (palletizer)	 robot.	 The	 transport	 robot’s
function	is	to	move	the	pallets	about	the	factory,	while	the	palletizer	function	is	to	unload
and/or	load	items	onto	the	pallets	(palletizing).	All	operations	are	controlled	by	software,
in	particular	a	transport	task	and	a	palletizing	task.	Most	important;	before	material	can	be
transferred	to/from	the	pallet	both	robots	must	be	in	their	correct	position.

Now	 let’s	 consider	 the	 sort	 of	 detailed	 information	 that	 we,	 as	 designers,	 users,
maintainers,	 etc.,	 would	 like	 to	 know	 about	 this	 system.	 It’s	 very	 likely	 to	 include	 the
answers	to	the	following	questions	(in	no	particular	order):

	
How	are	the	individual	parts	constructed/manufactured?
How	 do	 the	 individual	 parts	 work	 (i.e.	 what	 is	 their	 operation	 and
behaviour)?
How	do	these	parts	fit	together	to	build	a	specific	robot	unit?
What	exactly	is	the	purpose	of	each	part	in	the	complete	unit	(what	do	they
do)?
How	does	each	complete	robot	work?

How	does	the	combination	of	robots	work?
How	do	the	robots	communicate	with	each	other?
When	and	why	do	they	communicate?
What	 is	 the	 structure	 of	 the	 complete	 robotic	 system	 including,	 where
relevant,	its	human-machine	interfaces	(HMIs)?

From	this	we	can	see	 that	 the	qualities	of	systems	can	generally	be	described	using	five
categories,	figure	1.9.

Figure	1.9	Describing	system	qualities

1.3	Modelling	the	qualities	of	systems
1.3.1	Introduction

What	each	category	listed	in	figure	1.9	does	is	provide	us	with	a	‘view’	of	specific	system
qualities.	 The	 precise	 descriptions	 and	 details	 depend	 very	 much	 on	 the	 needs	 of
individual	applications,	industries	and	users.	But	a	common	aim	in	all	areas	is	to	present
information	 so	 that	 it	 is	 accessible,	 understandable	 and	 correct.	 And	 one	 of	 the	 most
effective	ways	 to	do	 that	 is	 to	use	models,	 each	model	giving	us	 a	 specific	view	of	 the
system.	This	sounds	somewhat	abstract,	so	to	flesh	things	out	some	concrete	examples	are
given	in	the	following	sections.

1.3.2	Structure

What	do	we	mean	by	‘structure’?	Well,	it	just	depends!	We	may,	for	instance,	be	interested
in	the	overall	physical	composition	and	layout	of	a	system	(loosely,	‘deployment’),	figure
1.10

Figure	1.10	System	physical	layout

	 A	 second	 item	 of	 interest	 is	 the	 makeup	 of	 individual	 items,	 one	 example	 being	 that
shown	in	figure	1.11.

Figure	1.11	Structure	of	a	specific	item	-	robot	arm

	If	our	primary	interest	relates	to	the	electronic	structure	of	the	system	the	model	of	figure
1.12	would	be	very	meaningful.

Figure	1.12	Electronic	system	structure

	What	these	last	three	examples	have	in	common	is	that	they	represent	things	(‘entities’)
that	actually	do	something.	However	these	entities	have	to	be	made	in	the	first	place,	so
we	need	to	show	how	they	are	actually	constructed,	figure	1.13.

Figure	1.13	Construction	plan

1.3.3	Processing

’Processing’	defines	the	detailed	work	that	the	entity	performs,	as,	for	example:

	
1.	 The	robot	waits	loads	up	the	correct	sized	drill.
2.	 It	then	rotates	into	position,	and	waits	until	the	workpiece	arrives.
3.	 When	the	workpiece	is	ready	it	drills	the	defined	set	of	holes.
4.	 etc.	etc.	etc.

Text	 descriptions	 like	 this	 are	 fine	 to	 describe	 simple	 or	 relatively	 short	 operations.
However,	 for	more	 complex	 actions	 they	 really	 aren’t	 the	 best	 medium;	 a	much	 better
approach	is	to	use	pictorial	descriptions	as,	for	instance,	the	flow	chart	of	figure	1.14.

	

Figure	1.14	Flowchart	description	of	a	processing	operation

1.3.4	Interactions

Interactions	between	the	various	component	parts	of	a	system	can	be	shown	in	a	number
of	ways.	Three	particular	aspects	are	especially	important:

	
What	interactions	take	place.
Why	these	occur.
When	these	happen.	

Figure	1.15	shows	how	the	‘what’	question	can	be	answered.	It	shows	the	component	parts
of	 the	 system	 (essentially	 its	 structure)	 and	 their	 interconnections.	 But	 it	 extends	 the
structure	 diagram	 by	 adding	 to	 it	 a	 list	 of	 interactions	 between	 the	 parts	 (e.g.	 Sensor
observations).	These	interactions,	typically	called	signals,	commands	or	data,	highlight	the
communication	 aspects	 of	 the	 system.	 A	 meaningful	 name	 for	 this	 diagram	 is	 the
communication	model.

	

	Figure	1.15	System	components	and	their	interactions	-	a	communication	viewpoint.

If	 it’s	 important	 to	 know	 why	 these	 interactions	 occur	 (and	 what	 they’re	 intended	 to
achieve),	 this	 should	 be	 described	 in	 text	 documents.	An	 additional	 useful	 feature	 is	 to
provide	hyperlinks	between	communication	diagrams	and	the	relevant	text	material.

In	engineering,	diagrams	 like	 this	are	very	much	 ‘bread	and	butter’	 items,	which	 shows
just	how	useful	they	are.	But	they	don’t	answer	the	‘when’	aspect;	it	could,	for	example,
be	the	case	that	all	signals	are	continually	present.	On	the	other	hand	certain	signals	might

occur	only	at	specific	times	or	when	invoked	by	specific	operations.	Techniques	have	been
developed	to	add	such	information	to	communication	diagrams;	generally	these	have	been
fine	in	theory	but	useless	in	practice.	We	need	something	better.

Electronic	developers	will	 instantly	 recognize	 that	 figure	1.16	 is	 a	 timing	diagram	 for	 a
processor	system.	It	consists	of:

	
A	set	of	‘items’	(e.g.	the	ready,	busy	and	DAC2	lines).
The	signalling	that	takes	place	between	the	various	items.
The	event	(or	events)	provoked	by	this	signalling.

	

Figure	1.16	Processor	system	timing	diagram

Here	time	implicitly	flows	from	left	to	right.	If	we	are	primarily	interested	in	the	sequence
of	events	then	there	is	no	need	to	include	a	time	scale.	However,	where	timing	is	critical,
the	scale	would	have	to	be	included.

What	we	have	here	 is	a	model	of	one	set	of	 interactions,	one	 that	occurs	under	specific
circumstances.	 However,	 in	 most	 real	 applications	 many	 different	 types	 of	 interactions
take	 place.	 Hence	 to	 fully	 model	 time-related	 operations	 (e.g.	 reading,	 writing,	 DMA
accesses,	interrupts,	etc)	sets	of	individual	diagrams	are	needed.	These	operations	we	will
call	scenarios.	Thus	there	is	one	scenario	that	depicts	reading,	another	for	writing,	and	so
on.	Note	that	during	system	operation	many,	if	not	most,	scenarios	occur	multiple	times.
But	in	each	case	the	scenario	interactions	are	identical,	thus	one	diagram	only	is	needed.
Where	scenarios	are	similar	but	not	identical	(compare	reading	the	output	of	a	peripheral
device	with	that	of	reading	from	memory)	each	one	needs	its	own	diagram.

An	alternative	to	the	format	of	figure	1.16	is	that	of	the	sequence	diagram,	figure	1.17.

	

Figure	1.17	Sequence	diagram	representation	of	interactions

Here	time	or	sequence	of	events	runs	from	top	to	bottom;	the	rest	of	the	diagram	should	be
self-explanatory.

These	 examples	 also	 make	 the	 point	 that	 specific	 model	 properties	 can	 be	 shown	 in
different	ways.	The	practical,	sensible	approach	is	pick	the	one	that’s	easiest	to	produce,
understand	and	use.	For	modelling	interactions	a	good	general	rule	is	to	use	the	sequence
diagram	as	the	default	approach	(augmenting	it	with	timing	diagrams	if	and	when	needed).

1.3.5	Dynamic	behaviour

When	 we	 describe	 dynamic	 behaviour,	 the	 words	 ‘condition’,	 ‘mode’	 and	 ‘state’	 are
frequently	used.	 In	 fact	 they	can	be	considered	 to	be	 synonymous,	 as	 can	be	 seen	 from
their	Free	Dictionary	definitions:

Mode
A	manner	or	way	of	doing,	acting,	or	existing.
A	designated	 condition	or	 status,	 as	 for	performing	a	 task	or	 responding	 to	a
problem.
State
A	condition	or	mode	of	being.

Dynamic	modelling	is	used	when	we	are	primarily	interested	in:

	
The	various	conditions	(states,	modes)	that	a	system	can	be	in.
Why	a	system	finds	itself	in	these	states.
Why	a	system	leaves	a	state.
The	relationship	between	the	states.

We	can,	 if	we	wish,	use	a	text	‘model’	 to	describe	system	dynamics,	as	in	the	following
example.

A	robotic	system,	when	powered	up,	has	the	following	modes	of	behaviour:

	
Stopped
Retracting
Extending
Rotating	left
Rotating	right.

When	it	is	first	powered	up	it	enters	the	Stopped	state.	From	here	it	can	be	put	into	any	of
the	 other	 states	 by	 making	 appropriate	 command	 selections	 on	 a	 touch	 screen.	 For
instance,	 to	 extend	 the	 robot	 arm	Extend	 is	 selected,	 which	 starts	 the	 extension	 action.
This	 continues	until	Stop	 is	 selected,	at	which	point	 the	 robot	 instantly	 stops.	The	other
available	commands	are	Retract,	Rotate	left	and	Rotate	right.	The	system	must	be	in	the
Stopped	mode	before	it	will	respond	to	these	commands.

To	repeat	a	point	made	earlier,	text	descriptions	are	fine	for	modelling	simple	applications.
But	as	things	become	more	complex	so	too	does	the	text,	becoming	increasingly	difficult
to	comprehend.	Once	again	‘pictures’	can	make	things	much	easier	for	us	to	see	what	is
going	on,	as	with	the	state	diagram	of	figure	1.18.

	

Figure	1.18	State	diagram	model	of	system	dynamical	behaviour

1.3.6	Usage

It’s	only	when	a	 system	 interacts	 in	 some	way	with	external	 ‘things’	 (such	as	people	or
other	 systems)	 that	we	 need	 to	model	 usage.	Now,	 some	 ‘deep’	 embedded	 systems	 are
totally	 self-contained;	 they	 don’t	 interact	 with	 external	 bodies.	 But	 many,	 perhaps	 the
majority,	do	interface	to	humans	and/or	other	systems.	As	a	result	we	frequently	need	to
answer	the	following	questions	concerning	the	various	interactions:

	
Why	do	we	wish	to	interact	with	the	system	in	the	first	place?
What	interactions	take	place?
When	do	they	take	place?
How,	precisely,	are	they	carried	out?

We	can	show	the	answers	to	these	in	a	usage	model.

Now,	 the	 key	 question	 is	 the	 first	 one:	 ‘why’.	 Everything	 else	 follows	 from	 this.	 The
answer	 to	 that,	 together	 with	 those	 for	 the	 next	 two	 questions,	 can	 be	 perfectly	 well
described	using	 text	 (though	we	may	choose	 to	augment	 this	with	diagrams).	Moreover,
text	 is	 often	 used	 to	 describe	 the	 details	 of	 interactions.	 Unfortunately	 as	 the	 detail
becomes	more	complex	it	naturally	increases	the	complexity	of	the	text	description	itself.
We	 may	 well	 find	 ourselves	 struggling	 to	 understand	 and	 correctly	 implement	 the
interactions.	 It’s	 now	 that	models	 and	modelling	 can	be	 really	useful	 or,	 in	 some	cases,
essential.	 Let’s	 have	 a	 look	 at	 some	 examples	 of	 techniques	 that	 have	 been	 used	 in
practice,	starting	with	a	training	simulator,	figure	1.19.	Its	purpose	is	to	train	operators	to
be	able	to	control	a	variety	of	marine	systems	such	as	dynamic	positioning,	vessel	stability

and	position	mooring.

Figure	1.19	Operator	training	simulator

http://www.km.kongsberg.com

Photo	courtesy:	Harald	Nordbakken

A	 second	 example	 is	 the	 need	 to	 provide	 diagnostic	 information	 for	 the	 testing	 and
maintenance	of	existing	systems.	In	practice,	one	if	the	most	effective	methods	is	that	of
the	diagnostic	flow	chart,	figure	1.20.

	

Figure	1.20	Diagnostic	flow	chart

	We	can	 also	use	 this	 as	 a	 specification	 technique;	 for	 instance	 it	 could	be	 the	defining
document	for	a	computer-based	diagnostic	tool.

Flow	charts	can	also	be	used	to	describe	or	specify	details	of	specific	interactions,	figure
1.21.

	

Figure	1.21	Flow	chart	description	of	operator	interactions

This	 example	 also	 illustrates	 the	 use	 of	 solution	 prototyping	 techniques,	 an	 extremely
powerful	method	to	describe	precisely	and	unambiguously:

	
What	should	be	done.
When	it	is	to	be	done.

Details	of	HMI	inputs	and	outputs.

In	other	circumstances	our	primary	concern	is	to	describe	the	various	interactions	and	their
time-ordering	that	occur	during	a	specific	scenario.	One	of	the	best	ways	to	do	this	is	to
use	a	sequence	diagram,	as	for	example,	figure	1.22.

	

Figure	1.22	Sequence	diagram	description	of	interactions

This,	like	the	previous	diagrams,	can	be	used	for	two	purposes:	to	describe	what	happens
in	an	existing	system	or	to	specify	what	should	happen	in	a	new	system.

1.4	The	modelling	of	software	-	key	aspects
1.4.1	The	software	machine	and	object-oriented	techniques

The	central	plank	of	modern	software	design	is	that	software	systems	are	built	as	sets	of
cooperating,	 communicating	 software	 machines.	 Please	 note;	 we’re	 not	 talking	 about
program	design,	although	this	is	a	part	of	the	overall	development	process.

Precise	details	 of	both	 system	and	 individual	machine	 construction	methods	vary,	 as	do
their	 cooperation	 and	 communication	 techniques.	 But	 the	 fundamentals	 are	 exactly	 the

same	across	all	design	techniques.	A	software	machine:

	
Is	a	self-contained	unit.
Carries	out	a	defined	processing	function.
Can	be	used	without	knowing	the	details	its	internals.
May	 be	 implemented	 in	 various	 ways;	 e.g.	 a	 function,	 an	 object,	 a
component.
Communicates	with	other	machines	using	messages.
Cooperates	 with	 other	 machines	 on	 either	 a	 peer-to-peer	 or	 master-slave
(also	called	client-server)	basis.

Put	simply,	software	machines	are	the	building	blocks	of	software.	And	regrettably,	if	you
don’t	believe	in	using	this	approach,	then	much	of	what	UML	has	to	offer	is	irrelevant.

For	simplicity,	conciseness	and	personal	choice,	we’ll	call	the	software	machine	an	object.
Another	 reason	 for	 doing	 this	 is	 that	 UML	 was	 developed	 originally	 as	 a	 notational
method	for	object-oriented	systems.	And	in	those	early	days	the	‘things’	that	actually	did
the	work	during	program	execution	were	called	objects.	The	alternative	 is	 to	use	words
like	instances,	instantiations	or	representations.

1.4.2	Modelling	OO	software	with	UML	diagrams	-	a	broad	perspective

Object	Orientation	has	one	simple,	central	feature.	It	is	that	designs	may	be	structured	as
sets	of	interconnected,	collaborating	objects.	These	can	be	described	using	three	models:

	
1.	 The	 structural	 model:	 provides	 the	 construction	 and	 design	 plans	 of	 the

software.
2.	 The	behavioural	model:	describes	the	behaviour	of	the	software,	including

interactions,	communication,	dynamics	and	timing.
3.	 The	functional	model:	describes	 the	processing	(or	 ‘algorithmic’)	 features

of	the	software.

Now	there	are	two	quite	different	ways	to	view	such	object-based	designs,	figure	1.24.

	

Figure	1.24	System	and	object	viewpoints

First	there	is	the	external	-	system	oriented	-	view.	Then	there	is	the	internal	or	object	level
view.	The	external	view	emphasizes	the:

	
Overall	system	function.
Role	of	objects	within	a	system.
Object	relationships.
Object	interactions.
Communication	between	objects.

In	 contrast,	 the	 internal	 view	 focuses	on	 the	qualities	of	 individual	objects.	Each	one	 is
required	to	carry	out	some	particular	function;	to	do	this	it	must:

	

Be	correctly	structured.
Behave	in	a	predefined	manner,	and
Provide	communication	interfaces.

Our	modelling,	given	the	nature	of	this	book,	will	be	implemented	using	UML	diagrams.
But	it	is	obvious	that	not	all	the	models	described	earlier	can	be	built	using	diagramming;
we	 are	 limited	 in	what	we	 can	 do.	 The	message	 here	 for	 developers	 is	 that	 employing
UML	 doesn’t	 negate	 the	 use	 of	 techniques	 such	 as	 animation,	 simulation,	 rapid
prototyping,	etc.	You	should	always	look	to	model	your	systems	in	the	best	possible	way,
using	whatever	methods	are	appropriate.

In	order	to	develop	our	models	we	will	use	the	set	of	UML	diagrams	shown	in	figure	1.25.

	

Figure	1.25	UML	diagram	set

These	are	described	in	detail	in	later	chapters.	For	now	treat	this	diagram	as	a	route	map,
giving	you	an	indication	of	what	diagrams	we	use,	why	they’re	used	and	how	they	relate
to	our	modelling	needs.

One	 small	 point	 needs	 to	 be	 mentioned:	 the	 inclusion	 of	 the	 Usage	 aspects.	 Strictly
speaking	 this	 is	 not	 one	 of	 the	 OO	models.	 It’s	 primary	 purpose	 is	 to	 analyze	 system
requirements	and,	from	this,	to	generate	the	software	specifications.

Review
You	should	now:

	
Understand	 that	 models	 are	 representations	 of	 reality,	 usually	 depicting
simplified	or	limited	versions	of	the	reality.
Appreciate	 that	modelling	 is	an	 immensely	powerful	 (and	often	essential)
aspect	in	the	development	of	real	systems.
Recognize	 that	 modelling	 can	 used	 for	 analysis,	 prediction,	 performance
improvement	and	specification	purposes.
Realize	 that	 the	 reasons	 we	 use	 diagrams	 are	 to	 develop	 and	 represent
models.	Diagramming	is	a	means	to	an	end,	not	an	end	in	itself.
Understand	what	the	following	models	are,	why	we	produce	them	and	what
they	can	tell	us:	structural,	processing,	interactional,	dynamical	and	usage.
Appreciate	 that	 such	 models	 can	 be	 produced	 in	 a	 variety	 of	 ways	 and
using	 different	 media:	 simulation	 and	 simulators,	 physical	 devices,	 text
descriptions	and	diagramming.
Recognize	 that,	 to	 fully	 represent	 the	 qualities	 of	 systems,	 a	 variety	 of
models	are	needed.
Realize	 that	 the	number	and	 type	of	models	we	need	 to	develop	depends
entirely	on	the	job	being	tackled.
Recognize	that	using	text	to	model	complex	systems	has	its	problems.
See	how	diagrams	can	overcome	many	of	the	limitations	of	text.
Appreciate	 that	 software	 modelling	 is	 a	 specific	 application	 of	 general
modelling	techniques.
Know	what	a	software	machine	is,	what	its	quality	are	and	why	it’s	such	an
important	building	block	of	modern	software	systems.
Know	which	models	 are	 used	 to	 describe	 the	 features	 of	 object-oriented
designs.
Understand	that	(usually)	there	is	a	need	to	model	OO	designs	from	both	a
system	and	an	individual	object	perspective.
Know	what	information	is	contained	in	the	system	and	object	models.
Know	which	UML	 diagrams	may	 be	 used	 for	 the	modelling	 of	 software
systems.

	

Chapter	2	Diagramming	techniques	-	The	world	in	pictures

The	objectives	of	this	chapter	are	to:

	
Explain	why	diagrams	and	diagramming	play	key	roles	in	our	work.
Show	why	diagrams	are	used	as	part	of	the	modern	software	toolset.
Describe,	in	general	terms,	what	they	achieve.
Define	the	requirements	and	attributes	of	software	diagrams.

2.1	Diagrams	-	why?
2.1.1	Introduction

Diagrams	are	an	intrinsic	part	of	our	everyday	life.	We	use	them	for	countless	reasons,	for
all	sorts	of	applications.	Just	a	few:

	
Showing	the	various	displays	produced	on	a	TV	screen	when	setting	up	a
PVR.
Illustrating	foot	positions	when	dancing	the	Tango.
Showing	family	trees.
Providing	guidance	for	filling	in	forms.

Why	use	diagrams	for	this?	Because	the	alternative,	text,	is	a	very	poor	option.	Experience
has	 shown	 that	 diagrams	 are	 much	 more	 effective	 for	 conveying	 information	 (just	 try
putting	 together	 self-assembly	 furniture	 using	 only	 written	 instructions).	 Even	 so,
diagrams	 by	 themselves	 aren’t	 always	 enough;	 adding	 text	 can	 really	 help	 our
understanding.

Now,	 here	 is	 the	 great	 conundrum.	 We’re	 happy	 to	 use	 diagrams	 all	 the	 time	 in	 our
everyday	 life.	 We	 couldn’t	 imagine	 civil,	 mechanical	 or	 electrical	 engineers	 working
without	 diagrams.	Yet	 things	 are	 quite	 different	 in	 the	world	 of	 software.	We	 ourselves
have	found	from	our	software	engineering	courses	that,	where	diagramming	is	concerned,
there	are	fundamentally	three	groups	of	people:

(a)	Those	who	don’t	see	the	need	for	diagrams	and	who	use	expressions	like	‘the	code	is
my	design’	(frequently	made	by	those	producing	write-only	C++	programs).

(b)	 Those	who,	 because	 of	 the	 influence	 of	UML,	 see	 that	 diagramming	 is	 ‘good’,	 but
appear	to	have	little	understanding	of	its	effective	use.

(c)	 Those	 who	 truly	 understand	 the	 value	 of	 diagramming,	 practise	 it	 and	 attempt	 to
integrate	it	within	their	design	processes	(the	smallest	group,	it	must	be	said).

There	has	also	been	a	sea-change	in	attitude	with	UML	becoming	the	de-facto	standard	for

OO-based	designs.

To	understand	why	diagramming	 is	 so	powerful,	we	need	 to	start	with	 its	psychological
aspects.	Our	experiences	 show	 that	pictures	convey	 information	 in	a	different	way	 from
words:	and	in	a	way	which	is	clearer	and	easier	to	understand.	T.	R.	G.	Green	says	much
about	this	in	his	paper	Pictures	of	programs	and	other	processes,	or	how	to	do	things	with
lines.	In	it	he	describes	issues	in	terms	of	temporal	processes,	dealing	with	many	aspects
of	the	problem,	including:

	
Recognition	-	is	the	process	familiar?
Modularity	-	what	chunks	can	the	description	be	broken	into?
Tractability	-	how	can	a	modification	be	made?
Sequence	-	in	what	order	do	the	events	happen?
Circumstance	-	is	such-and-such	happens,	what	does	it	mean?

So,	 assuming	 that	 pictures	 really	 do	 help	 us,	 where	 can	 we	 sensibly	 use	 them	 in	 the
software	world?	There	are	four	main	areas	in	which	diagramming	can	be	applied	(figure
2.1).

Figure	2.1	The	role	of	diagrams	in	software	development

In	 the	 following	 sections	 these	 are	 discussed	 in	 general	 terms;	 specific	 techniques	 are
covered	 in	 later	 chapters.	 But	 note	 that	 here	 we	 are	mainly	 concerned	with	 the	 effects
produced	by	using	diagrams,	not	how	they	are	used	in	detail.

2.1.2	Reality,	modelling	and	diagrams

Before	 looking	 at	 how	 diagrams	 fit	 into	 the	 development	 process,	 consider	 three	 basic
questions:

	
What	do	diagrams	actually	do?
Are	the	correct	diagrams	being	used?
Are	the	diagrams	really	usable?

Let’s	take	these	questions	in	turn.

Show	the	circuit	symbol	in	figure	2.2	to	an	electronic	engineer	and	ask	him	what	it	is.

Figure	2.2	Reality,	abstraction	and	symbols

He’ll	probably	reply	‘Oh,	that’s	a	capacitor’.	Well,	of	course,	it’s	nothing	of	the	sort;	it’s
merely	marks	on	a	piece	of	paper.	What	the	engineer	really	means	is	that	it	‘represents’	a
capacitor	 in	his	mind.	Not	 that	 it	has	a	particular	 shape	and	size,	etc,	but	 that	 it	has	 the
electrical	properties	defined	as	capacitance.

Now,	at	this	point	you	may	feel	that	this	has	become	a	pretty	irrelevant	discussion.	Not	so!
What	we	have	here	is	an	extremely	important	issue;	it	demonstrates	our	ability	to	take	an
abstract	view	of	reality.	The	diagram	itself	is	not	the	reality	of	an	actual	capacitor;	it	is	an
abstract,	 conceptual	 view	 of	 that	 reality	 (abstract	 view:	 expressing	 a	 quality	 or
characteristic	apart	from	any	specific	object	or	instance).

Dealing	with	abstract	ideas	affects	the	way	in	which	we	interact	with	the	real	world.	How,
for	instance,	do	we	view	the	jet	engine	of	an	aircraft?	To	an	aircraft	designer	it	is	a	power
unit,	the	driving	force	of	the	vehicle	(figure	2.3).	To	the	company	accountant	it	is	a	profit
centre	 (we	 hope),	 existing	 only	 on	 the	 balance	 books.	And	 yet	we’re	 talking	 about	 the
same	physical	device.

Figure	2.3	Reality,	abstraction,	domains	and	viewpoints

Now	let	us	put	this	in	the	context	of	diagramming	in	order	to	answer	the	second	question	-

Are	the	correct	diagrams	being	used?.	This	essentially	is	about	the	matching	of	diagrams
to	what	they	represent	(rather	grandiosely,	their	domain	of	application).	This	point	is	very
well	demonstrated	in	figure	2.4	giving	two	views	of	part	of	an	auto	electrical	system.	Fig
2.4a	 represents	 the	 system	 from	 the	 point	 of	 the	 repair	 mechanic	 (the	 maintenance
domain).	In	contrast,	figure	2.4b	shows	its	electrical	structure	(the	design	domain).	Same
system,	 different	 views.	 What	 the	 diagrams	 have	 done	 is	 to	 abstract	 reality	 from	 a
particular	domain	into	a	model.	The	models	are	quite	different,	true,	but	is	this	a	problem?
Absolutely	not	-	provided	the	right	one	is	used.

Figure	2.4	Domain	specific	views

An	amusing	yet	instructive	tale	of	bungling	caused	by	not	using	the	correct	model	for	the
domain	(in	this	case	a	navigation	chart)	is	as	follows:

Amateur	sailor’s	island	confusion	-	Thursday	April	29,	2010

A	man	who	thought	he	was	sailing	around	the	British	coastline	was	surprised	to	learn	he
had	 in	 fact	 been	 circling	 the	 Isle	 of	 Sheppey.	 He	 had	 set	 out	 from	 Gillingham	 for
Southampton	but	kept	on	sailing	around	the	small	island,	off	the	coast	of	Kent,	all	day	and
night.	He	was	using	a	road	map	to	navigate.	Rescuer	Tom	Ware	said:	“Because	he	had	no
chart,	 his	 general	 principle	 was	 to	 keep	 the	 land	 on	 his	 right,	 except	 he	 didn’t	 realise

Sheppey	was	an	Island.”

And	 it	 should	 be	 no	 surprise	 to	 find	 that	 we	meet	 exactly	 the	 same	 issues	 in	 software
development.

The	third	question	is	concerned	with	how	much	information	a	diagram	should	contain.	Put
simply,	 just	how	complex	can	a	diagram	be	before	 it	becomes	unusable?	This	 issue	was
investigated	as	 a	psychological	problem	 in	 the	1950’s	by	George	Miller.	His	paper,	The
Magical	Number	Seven,	Plus	or	Minus	Two,	 is	a	landmark	one	-	I	recommend	it	 to	you.
The	 conclusions	 are	 clear.	 Too	 much	 information	 (especially	 the	 complex	 variety)	 is
counter-productive.	 It	merely	 confuses	 rather	 than	 enlightens.	The	 reason	 is	 that	 people
can	 effectively	 handle	 only	 a	 small	 amount	 of	 information	 at	 any	 one	 time.	 Thus
simplicity	is	the	order	of	the	day.

Perhaps	you	 can	now	begin	 to	 see	 the	difficulty	we	 face	when	using	diagrams.	On	one
hand	there	is	a	need	to	keep	them	simple	and	clear.	On	the	other	the	systems	we	deal	with
may	well	 be	 complex.	 Clearly,	 a	 single	 type	 of	 diagram	 cannot	 satisfy	 both	 needs.	 So,
what	to	do?

The	 only	 sensible	 way	 to	 deal	 with	 this	 mismatch	 is	 to	 use	 sets	 of	 diagrams.	 Those
produced	first	aim	to	give	a	large-scale	(high-level)	view	of	the	system;	later	ones	provide
detailed	 (low-level)	 information.	 In	 many	 cases	 these	 later	 diagrams	 are	 ‘exploded’
versions	of	earlier	ones,	as,	for	example,	the	maps	of	figure	2.5.

Figure	2.5	High-level	and	low-level	views

There	are,	though,	two	crucial	factors	here:	first,	complete	consistency	across	levels,	and
second,	 design/diagram	 traceability.	 It’s	 important	 to	 understand	 why	 these	 are	 such
important	features;	they	should	have	a	big	impact	on	your	choice	and	use	of	diagrams.	So
often	with	real	designs	we	find	ourselves	asking	the	question	‘how	and	why	did	we	ever
get	 here?’.	 Good	 consistency	 and	 traceability	 give	 us	 a	 fighting	 chance	 to	 answer	 that
question.	 They	 help	 us	 to	 work	 through	 the	 diagrams	 from	 start	 to	 finish	 (‘forward
navigation’)	without	 too	many	 problems.	Which	 is	 fine	 if	 you	 know	where	 you	 started
from.	Unfortunately,	in	many	cases	you	know	where	you	are	but	have	little	idea	as	to	how
you	got	there	(especially	with	legacy	designs).	What	we	need	now	is	to	be	able	to	reverse
navigate,	from	solution	to	specification.	And	the	only	way	to	do	that	is	to	have	a	diagram
set	that	has	excellent	traceability.

2.1.3	Diagrams	as	a	design	tool

Consider	an	electronic	engineer	carrying	out	power-circuit	design.	One	of	the	first	things
he	does	is	to	sketch	the	circuit	diagram	(figure	1.6).

Figure	2.6	Initial	design

Very	quickly	 this	 is	 followed	up	by	a	series	of	calculations	 to	verify	 the	performance	of
the	design.	It	would	be	possible	to	describe	the	design	using	words	only.	In	one	sense	this
is	 how	 computer-aided	 printed	 circuit	 board	 layout	 design	 tools	 work.	 Yet	 no	 engineer
would	adopt	such	an	approach	at	the	initial	design	stage.	Why	not?

First,	 the	 exercise	 of	 producing	 the	 diagram	 requires	 an	 explicit	 action.	 Implicit
relationships	cannot	exist.	Thus,	even	to	draw	a	diagram	requires	a	clear	understanding	of
the	problem.	But	when	we	just	think	about	designs	we	often	carry	implicit	information	in
our	minds.

Next,	 if	 we	work	 to	 an	 agreed	 set	 of	 drawing	 rules	we	 introduce	 formality	 and	 design
rigour	into	the	process	(figure	2.7).	This	means	that	it	is	possible	for	others	to	view,	assess
and	discuss	the	design.	It	also	eliminates	ambiguity	and	ambivalence.

Figure	2.7	Drawing	rules

For	 instance,	 in	 figure	 2.7,	 a	 dot	 indicates	 a	 connection;	 but	 why	 is	 one	 arrangement
satisfactory	 and	 the	other	 not	 so?	Because	 in	 one	 format	 there	 is	 no	 confusion	between
crossing	lines	and	connecting	lines	should	the	draftsman	omit	a	dot.

Finally,	 the	 design	 as	 a	 whole	 can	 be	 reviewed	 and	 analysed,	 and	 the	 performance
assessed.	At	this	stage	many	incorrect	or	illogical	design	features	may	well	come	to	light
(figure	2.8).

Figure	2.8	Design	review

These	 can	 be	 corrected	 at	 a	 very	 early	 stage,	 saving	 time,	 effort	 and	 money	 (and
embarrassment)	for	the	designer.

All	of	 this	 is	directly	applicable	 to	software.	After	all,	at	 this	stage	of	 the	design	we	are
still	working	with	concepts	and	ideas,	so	it	should	work	for	software	as	well	as	hardware.

2.1.4	Diagrams	for	design	documentation

Diagrams	are	a	powerful	means	of	documenting	the	design	task	(preferable	to	a	mass	of
source	code	listings).	But	a	moment’s	thought	shows	that	a	single	type	of	drawing	is	very
unlikely	to	meet	all	our	needs.	Two	groups	of	diagrams	are	needed	(figure	2.9).

Figure	2.9	Diagrams	for	documentation

The	first	gives	us	a	high-level	view	of	the	problem,	showing	what	we’ve	set	out	to	do.	The

second,	low-level	one,	concentrates	on	how	we’re	going	about	solving	the	design	problem.
Each	one	is	oriented	towards	a	different	aspect	of	the	same	problem.

For	any	particular	system,	high-level	diagrams:

	
Are	task	(job)	oriented.
Show	the	overall	system	structure	together	with	its	major	sub-systems.
Describe	the	overall	functioning	of	the	design.
Show	the	interaction	of	the	system	with	its	environment.
Describe	the	functions	and	interactions	of	the	various	sub-systems.

Low-level	diagrams:

	
Are	solution	oriented.
Concentrate	on	detail.
Emphasize	system	internal	information.

Consider	 the	 attributes	 of	 such	diagrams	when	 applied,	 at	 a	 functional	 block	 level,	 to	 a
mythical	weapon	control	system	(figure	2.10).

Figure	2.10	High-level	vs	low-level	views

The	high-level	view	concentrates	on	the	overall	task;	its	object	is	to	ensure	that	we	tackle
the	right	problem.	We	can	see	from	this	figure	how	the	main	building	blocks	of	the	system
fit	together.	Questions	like	‘Is	the	launcher	compatible	with	the	servo	controller?	Will	the
servo	be	powerful	enough?	Should	we	use	hydraulics	instead	of	electrics?’	are	considered
at	 this	 level.	 In	 contrast,	 the	 low-level	 diagram	 tells	 us	 how	 the	 design	 task	 has	 been
solved.	It	gives	much	information	about	the	system	internals,	together	with	the	interaction
of	such	internals.	It	deals	with	questions	like	‘What’s	the	best	type	of	power	amplifier?’

Good	high-level	diagrams	are	simple	and	clear,	bringing	out	the	essential	major	features	of
a	 system.	Using	 these	 it	 is	 relatively	 easy	 to	 see	 the	 effects	 on	 system	behaviour	when
making	 modifications.	 On	 the	 other	 hand,	 low-level	 diagrams	 tend	 to	 be	 detailed	 and
complex.	 This	 is	 inherent	 in	 their	 nature;	 it	 isn’t	 a	 criticism	 of	 such	 drawings.	 But,
although	their	structure	helps	us	to	answer	the	question	‘are	we	doing	the	job	correctly?’
they	aren’t	very	good	when	we	ask	‘are	we	doing	the	correct	job?’.

These	 ideas	 can	 be	 directly	 translated	 to	 software	 engineering.	We	 gain	 all	 the	 benefits
outlined	above	by	using	pictures	in	the	design	process.	What	it	also	shows	is	that	whatever
diagramming	method	is	used,	it	must	be	able	to	give	both	high-	and	low-level	views.

2.1.5	Diagrams	for	maintenance

Post-design	maintenance	 is	 done	 for	 two	 reasons;	 either	 to	 correct	 faults	 or	 to	 upgrade
equipment.	Ideally,	this	would	be	done	by	the	original	designers.	But,	in	reality,	once	some
years	have	passed,	few	of	the	original	designers	are	still	around.	So,	software	maintenance
is	usually	carried	out	by	workers	who:

	
Weren’t	involved	in	the	development	in	the	first	place.
Have	only	a	limited	understanding	of	the	overall	task.
Have	to	learn	a	lot	very	quickly	to	perform	even	small	design	changes.
Wouldn’t	have	done	the	job	like	that	in	any	case.

It	 is	not	surprising	that	maintenance	is	unpopular.	It	may	be	an	obscure	and	difficult	 job
but	somebody	has	to	do	it.	And	the	better	the	original	documentation	the	easier	it	can	be.
Therefore,	design	 information	must	support	 the	maintenance	process	by	being	complete,
correct,	clear	and	consistent	(figure	2.11).

Figure	2.11	Document	requirements

System	documentation	needs	to	give	both	an	overview	as	well	as	detailed	information.	It
is	very	easy	to	be	swamped	by	an	excess	of	paper,	typified	by	many	technical	manuals.	An
example	of	such	overkill	is	described	by	Rothon	in	his	paper	Design	structure	diagrams:	a
new	standard	in	flow	diagrams.	He	stated	that	‘the	recent	specification	for	the	software	for
an	 American	 fighter	 plane	 occupied	 more	 than	 26	 thick	 volumes	 of	 text.	 It	 is	 hardly
surprising	that	developers	faced	with	such	bulky	documentation	are	unable	to	perceive	the
nature	of	the	software	….’.

However,	by	using	overview	information	it	is	much	easier	to	see	the	overall	picture.	For
instance,	questions	such	as	‘where	and	how	can	changes	be	made?	What	are	the	knock-on
effects	of	 these	on	the	complete	program?’	can	be	much	more	easily	answered.	We	still,
though,	 need	 detailed	 information,	 relating	 specifically	 to	 the	 source	 code	 itself.	 Once
again	there	is	a	clear	need	for	a	two-level	documentation	system.

2.1.6	Diagrams	for	communication

It’s	already	been	shown	that	written	and	spoken	words	can	be	ambiguous,	ambivalent	or
even	totally	confusing.	We’ve	also	seen	that	by	using	sketches,	pictures,	etc.,	many	such
problems	are	eliminated.	Therefore,	design	diagrams	can	be	used	to	help	communications
between	members	of	the	software	and	system	project	teams.

Who	 are	 likely	 to	 be	 the	main	 users	 of	 such	 diagrams?	 They	 are:	 the	 system	 users	 (or
procurement	 agency),	 the	 system	 designers	 and	 the	 post-design	 support	 group
(maintainers).	 Figure	 2.12	 shows	 the	 general	 lines	 of	 communication	 between	 these
groups.	It	also	shows	at	which	periods	of	the	design	these	take	place.

Figure	2.12	Communication	aspects	of	diagrams

What	questions	do	diagrams	aim	to	answer?	Consider	 first	 the	user-designer	 interaction,
figure	2.13.	Read	through	this	and	see	how	there	are	two	matching	aspects	(‘two	sides	of	a
coin’)	of	each	individual	question.

Figure	2.13	User-designer	dialogue

Let’s	now	 turn	 to	designer-designer	communication.	Even	 in	a	 small	 job	 involving	only
one	designer	there	are	still	‘chiefs’	to	be	talked	to	(figure	2.14).	Ideally,	such	discussions
should	be	clear,	understandable	and	not	open	to	individual	interpretation.	Pictures	can	help
considerably	in	such	cases.

Figure	2.14	Designer-designer	interaction

In	 the	 post-design	 phase	 the	 requirements	 of	 the	 user	 tend	 to	 reduce	 in	 quantity.
Unfortunately	 for	 the	maintainer,	 these	 requirements	 are	usually	highly	demanding	ones
(fig.1.15).

Figure	2.15	User-maintainer	interaction

2.2	The	essentials	of	software	diagrams
2.2.1	Fundamentals

What	is	the	fundamental	purpose	of	software	design	diagrams?	In	a	very	simple	way	they
can	be	seen	as	a	way	to	bridge	the	gap	between	what	is	wanted	(the	problem)	and	what	is
provided	(the	solution),	figure	2.16.

Figure	2.16	Bridging	the	gap

Think	of	it	as	if	the	‘bridge’	is	actually	built	from	a	set	of	design	diagrams.	At	the	leftmost
we	have	diagrams	that	deal	with	customer	requirements	and	specification.	The	rightmost
ones,	 the	 final	 in	 the	 set,	 specify	 the	 implementation	 (the	 ‘build’)	aspects	of	 the	design.
These,	 for	software	systems,	specify	 the	program	and	code	aspects	of	 the	design.	Hence
we	 can	 navigate	 from	 a	 problem	 specification	 to	 its	 code	 solution	 by	working	 our	way
across	 the	bridge.	 In	 fact,	 the	 total	design	process	can	be	viewed	as	a	 two-stage	activity
(figure	2.17).

Figure	2.17	The	two-stage	design	process

The	diagrams	sit	 in	 the	middle	of	 this,	 serving	 two	groups	of	people.	From	 the	point	of
view	of	problem	translation,	diagrams	must	meet	the	needs	of	the	user.	That	is,	the	design
approach	must	be	 stated	 in	 terms	of	 the	problem	not	 its	 solution;	 the	diagrams	must	be
easy	for	the	users	to	understand.	In	most	cases	they	won’t	be	software	engineers,	so	there’s
not	much	point	in	sending	them	a	pile	of	computer	print-outs.	Finally,	it	must	be	easy	to
produce	and	modify	such	diagrams	to	encourage	their	use	in	the	translation	stage.

The	information	shown	by	the	diagram	is	then	used	as	an	input	to	the	program	production

process.	But	 unless	 diagramming	methods	 support	 program	design	 techniques	 (e.g.	 top-
down	design),	programmers	won’t	find	them	very	helpful.	In	such	cases	all	that	happens	is
that	 yet	 another	 translation	 stage	 is	 used	 in	 the	 design	 process.	 It	 is	 also	 essential	 that
diagramming	 methods	 relate	 strongly	 to	 modern	 program	 design	 methods.	 Ideally	 the
diagram	constructs	should	mirror	those	of	the	more	widely-used	programming	languages.

2.2.2	Basic	qualities

Consider	the	assembly	instruction	diagram	of	figure	2.18.	This	has	taken	time	and	money
to	produce;	yet	 its	manufacturer	considers	 this	a	worthwhile	 investment.	This	 isn’t	done
through	 a	 sense	 of	 altruism,	 it’s	 just	 good	 business	 practice.	 It	 conveys	 considerable
information	to	the	user	in	a	simple,	direct	way.	But	it	succeeds	in	this	only	if	it	has	some
key	qualities	(figure	2.19).	Let’s	look	at	each	point	in	turn,	putting	it	in	terms	of	software
production.

Figure	2.18	Kit	assembly	diagram

Figure	2.19	Diagrams	-	key	qualities

(a)	Small

Here,	small	means	sizes	between	A2	and	A4.	One	major	reason	for	limiting	diagram	size
is	 to	 avoid	 overloading	 the	 reader	with	 information.	Good	 pictorial	methods	 use	 a	 top-
down	method	 in	 presenting	 such	 information,	 as	 in	 Fig.1.20.	There	 are,	 however,	 some

mundane	grounds	for	keeping	to	these	sizes.	In	the	first	case	they	can	be	produced	easily
on	low-cost	plotters	and	printers.	Moreover,	these	are	usually	widely	available;	there’s	no
need	 to	 invest	 in	expensive	plotters.	Second,	such	diagrams	usually	 form	part	of	a	main
design	 document;	 thus	 it	 must	 be	 easy	 to	 integrate	 these	 with	 the	 rest	 of	 the
documentation.	Large	diagrams	cause	problems	here.

Figure	2.20	A	top-down	diagramming	method

(b)	Simple	and	clear

Diagrams	are	 supposed	 to	help	our	understanding,	not	 act	 as	 intellectual	puzzles.	When
diagrams	are	simple	and	clear	they	are	quickly	understood	and	assimilated.	This	may	seem
a	 statement	 of	 the	 obvious,	 yet	 many	 diagrams	 break	 these	 rules.	 The	 resulting
consequences	may	 be	 disastrous.	 Some	 years	 ago	 a	military	 transport	 plane	 crashed	 on
take-off,	 killing	50	passengers.	The	disaster	was	 caused	by	 the	 reverse	 fitting	of	 a	non-
return	 fuel	 control	 valve.	 But	 the	 factor	 that	 led	 to	 this	 was	 a	 poor,	 ambiguous	 fitting
diagram	which	didn’t	show	clearly	the	flow	direction	through	the	valve.

An	example	of	a	diagram	that	breaks	all	the	rules	is	given	in	figure	2.21	(taken	from	the
Green	paper,	reproduced	by	permission).

Figure	2.21	A	confusing	diagram

(c)	Complete

This	means	that	information	should	not	be	missing	from	the	diagram.	Now	this	shouldn’t
be	 confused	 with	 the	 use	 of	 extra	 pictures	 to	 show	 all	 the	 facts.	 That,	 for	 software
documentation,	 is	 the	 rule	 rather	 than	 the	exception.	What	 it	does	mean	 is	 that	omitting
data	that	leaves	the	information	incomplete	is	taboo.

(d)	Few	abstract	symbols

It	 is	 impossible	 to	 construct	 software	 design	 diagrams	 without	 using	 abstract	 symbols.
Unfortunately,	 abstract	 symbols	 can	 be	 a	 problem	 in	 themselves,	 especially	 if	 complex
constructs	are	used.	In	such	cases	it	may	be	quite	difficult	to	see	what	message	the	picture
is	trying	to	convey.	So	the	fewer	symbols	used	the	better.	And	keep	them	simple.

(e)	Uses	formal	rules

All	notation	used	in	diagramming	should	be	done	in	accordance	with	a	set	of	rules.	These
rules	should	be	defined,	clear	and	consistent.	Without	 this	we	can	never	be	sure	 that	we
understand	what	the	diagrams	mean.

Review
Having	completed	this	chapter	you	should:

	
Appreciate	the	importance	of	diagramming	as	a	core	design	tool.

See	how	diagrams	bring	rigour,	clarity	and	formality	to	the	design	process.
Perceive	the	power	of	diagrams	as	an	aid	to	communication.
Understand	that	these	objectives	cannot	be	achieved	unless	the	syntax	and
semantics	of	diagrams	are	well	defined.
Realize	that	diagrams	are	used	for	a	variety	of	purposes:	analysis,	design,
documentation	and	maintenance.
See	how	diagrams	fit	into	the	overall	software	design	process.
Know	what	qualities	to	look	for	in	diagrams	and	their	associated	methods.
Recognize	that	many	diagrams	are	needed	to	fully	define	large	systems.

Chapter	3	Diagramming	and	UML	-	a	broad	perspective

The	objectives	of	this	chapter	are	to:

	
Look	at	 the	historical	development	of	diagramming	methods	for	real-time
embedded	systems.
See	where	UML	fits	into	this,	and	how	it	has	evolved	from	its	early	form
into	the	latest	specification.
Identify	the	major	issues	that	cause	problems	to	software	developers.
See	how	we	can	avoid	(or	minimize)	these	problems.

3.1	Setting	the	groundwork
I	 hope,	 by	 this	 time,	 that	 you	 truly	 appreciate	 that	 diagramming	 is	 an	 essential	 part	 of
professional	software	development.	I	also	hope	that	you	fully	understand	what	we	set	out
to	achieve	by	using	diagrams.	However,	before	getting	 into	 the	nitty-gritty	of	UML,	we
need	to	do	consider	a	very	important	question;	just	how	well	does	UML	fit	the	bill?

Now,	this	might	seem	to	be	a	non-question	if	you	believe	the	torrent	of	uncritical	acclaim
for	 UML.	 We	 are	 assured	 that	 by	 using	 of	 UML	 we	 will	 significantly	 improve	 our
software.	Reality,	unfortunately,	is	somewhat	different.	There	has	been	success,	true.	But
there	 have	 also	 been	 many	 failures	 along	 the	 way.	Mostly	 these	 have	 been	 due	 to	 the
uncritical	 use	 of	UML	 by	 software	 developers.	And	 compounding	 this	 is	 the	 failure	 of
many	developers	to	really	understand	how	to	use	it.

To	effectively	use	 tools,	 techniques	or	processes,	you	must	understand	 their	weaknesses
and	 limitations.	 This	 is	 especially	 true	 for	 UML	 because	 it	 does	 have	 some	 serious
drawbacks.	 What	 we’re	 going	 to	 do	 here	 is	 look	 at	 these	 issues	 and	 see	 how	 we	 can
mitigate	their	effects.	Once	having	done	that	we’re	in	a	good	position	to	actually	achieve
many	of	the	claimed	benefits	of	using	UML.

3.2	Software	diagramming	-	a	historical	prelude.
Something	philosophical	for	you	to	think	about:

“Histories	 make	 men	 wise;	 poets,	 witty;	 the	 mathematics,	 subtle;	 natural	 philosophy,
deep;	moral,	grave;	logic	and	rhetoric,	able	to	contend.”	Sir	Francis	Bacon.

And	something	that	has	real	resonance	in	the	software	field:

“Those	who	don’t	know	history	are	doomed	to	repeat	it.”	Edmund	Burke.

3.2.1	The	evolution	of	software	diagramming	-	the	embedded	world

Diagramming	 for	 software	 started	 life	 as	 a	 way	 to	 describe	 program	 structures.	 The
pioneers	 were	 IBM	 who,	 in	 the	 1950s,	 adapted	 the	 humble	 process	 flow	 chart	 of	 the
mechanical	engineers	for	just	this	purpose.	Humble	perhaps,	but	still	going	strong	some	90
years	after	its	first	formal	appearance.

Effective	 though	 the	 flow	 chart	 was,	 it	 did	 have	 its	 limitations,	 some	 significant.	 To
counter	 these	 a	 new	 diagram	 type	 was	 developed,	 the	 program	 structure	 chart.	 Many
variations	 were	 produced,	 the	 best	 known	 perhaps	 being	 those	 of	 Jackson,	 Yourdon,
Nassi-Shneidermann	and	Warnier-Orr.	Each,	naturally,	came	with	its	own	particular	syntax
and	semantics.

During	 the	 1970s	 the	 international	 standards	 organisation	 CCITT,	 Comité	 Consultatif
International	 Téléphonique	 et	 Télégraphique	 (also	 irreverently	 known	 as	 Coffee	 and
Croissants	 Interspersed	 with	 Trivial	 Talk)	 defined	 a	 set	 of	 diagrams	 for	 modelling
telecommunications	 software.	 Significantly,	 this	 set	 included	 means	 to	 model	 software
concurrency	(‘tasks’)	and	dynamics	(‘states’)	as	well	as	program	structures.

After	 this,	mainly	 in	 the	 1980s,	 a	 number	 of	 important	 real-time	 software	 development
processes	were	defined.	The	most	important	were	those	of	Yourdon/Ward-Mellor,	Hatley-
Pirbhai,	Michael	 Jackson	 and	 David	 Harel.	 Each	 offering	 used	 diagrams	 to	 support	 its
particular	 process;	 unfortunately	 the	 syntax	 of	 the	 diagrams	 varied	 immensely	 (the
semantics,	though,	were	often	similar).	As	a	result	it	was	virtually	impossible	to	mix	the
techniques.	From	a	practical	point	of	view,	 the	best	 thing	 to	do	was	 to	pick	one	method
and	live	with	the	consequences.

The	 difficulties	 were	 further	 compounded	 by	 the	 use	 of	 CASE	 tools.	Many	 tools	 were
produced	to	support	these	processes;	unfortunately	they	usually	had	their	own	adaptations,
limitations	or	extensions.	It	was	possible	to	exchange	information	between	different	tools
using	 common	 interchange	 formats.	 But	 actually	 trying	 to	 use	 imported	 design
information	was	a	much	more	difficult	job.

So	what	was	 the	 situation	 in	 the	 embedded	world	 in	 the	 early	 1990s	 vis-à-vis	 software
design	 and	 development?	 First,	 the	 arrival	 of	 low-cost	 CASE	 tools	 had	 given	 a
tremendous	 boost	 to	 the	 use	 of	 ‘formal’	 design	 and	 diagramming	methods.	 Second,	 the
predominant	 design	 methodologies	 were	 those	 of	 Yourdon/Ward-Mellor	 and	 Hatley-
Pirbhai;	 Jackson	methods	were	much	 less	widely	used.	Third,	programming	was	almost
always	 done	 using	 procedural	 languages:	 assembly,	 PL/M,	 Forth,	 real-time	 Basic,
embedded	Pascal,	Coral66,	Modula-2,	Ada83	and	C,	 for	example.	Fourth,	hardly	any	of
the	CASE	tools	generated	code	automatically.	As	a	result	many,	if	not	most,	companies:

	
Decided	what	design	method	most	suited	their	work.
Bought	a	CASE	tool	to	support	the	chosen	method	(and	their	budgets).
Integrated	these	into	their	software	design	and	development	processes.

Manually	translated	the	diagram	information	into	source	code.

For	 some	organizations	 the	problems	of	 exchanging	 information	between	different	 tools
was	 a	 source	 of	 difficulty.	 These,	 though,	were	mainly	 large	 companies	 having	 several
software	development	 teams,	often	in	different	 locations.	Most	people	accepted	life	as	 it
was	and	got	on	with	things.	At	that	time,	in	the	embedded	world,	the	major	challenge	was
to	 get	 developers	 to	 use	 professional	 tools,	 techniques	 and	 processes.	 There	 wasn’t	 a
burning	desire	to	unify	the	various	software	design	and	diagramming	techniques.	Nor,	for
that	 matter,	 was	 there	 a	 drive	 to	 adopt	 object-oriented	 programming	 languages	 and
techniques.	The	changes	 that	came	 later	weren’t	driven	by	deficiencies	 in	 the	embedded
world;	 they	 were	 a	 consequence	 of	 events	 in	 the	 world	 of	 management	 information
systems	(MIS).

Many	embedded	systems	designers	found	the	OO	‘paradigms’,	languages	and	techniques
to	 be	 alien,	 immature	 and	 inappropriate.	 Others,	 though,	 were	 eager	 to	 adopt	 the	 new
‘technology’.	 This	 led	 to	 a	 clear	 split	 in	 the	 technologies	 used	 by	 the	 embedded
community.	First,	there	are	the	direct	descendents	of	the	techniques	of	the	early	1990s,	to
be	 found	 in	 tools	 such	 as	Matlab/Simulink	 and	Labview.	These	 are	 extensively	 used	 in
‘deep’	 embedded	 applications	 such	 as	 auto	 systems,	 robotics	 and	 control	 systems	 (i.e.
mechatronics	in	general).	Then	there	are	the	techniques	that	resulted	from	the	ideas	of	the
OO	world.	And	central	to	these	is	UML.

3.2.2	The	evolution	of	software	diagramming	-	the	MIS	world

The	term	MIS	is	used	here	to	lump	together	anything	that	doesn’t	fall	into	the	category	of
real-time	embedded	systems.	Thus	it	includes	algorithmic	processing,	an	area	that	was	the
first	to	use	software	diagramming	(the	flow	chart).	So	software	diagramming	has	its	roots
in	MIS.

During	the	period	spanning	the	early	1960’s	to	the	beginning	of	the	1990’s,	innumerable
MIS	diagramming	and	design	methods	were	produced.	In	particular,	in	the	late	80’s/early
90’s,	a	whole	new	set	arrived,	the	object-oriented	graphical	modelling	languages.	It’s	true
that	some	OO-based	modelling	techniques	were	developed	for	real-time	systems.	It’s	also
true	that,	at	that	time,	they	made	relatively	little	impact	on	the	embedded	community.

Thus,	in	the	early	90’s,	MIS	developers	could	be	forgiven	for	being	totally	confused	by	the
plethora	of	modelling	techniques	and	languages.	What	to	use?	When	to	use	it?	How	to	use
it?	How	to	sort	out	the	competing	claims?	This,	then,	is	the	background	to	the	emergence
of	UML.

3.2.3	Enter	UML

The	Unified	Modeling	Language	 resulted	 from	collaboration	between	Grady	Booch	and
James	 Rumbaugh	 at	 Rational	 Software	 Corporation.	What	 they	 set	 out	 to	 do	 is	 clearly
summarised	 in	 their	1995	document	 (Unified	Method	for	Object	Oriented	Development,
version	0.8),	as	follows:

This	 series	 of	 documents	 describes	 the	 Unified	 Method,	 a	 method	 for	 specifying,

visualizing,	 and	 documenting	 the	 artifacts	 of	 an	 object-oriented	 system	 under
development.	 The	 Unified	 Method	 represents	 the	 unification	 of	 the	 Booch	 and	 OMT
methods	 as	 well	 as	 the	 best	 ideas	 from	 a	 number	 of	 other	methodologists.	 By	 unifying
these	 two	 leading	object-oriented	methods,	 the	Unified	Method	provides	 the	basis	 for	 a
defacto	standard	in	the	domain	of	object-oriented	analysis	and	design	founded	on	a	wide
base	of	user	experience.

This	is	a	laudable	aim	of	course.	But	don’t	run	away	with	the	idea	that	it	was	some	form	of
idealistic,	academic	initiative.	Their	company,	the	Rational	Software	Corporation,	also	had
a	big	hand	 in	 this.	Thus	 right	 from	 the	beginning,	UML	was	 influenced	by	 commercial
factors.	This	commercial	input	was	further	reinforced	by	the	creation	of	the	UML	Partners
consortium,	led	by	Booch,	Rumbaugh	and	Ivar	Jacobsen.	From	its	list	of	members	it	could
be	 seen	 to	 be	 an	 exclusively	 industry-based	 organization	 (no	 academic	 or	 professional
organization	appears	in	the	list).	The	Partners	produced	the	UML	1.0	specification	draft	in
January	 1997,	 and	 proposed	 that	 the	Object	Management	Group	 (OMG)	 adopt	 it.	 That
actually	adopted	was	the	next	version,	UML	1.1,	this	taking	place	in	November	1997.

Over	the	following	years	the	specification,	generally	referred	to	as	UML	1.x,	was	updated.
The	final	version	was	UML	1.5,	issued	in	2003.

When	UML	was	launched	some	of	its	claimed	benefits	(promoted	most	heavily	by	various
CASE-tool	vendors)	would	have	put	 the	 fashion	 industry	 to	shame.	 In	many	areas	 there
was	 a	 lemming-like	 rush	 to	 get	 on	 the	 UML	 bandwagon;	 uncritical	 and	 unconditional
acceptance	were	widespread,	especially	in	the	MIS	field.	So,	for	the	true	believers,	it	must
have	 come	 as	 a	 shock	 when	 it	 was	 admitted	 that	 ‘UML	 1.x	 hadn’t	 lived	 up	 to	 its
expectations’;	the	search	for	its	successor,	UML	2.x,	began.

Six	 groups	 submitted	 proposals	 for	 the	 new	 specification.	 Many	 consider	 that	 the	 one
finally	selected	wasn’t	necessarily	the	best	one;	it	just	had	the	right	‘political’	support	(for
UK	 readers,	 it	 is	 reminiscent	 of	 the	 way	 in	 which	 Greenwich	 was	 selected	 for	 the
millennium	project,	 the	Dome).	While	 the	OMG	 specifications	 are	 vendor-independent,
their	content,	 in	practise,	 is	determined	by	vendors.	The	reason	for	 this	 is	 that	 the	OMG
itself	is	a	commercial	organization	and	charges	for	membership.	The	annual	membership
fees	 (at	 2010)	 range	 from	US$550	 TO	US$75,000.	 The	 result	 is	 that	 larger	 companies
dominate	 the	membership	and	 thus	shape	 the	specifications.	Please	do	not	 take	 this	as	a
criticism;	OMG	is	to	be	applauded	for	its	work	in	the	area	of	computing	standards.	It	just
happens	to	be	the	reality	of	things.	Moreover,	the	time	and	work	put	in	by	the	individual
committee	 members	 also	 deserve	 praise.	 Just	 remember,	 there	 is	 a	 world	 of	 difference
between	criticising	the	message	and	criticising	the	messenger!

The	UML	2.0	specification,	issued	in	2004,	was	very	different	from	that	of	UML	1.x.	The
original	 specification	was	 relatively	 focussed,	 readable	 and	 comprehensible.	 In	 contrast,
UML	 2.0	 was	 like	 the	 ‘Swiss	 army	 knife’	 tool	 of	 the	 software	 world:	 something	 for
everybody	 (the	 UML	 0.8	 document	 was	 171	 pages	 long;	 UML	 2.0	 consisted	 of	 two
documents,	 having	 a	 total	 page	 count	 in	 excess	 of	 1100).	 Its	 development	was	 heavily
influenced	 by	 the	CASE	 tool	 vendors,	who	 unfortunately	weren’t	 always	 pulling	 in	 the
same	direction.	What	also	affected	things	were	the	efforts	of	individual	vendors	to	ensure
that	 their	 particular	 flavour	 of	 UML	 made	 it	 into	 the	 specification.	 The	 result	 was	 a
specification	 that	 at	 its	 core	 was	 sound	 but	 at	 times	 seemed	 to	 lack	 intellectual	 rigour

(joined-up	thinking).

At	present	the	specification	consists	of	two	documents:	Superstructure	and	Infrastructure.
Roughly	 speaking,	 the	 Superstructure	 document	 is	 written	 for	 UML	 users	 while	 the
Infrastructure	one	is	aimed	at	tool	developers.	However,	it	must	be	understood	that	these
are	written	 for	 the	 general	 software	 community;	 aspects	 specific	 to	 real-time	 embedded
systems	 are	 not	 dealt	with	 in	 the	 Superstructure	 document.	 This	 is	 left	 to	 an	 extension
document	called	MARTE	(Modeling	and	Analysis	of	Real-Time	and	Embedded	Systems).
More	of	that	later.

For	simplicity,	here	the	words	‘specification’	and	‘standard’	have	the	same	meaning.

3.3	UML	-	a	simple	overview
So	far	 in	 the	discussion	about	UML,	 little	has	been	said	about	what	 it	actually	 is.	More
precisely,	what	does	it	offer	the	embedded	systems	developer?	The	original	proposal	was
clear:	 a	method	 for	 specifying,	 visualizing,	 and	 documenting	 the	 artifacts	 of	 an	 object-
oriented	system	under	development.	Unfortunately,	when	you	first	come	to	UML,	its	sheer
complexity	and	size	can	confuse	rather	than	enlighten.	So	here,	to	give	a	concise,	simple
and	perhaps	narrow	view	of	UML,	I’m	going	to	use	an	analogy:	the	building	of	a	house.

What	do	you	have	to	do	to	turn	a	requirement	(‘I	need	somewhere	to	live’)	into	a	product
(the	house)?	Apart	 from	 the	actual	building	work	 itself,	 three	other	 factors	 are	essential
parts	of	the	project.	First,	we	have	the	actual	construction	technique	to	be	used,	the	how	of
building	 the	 house.	 This	 isn’t	 unique;	 it	 varies	 according	 to	 local	 circumstances	 (figure
3.1)	such	as	building	skills,	materials	and	costs.

Figure	3.1	Some	building	techniques

Of	course,	we	need	to	know	what	to	build.	This	is	where	plans	(aka	diagram	models)	are
essential,	figure	3.2.

Figure	3.2	Building	plans	-	various	notations.

The	final	point	is	when	to	do	things,	in	other	words,	the	process	to	be	followed	during	the
project.	A	typical	process	for	the	actual	construction	phase	is	shown	in	figure	3.3.

Figure	3.3	The	building	process

So	 how	does	UML	 relate	 to	 this	 viewpoint?	 Some	 believe	 that	 it	 defines	 how	 software
artifacts	should	be	built.	No,	not	true;	it	is	not	a	technique.	Others	think	that	it	specifies	a
process	for	the	building	of	software.	Also	not	true;	it	is	not	a	process.	This	just	leaves	the
plans.	And	 that,	 for	 us,	 is	 exactly	what	UML	 is;	 a	 set	 of	 rules	 defining	 the	 syntax	 and
semantics	of	 software	plans.	 In	other	words	 it	 defines	 the	diagrams	we	can	use	 and	 the
way	to	use	them.

3.4	UML	-	assumptions,	issues	and	remedies.
3.4.1	Underlying	assumptions	of	the	UML	specification

The	UML	model	was	developed	with	several	explicit	assumptions	in	mind.	It	would:

	
Support	 work	 in	 the	 analysis,	 design	 and	 implementation	 phases	 of	 a
project.
Represent	the	semantics,	physical	details	and	visualization	of	such	work.

Ensure	that	designs	could	be	implemented	by	the	major	OO	programming
languages.

But	there	are	also	implied	assumptions	made	by	individuals	involved	in	the	specification
process.	These,	which	are	unstated,	depend	on	 factors	 such	as	 the	person’s	background,
experience	and	work	area.	Moreover,	this	is	very	much	an	unconscious	process;	people	are
unaware	 just	 how	 much	 their	 viewpoints	 affect	 their	 decisions.	 Now,	 why	 don’t	 these
aspects	get	picked	up	in	the	committee	meetings?	Some	do,	of	course.	But	if	the	majority
of	 the	 specification	developers	 are	 like-minded,	 implied	 assumptions	 are	 rarely	noticed;
consensus	groupthink	takes	over.

To	our	mind	the	emphasis	placed	on	many	features	of	UML	only	make	sense	when	viewed
in	the	following	context:

	
The	essential	computing	model	is	that	of	a	client/server	system.
Key	constructs	are	related	to	the	handling	of	data	and	databases,	including
remote	databases.
The	distributed	computing	model	implicitly	assumes	the	use	of	the	internet
and	its	protocols.
The	 implied	 hardware	 platforms	 are	 those	 of	 desktop	 computers,
workstations	and	mainframes,	using	industry-standard	operating	systems.
Sufficient	processor	power	and	memory	will	be	available;	resources	aren’t
constrained.
Software	 concurrency	 on	 a	 single	 processor	 will	 be	 provided	 by	 the
machine	OS.
The	 concurrency	 model	 is	 a	 threading	 one	 in	 the	 style	 of	 standard
implementations	such	as	Microsoft’s	COM	(Component	Object	Model).
Distributed	computing	support	will	be	provided	by	middleware	such	as,	for
example,	Microsoft’s	DCOM	(Distributed	COM).
Interfacing	to	the	real	world	is	relatively	simple.
The	interfacing	devices	used	are	few	in	type	(e.g.	printer,	mouse,	keyboard,
etc.)	and	can	be	handled	using	standard	pre-built	driver	software.
A	 successful	 project	 is	 one	 that	 performs	 its	 required	 functions	 correctly;
temporal	factors	are	hardly	considered.

In	general	only	the	soft	real-time	systems	(e.g.	mobile	phones,	personal	organizers,	etc.)
share	some	of	these	characteristics.

Now	contrast	this	with	the	features	of	harder	real-time	embedded	systems.

	
The	 computing	 model	 of	 hard	 systems	 is	 the	 materials	 flow	 (pipe-and-
filter)	one.
Many	different	types	of	hardware	platform	are	used	for	embedded	designs.

In	general,	resources	are	inferior	to	those	of	desktop	machines:
Processing	 power	 may	 be	 limited,	 especially	 where	 designs	 use	 8-bit
processors.
Clock	rates,	even	with	32-bit	machines,	are	much	lower.
Much	less	memory,	both	RAM	and	ROM,	is	available.
A	 real-time	 operating	 system	 (RTOS)	 is	 needed	 to	 provide	multi-tasking
operation.
RTOSs	vary	considerably	in	terms	of	size,	structure	and	tasking	model.
Distributed	computing	support	is	sector-dependent	(e.g.	CAN	and	LIN	for
the	 auto	 industry,	ARINC	653	 for	 avionics,	 Profibus	 for	marine	 systems,
etc.).
Real-world	interfacing	is	a	key	factor	in	terms	of	both	function	and	time.
Projects	must	be	functionally	and	temporally	correct.

Thus	it	is	no	surprise	that	developers	have	struggled	to	effectively	use	‘plain	vanilla’	UML
in	embedded	applications.

3.4.2	UML	issues

What	we’ve	seen	above	is	merely	the	first	hurdle	to	be	overcome	in	trying	to	use	UML.
Because	there	are,	in	fact,	further	obstacles,	the	main	issues	being:

	
The	size	and	complexity	of	the	standard.
Problems	in	understanding	the	standard.
Impreciseness	of	the	semantics.
Problems	in	choosing	and	using	diagrams.
Confusion	between	notation	and	process.

These,	discussed	below,	are	not	 trivial	 aspects;	 they	can	cause	developers	 real	grief	and
angst	(it	might	be	a	good	idea	to	include	a	‘health	warning’	with	UML	documents,	figure
3.4!).

Figure	3.4	Software	health	warning	for	the	unwary

(a)	Size	and	complexity	of	the	standard.

As	 a	 real-time	 developer,	 your	 source	 of	 information	 will	 be	 the	 Superstructure	 and
MARTE	documents.	Unfortunately,	the	size	of	the	standard	beggars	belief.	Version	2.4	of
the	 Superstructure	 document,	 for	 example,	 is	 748	 pages	 long;	 version	 1.0	 of	 MARTE
occupies	738	pages.	In	all	a	total	of	1486	pages.	This	is	an	enormous	inflation	of	the	initial
specification	which,	as	noted	earlier,	took	up	171	pages.

Just	 how	has	 this	 come	 about?	Does	 it	 help	 rather	 than	hinder?	Can	 the	bloat	 really	 be
justified?	The	answers,	 in	reverse	order,	are	‘no’,	‘hinder’	and	‘indiscipline’.	Experience
has	 shown	 that	 good	 standards	 are	 produced	 by	 small	 groups	 of	 highly	 experienced
people.	The	group	also	needs	to	concentrate	on	the	core	aims	of	the	standard;	everything
must	contribute	 to	 these	aims.	Anything	of	 the	 ‘nice	 to	have’	variety	must	be	 ruthlessly
opposed	 (unfortunately	 we	 all	 have	 our	 own	 hobby-horses).	 And	 something	 really
important;	standards	shouldn’t	be	driven	by	commercial	concerns.

In	my	view,	the	history	of	UML	shows	that	it	fails	to	meet	these	criteria.	In	effect	it	went
from	 something	well-focussed	 to	 a	 ‘do-all’	 thing.	This	 can	be	 seen	 in	 the	Conformance
section	of	the	Superstructure	specification:

UML	 is	 a	 language	 with	 a	 very	 broad	 scope	 that	 covers	 a	 large	 and	 diverse	 set	 of
application	 domains.	 Not	 all	 of	 its	 modeling	 capabilities	 are	 necessarily	 useful	 in	 all

domains	or	applications.	This	suggests	that	the	language	should	be	structured	modularly,
with	the	ability	to	select	only	those	parts	of	the	language	that	are	of	direct	interest.

(b)	Problems	in	understanding	the	standard.

This	may	be	an	unkind	remark,	but	it	seems	that	many	of	the	contributing	authors	had	only
a	passing	knowledge	of	the	English	language	and	its	grammar	(much	more	unkindly,	it	has
been	 referred	 to	 on	Wikipedia	 as	 ‘geekspeak’).	 The	 resulting	 document	was	 in	 general
tortuous	to	read,	difficult	to	understand	and	poorly	constructed.	Many	semantic	aspects	are
common	 to	various	 topics,	but	 these	were	scattered	 through	 the	document.	This	made	 it
really	 quite	 difficult	 to	 tie	 things	 together.	 When	 the	 UML	 2.0	 specification	 was	 first
released	it	 took	us	 the	best	part	of	 two	months	 to	‘deconstruct’	 the	document	(that	 is,	 to
work	 out	 what	 it	 really	 meant).	 In	 many	 cases	 we	 just	 couldn’t	 establish	 the	 rationale
behind	 the	 specifications.	 Thus	 it	 was	 doubly	 difficult	 to	 understand	 exactly	 what	 the
writers	 were	 getting	 at.	 The	 poor	 (almost	 opaque)	 writing	 style	 resulted	 in	 numerous
examples	 of	 ambiguity	 and	 ambivalence.	 There	 were	 examples	 of	 contradiction	 and
circular	definitions	that,	because	of	the	sheer	size	of	the	work,	were	difficult	to	spot.

(c)	Impreciseness	of	the	semantics.

Consider	 the	 following	 scenario.	 We’ve	 gathered	 together	 a	 group	 of	 developers	 who
claim	to	have	a	good	working	knowledge	of	UML.	We	present	them	with	a	set	of	UML-
based	 diagrams	 and	 ask	 them	 to	 explain	what	 these	 diagrams	 are	 all	 about.	Let	 us	 also
assume	 that	 the	 diagrams	 conform	 to	 the	 UML	 standard,	 i.e.	 legal	 UML.	Well,	 if	 you
believe	some	of	the	literature	concerning	UML,	we	would	expect	that	they	would:

	
Recognize	all	the	symbols	used	in	the	diagrams,	that	is,	know	their	syntax.
Know	the	semantics	of	these	symbols	(diagram	constructs).
Understand,	from	the	diagram,	the	nature	of	the	relationships	between	the
various	constructs.
Agree	 on	 the	 general	 structures	 of	 the	 code	models	 produced	 from	 these
design	models.

Regrettably	 this	may	not	 be	 the	 outcome	of	 the	 test;	 there	 could	well	 be	 confusion	 and
disagreement.	 But,	 you	 ask,	 if	 UML	 is	 so	 precise,	 why	 the	 problem?	 The	 reasons	 are
twofold.	 First,	 certain	 parts	 of	 the	 standard	 are	 not	 precise	 but	 can	 be	 interpreted	 in
different	ways.	Second,	and	more	important,	UML	deliberately	gives	implementers	ways
to	‘customize’	aspects	of	 the	specifications.	These	are	called	‘semantic	variation	points’.
According	 to	 the	 Superstructure	 specification	 they	 explicitly	 identifies	 (sic)	 the	 areas
where	 the	 semantics	 are	 intentionally	 under	 specified	 to	 provide	 leeway	 for	 domain-
specific	 refinements	 of	 the	 general	 UML	 semantics.	 Two	 mechanisms	 support	 such
refinements,	 stereotypes	 and	 profiles.	 In	 other	 words	 you	 can	 adapt	 UML	 to	 produce
specialized	diagrams	having	 their	 own	particular	 syntax	 and	 semantics.	Of	 course	 other
developers	 can	 do	 exactly	 the	 same.	 So	 we	 end	 up	 with	 sets	 of	 diagrams	 that	 are
specialized,	different	but,	in	UML	terms,	perfectly	legal.	Now	this	is	not	a	trivial	issue.	It
runs	 right	 through	 UML,	 the	 examples	 below	 coming	 from	 the	 Superstructure
specification:

	
Precise	 semantics	 of	 shared	 aggregation	 varies	 by	 application	 area	 and
modeler.
The	order	and	way	in	which	part	instances	in	a	composite	are	created	is	not
defined.
In	accord	with	this	semantic	variation	point,	inheritance	of	values	for	static
features	is	permitted	but	not	required	by	UML.
It	is	a	semantic	variation	whether	one	or	more	behaviors	are	triggered	when
an	event	satisfies	multiple	outstanding	triggers.

You	should	now	see	why	our	experienced	developers	may	have	problems.

(d)	Problems	in	choosing	and	using	diagrams.

Over	time	the	number	of	diagrams	specified	by	the	UML	standard	has	increased.	And	in
many	 cases	 there	 has	 been	 a	 corresponding	 increase	 in	 diagram	 complexity.	 The	 root
cause	of	this	is	the	desire,	as	noted	earlier,	to	produce	the	‘do-all’	specification:

The	modeling	concepts	of	UML	are	grouped	into	language	units.	A	language	unit	consists
of	a	collection	of	tightly-coupled	modeling	concepts	that	provide	users	with	the	power	to
represent	 aspects	 of	 the	 system	 under	 study	 according	 to	 a	 particular	 paradigm	 or
formalism.	 For	 example,	 the	 State	Machines	 language	 unit	 enables	modelers	 to	 specify
discrete	 event-driven	 behavior	 using	 a	 variant	 of	 the	well-known	 statecharts	 formalism,
while	 the	Activities	 language	unit	provides	 for	modeling	behavior	based	on	a	workflow-
like	paradigm.	From	the	user’s	perspective,	this	partitioning	of	UML	means	that	they	need
only	be	concerned	with	those	parts	of	the	language	that	they	consider	necessary	for	their
models.

In	effect	it’s	like	having	a	big	bag	of	tools	to	cover	any	and	all	events.

As	 a	 result,	 not	 only	 do	 we	 have	 numerous	 diagrams,	 we	 also	 have	 overlap	 and
redundancy	of	diagrams	and	constructs.	This	makes	it	really	quite	difficult	for	those	new
to	UML	to	make	sense	of	 things	(and	the	specification	is	 less	 than	helpful).	CASE	tools
usually	provide	a	subset	of	the	full	set	of	UML	diagrams,	which	simplifies	the	choices	for
the	developer.	However,	 in	many	cases,	users	of	CASE	 tools	don’t	 truly	understand	 the
meaning	of	the	diagrams	and	their	symbols.

(e)	Confusion	between	notation	and	process.

UML	 started	 life	 as	 the	 ‘Unified	 Method’,	 with	 the	 idea	 that	 it	 would	 cover	 both	 a
development	 process	 and	 a	 related	 set	 of	 diagrams	 (although	 the	 first	 document	 limited
itself	to	the	diagramming	aspects	only).	OMG	decided	to	restrict	UML	to	being	a	diagram
modelling	technique	only;	the	process	aspect	was	dropped.	However,	Rational	pursued	the
process	 idea,	developing	 the	Rational	Unified	Process,	RUP.	Their	CASE	 tool,	Rational
ROSE,	 incorporated	 the	RUP	 and	 the	UML	diagram	 set.	Other	 vendors	went	 down	 the
same	path,	so	when	you	got	their	UML	tool	you	also	got	their	process.	It’s	not	surprising
then	that	many	software	developers	mistakenly	assume	that	UML	specifies	a	development
process.	 Newcomers	 usually	 turn	 to	 the	 specification	 for	 process	 guidance	 and	 end	 up
being	very	confused	indeed.	Moreover,	advice	and	information	from	tool	vendors	doesn’t

necessarily	help.	In	fact	it	can	further	confuse	the	situation	owing	to	the	differences	in	the
various	processes.

(f)	Inadequate	modelling	of	run-time	software.

UML	 places	 great	 emphasis	 on	 the	 structural	 modelling	 aspects	 of	 software;	 relatively
little	attention	is	paid	to	run-time	aspects.	The	profile	for	MARTE	is	intended	to	remedy
this,	as	defined	in	by	its	scope:

This	 specification	 of	 a	 UML™	 profile	 adds	 capabilities	 to	 UML	 for	 model-driven
development	of	Real	Time	and	Embedded	Systems	(RTES).	This	extension,	called	the	UML
profile	 for	 MARTE	 (in	 short	 MARTE	 for	 Modeling	 and	 Analysis	 of	 Real-Time	 and
Embedded	systems),	provides	support	for	specification,	design,	and	verification/validation
stages.

A	review	of	the	profile	shows	that	features	are	provided	to	model	the:

	
Temporal	features	of	real-time	systems
Hardware	and	software	resources	and
Allocation	of	functional	aspects	onto	the	computing	platform.

Unfortunately	it	doesn’t	explain	these	things	particularly	clearly.	It’s	sheer	size,	verbosity
and	 abstract	 slant	 makes	 for	 lengthy,	 difficult	 and	 unrewarding	 reading.	 Moreover,	 it
seems	to	assume	that	detailed	modelling	of	run-time	aspects	(the	run-time	architecture)	is
not	 its	 responsibility.	 And	 yet	 the	 run-time	model	 is	 key	 to	 understanding,	 developing,
implementing,	 testing	 and	 maintaining	 embedded	 systems.	 In	 UML	 terms	 this	 model
defines	the	features	and	behaviour	of	the	Platform	Specific	Model	(PSM),	dealing	with:

	
Tasks,	threads	and	processes.
Resource	sharing	and	protection	in	concurrent	designs.
Periodic	and	aperiodic	tasking	models,	including	timing	aspects.
Event-driven	designs.
Interactions	between	concurrent	units	(e.g.	data	transfer,	synchronization).
Mainstream	 scheduling	 methods	 (e.g.	 priority	 pre-emptive,	 co-operative
and	deadline	monotonic).
Memory	partitioning,	allocation	and	protection.
Isolation	 of	 resources	 via	 time	 (temporal)	 and	 memory	 usage	 (spatial)
partitioning.
Robustness	and	fault	tolerance.

The	situation	at	present	is	that	MARTE	doesn’t	deliver	on	these	items.

3.4.3	UML	and	domain-specific	issues

What’s	 different	 about	 using	 UML	 in	 real-time	 systems	 compared	 with	 areas	 such	 as
databases,	 management	 information	 systems	 (MIS),	 Internet	 search	 engines,	 etc?	 Is	 it
more	 complex?	 Does	 it	 require	 specialized	 knowledge?	 Do	 you	 need	 special	 training?
Well,	the	reality	is	that	in	terms	of	the	diagram	types,	their	syntax	and	their	semantics,	the
answer	is	no.	The	difference,	in	fact,	has	little	to	do	with	the	diagrams	themselves	but	is
driven	by	the	following	factors:

	
The	range	of	diagrams	used.
The	emphasis	placed	on	their	use.
The	traceability	between	diagrams.
The	support	for	program	design.

Moreover,	 the	 following	 three	 aspects	 heavily	 influence	 our	 selection	 and	 usage	 of
diagrams:

	
Design	viewpoint.
External	(real-world)	interfacing.
Performance	requirements

As	shown	in	figure	3.5,	there	are	two	quite	contrasting	views	of	the	role	of	software	within
complete	systems:	software-centric	and	system-centric.	In	many	(perhaps	most?)	desktop
and	mainframe	applications,	software	aspects

Figure	3.5	Contrasting	views	of	the	role	of	software	in	systems

dominate	 all	 other	 factors.	 From	 that	 perspective	 the	 software	 really	 is	 the	 system,	 all
other	 things	 being	 subordinate.	 Now,	 this	 is	 a	 reasonable	 approach	 when	 developing
applications	such	as	mathematical	modelling,	computer-based	games,	databases,	etc.	But
when	this	same	philosophy	is	applied	to	producing	software	for	systems	such	as	robotics,
process	 control,	 health-treatment	 and	 the	 like,	 the	 outcomes	 can	 be	 disastrous.	 This	 is
especially	 true	 of	 user	 interfaces	 and	 interfacing.	 In	 fact	 I	 have	 seen	 design	 guides
implying	 that	 interface	 class	 design	 is	 somewhat	 simple,	 and	 implementation	 can	 be
deferred	to	the	final	stages	of	a	project.	Some	consequences	of	this	are	described	by	Paul
Gruhn	 in	his	paper	 ‘Human	Machine	 Interface	 (HMI)	Design:	The	Good,	The	Bad,	and
The	Ugly	(and	what	makes	them	so)	‘:

Poor	HMI	 designs	 have	 been	 identified	 as	 factors	 contributing	 to	 abnormal	 situations,
billions	 of	 dollars	 of	 lost	 production,	 accidents,	 and	 fatalities.	 Many	 HMIs	 actually
impede	rather	than	assist	operators.

So,	why	raise	these	points?	It’s	because	UML	has	its	roots	in	software-centric	systems,	in
particular	from	the	Object	Modelling	Technology	work	of	James	Rumbaugh.	Many	things
in	the	UML	specification	make	sense	only	when	seen	from	this	point	of	view.

Now,	 in	 contrast	 to	 this,	 the	 software	 in	 embedded	 designs	 is	 merely	 one	 component
within	the	complete	system.	Why	it’s	needed,	what	it	should	do	and	how	it	should	do	it	is
dictated	by	system,	not	software,	needs.	And	this	is	especially	true	for	the	interfacing	and
performance	aspects.	One	very	 telling	account	 is	 that	given	by	Robyn	Lutz	 in	his	paper

‘Targeting	 Safety-Related	 Errors	 During	 Software	 Requirements	 Analysis’.	 The
information	given	was	based	on	examining	192	safety-related	software	errors	documented
during	 integration	and	system	 testing	of	 two	spacecraft,	Voyager	and	Galileo.	 It	 showed
that	the	most	common	causes	of	these	errors	were:

	
Misunderstandings	of	the	software’s	interfaces	with	the	rest	of	the	system,
and
Discrepancies	 between	 the	 documented	 requirements	 and	 those	 actually
needed	for	correct	functioning	of	the	system.

Problem	areas	included:

	
Out-of-range	values.
Timeouts.
Unexpected	arrivals	of	inputs.
Data	age	(staleness).
Arrival	rates.
Lost	events.
Delays	in	error	responses.
Effects	 of	 input	 signals	 arriving	 during	 non-operational	 mode
(startup/offline/shutdown).

What	this	tells	us	is	that,	from	the	point	of	UML	diagramming,	we	have	to:

	
First,	 identify	 the	 factors	 that	 are	 key	 to	 producing	 a	 safe	 and	 successful
product.
Second,	establish	which	diagrams	best	model	these	properties.
Third,	 define	 a	 cohesive	 and	 integrated	 way	 of	 using	 these	 diagrams
through	the	design	and	development	process.

3.4.4	Employing	UML	in	real-time	systems

It’s	clear	that	the	UML	issues	discussed	so	far	are	serious	and	need	to	be	dealt	with.	But
how?	The	answers	to	this	lay	the	foundations	for	the	selection	and	use	of	UML	diagrams
in	real-time	embedded	systems.

The	starting	point	is	to	once	again	emphasize	that	UML	is	not	a	process;	it	 is	a	drawing
language.	You	can	produce	a	multitude	of	diagrams	and	still	end	up	with	a	design	that	is
incomplete,	incorrect	and	incohesive.	True,	you	should	be	able	to	understand	the	part	of	a
design	 described	 by	 a	 specific	 diagram.	Unfortunately	 the	 views	 provided	by	 the	 set	 of

diagrams	may	well	be	fragmented.	Therefore	what	 is	essential	 is	 to	use	a	good	software
design	and	development	process	supported	by	UML	diagramming.

The	 second	 aspect	 is	 the	 choice	 of	 diagrams	 to	 be	 used.	Be	 realistic.	Decide	what	 you
really	need.	Use	this	as	guidance	in	selecting	a	subset	of	the	available	UML	diagrams.	But
is	should	also	be	clear	from	the	discussion	on	MARTE	that	UML	is	deficient	in	the	area	of
run-time	modeling.	What	 to	 use	 and	what	 to	 do	 is	 really	 up	 to	 the	 individual	 designer;
experience	is	very	helpful	here.	So	with	a	view	to	the	future,	consider	what	the	Systems
Modeling	 Language	 (SysML)	 and	 the	 SAE	 AADL	 Aerospace	 Standard	 (Society	 of
Automotive	Engineers	Architecture	Analysis	and	Design	Language)	have	to	offer.

Next,	 tackle	 the	problems	of	 actually	using	 and	understanding	 the	diagrams.	Make	 sure
that	the	semantics	of	your	chosen	subset	are	clearly	and	explicitly	stated.	And	avoid	what	I
call	the	esoteric	features;	keep	things	simple	if	at	all	possible.	Just	because	something	can
be	done	doesn’t	mean	it	should	be.

What	 about	CASE	 tools?	Some	provide	 no	 flexibility;	what	 they	have	 is	what	 you	get.
Others	allow	you	to	adapt	diagrams	or	even	develop	ones	of	your	own	choice.	Whatever
you	do,	make	it	a	considered,	professional	decision.	And	make	it	clear	why	such	choices
are	made.

Be	pragmatic	and	parochial.	Concentrate	and	what	you	and	your	team	want	to	do,	then	do
it.	Make	 sure	 that	 everybody	agrees	on	what	has	 to	be	done	and	how	 to	do	 it	 (‘singing
from	the	same	hymn	sheet’,	to	use	an	old	phrase).	Don’t	try	to	save	the	world.	You	don’t
know	what	the	future	holds;	get	it	right	for	now.

Finally,	 recognize	 that	 UML	 is	 a	 rigorous,	 not	 a	 formal,	 specification	 language.	 You
cannot	 apply	 formal	 discharge	 proofs	 to	 the	 designs,	 so	 don’t	 even	 try.	 Augment	 your
diagrams	with	supporting	explanatory	text	wherever	you	consider	it	necessary.	This	may
upset	 the	 purists	 of	 the	 world	 of	 formal	 specification	 languages;	 just	 point	 out	 that
engineers	have	successfully	used	that	approach	for	a	very	long	time.

Review
At	this	stage	you	should:

	
Understand,	 in	 broad	 terms,	 the	 evolution	 of	 software	 diagramming
techniques.
Appreciate	 that	 this	 evolution	 differed	 between	 the	 system-centric	 and
software-centric	worlds.
Know	 that	 the	 development	 of	 UML	 was	 driven	 by	 the	 needs	 of	 the
software-centric	world.
Be	aware	of	the	many	assumptions,	stated	and	unstated,	which	shaped	the
development	of	UML.
Recognize	 that	 there	 is	 a	 great	 difference	 between	 the	 UML	 view	 of
computing	environments	and	those	of	embedded	systems.

Know	 what	 the	 major	 impediments	 are	 to	 the	 effective	 use	 of	 UML	 in
system-centric	systems.
Understand	the	rationale	for	 the	advice	given	here	on	using	UML	in	real-
time	systems.

Chapter	4	-	The	structural	design	model

The	objectives	of	this	chapter	are	to:

	
Describe	 the	 fundamental	 aspects	 of	 objects,	 their	 structures	 and	 their
attributes.
Introduce	the	‘simple’	class	and	define	its	relationship	with	the	object.
Show	 how	 systems	 may	 be	 structured	 as	 sets	 of	 collaborating	 objects
having	client-server	and	peer-to-peer	relationships.
Explain	how	objects	can	be	used	to	implement	modular	structures.
Describe	the	fundamental	aspects	of	composite	structures	(class	and	object)
and	their	associated	attributes.
Illustrate	how	composite	objects	may	be	used	to	implement	‘plug	and	play’
structures,	 with	 special	 reference	 to	 the	 ‘pipe	 and	 filter’	 (materials	 flow)
software	processing	model.
Introduce	 component	 technology	 as	 a	 way	 of	 building	 large	 modular
structures.
Describe	the	reasons	for,	and	advantages	of,	packaging	software	diagrams
and	show	how	this	can	be	implemented.
Introduce	artifacts	and	describe	their	use.
Show	 how	 the	 physical	 aspects	 of	 systems	 can	 be	 modelled	 using
deployment	diagrams.

4.1	Some	important	preliminaries
Object	Orientation	has,	in	our	view,	one	key	concept.	It	is	that	designs	may	be	structured
as	sets	of	interconnected,	collaborating	objects.	Now,	this	seems	to	be	a	reasonable,	non-
contentious	 definition,	 given	 that	 the	 whole	 subject	 is	 called	 ‘object	 oriented’.	 Yet	 this
view	is	seen	to	be	almost	heretical	by	many	in	the	‘traditional’	OO	world,	where	classes
(or,	more	broadly,	‘classifiers’)	are	king.

Object	diagrams	were	part	 and	parcel	of	 the	UML	suite,	 right	 from	 the	very	beginning.
But	even	 then	 they	were	seen	as	a	somewhat	 inferior	 feature,	having	 limited	value.	The
seeds	 for	 confusion	 were	 set	 in	 the	 Unified	 Method	 v0.8	 document,	 which	 had	 the
following	definition:

Class	 diagrams	 show	 generic	 descriptions	 of	 possible	 systems	 and	 object
diagrams	 show	 particular	 instantiations	 of	 systems	 and	 their	 behavior.	 Class
diagrams	contain	classes	and	object	diagrams	contain	objects,	but	it	is	possible

to	mix	classes	and	objects	for	various	purposes,	so	the	separation	is	not	rigid.

Sparx	 Systems,	 the	 producers	 of	 the	 Enterprise	 Architect	 UML	 modelling	 tool,	 have
produced	a	 excellent	 set	 of	 tutorials	 (I	 recommend	 that	you	 look	 these	out	 at	 the	Sparx
Systems	web	site).	However	even	their	definition	isn’t	especially	helpful:

An	object	diagram	may	be	considered	a	special	case	of	a	class	diagram.

At	least	UML	1.x	was	more	precise,	stating:

An	object	diagram	is	a	graph	of	instances,	including	objects	and	data	values.	A
static	object	diagram	is	an	instance	of	a	class	diagram;	it	shows	a	snapshot	of
the	detailed	state	of	a	system	at	a	point	in	time.	The	use	of	object	diagrams	is
fairly	limited,	mainly	to	show	examples	of	data	structures.

Please	 note	 that	 final	 sentence;	 it	 shows	 absolutely	 clearly	 the	 mindset	 at	 work	 in	 the
development	of	the	UML	specifications.	Our	experience	in	researching	and	implementing
real-time	OO	designs,	stretching	over	20	years,	is	absolutely	the	opposite.	And	we	are	not
alone.	 The	 account	 given	 by	 Steven	 Stolper	 in	 his	 paper	 ‘Streamlined	 design	 approach
lands	 Mars	 pathfinder’,	 IEEE	 Software,	 Sept./Oct.	 1999,	 is	 highly	 supportive	 of	 our
approach:

Although	many	textbooks	recommend	defining	classes	an	initial	step	in	an	OO
approach,	 it	was	 difficult	 for	 us	 to	 conceive	 abstract	 classes	without	 concrete
examples	of	objects	that	solved	particular	problems	in	the	spacecraft	domain.
Landing	a	spacecraft	on	Mars	is	much	less	defined	than	the	example	problems
encountered	in	the	textbooks.
It	was	more	advantageous	to	enumerate	objects	and	to	extract	possible	classes
than	 it	 was	 to	 fit	 classes	 to	 a	 problem	 we	 were	 defining	 as	 we	 explored	 the
design	space.

UML	2.x	pretty	much	ignores	the	object	diagram	and	its	role,	which	has	resulted	in	at	least
two	problems.	First,	trying	to	describe	everything	in	terms	of	classifier	instantiations	and
the	like	has	generated	many	mind-numbing,	tortuous,	impenetrable	descriptions.	Second,
it	has	 led	 to	 the	need	 to	produce	a	new	diagram,	 the	composite	structured	unit.	More	of
this	later.

4.2	Objects	and	their	classes	-	the	‘simple’	model	of	OO	design
To	 recapitulate:	 an	 object	 is	 a	 software	machine	 used	 as	 a	 basic	 building	 block	 for	OO
systems.	From	an	external	point	of	view	it:

	
Is	seen	as	a	single	unit.
Has	a	well-defined	function	or	purpose	(what	it	does).
Encapsulates	all	resources	required	to	achieve	that	purpose	(how	it	does	it).
Has	distinct	separation	of	‘what’	from	‘how’.

Hides	implementation	aspects	from	the	outside	world.
Has	 a	well-defined,	 clean	 interface	which	 acts	 as	 the	 ‘access	window’	of
the	object.	Only	this	is	visible	to	the	outside	world.

It	 is	 also	 important	 that	 the	object	 should	not	produce	 side	effects	 (which	would	negate
many	 of	 the	 benefits	 of	 OO	 design).	 To	 achieve	 this,	 all	 interactions	 with	 the	 outside
software	world	must	go	via	the	interface.

Note	 that	 the	 term	 ‘simple’	 is	 an	 informal	 term.	 It	 is	 used	 to	 distinguish	 the	OO	model
described	here	 from	 the	 composite	 one	which	 comes	 later.	An	 object,	 in	 a	UML	object
diagram,	is	shown	as	a	simple	named	rectangle,	figure	4.1.	The	name	is	the	one	chosen	by
you,	the	designer.	Observe	that	it	is	underlined,	indicating	that	it	represents	a	software	run-
time	unit	(i.e.	when	the	program	executes	it	actually	does	something).

Figure	4.1	The	basic	object	diagram

Let	 us	 suppose	 that	 our	 software	 design	 consists	 of	 one	 object	 only	 (fairly	 unlikely	 in
reality).	We	 can	 then	 show	 its	 context	within	 the	 complete	 embedded	 system	 using	 the
format	of	figure	4.2.

Figure	4.2	A	single	object	software	design	-	context	diagram

This	is	not	a	standard	UML	diagram.	However,	in	our	experience,	the	context	diagram	is	a
key	one	in	the	design	of	real-time	embedded	systems;	we	have	never	done	a	real	system
design	that	hasn’t	included	a	context	diagram.

One	 of	 the	 primary	 aims	 in	 object-oriented	 design	 is	 to	 hide	 as	 much	 information	 as
possible.	It’s	a	variant	on	the	‘need	to	know’	principle;	what	you	don’t	know	about	can’t
hurt	 you.	 We	 do	 this	 by	 separating	 an	 object	 into	 two	 parts:	 the	 visible	 and	 hidden
sections,	figure	4.3.

Figure	4.3	Global	view	of	an	object

The	 visible	 section	 (the	 interface)	 describes	 essentially	 the	 services	 it	 provides.	 In	 the
outside	 world	 of	 software	 only	 the	 interface	 details	 can	 be	 seen.	 The	 body	 itself
implements	the	required	functions	of	the	object.	How	these	are	achieved	is	hidden	within
the	body,	being	of	no	concern	to	the	user.	In	fact	it	is	imperative	that	internal	operations
and	data	cannot	be	accessed	directly	by	external	objects.	As	shown	here,	for	example,	the
object	contains	three	operations	and	one	unit	of	internal	data.	Operations	1	and	2	are	made
available	for	use	by	other	objects	(clients)	as	they	are	listed	in	the	interface	section.	Hence
they	are	considered	to	be	public	items.	By	contrast,	the	internal	operation	and	the	data	unit
remain	hidden	-	they	are	private	to	the	object.

Now,	 this	 raises	 the	 question;	 how	 do	 we	 specify	 the	 operations	 and	 data	 items	 of	 an
object?	There	are,	in	fact,	two	aspects	to	this,	illustrated	in	figure	4.4.

Figure	4.4	The	software	object	and	its	template

To	 build	 a	 product	 such	 as	 a	 vehicle	we	 need	 to	work	 to	 a	 set	 of	 plans	 (templates);	 in
building	the	vehicle	we	‘instantiate’	these	plans.	The	object	itself	can	be	considered	to	be
the	equivalent	of	the	vehicle,	its	defining	plan	being	the	‘class’.	The	class	defines	what	the
attributes	 (qualities)	 of	 the	 object	 are,	 together	 with	 the	 object	 operations.	 Thus	 every
object	manufactured	from	this	template	has	the	same	attributes	and	operations.	However,
the	individual	attribute	values	are	defined	at	build	time.	Thus	the	class	defines	the	form,
content	and	behaviour	of	objects;	in	itself	it	is	not	a	run-time	item.	Thus	the	class	cannot
do	anything;	it	is	merely	a	specification.	Please	note	this	most	carefully,	imprint	it	on	your
brain;	it	will	help	you	deal	with	confusing	descriptions	regularly	found	in	OO	articles.

To	make	 things	more	meaningful	 let’s	now	move	 from	 this	high-level	view	of	 things	 to
something	 more	 concrete.	 Suppose	 that	 we	 have	 decided	 to	 implement	 a	 single	 object
design	as	depicted	in	figure	4.2.	After	analysing	the	system	requirements	we	arrive	at	the
following	specification	for	the	PressureController	object:

The	purpose	of	 the	object	 is	 to	control	 the	pressure	of	 the	hydraulic	system.	 It
does	this	by	measuring	the	actual	pressure,	comparing	this	with	a	preset	value,
and	 then	 adjusting	 the	 position	 of	 an	 actuator-driven	 valve	 to	 maintain	 the
preset	value.
The	object	will	contain	three	internal	software	functions:

	

Read	the	sensor	pressure.

Compute	the	actuator	signal.

Set	the	actuator	position.

It	also	will	have	the	following	data	items:

	
Measured	pressure.

Preset	pressure	(a	constant	value).

Actuator	control	signal.

It	 is	 set	 into	 execution	 by	 calling	 a	 ‘run’	 function	 provided	 on	 its	 public
interface.

The	key	software	aspects	can	be	represented	informally	as	shown	in	figure	4.5

Figure	4.5	Informal	view	of	the	pressure	controller	object

The	 specification	 for	 these	 items	 is	 provided	 by	 the	 class	 using	 the	 diagram	 symbol	 of
figure	4.6,	a	rectangular	box	having	three	compartments.

Figure	4.6	Class	symbol

The	 name	of	 the	 class	 is	 shown	 in	 the	 first	 (upper)	 section.	 Its	 attributes	 (qualities)	 are
listed	in	the	middle	section,	whilst	its	visible	operations	appear	in	the	bottom	section.	By
comparing	this	with	figure	4.5	it	can	be	seen	that	attributes	become	data	items;	operations
are	 implemented	 by	 subprograms	 (procedures	 or	 functions).	 Variations	 of	 this	 class
symbol	can	be	used	legally	in	UML;	however	this	particular	format	is	widely	used.

Figure	4.7	shows	the	relationship	between	classes,	objects,	attributes	and	attribute	values.

Figure	4.7	Class	and	object	inter-relationships

Objects	can	be	represented	in	a	number	of	ways,	as	set	out	in	figure	4.8.

Figure	4.8	Example	class	and	object	notation

The	first	three	forms	should	be	self-explanatory.	The	fourth	one	can	be	used	if	we	wish	to
denote	that	an	object	has	specific	values	(in	this	case	the	data	item	SetPressure	has	a	value
of	100).	A	point	 to	note	 is	 that	 if	you	use	a	CASE	 tool	you	may	be	 forced	 to	use	 tool-
defined	formats.

The	purpose	of	figure	4.9	is	to	reinforce	the	fact	that,	from	a	single	class,	we	can	produce
as	many	objects	as	desired.

Figure	4.9	Simple	class	and	some	corresponding	object	diagrams

It	also	highlights	a	really	important	aspect;	 the	class	diagram	does	not	tell	us	how	many
objects	exist	in	our	system	(there	are	work-rounds	for	this,	but	strictly	aren’t	legal	UML).
Thus	the	mapping	from	class	diagram	to	object	diagram	is	not	a	unique	one.	In	contrast,
mapping	from	the	object	diagram	to	the	class	diagram	is	unique.

The	 class	 information	of	 figure	 4.9	 can	 be	 regarded	 as	 a	 ‘high-level’	 specification;	 it	 is
independent	 of	 detailed	 code	 issues,	 including	 the	 programming	 language	 to	 be	 used	 to
implement	it.	Now,	if	the	translation	from	diagram	to	code	is	handled	manually	then	this	is
sufficient;	the	program	designer	can	fill	in	all	code-level	aspects.	However,	if	an	autocode
generator	is	used,	things	are	quite	different.	In	order	for	the	generator	to	produce	correct
source	code	it	needs	detailed	information	about	all	the	class	items.	An	example	of	this	can
be	seen	in	figure	4.10,	produced	using	the	Enterprise	Architect	CASE	tool.

Figure	4.10	Simple	class	diagram	-	CASE	tool	version

Here	 the	 minus	 sign	 denotes	 private	 items,	 the	 plus	 being	 used	 for	 public	 ones.	 This,
together	with	information	provided	via	a	properties	dialogue,	allows	the	tool	 to	generate
the	essential	code	of	 the	class.	 It	was	decided	that	 the	example	would	be	coded	in	C++,
resulting	in	the	code	structures	of	figures	4.11	and	4.12.

Figure	4.11	Autogenerated	code	-	C++	.h	file

Figure	4.12	Autogenerated	code	-	C++	.cpp	file

Three	very	important	points	come	out	of	this	example.	First,	provided	the	class	is	correctly
specified,	 then	 the	 autocoder	 guarantees	 that	 the	 code	 actually	 implements	 its
specification.	Second,	there	is	still	a	great	deal	more	work	to	be	done	before	the	code	is
complete.	Third,	you	cannot	glean	any	details	of	the	executable	aspects	of	the	code	from
the	class	diagram.

4.3	Collaborating	objects
4.3.1	The	design	models

As	stated	earlier,	single	object	implementations	are	unlikely	to	be	seen	in	practical	work.
Realistic	 designs	 usually	 consist	 of	 sets	 of	 co-operating	 objects	 which,	 acting	 together,
provide	 the	desired	system	function	and	behaviour.	So	 let	us	 revisit	 the	pressure	control
system	and	change	its	design	to	a	three-object	one,	figure	4.13.

Figure	4.13	Revised	design	of	the	pressure	control	system	-	object	diagram

This	we’ll	call	a	‘flat-object’	model	as	all	objects	co-exist	at	the	same	level.	Good	naming
can	make	the	design	virtually	self-explanatory,	though	clearly	detailed	design	information
must	be	provided	somewhere.

We’ve	said	that	these	objects	co-operate,	but	exactly	how	do	they	do	this?	The	answer	is
that	 they	 interact	 by	 sending	 messages	 to	 (communicating	 with)	 each	 other,	 this	 being
fundamental	to	OO	design	(figure	4.14).	The	connecting	‘channel’	between	the	objects	is,
in	UML,	called	a	link.

Figure	4.14	Object	communication	in	OO	designs

Next	we	need	 to	consider	 the	nature	of	 the	relationship	between	these	objects.	Take,	 for
example,	 the	 pressure	 sensor	 and	 pressure	 controller	 objects,	 figure	 4.15.	 Figure	 4.15a
illustrates	the	fundamental	ideas	of	a	client-server

Figure	4.15	Object	relationship	-	client-server	(informal	notation)

relationship,	where	the	client	needs	(requires)	information	and	the	server	provides	it.	Here
the	 controller	 object	 is	 the	 client	 with	 the	 sensor	 object	 being	 the	 server	 (though	 you
wouldn’t	be	able	to	deduce	this	from	the	object	diagram).

In	 figure	 4.15b	 the	 design	 is	 extended	 to	 include	 the	 relevant	messaging,	 this	 being	 an
example	of	an	object	communication	diagram.	Observe	 that	messages	are	denoted	using
arrowed	lines.	From	the	directions	of	the	arrows	we	can	deduce	which	objects	are	clients
and	which	ones	are	servers.

Normally	we	would	transmit	such	information	via	object	 interfaces,	 the	small	rectangles
of	 figure	4.15c.	The	notation	here	 is	 informal,	used	merely	 to	 illustrate	 some	aspects	of
provided	 and	 required	 interfaces.	 One	 very	 important	 point	 is	 that,	 for	 a	 standard	 C++
object,	there	is	only	one	explicit	interface,	the	provided	one.	This	we’ve	already	met	in	the
previous	section.	By	contrast	the	required	interface	will	be	buried	somewhere	in	the	code
implementation	of	 the	pressure	controller	object.	Unfortunately,	 this	 structure	 is	a	major
weaknesses	of	‘classical’	OO	client-server	designs.

In	 some	cases	 the	 clients	message	 requires	 a	 reply;	 information	must	be	 returned	 to	 the
caller.	Such	replies	can	be	shown	by	using	dashed	arrowed	lines,	figure	4.15c.

So,	looking	across	the	design	as	a	whole,	figure	4.16,	it	can	be	seen	that:

	

There	is	one	client	object	-	the	pressure	controller.
There	are	two	server	objects	-	the	pressure	sensor	and	the	actuator.
Each	server	has	one	provided	interface.
The	client	has	two	required	interfaces.

Figure	4.16	Required	and	provided	interfaces

A	design	decision	is	made	that	the	pressure	sensor	class	should	have	one	attribute	and	one
public	 operation,	 figure	 4.17.	 The	 implementation	 of	 the	 operation	 is	 called	 a	 method,
which	 is	 then	built	using	 the	appropriate	 language	construct.	Operations	are	 invoked	by
sending	messages	to	methods;	thus	every	message	must	have	a	corresponding	method.

Figure	4.17	Concept	-	messages	and	methods

A	note	 for	completeness;	operations	can	also	be	defined	as	being	abstract,	 i.e.	ones	 that
don’t	have	associated	methods.

The	final	complete	class	diagram	for	the	pressure	control	system	is	given	in	figure	4.18.

Figure	4.18	Class	diagram	for	the	revised	pressure	control	system

When	we	work	backwards	from	the	object	to	the	class	design,	one	important	rule	must	be
followed;	 when	 objects	 are	 linked	 their	 corresponding	 classes	 are	 also	 connected
(‘associated’).	 These	 associations	 can,	 if	 you	 wish,	 be	 named.	 However,	 the	 naming
should	define	the	nature	of	the	relationship	between	the	classes;	there	isn’t	any	concept	of
one	class	‘doing	something’	to	another	one.

A	last	point	about	this	example;	as	the	pressure	controller	class	has	a	provided	operation,
doesn’t	this	mean	it	also	acts	as	a	server?	And	if	so,	where	does	the	message	come	from?
Who’s	the	client?	Well,	if	we	code	this	in	C++	for	example,	we	would	have	a	function	call
RunPressureController	in	‘main’.	This	is	the	message,	and	main	acts	as	a	‘hidden’	object.

So	 far	we’ve	 been	 discussing	what	 I’ve	 earlier	 called	 the	 ‘classical’	OO	model.	This	 is
well-suited	to	designs	that	are	fundamentally	client-server	in	nature	(such	as	databases	and
web	servers).	However,	 in	real-time	embedded	systems,	 the	most	enduring	model	 is	one
where	object	relationships	are	peer-to-peer,	figure	4.19.

Figure	4.19	Object	relationships	-	peer-to-peer

It	 is,	 of	 course,	 not	 unusual	 to	 find	 a	 mix	 of	 client-server	 and	 peer-to-peer	 models	 in
embedded	system	designs.	However,	the	peer-to-peer	aspects	normally	predominate,	with
relatively	 small	 use	 of	 client-servers	 (e.g.	 data	 stores	 and	 the	 like).	 A	 key	 difference
between	the	two	is	that:

	
In	a	client-server	relationship	a	client	has	to	be	able	to	‘see’	the	server	but
the	 server	 doesn’t	 need	 to	 see	 the	 client.	 Thus	 the	 association	 can	 be
implemented	as	a	uni-directional	one.
In	 peer-to-peer	 operations	 objects	 have	 to	 be	 able	 to	 see	 their	 peers.	 To
support	this	associations	need	to	be	bi-directional.

These	points	are	illustrated	in	figure	4.20.

Figure	4.20	Brief	comparison	-	uni	and	bi-directional	associations

We’ll	now	look	at	the	some	general	aspects	of	class-object	relationships	where	the	design
consists	of	multiple	classes,	figure	4.21.

Figure	4.21	Example	class	and	object	diagrams	-	multiple	classes

Both	object	diagrams	1	and	2	are	valid	instantiations	of	the	class	diagram;	we	could	also
have	 further	ones	having	 three,	 four,	 five	 etc.	 sensor	objects.	Clearly,	when	a	 class-first
design	process	is	used,	we	need	to	specify	precisely	what	the	object	model	should	be.	That
is,	 define	 the	 number	 of	 objects	 involved	 in	 relationships,	 a	 ‘multiplicity	 specification’,
figure	4.22.	Details	of	the	notation	are	given	in	this	figure.

Figure	4.22	Associations	and	multiplicity

As	shown,	the	class	diagram	and	its	multiplicity	has	the	following	meaning:

	
Each	pressure	controller	object	‘sees’	one	or	two	sensor	objects.
Each	sensor	object	sees	one	pressure	controller	object	only.

For	some	 this	can,	at	 first,	be	slightly	confusing	because	we’re	using	 the	class	model	 to
describe	object	model	relationships.	You	might	also	come	to	the	conclusion	that	including
multiplicity	values	makes	the	class-to-object	mapping	a	unique	one.	Not	so.	We	can,	for
instance,	make	multiple	instantiations	of	the	pressure	controller	class,	with	corresponding
instantiations	of	the	sensor	class.

4.3.2	Coding	aspects	of	associations	-	C++	examples

What	 follows	 here	 is	 not	 a	 tutorial	 on	 how	 to	 implement	 class	 designs.	 That,	 in	 itself,
would	turn	out	to	be	rather	extensive	as	we’d	have	to	consider	implementations	involving:

	
Sequential	code	structures.
Multitasking	structures.
Multiprocessor,	multicomputer	and	multicore	designs.

Another	point	is	that	detailed	language	aspects	are	well	beyond	the	scope	of	this	book	(and
C++	may	 not	 be	 your	 language	 of	 choice).	 Even	 so,	 there	 is	 value	 in	 looking	 at	 some
simple	examples;	they	let	us	demonstrate	concrete	aspects	of	class	implementation.	It	also
gives	an	opportunity	to	show	further	uses	(and	limitations)	of	CASE	tool	technology	for
diagramming	and	code	generation.	As	before,	the	examples	have	been	produced	using	the
Enterprise	Architect	tool.	First	we’ll	look	at	a	client-server	model,	then	a	peer-to-peer	one
(but	please	feel	free	to	skip	this	section	if	you	consider	it	to	be	an	irrelevance).

(a)	Client-server	relationships.

This	exercise	takes	the	class	design	first	shown	in	figure	4.21	and	then	reproduces	it	using
the	CASE	tool,	figure	4.23.

Figure	4.23	Client-server	1:1	association	-	initial	design	model

We	have	decided	that	the	design	should	be	implemented	as	a	client-server	relationship,	the
client	 being	 the	 pressure	 controller	 class.	 It	 is	 also	 decided	 that	 the	 object	 model	 will
consist	 of	 two	 objects	 only.	 Thus	 the	 association	 can	 be	 a	 unidirectional	 one,	 having	 a
multiplicity	of	one	(1)	at	each	end.

Figure	4.23	actually	shows	 the	state	of	 the	 initial	design	model	after	 the	 first	 run	of	 the
autocoder.	The	class	names	were	entered	manually	into	the	design;	all	other	items	are	tool-
generated.	Now,	from	this	we	can	learn	a	bit	more	about	pro’s	and	con’s	of	automatic	code
generation:

	
The	PressureSensor	class	is	shown	here	as	having	two	compartments	while
the	PressureController	 class	 is	 a	 three-compartment	 one.	 Both	 are	 legal
UML,	 but	 the	 actual	 selection	was	 (in	 this	 example)	made	 by	 the	CASE
tool.
Constructor	and	destructor	methods	were	generated	automatically.
The	controller	class	has	a	single	attribute,	m_PressureSensor,	 this	being	a
pointer	to	objects	of	class	PressureSensor.	This	attribute	was	also	generated
automatically.

The	 corresponding	 auto-generated	 code	 (.h	 and	 .cpp	 files)	 for	 the	 controller	 class	 is
presented	in	figures	4.24	and	4.25.

Figure	4.24	PressureController	class	initial	code	-	.h	file

Figure	4.25	PressureController	class	initial	code	-	.cpp	file

These	are	 interesting	 in	 that	 they	show	what	 the	autocoder	can	do,	what	 it	 can’t	do	and
what	assumptions	it	makes.

First,	 it	 provides	 both	 constructor	 and	 destructor	 functions.	 Now,	 in	 most	 embedded
designs	we	construct	all	objects	during	initialisation	(or	something	similar).	However,	as
these	 are	 usually	 intended	 to	 exist	 as	 long	 as	 the	 software	 runs	 (‘static’),	 the	 destructor
isn’t	needed.

Second,	 the	 destructor	 is	 declared	 as	 being	 virtual,	 something	 needed	 only	when	 using
derived	classes	(inheritance,	see	later).

Lastly,	it	assumes	that	we’ll	use	pointer	methods	to	implement	the	associations	(strictly	to
‘wire’	 the	 objects	 together).	 This,	 although	 a	 widely-used	 technique,	 is	 best	 suited	 to
sequential	(i.e.	non-concurrent)	implementations.

The	final	version	of	the	model	is	given	in	figure	4.26	where	all	new	attributes	and	methods
are	user-provided.

Figure	4.26	Client-server	1:1	association	-	final	design	model

Using	this	information	the	autocoder	generates	the	required	.h	and	.cpp	files,	figures	4.27
and	4.28.

Figure	4.27	PressureController1	class	final	code	-	.h	file

Figure	4.28	PressureController1	class	final	code	-	.cpp	file

Finally,	 using	 this	 code,	 we	 can	 produce	 the	 code	 of	 the	 pressure	 control	 system,	 one
possible	 implementation	 being	 that	 of	 figure	 4.29.	 Observe	 how	 we	 wire	 the	 objects
together	at	declaration	time.

Figure	4.29	Pressure	control	system	code

Note	 also	 that	 this	 code	 design	 doesn’t	 involve	 any	 concurrency;	 i.e.	 it’s	 standard	C++
sequential	code.

(b)	Peer-to-peer	relationships.

Suppose	that	the	design	requirements	are	changed	so	that:

	
A	 pressure	 controller	 object	 can	 ask	 a	 sensor	 object	 to	 send	 its	 current
reading	to	it.
The	sending	of	data	is	to	be	done	under	the	control	of	the	sensor	object.
The	sensor	object	may	also	update	the	controller	object	at	any	time.

To	meet	these	needs	we	alter	the	design	so	that	sensor	and	controller	objects	can	‘talk’	to
each	other	on	a	peer-to-peer	basis.	Hence	we	denote	 the	class	association	as	being	a	bi-
directional	one,	figure	4.30.

Figure	4.30	Peer-to-peer	1	-1	association	EA	diagram	-	initial

Also	provided	(figure	4.31)	are	code	fragments	to	demonstrate:

	
Means	to	set	up	addresses	of	objects	so	that	they	can	be	wired	together	(the
constructors).
Instantiation	of	the	objects	and	their	wiring	together.

Figure	4.31	Peer-to-peer	1	-1	association	extended

In	 practice	 you	 will	 find	 that	 the	 same	 results	 can	 be	 produced	 using	 a	 variety	 of

programming	 methods.	 Also,	 where	 a	 design	 consists	 of	 many	 objects	 it	 may	 be	 an
advantage	to	have	explicit	wiring	functions,	as,	for	example	(figure	4.32):

Figure	4.32	Peer-to-peer	object	wiring

Please	 note;	 this	 example,	 as	with	 the	 earlier	 ones,	 assumes	 that	we’re	 using	 sequential
code	units.

4.4	Modular	objects
In	general	engineering	terms	a	modular	item	is	something	that’s	constructed	from	a	set	of
parts,	as	for	example	the	pistol	of	figure	4.33.

Figure	4.33	Example	of	a	modular	item	-	pistol

A	key	point;	there	is	no	concept	of	making	a	pistol	in	one	go.	Instead	the	parts	that	make	it
up	 are	 built	 separately,	 then	 get	 assembled	 into	 a	 finished	 product.	 This,	 of	 course,	 is
something	that’s	been	practiced	by	the	auto	industry	for	many,	many	years,	figure	4.34.

Figure	4.34	Modular	build

Now,	let’s	look	at	some	of	the	properties	of	the	pistol.	It:

	
Is	seen	by	the	user	as	a	single	unit.
Has	a	well-defined	purpose.
Has	simple,	clear	interfaces.
Is	easy	to	use.
Hides	its	complexity	-	on	the	surface	looks	very	simple.

Think	of	it	as	just	one	part	of	say	a	personal	weapon	system.	So,	at	the	system	level	we
have	a	relatively	small	number	of	items,	thus	minimising	system	complexity.	Each	item	is
produced	separately,	and	 then	 tested	 to	ensure	 that	 it	meets	 its	operational	 requirements.
We	can	also	evaluate	the	quality,	reliability,	usability	and	cost	aspects	of	individual	items
before	 integrating	 them	 into	 the	 overall	 system.	 What	 we	 have	 here	 then	 is	 another

example	of	the	well-proven	‘divide	and	conquer’	approach	to	building	systems.	Now,	how
can	we	apply	this	to	the	software	arena,	specifically	a	UML-based	method?

UML	 provides	 us	 with	 notation	 to	 define	 objects	 which	 themselves	 are	 made	 up	 of
‘contained’	objects.	This	is	called	‘composition’,	and	such	objects	are	often	referred	to	as
‘composite	objects’.	An	example	is	given	in	figure	4.35	which	depicts	part	of	the	software
used	to	control	a	conveyor	belt.

Figure	4.35	Conveyor	belt	unit	-	modular	software	structure

The	general	 concept	 is	 shown	 in	 figure	4.35a,	while	 that	of	4.35b	 is	 a	 specific	example
using	UML	notation.	Here	FrontConveyor	 is	 the	composite	object,	 the	contained	objects
being	 DriveMotor	 and	 PositionSensor.	 In	 UML-speak,	 FrontConveyor	 is	 called	 the
‘whole’,	the	others	being	‘parts’.

A	critical	aspect	of	composition	is	that	when	the	whole	object	is	created	the	parts	are	also
created.	Likewise,	if	the	whole	is	destroyed	the	parts	also	get	destroyed.	In	other	words	the
parts	do	not	have	existence	independent	of	the	whole.

The	 class	 specification	 for	 this	 is	 presented	 in	 figure	 4.36,	 this	 being	 called	 ‘composite
aggregation’.

Figure	4.36	Class	diagram	for	the	conveyor	belt	object	-	initial

A	brief	aside:	UML	says	Composite	aggregation	is	a	strong	form	of	aggregation.	However
you	 will	 find	 that	 some	 developers	 use	 the	 terms	 composition	 and	 aggregation	 to
distinguish	 between	 the	 strong	 and	 ‘weak’	 aggregation	 forms.	 Here,	 though,	 we	 aren’t
going	to	bother	with	‘weak’	aggregation;	our	experience	is	that	it	isn’t	widely	used	in	deep
embedded	systems.

The	class	diagram	of	figure	4.36	was	produced	using	the	Enterprise	Architect	CASE	tool.
All	 operations	 and	 attributed	 shown	 here	were	 generated	 by	 its	 autocoding	 feature,	 the
associated	code	for	the	conveyor	belt	class	being	that	of	figure	4.37.

Figure	4.37	Conveyor	belt	class	-	composite	aggregation	code	(part)

The	 ‘pointer	 to’	 objects	m_Sensor	 and	m_Motor	 were,	 like	 earlier	 examples,	 generated
automatically	(as	were	the	constructors	and	destructors).

The	completed	class	design	is	depicted	in	figure	4.38,	whilst	the	associated	conveyor	belt
class	code	is	given	in	figure	4.39.

Figure	4.38	Class	diagram	for	the	conveyor	belt	object	(final	version)

Figure	4.39	Conveyor	belt	class	code	-	final	(part)

You	 can	 see	 from	 this	 that	 the	 belt	 class	 has	 two	 private	 objects,	 DriveMotor	 and
PositionSensor.	These	are,	of	course,	the	contained	objects	(parts)	which	are	created	when
the	belt	class	itself	is	instantiated.	Note	also	that	the	all	the	work	of	the	composite	object

(whole)	is	actually	done	by	the	parts;	messages	arriving	on	the	whole	are	directed	to	the
appropriate	part.	For	instance,	the	public	message	SetBeltSpeed	actually	calls	the	function
SetMotorSpeed	of	the	motor	class;	it	does	absolutely	nothing	else.

You	don’t	have	to	do	things	this	way	but	we	highly	recommend	that	you	should;	it	keeps
things	 very	 simple	 and	 clear,	 so	 streamlining	 the	 testing,	 debugging,	 integration	 and
maintenance	of	code	units.

Included	for	completeness	is	part	code	of	the	motor	and	sensor	classes	(figure	4.40).

Figure	4.40	Motor	and	sensor	classes	code	-	final	(part)

Also	 included	 is	 a	 simple	 example	 of	 the	 belt	 object	 in	 use,	 figure	 4.41,together	 with
associated	code	aspects,	figures	4.42a,	4.42b	and	4.42c.

Figure	4.41	Example	of	belt	object	use	in	a	small	system

Figure	4.42a	Code	of	BeltSystemHMI

Figure	4.42b	Code	of	function	RunHMI

Figure	4.42c	Code	of	main	(part)

4.5	Software	reuse	-	inheritance
4.5.1	General	aspects

We	constantly	strive	to	produce	software	that,	when	compared	with	current	methods,	is:

	
Cheaper	to	produce	and	maintain.
More	reliable.
More	flexible.
Less	demanding	on	memory	storage	requirements	(for	resource-constrained
systems).

Many	years	ago	programmers	realised	that	one	method	could	really	help	here:	the	reuse	of
existing	software.	Traditionally	this	was	based	on	the	‘cut	and	paste’	method,	the	copying
of	existing	work.	However,	OO	brought	a	new	reusability	technique	to	the	software	world:
inheritance.	 More	 precisely	 there	 are	 two	 aspects	 to	 this.	 First	 there	 are	 methods	 to
directly	reuse	software,	sometimes	called	Implementation	Inheritance.	Secondly,	there	are
methods	to	reuse	the	interfaces	of	software	units,	often	called	Interface	Inheritance.	We’ll
now	look	at	these	in	some	detail.

4.5.2	Implementation	inheritance	(subclassing)

Here	our	aim	is	to	produce	as	little	source	code	as	possible.	One	way	to	achieve	this	goal
is	to	minimize	the	number	of	classes	in	a	system.	How,	though,	can	we	do	this?	Assume

we’ve	come	up	with	the	object	design	of	figure	4.43a.

Figure	4.43	Classifying	items	-	example	design

Our	next	step	is	to	generate	the	class	design	for	this.	Now,	a	very	simple	method	would	be
to	produce	a	class	for	each	object,	thus	giving	a	six-class	design.	Simple,	yes,	but,	from	a
code	 point	 of	 view,	 not	 very	 efficient.	 A	 much	 more	 sensible	 approach	 is	 to	 look	 for
natural	 groupings	 of	 objects,	 then	 produce	 a	 class	 for	 each	 group.	 One	 such	 grouping
solution	 (a	 ‘classification’	of	objects)	 is	given	 in	 figure	4.43b,	decisions	being	based	on
commonality	of:

	
Function
Behaviour
Qualities

As	 shown	 here	 there	 are	 three	 classes:	Sensors,	Controllers	 and	Actuators.	 In	 a	 perfect
world	 all	 objects	 within	 each	 class	 would	 be	 identical;	 hence	 these	 could	 be	 produced
from	 just	 one	 unit	 of	 source	 code.	As	 a	 result	 the	 system	 of	 figure	 4.43	 could	 be	 built
using	just	three	classes.

Unfortunately,	reality	is	rarely	so	obliging.	It	is	likely	that	the	initial	classification	exercise
will	collect	together	objects	that	are	similar	but	not	identical.	In	our	example	it	turns	out
that	 the	 actuator	 objects	 are	 identical	 but	 the	 various	 sensors	 are	 quite	 different	 at	 the
detailed	level.	Thus	a	single	class	cannot	act	as	the	template	for	all	the	sensor	objects.

It	might,	at	this	point,	seem	that	we	are	back	to	square	one,	needing	a	class	for	each	object.
However,	 object-oriented	 programming	 offers	 us	 a	 way	 out	 of	 the	 problem:	 class
extension	using	subclasses,	figure	4.44.

Figure	4.44	Extending	classes	with	subclasses

This	is	essentially	a	class	cataloguing	and	structuring	activity,	giving	rise	to	what	we	call
inheritance	structures.	The	class	that	appears	at	the	highest	level	in	the	structure	is	defined
to	be	 the	 superclass,	 also	know	as	 a	 parent	 or	 base	 class.	This	 normally	 is	 the	 simplest
class,	where	the	information	it	contains	applies	to	all	 the	extended	items,	 the	subclasses.
Subclasses	‘tailor’	the	superclass	by	extending	it	to	meet	the	needs	of	specific	items;	thus
they	add	detail.

Let’s	 return	 to	 our	 example	 of	 figure	 4.43	 and	 apply	 these	 ideas.	 We	 make	 a	 design
decision	 that	 the	 actuator	 objects	 can	 be	 built	 from	 a	 single	 template:	 one	 class	 only	 is
needed.	 And	 as	 there	 is	 only	 one	 controller	 object,	 classification	 is	 straightforward.
However,	to	specify	the	requirements	of	the	different	sensor	objects,	we	need	to	use	class
extension	(inheritance)	techniques.	figure	4.45.

Figure	4.45	Class	structuring	-	subclasses	and	superclasses	for	the	example	design

On	the	class	diagram	extension	is	denoted	using	an	association	which	has	an	open	arrow	at
the	superclass	end.	It	can	be	seen	from	this	that	the	classes	are	organized	in	a	hierarchical
manner.	 At	 the	 top	 there	 is	 the	 superclass	Sensor.	 Below	 this	 are	 the	 three	 subclasses,
Speed,	Height	and	Attitude	(and	if	we	wish	we	can	also	subclass	these,	as	shown).

To	reiterate	some	important	points;	the	superclass	Sensor	gives	the	most	abstract	definition
(in	terms	of	attributes	and/or	operations)	of	a	sensor	object.	A	subclass	adds	detail	to	the
superclass	 definition	 which	 is	 specific	 to	 that	 individual	 subclass.	 However,	 it	 also
automatically	acquires	the	properties	of	its	parents,	this	being	known	as	inheritance.	Thus,
moving	down	the	hierarchy,	classes	become	progressively	more	specialized.	But	now	for	a
most	 important	point.	What	we	have	here	 is	essentially	a	class-cataloguing	exercise;	we
aren’t	decomposing	objects.	Thus	a	Laser	Gyro	class	is	a	specialized	form	of	an	Attitude
class;	in	turn	this	is	a	specialized	form	of	a	Sensor	class.

Producing	 such	 inheritance	 diagrams	may	 be	 intellectually	 stimulating;	 but	 how	does	 it
help	 to	 raise	 software	 productivity?	 This	 is	 where	 the	 inheritance	 features	 of	 OO
languages	come	in	to	play.	Let	us	see	what	they	can	do	for	us	by	looking	at	the	example	of
figure	4.46.

Figure	4.46	Inheritance	vs	adaption

First	we	 define	 a	 class	PortInterface0,	 figure	 4.46a.	 It	 has	 an	 attribute	PortData	 and	 an
operation	 SendDataToPort.	 We	 later	 decide	 to	 produce	 a	 specialized	 version	 of	 this,
SpecialPortInterface0,	figure	4.46b.	This	adds	another	attribute,	ConfigStatus,	and	another
operation,	ConfigurePort.	As	a	result	of	inheritance,	SpecialPortInterface0	is	equivalent	to
the	class	of	figure	4.46c,	SpecialPortInterface2.	However,	there	is	a	significant	difference
between	the	two	from	a	source	code	point	of	view.	Without	inheritance	we	would	have	to
produce	two	separate	classes.	Each	one	has	to	be	complete	in	its	own	right;	thus	there	will
be	duplication	of	the	source	code	of	the	PortInterface0	class.	But	with	inheritance,	there	is
no	need	to	reproduce	the	superclass	material	in	the	subclass.	It	is	automatically	inherited
(and	thus	reused)	by	applying	appropriate	programming	constructs.

The	autogenerated	code	for	figure	4.46b	is	given	in	figure	4.47.	It	is	clear	from	this	which
attributes	and	operations	belong	to	the	specific	classes;	also	it	is	clear	that,	if	we	wish,	we
can	 create	 objects	 of	 both	 the	 super	 class	 PortInterface0	 and	 the	 subclass
SpecialPortInterface0.

Figure	4.47	Code	example	for	figure	4.46b

The	 benefits	 obtained	 by	 using	 inheritance	 are	 quite	 limited	 in	 designs	 structured	 a	 la
figure	4.46.	However,	if	we	now	take	figure	4.48,	the	reuse	benefits	are	more	obvious.

Figure	4.48	Inheritance	-	example	2

The	autogenerated	code	for	the	class	SpecialPortInterfaceB	is	given	in	figure	4.49

Figure	4.49	Code	example	for	part	fig.4.48

Another	factor	to	take	into	account	is	how	changes	made	to	the	parent	class(es)	affect	the
design.	Such	changes	are,	in	fact,	automatically	propagated	on	code	recompilation	to	their
subclasses.	 This	 can	 profoundly	 improve	 productivity	 vis-à-vis	 maintenance	 efforts,
software	 configuration	 control	 and	 program	 version	 control.	 But	 a	 word	 of	 warning
concerning	 inheritance.	 You	 don’t	 inherit	 only	 the	 good	 things;	 you	 also	 get	 the	 dross.
Please;	use	inheritance	carefully.

4.5.3	Interface	inheritance	(subtyping)

Let	 us	 now	 look	 at	 a	 second	 major	 use	 of	 inheritance,	 the	 provision	 and	 control	 of
interfaces.	Of	course,	it’s	helpful	to	understand	why	we’d	want	to	do	this	in	the	first	place.
Take,	 for	 example,	 an	 avionic	 system	 that	 contains	 a	 variety	 of	 sensors,	 such	 as	 speed,
height	and	attitude.	Let	us	also	assume	that	identical	code	is	used	for	the	reading	of	sensor
values.	What	we	want	 to	do	is	 to	ensure	 that	we	use	 identical	APIs	when	calling	on	the
read	operation.	The	reasons	for	this?	First,	interfaces	usually	become	simpler	and	cleaner,
making	 overall	 object	 testing	 simpler.	 Second,	 integration	 testing	 also	 becomes	 more
straightforward	as	a	result	of	the	consistency	and	clarity	of	interfaces.

So,	how	does	this	work	in	practice?	Probably	the	most	common	approach	is	to	start	with	a
superclass	 that	 will	 never	 be	 instantiated.	 Take	 the	 example	 of	 figure	 4.50,	 where	 the
superclass	Sensor	class	has	been	marked	as	‘abstract’.	This	means	that	we	never	intend	to
build	Sensor	objects.	Our	aim	is	to	create	objects	of	the	subclass	type:	Speed,	Height	and
Attitude	(hence	these	are	termed	‘concrete’	classes).

Figure	4.50	Inheritance	as	a	specification	technique	-	the	abstract	class

Figure	4.51shows	part	of	the	autogenerated	code	for	the	class	diagram	of	figure	4.50,	that
for	the	abstract	sensor	class.

Figure	4.51	Code	example	for	figure	4.50	(part)

At	first	sight	it	may	seem	that	the	base	class	is	used	merely	to	define	the	root	point	in	the
inheritance	structure	(actually	a	commonplace	application	of	abstract	classes).	In	fact	the
key	aspect	here	is	the	operation	ShowData.	Code	is	produced	to	implement	this,	and	this	is
inherited	by	all	subclasses.	The	result	is	that	all	objects	generated	using	this	template	end
up	with	 identical	 interfaces.	This	approach,	 in	effect,	provides	for	reuse	of	 the	 interface.
Hence,	 should	 we	 add	 a	 Temperature	 subclass,	 then	 its	 objects	 would	 also	 present	 the
same	ShowData	interface.

Please	note	that	we	could	achieve	the	same	aims	without	using	an	inheritance	structure.	So
why	use	inheritance?	Well,	there	are	two	particular	advantages.	To	start	with,	it	guarantees
that	 as	 new	 subclasses	 are	 added	 their	 interfaces	 will,	 by	 default,	 be	 correct.	 The
inheritance	process	takes	care	of	that.	Another	way	of	looking	at	it	is	that	policing	of	the
interface	standard	is	enforced	automatically;	it	doesn’t	require	manual	checking	(although
never	underestimate	the	creativity	of	programmers).

The	second	advantage	is	quite	different,	one	related	to	flexibility	issues.

4.5.4	Interface	inheritance	-	flexibility	aspects

What	we’ve	done	so	far	is	fine	provided	that	the	ShowData	function	meets	the	needs	of	all
subclasses.	There	are,	though,	many	cases	when	this	isn’t	true;	different	functionality	may
be	needed	by	the	different	subclasses,	as	illustrated	in	figure	4.52.

Figure	4.52	The	HCIs	of	some	consumer	devices

It’s	 taken	 quite	 some	 time	 for	 most	 manufacturers	 to	 agree	 on	 a	 common	 interface
standard,	but	we’re	there	now	(mostly).	So,	whether	we’re	using	a	PVR,	a	DVD	player	or
an	iPod	for	example,	pressing	the	rectangle	control	stops	the	current	play.	The	response,	at
a	 software	 level,	 is	 that	 the	 program	 invokes	 the	 ‘stop’	 function	 for	 the	 device.	Yet	 it’s
clear	that	the	different	code	implementations	are	going	to	differ	considerably;	everything
depends	on	the	device	being	controlled.	What	we	need	is	a	mechanism	that	permits	us	to
have	 common	 application	 programming	 interfaces	 (APIs)	 that	 invoke	 different
implementations.

So	 let	us	return	 to	a	modified	form	of	 the	sensor	example:	where	 the	details	of	 the	read
functions	depend	on	 the	sensor	 type.	We	still	wish	 to	provide	a	common	‘read’	API	but
automatically	invoke	the	correct	code	unit.	We	denote	this	by	amending	the	class	diagram
as	shown	in	figure	4.53	so	that	each	subclass	now	includes	an	operation	ShowData.

Figure	4.53	Subclass-specific	operations

Thus	our	requirements	are	to:

	
Provide	a	consistent	interface	for	all	objects	-	the	operation	ShowData,	for
example.
Allow	each	subclass	their	own	specific	implementation	of	ShowData.
Call	on	this	operation	as	and	when	required.
Guarantee	 that	 the	 correct	 method	 is	 automatically	 executed	 (known	 as
polymorphism).

There	are	two	further	aspects	to	take	into	account.	First,	will	the	programmer	define	which
method	 should	 be	 called?	 Or	 second,	 will	 it	 be	 left	 to	 the	 run-time	 code	 to	 select	 the
appropriate	method?

The	first	aspect,	where	decisions	are	made	a-priori,	is	a	case	of	static	polymorphism.	Here
the	 programmer	 decisions	 are	 hard-coded,	 so	 the	 compiler	 knows	 which	 object	 code
should	be	generated.	The	second	approach,	known	as	dynamic	polymorphism,	means	that
the	compiler	isn’t	able	to	select	the	required	object	code.	The	compiler	offers	all	options
but	the	appropriate	one	is	chosen	by	the	run-time	code.

A	minor	point;	people	commonly	use	the	terms	overloading	and	polymorphism	instead	of
static	and	dynamic	polymorphism.

Suppose	that	we	create	objects	based	on	the	class	diagram	of	figure	4.53	as	follows:

	
Speed	TrueAirspeed;

Height	RadarAltimeter;
Attitude	AngleOfAttack;

In	 the	 case	 of	 static	 polymorphism	 the	 following	 hard-coded	 message/operation
relationships	would	be	true	(figure	4.54):

Figure	4.54	More	on	static	polymorphism

However,	when	it	comes	to	dynamic	polymorphism	a	different	approach	is	needed.	Please
bear	in	mind	that	the	techniques	used	depend	on	your	programming	language.	In	general,
however,	we’d	use	a	source	code	construct	that	doesn’t	name	a	specific	object,	viz.:

SomeObject.ShowData();

As	a	result:

	
Because	of	 the	way	SomeObject	 is	 declared,	 the	 compiler	 knows	 that	 the
actual	object	to	be	called	at	run-time	is	undefined.
However,	 the	 compiler	 also	 knows	 that	 it	 must	 belong	 to	 one	 of	 the
following	classes:	Speed,	Height	or	Attitude.
At	some	stage	of	program	execution,	SomeObject	is	replaced	by	the	actual
object	identifier.

Thus,	when	 the	 object	 code	 for	SomeObject.ShowData();	 is	 reached,	 the	 run-time	 code
works	 out	 which	 specific	 operation	 should	 be	 invoked	 (typically	 using	 a	 look-up	 table
technique).

Two	important	points	to	note	are:

	
First,	there	is	a	run-time	time	overhead	incurred	in	deciding	which	method
to	invoke	and
Second,	it	is	impossible	to	statically	verify	the	code	(hence	precluding	the
use	of	dynamic	polymorphism	in	safety-critical	systems).

4.6	Building	connectable	structures	-	composite	structures,	parts	and	ports
4.6.1	Setting	the	scene

The	 integrated	 circuit	 profoundly	 changed	 the	way	 that	 electronic	 design,	 development
and	build	was	carried	out.	Designers	working	at	the	board	and	system	level	achieved	their
goals	by:

	
First,	selecting	ICs	that	meet	their	needs	and
Second,	connecting	these	together	in	specific	ways.

Hence	the	overall	functionality	of	a	unit	built	like	this	depends	on	two	factors:	the	function
of	each	IC	and	how	they	are	connected.	A	very	simple	example	of	this,	using	small	scale
ICs,	is	that	of	figure	4.55.

Figure	4.55	NOR	function	using	NAND	gates

Another	important	point	is	that	board-level	designers	don’t	need	to	know	anything	about
the	 internal	 design	 of	 the	 ICs;	 we	 leave	 that	 to	 the	 specialists,	 the	 microelectronic
designers.	Moreover,	the	IC	designers	only	have	to	concern	themselves	with	producing	the
best	possible	IC;	how	it’s	going	to	be	used	is	of	little	interest	to	them.

There	 are	 real	 advantages	 in	 using	 these	 ideas	 in	 software	 design	 and	 development	 (by
now	they	shouldn’t	need	spelling	out	to	you).	Even	so	we’ll	never	reap	all	of	the	benefits
they	bring	with	them	unless	we	can	produce	software	units	that	have:

	
Good	modularity	and
Good	interfaces	(makes	it	easy	to	connect	them	together).

Earlier	 we	 had	 a	 look	 at	 modularity	 vis-a-vis	 composite	 aggregation,	 and	 seen	 how
effective	 it	 can	be.	Regrettably,	 the	virtual	 absence	of	object	modelling	 in	UML	 is	very

much	a	hindrance	to	its	use.

With	regard	to	interfaces,	the	problems	are	different;	they’re	essentially	structural	ones.	In
our	 electronic	world,	 ICs	 are	 ‘plugged	 together’	 using	 input	 and	 output	 interfaces.	 The
equivalent	 plugging	 methods	 for	 our	 software	 machines	 are	 the	 interconnection	 of	 the
required	and	provided	interfaces.	Now,	as	pointed	out	earlier,	the	explicit	visible	(public)
interfaces	are	the	provided	ones;	required	aspects	are	buried	within	client	code.	This	has	a
number	of	downsides,	but	two	are	especially	important.	First,	it	is	quite	difficult	to	track
down	 the	 full	 route	 of	 inter-object	messages	 in	 anything	other	 than	 simple	 designs	 (not
good	for	test,	debug	and	maintenance	in	general).	To	get	such	information	you	have	to	go
into	the	code	of	client	objects	and	hunt	around	until	you	find	what	you	want.	Second,	we
don’t	have	any	simple	mechanisms	to	‘wire’	the	objects	together.

UML	 2	 brought	 with	 it	 new	 constructs	 to	 take	 care	 of	 these	 problems,	 important	 ones
being	composite	structures	and	ports.	In	the	following	pages	only	a	subset	of	all	available
constructs	are	shown;	 these	are	sufficient	 to	build	sensible	embedded	systems	(for	more
information	 consult	 the	UML	superstructure	 document.	But,	 be	 prepared	 to	 end	up	 in	 a
near	comatose	state;	mind-numbing	is	the	kindest	thing	to	say	about	it).

4.6.2	The	composite	structure	-	why?

Before	looking	into	composite	structures	in	detail,	let’s	see	why	the	class	itself	isn’t	really
a	 rigorous	specification	mechanism.	Let’s	assume	 that	we’ve	done	an	object-first	design
and	come	up	with	the	composite	object	model	of	figure	4.56a.

Figure	4.56	Example	composite	aggregation

Classifying	this	leads	to	the	class	diagram	of	4.56b.	Well,	all	seems	fine.	Now,	turn	things
around;	consider	that	we’ve	done	a	conventional	class-first	design,	and	the	4.56b	now	acts
as	 the	 specifier	 for	 the	 object	model.	 If	 we	 didn’t	 understand	 the	 system	 (or	 were	 just
incompetent)	we	could	come	up	with	the	object	design	of	figure	4.57.

Fig.	4.57	Example	composite	aggregation	-	legal	but	wrong

As	you	can	see	it	is	perfectly	legal;	yet	it	is	wrong	as	far	as	the	system	is	concerned.

We	could	add	extra	 information	 to	 the	class	diagram	to	 try	 to	clarify	 things,	but	 that’s	a
somewhat	sticking-plaster	approach.	Further	interesting	examples	are	given	by:

	
1.	 Conrad	Bock	(http://www.jot.fm/issues/issue_2004_11/column5/)	and
2.	 Steve	 Cook	 (http://blogs.msdn.com/b/stevecook/archive/2009/06/17/uml-

structured-classes-part-1.aspx).

I	suggest	that,	at	the	least,	you	have	a	look	at	these	-	don’t	just	take	my	word	for	things.
The	 problem	 stems	 from	 the	 fact	 that	 the	 class	 diagram	 only	 specifies	 the	 general
relationship	between	the	instantiated	items,	the	objects.	What	we	really	need	are	means	to
define	 the	 interconnection	 between	 objects	 in	 specific	 situations.	 And	 this	 is	 where
composite	diagrams	come	into	play,	 the	first	one	being	 the	composite	object	diagram	of
figure	4.58.

Figure	4.58	Composite	object	diagram	showing	roles

This	has	exactly	 the	same	structure	as	 the	composite	object	diagram	of	 figure	4.56a	but
now	contains	additional	specification	information,	the	roles.	These	define	why	the	objects
are	 used.	 For	 example,	 the	 ElevationServo	 object	 is	 to	 be	 used	 for	 elevation	 control
purposes.	 Likewise,	 the	ElevationDrive	 object	 is	 used	 to	 provide	 elevation	 servo	 drive
functionality.

Now	 this	 raises	 an	 interesting	 question.	 If	 we	 take	 a	 class-first	 approach,	 how	 do	 we
specify	 this	 information?	 The	 class	 diagram,	 as	 we’ve	 already	 seen,	 can’t	 do	 this;	 it
essentially	deals	with	attributes	and	operations.	A	new	diagram	 is	needed,	 the	UML	2.x
solution	being	the	‘composite	structure	diagram’,	figure	4.59.

Figure	4.59	Specification	for	the	composite	object	diagram	of	figure	4.58	-	the	composite
structure	diagram

A	new	construct	has	appeared	here:	the	part.	A	part	represents	a	specification	for	instances
(objects),	specifically:

	
The	class	template	to	be	used	for	the	construction	of	the	objects	and
The	role	that	each	object	is	to	play	in	the	executable	model.

Observe	also	that	what	were	called	associations	on	ordinary	class	diagrams	are	here	called
connectors.

From	this	it	is	clear	that	class	diagrams	and	composite	structure	diagrams	model	different
aspects	of	the	software;	thus	they	are	not	alternatives,	but	complement	each	other.

Two	minor	asides	at	this	point:

	
If	you	take	an	object-first	design	approach	the	composite	structure	diagram
is	irrelevant.
Experience,	 especially	 in	 the	 embedded	world,	 has	 shown	 that	 the	 class-
first	approach	is	woefully	deficient.

Well,	we’ve	got	our	composite	structure	to	allow	us	to	build	modular	designs:	now	to	see
about	connecting	these	structures	together.

4.6.3	Wiring	objects	together	using	Ports.

To	build	systems	using	plug-connect	methods	we	have	to	have	defined	interaction	points
between	 the	 insides	of	units	and	 the	outside	world.	Such	points	are	defined	 to	be	ports,

denoted	as	rectangles,	and	attached	to	the	composite	structure	diagram	as	shown	in	figure
4.60.

Fig.	4.60	Composite	structure	diagrams	and	ports

You	can	see	the	similarities	between	ports	and	parts.	In	this	case	the	diagram	defines	that
composite	objects	of	class	Power	will	have	interface	objects	of	class	Shaft;	all	interactions
to/from	 the	 power	 object	 go	 via	 the	 shaft	 object	 (for	 clarity	 the	 internal	 features	 of	 the
composite	unit,	the	parts,	are	omitted).

Now	 let’s	 look	 at	 how	 such	 structures	 get	 connected	 together	 using	 the	 port	 construct,
figure	4.61.

Fig.	4.61	Ports	as	a	connecting	mechanism

The	 first	 example	 shows	 a	 port	 OutputShaft	 on	 one	 composite	 unit	 (type	 Power)	 is
connected	to	a	port	InputShaft	on	another	composite	unit	(type	TestRig).	This	specification

says	that	a	power	unit	object	 is	 to	be	connected	to	a	test	rig	object	via	the	shaft	objects.
The	second	example	is	self-explanatory.	Note	that	multiplicity	information	can	be	shown
on	the	diagram	if	and	when	required.

Well,	 that’s	 fine	 so	 far,	 and	 designs	 can	 (and	 have	 been)	 implemented	 using	 structured
classifiers	like	this.	However,	we	still	need	to	provide	interfaces	for	the	ports.	To	reiterate;
ports	show	where	messages	 flow	 into	and	out	of	composite	units.	 Interfaces	are	used	 to
define	what	 messages	 pass	 through	 the	 ports	 and	 the	 direction	 of	 such	 messages.	 One
method	to	denote	that	ports	have	interfaces	is	the	ball	and	socket	notation	of	figure	4.62.
As	you	can	see	a	ball	defines	a	provided	interface,	the	socket	being	a	required	interface.

Fig.	4.62	Interfaces	on	ports	-	ball	and	socket	notation

Using	these	we	can	show	how	structures	are	‘wired’	together,	figure	4.63.

Fig.	4.63	Wiring	composite	structures	together

Note:	this	diagram	was	produced	using	the	UML	stencil	of	the	Visio	drawing	package.

An	 individual	 port	 can	 have	 any	 number	 of	 interfaces,	 each	 one	 being	 shown	 (and
labelled)	 on	 the	 structure	 diagram.	 One	 alternative	 is	 to	 use	 multiple	 ports,	 each	 one
having	a	single	interface.	The	choice	is	entirely	yours.

So,	what	does	this	mean	at	the	object	diagram	level?	Unfortunately,	the	UML	documents
are	 masterpieces	 of	 obfuscation	 on	 this	 point,	 constantly	 treating	 specification	 and
instantiation	models	 as	 if	 they	 are	 the	 same	 thing.	What	we’ll	 do	 is	 adapt	 the	 classifier
diagram,	clearly	denoting	that	all	structural	units	are	objects,	figure	4.64.

Fig.	4.64	Wiring	composite	object	structures	together	(non-UML	diagram)

While	this	is	not	legal	UML	it	is	at	least	clear	in	its	intent	(what	most	writers	do	is	pussy-
foot	 around	 this	 issue	 by	 treating	 classifier	 diagrams	 as	 depicting	 either	 classes	 or
instances,	depending	on	circumstances).	You	can	see	that	port	specifiers	are	implemented
as	port	objects,	these	belonging	to	the	composite	objects	(i.e.,	EngineShaft	part	of	Engine,
PTShaft	part	of	PowerTrain).	By	contrast,	 the	ball	 and	socket	are	merely	 indicators	 that
the	ports	offer	interfaces.

Figure	4.65	provides	a	simple	example	design	based	on	composite	structures.	By	now	its
structure

Figure	4.65	Example	design	using	composite	classes

and	content	should	be	familiar,	though	some	of	the	notation	is	slightly	different	to	that	of
figure	 4.64.	 The	 reason	 for	 this	 isn’t	 anything	 fundamental;	 it’s	 just	 that	 the	 diagram
aspects	were	dictated	by	the	EA	CASE	tool.

This	example	reinforces	a	very	important	fact;	what	you	actually	end	up	with	depends	on
your	 diagram	 production	 methods	 (irrespective	 of	 the	 notation	 used	 in	 the	 UML
documents).

Figure	4.66	presents	an	object	diagram	that	complies	with	the	composite	structure	diagram
of	 figure	 4.65.	 Here	 there	 are	 two	 composite	 objects,	 FlightActuators	 and
AutostabiliserController.	 The	AutostabiliserController	 contains	 two	 objects	 (port	 object
AScontrollerPort	and	internal	object	AutostabiliserComputer)	and	has	a	required	interface
(denoted	 as	 C2FA).	 Similarly,	FlightActuator	 contains	 five	 objects	 and	 has	 a	 provided
interface	FAfC.

Figure	4.66	Object	design	for	figure	4.65

Please	note;	 all	 the	diagrams	covered	 in	 this	 section	 are	design	specifications,	 acting	 as
inputs	 to	 the	 coding	 stage.	 Some	 CASE	 tools	 allow	 all	 such	 code	 to	 be	 generated
automatically;	 they	also	have	 the	ability	 to	 reverse-engineer	 code	changes	back	 into	 the
design	 diagrams.	 If	 you	 don’t	 have	 such	 luxuries,	 then	 it’s	 a	 matter	 of	 doing	 things
manually,	 especially	 true	when	 implementing	 composite	 structures.	CASE	Tool	vendors
face	 two	 significant	 problems.	 First,	 UML	 gives	 little	 (if	 any)	 guidance	 relating	 to
implementation.	 Second,	 it	 is	 possible	 to	 code	 up	 the	 designs	 in	 a	 number	 of	 different
ways,	leading	to	debates	about	which	one	is	‘correct’.	So	here	is	our	take	on	the	problem.

The	first	step	is	to	produce	a	class	design	for	the	problem	of	figure	4.66,	shown	in	figure
4.67a.	In	this	design	the	FlightActuators	and	AutostabiliserController	objects	are	 treated
as	‘containers’	for	their	internal	objects.	For	simplicity	these	are	treated	as	a	‘whole-part’
structure,	 resulting	 in	 the	use	of	composite	aggregation	 (‘composition’)	construction.	To
simplify	the	demonstration	code	all	code	units	are	located	within	a	single	compilable	unit.

Figure	4.67a	Class	diagram	for	the	composite	structure	(part	complete)

The	 code	 for	 the	Controller	 class	 is	 shown	 in	 figure	 4.67b	 (that	 for	 the	FlightActuator
class	 is	 similar).	 In	 this	 role	 it	 also	 act	 as	 a	 scheduler	 or	 coordinator	 object,	 merely
scheduling	 the	 execution	 of	 the	 contained	 objects,	 AutostabiliserComputer	 and
AScontrollerOutPort.

Figure	4.67b	Code	for	the	composite	structure	-	part	of	the	Controller	class

Key	to	the	whole	operation	here	is	to	ensure	that	the	outport	object	AScontrollerOutPort	is
connected	to	the	correct	inport	object	FAinPort.	How	this	is	done	is	shown	in	figure	4.67c,

everything	 hinging	 around	 the	 use	 of	 the	 pointer	 to	 the	 SsigInPort	 object
(pConnectingInPort).

Figure	4.67c	Code	for	the	composite	structure	-	binding	the	ports	together

Loading	this	with	the	correct	inport	address	is	done	by	the	Bind	function,	which	is	called
in	main	(figure	4.67d).

Figure	4.67d	Code	for	the	composite	structure	-	running	the	system

4.7	Building	larger	modular	structures	-	components
4.7.1	Some	background

The	component	construct	has	been	developed	as	a	means	of	implementing	larger	systems,
in	particular	 the	development	of	model-driven	architectures	(MDAs).	One	of	 its	primary
aims	 is	 to	 promote	 the	 building	 of	 software	 using	 sets	 of	 plug-compatible	 units,	 a
‘software-lego’	approach.	Another	key	point	 is	 the	ability	 to	use	existing	components	as
part	of	new	designs	(software	reuse	on	a	large	scale).	So,	having	said	that,	exactly	what	is
a	 component,	 what	 (if	 anything)	 does	 it	 contain	 and	 how	 is	 it	 instantiated?	 To	 answer
these,	consider	the	following	extracts	from	the	UML	Superstructure	document:

	
A	 component	 represents	 a	modular	 part	 of	 a	 system	 that	 encapsulates	 its
contents	and	whose	manifestation	is	replaceable	within	its	environment.	It
is	a	subtype	of	Class.
A	 component	 defines	 its	 behaviour	 in	 terms	 of	 provided	 and	 required
interfaces.
A	component	may	optionally	 have	 an	 internal	 structure	 and	own	a	 set	 of
Ports	that	formalise	its	interaction	points.
A	 component	 is	 modeled	 throughout	 the	 development	 life	 cycle	 and
successively	refined	into	deployment	and	run-time.
A	 directly	 instantiated	 component	 is	 defined	 at	 design	 time	 and	 ‘is
instantiated	as	an	addressable	object’.

An	indirectly	instantiated	component	is	defined	at	design	time	‘but	at	run-
time	an	object	specified	by	the	component	does	not	exist’.	The	component
is	 instantiated	 (indirectly)	 ‘through	 the	 instantiation	 of	 its	 realising
classifiers	or	parts’.

It’s	easy	enough	to	understand	the	general	principles	of	components.	However,	 trying	to
pin	down	specifics	(in	particular	code	implementations)	feels	like	wrestling	with	jelly;	the
multitude	of	times	that	you	meet	the	words	‘option’,	‘optionally’,	‘alternatively’,	‘can	also
be’	and	‘may	also	be’	in	the	UML	document	is	legion.	Therefore	we’ll	use	a	subset	of	the
available	constructs,	sufficient	to	let	us	to	build	embedded	systems	in	a	sensible	way.

4.7.2	Components	-	constructs	and	notation

The	component	 icon	 is	nothing	more	 than	a	simple	 rectangle	denoted	by	<<	component
>>,	figure	4.68.

Figure	4.68	The	component	-	external	view

Strictly	speaking	this	represents	the	specification	of	the	component,	but	that’s	a	somewhat
pedantic	point.

We	 have	 decided	 to	 use	 ports	 as	 the	 conduits	 for	 messages	 going	 to	 and	 from	 the
component,	 and	 also	 specified	 its	 interfaces	 using	 ball	 and	 socket	 notation	 (note	 that,
unlike	composite	structures,	interfaces	are	not	optional).

A	good	analogy	for	the	component	is,	in	electronic	systems,	a	modular	part	of	a	complete
system	(e.g.	a	PCI	circuit	board).	Ports	are	equivalent	to	the	plugs/sockets	of	the	board,	the
interfaces	corresponding	to	connector	pins.	The	protocol	of	the	PCI	bus	dictates	what	the
various	pins	 should	be	used	 for.	The	board’s	 intended	 function	 is	 defined	by	 the	 circuit
design,	the	equivalent	of	the	software	specification.

Now	that	we	have	our	desired	set	of	components	we	can	proceed	to	wire	them	together	to
produce	the	overall	system	functionality,	figure	4.69.

Figure	4.69	Wiring	components	together	using	assembly	connectors.

An	electronic	analogy	 to	 this	 is	 the	 interconnection	of	a	 set	of	modules	via	a	backplane
bus	(either	a	standard	one	such	as	PCI	or	else	a	home-grown	one).	Similarly	our	software
components	 are	 ‘plugged’	 into	 a	 software	 bus	 such	 as	 CORBA,	 .NET,	 EJB,	 etc.	 (for
explanation	see	list	of	acronyms).

Suppose	we	had	specified	a	VME	modular	structure	instead	of	a	PCI	one.	How	would	the
model	change?	Well,	the	concepts	are	exactly	the	same	but	interface	details	would	change
to	 comply	with	 the	VME	 specifications.	 Likewise,	 a	 component-based	 design	 could	 be
implemented	in	one	case	using	CORBA	technology,	in	another	EJB	-	without	any	need	to
change	the	high-level	design.

Components	can	also	have	internal	structures	containing,	for	example,	components	(figure
4.70)	and	classes	(figure	4.71).

Figure	4.70	Component	containing	components

Figure	4.71	Component	containing	a	class

All	this	seems	to	be	clear	and	understandable;	now	we	have	to	consider	the	instantiation	of
components.	 Unfortunately	 no	 guidance	 is	 given	 by	UML	 2.x	 as	 to	 how	 to	 show	 such
instantiations	(the	objects)	in	diagrams.	The	component	diagram,	as	defined	in	the	UML
documents,	is	a	classifier,	whose	implementation	is	considered	typically	to	be	some	type
of	 file.	 These	 include	 source	 code,	 binary	 code	 and	 executable	 code	 files,	 collectively
called	artifacts.	Normally	artifacts	are	seen	to	be	part	of	the	deployment	model,	so	we’ll
leave	further	discussion	to	that	topic.

But	that	still	leaves	the	issue	of	component	instances	hanging	in	the	air.	At	least	UML	1.4
was	helpful	here;	 it	 states	 ‘A	component	diagram	has	only	a	 type	 form,	not	an	 instance
form.	To	show	component	instances,	use	a	deployment	diagram	(possibly	a	degenerate	one
without	 nodes).’	 Moreover,	 in	 our	 view,	 if	 software	 designs	 are	 based	 on	 instantiated
components,	 then	 we	 need	 diagrams	 to	 show	 such	 structures.	 This	 need	 was	 also
recognized	 by	 the	 IBM	Rational	 Software	 Architect	 Real	 Time	 CASE	 tool	 developers.
Their	response	was	to	provide	an	icon	so	that	designers	could	model	component	instances
on	deployment	diagrams,	figure	4.72.

Figure	4.72	Component	instance	-	IBM	symbol

Observe	 that	 it	 extends	 a	 standard	 object	 symbol,	 the	 stereotype	 being	 labelled
‘instancespecification’.	Taking	this	as	our	cue	we	decided	to	use	the	following	notation	for
an	instantiated	component	(loosely	a	‘component	object’),	figure	4.73.

Fig.	4.73	Component	instantiation	(stereotype)	-	external	view

Where	 components	 have	 internal	 structures	we	 can	 extend	 our	 stereotyping	 to	 take	 this
into	account	as,	for	example,	figure	4.74.

Fig.	4.74	Component	instantiation	-	internal	object	structure	example

This	depicts	 the	 internal	 structure	of	a	component	object,	one	 that	 is	 formed	as	a	 set	of
intercommunicating	composite	objects.

4.7.3	Practical	aspects	of	using	components

UML	implicitly	assumes	that,	to	design	and	implement	component	models,	we	use	defined
component	technology	mechanisms.	It	also	assumes	that	we	intend	to	build	large	systems.
Unfortunately	 for	 us	 it	 seems	 that	 component	 technology	 has	 rarely	 been	 applied	 to
practical	embedded	developments;	few	real	products	are	available.	However,	there	is	one
technology	worth	taking	a	look	at:	real-time	CORBA.	This,	it	is	claimed,	has	been	used	in
real-time	applications.	Some	aspects	of	the	technology	are	described	below,	just	to	give	an
idea	 of	 the	 rationale	 behind	 such	 an	 approach.	 It	 also	 highlights	 the	 amount	 of
development	support	provided	by	these	development	environments.

The	 starting	 point	 is	 to	 define	 object	 interfaces	 using	 CORBA’s	 Interface	 Definition
Language,	 IDL.	This	can	be	considered	 to	be	a	 ‘programming’	 language,	not	 too	unlike
C++.	 A	 very	 important	 point:	 it	 doesn’t	 define	 object	 implementations,	 only	 object
interfaces,	figure	4.75.

Fig.	4.75	Mapping	the	component	model	to	the	code	model

Figure	4.75a	shows	a	UML	component	having	two	interfaces,	a	provided	and	a	required
one.	Let’s	have	a	look	at	how	we	turn	these	into	compilable	Java	source	code,	specifically
the	provided	interface	LoopError.	First	we	specify	and	name	the	interface	using	IDL	code,
as	 given	 in	 figure	 4.75b.	 The	 interface	 details	 are	 added	 to	 this,	 shown	 within	 the
conceptual	 boundary	 of	 figure	 4.75c.	 These	 are	 grouped	 within	 an	 IDL	 module,	 this
providing	a	boundary	of	encapsulation	for	the	interface	code,	figure	4.75d	(if	we	extended
the	 example	 to	 include	 the	 interface	 ControlSignal,	 its	 code	 would	 be	 added	 to	 the
module).	At	 this	 point	we	 submit	 the	 IDL	code	 to	 the	 target	 language	 compiler	 (in	 this
case	Java),	the	result	being	that	of	figure	4.75e.	Here	the	module	has	been	translated	to	a
Java	 package,	 the	 interface	 definitions	 generating	 a	 set	 of	 Java	 interfaces	 and	 classes
(stubs/skeletons).	It	is	now	up	to	us	to	fill	in	all	the	details	needed	to	fully	implement	the
component	object.

Well,	 that’s	 quite	 a	 lot	 of	 work,	 and	 you	 could	 reasonably	 ask	 why	 we	 shouldn’t	 go
straight	to	the	Java	code.	But	then	we	would	have	to	take	on	the	burden	of	interconnecting
the	various	objects,	making	sure	 that	 they	are	correctly	wired	together	and	that	all	 inter-
object	messaging	 is	 handled	properly.	 Instead	we	 leave	 this	 to	 the	provided	 facilities	 of
CORBA,	this	acting	as	a	‘middleware’	technology	(sometimes	defined	as	‘interconnecting
software’).	 These	 facilities	 also	 allow	 us	 to	 interface	 to	 operating	 system	 software,	 to
define	concurrent	units	(e.g.	threads)	and	to	specify	the	timing	attributes	of	these	units.

There’s	little	point	in	taking	this	topic	further,	for	a	very	practical	reason;	at	the	detailed
level	all	component	architectures	are	different.	But	I	hope	this	makes	you	think	carefully
about	 developing	 UML	 component	 models,	 especially	 if	 you	 haven’t	 got	 a	 suitable
implementation	mechanism.

A	 closing	 point;	 at	 present,	 for	 the	 embedded	 field,	 the	 nearest	 equivalent	 technique	 to
CORBA	 et	 al	 is	 the	 Architecture	 Analysis	 &	 Design	 Language	 (AADL).	 This	 is	 an
architecture	 description	 language	 which	 is	 used	 to	 model	 the	 software	 and	 hardware
architecture	 of	 embedded,	 real-time	 systems.	 A	 number	 of	 research	 projects	 have
successfully	 used	 AADL,	 see	 http://www.aadl.info/aadl/currentsite/	 for	 more	 details.
However,	it	seems	that	a	more	popular	approach	to	developing	model-based	designs	is	to
use	 the	Systems	Modeling	Language,	SysML	(http://www.omgsysml.org/).	This,	 though,
is	beyond	the	scope	of	our	work	here.

4.8	Packages,	artifacts	and	deployments
4.8.1	Why	things	need	to	be	organized

Scenario:	 suppose	 during	 development	 we	 need	 to	 make	 changes	 to	 the	 class	 (logical)
model.	Assume	for	simplicity	 that	only	one	class	 is	affected.	Finding	and	modifying	the
class	in	the	design	model	is	unlikely	to	be	a	problem.	However,	we	now	need	to	consider	a
most	 important	question;	will	 the	design	change	 impact	on	clients	of	 the	class?	Can	we
evaluate	 the	 change	 effects?	Answering	 these	 is	 not	 necessarily	 easy	but	 isn’t	 usually	 a
major	 problem.	 But	 what	 about	 clients	 of	 the	 clients?	 And	 their	 clients?	 Now	 it’s
beginning	to	look	a	much	more	formidable	issue.

The	 message	 here	 is	 that	 when	 systems	 have	 a	 large	 number	 of	 classes	 (or	 any	 other
software	elements),	design	maintenance	isn’t	trivial.	Relying	on	tools	to	help	you	out	is	a
little	like	putting	up	scaffolding	on	an	unsound	building.	What	we	need	to	do	is	to	build	it
correctly	 in	 the	 first	place;	use	an	organized,	 structured	approach	 in	 the	development	of
the	design	model.	And	this	is	where	the	package	diagram	can	be	very	helpful.

4.8.2	Packages	and	package	diagrams

One	of	 the	 simplest	 features	of	UML	-	yet	an	extremely	useful	one	 -	 is	 the	package.	 In
simple	terms	this	is	nothing	more	than	a	holder	or	container	for	other	items.	You	use	it	to
group	 things	 together	 in	 a	 sensible	 manner	 for	 sensible	 reasons.	 These	 ‘things’	 can	 be
classes,	components,	packages,	subsystems,	what	you	will.	Thus	we	can	have	packages	of
packages,	packages	of	classes,	packages	of	components,	etc.

http://www.aadl.info/aadl/currentsite/
http://www.omgsysml.org/

The	 basics	 of	 the	 package	 diagram	 are	 shown	 in	 figure	 4.76,	which	 is	 pretty-well	 self-
explanatory.

Figure	4.76	Basic	package	diagrams

Figure	4.76a	shows	the	symbol	for	the	package,	a	‘tabbed’	rectangle	or	folder.	The	name
of	the	package	is	written	within	the	main	area.	In	figure	4.76b	the	package	‘Oxygen	plant’
itself	contains	three	packages.	Observe	that	the	name	has	been	written	within	the	tab,	the
recommended	notation	when	packages	have	contained	elements.

As	 stated	 earlier,	 we	 can	 group	 many	 items	 together	 using	 packages.	 In	 practice	 its
greatest	use	has	been	the	handling	of	classes,	so	we’ll	concentrate	on	that	aspect.

Suppose	you	are	brought	in	as	a	trouble-shooter	to	an	on-going	failing	project,	described
as	‘drowning	in	classes’.	Massively	complex	class	diagrams	exist,	but	hardly	anybody	can
make	sense	of	the	overall	design	(this	is	based	on	personal	experience;	it	is	how	a	senior
project	manager	once	described	to	me	the	state	of	a	large	Radar	project).	How	should	we
attack	this	problem?	Well,	it’s	time	to	go	back	to	basics;	reduce	the	problem	complexity.
We	can	do	 this	by	bringing	 in	 the	package	 to	provide	a	 simpler	 (and	hence	more	easily
understood)	structure.

Consider	the	packaging	of	classes	as	being	similar	to	forming	modular	structures.	That’s	a
good	start;	it’s	the	first	step	in	producing	an	organised	structured	model.	However,	it’s	not
enough	 merely	 to	 package	 classes;	 a	 badly	 thought-out	 scheme	 will	 only	 make	 things
worse.	A	golden	rule	is	‘package	together	classes	that	logically	belong	together’.	If	your
choices	are	good	you	should	find	that:

	
Most	 of	 the	 class	 interactions	 occur	 within	 the	 package	 (intra-package
associations).
Few	 class	 interactions	 take	 place	 between	 packages	 (inter-package
associations).

A	simple	example	is	shown	in	figure	4.77.

Figure	4.77	Packaging	classes

Package	diagrams	form	part	of	the	design	or	‘logical’	model	of	software.	These,	 though,
have	to	be	translated	to	a	code	form	(the	‘physical’	model),	ready	to	be	compiled,	linked
and	located,	figure	4.78

Figure	4.78	Logical	and	physical	models	of	software	-	example

Observe	that	the	package	icon	maps	to	a	source	code	unit,	its	purpose	being	to	contain	the
relevant	source	code.	The	example	here	is	based	on	the	Java	package;	the	Ada	package	is
similar.	For	C++	though,	there	is	a	problem	as	we	don’t	have	Java	and	Ada	equivalents;
the	best	we	can	do	is	to	use	a	combination	of	.h	and	.cpp	files.

In	 figure	 4.78	 the	 classes	 have,	 for	 simplicity,	 been	 shown	 as	 individual,	 separate
elements;	 in	 reality	 they	usually	 are	 interdependent.	Dependencies	within	 a	 package	 are
easy	to	see;	just	look	at	the	associations.	But	what	about	dependencies	between	packages?
Where	this	occurs	we	can	identify	it	using	the	notation	shown	in	figure	4.79.

Figure	4.79	Package	dependencies

The	 dotted-arrowed	 lines	 show	 that	 packages	Welding	controller	 and	Cutting	 sequencer
somehow	depend	on	the	package	System	operating	parameters	(note	the	direction	of	the
arrows).	 It	may	be,	 for	 instance,	 that	 the	 values	 of	 the	 system	operating	 parameters	 are
used	 by	 the	 dependent	 packages;	 thus	 changes	 to	 these	will	 almost	 certainly	 affect	 the
behaviour	of	the	welding	and	cutting	units.

Showing	such	dependencies	explicitly	is	an	important	part	of	the	configuration	control	of
software	 (it	 shouldn’t	 need	 saying	 that	 as	 software	 becomes	more	 complex	 it	 becomes
increasingly	difficult	to	manage).	But	package	diagrams	can	make	our	job	a	lot	easier	by
showing	clearly	the	structure	of	the	software,	figure	4.80.

Fig.	4.80	Showing	compilation	dependencies	-	example

We	can	read	this	to	mean	that

	
Package	Graphics	can	access	the	contents	of	packages	HDD	and	DSP	(an
‘access’	dependency).
Package	Control	can	access	the	contents	of	package	DSP.
In	 turn	 package	 FlightControl	 can	 access	 the	 contents	 of	Graphics	 and
Control.

UML	defines	a	second	form	of	dependency,	‘import’.	We	won’t	discuss	this	further	as	the
way	that	dependencies	are	implemented	is	highly	language-dependent.

4.8.3	Artifacts

The	final	steps	in	developing	software	for	embedded	applications	involves	:

	
Constructing	language-specific	source	code	files.
Compiling	these	to	linkable	files.
Linking	separately	compiled	files	to	form	executable	files.
Defining	the	memory	areas	to	be	used	for	read-write	volatile	data	(RAM),
read-only	 non-volatile	 information	 (the	 program	 code	 and	 software
constants	 (ROM))	 and	 read-write	 non-volatile	 information	 (EEPROM	 or
Flash).

All	files	produced	during	this	process	are	examples	of	UML	artifacts,	figure	4.81.

Figure	4.81	Examples	of	artifacts

UML-speak:

An	artifact	is	the	specification	of	a	physical	piece	of	information	that	is	used	or

produced	by	a	software	development	process,	or	by	deployment	and	operation	of
a	 system.	 Examples	 of	 artifacts	 include	 model	 files,	 source	 files,	 scripts,	 and
binary	executable	files,	a	table	in	a	database	system,	a	development	deliverable,
or	a	word-processing	document,	a	mail	message.

A	package	for	example,	can	be	specified	using	an	artifact,	figure	4.82.

Figure	4.82	A	package	and	its	corresponding	artifact

A	minor	point:	it	is	optional	to	underline	the	name	of	the	artifact.

In	a	project	as	a	whole	we	can	use	both	package	and	artifact	diagrams	to	show	structures
and,	most	importantly,	dependencies,	figure	4.83.

Fig.	4.83	Relating	packages,	artifacts	and	dependencies

You	might	by	now	begin	to	appreciate	how	useful	the	artifact	construct	can	be	for	software
configuration	and	version	control.

Now	for	a	few	practical	points.	First,	when	we	come	to	test	and	debug	code	we	deal	with
artifacts,	 not	 design	 models.	 And	 anything	 that	 makes	 our	 life	 easy	 at	 this	 stage	 is
welcome.	Hard	gained	experience	has	shown	that	we	should	produce	code	units	having	a
very	clear	purpose	(high	cohesion)	and	few	interconnections	(low	coupling).	However,	to
deliver	 these	 you	 have	 to	 start	 from	 the	 right	 beginning.	 Central	 to	 this	 is	 how	 you
partition	your	class	design	in	the	first	place	(in	other	words,	how	you	package	it	up).

A	second	aspect	 relates	 to	your	code	development	environment.	Many,	many	embedded
developers	 are	 producing	 code	 for	 flash-based	microcontrollers	 using	 IDEs	 such	 as	 the
IAR	 Embedded	Workbench	 and	 the	 Keil	 (ARM)	 µVision.	 In	 such	 circumstances	 there
really	isn’t	such	a	thing	as	a	distributable	item;	everything	is	integrated.	So	the	artifact,	in
itself,	is	relatively	unimportant.	However,	a	word	of	caution;	just	because	the	environment
is	integrated	doesn’t	mean	that	it’s	easy	to	see	all	the	relationships	and	dependencies.	You,
as	a	designer,	need	to	put	mechanisms	in	place	to	deal	with	this.

4.8.4	Deployment	diagrams	and	nodes

Deployment	 diagrams	 are	 used	 to	model	 the	 physical	 aspects	 of	 systems.	 They	 consist
primarily	 of	 nodes,	 node	 relationships	 and	 components.	 In	 UML-speak	 a	 node	 is	 a
physical	piece	of	equipment	on	which	the	system	is	deployed,	such	as	a	workgroup	server
or	workstation.	 A	Node	 usually	 hosts	 components	 and	 other	 executable	 pieces	 of	 code,
which	again	can	be	connected	to	particular	processes	or	execution	spaces.	Typical	Nodes
are	client	workstations,	application	servers,	mainframes,	routers	and	terminal	servers.

The	symbol	for	a	node	is	a	three-dimensional	box,	figure	4.84.

Fig.	4.84	Nodes	and	system	architectures

Nodes	 are	 used	 in	 Deployment	 diagrams	 show	 the	 overall	 physical	 architecture	 of
systems,	i.e.	the	various	pieces	of	kit	together	with	their	interconnections.	There	are	three

types	 of	 node:	 ‘plain’	 (or	 general-purpose	 item	 such	 as	 workstations),	 ‘device’	 and
‘execution	environment’,	figure	4.85.

Fig.	4.85	Example	node	types

An	example	of	their	use	is	demonstrated	in	figure	4.86.	Here	we	have	two	device	nodes,
PortEngineController	 and	 StbdEngineController,	 each	 containing	 an	 execution
environment	node.	Both	are	labelled	VxWorks,	indicating	that	the	software	in	these	nodes
is	 executed	 under	 the	 control	 of	 the	 VxWorks	 real-time	 operating	 system.	 Each	 node
houses	an	artifact,	this	denoting	the	run-time	code.

Figure	4.86	Example	deployment	diagram

Review
You	should	now:

	
Know	what	classes	and	objects	are,	how	they	relate	to	each	other,	how	they
are	shown	in	diagrams	and	what	information	is	provided	in	such	diagrams.
Appreciate	how	items	in	the	class	diagram	map	to	source	code.
Understand	that	an	object	has	two	major	sections:	a	public	interface	and	a
hidden,	private	part.
Appreciates	why	 objects	 are	 formed	 in	 this	 way	 and	what,	 typically,	 the
two	parts	contain.
Understand	 that	 when	 code	 is	 to	 be	 generated	 automatically	 from	 class
diagrams,	all	public	and	private	features	must	be	explicitly	denoted	in	the
diagram.
Know	 what	 the	 following	 are:	 provided	 and	 required	 interfaces,	 links,
messages,	operations	and	methods.
Understand	the	fundamental	aspects	of	client-server	and	peer-to-peer	object
relationships.
Know	what	is	meant	by	associations	(uni	and	bi-directional)	and	how	these
are	represented	in	class	diagrams.
Appreciate	 that	 the	 mapping	 from	 object	 diagram	 to	 class	 diagram	 is
unique	but	that	the	reverse	is	not	true.
Appreciate	the	advantages	of	building	software	in	modular	fashion.

Know	what	is	meant	by	composite	aggregation	and	how	it	is	denoted	in	the
class	diagram.
Know	how	to	show	modular	structures	on	class	and	object	diagrams.
Understand	what	inheritance	is	and	why	we	use	it.
Know	how	to	show	inheritance	structures	in	class	diagrams.
Appreciate	the	essential	difference	between	implementation	inheritance	and
interface	inheritance.
Be	 confident	 to	 classify	 the	 objects	 of	 object	 diagrams	 and,	 using	 this
information,	produce	the	corresponding	class	diagrams.
Understand	the	distinction	between	inheritance	and	adaption	and	know	the
pro’s	and	con’s	of	the	two	methods.
Know	 what	 is	 meant	 by	 superclass,	 subclass,	 abstract	 class,	 static
polymorphism	and	dynamic	polymorphism.
Appreciate	why	polymorphism	is	used.
Appreciate	that	to	build	robust	software	structures	it	isn’t	sufficient	to	have
good	modularity	and	good	interfaces;	 it’s	also	essential	 to	be	able	 to	wire
components	together	simply	and	easily.
Understand	how	the	UML	composite	object	having	ports	provides	means	to
build	such	robust	structures.
Know	the	content	and	structure	of	composite	object	diagrams.
Know	what	is	meant	by	an	object	role	and	how	to	show	it	on	a	composite
object	diagram.
Know	what	a	composite	structure	diagram	is	and	what	connectors	are	used
on	such	diagrams.
Know	how	 to	denote	ports	having	provided	and	 required	 interfaces	using
ball	and	socket	notation.
Understand	what	 software	 components	 are	 and	why	 they	 are	 used	 as	 the
building	blocks	of	model-driven	architectures.
Know	the	notation	used	for	components	and	be	able	to	show	how	they	can
be	wired	together	using	assembly	connectors.
Know	 that	 components	 can	 have	 internal	 structures	 such	 as	 components,
classes	and	objects,	for	example.
Understand	 that	 component-based	 designs	 are	 translated	 to	 source	 code
using	some	defined	component	technology	mechanism.
See	 how	 CORBA’s	 interface	 definition	 language	 may	 be	 used	 to	 map	 a
component	model	into	a	source	code	one.
Know	what	packages	are,	why	 they	are	used	and	how	they	are	shown	on
diagrams.
Understand	what	is	meant	by	the	logical	and	physical	models	of	software.
Know	how	to	show	package	and	compilation	dependencies.

Know	what	artifacts	are	and	how	they	relate	to	various	types	of	file.
Know	how	to	relate	packages,	artifacts	and	dependencies.
Understand	 what	 deployment	 diagrams	 are,	 what	 they	 contain	 and	 why
they	are	used.

Chapter	5	-	The	behavioural	interactions	model

The	objectives	of	this	chapter	are	to:

	
Introduce	active	and	passive	objects.

Explain	why	we	need	the	two	object	types,	and	describe	their	behaviour.

Show	what	sequence	diagrams	are,	why	we	use	them	and	what	information
they	contain.

Describe	the	basics	of	the	UML	sequence	diagram	and	the	notation	used.

Show	how	CASE	tools	influence	diagramming	techniques	and	notation.

Describe	methods	 that	 help	 us	 handle	 sequence	 diagrams	 efficiently	 and
effectively.

Show	 how	 timing	 information	 can	 be	 added	 to	 sequence	 diagrams	 and
illustrate	the	various	presentation	options.

Introduce	 the	 communication	 diagram	 and	 show	 how	 it	 describes	 object
interactions	(collaborations).

Show	how	sequence	and	communication	diagrams	relate	to	each	other.

5.1	Object	types	and	their	interactions
The	structural	model	should	give	us	a	good	picture	of	 the	make-up	of	systems	and	how
their	individual	pieces	are	connected	together.	Well,	that’s	fine	as	far	as	it	goes;	it	tells	us,
in	great	detail,	what	needs	to	be	built.	But	that	is	only	part	of	the	story;	we	also	need	to
know:

	
What	a	system	does	-	its	functional	behaviour.

When	things	happen,	and	for	how	long	-	its	temporal	behaviour.

When	and	why	the	component	parts	interact.

As	 pointed	 out	 earlier,	 what	 a	 system	 actually	 does	 depends	 on	 the	 collaborations	 and
interactions	 of	 these	 component	 parts.	We	 can,	 from	 the	 structural	model,	 deduce	 some
information	relating	to	the	three	points	mentioned	above;	but	that’s	as	much	as	we	can	do.
Consider,	 for	 example,	 the	 robotic	 system	 shown	 earlier	 in	 figure	 1.10.	 Experienced
engineers	 would	 be	 able	 to	 make	 some	 pretty	 good	 guesses	 about	 its	 operation	 and
behaviour.	But	that’s	all	they’d	be:	guesses.	To	answer	the	questions	raised	above	we	need
to	model	 the	 behavioural	 interactions	 of	 the	 system	 (first	 introduced	 in	 chapter	 1).	And
that	is	the	subject	of	this	chapter.

Before	 we	 get	 into	 it	 in	 detail	 there	 are	 a	 few	 important	 preliminaries	 to	 consider
(otherwise	 some	 later	 material	 just	 won’t	 make	 sense).	 In	 chapter	 4	 the	 object	 models
were,	 in	 the	 main,	 implemented	 using	 sequential	 code	 constructs.	 And	 with	 sequential
code,	 one	 and	 only	 one	 object	 can	 run	 at	 any	 one	 time:	 object	 executions	 are	 non-
concurrent.	Yet	 real	 embedded	 software	 consists	 of	 both	 non-concurrent	 and	 concurrent
code	units	(true	concurrency	with	multiprocessors,	quasi-concurrency	in	single	processor
units).	UML	 recognises	 this	 by	 providing	 two	object	 types,	 the	 active	 and	 passive	 ones
(figure	5.1).

Figure	5.1	Active	and	passive	objects

For	reasons	that	we	ourselves	don’t	understand,	many	newcomers	to	UML	have	problems
grasping	 the	concepts	 involved	here.	 In	fact	 it	 is	quite	easy	 to	appreciate	 the	differences
between	the	two	types	by	looking	at	how	target	code	actually	executes.	So,	let’s	start	with
describing	active	object	behaviour.

An	active	object	is	said	to	have	its	‘own	thread	of	control’.	From	an	abstract	point	of	view
it	 begins	 to	 run	 as	 soon	 as	 it	 is	 created.	 After	 that	 it	 behaves	 as	 an	 independent,
collaborating	software	unit,	figure	5.2.

Figure	5.2	Active	object	behaviour

This	demonstrates	 some	examples	of	 typical	 interactions	between	active	objects	 (in	 this
case	two	only,	objects	A	and	B).	Assume	that	object	A	is	executed	by	one	real	processor,
object	B	 running	on	 a	 second	one	 in	 a	multiprocessor	 unit.	Thus	what	 happens	 in	 each
processor	 depends	 entirely	 on	 the	 code	 of	 its	 object	 and	 its	 interactions	 with	 the	 other
processor	 (i.e.	 other	 object).	 For	 the	 scenario	 shown,	 object	 B	 executes	 without
interruption	over	the	whole	time	period.	Object	A	runs	until	it	sends	its	second	message	to
object	B,	at	which	time	it	voluntarily	enters	a	suspended	state	(that	decision	is	made	in	its
own	code,	which	you,	 the	programmer,	 are	 responsible	 for).	 It	 resumes	 execution	when
signalled	to	do	so	by	object	B.

Next,	 consider	 the	 execution	 of	 these	 objects	 on	 a	 single	 processor	 device,	 using
multitasking/multithreading	 methods.	 Does	 this	 change	 things?	 Yes,	 but	 not	 to	 the
conceptual	 object	model;	 the	 behaviour	 of	 figure	 5.2	 is	maintained.	 It’s	 in	 the	 run-time
model	that	any	differences	show.	And	that’s	because	task/thread	execution	is	not	actually
concurrent	 but	 is,	 in	 fact,	 quasi-concurrent	 (‘pretend’	 concurrency).	With	 this,	 one	 (and
only	 one)	 code	 unit	 can	 run	 at	 any	 one	 time.	 The	 implications	 and	 effects	 of	 this	 are
beyond	the	scope	of	this	book;	see	http://www.amazon.com/dp/B00GO6VSGE.

Passive	objects	behave	quite	differently,	as	can	be	seen	from	figure	5.3.

Figure	5.3	Passive	object	behaviour

Once	again,	 for	 simplicity,	we’ll	 look	at	 the	 interactions	between	 two	objects,	A	and	B.
The	single	most	important	point	here	is	that	when	object	A	executes,	object	B	is	inactive.
Likewise,	when	B	is	active	A	is	inactive.	Execution	is	thus	mutually-exclusive	(in	fact,	if
you	 implement	 your	 design	 in	 a	 sequential	 code	 unit,	 you	will	 always	 get	 this	 type	 of
behaviour).	Moreover,	this	particular	case	represents	a	client/server	relationship,	A	being
the	client	and	B	the	server.	For	our	work	we	will	always	consider	this	to	be	a	specification
(or	description)	of	objects	executing	on	a	single	processor	unit.

The	UML	symbol	for	an	active	class	can	be	seen	in	figure	5.4a.

Figure	5.4	Active	class	and	object	-	notation

There	isn’t	any	symbol	for	an	active	object	 in	UML	2.x,	so	we’ll	use	stereotyping	to	do
this,	figure	5.4b.	And,	for	consistency,	we’ll	always	underline	names	to	make	it	clear	that
these	are	instantiations.

5.2	Modelling	interactions	-	the	basics	of	sequence	diagrams
5.2.1	Introduction

The	 fundamental	 purpose	 of	 sequence	 diagrams	 is	 to	 show	 interactions	 between	 items

(usually	objects)	as	 time	elapses.	The	basic	concept	for	a	 two-object	system	is	shown	in
figure	5.5.

Figure	5.5	Basic	sequence	diagram	showing	object	interactions

In	essence	it	shows;

	
What	messages	are	sent.

When	messages	are	sent.

Who	the	sender	and	receivers	are.

How	much	time	elapses	during	the	various	message	transactions.

However,	UML	extends	this	generalised	notation	in	a	number	of	ways.	It:

	
Distinguishes	between	concurrent	and	sequential	program	operations	and

Uses	a	number	of	different	arrows	to	denote	different	forms	of	messaging.

5.2.2	Basics	of	UML	sequence	diagrams

Before	giving	examples	of	sequence	diagrams	it	is	necessary	to	understand	a	little	more	of

the	 basic	 semantics	 and	 syntax	 used.	 First,	 a	 variety	 of	messages	 are	 defined	 by	UML,
figure	5.6.

Figure	5.6	UML	message	notations

(i)	Asynchronous	message	or	flat	flow	of	control:	a	request	where	the	sending	object	does
not	have	to	wait	for	results	generated	by	the	receiver,	denoted	using	an	open	arrowhead.

(ii)	Synchronous	message	or	nested	 flow	of	 control:	 a	 request	where	 the	 sending	object
waits	for	results	generated	by	the	receiver,	denoted	using	a	solid-arrowhead.

(iii)	 Synchronous	message	 return	 (optional):	 shown	 as	 a	 dashed	 arrow	 shaft	 having	 an
open	arrowhead.

(iv)	Object	creation/deletion:	a	message	sent	 to	create	 (delete)	an	object	during	program
execution.

(v)	Message	 transfer	 time:	defined	by	using	slanted	arrows	bounded	by	 the	sending	and
receiving	times.

(vi)	Lost	message:	a	message	sent	to	a	destination	that	is	outside	the	scope	of	the	current

description.

(vii)	Found	message:	 a	message	 received	 from	a	 source	 that	 is	 outside	 the	 scope	of	 the
current	description.

A	sequence	diagram	consists	of	a	set	of	object	lifelines,	figure	5.7.

Figure	5.7	UML	sequence	diagram,	object	lifelines	and	execution	specification

A	lifeline	 is	defined	 to	be	 the	combination	of	 the	object	 symbol	 (the	 rectangle)	 together
with	the	dotted	vertical	line.	To	show	when	an	object	is	actually	doing	something	(either
directly	or	 indirectly,	 see	 later)	we	add	a	narrow	rectangle	 to	 its	 lifeline,	 see	object	2	of
figure	 5.7.	 This	 is	 called	 an	 ‘execution	 specification’,	 often	 abbreviated	 to	 ‘execution’.
Just	for	information;	UML	has	a	number	of	irritating	features,	one	being	that	names	and/or
definitions	 are	 sometimes	 changed	 as	 new	 versions	 are	 released.	 An	 ‘execution
specification’	 was	 previously	 called	 an	 ‘activation’,	 also	 a	 ‘focus	 of	 control’.	 As	 these

words	are	quite	descriptive,	well	known	and	widely	used,	we’ll	continue	 to	use	 them	as
synonyms	for	‘execution	specification’.

So,	 in	 summary;	 figure	 5.7	 shows	 a	 sequence	 diagram	 that	 is	 intended	 to	 model	 the
interactions	between	 two	objects.	Object	1	 is	present	but,	 as	 shown,	doesn’t	 actually	do
anything.	Object	2	 is	also	present	but	does	carry	out	work	for	 the	 time	of	 its	activation.
Now	let’s	extend	this	to	show	some	sample	scenarios.

The	first	applies	to	concurrent	operations	(figure	5.8),	both	objects	being	active	ones.

Figure	5.8	UML	sequence	diagram	-	concurrent	operations	1

This	 shows	 a	 set	 of	 interactions	 between	 two	 objects	 in	 a	 particular	 time	 period.	 The
objects	are	assumed	to	be	alive	continuously	as	long	as	the	processor	is	powered	up.	It	can
be	seen	that	the	first	message	in	the	sequence	is	StartMeasurements.	This	is	generated	by
object	1,	being	sent	to	object	2.	Some	time	later	2	sends	the	message	StoreData	to	1.

The	 next	 message,	PrepareForRun,	 is	 also	 sent	 as	 a	 flat	 flow	 of	 control	 from	 1	 to	 2.
Following	this	is	the	message	OpenHatch,	sent	from	1	to	2.	In	this	case	object	1	chooses
to	 suspend	 until	 it	 is	 later	 awoken	 by	 a	 reply	 from	 object	 2.	When	 this	 -	 the	message
ElevateMissile	-	is	received,	object	1	is	reactivated	and	resumes	execution.

A	second	interaction	scenario	is	shown	in	figure	5.9,	this	done	to	illustrate	the	‘busy-wait’
behaviour	of	object	1.

Figure	5.9	UML	sequence	diagram	-	concurrent	operations	2

With	this	object	1	is	always	active;	it	does	not	suspend.

Now	 let	 us	 deal	 with	 sequential	 operations,	 (more	 specifically,	 operations	 that	 are
implemented	in	sequential	code).	But	first,	two	points	for	your	consideration.

Point	1:	In	an	object-based	sequential	program,	one,	and	only	one,	object	can	be	active	at
any	one	 time.	This	may	 seem	 too	 obvious	 to	 be	worth	mentioning;	 yet	many	designers
appear	to	be	oblivious	to	this	truism.

Point	2:	The	more	complete	definition	of	focus	of	control	is	that	it	shows	the	period	during
which	 an	 object	 is	 performing	 an	 action	 either	 directly	 or	 through	 a	 subordinate
procedure.	This	is	highly	relevant	to	sequential	operations,	as	shown	in	figure	5.10.

Figure	5.10	UML	sequence	diagram	-	procedural	(sequential)	operations

Assume	that	object	1	is	a	form	of	control	object,	responsible	for	the	running	of	the	system.
Initially	it	is	the	one	that	is	active.	Now,	as	this	is	a	procedural	program,	objects	2	and	3
must	therefore	be	inactive.

At	some	later	time	object	1	sends	the	message	ComputeSpeed	to	object	2,	so	activating	it.
The	 message	 is,	 of	 course,	 really	 a	 procedure	 or	 function	 call;	 hence	 it	 must	 be	 a
synchronous	(blocking)	one.	Program	control	is	thus	transferred	from	object	1	to	object	2,
which,	on	completion	of	its	work,	returns	control	to	object	1.

During	 this	 latter	 period,	 although	 object	 1	was	 actually	 inactive,	 it	was	 still	 shown	 as
having	 a	 focus	 of	 control.	 This,	 in	 line	 with	 the	 full	 definition	 of	 focus	 of	 control,	 is
correct;	its	action	was	being	performed	indirectly	through	the	subordinate,	object	2.

The	 next	 set	 of	 interactions	 demonstrate	 this	 feature	 in	 more	 detail.	 The	 message

ComputePosition	 activates	 object	 2,	 which,	 some	 time	 later,	 sends	 the	 message
DoCoordinateConversion	 to	 object	 3.	Whilst	 object	 3	 is	 computing,	 object	 2	 still	 has	 a
focus	of	control	(as,	of	course,	does	object	1).

In	this	simple	example	you	aren’t	likely	to	misread	the	diagram	concerning	the	execution
occurrences	of	individual	objects.	However,	what	actually	happens	is	much	clearer	to	see
if	you	adapt	the	diagram	so	that	a	focus	of	control	denotes	only	that	an	object	is	executing,
as	in	figure	5.11.

Fig.	5.11	Modified	sequence	diagram	showing	the	flow	of	execution

The	 would	 be	 especially	 helpful	 when	 working	 with	 complex	 procedural	 sequence
diagrams.	 Unfortunately,	 it	 isn’t	 legal	 UML.	 However,	 beating	 your	 breast	 over	 such
issues	is	pretty	pointless	once	you	start	using	a	CASE	tool;	that’s	going	to	determine	what
your	diagrams	look	like,	legal	or	not.

5.2.3	CASE	tool	issues

The	 following	 examples	 demonstrate	 some	 issues	 relating	 to	 CASE	 tool	 usage,	 the
material	being	produced	using	the	EA	tool	(once	again,	this	is	done	merely	to	show	how
CASE	tools	may	dictate	what	you	end	up	with;	it	is	not	an	EA	tutorial!).

First,	consider	figure	5.12	which	shows	a	set	of	passive	object	interactions.

Fig.	5.12	Sequence	diagram	CASE	tool	example	1

Observe	 that	 the	 diagram	 is	 framed	 and	 has	 been	 denoted	 as	 type	 ‘sd’,	 its	 name	 being
UpdatingADvectors.

By	now	you	should	be	familiar	with	most	of	 the	diagram	features,	but	 two	aspects	need
further	 explanation.	 First,	 at	 one	 point	 the	 object	 VectorCalculator	 sends	 the	 message
UpdateVelocityVector	 to	 the	 object	 AirDataVectors.	 Observe	 the	 execution	 that	 ensues
when	this	message	arrives.	Also,	it	would	be	logical	to	show	the	call	return	as	flowing	out
of	this	occurrence,	but	the	tool	doesn’t	(seem)	to	permit	it.

Second,	the	final	message	generated	by	the	object	AirDataVectors	is	actually	sent	to	itself.
What	this	means	is	that	it’s	internal	code	calls	on	one	of	the	object’s	public	methods.	And
to	keep	the	diagram	clear	the	call	return	has	been	suppressed.

A	second	CASE	tool	generated	sequence	diagram	is	given	in	figure	5.13,	this	describing
an	interaction	scenario	involving	three	active	objects.

Fig.	5.13	Sequence	diagram	CASE	tool	example	2

Observe	that	we	have	chosen	to	show	the	sequence	numbers	of	the	messages.

This	is	yet	another	example	that	points	out	that	once	you	use	an	automated	tool	you	have
to	 live	 with	 its	 features.	 A	 major	 issue	 here	 is	 how	 it	 denotes	 the	 various	 execution
occurrences	 (which,	 for	 active	 objects,	may	 not	 represent	what	actually	 happens).	 This
raises	questions	concerning	the	usefulness	of	the	construct	(opinions	are	quite	split	on	this
issue!).	Consider	 figure	5.14,	 for	example.	Here	 the	diagrams	(a)	and	(b)	are	almost	 the
same	but	with	just	one	presentation	difference:	the	use	of	the	focus	of	control	construct.

Fig.	5.14	Example	presentation	options	for	focus	of	control

The	 ‘standard’	 style	 is	 used	 in	 figure	 5.14a,	 whereas	 in	 5.14b	 the	 foci	 of	 control	 have
(almost)	been	 suppressed,	 resulting	 in	 a	 cleaner	diagram.	This	 ‘cleaner’	 style	 appeals	 to

designers	who	just	want	to	model	the	object	interactions	(and	generally	consider	focus	of
control	aspects	to	be	a	distracting	side-issue).

5.2.4	Some	lesser-used	constructs

Finally,	 let’s	 review	 a	 few	 sequence	 diagram	 constructs	 that,	 in	 our	 experience,	 aren’t
widely	used	in	real-time	embedded	systems	(figure	5.15).

Fig.	5.15	Additional	sequence	diagram	constructs

First	 to	 review	 is	 the	 lost	 message	 StartingMatrixCalcs,	 shown	 as	 an	 asynchronous
message	to	FilterGroup.	Now,	the	destination	object	is	regarded	as	being	outside	the	scope
of	 the	 current	 model;	 it	 is	 described	 on	 a	 separate	 sequence	 diagram.	 What	 actually
happens	 when	 the	 message	 arrives	 at	 it’s	 destination	 isn’t	 of	 interest	 to	 us	within	 this
scenario.	 However,	 the	 notation	 gives	 us	 a	 useful	 way	 of	 showing	 that,	 as	 part	 of	 the
scenario,	this	message	must	be	generated.	Yet	we	don’t	need	to	worry	precisely	where	it
goes	to	and	what	effects	it	produces.

Likewise,	 we	 can	 adopt	 the	 same	 viewpoint	 in	 the	 handling	 of	 the	 incoming	 found
message	AirDataStatus.	We	know	it	has	to	be	handled	but	don’t	need	to	concern	ourselves
with	its	origins.

Next	 to	 look	 at	 is	 the	 dynamic	 creation	 of	 an	 object	 during	 program	 execution.	This	 is
denoted	by	the	message	CreateMatInvObj.	Observe	that	the	lifeline	of	the	created	object
MatrixInversionCalculator	starts	with	the	arrival	of	the	creation	message.	It	ends,	in	this
case,	when	the	message	DeleteMatrixInvObj	arrives	(the	X	symbol	at	the	end	of	the	line
denotes	that	the	object’s	life	has	finished).

Dynamic	objects	are	conceptually	simple	and,	in	practice,	easy	to	implement.	They	have
their	 uses	 in	 the	 softer,	 less	 critical,	 dynamically-changing	 systems	 (e.g.	 PDAs,	mobile
phones,	etc.).	But	their	use	should	be	minimised	where	systems:

	
Are	required	to	be	robust.

Have	limited	RAM	storage.

Need	fairly	predictable	behaviour.

For	highly-critical	systems	(e.g.	aircraft	fly-by-wire)	they	are	forbidden.

5.3	Modelling	interactions	-	efficiently	handling	sequence	diagrams
5.3.1	Brief	introduction

Sequence	 diagrams	 are	 an	 immensely	 powerful	 way	 to	 describe	 when	 and	 why
interactions	 take	place	between	entities	 (be	 they	people,	 vehicles,	 components,	 software
units,	 etc.).	 Also,	 the	 examples	 we’ve	 looked	 at	 so	 far	 have	 been	 easy	 to	 read	 and
understand.	This	simplicity,	unfortunately,	may	fool	you	 into	 thinking	 that	working	with
sequence	diagrams	 is	child’s	play.	Believe	me,	 this	 illusion	will	quickly	disappear	when
you	meet	your	first	complex	real-world	problem.

There	are,	it	seems,	three	distinct	areas	that	cause	problems	for	designers:

	
Updating	and	modifying	diagrams	(loosely	‘maintenance’),

Navigating	through	the	diagram(s)	quickly	and	efficiently	(‘navigation’).

Correctly	 and	 rapidly	 understanding	 complex	 interactions
(‘comprehension’).

5.3.2	Diagram	maintenance

Most	designers	produce	sequence	diagrams	using	either	drawing	packages	or	CASE	tool
diagram	editors.	When	you	come	to	generate	a	diagram	in	the	very	first	place	there	seems
to	be	little	to	choose	between	them;	a	good	drawing	package	is	as	effective	as	a	CASE	tool
(and	a	bonus	feature	of	drawing	packages:	there	are	free	open-source	versions	available).
However	 you	 may	 well	 find	 difficulties	 when	 you	 later	 come	 to	 make	 changes	 to	 the
diagram	(such	as	adding	objects,	deleting	objects,	modifying	messages,	etc).	CASE	tools
tend	 to	 excel	 at	 this.	 Moreover,	 with	 a	 tool-based	 approach	 you	 will	 (or	 should)	 be
working	in	an	integrated	environment,	handling	all	the	project	software	diagrams.	Thus	it
is	 much	 easier	 to	 maintain	 consistency	 of	 the	 diagram	 set	 and	 to	 carry	 out	 effective
version	control.

5.3.3	Diagram	navigation

The	 sequence	diagrams	 that	we’ve	 looked	at	 so	 far	 could	be	described	as	 ‘single	 layer’
types;	all	information	is	at	the	one	level.	Now,	much	earlier	in	the	book	we	discussed	the
difficulties	 that	 people	 have	 in	 handling	 complexity.	No	matter	 how	good	we	 are,	 there
comes	a	point	when	everybody	makes	mistakes.	And	the	only	solution	to	this	is	to	reduce
the	 problem	 complexity;	 just	 simplify	 things.	 What	 we	 have	 also	 seen	 is	 that,	 when
dealing	 with	 diagrams,	 a	 layering	 (essentially	 top-down)	 approach	 is	 a	 very	 effective
technique.	And	that’s	what	we	now	need	to	do	with	the	sequence	diagram.

The	 technique	 used	 is	 to	 break	 the	 single	 large	 sequence	 diagram	 into	 a	 set	 of	 simpler
ones.	Key	to	this	is	the	use	of	‘interaction	fragments’,	figure	5.16.

Fig.	5.16	Sequence	diagram	interaction	fragment

Here	 the	 overall	 diagram	 represents	 the	 interactions	 that	 take	 place	 for	 the	 scenario
CollectMotorData.	An	interaction	fragment	merely	depicts	some	of	the	interactions	of	the
overall	scenario.	We,	as	designers,	can	decide	exactly	how	many	fragments	to	use,	as	for
example	in	figure	5.17.

Fig.	5.17	Interaction	overview	concept

What	we’ve	done	is	to	first	‘mop	up’	the	set	of	interactions	shown	in	figure	5.17a	into	two
interaction	fragments;	then	draw	a	simpler	higher-level	diagram	based	on	these	fragments,
figure	5.17b	(note:	there	is	no	defined	UML	notation	for	a	‘simple’	interaction	fragment).

This	 gives	 us	 a	 clear	 overview	of	 the	 overall	 structure	 of	 the	 scenario	 interactions	 and,
note,	suppresses	all	interaction	details.	This	informal	approach	is	formalized	in	UML	as	an
interaction	overview	diagram,	figure	5.18.

Fig.	5.18	Interaction	overview	diagram

Each	collected	set	of	interactions	is	called	an	‘interaction	use’	or	‘interaction	occurrence’
(an	older	and	widely-used	term).	An	interaction	use	is	denoted	by	a	diagram	frame	having
the	identifier	‘ref’.	No	messaging	details	are	given	within	the	frame,	so	treat	the	construct
as	 being	 a	 reference	 to	 another	 sequence	 diagram	 (one	 that	 contains	 all	 the	 interaction
information).

UML	 actually	 defines	 the	 interaction	 overview	 diagram	 to	 be	 a	 specialization	 of	 the
activity	 diagram	 (see	 later).	 So	 for	 the	 moment	 we’ll	 limit	 its	 use	 to	 specifying	 the
ordering	of	a	set	of	interaction	uses.	We	will,	though,	return	to	this	when	covering	activity
diagrams	for	a	fuller	discussion	of	the	topic.

Interaction	 occurrences	 are	 also	 a	 helpful	 simplifying	 feature	 when	 we	 wish	 to	 show
interactions	between	sequence	diagrams,	figure	5.19	(CASE-tool	generated).

Fig.	5.19	Passing	messages	between	sequence	diagrams

The	overall	sequence	diagram	is	StartPortEngine,	this	containing	an	interaction	occurrence
StartEngineSequence	(shown	on	the	lifeline	of	the	PortEngineController	object).	This,	as
previously	stated,	is	a	reference	to	another	diagram,	so	nothing	new	here.	But	what	is	new
is	 the	 construct	 of	 messages	 being	 sent	 to	 an	 interaction	 occurrence	 (in	 this	 case
StartEngineSequence)	from	other	objects	(and	vice	versa).	We	read	this	to	mean	that	such
messages	 (e.g.	 StartPortEngine	 and	 PortEngineAccelerating)	 are	 handled	 somewhere
within	the	fragment.	Four	points	have	been	identified	as	being	‘gates’.	Gates	are	nothing
more	 than	 connection	 points,	marking	 the	 source	 and	 target	 of	messages.	Note	 that	 the
gate	identifiers,	the	squares	and	associated	names,	are	informal	notations.

What	 we	 have	 here	 is	 a	 classic	 aspect	 of	 information	 hiding;	 compartmentalize	 the
problem	and	show	only	what	is	necessary	(minimize	brain-loading).	Tackle	the	problem	a
piece	at	a	time.

Once	we’ve	fully	understood	what	happens	at	the	higher	level	we	can	then	drill	down	into
the	detail,	figure	5.20.

Fig.	5.20	Details	of	execution	occurrence	StartEngineSequence

This	 example	 message	 sequence	 is	 very	 simple;	 no	 new	 features	 have	 been	 used.
However,	two	important	points	to	note	are	that:

(a)	 Using	 gates	 makes	 it	 easy	 to	 navigate	 between	 the	 outside	 and	 the	 inside	 of	 an
interaction	occurrence.

(b)	Objects	can	exist	purely	within	the	occurrence	(i.e.	PortEngine);	they	play	no	part	in
the	interactions	of	the	overall	sequence	diagram.

These	features	are	really	very	useful	for	modelling	the	interactions	in	systems	built	using
composite	object	structures.

5.3.4	Diagram	comprehension

It’s	been	easy	to	understand	the	examples	given	so	far	for	one	good	reason;	all	messages
shown	 formed	part	of	a	 simple	 sequence	of	 transactions.	But	we	know	(especially	 from
structured	programming)	 that	other	very	 important	 transaction	 types	have	 to	be	handled.
Two	 of	 the	 most	 widely-used	 ones	 are	 selection	 (alternative	 courses	 of	 action)	 and
iteration	(looping	operations).	Let’s	deal	first	with	selection.

The	 sequence	 diagram	 of	 figure	 5.21	 consists	 of	 two	 interaction	 fragments,	 whose
executions	are	mutually	exclusive.

Fig.	5.21	Informal	notation	specifying	alternative	courses	of	action

As	shown	here	the	notation	is	informal,	describing	what	is	a	classic	if-then-else	execution.

This	 informal	notation	has,	 in	 the	past,	worked	well,	but	only	up	to	a	point.	To	improve
things	 and	 make	 it	 easier	 to	 comprehend	 the	 diagrams,	 UML2	 introduced	 a	 construct
called	the	‘combined	fragment’.	What	this	does	is	group	interactions	together,	specifically
those	that	are	executed	only	when	specified	conditions	are	met.	Figure	5.22,	for	example,
shows	a	combined	fragment	which	handles	the	alternative	courses	of	action	first	defined	in
figure	5.21.

Fig.	5.22	Combined	fragment	specifying	alternative	courses	of	action

The	combined	fragment	notation	is	 that	of	a	diagram	frame	with	an	interaction	operator,
this	 defining	 the	 purpose	 of	 the	 fragment.	 Here	 the	 operator	 is	 ‘alt’	 (self-explanatory).
Each	 possible	 sequence	 execution	 is	 called	 an	 ‘operand’.	 Note	 that	 these	 operands	 are
separated	 by	 a	 dotted	 line,	 the	 ‘interaction	 operand	 separator’.	 Whether	 Operand	 1	 or
Operand	2	gets	selected	 is	determined	by	 its	 ‘interaction	constraint’	 (sometimes	called	a
‘guard’).	More	precisely,	we	evaluate	the	constraint,	and	if	it’s	‘true’,	then	its	operand	is
actioned.	Clearly,	only	one	constraint	can	ever	be	true	at	any	one	time.	A	further	point	is
that	we	can	show	as	many	alternative	courses	of	action	as	we	wish;	we’re	not	limited	just
to	 two	 (this	 is	 equivalent	 to	 the	 ‘if-then-elseif-elseif-elseif-else’	 or	 similar	 programming
construct).

Please	note	that	figure	5.22	is	not	an	overview	diagram;	there	is	no	hiding	of	information.

A	variant	on	the	selection	action	is	the	‘if-then’	construct,	where	we	either	do	something	or
just	 skip	 over	 it.	 This,	 defined	 to	 be	 an	 optional	 action,	 is	 illustrated	 in	 the	 combined
fragment	of	figure	5.23.

Fig.	5.23	Combined	fragment	specifying	optional	actions

Here	 the	 interaction	 operator	 is	 ‘opt’.	 Note;	 there	 can	 be	 only	 one	 operand	 in	 this
construct.

To	show	iterations	we	use	the	loop	combined	fragment,	figure	5.24.

Fig.	5.24	Combined	fragment	specifying	a	loop

It’s	important	to	clearly	understand	that	the	operand	is	executed	while	the	guard	is	true.	In
other	words	it	represents	a	controlled	loop	construct,	and	can	also	be	designated	to	have	a
range	of	values	(i.e.	having	low	and	high	limits).

Combined	 fragments	 are	 especially	 useful	when	 dealing	with	 complex	 interactions.	 For
examples	we	may	have	a	 loop	 that	contains	 selections	where	 the	 selections	 in	 turn	may
contain	further	selections,	etc.

Sequence,	selection	and	iteration	can	be	considered	to	be	the	‘bread	and	butter’	constructs
of	 sequence	 diagrams.	However,	 there	 are	 also	 a	 number	 of	 other	 interaction	 operators
which,	in	our	experience,	are	less	widely	used.	Possibly	the	more	important	ones	are:

	
critical:	denotes	a	region	(the	‘critical	region’)	where	the	sequence	must	be
completed	without	a	break.	In	embedded	terms	this	would	be	used	to	model
a	non-interruptible	section	of	code.

ignore:	 Denotes	 interactions	 that	 should	 be	 ignored	 during	 the	 defined
scenario.	 For	 example,	 when	 a	 plant	 is	 running	 it	might	 be	 forbidden	 to
amend	its	alarm	limits,	figure	5.25.

Fig.	5.25	Use	of	ignore	operator

	
Break:	denotes	interactions	that	must	be	carried	out	instead	of	the	whole	of
the	 interactions	 within	 a	 scenario.	 A	 practical	 use	 of	 this	 is	 to	 define
where/when	 exceptions	 should	 be	 raised	 during	 normal	 operations,	 as	 in
figure	5.26.

Fig.	5.26	Use	of	break	operator

This	 scenario	 illustrates	 the	messaging	 that	 takes	place	during	a	 start-up	 sequence	of	an
engine.	 If	 all	goes	well	 then	 the	 interactions	within	 the	combined	break	 fragment	 aren’t
executed.	 However,	 if	 at	 any	 time	 during	 startup	 a	 flame	 failure	 is	 detected,	 then	 the
normal	scenario	is	abandoned.	Instead	the	break	combined	fragment	is	executed	(and	note;
there	can	be	only	one	operand	in	this	fragment).

In	the	real-time	embedded	world	the	following	operators	seem	to	have	limited	use:

	
par:	 denotes	 fragments	 that	 are	 executed	 in	 parallel	 (i.e.	 concurrently),
figure	 5.27.	 Here	 there	 are	 two	 operands,	 each	 controlled	 by	 a	 guard.
Provided	both	guards	are	true	then	the	messaging	specified	in	each	operand
(for	simplicity	omitted	here)	execute	concurrently.

Fig.	5.27	par	and	strict	example

	
strict:	denotes	a	sequence	of	messages	that	must	(and	the	operative	word	is
must)	 be	 executed	 in	 the	 specified	 order.	 The	 structure	 of	 the	 combined
fragment	 is	 shown	 in	 figure	 5.27,	 which	 specifies	 that	 the	 interactions
specified	in	the	first	operand	(guard	is	‘strict	3’)	execute	before	those	of	the
second	one	and	so	on.	You	can,	 if	you	wish,	use	 this	construct	 to	specify
the	 sequential	 structure	 of	 an	 interaction	 scenario	 (where	 the	 guards	 are
assumed	to	be	implicit	and	set	to	‘true’).	Please	note	that	all	the	remaining
combined	fragments	described	below	have	similar	diagram	structures	with
one	proviso;	neg	and	assert	must	have	exactly	one	operand.

seq:	 defines	 a	 ‘weak	 sequencing’	 fragment,	 one	 that	 relaxes	 the
requirements	 of	 strict	 sequencing.	 Refer	 to	 the	 UML	 superstructure
document	for	a	fuller	description	of	this	operator.

consider:	 specifies	 interactions	 that	 should	 be	 considered	 within	 this
combined	 fragment,	 meaning	 that	 any	 other	 message	 will	 be	 ignored.	 I
haven’t	yet	seen	a	believable	use	of	this	construct.

neg:	specifies	messages	that	could	occur	during	the	scenario	but	shouldn’t
be	there	(e.g.	as	a	result	of	a	fault).	Thus	they	are	considered	to	be	invalid
and	should	not	be	actioned.

assert:	denotes	that	the	messages	shown	in	this	combined	fragment	are	the
only	valid	ones	that	can	occur	in	the	scenario	being	modelled.	Any	others
should	be	considered	as	being	invalid.

5.4	Modelling	the	timing	of	interactions
So	 far	 we	 haven’t	 considered	 whether	 object	 interactions	 have	 to	 meet	 specific	 timing
requirements.	In	fact	that’s	probably	true	for	the	majority	of	interaction	scenarios,	such	as
the	simple	example	of	figure	5.28.

Figure	5.28	Sequence	diagrams	without	timing	issues

But	now	let	us	add	timing	requirements	to	this	scenario,	as	follows:

1.	The	 signal	OpenVents	 is	 produced	by	push-button	operation,	 a	momentary	 action.	To
protect	 against	 spurious	warnings	 (e.g.	 noise	 or	 input	 signal	 stuck)	 it	 is	 to	 be	 evaluated
between	lower	and	upper	time	limits	(in	this	case	0.1	to	0.5	seconds).

2.	 The	 signal	 VentsOpened,	 an	 acknowledgement	 reply,	 must	 arrive	 between	 1	 and	 2
seconds	after	OpenVents	is	sent.

3.	The	signal	PurgeMotorRunning,	an	acknowledgement	reply,	must	arrive	between	0	and
1	seconds	after	StartPurging	is	sent.

4.	The	signal	StartInjection	must	be	received	within	0.5	seconds	of	its	sending.

The	original	sequence	diagram	can	now	be	amended	to	show	these	specifications,	figure
5.29.

Fig.	5.29	Sequence	diagram	-	example	timing	information

Notes	have	been	added	to	clarify	the	meaning	of	the	notation	on	this	CASE-tool	generated
diagram	(using	UML-based	terms),	as	follows:

	
Duration	Constraint:	defines	the	duration	between	two	time	instants.

Duration	Constraint	(between	messages):	this,	non-standard	UML,	defines
duration	between	two	time	instants	on	a	lifeline.

Time	Observation:	specifies	the	time	instant	when	a	message	is	sent.

Time	 Constraint:	 specifies	 the	 time	 limits	 between	 the	 sending	 of	 a
message	and	its	reception.

One	other	time-related	item	that	may	also	be	specified	(not	shown	in	figure	5.29)	is:

	
Duration	Observation:	 normally	 used	 to	 denote	 that	 a	message	 should	 be
observed	and	also	specifies	the	duration	of	this	observation.

We’ve	now	got	a	good	overall	picture	of	the	interactions	that	take	place	during	a	particular
scenario,	 together	with	 their	 important	 timing	features.	But	 later	(when	we	get	 into	state
modelling)	you’ll	find	that	it’s	important	to	describe	the	behaviour	of	the	objects	involved
in	these	interactions.	Now,	using	sequence	diagram	information,	we	can	relate	this	overall
behaviour	to	that	of	the	individual	objects,	figure	5.30.

Fig.	5.30	Object	lifeline	information	-	sequence	diagram	form

Here	we’ll	concentrate	on	one	object	only,	the	HMI	of	figure	5.29.	As	we	walk	down	the
lifeline	we,	the	designers,	define	the	various	conditions	(states)	of	the	HMI	object.	Having
done	so	we	can	now	model	the	behaviour	of	the	object	as	time	elapses,	figure	5.31.

Fig.	5.31	Timing	details	of	object	behaviour	-	the	state	lifeline	diagram

In	this,	the	‘state	lifeline’	diagram,	the	horizontal	axis	is	the	timeline,	having	a	range	of	0
to	13	seconds.	States	are	shown	as	discrete	levels	on	the	vertical	axis,	these	being	derived
from	figure	5.30.	The	‘graph’	shows	how	the	object	progresses	from	state	to	state	as	time
passes.	Specifically	 it	denotes	when	 transitions	occur	 together	with	 the	events	 (the	why)
that	specify	these	transitions.

The	same	information	can	be	shown	in	a	more	compact	form,	the	‘value	lifeline’	diagram,
figure	5.32.

Fig.	5.32	Timing	details	of	object	behaviour	-	the	value	lifeline	diagram

This	should	be	self-explanatory.

If	we	wish	we	can	produce	a	diagram	that	combines	the	lifeline	information	of	all	objects
involved	 in	a	scenario.	The	example	of	 figure	5.33	contains	 the	 lifelines	of	 two	objects,
Hydraulics	and	Controller.

Fig.	5.33	Combined	state	and	value	lifelines

Here	we’ve	 shown	 the	 state	 lifeline	 of	Hydraulics	 and	 the	 value	 lifeline	 of	Controller,
together	with	important	signalling	between	them.

Please	note	that	we	could	have	used	any	other	valid	combination	of	lifeline	diagrams	(i.e.
state/state,	value/value,	value/state).

Figure	5.34	wraps	up	this	section	by	giving	an	overview	of	UML	sequence	diagram	timing
notation.

Fig.	5.34	Overview	of	timing	information

5.5	The	communication	diagram
Recap:	 the	 purpose	 of	 an	 object	 diagram	 is	 to	 show	 the	 objects	 of	 a	 system	 and	 their
relationships.	 In	 this	 section	 we	 now	 extend	 the	 object	 diagram	 to	 produce	 the	 object
communication	 diagram.	 It,	 in	 fact,	 is	 simply	 an	 object	 diagram	 that	 also	 shows	 the
interaction(s)	 between	 the	 objects.	 This	 is	 demonstrated	 in	 the	 following	 example,	 the
design	diagramming	of	a	simple	conveyor	belt	system,	figure	5.35,	(for	completeness	the
class	structure	is	also	provided,	figure	5.35a).

Figure	5.35	Objects	and	their	collaborations

The	 object	 diagram,	 figure	 5.35b,	 shows	 that	 the	 system	 as	 designed	 consists	 of	 a	 hall
controller	 and	 two	 conveyor	 belts.	Each	 conveyor	 belt	 object	 has	 two	operations	which
can	be	invoked	(called	on)	by	other	objects:	Start	and	Stop.	These	operations	are	activated
by	passing	messages	 to	 the	objects,	as	shown	in	figure	5.35c,	 the	object	communication
diagram.	Here	the	messages	have,	for	clarity,	been	given	the	same	name	as	the	operations.
We	can,	if	we	wish,	define	the	time	ordering	of	messages	by	attaching	numbers	to	them.
Thus	in	this	example	the	first	message	is	Start,	sent	to	the	output	conveyor	belt.	The	next
one	starts	the	input	conveyor	belt,	the	third	one	stops	the	output	belt,	etc.

Communication	 diagrams	 are	 easy	 to	 produce	 and	 easy	 to	 understand,	 even	 as	 they
become	more	complex,	figure	5.36.

Fig.	5.36	More	complex	communication	diagram

It’s	 worth	 pointing	 out	 at	 this	 stage	 that	 communication	 diagrams	 aren’t	 limited	 to
describing	just	object	interactions;	they	can,	in	fact,	be	used	much	more	generally.

Now	for	two	very	important	questions	concerning	communication	diagrams:

	
How	do	they	relate	to	sequence	diagrams?

Why	bother	to	use	them?

To	answer	 these	we’ll	 look	at	a	very	simple	example	of	 interactions	between	objects,	as
follows:

A	communication	system	consists	of	two	objects,	a	primary	station	(PS)	and	a	secondary
station	(SS).	There	are	two	modes	of	transmission:	PS	to	SS	and	SS	to	PS.	Transmission	is
always	 initiated	by	 the	primary.	Produce	 the	 sequence	diagrams	and	 the	 corresponding
communication	diagrams	for	the	following	scenarios:

(a)	Scenario	1:	PS	obtaining	SS	data.

PS	sends	a	POLL	message	to	SS.

(i)	 If	 no	 data	 is	 available	 SS	 replies	 with	 a	 NACK	 message.	 This	 is	 the	 end	 of	 the

transaction.	PS	terminates	the	session.

(ii)	 If	 SS	 data	 is	 available,	 then	 SS	 sends	 the	 full	 data	 stream.	When	 all	 data	 has	 been
received	PS	sends	ACK	to	SS	to	finish	the	session.

(b)	Scenario	2:	PS	sending	data	to	SS.

PS	sends	a	SEL	message	to	SS.	SS	responds	with	ACK.	PS	sends	data.	When	all	data	has
been	received	by	SS	it	sends	ACK.	PS	terminates	the	session.

Scenario	1	is	modelled	in	figure	5.37,	while	figure	5.38	describes	scenario	2.

Fig.	5.37	Relating	sequence	and	communication	diagrams	2

Fig.	5.38	Relating	sequence	and	communication	diagrams	2

Please	study	these	in	detail	to	confirm	that	they	are	complete	and	correct.

From	this	you	can	see	that	the	sequence	and	communication	fundamentally	show	the	same
information	but	in	different	form.	In	a	way	they	can	be	treated	as	‘two	sides	of	the	same
coin’	in	that	they	emphasise	different	aspects	of	the	interactions.	For	the	sequence	diagram
the	emphasis	is	the	time-ordering	of	messages	and	the	various	interaction	occurrences	(as
we’ve	 already	 seen	 in	many	 earlier	 examples).	 For	 the	 communication	 diagram	 it’s	 the
messages	themselves.	Observe	that	in	scenario	2	the	message	ACK_S2P	has	been	shown
twice	on	the	communication	diagram.	This	corresponds	to	the	occurrence	of	the	same	two
messages	 on	 the	 sequence	 diagram	 (if	 the	 messages	 were	 time-stamped	 on	 the
communication	diagram	they	would	be	numbers	2	and	4).	So	what	is	the	key	relationship
between	 the	 two	diagrams?	 It	 is	 that	 all	 objects	 and	messages	on	 the	 sequence	diagram
must	also	appear	on	the	corresponding	communication	diagram	(and	vice-versa).	Given	a
sequence	 diagram	we	 can	automatically	 produce	 its	 equivalent	 communication	 diagram

(in	fact	some	CASE	tools	can	do	this).	However	this	is	not	generally	true	for	the	reverse
case	unless	the	scenarios	are	very	simple	(e.g	scenario	2)	and	messages	are	time-stamped.

So	 this	 leads	us	 to	 the	 second	question,	 ‘why	bother	 to	use	 communication	diagrams?’.
Frankly,	based	on	what	we’ve	done	so	far	(producing	a	communication	diagram	for	each
scenario),	it’s	hard	to	see	what	we’ve	achieved.	It	seems	to	be	a	case	of	diagramming	for
the	sake	of	diagramming.	And	yet	 this	 is	 the	‘default’	UML	approach.	Well,	 ignore	that;
let’s	do	something	sensible	and	useful	instead,	figure	5.39.

Fig.	5.39	Combined	communication	diagrams

Here	we’ve	taken	the	information	from	the	individual	scenarios	and	used	it	to	build	up	a
single	 communication	 diagram.	 Also,	 there	 is	 no	 duplication	 of	 messages,	 nor	 time-
stamping.	The	end	result	is	a	very	useful,	practical	diagram	that	shows:

	
All	the	objects	of	the	system	under	design.

The	messages	that	flow	between	these	objects.

This	is	a	very	powerful	diagram	for	describing	how	systems	work.	Moreover,	if	you	take
an	object-first	design	approach,	this	will	be	a	key	part	of	your	work.	A	second	major	factor
from	a	design	point	of	view	concerns	the	presentation	of	the	messages.	You	can	see	at	a
glance	all	the	distinct	message	within	the	system	and	where	they	flow	to/from.	Using	this
information	 you	 can	 define	 precisely	 the	 requirements	 of	 the	 required	 and	 provided
interfaces	of	the	various	objects.

A	final	point:	the	time-stamping	of	messages.	This	hasn’t	been	done	for	two	reasons.	First,
there	is	no	intent	of	the	diagram	to	show	message	ordering.	Second,	I	have	found	that	it’s
worse	than	useless	when	used	in	practical	designs;	confusion	rather	than	enlightenment	is
the	result

Review
You	should	now:

	
Know	what	active	and	passive	objects	are,	how	they	behave	and	how	they
are	depicted	in	UML	diagrams.

Realize	 that	 the	 reason	 for	 having	 the	 two	 types	 is	 to	 allow	 us	 to	model
concurrent	and	non-concurrent	object	execution.

Know	how	to	describe	active	classes	and	objects	in	UML	diagrams.

Understand	what	a	sequence	diagram	is,	what	it	shows	and	why	we	use	it.

Know	the	notation	used	 in	UML	sequence	diagrams,	 the	various	message
types	used	and	how	they	are	represented	in	the	diagrams.

Understand	what	an	object	lifeline	and	an	execution	specification	(focus	of
control)	are.

Be	 able	 to	model	 interactions	 involving	 concurrent	 (active)	 objects	 only,
passive	objects	only	and	a	mix	of	active	and	passive	objects.

Appreciate	why,	in	passive	object-based	designs,	one	object	can	only	ever
execute	at	any	one	time	(i.e.	object	executions	are	mutually	exclusive).

Realize	 that	 passive	 object-based	 designs	 map	 naturally	 to	 sequential
(procedural)	code.

Recognize	why	you	might	choose	to	omit	the	foci	of	control	from	sequence
diagrams.

Know	 how	 to	 model	 the	 creation	 and	 deletion	 of	 objects	 during	 model
execution.

Appreciate	how	CASE	tools	can	help	in	the	maintenance	of	diagrams.

Understand	that	CASE	tool-generated	diagrams	may	diverge	from	standard
UML	notation.

Know	what	interaction	fragments	and	interaction	occurrences	are,	why	we
use	them	and	how	they	simplify	the	handling	of	sequence	diagrams.

Understand	the	concepts	and	use	of	interaction	overview	diagrams.

Know	what	combined	fragments	are	and	why	we	use	them.

For	 combined	 fragments,	 know	 what	 the	 following	 items	 are:	 operators,
operands,	interaction	constraints	and	operand	separators.

Know,	when	using	combined	fragments,	how	to	show	alternative,	optional,
iterative	and	parallel	actions.

Know	how	and	why	to	use	the	break	and	ignore	operators.

Know	what	type	of	timing	information	can	be	shown	on	sequence	diagrams
and	how	it	is	presented.

Understand	 the	 structure	 and	 content	 of	 state	 and	 value	 lifeline	 diagrams
and	what	they’re	used	for.

Appreciate	that	combined	lifeline	diagrams	can	be	produced

Understand	what	an	object	communication	diagram	is	and	how	it	relates	to
class	and	object	diagrams.

Understand	 the	 relationship	 between	 sequence	 and	 communication
diagrams	and	be	able	to	explain	why	they	are	‘two	sides	of	the	same	coin’.

See	 how	 communication	 diagrams	 can	 be	 generated	 automatically	 from
sequence	diagrams	but	the	reverse	isn’t	usually	true.

Understand	that	there	is	little	value	in	producing	communication	diagrams
on	a	scenario	by	scenario	basis.

Understand	the	reasons	for	and	benefits	of	producing	a	single	system-wide
object	communication.

Appreciate	 that	 communication	 diagrams	 can	 be	 applied	 to	 model
interactions	between	various	software	entities,	not	just	objects.

Chapter	6	-	The	behavioural	dynamics	model

The	objectives	of	this	chapter	are	to:

	
Give	various	examples	of	dynamic	functions.

Introduce	the	general	state	 transition	diagram	and	the	UML	state	machine
diagram.

Show	 how	 state	machine	 diagrams	may	 be	 used	 to	 define	 the	 dynamical
behaviour	of	systems	and	units.

Cover,	 in	 detail,	 the	 basic	 UML	 state	 model,	 including	 both	 transition-
related	and	state-related	behaviours.

Describe	 hierarchical	 state	 machines;	 composite	 states,	 superstates	 and
substates.

Show	the	role	and	use	of	concurrent	state	modelling.

Describe	ways	to	clarify	and	declutter	diagrams.

Show	how	a	state	machine	can	be	implemented	in	sequential	code.

6.1	Introduction	to	dynamical	modelling
6.1.1	The	basics	of	state	modelling.

All	the	following	statements	have	been	extracted	from	system	specification	documents	for
real-time	applications:

‘The	autopilot	will	have	three	ride	modes	-	soft,	medium	and	hard.’

‘The	shaft	brake	is	to	be	released	when	the	engine	is	running	and	the	throttle	move

d	past	the	idle	position.’

‘At	 (T+2.5)	 seconds	 IPN	 is	 injected	 into	 the	 starter	 and	 the	 ignition	 is	 switched	 on.	 If
flame	is	not	detected	by	(T+2.75)	seconds	initiate	an	emergency	shut-down	of	the	starter
system.’

‘The	Sonar	range	gate	is	to	be	opened	300	microseconds	after	pulse	transmission’

From	 these	 it	 can	 be	 seen	 that	 the	 behaviour	 of	 such	 systems	 varies	 over	 time	 -	 the
behaviour	 is	 dynamic.	 At	 any	 instant	 in	 time	 each	 system	 has	 a	 specific	 mode	 of
behaviour,	its	‘state’.

In	 the	examples	above	 the	specifications	are	quite	simple	and	clear.	For	cases	 like	 these
text	is	perfectly	good	enough	to	‘model’	such	behaviours.	But	many	real	systems	behave
in	much	more	complex	ways,	resulting	in	complex	text	descriptions.	In	these	situations	it’s

no	 surprise	 that	 we	 turn	 to	 diagrams	 and	 diagramming	 to	 help	 us	 out;	 enter	 the	 state
transition	diagram	(STD).	In	UML	this	is	called	the	‘state	machine	diagram’,	so	to	avoid
confusion	we’ll	stick	with	that	term	(or	for	brevity,	just	‘state	diagram’).	First,	 though,	a
number	of	points	need	to	be	made	before	we	get	into	detail:

	
The	 behavioural	 dynamics	model	 can	 be	 used	 to	 describe	many	 entities,
including	systems,	components,	devices,	electronics	and	software.

The	 core	 aspects	 of	 this	 chapter	 are	 the	 hows	 and	 whys	 of	 modelling
software	systems	and	individual	units.

All	items	being	modelled	are	considered	to	have	a	finite	number	of	definite,
discrete	states.

Dynamical	 behaviour	 is	 described	 using	 a	 graphical	 finite	 state	 machine
(FSM)	model.

6.1.2	State	machine	fundamentals

The	core	constructs	of	the	state	machine	are	shown	in	figure	6.1.

Fig.	6.1	Basic	state	machine	diagram

This	represents	a	system	that	has	two	states	only,	as	denoted	by	the	rounded	rectangles.	It
can	be	seen	that	the	system	can	move	(make	a	transition)	from	State	1	to	State	2	and	vice-
versa	 (hence	 the	 origin	 of	 the	 name	 state	 transition	 diagram).	 Please,	when	 it	 comes	 to

building	practical	models,	use	meaningful	names,	ones	 taken	 from	 the	problem	domain,
figure	6.2.

Fig.	6.2	Simple	state	description

This	model	represents	the	state	of	a	passenger	waiting	in	an	airport	check-in	area	(a	very
simplified	situation,	of	course).	We’ll	assume	that	the	scenario	being	modelled	starts	after
he	has	arrived	at	check-in,	 in	possession	of	a	 standby	 ticket.	Hence	he’s	placed	 into	 the
standby	queue,	his	 state	being	Standby	 for	 flight.	At	 some	stage	 it	 is	decided	 to	 include
him	 in	 the	 flight	 schedule	 -	 a	 transition	 to	 Scheduled	 for	 flight	 state.	 But	 then	 the
unfortunate	passenger	loses	his	place	on	the	flight	and	is	put	back	on	standby.

This	 is	a	very	simple	scenario,	but	with	one	problem;	what’s	caused	 the	 transitions?	We
really	don’t	know	-	 the	 information	on	hand	 is	 incomplete.	What	needs	 to	be	done	 is	 to
define	the	causes	of,	or	the	events	leading	to,	such	changes.	This	we	do	as	shown	in	figure
6.3.

Fig.	6.3	Events	causing	state	changes

It	can	be	seen	that	each	transition	has	an	associated	event	(strictly	speaking,	UML	2	states
that	a	transition	is	provoked	by	a	‘trigger’.	See	note	at	the	end	of	this	section).	Thus	the
transition	 from	 Standby	 for	 flight	 to	 Scheduled	 for	 flight	 is	 caused	 by	 the	 event	 Seat
becomes	available.	The	next	stage	change	occurs	if	a	priority	passenger	arrives,	leading	to
a	return	to	the	standby	state.

To	model	this	using	UML	notation,	the	constructs	given	in	figure	6.4	may	be	used.

Fig.	6.4	Basic	UML	notation

We’ve	already	met	the	notation	used	here	for	states,	transitions	and	events.	New,	though,
are	the	transient	states;	initial,	final	and	history.	There	are	others	but	these	are	some	of	the
more	important	ones	in	UML.	Let’s	deal	first	with	the	initial	and	final	states	and	look	at
the	use	of	the	history	state	later.

Transition	 states,	 often	 called	 pseudo-states,	 can	 be	 likened	 to	 route	 markers	 for	 the
transitions.	Systems	merely	pass	 through	such	states,	doing	nothing	on	 the	 journey.	But,
they	 are	 key	 to	 describing	 and	 understanding	 state	 models.	 First,	 every	 state	 model
execution	must	have	a	defined	starting	point	(this	is	a	key	aspect	of	finite	state	automata
theory,	which	 underpins	 FSM	modelling).	 That	 is	 denoted	 by	 the	 transient	 state	 Initial.
The	point	at	which	the	model	ceases	executing	is	defined	by	the	Final	state.	Hence	figure
6.4c	is	read	as	follows:	when	the	model	comes	into	being,	it	automatically	enters	the	S1
state.	It	remains	there	until	event	e	occurs,	at	which	point	it	makes	a	transition	to	state	S2.
When	 event	 f	 occurs	 state	 S2	 is	 exited,	 a	 transition	 to	 the	 final	 state	 is	made,	 and	 the
model	ceases	execution.

The	rules	concerning	final	states	are	not	 the	same	as	 those	 that	apply	 to	 the	 initial	state.
First,	there	doesn’t	even	have	to	be	a	final	state.	This	arises	when	a	system,	once	activated,
executes	continuously	 (that,	 in	 fact,	 is	 typical	of	many	embedded	applications).	Second,
there	may	be	more	than	one	final	state,	as	we’ll	see	in	a	moment.

Frequently	people	have	difficulty	in	understanding	exactly	how	model	execution	starts	and
ends.	 In	 reality	 it	 depends	on	what	 is	 being	modelled.	One	very	 simple	 example	 is,	 for
instance,	 the	use	of	a	 state	model	 to	describe	 the	dynamics	of	a	C++	program	function.
The	model	itself	is,	of	course,	a	permanent	feature,	but	it	only	begins	executing	when	the
function	is	called.	This	corresponds	to	a	transition	from	the	start	state.	Likewise,	the	final
state	represents	the	completion	of	the	function,	when	it	returns	control	to	the	calling	unit.

The	 key	 point	 to	 note	 is	 that	 the	model	 specifies	what	 happens	when	 software	 actually
runs.	If	the	software	cannot	run	then	the	model	has	no	meaning,	the	most	extreme	example
being	when	the	processor	is	powered	down.

So	let’s	now	build	a	simple	state	model	using	 the	features	shown	in	figure	6.4.	Suppose
that	we	work	for	a	company	that	receives	orders	via	email	and	need	to	describe	how	these
are	handled.	We	can	do	this	using	state	modelling	as	per	figure	6.5.

Figure	6.5	State	modelling	-	simple	example	describing	the	processing	of	an	order

By	now	you	should	be	able	to	work	your	way	through	this	diagram	and	fully	understand
what	 happens.	 Although	 this	 is	 simple,	 do	 not	 dismiss	 it	 as	 trivial.	 I	 have	 seen	 such

approaches	used	very	effectively	to	describe	the	life	cycles	of	both	credit	cards	and	legal
documents.

If	 a	 state	model	 is	 used	mainly	 to	 describe	 the	 various	 stages	 of	 a	 process	 (as	with	 the
ordering	process	of	 figure	6.5),	no	more	need	be	 said.	However	 if	you	wanted	 to	know
exactly	what	is	done	as	the

order	 is	 handled,	 then	 more	 information	 is	 needed.	 Key	 to	 this	 is	 that	 any	 processing
carried	out	is	a	result	of	responses	to	the	events.	For	completeness	such	information	needs
to	 be	 shown	 in	 our	model.	 In	 practice	 there	 are	 three	ways	 to	 do	 this,	 in	 each	 case	 by
associating	actions	(responses)	either	with:

	
Transitions:	transition-related	behaviour	(the	Mealy	machine)	or

States:	state-related	behaviour	(the	Moore	machine)	or

Both	transitions	and	states	(the	UML	state	machine).

The	 Mealy	 and	 Moore	 machines	 (named	 after	 their	 developers)	 form	 the	 bedrock	 of
graphical	FSM	modelling,	figure	6.6.

Fig.	6.6	The	Mealy	and	Moore	machines

Both	 machines	 describe	 the	 same	 dynamic	 operation	 of	 a	 very	 simple	 two-state	 robot.
State	1	is	Available	and	state	2	is	Automatic	mode.	Transition	from	Available	to	Automatic
mode	takes	place	in	response	to	the	event	Run	robot.	Similarly,	 the	event	Select	standby
causes	a	 transition	from	Automatic	mode	 to	Available.	Thus,	 in	 terms	of	state	and	event

information,	both	diagrams	are	much	the	same.	The	essential	difference	is	to	do	with	the
actions.	In	the	Mealy	machine	actions	are	associated	with	events.	For	the	Moore	machine
actions	are	linked	to	states.	Take,	for	instance,	figure	6.6a.	Assume	the	robot	is	currently	in
the	Available	 state.	When	 the	 event	Run	 robot	 arrives	 it	 causes	 a	 state	 change	 to	 take
place.	 It	 also	 generates	 two	 action,	 Disengage	 locks	 and	 Enable	 auto	 control.	 Now
consider	 figure	 6.6b.	 When	 the	 same	 state	 transition	 takes	 place	 the	 same	 actions	 are
generated.	However,	these	are	connected	with	the	state,	not	the	transition.	Hence	when	the
system	 is	 in	Available	mode	 (figure	6.6b),	 the	actions	Disable	auto	control	 and	Engage
locks	are	performed.

Thus	 both	 diagrams	 show	 the	 same	 information	 (they	 are,	 after	 all,	 describing	 the
dynamics	 of	 the	 same	 system).	 However,	 the	 presentation	 of	 information	 -	 and	 its
interpretation	-	differs;	and	both	machines	have	their	advantages	and	disadvantages.	UML
sets	out	to	get	to	get	the	best	of	both	worlds	by	combining	them	(and	also	adding	in	some
constructs	 developed	 in	 Statecharts	 by	 David	 Harel).	 So	 we’ll	 start	 by	 seeing	 how	 to
model	 transition-related	 behaviour	with	UML,	 leading	onto	 state-related	models,	 finally
combining	it	all.

To	round	off	this	section	two	small	points	need	a	mention.	First,	the	topic	discussed	here
is,	strictly	speaking,	that	defined	in	UML	as	the	‘behavioural	state	machine’.	There	is	also
a	 second	 UML	 type,	 called	 a	 ‘protocol	 state	 machine’.	 This	 is	 defined	 to	 be	 ‘a
specialization	 of	 behavioral	 state	 machine	 and	 is	 used	 to	 express	 usage	 protocol	 or
lifecycle	of	a	classifier’.	See	the	UML	2	superstructure	if	you	wish	to	follow	this	up.

A	 second	 point	 for	 discussion	 concerns	 the	meaning	 and	 use	 of	 the	 term	 ‘trigger’	 (this
section	is	dedicated	to	UML	pedants).	The	use	of	‘event’	as	a	triggering	mechanism	is	well
established	 in	 state	machine	 terminology	 (starting	with	 its	 original	 use	 in	 the	 design	 of
digital	electronic	circuits).	Moreover,	UML	1.4	actually	states	that	‘In	the	context	of	state
diagrams,	 an	 event	 is	 an	 occurrence	 that	 can	 trigger	 a	 transition’.	 Unfortunately	 (and
confusingly	for	practitioners)	some	redefining	of	terms	was	done	in	UML	2.	However,	for
our	work	we	 can	 (in	my	view)	 generally	 interchange	 event	 and	 trigger	without	 causing
confusion.	 And	 there’s	 a	 lot	 to	 be	 said	 for	 keeping	 the	 more	 generally-used	 and	 well-
established	term	event.

In	conclusion,	here’s	a	couple	of	examples	of	other	authors	take	on	the	subject.

The	Unified	Modeling	Language	Reference	Manual,	by	Rumbaugh,	Jocobson	and	Booch
(known	as	the	‘three	amigos’	UML	gurus):	In	this	‘Trigger’	is	called	a	‘trigger	event’.	It
also	states	that	‘the	trigger	is	an	event’.

UML	 Distilled,	 by	 Martin	 Fowler:	 He	 (correctly)	 uses	 ‘trigger-signature’	 in	 place	 of
‘trigger’,	and	states	‘this	is	usually	a	single	event’.

6.2	Transition-related	behaviour
This	 section	 looks	 at	 typical	 events	 and	 responses	 found	 in	 state	machines	where	 such
responses	are	associated	with	the	transitions.	So,	let’s	extend	the	scenario	of	figure	6.3	to
show	responses	to	the	events	on	the	state	diagram,	figure	6.7.

Fig.	6.7	Responses	to	events

Assume	that	the	passenger	is	in	the	StandbyForFlight	state	and	a	seat	becomes	available.
The	event	(trigger)	SeatBecomesAvailable	causes	two	things	to	happen:

	
A	response	by	the	system	(in	this	case	the	passenger	is	checked	in)	and

A	transition	to	the	next	state	(here	ScheduledForFlight).

It	 should	 be	 clear	 from	 the	 diagram	 what	 happens	 next	 when	 the	 event
PriorityPassengerArrived	occurs.

Important	point:	all	changes	in	 the	 theoretical	model	are	assumed	to	 take	place	instantly
(and	not	over	a	period	of	time).	Thus	the	response	and	the	transition	occur	together;	there
isn’t	 any	 idea	of	ordering	or	dependency.	However	 this	 really	 isn’t	 the	 case	 in	practical
implementations,	something	that	will	be	discussed	later.

Note	that	the	term	‘response’	is	an	informal	one;	more	generally	these	are	called	‘actions’
or	‘effects’.

There	 are	 times	 when	 events	 occur	 but	 we	wish	 to	 react	 to	 these	 only	 under	 specified
conditions.	For	example,	it	might	be	specified	that:

‘Provided	that	the	start	command	has	been	received	and	the	system	has	reached	stage	3	of
the	start-up	sequence,	the	clutch	is	energised	and	the	system	changes	state’.

What	this	means	is	that	we	first	evaluate	the	status	of	the	start	command	event.	If	this	is
true	we	then	proceed	to	check	the	start-up	sequence	to	see	if	it’s	in	stage	3.	Provided	this	is
also	true	 (it	 is	 treated	as	a	boolean	variable)	then	the	transition	takes	place	(‘fires’).	 If	 it
isn’t	then	the	transition	doesn’t	fire;	the	system	stays	in	the	same	state.	Thus	what	we	have
here	is	an	event,	an	action	and	a	guard	on	the	transition,	figure	6.8a.

Fig.	6.8	State	diagrams	and	guards

On	the	surface	the	use	of	the	guard	construct	appears	to	be	straightforward.	This	certainly
is	the	case	when	it	evaluates	to	true.	Unfortunately,	when	the	guard	is	false,	things	become
a	bit	murky.	Many	articles	and	books	on	UML	merely	state	 that	 ‘it	 remains	 in	 the	same
state’.	 Others	 say,	 for	 example,	 ‘it	 stays	 in	 the	 same	 state	 and	 the	 event	 occurrence	 is
consumed’.	 We	 all	 agree	 that	 it	 remains	 in	 its	 original	 state,	 but	 what	 then?	 Most
importantly,	for	real	systems,	when/why	do	we	re-evaluate	the	event	(and	how	do	we	go
about	 doing	 this)?	 It	 seems	 to	 be	 open	 to	 individual	 interpretation,	 an	 unacceptable
situation.	What	we	need	to	do	(to	eliminate	any	ambiguities	or	ambivalences)	is	to	make
the	specification	more	robust.	To	do	this,	rewrite	the	original	specification	as	follows:

‘Provided	that	the	start	command	has	been	received	and	the	system	has	reached	stage	3	of
the	 start-up	 sequence,	 the	 clutch	 is	 energised	 and	 the	 system	 changes	 state	 to	 the
DriveMode	 state.	 If	 it	 isn’t	 in	 stage	 3	when	 the	 start	 command	 arrives	 then	 the	 system
shuts	down	and	changes	state	to	Shutdown’.

This	is	modelled	in	figure	6.8b,	where	clearly	one	of	the	guards	must	be	true.

There	are	situations,	of	course,	where	it	is	intended	that	the	guard	does	bar	a	transition	to
the	next	 state.	 It	 is	highly	 recommended	 to	 show	 it	 explicitly	on	 the	diagram	using,	 for
example,	a	self-transition	(see	later).

In	 embedded	 systems	 we	 frequently	 need	 to	 deal	 with	 compound	 events,	 those	 best
described	as	combinational	logic	problems.	For	example:	‘when	the	start	button	is	pressed
and	 the	 interlocks	 are	 clear	 then	 energise	 the	 starter	 relay’.	 UML	 doesn’t	 specifically
address	these	aspects,	but	they	are	easily	handled,	as	shown	in	figure	6.9.

Fig.	6.9	Multiple	events

Here	 the	combination	of	 the	 two	events	are	 treated	as	 if	 they’re	a	 single	boolean	value.
This	is	equivalent	to	a	logic	AND	gate,	where	the	output	only	goes	true	when	all	its	inputs
are	true.	Moreover,	there’s	no	sense	of	order;	it	doesn’t	matter	which	one	occurs	first.	In
practice	this	means	that	the	events	are	evaluated	until	both	become	true,	then	the	transition
is	made.

You	 should	 appreciate	 that	we	 can	 handle	many	 combinational	 logic	 variations	 such	 as
NAND,	OR,	NOR,	AND-OR,	 etc.	You	 should	 also	 be	 able	 to	work	 out	why	 the	 guard
construct	is	not	a	suitable	way	to	implement	such	constructs.	And	just	a	point	of	syntax;
the	keyword	‘when’	was	defined	in	UML	1.x,	but	appears	to	have	disappeared	in	UML	2.
As	it’s	a	very	expressive	term	we	choose	to	continue	using	it.

Frequently	we	 need	 to	 produce	multiple	 responses	 to	 a	 single	 event,	 e.g.	 ‘when	 lock	 is
selected,	both	the	doors	and	the	hatch	are	to	be	locked’.	UML	doesn’t	appear	to	consider
such	situations,	but	they’re	easily	dealt	with,	as	in	figure	6.10.

Fig.	6.10	Multiple	responses

This	 is	very	 straightforward,	 and	you	shouldn’t	have	any	difficulty	 in	handling	multiple
responses.	 Implicit	 here	 is	 that	 there	 is	 no	 time	 ordering	 of	 the	 responses	 (in	 an	 ideal
model	both	occur	simultaneously;	this	is	unlikely	to	be	the	case	in	real	systems).	If	time
ordering	is	important	you	could	denote	it	on	the	diagram.	However,	if	you	are	concerned
with	the	robustness	of	implementations	it	is	best	to	change	things:	introduce	extra	states.
Also,	 if	 you	 want	 to	 control	 the	 evaluation	 order	 of	 multiple	 events,	 use	 the	 same

approach.

To	round	 this	section	off	we’ll	 look	at	 two	 lesser-used	constructs.	First,	how	would	you
model	 the	 following	 specification:	 ‘A	 sonar	 pulse	 is	 transmitted,	 and	 after	 300
microseconds	the	range	gate	is	opened	in	order	to	process	echoes’.	We	could	resort	to	the
use	of	a	guard,	but	a	neater	solution	is	shown	in	figure	6.11.

Fig.	6.11	Transition	caused	by	time	elapse

Here	the	keyword	‘after’	is	used	to	denote	that	the	transition	is	triggered	after	the	required
time	delay.	Like	the	keyword	‘when’,	‘after’	was	defined	in	UML	1.x	but	not	in	UML	2.
As	before	we	choose	to	continue	using	it.

The	second	construct	is	that	shown	in	figure	6.12,	the	addition	of	an	attribute	to	the	event.

Fig.	6.12	Event-attribute	notation

This	 specifies	 that	 when	 the	 event	 LoadOnbridge	 occurs	 a	 transition	 is	 made	 and	 the
weight	value	is	passed	to	the	next	state.

6.3	State	related	behaviour
We	now	move	on	 to	 the	Moore	machine	 aspects	 of	 state	modelling:	 associating	 actions
with	 states.	 The	 state	models	we’ve	 developed	 so	 far	 do	 very	 little	while	 they’re	 in	 an
individual	 state.	 In	 fact	 all	 they	 do	 is	wait	 for	 events	 that	 cause	 the	 state	 to	 be	 exited.

However,	with	state-related	behaviour,	operations	are	performed	within	the	states	(and	not
on	the	transitions).	Three	important	cases	to	consider	are	code	executions	that	run:

	
To	completion.

For	a	limited	time.

Continuously	until	the	state	is	exited	(typical	of	control	loops).

These	are	all	defined	to	be	‘do-activities’,	figure	6.13.

Fig.	6.13	Activity	within	a	state	-	a	‘do-activity’.

This	defines	that	when	the	state	Running	is	entered	the	activity	MaintainSpeed,	identified
by	 the	 keyword	 ‘do’,	 is	 started.	 We	 can	 infer	 from	 the	 wording	 that	 the	 activity	 runs
continuously	but	there	is	no	formal	way	to	confirm	this.	Also,	we’re	not	restricted	to	one
activity	only;	there	can	be	multiple	entries	if	so	needed.

In	practice	state	diagrams	can	become	complex,	and	this	may	cause	problems	when	states
are	 entered	 via	 different	 routes.	 You	 may	 find	 that	 when	 you	 have	 different	 entry
transitions	the	actual	state	conditions	may	vary;	a	state	inconsistency	problem.	It	isn’t,	of
course,	 something	we’ve	 planned	 for	 in	 the	 design;	 it’s	 just	 a	mistake	 that	 hasn’t	 been
picked	 up.	 This	 is	 a	 difficult	 problem	 to	 deal	 with;	 you	 need	 to	 be	 very	 precise	 and
rigorous	with	 your	 design	 (more	 on	 this	when	 composite	 states	 are	 covered).	However,
one	aid	to	good	design	is	the	entry	action,	figure	6.14.

Fig.	6.14	Entry	action

What	this	specifies	is	that	when	a	state	is	entered,	any	activity	denoted	as	an	entry	one	is
carried	out.	Moreover,	 entry	 actions	 are	 the	 first	 ones	 to	 be	 performed.	This	 guarantees
that	such	actions	are	always	carried	out	irrespective	of	our	route	into	the	state.

There	is	an	equivalent	construct	to	deal	with	leaving	a	state,	the	exit	action,	figure	6.15.

Fig.	6.15	Exit	action

The	diagram	is	self-explanatory.

A	further	requirement	we	sometimes	meet	is,	once	we’re	in	a	state,	to	deal	with	specified
events	but	without	leaving	that	state.	To	handle	this	the	UML	state	machine	has	a	construct
called	an	‘activity	within	a	state’,	figure	6.16.

Fig.	6.16	Activities	within	a	state

This	specifies	that	while	we’re	in	the	Running	state	and	the	event	IncreaseSP	occurs	then
we	perform	the	action	RampFuelUp	 (which,	 in	 this	case,	 is	a	 run-to-completion	action).
No	changes	of	state	take	place.

6.4	Combining	state-related	and	transition-related	behaviours
It’s	a	very	simple	step	from	the	two	individual	models	to	one	that	combines	all	the	features
mentioned	 earlier.	 And	 the	 first	 example	 introduces	 yet	 another	 construct,	 the	 self-
transition	(figure	6.17).

Fig.	6.17	State	machine	-	self-transitions

The	meaning	of	this	is	quite	simple.	When	the	system	is	in	the	Running	state	and	the	event
ChangeGear	occurs	we	leave	Running,	perform	SignalGearbox,	and	then	return	to	where
we	came	from	(Running).	Now,	in	terms	of	the	response	itself,	 this	appears	to	be	almost
identical	 to	 an	 activity	within	 a	 state.	However,	 the	 significant	 difference	 is	 that	 as	 the
state	has	been	left	and	then	re-entered,	any	specified	exit	and	entry	actions	must	be	carried

out.

All	the	features	covered	so	far	are	illustrated	in	figure	6.18.

Fig.	6.18	Example	of	combined	transition	and	state	related	behaviour

You	should,	by	now,	recognise	all	 the	constructs	shown	and	be	able	 to	navigate	 through
the	diagram.

6.5	States	and	substates	-	composite	states
6.5.1	Composite	states	and	sequential	state	machines

In	the	example	state	models	given	so	far,	all	states	have	been	at	the	same	level.	This,	as
previously	 noted,	 results	 in	 a	 one-level	 or	 ‘flat’	 state	 diagram.	Now,	 for	 illustration	 and
explanation	 purposes,	 this	 is	 fine.	 However,	 when	 dealing	 with	 real	 applications	 such
diagrams	may	end	up	being	cluttered,	complex,	difficult	to	understand	and	hence	difficult
to	use.	Yet	this	is	something	we	should	avoid	like	the	plague;	diagrams	are	supposed	to	be
a	help,	not	a	hinderance.	Fortunately	help	is	at	hand:	the	UML	composite	state	machine.
What	 this	 does	 is	 allow	 us	 to	 ‘decompose’	 a	 single	 state	 into	 a	more	 detailed	 sub-state
model,	figure	6.19.

Fig.	6.19	Refinement	and	substates

As	 shown	 here	 there	 is	 a	 top-level	 flat	 state	 diagram,	 consisting	 of	 three	 states	 only.
However,	 the	 state	 Starting	 is	 really	 a	 high-level	 view	 of	 the	 behaviour	 given	 in	 the
substate	 diagram.	 So	 when	 the	 model	 runs	 it	 initially	 enters	 the	 Standby	 state,	 then
progresses	 to	 CheckingInterlocks,	 on	 to	 PrimingFuelUnit,	 etc.	 The	 transition	 in	 the
substate	 model	 from	 IgnitingFuel	 to	 its	 final	 state	 is	 actually	 a	 transition	 to	 Running.
Hence	 what	 we	 have	 here	 is	 a	 classic	 example	 of	 an	 information	 hiding,	 top-down,
stepwise	 refinement	 technique.	 Note	 also;	 it	 is	 permissible	 (and	 often	 quite	 useful)	 to
further	decompose	the	states	within	the	substate	machine.

A	 small	 point:	 you	can,	 if	 you	wish,	 show	 the	 substate	diagram	details	on	 the	 top-level
diagram.	 This,	 to	 me,	 seems	 to	 defeat	 the	 aim	 trying	 to	 simplify	 things.	 Hence	 the
recommended	approach	is	to	have	a	separate	diagram	for	the	substate	model.	To	show	that
state	 details	 are	 described	 in	 a	 separate	 substate	 diagram,	 the	 top-level	 state	 includes	 a
decomposition	indicator,	figure	6.20

Fig.	6.20	Decomposition	indication

This	 is	a	helpful	navigation	guide,	 especially	when	a	 substate	 is	 itself	 a	composite	 state
(it’s	perfectly	ok	to	decompose	down	as	many	levels	as	needed	by	the	design).	CASE	tools
normally	automate	navigation	between	the	various	levels.

Two	 further	 constructs	 that	 can	 be	 usefully	 applied	 to	 composite	 state	 diagrams	 are	 the
entry	point	and	exit	point	pseudo-states,	figure	6.21.

Fig.	6.21	Entry	and	exit	points

This	diagram	is	directly	equivalent	to	that	of	figure	6.19,	but	now	the	entry	and	exit	points
are	explicitly	denoted.	Observe	 that	using	consistent	naming	on	both	diagram	simplifies
the	job	of	dealing	with	separate	diagrams	(especially	as,	in	practice,	we	may	not	be	able	to
view	both	simultaneously).	Note	that	the	event	RunningSelected	on	the	top-level	diagram
is	 also	 shown	 in	 the	 substate	model;	 it’s	 the	 one	 that	 causes	 a	 transition	 from	 the	 state
IgnitingFuel	 to	 the	 exit	 point	ToRunning.	Observe	 also	 the	we	 specify	 the	 name	 of	 the
substate	 machine	 (the	 ‘referenced	 state	 machine’)	 as	 part	 of	 the	 ‘parent’	 state	 name:
Starting:StartingSubstates.

This	 diagram	 is	 simple,	 easy	 to	 follow	 and	 easy	 to	 use.	 However,	 for	 this	 particular

example,	 the	use	of	 entry	 and	 exit	 points	 is	 overkill;	we	don’t	 need	 them.	But	 consider
their	 role	 in	 a	more	 complex	 case,	 figure	 6.22	 (this	 is	 just	 a	 fragment	 of	 a	 larger	 state
diagram).

Fig.	6.22	Entry	and	exit	points	more

To	 begin	 with	 you’ll	 enter	 either	 one	 of	 two	 states:	 MonitoringGyroPack	 or
MonitoringAccelerometerPack.	 As	 you	 can	 see	 the	 successor	 state	 for	 both	 of	 them	 is
ProcessingSensorData.	However,	they	enter	it	via	two	different	entry	points,	thus	entering
different	substates.	Hence	the	model	execution	proceeds	either	as:

	
1.	 MonitoringGyroPack	=>	FilteringData(Kalman)	=>	UpdatingFlightData	or

2.	 MonitoringAccelerometerPack	 =>	 FilteringData(Notch)	 =>
UpdatingFlightData

There	are	 two	possible	 transitions	from	UpdatingFlightData,	one	to	exit	point	ToUADA,
the	other	to	ToUFCS.	The	associated	events	are	UpdateADS	and	UpdateFCS.

It	 is	 permissible	 to	 omit	 events	 on	 transitions	 that	 emanate	 from	 exit	 points;	 thus	 the
events	UpdateADS	and	UpdateFCS	could	be	left	off	figure	6.22.	The	decision	to	include
or	to	omit	such	events	is	really	a	matter	of	personal	choice.	However,	omitting	events	has
a	down-side	when	using	 the	 top-level	diagram;	we	can	deduce	only	 that	a	 transition	has
been	triggered	by	some	event	within	the	substate	machine.	Without	checking	the	substate
diagram	we	can	only	guess	at	the	reason.

6.5.2	Concurrent	state	machines

In	all	 the	examples	given	so	far,	model	execution	proceeded	as	a	set	of	sequential	steps:
from	initial	state	to	the	next	state,	then	the	next	one	and	so	on.	This	works	well	when	the
behaviour	 of	 individual,	 complete	 items	 (e.g.	 machinery,	 systems,	 software	 units,	 etc.)
needs	 to	 be	 modelled.	 But	 there	 are	 times,	 though,	 when	 it	 is	 necessary	 to	 model
concurrent	behaviour.	Consider,	for	example,	the	pump	unit	of	figure	6.23.

Fig.	6.23	State	diagrams	for	a	composite	unit	-	overall	behaviour

From	the	outside	this	is	seen	to	be	a	single	unit,	having	the	behaviour	defined	in	the	state
diagrams	of	 figure	6.23.	Observe	 that	here	 there	 is	no	 final	state,	 thus	 the	machine	 runs
indefinitely	(more	practically,	while	power	is	on).

The	communication	diagram	has	been	added	to	figure	6.23	 to	bring	home	the	point	 that
events	are	often	real-world	signals	(especially	important	in	embedded	systems).	And	that
raises	 the	 interesting	 question	 of	 just	 how	 the	 state	 machine	 gets	 to	 know	 about	 these
signals.	We’ll	have	a	look	at	this	(very	important	issue)	later,	in	the	concluding	part	of	the
chapter.

It	turns	out	that	in	our	example	the	pump	unit	is	actually	made	up	of	two	sub-units,	a	valve
and	a	motor.	Now,	suppose	that	we	had	to	delve	into	the	innards	of	the	pump	unit,	perhaps
for	maintenance.	It’s	then	necessary	to	treat	it	as	a	composite	unit	that	is	made	up	of	the
two	separate	sub-units.	These	operate	concurrently	as	 individual	 items,	having	their	own
modes	of	operation	as	defined	in	the	state	diagram	of	figure	6.24.

Fig.	6.24	Concurrent	state	modelling	in	UML

Although	they	run	concurrently	their	behaviour	is	determined	only	by	the	events	arriving
into	the	unit	(and,	in	this	case,	not	on	interactions	between	the	sub-units).	If	you	work	your
way	 around	 the	 model	 you	 can	 verify	 the	 relationship	 between	 the	 individual	 state
machines	and	the	overall	one,	figure	6.25.

Fig.	6.25	State	relationship	for	the	pump	unit

Please	verify	that	it’s	correct.

In	 this	 example	 it’s	 quite	 easy	 to	 cross-check	 the	 relationship	 of	 the	 individual	 state
models	with	that	of	the	overall	one.

Now,	if	we’d	started	with	the	individual	models	then,	to	produce	the	overall	model,	they
have	 to	 be	 combined.	 The	 way	 to	 do	 this	 (in	 general)	 is	 to	 first	 define	 all	 potential
combinations,	then	delete	those	that	can’t	happen.	It	can	be	see	that	there	are	six	potential
combinations

	
1.	 Isolated	mode	AND	Stopped;	Isolated	mode	AND	Running.

2.	 Air	feed	mode	AND	Stopped;	Air	feed	mode	AND	Running	;

3.	 IPN	feed	mode	AND	Stopped;	IPN	feed	mode	AND	Running	;

Three	 combinations	 cannot,	 in	 practice,	 occur	 and	 these	 are	 deleted	we’re	 left	with	 the
valid	combinations.	We	can	now	populate	 the	overall	state	diagram	with	 the	valid	states
(adding	in	events	and	transitions	as	appropriate).

This	example	was	easy	to	deal	with.	Even	so	we	needed	a	good	knowledge	of	the	overall
unit	behaviour	to	arrive	at	the	correct	result.	This,	I	hope,	will	make	it	clear	that	the	job	of
combining	complex	state	models	is	not	simple;	it	may	turn	out	to	be	really	quite	difficult.
Our	advice?	Wherever	possible	try	to	develop	designs	that	don’t	require	you	to	combine
state	models.	Moreover,	the	reverse	of	this,	splitting	a	high-level	state	model	into	separate
sub-models,	can	be	equally	difficult.

At	this	point	we	can	introduce	two	more	pseudo-states,	the	fork	and	the	join,	figure	6.26.

Fig.	6.26	State	model	of	parallel	processing

Here,	 just	 for	 simplicity,	 events	 have	 been	 omitted	 from	 the	 diagram.	 Assume	 that	 the
diagram	models	the	behaviour	of	the	software	in	a	multicore	processor.	The	processing	of
the	incoming	data	is	split	across	two	cores,	these	executing	in	parallel	(concurrently).	The
state	ProcessingVector1	applies	to	software	on	core	1	say	and	ProcessingVector2	to	core	2.

To	explain	what	happens,	 first	assume	 that	 the	model	 is	 in	 the	DataCollection	 state.	An
event	now	arrives	that	causes	a	transition	to	the	fork	pseudo-state	(DataReady),	where	the
transition	splits.	Two	transitions	emerge	from	DataReady,	one	 to	ProcessingVector1,	 the
other	to	ProcessingVector2.	These	are	simultaneous.	When	processing	is	complete	in	each
state	 a	 transition	 is	made	 to	 the	 join	 pseudo-state	AllCalcsFinished.	 The	 cores	may,	 of
course,	have	different	 calculation	 times,	 thus	 the	 incoming	 transitions	 arrive	 at	 different
times.	 However,	 a	 transition	 isn’t	 made	 out	 of	 AllCalcsFinished	 until	 both	 incoming
transitions	are	present.	At	 that	point	 the	model	enters	 the	TransmittingData	 state.	Hence
AllCalcsFinished	(the	join)	acts	as	a	synchronizing	mechanism.

Modelling	 using	 concurrent	 regions	 is	 fine	 for	 simple	 diagrams	 and,	 in	 some	 instances,
can	 be	 very	 helpful.	 The	 previous	 example,	 for	 instance,	 has	 very	 neatly	 shown	where
concurrent	 units	must	 synchronize	 their	 activities.	However	 in	many	 practical	 cases	 the
state	models	 of	 the	 individual	 units	 are	 quite	 complex;	 putting	 this	 information	 on	 one
diagram	 can	 result	 in	 confusion,	 not	 clarity.	 This	 is	 especially	 true	 where	 concurrent
activities	interact,	something	that	usually	happens	in	task-based	designs.	If	such	tasks	are
dynamically	 complex	 then	 they	need	 their	 own	 state	models	 (usually	 shown	 in	 separate
state	machine	diagrams).	If	there	is	any	task-to-task	signalling,	this	can	be	shown	on	the
individual	state	diagrams	using	the	constructs	of	figure	6.27.

Fig.	6.27	Receive	and	send	signals

As	shown	here	the	transition	from	state	1	to	state	2	takes	place	when	eventA	occurs.	The
event,	in	our	example,	is	actually	a	signal	received	from	a	different	concurrent	unit.	If	we
wish	 to	 show	 this	 explicitly	 on	 a	 state	 diagram	 a	 ‘signal	 receive’	 icon	 can	 be	 used.
Likewise,	a	‘signal	send’	icon	can	be	used	to	denote	that	an	event	provokes	a	sending	of	a
signal	to	another	state	machine	(the	action).

A	simple	example	showing	signalling	between	tasks	is	given	in	figure	6.28.

Fig.	6.28	Signalling	between	concurrent	units

It	also	makes	sense	(from	a	design/implementation	point	of	view)	to	augment	the	diagram
with	notes	explicitly	defining	the	sources	and	destinations	of	messages.

6.6	Minor	topics	-	diagram	simplification	and	decluttering
6.6.1	History	pseudostate

Consider	how	we’d	model	the	following	behaviour:

‘The	vehicle	infotainment	unit	has	three	operational	modes:	Tuner,	DVD	and	Aux.	When
electrical	power	 is	applied	 to	 the	unit	 it	 first	 enters	a	 standby	 state,	 transitioning	 to	an
operational	state	only	when	the	unit	On/Off	button	is	pressed	and	released	(‘depressed’,	a
soft-key	action).	When	this	button	is	next	depressed	the	system	returns	to	the	standby	state.

When	 the	unit	 enters	 the	operational	mode	 the	 first	 time	after	power	 is	applied	 tuner	 is
selected.

A	mode	button	is	used	to	change	the	operational	mode,	but	the	order	is	pre-defined:	Tuner
to	DVD	to	Aux	to	Tuner	and	so	on.	The	mode	button	action	is	also	a	soft-key	one.	Each
depress	moves	the	system	into	the	next	pre-defined	mode.

As	 stated	 above,	 when	 the	 unit	 is	 in	 an	 operational	 mode	 and	 the	 On/Off	 button	 is

depressed,	the	system	returns	to	the	standby	state	(irrespective	of	its	specific	operational
mode).	When	On/Off	is	once	again	depressed	the	system	returns	to	the	operational	mode	it
had	last	been	in.’

The	corresponding	state	diagram	is	that	of	figure	6.29

Fig.	6.29	State	model	-	simple	infotainment	unit

Here,	for	completeness,	the	event	On-Off	depressed	has	been	shown	on	both	the	high-level
and	the	substate	level	state	machine	diagrams.

To	cater	for	situations	like	this	UML	has	a	pseudostate	called	‘history’.	The	icon	for	this
(an	H	within	a	circle)	is	used	in	the	substate	diagram	of	figure	6.30,	replacing	the	original
initial	pseudostate	of	figure	6.29.

Fig.	6.30	State	model	with	history

This	defines	that	when	the	substate	model	is	entered	for	the	first	time,	the	history	state	acts
as	 the	 initial	 state.	 Subsequently	 when	 the	 substate	 model	 is	 running	 and	 the	 On-Off
depressed	 event	 occurs,	 then	 a	 transition	 is	 made	 from	Operational	 to	 Standby.	 More
precisely,	the	transition	could	have	come	from	the	Tuner,	DVD	or	Aux	substate.

Following	this,	the	next	time	the	event	On-Off	depressed	arises,	a	transition	is	made	from
Standby	back	into	the	substate	that	it	had	previously	been	in.

It	 can	 be	 seen	 how	 this	 construct	 leads	 to	 a	 much	 simpler	 and	 clearer	 state	 machine
diagram.	And,	provided	you’re	au	fait	with	the	rules,	very	easy	to	understand.

Well,	 that’s	 fine	 for	 producing	 and	 reading	 diagrams.	 But	 don’t	 be	 fooled	 by	 this
simplicity	if	your	intention	is	to	translate	this	state	diagram	to	code.	The	reality	is	that	any
code	 implementation	 will	 be	 driven	 by	 the	 state	 model	 of	 figure	 6.29	 (or	 something
similar).

So,	the	semantics	of	the	the	history	state	as	described	so	far	are	simple.	They	specify	that,
on	a	return	to	a	composite	state,	one	of	the	substates	visible	at	that	level	will	be	entered.
This,	strictly	speaking,	is	called	‘shallow’	history	in	UML.	Now,	though,	consider	where
substates	may	 themselves	be	decomposed	 into	 substates,	 also	having	a	memory	 feature.
As	 an	 example,	 suppose	 that	 the	Tuner	 substate	 was	 decomposed	 into	 substates	 which
define	the	tuning	presets.	Assume	that	we’re	in	‘FM104’	say	and	On-Off	depressed	occurs.
This	means	that	we	exit	the	sub-substate	‘FM104’,	going	to	Standby.	Now	when	On-Off
depressed	 next	 arrives	 we	 need	 to	 make	 sure	 that	 the	 systems	 transitions	 back	 into	 to
‘FM104’.	To	specify	such	a	requirement	we	could	add	a	history	state	to	the	decomposed

substate.	 However,	 UML	 gives	 us	 a	 second	 history	 form,	 ‘deep’	 history,	 for	 use	 with
examples	like	this.	This	is	used	in	place	of	the	shallow	history	indicator,	and	denotes	that
all	sub-substates	have	a	memory	feature.

A	personal	comment;	I	prefer	to	take	a	consistent	approach	and	use	the	shallow	memory
state	icon	only	(and	note	that	some	CASE	tools	may	not	supply	the	deep	history	icon).

6.6.2	Junction	and	choice	pseudostates

Here	we	once	again	use	pseudostates	to	simplify	diagrams	and	so	reap	the	benefits	of	such
simplification.	Take,	for	example,	the	fragment	of	a	state	machine	shown	in	figure	6.31.

Fig.	6.31	A	complex	state	diagram	fragment

To	properly	understand	even	this	quite	small	scenario	takes	much	care	and	patience.	Now
visualize	 the	 situation	where	 this	 is	 just	 one	 part	 of	 a	much	 larger	 state	 diagram.	How
much	 effort,	 do	 you	 think,	 would	 be	 needed	 to	 fully	 understand	 and	 work	 with	 such
information?	A	 somewhat	 rhetorical	 question,	methinks.	 Simplification	 is	 badly	 needed.
And	here	we	can	employ	yet	another	pseudostate,	the	junction.

Junction	states	come	in	two	flavours,	merge	and	split,	figure	6.32.

Fig.	6.32	Junction	pseudostates

The	merging	 action	 is	 shown	 in	 6.32a,	 where	 all	 transitions	 are	 all	 routed	 through	 the

junction	to	the	destination	state	UpdatingPilotsDisplay.	And,	in	accordance	with	the	rules
of	sequential	state	diagrams,	our	system	can	be	in	one	state	only.	So	only	one	actual	route
can	be	taken,	this	depending	on	the	originating	state.

Figure	6.32b	shows	the	splitting	of	a	transition,	where	there	are	three	possible	successor
states.	Remember,	these	are	mutually	exclusive,	so	it	is	essential	to	define	which	transition
is	taken	out	of	the	junction.	This	we	do,	as	you	can	see,	by	the	use	of	guards.

Now	for	a	final	point	concerning	junctions;	they	can	be	used	to	specify	both	merging	and
splitting,	as	per	figure	6.32c.	This,	a	combination	of	figures	6.32a	and	6.32b,	is	in	fact	the
redone	state	model	of	figure	6.31,	but	using	the	merge/split	junction.	The	resulting	clarity
speaks	for	itself.

Repeating	something	said	earlier;	don’t	 think	 this	 simplifies	 the	code	 implementation	of
the	model.	It	is	merely	a	diagramming	technique.

We’ll	 finish	 this	 section	 by	 reviewing	 the	 meaning	 and	 use	 of	 the	 choice	 pseudostate,
figure	6.33.

Fig.	6.33	Choice	pseudostate

It	looks	as	if	this	performs	exactly	the	same	function	as	the	split	junction,	which	is	true	up
to	a	point.	For	some	reason	(which	I	find	rather	esoteric)	UML	distinguishes	between	the
two,	as	follows	(UML-speak):

Junction	pseudostate	realizes	a	static	conditional	branch.	Here	the	guard	constraints	are
evaluated	before	any	transition	containing	the	pseudo	state	is	executed.

Choice	 pseudostate	 realizes	 a	 dynamic	 conditional	 branch.	 The	 guards	 are	 evaluated
when	the	transition	reaches	this	pseudostate.

So,	in	figure	6.33,	the	guard	conditions	could	be	updated	as	a	result	of	executing	the	action
SpecifyDisplayForUpdating;	only	then	are	they	used	to	select	the	valid	outgoing	transition
from	the	choice	pseudostate.

Personally	I’m	totally	underwhelmed	by	this	distinction.	However,	there	may	be	situations

where	 it’s	 important	 for	 you	 to	 know	 the	 difference	 between	 the	 two	 (e.g	 if	 you	 are
reviewing	the	work	of	others).

6.7	Code-related	aspects
This	 section	 deals	 with	 the	 translation	 of	 the	 state	 machine	 model	 into	 source	 code.
However,	here	it	is	limited	to	implementation	in	a	sequential	code	unit,	the	area	where	it	is
most	likely	to	be	used.	Key	factors	central	to	the	approach	taken	here	are	the:

	
Provision	 of	 code	 to	 manipulate	 the	 state	 machine	 itself	 (the	 ‘state
controller’).

Localization	of	all	processing	code	to	the	individual	states.

Minimization	of	coupling	between	the	controller	and	the	state	code	units.

Localization	of	decision-making	to	the	code	of	the	individual	states.

There	are	many	ways	to	implement	state	machines	but	this	method	is	simple,	clear,	proven
and	 robust	 (a	 much	 deeper	 coverage	 of	 this	 issue	 is	 given	 in	 ‘Practical	 Statecharts	 in
C/C++’	by	Miro	Samek).	An	important	point	to	understand	is	that,	when	using	sequential
code,	 events	 don’t	 ‘magically’	 arrive;	 they	 have	 to	 be	 obtained.	 Generally	 this	 means
reading	 the	value	of	a	program	variable	or	obtaining	an	 input	 from	a	 real-world	device.
Once	a	event	is	deemed	to	be	‘true’	then	the	appropriate	response	is	generated.	Moreover,
from	the	state	diagram	information,	the	state	‘knows’	which	transition	to	take;	i.e.	which
state	is	the	next	one.	In	the	program	design	technique	used	here	each	individual	state	must
specify	the	destination	of	the	transitions.

Consider	an	example	of	a	generalized	state	machine,	figure	6.34.

Fig.	6.34	Generalized	state	machine

The	controller	code	that	implements	this	is	relatively	simple,	as	shown	in	figure	6.35.

Fig.	6.35	Code	for	generalized	state	machine	-	the	state	controller

Here	 the	 processing	 code	 of	 each	 state	 is	wrapped	 up	 in	 a	 single	 function	 ‘RunStateX.
Thus	 a	 call	 on	 this	 starts	 the	 execution	 of	 the	 the	 state	 code,	 which	 then	 runs	 to
completion.	 On	 its	 return	 to	 the	 calling	 unit,	 (RunStateController)	 it	 brings	 with	 it	 the
name	 of	 the	 next	 state	 to	 be	 run.	 The	 state	 so	 identified	 is	 subsequently	 called	 into
execution	by	the	action	of	the	code	switch	selection	mechanism	(which	is	itself	running	in
an	endless	loop).	Observe	that	on	first	call	of	RunStateController	the	variable	NextState	is
initialised	to	StateA.

We’ll	 defer	 discussion	 of	 the	 processing	 carried	 out	 within	 the	 states	 until	 activity
diagrams	have	been	covered.

Review
You	should	now:

	
Appreciate	 why	 many	 real-time	 systems	 have	 a	 changing	 pattern	 of
behaviour.

See	how	the	state	machine	diagram	allows	you	to	model	such	operations.

Understand	 the	 concepts	 of	 states,	 transitions,	 events	 (conditions)	 and
actions	(responses).

Understand	 the	 rules	 and	 notation	 of	 the	 Mealy	 and	 Moore	 finite	 state
machines.

Appreciate	that	an	event	is	required	to	cause	a	state	change.

Understand	that,	in	some	circumstances,	the	completion	of	processing	can
be	considered	to	be	an	event.

Realise	 that	an	action	is	not	necessarily	produced.	Also	realise	 that,	when
an	action	is	generated,	it	is	a	response	to	an	event.

Understand	the	syntax	of	the	UML	state	machine	model.

Understand	what	entry	and	exit	actions	are	and	how	they	relate	to	both	self-
transitions	and	activities	within	a	state.

Know	what	composite	states	are	and	why	we	use	them.

Appreciate	the	use	of	entry	and	exit	points	in	substate	diagrams.

Know	the	syntax	and	semantics	of	the	following	pseudostates:	initial,	final,
history,	join	and	choice.

Appreciate	the	use	of	the	history	(memory)	feature.

Be	 able	 to	 model	 concurrent	 states	 (using	 fork	 and	 join	 pseudostates	 if
needed).

Appreciate	what	receive	and	send	signals	are	and	why	we’d	use	them.

Understand	how	to	map	a	state	machine	to	sequential	code	to	form	a	state
controller.

Chapter	7	-	The	processing	model

The	objectives	of	this	chapter	are	to:

	
Introduce	process	modelling	and	models.
Illustrate	the	usefulness	widespread	application	of	such	models.
Explain	how	processing	models	can	be	developed	using	the	UML	activity
diagram.
Describe	 a	 limited	 but	 useful	 set	 of	 activity	 diagram	 constructs	 and	 how
they	can	be	used.
Show	 how	 activity	 diagrams	 can	 model	 both	 sequential	 and	 parallel
processing.
Describe	the	use	of	activity	diagrams	for	specifying	program	structures	(the
program	structure	diagram).
Explain	how	structured,	top-down	designs	can	be	developed	using	activity
diagrams.
Show	how	to	map	program	structure	charts	to	source	code.

7.1	Introduction	to	process	modelling
Process	modelling	(loosely	‘the	hows	and	ways	of	doing	things’)	has	been	an	integral	part
of	business,	engineering	and	science	activities	for	aeons.	 In	general	 the	diagram	formats
and	the	symbols	used	are	many	and	varied,	having	been	developed	mainly	in	ad-hoc	ways,
figure	7.1.

Figure	7.1	Examples	of	process	models

Yet	they	are	usually	quite	easy	to	understand,	even	for	the	non-specialist.	As	a	result	they
are	an	excellent	communication	vehicle	for	team	work,	especially	cross-disciplinary	ones.
What	is	also	interesting	is	that	such	models	have	been	used	for	a	variety	of	purposes.	In
figure	7.1	for	instance:

	
The	Telecomms	example	is	an	aid	for	fault-finding	and	general	diagnostic
testing.

The	Medical	example	is	used	to	specify	how	a	new	system	is	 intended	to
work.

The	 Local	 government	 example	 is	 an	 evaluation	 guide	 for	 the	 use	 of
employees.

The	 Purchase	 Order	 Process	 example	 defines	 how	 a	 specific	 business
process	(handling	purchase	orders)	should	be	done.

The	 final	 example,	 order	 processing,	 is	 especially	 relevant	 to	 our	work,	 so	 please	 read
through	it	and	assimilate	its	details.	Observe	that	while,	like	the	others,	it	performs	a	set	of
sequential	actions	(involving	decision	making	at	times)	it	also:

	
Specifies	 all	 participants	 taking	 part	 in	 the	 process	 (Accounting,
Purchasing,	Materials	Management	and	Any	department).

Shows	that	some	actions	are	carried	out	in	parallel	(after	‘Place	Order’	up
to	‘Manage	Cash	Flow’).

Note,	 though,	 it	 does	 not	 define	 that	 these	 parallel	 actions	 are	 necessarily	 carried	 out
simultaneously.

Note	also	 the	style	of	wording	used	 to	specify	 the	actions	 to	be	 taken	(e.g.	Place	Order,
Forecast	Expenditure,	Prepare	Payment,	etc).	These	tell	us	what	to	do	(contrast	this	with
state	naming,	which	tells	us	where	we	are).	On	a	pedantic	note,	it’s	the	contrast	between
the	 transitive	 and	 the	 present	 participle	 verb	 forms	 (now	 I’m	 sure	 you	 feel	 better	 for
knowing	that!).	But	forget	the	grammar;	just	stick	to	using	the	active	form	of	the	verb.

At	this	point	I	can	understand	that	you	might	consider	such	advice	to	be	somewhat	trivial.
Not	 so;	 it	 is	 actually	 quite	 important.	 Because,	 in	 my	 experience,	 the	 use	 of	 passive
expressions	can	easily	result	in	wooly	and	sloppy	implementations.	Active	terms	such	as
‘measure	 sensor	 data’	 are	much	more	 focussed	 than	 casual	 passive	 expressions	 such	 as
‘data	collection’.

Well,	now	that	the	general	aspects	of	process	modelling	have	been	covered,	we	can	move
onto	the	UML	version.

7.2	Basics	of	UML	process	modelling	-	activity	diagrams
7.2.1	Introduction	to	activity	diagrams

In	UML,	 process	modelling	 is	 done	 using	 activity	 diagrams.	Unfortunately,	what	was	 a
relatively	 simple	 topic	 in	UML1.x	 became	 something	 really	 quite	 complex	 in	UML2.x
(Martin	 Fowler	 gives	 you	 a	 taste	 of	 what	 to	 expect	 when	 he	 talks	 about	 ‘the	 demonic
depths	of	the	UML	specification).	Yet,	in	practice,	it	seems	that	few	of	the	newer	features
are	widely	 used.	 So	 here	we’ll	 restrict	 activity	 diagram	modelling	 to	 things	 that,	 in	my
opinion,	are	really	very	useful:

	
To	describe	general	processing	operations.

To	act	as	a	program	specification	model	-	the	program	structure	chart.

The	set	of	symbols	used	in	our	diagrams	are	shown	in	figure	7.2,	where	many	(if	not	most)
will	be	readily	recognized.

Figure	7.2	Activity	diagram	symbols	(basic)

In	simple	terms	an	Activity	a	“job”	to	be	done.	An	Action	is	a	specific	piece	of	processing
(or	“work”)	carried	out	as	part	of	the	overall	activity.	The	most	basic	activity	diagram	uses
a	combination	of	 action	 and	 control	 nodes	 (initial,	 decision,	merge	 and	 final),	 as	 in	 the
example	of	figure	7.3.

Figure	7.3	Simple	activity	diagram	example

This	could,	for	example,	be	used	to	specify	the	processing	to	be	carried	out	by	a	software
function	(in	this	case	named	‘Check	pollution	level’).	The	model	becomes	active	when	the
function	 is	called,	 finishing	when	control	 is	 returned	 to	 the	calling	unit	 (after	 the	action
Update	display	is	performed).

You	should	find	this	to	be	very	straightforward	to	use	because	of	its	similarity	to	a	flow
chart.	Note	how	the	guard	conditions	define	which	route	is	to	be	taken	out	of	the	decision
node	(clearly	when	the	guards	are	evaluated	only	one	can	be	true).	Also,	you	can	have	as
many	output	control	 flows	as	you	 like,	 it’s	not	 limited	 to	 three.	Likewise,	a	merge	node
can	have	multiple	inputs,	as	dictated	by	the	design.

Activity	 diagrams	 can	 also	 show	 combinations	 of	 sequential	 and	 parallel	 actions,	 as	 in
figure	7.4.

Figure	7.4	Activity	diagram	describing	sequential	and	parallel	processing

The	 diagram	 here	 is	 framed	 in	 the	 standard	 way,	 with	 its	 type	 (‘activity’)	 and	 name
(Stabilize	array)	shown	at	the	top	left.	Included	here	are	the	control	nodes	fork	and	join,
used	to	synchronize	the	two	actions	Do	spectral	analysis	and	Do	system	identification.	We
read	the	diagram	as	follows:

When	 the	model	 starts	 the	 action	Read	sensor	data	 is	 carried	 out.	The	 control	 flow	 from	 this	 goes	 to	 the	 fork	 node,
where	it	splits	into	two	outgoing	paths	(implicit	here	is	that	the	data	output	from	Read	sensor	data	forms	the	input	to	the
parallel	actions).	Both	outputs	are	fed	to	the	synchronizing	node	(implicit	is	that	the	results	are	combined);	only	when
both	are	present	is	progress	made	to	the	next	action	node	where	Compute	control	signal	is	performed.

This	example	used	the	activity	diagram	to	emphasise	 the	overall	process,	not	 to	act	as	a
program	 structure	 chart	 (although	 it	 could	 eventually	 be	 used	 for	 such	 a	 purpose).	 In
particular	 it	 defines	 where	 parallel	 actions	 take	 place	 and	 what	 they	 are,	 something
essential	for	parallel	processing.

In	many	cases	it	is	necessary	to	explicitly	specify	where	the	parallel	activities	take	place.
This	is	where	activity	partitions	(also	called	‘swimlanes’)	come	into	use,	figure	7.5.

Figure	7.5	Activity	diagram	swimlanes	(activity	partitions)

As	you	can	see	the	total	set	of	activities	has	been	partitioned	across	three	processors:	Data
acquisition,	Spectral	analysis	and	System	identification.	This	type	of	presentation	is	very
good	 at	 showing	 the	 overall	 processing	 activities	 carried	 out	 by	 systems.	And,	 a	 bonus
point,	they	are	readily	understood	by	non-specialists.

7.2.2	Using	signals

The	basic	activity	diagram	can	be	a	very	useful	way	to	describe	the	processing	carried	out
by	 an	 individual	 software	 object.	 However,	 practical	 designs	 consist	 of	 sets	 of
collaborating	objects.	In	such	cases	it	can	be	helpful	(sometimes	necessary)	to	show	inter-
object	messaging	on	the	activity	diagrams.	To	do	this	we	use	send	and	receive	signals	to
handle	 the	 messaging	 actions.	 An	 example	 of	 this	 is	 given	 in	 figure	 7.6,	 showing
interactions	with	an	object	Profiler1.

Figure	7.6	Using	send	and	receive	signals

Read	through	the	diagram	to	make	sure	that	you	can	follow	the	program	flow.	By	now	this
shouldn’t	present	any	difficulty	(and	if	you’re	new	to	activity	diagrams	then	it	can	act	as	a
useful	consolidation	exercise).	There	is,	however,	one	important	point	 to	note	relating	to

signal	 input	 (accept)	 nodes.	 When	 the	 execution	 flow	 reaches	 a	 signal	 input,	 UML
specifies	that	it	waits	until	the	signal	is	accepted.	In	many	(most?)	embedded	applications
this	 just	wouldn’t	 be	 acceptable,	 so	 some	 sort	 of	 time-out	 protection	 is	 necessary.	 Such
protection	 can	 be	 provided	 by	 using	 a	 time	 signal	 (more	 formally	 called	 a	 ‘wait	 time
action’),	as	shown	in	figure	7.7a.

Figure	7.7	Use	of	time	signal

From	 this	 you	 can	 see	 that	 once	 the	 action	 Switch	 water	 heater	 on	 is	 completed	 flow
continues	to	the	time	signal	Wait	30	minutes.	The	arrival	of	the	flow	starts	the	timer	action
and	 then	waits.	Only	when	 the	 timer	 expires	 does	 flow	 continue	 onwards	 to	 the	 action
Open	discharge	valve.	Note	also	that	if	a	time	signal	hasn’t	got	an	input	it	is	assumed	to	be
permanently	 enabled	 (we	 could	 use	 this,	 for	 example,	 to	 trigger	 a	 periodic	 task),	 figure
7.7b.

7.2.3	Important	but	lesser-used	constructs

Two	constructs	that	you’re	not	likely	to	use	very	often	(but	are	still	important)	are:

	
The	final	flow	node	and
Exception	handling	and	interrupt	invocations

An	example	that	uses	the	final	flow	node	is	given	in	figure	7.8.	This	represents	processing
carried	out

Figure	7.8	Use	of	the	flow	final	node

within	 a	 multitasking	 system,	 here	 involving	 two	 tasks	 only.	 Processing	 begins	 with
performing	 the	 action	Start	 all	 tasks,	which	 starts	 two	 parallel	 (in	 this	 case	 concurrent)
processing	 operations,	 Run	 purging	 task	 and	 Initialize	 plant.	 When	 Run	 purging	 task
completes,	 this	 activity	 stream	 finishes	 (behaviour	 typical	 of	 a	 run-to-completion	 task).
However,	this	has	no	effect	on	the	rest	of	the	processing,	which	continues	until	the	system
pressure	is	OK.	At	that	point	the	activity	terminates.

The	second	construct,	exception	handler,	would	normally	be	implemented	in	code	using	a
‘raise	exception’	call.	Its	purpose	is	to	invoke	some	action	to	protect	a	system	if	software
problems	 are	 detected	 (e.g.	 data	 out	 of	 range,	 number	 overflow,	 etc.).	 This	 concept	 is
shown	in	figure	7.9a.

Figure	7.9	Exception	handling	and	interrupt	invocation

Strictly	speaking	there	are	two	parts	to	the	protection	action,	fault	detection	and	exception
raising.	Here	the	processing	to	be	protected	is	that	of	‘Action	2’,	defined	to	be	a	protected
node.	 If	 the	 code	 here	 detects	 a	 program	 violation	 it	 unconditionally	 transfers	 program
control	 to	 the	 exception	 handler	 activity	 ‘Activity	 X’.	 A	 concrete	 example	 is	 given	 in
figure	 7.9b,	 where	 the	 the	 protected	 node	 action	 validates	 the	 incoming	 signal	 data.	 If
overflow	 is	detected	 then	an	exception	 is	 raised	and	control	 transferred	 to	 the	exception
handler	 Freeze	 system.	 According	 to	 the	 UML	 specification	 the	 next	 action	 to	 be
performed	is	Check	for	alarm.	Unfortunately,	in	reality	this	is	something	that	we’d	rarely
(if	 ever)	 do	 in	 real-time	 embedded	 systems.	 So,	 if	 you	 use	 this	 construct	 but	 intend	 to
deviate	from	the	specified	behaviour,	please	provide	a	note	on	your	diagram.

If	your	programming	 language	doesn’t	 include	an	exception	 raising	mechanism	you	can
mimic	it	by	invoking	an	interrupt	(either	hardware	or	software,	as	you	wish).

7.3	Why	program	structure	diagrams?
Program	structure	diagrams,	when	used	for	design	purposes,	specify	the	code	structure	of
programs.	But,	 in	reality,	how	useful	are	such	diagrams?	This	section	sets	out	 to	answer
that	question;	 it	 also	 aims	 to	 convince	you	 that	 it	 really	 is	 a	good	 idea	 to	 employ	 these
diagrams.

Let’s	start	by	considering	the	situation	depicted	in	figure	7.10.	Here	the	requirement	is	to
implement	a	complex	algorithmic	specification	in	source	code.

Figure	7.10	Specification	to	code	-	a	semantic	gap

Clearly,	 if	 the	 specification	 is	 complex	 then	 the	 resulting	 implementation	 will	 also	 be
complex.	And	that	is	a	very	undesirable	situation	as	it	may	very	well	cause	problems,	in
two	ways:

	

First,	 we	 may	 not	 properly	 understand	 the	 specifications	 and	 thus
incorrectly	 specify	 the	 code	 requirements.	 So,	 while	 the	 code
implementation	may	be	faultless,	it	doesn’t	solve	the	right	problem.

Second,	we	may	make	mistakes	in	implementing	the	(correct)	specification,
thus	failing	to	solve	the	problem	correctly.

With	very	complex	issues	there	can	be	a	huge	semantic	gap	between	the	problem	and	the
solution	domains.	In	such	cases	it’s	always	possible	that	we	may	also	incorrectly	solve	an
incorrectly	specified	problem.	Once	again	we	look	to	diagramming	to	help	us	out	to	tame
this	complexity.	Specifically	we’ll	use	the	activity	diagram	both	to	describe	the	software
requirement	and	to	specify	the	resulting	program	structure	(see	next	section).

Some	 of	 you	 may	 well	 feel	 that	 it’s	 sufficient	 to	 work	 with	 class	 diagrams;	 anything
beyond	that	isn’t	for	real	coders!	So	let’s	look	at	taking	on	the	requirement	to	produce	a
code	solution	to	the	following	algorithmic	requirement:

==

Activity:	Run	System	Supervisor

(Part	 of	 an	 algorithmic	 specification	 for	 an	 experimental	 avionic	 adaptive	 autopilot
controller)

Compute	the	average	of	the	absolute	value	of	the	control	error.	Perform	a	stability	check
and	 decide	 whether	 the	 process	 is	 fully	 stable,	 unstable	 or	 marginally	 stable.	 If	 fully
stable,	no	 further	action	 is	 to	be	 taken.	If	unstable,	reset	 the	controller	 to	a	sub-optimal
but	stable	condition.	If	the	process	is	marginally	stable,	carry	out	a	trend	analysis	of	the
data	to	determine	further	action.

If	 unstable:	 To	 determine	 the	 next	 best	 controller	 action,	 first	 detune	 the	 self-tuning
regulator	 adaptive	 mechanism.	 Then	 load	 the	 controller	 with	 a	 known	 (predetermined)
safe	set	of	control	parameters	and	reset	 it.	Call	on	 the	expert	system	to	determine	 if	 the
problem	 is	 due	 to	 an	 incorrect	 model	 assumption,	 an	 inappropriate	 identification
assumption,	too	great	a	demand	on	the	capabilities	of	the	controller	and/or	unaccounted
or	extraneous	environmental	disturbances.

If	marginally	 stable:	Call	 the	 trend	analyser	 to	perform	 linear	 curve	 fitting	on	 the	data
and	so	predict	future	changes	to	stability	margins.	If	the	trend	is	towards	full	stability,	no
action	need	be	 taken.	 If	 the	margin	 is	predicted	 to	deteriorate,	call	 the	expert	system	as
detailed	above.

==

This,	 by	 the	way,	 has	 been	 taken	 verbatim	 from	 the	 technical	manual	 of	 a	 real	 avionic
project;	it	isn’t	a	made-up	problem.

A	 class-based	 approach	 to	 this	 could	 well	 result	 in	 the	 solution	 shown	 in	 figure	 7.11,
involving	one	class	only.

Figure	7.11	Specification	to	code	-	how	helpful	is	the	class	diagram?

As	you	can	see,	the	class	has	many	attributes	but	needs	only	one	public	method.	It	hasn’t
taken	much	effort	to	arrive	at	this	result,	but	now	for	the	really	important	question.	Has	it
helped	in	any	way	to	close	the	semantic	gap	between	the	real	requirements	and	their	code
solution?	I	 think	 that	you	can	very	easily	work	out	 the	answer	 to	 that.	But,	will	we	fare
any	better	by	using	activity	diagrams?

Earlier	it	was	pointed	out	that	there	are	two	distinct	aspects	to	this	work.	The	first	one	is	to
make	 sure	 that	 the	 correct	 problem	 is	 being	 solved;	 that’s	 what	 we’ll	 take	 on	 now.
Applying	 activity	 diagrams	 to	 formalize	written	 requirements	 brings	 great	 rigour	 to	 the
analysis	 process.	 And,	 as	 previously	 mentioned,	 these	 diagrams	 can	 be	 used	 as	 a
communication	medium:	in	particular	to	provide	feedback	to	our	‘customer’.	Figure	7.12
shows	the	result	of	re-defining	the	text	specifications	as	an	activity	diagram;	please	check
that	it	correctly	represents	the	original	specification.

Figure	7.12	Algorithmic	specification	-	activity	diagram	form

And	now	for	a	small	digression	 into	design	practices.	Many	of	you	may	be	surprised	at
some	of	 the	details,	 in	particular	 the	duplication	of	 actions	 ‘Run	 the	expert	 system’	and
‘Record	info	for	post-flight	analysis’.	This	has	come	about	because	the	diagram	has	been
developed	using	the	rules	of	structured	programming,	discussed	in	the	next	section.	Both
actions	 are	 likely	 to	 be	 implemented	 as	 functions,	 and	 so	 the	 duplication	will	 result	 in
extra	function	calls	 in	the	code	(requiring	more	ROM	space).	Some	programmers	would

regard	this	as	an	unnecessary	waste	of	resources,	but	is	it	really	a	problem?	No;	in	reality
it’s	 a	 trivial	 overhead	 (and	 if	 you’re	worried	 about	 this	 overhead	 you	 really	 do	 need	 to
have	a	good	look	at	your	design).	What	we	gain,	however,	is	a	robust,	easily	testable	and
easily	maintainable	code	structure,	something	to	be	prized.

7.4	Structuring	and	decomposing	activity	diagrams
The	original	flow	charts	were	quite	good	at	dealing	with	small	problems.	However,	when
they	were	used	 to	 tackle	 larger	ones	 (i.e.	 full	programs)	 they	 really	didn’t	 scale	up	very
well.	 Such	 designs	 usually	 ended	 up	 scattered	 across	many	 pages,	making	 it	 extremely
difficult	to:

	
See	the	overall	picture.

Debug	existing	programs.

Evaluate	the	effects	of	changes.

Maintain	the	design.

These	 deficiencies	 led	 to	 the	 development	 in	 the	 1960’s	 and	 70’s	 of	 structured,	 multi-
layered	 structure	 charts	 such	 as	 those	 of	 Yourdon,	 Jackson,	 Rothon	 and	 Nassi-
Schneiderman.	And	then	the	activity	diagrams	of	UML	1	brought	us	full	circle	back	to	the
1950’s!

Fortunately	 UML	 2	 has	 remedied	 things	 to	 some	 extent	 by	 allowing	 activities	 to	 be
decomposed.	With	this	we	can	produce	designs	that	minimize	the	problems	listed	above,
by	building	them	in	a	structured,	top-down	stepwise	manner.	Let	us	now	do	this	with	the
autopilot	algorithm	discussed	earlier,	starting	with	a	top-level	design	(figure	7.13).

Figure	7.13	Activity	RunSystemSupervisor

The	overall	activity	consists	of	three	sub-activities,	each	of	these	showing	a	decomposition
symbol	(the	standard	decomposition	symbol	of	an	activity	looks	like	a	small	rake;	the	one
here	 is	 CASE-tool	 specific).	What	 this	 tells	 us	 is	 that	 each	 sub-activity	 is	 actually	 the
topmost	 part	 of	 some	 hierarchy	 of	 activities	 or	 actions.	 For	 simplicity	 we’ll	 call	 these
‘structured’	activities.	When	we	invoke	a	structured	activity	we	actually	start	a	lower-level
activity,	as	shown	in	figures	7.14	and	7.15.

Figure	7.14	Sub-activity	ComputingStability

Figure	7.15	Sub-activity	ProcessUnstableCondition

The	advantages	of	using	this	technique	in	the	design	of	software	have	been	well	and	truly
discussed;	further	words	are	unnecessary.

7.5	Applying	activity	diagram	symbols	to	interaction	overview	diagrams
Interaction	 overview	 diagrams	 were	 introduced	 in	 chapter	 5	 as	 part	 of	 the	 behavioural
interactions	model.	The	examples	given	were	fairly	straightforward,	involving	sequential
sets	of	interaction	fragments.	However,	by	incorporating	activity	diagram	symbols	into	the
overview	diagrams,	we	can	describe	much	more	complex	situations,	as	in	figure	7.16.

Figure	7.16	Interaction	overview	with	activities

This	 is	 a	 very	 straightforward	 topic	 and	 the	 diagram	 should	 (at	 this	 stage)	 be	 self-
explanatory.

7.6	Code-related	aspects	of	program	design
For	us	a	keystone	in	program	design	is	the	use	of	structured	programming	(SP)	techniques.
There	are	sound	theoretical	and	practical	reasons	that	support	this	approach;	in	fact	I	can’t
think	why	you	wouldn’t	go	down	this	route.	However,	a	detailed	discussion	is	beyond	the
scope	of	this	book,	so	for	the	moment	just	take	it	on	trust.

SP	has	three	basic	control	constructs:	sequence,	selection	and	iteration,	figure	7.17.

Fig.	7.17	Basic	control	structures	of	SP

Iterations	 actually	 come	 in	 three	 forms:	pre-check,	post-check	and	mid-check.	Also,	 the
simple	selection	example	is	really	a	special	case	of	the	more	general	multiple	choice	one.
And	that’s	all	you	need	for	the	building	of	sound	programs!

Central	to	these	structures	is	the	rule	that	unconditional	transfers	of	control	are	forbidden
(aka	 the	 great	 ‘GO	 TO’	 debate).	 In	 practice	 we	 do	 have	 to	 use	 such	 operations	 in
embedded	software,	but	only	for	abnormal	conditions	(such	as	exception	handling).	And
you’ve	already	seen	how	to	portray	this	in	activity	diagrams.

Now,	as	an	exercise,	 let	us	develop	ways	 to	show	the	standard	constructs	using	pseudo-
code.	 Having	 done	 that	 we	 can	 then	map	 these	 into	 our	 actual	 programming	 language
using	defined	mapping	methods.	Referring	to	figure	7.17:

====================================

Simple	selection:

If	CheckTestConditionTrue

then

DoActionS1

else

DoActionS2

end	If

====================================

Pre-check	iteration:

WhileTestConditionTrue

DoActionS1

end	While

====================================

Post-Check	iteration:

Repeat

DoActionS2

UntilTestConditionTrue

end	Repeat

====================================

Mid-check	iteration:

Loop

DoActionS1

ExitIf	CheckTestConditionTrue

DoActionS2

end	Loop

====================================

Multiple	choice	(selection):

Check	TestConditionValue

TestCondition	=	Route1;	DoActionS1;	exit

TestCondition	=	Route2;	DoActionS2;	exit

TestCondition	=	Route3;	DoActionS3;	exit

else	exit

end	Check

====================================

The	result	of	applying	these	to	figure	7.13	is	as	follows:

===

ProgramStart

DoComputingStability

Check	StabilityStatus

StabilityStatus	=	Stable;	exit

StabilityStatus	=	Unstable;

DoProcessUnstableCondition();	exit

StabilityStatus	=	MarginallyStable;

DoProcessMarginallyStableCondition();	exit

else	exit

end	Check

ProgramFinish

==

Mapping	this	into	C	or	C++	gives	the	following	program	fragment:

==

switch	(ComputingStability)

{

case	Stable:

break;

case	Unstable:	ProcessUnstableCondition;

break;

case	MarginallyStable:	ProcessMarginallyStableCondition;

break;

default:	break;

}

==

It	 is	 very	 strongly	 recommended	 that	 you	 define	 precisely	 how	 the	 diagram	 should	 be
mapped	 to	 source	 code.	 If	 you	do	 this	 then,	when	you	 look	 at	 an	 activity	diagram,	you
know	exactly	what	 to	 expect	 in	 the	 source	 code.	This	 is	makes	 code	 reviewing	 a	much
simpler	 process	 and	 it	 also	 helps	 in	 debugging.	 For	 instance,	 suppose	 the	 code	 doesn’t
execute	 properly	 but	 you	 know	 that	 the	 design	 is	 correct.	 Also,	 you	 verify	 that	 the
mapping	 to	 code	 has	 been	 done	 correctly.	 So,	 what	 does	 this	 tell	 you?	 It	 is	 that	 the
problem	must	lie	in	the	detailed	code	implementation.	Over	to	the	programmers!

Review
You	should	now:

	
Understand	what	process	modelling	is	and	how	it	helps	in	the	specification
and	analysis	of	designs.
Understand	how	UML	activity	diagrams	relate	to	process	modelling.
Know	what	 the	 following	 items	are,	how	they	are	used	and	how	they	are
shown	diagrammatically:

	
Action	nodes	and	actions.
Flow	final,	decision,	merge,	fork	and	join	nodes.
Guards.
Send,	receive	and	time	signals.
Activity	partitions	(swimlanes)
Exception	handlers.

Be	able	to	model	sequential	and	parallel	flows	using	activity	diagrams.
Appreciate	 why	 errors	 may	 occur	 in	 both	 analyzing	 and	 implementing
complex	requirements.
Understand	 how	 activity	 diagrams	 can	 be	 used	 both	 to	 formalize
requirements	and	to	specify	program	structures.
Be	 able	 to	 employ	 activity	 diagram	 constructs	 on	 interaction	 overview
diagrams.
Appreciate	why	activity	diagrams	help	to	reduce	errors	in	the	source	code.
Perceive	that	structured,	top-down	step-wise	refinement	techniques	make	it
easier	to	design	and	implement	software.
Know	what	a	decomposition	symbol	is	and	what	it	signifies.
Know	 how	 to	 implement	 structured	 design	 methods	 by	 decomposing
activities.
Know	the	basic	control	structures	of	structured	programming	and	be	able	to
implement	these	in	your	chosen	programming	language.
Understand	how	to	use	activity	diagrams	as	program	structure	charts.
Appreciate	why	we	 should	 use	 defined	 rules	 for	 the	mapping	 of	 activity
diagrams	to	source	code.

Chapter	8	-	The	usage	model

The	objectives	of	this	chapter	are	to:

	
Introduce	the	topic	of	use	case	analysis.
Demonstrate	the	content	and	application	of	the	use	case	model	and	the	use
case	diagram.
Describe	what	scenarios	are	and	how	they	relate	to	use	cases.
Show	how	use	cases	may	be	described	and	structured.
Illustrate	why	use	case	documentation	needs	structuring.

8.1	Introduction	to	usage	modelling	-	use	case	analysis
Without	a	doubt,	the	analysis	methodology	of	use	cases	has	made	an	immense	impact	on
the	 software	 scene.	 It	 is	 probably	 the	 dominant	 requirements	 analysis	 and	 specification
method	 in	 the	 software	 world	 of	 business	 systems.	 Although	 less	 widely	 used	 in	 the
embedded	world,	it	is	still	a	very	important	topic.	What	the	methodology	sets	out	to	do	is
help	us	to:

	
Analyze	clients	requirements.
Organize	and	present	requirements	in	a	way	that	is	useful,	meaningful	and
complete.
Minimize	confusion	and	misunderstanding	between	clients	and	suppliers.
Validate	system-level	designs.
Develop	specifications	for	the	software	system	itself.
Define	 the	outlines	of	 system	acceptance	 tests	 (for	 function,	performance
and	usage).

Unfortunately	 the	 UML	 specification	 gives	 only	 a	 very	 limited	 coverage	 of	 this	 topic.
Essentially	what	you	get	is	a	sparse	description	of	how	to	apply	various	diagrams	without
any	real	reasoning	about	their	use.	However,	to	employ	use	case	methods	effectively,	you
do	need	a	deeper	understanding	of	the	subject.	Hence	the	purpose	of	this	whole	section	is
to	provide	a	good	appreciation	of	use	case	basics.

The	underlying	ideas	are	really	quite	simple,	being	based	on	the	fact	that	people	are	users
of	systems,	figure	8.1

Figure	8.1	Use	cases	-	setting	the	scene

And,	 in	 general,	 system	 requirements	 are	 related	 to	 the	 whats,	 whens	 and	 hows	 of
people/system	interactions.	That	 is	what	we	set	out	 to	define	as	part	of	 the	requirements
analysis	process.

Of	course,	the	real	world	contains	many	people	and	many	systems.	First	we	must	establish
exactly	what	is	of	interest	to	us,	which	could	be	shown	as	in	figure	8.2.	Although	this	is	a
step	in	the	right

Figure	8.2	Systems	and	their	users

direction,	the	diagram	has	one	great	shortcoming.	We	have	no	idea	why	 the	people	using
these	systems.	This	leads	on	to	the	basics	of	the	use	case	diagram,	figure	8.3.

Figure	8.3	The	basics	of	the	use	case	diagram

It	shows	(figure	8.3a):

	
The	system	of	concern	is	a	bookshop.
There	are	two	users	(specifically	two	individuals).
The	 individuals	 are	 using	 the	 system	 to	 order	 a	 book	 (or	 books).	 Any
illustration	of	the	use	of	a	system	is	defined	to	be	a	‘use	case’;	hence	this
example	is	the	use	case	‘order	book’.

From	 the	 system’s	 point	 of	 view	 the	 two	 users	 are	 essentially	 the	 same;	 both	 are
customers.	Therefore,	 rather	 than	 focussing	on	 individuals,	we	 try	 to	 identify	 the	 ‘roles’
they	play	in	the	interaction.	In	this	example	both	people	are	‘customers’,	figure	8.3b.

At	this	stage	most	of	the	ideas	of	the	use	case	model	has	been	established.	However,	it	still
isn’t	complete;	we	have	no	 idea	what	actually	goes	on	when	a	customer	 tries	 to	order	a
book.	Thus	 the	diagram	symbol	needs	 to	be	backed	up	by	a	 text	description,	 figure	8.4.
Here	 we	 have	 the	 essential	 components	 of	 a	 use	 case;	 a	 diagram	 symbol	 and	 a	 text
description	 of	 the	 user/system	 interaction	 (there	 is,	 in	 fact,	 no	 need	 to	 limit	 yourself	 to
text;	anything	which	imparts	information	can	be	used.	But	more	of	that	later).

Figure	8.4	The	two	components	of	a	use	case

From	this	it	is	but	a	small	step	to	establish	the	components	of	the	use	case	model,	 figure
8.5.	This

Figure	8.5	The	components	of	the	use	case	model

consists	 of	 actors,	 use	 cases	 and	 use	 case	 descriptions.	 Each	 system	will	 have	 its	 own
model,	with	actors	depicting	users	(more	correctly,	roles	performed	by	users).	The	reasons
why	these	actors	are	using	the	system	are	shown	as	a	set	of	use	cases	within	the	system
boundary.	Supporting	these	are	the	use	case	descriptions.	Two	simple	examples	are	given
in	figure	8.6.

Figure	8.6	Example	use	case	diagrams

Each	system	is	drawn	as	a	rectangular	box,	with	the	relevant	use	cases	shown	as	ellipses
inside	 them.	Outside	 the	 system	boundary	 are	 the	 actors,	 connected	via	 lines	 to	 the	use
cases.	 In	 8.6a	 both	 the	 navigator	 actor	 and	 the	 pilot	 actor	 interact	 with	 the
navigation/weapon	aiming	(Nav/Was)	system	in	the	same	way;	they	use	it	to	find	out	what
the	 navigation	 waypoints	 are.	 Information	 flow	 is	 a	 two-way	 process.	 In	 8.6b,	 the
navigator	 uses	 the	 air	 data	 system	 to	 set	 airfield	 altitude:	 again	 a	 two-way	 process.
However,	 in	 this	 case,	 the	 pilot	 merely	 receives	 information	 from	 the	 system;	 the	 role
played	by	the	actor	is	thus	a	‘passive’	one.

Summarizing	things	to	date:	the	use	case	diagram	shows	all	users	of	the	system	and	their
reasons	 for	 using	 the	 system.	 It	 should	 go	without	 saying	 that	 all	 items	on	 the	 diagram
must	have	useful,	relevant	and	meaningful	names.	Moreover,	we	have	to	be	clear	exactly
where	our	system	boundary	lies.	In	the	example	given,	both	systems	are	within	the	overall
aircraft	system	(figure	8.7).

Figure	8.7	System	boundaries

However,	 from	 the	 perspective	 of	 an	 air	 traffic	 controller	 the	 pilot	 and	 navigator
themselves	form	part	of	the	aircraft	system.

A	small	aside	at	this	point.	There	have	been	many	definitions	of	the	term	use	case.	Here
we’ll	define	it	as	‘a	way	that	an	actor	uses	a	system	to	achieve	some	desired	result’.	This
result	or	‘goal’	should	determine	the	wording	used	on	the	use	case	diagram.	If	you	can’t
express	your	goals	simply	then	you	don’t	understand	what	you’re	trying	to	do.

8.2	Describing,	structuring	and	packaging	use	cases
Now	 let	 us	 look	 into	 the	 use	 case	 text	 descriptions	 in	 more	 detail.	 It	 is	 strongly
recommended	 that	 the	 first	 attempt	 should	 be	 short,	 clear	 and	 use	 ordinary	 language,
figure	8.8a.	A	structured,	formalized

Figure	8.8	Text	description	-	initial	and	expanded	versions

version	can	be	used	to	expand	on	this	at	a	later	stage,	figure	8.8b.	Trying	to	do	this	in	the
beginning	is	often	a	hindrance	to	clear	thinking.

Observe	that,	in	the	example,	the	text	is	enclosed	between	a	START	and	a	FINISH	marker.
The	starting	point	is	pretty	self-evident;	when	the	actor	begins	to	use	the	system.	Thus	a
use	case	always	has	a	single	starting	point.	This	however,	 is	not	necessarily	 true	 for	 the
finish	condition,	a	point	of	much	confusion.	Alistair	Cockburn’s	definition	(see	note	at	the
end	of	this	chapter)	is	clear	and	practical:	‘a	use	case	is	finished	when	the	goal	is	achieved
or	 abandoned’.	 That’s	 good	 enough	 for	 me.	 And	 this	 nicely	 leads	 into	 the	 topic	 of
scenarios,	figure	8.9.

Figure	8.9	Scenarios	-	text	description

Figure	8.9a	is	a	description	of	what	happens	assuming	that	everything	is	ok.	This	is	one
scenario	 (a	particular	 sequence	of	 actions	and	 interactions)	 for	 the	use	case	 ‘set	 airfield
altitude’.	The	 scenario,	 identified	 as	 ‘data	within	valid	 range’,	 has	 a	 single	 finish	point.
But	what	of	the	situation	where	the	data	entered	is	not	within	the	pre-defined	range?	The
interactions	which	take	place	in	these	circumstances	are	shown	in	figure	8.9b.	Here,	if	the
data	 is	 invalid	 it	 is	 rejected	 and	 a	 request	 made	 for	 new	 data.	 This	 is	 a	 second,	 valid
sequence	of	interactions	for	the	use	case,	a	second	scenario.

We	 can	 simplify	 our	 paperwork	 by	 combining	 scenarios	 as	 shown	 in	 figure	 8.10a.
Moreover,	if	it	helps,

Figure	8.10	Combining	scenarios

we	can	use	diagrams	to	show	the	logic	of	the	scenarios,	figure	8.10b.	This	also	brings	out
that	there	are	two	distinct	routes	through	the	use	case	text:	therefore	two	scenarios.

Showing	the	logic	of	the	scenarios	using	flow	charts	(or	activity	diagrams)	is	an	informal
way	of	doing	things.	The	UML	specification	gives	an	example	showing	the	behaviour	of	a
use	 case	 using	 a	 state	 machine	 (as,	 for	 example,	 figure	 8.11).	 Unfortunately	 it	 doesn’t
make	it	clear	whether	this	is	the	preferred	method	or	merely	a	demonstration.

Figure	8.11	Use	case	behaviour	-	state	machine	description

Now,	returning	to	scenarios.	In	reality	here	are	three	kinds	of	scenarios,	as	follows:

	
Normal	(error-free)	use	of	the	system.
Uses	 where	 errors	 occur	 but	 which	 can	 be	 dealt	 with	 as	 part	 of	 the
interaction	process	(e.g.	entering	invalid	data).
Uses	 where	 errors	 occur	 but	 which	 cannot	 be	 dealt	 with	 as	 part	 of	 the
normal	processing	(exceptions).

As	we	combine	more	and	more	scenarios,	text	documents	soon	become	complex,	difficult
to	read,	difficult	to	understand.	Hardly	a	step	forward	for	mankind,	as	the	whole	point	of
use	cases	is	to	make	things	understandable.	One	way	of	simplifying	documents	is	to	take	a
leaf	out	of	programming	techniques;	use	 the	equivalent	of	subprograms	and	subprogram
calls	(figure	8.12).

Figure	8.12	Simplifying	use	case	descriptions

Here	we	aim	to	write	the	‘top-level’	text	as	a	set	of	sequential	operations;	where	necessary
these	can	be	expanded	in	a	separate	text	document.	In	fact,	the	separate	text	can	be	treated
as	a	use	case	in	its	own	right,	figure	8.13.

Figure	8.13	Use	case	diagram	for	figure	8.12	-	the	include	relationship

The	use	 case	 ‘set	 airfield	 altitude’	 -	 the	base	 use	 case	 -	 is	 considered	 to	 include	 that	 of
‘validate	 data	 range’;	 this	 is	 defined	 to	 be	 an	 includes	 relationship.	 We	 can	 read	 the
diagram	 to	 mean	 that	 the	 base	 use	 case	 will	 use	 the	 behaviour	 of	 the	 included	 use;
moreover	it	will	do	so	at	explicit	points.	One	last	aspect	of	the	includes	relationship;	the
included	use	case	should	always	form	some	part	of	a	base	use	case.	It	is	not	meant	to	be	a
use	case	in	 its	own	right.	Moreover,	 the	included	use	case	is	an	integral	part	of	 the	base
one;	 without	 this	 the	 base	 use	 case	 is	 incomplete.	 Observe	 the	 notation	 used	 and	 the
direction	of	the	arrow.

Now	there	are	situations	where	a	base	use	case	is	complete,	as	per	the	‘check	alarm	status’
of	figure	8.14.

Figure	8.14	The	extend	relationship

Here	the	Air	Electronics	Officer	starts	the	base	use	case	‘Check	alarm	status’	to	check	out
the	generating	system	alarms.	Most	of	the	time	this	is	the	only	action	which	is	carried	out.
However,	 on	 certain	 occasions	 it	 may	 be	 necessary	 to	 (re)set	 alarm	 limits.	 In	 these
circumstances	 extra	 functions	 are	 performed,	 defined	 in	 the	 use	 case	 ‘set	 alarm	 limits’.
Thus	the	functionality	of	the	base	use	case	is	extended	by	the	second	one.	This	is	denoted
by	drawing	an	arrowed	line	from	the	extended	class	to	the	base	class.

The	distinction	between	includes	and	extends	causes	much	confusion.	One	way	to	resolve
this	 is	 to	ask	 the	question	 ‘if	 I	 remove	 the	 (included/extended)	use	case,	 is	 the	base	use
case	 complete?’	 Another	 view	 is	 that	 include	 use	 cases	 collect	 in	 one	 place	 behaviour
common	to	a	number	of	base	use	cases,	figure	8.15a.	Extend	use	cases	show	variations	on
a	theme,	figure	8.15b.

Figure	8.15	Comparing	the	includes	and	extends	relationships

Up	 to	 this	 point	 we	 have	 used	 actors	 to	 represent	 the	 roles	 of	 people.	 But	 frequently
systems	interact,	not	only	with	people,	but	with	other	systems,	figure	8.16a.

Figure	8.16	External	systems	as	actors

Here	 the	Nav/Was	system	uses	 information	provided	by	 the	air	data	system.	Thus,	 from
the	 point	 of	 view	 of	 the	 air	 data	 system,	 the	 Nav/Was	 system	 is	 merely	 another	 actor,
figure	8.16b.	Where	devices	are	treated	as	actors	the	notation	of	figure	8.17	can	be	used	to
identify	them.

Figure	8.17	Representing	devices	as	actors	-	UML	notation

A	major	weakness	with	 use	 case	 diagrams	 are	 that	 they	 are	 essentially	 one-level	 types;
there	really	aren’t	constructs	to	support	top-down	modelling	with	decomposition	via	step-
wise	refinement.	So	 if	you	 intend	 to	actually	employ	use	case	methods,	 read	Cockburns
work.	He	 gives	 some	 excellent	 advice	 on	 this	 topic.	 The	 best	we	 can	 do	with	 standard
UML	is	to	carve	up	large	use	case	diagrams	into	smaller,	more	manageable	chunks,	figure
8.18.

Figure	8.18	Use	cases	and	packages

Here	the	overall	use	case	diagram	has	been	packaged	into	smaller	units,	based	on	areas	of
concern.

Review
You	should	now:

	
Understand	the	basics	of	use	cases,	use	case	models	and	use	case	diagrams.
Feel	confident	to	start	developing	use	case	models	for	real	systems.
Know	what	actors	are,	and	distinguish	between	users	and	roles.
Understand	that	actors	can	be	used	to	model	both	people	and	systems.
Be	able	 to	define	 the	detailed	 actions	within	use	 cases	using	 activity	 and
state	diagrams.
Understand	what	scenarios	are	and	how	they	relate	to	use	cases.
Appreciate	that	when	scenarios	are	combined,	the	resulting	documentation
may	be	complex.
Understand	the	need	for	structuring	use	case	documents	in	larger	systems.
Know	how	to	use	include	and	extend	use	cases.
Appreciate	how	large	use	cases	diagrams	can	be	partitioned	using	package
diagrams	and	why	we’d	want	to	do	this.
Understand	the	basics	of	a	goal-driven	approach	to	use	case	structuring.

Chapter	9	-	Practical	diagramming	issues

The	objectives	of	this	chapter	are	to:

	
Explain	why	it’s	 important	from	a	diagramming	perspective	to	have	well-
structured	software.
Describe	 in	 outline	 terms	 how	 large	 programs	 should	 be	 structured	 and
explain	how	to	design	and	build	such	software.
Introduce	 the	 concept	 and	 practicalities	 of	 application-level	 and	 service-
level	software.
Give	 a	 broad-brush	 view	of	Object-Oriented	Design	 and	Object-Oriented
Programming	techniques.
Show	how	UML	diagrams	 relate	 to	 the	 four	major	design	models:	usage,
structure,	behaviour	and	processing.
Give	 guidance	 to	 help	 you	 choose	 the	 diagrams	most	 suited	 to	 particular
levels	of	software	design.

9.1	Setting	the	scene
When	 you	 first	 come	 to	 UML	 it’s	 easy	 to	 be	 overwhelmed	 by	 the	 sheer	 amount	 of
information.	With	all	these	diagrams	to	choose	from,	just	where	do	you	start?	Which	ones
are	going	to	be	useful?	How	will	they	fit	into	your	project?	Are	they	really	going	to	help
you	 to	produce	better	designs?	These	are	difficult	questions	 to	answer	 if	you	have	 little
experience	 in	 using	 diagrams	 for	 design.	 So	what	 this	 section	 sets	 out	 to	 do	 is	 to	 give
advice	and	guidance	to	help	you	choose	what’s	right	for	you.	It’s	also	important	that	you
understand	that	such	advice	and	guidance	is	basically	descriptive	and	not	prescriptive.	In
real	life	there’s	never	a	single	right	way	to	do	things.	Moreover,	different	problems	after
require	different	solutions.

A	major	 assumption	 is	 that	 you	will	 produce	 the	 diagrams	 using	 either	 CASE	 tools	 or
drawing	 packages.	 CASE	 tools	 are	 significantly	 more	 powerful	 than	 drawing	 tools,	 so
that’s	our	recommended	approach.	However,	if	you	do	decide	to	use	a	drawing	package,	at
least	get	one	that	includes	UML	diagram	templates.	Once	you	have	chosen	your	tool	it’s
now	 essential	 to	 understand	what	 it	 can	 and	 can’t	 do	 vis-a-vis	 standard	UML.	 Find	 its
restrictions,	 limitations	 and	 extensions,	 then	 adopt	 the	 tool	 features	 as	 your	 working
standard.	There’s	no	reason	to	adopt	all	the	tool	features,	a	subset	may	be	perfectly	good
enough	 for	 specific	 projects.	 A	 golden	 rule	 is	 to	 avoid	 complexity	 like	 the	 plague;
simplicity	 and	 clarity	 are	 the	 keywords.	 And	 if	 you	 are	 working	 on	 a	 team	 project,
consider	producing	a	‘style’	guide	for	diagram	production.

9.2	Building	well-structured	embedded	software

If	 you	 structure	 your	 software	 in	 a	 clear,	 logical	 manner,	 then	 you’ll	 be	 able	 to	 use
diagrams	in	a	more	effective	and	efficient	way.	By	that	I	mean	it	becomes	much	easier	to
decide	which	diagrams	to	use,	where	to	use	them	and	how	to	use	them.	The	modern	way
of	constructing	well-structured	software	is	based	on	the	concept	of	independent	design	and
build,	as	depicted	in	figure	9.1.

Figure	9.1	Independent	design	and	build	concept

This	 is	 a	 simplified	 view	 of	 automobile	 manufacture,	 sufficient	 to	 explain	 the	 basic
principles.	The	key	point	is	that	building	the	vehicle	is	primarily	an	assembly	of	pre-built
components.	 These	 components	 have	 previously	 been	 made	 in	 accordance	 with	 their
design	 specifications;	 now	 they	 are	 integrated	 to	 form	 the	whole	 vehicle.	What	 is	 also
extremely	important	here	is	the	choice	of	the	pre-built	components;	cohesive	functionality
and	simple	interfaces	are	central	factors.

The	software	equivalent	of	this	is	shown	in	figure	9.2.

Figure	9.2	Fundamental	structure	of	large	programs

This	 is	 very	 general	 in	 concept,	 and	 applies	 to	 different	 structures.	 For	 example,	 if	 it
represented	 a	 sequential	 program	 build	 then	 the	 sub-systems	 are	 likely	 to	 be	 individual
software	 modules.	 These,	 in	 turn,	 could	 be	 based	 on	 composite	 object	 structures,
especially	 where	 the	 subsystems	 are	 complex.	 Similarly,	 in	 a	 multitasking	 design	 each
subsystem	could	represent	an	individual	task.	In	all	cases,	however,	a	crucial	point	is	the
separation	of	the	software	into	two	major	groups,	application	and	service	levels.

Application-level	software	 is	exactly	what	 it	 says;	 it’s	 the	software	 that’s	needed	for	 the
system	 to	 operate	 correctly,	 both	 functionally	 and	 temporally.	 Service-level	 software	 is
concerned	 with	 all	 the	 low-level	 building	 blocks,	 so	 named	 because	 these	 provide	 a
service	 to	 the	 application	 layer,	 figure	 9.3	 (the	 term	 ‘driver’	 doesn’t	 really	 reflect	 the
extent	of	such	software).

Figure	9.3	Application	and	service	modules

Moreover,	 their	 functions	 are	 essentially	 independent	 of	 the	 applications	 (although	 we
may	well	develop	a	piece	of	such	software	for	a	specific	application).	Broadly	speaking,
service	 software	 splits	 into	 two	 groupings,	 hardware-related	 and	 hardware-independent.
Much	 of	 this	 will	 have	 to	 be	 developed	 in-house,	 though	 we	may	 also	 be	 able	 to	 use
vendor-supplied	Commercial	Off	The	Shelf	(COTS)	software.

9.3	Using	the	right	diagrams	-	1
9.3.1	General	comment

Sometimes	 it	 seems	 that	 designers	 produce	 diagrams	 just	 for	 the	 sake	 of	 producing
diagrams.	But,	as	pointed	out	right	at	the	beginning	of	this	book,	diagrams	are	a	means	to
an	end.	Therefore	it’s	essential	that	you	first	identify	your	particular	ends	(your	objectives)
for	each	stage	of	the	design	process.	Having	done	that	you	then	need	to	decide	precisely
which	diagrams	are	needed	to	meet	these	objectives.	As	shown	earlier	there	are	four	major
design	models:

	
Usage
Structure
Behaviour
Processing

In	the	following	sections	some	general	guidance	is	given	to	help	you	choose	the	diagrams
that	should	be	produced	when	building	these	models.

9.3.2	Usage

Remember,	 the	purpose	of	 the	usage	model	 is	 to	analyse	 system	requirements	and	 from
these	 generate	 the	 software	 specifications.	 The	 requirements	 of	 many	 small	 embedded
systems	are	relatively	straightforward,	especially	if	there	aren’t	user	interactions	(hence	no
need	for	HMIs).	In	such	cases	text	descriptions	are	all	that	are	needed;	diagrams	are	a	bit
of	an	overkill.	However,	once	systems	need	to	interface	to	external	‘users’	(either	people
or	other	systems)	then	use	case	techniques	should	be	employed.	At	the	very	minimum	this
should	 include	 use	 case	 diagrams	 and	 associated	 scenario	 descriptions.	 As	 interactions
become	more	complex	these	should	be	augmented	using	flow	charts	(or	activity	diagrams)
and/or	state	diagrams.	All	important	timing	requirements	should	also	be	included	with	the
use	case	descriptions.

9.3.3	Structure

Structure	 diagrams	 should	 always	 be	 produced	 for	 application-level	 designs.	 Class	 and
object	diagrams	are	the	core	aspects	of	such	design,	but	we	don’t	necessarily	need	both.	A
design	that	excludes	classes	is	here	called	an	object-oriented	design	(OOD)	method;	when
classes	are	included	we	define	it	to	be	an	object-oriented	programming	(OOP)	method.	Let
us	deal	first	with	OOD	techniques,	specifically	the	use	of	the	object	diagram.

Put	simply,	the	aim	of	the	object	diagram	is	to	specify	how	a	system	should	‘work’	(or,	for
an	 existing	 system,	 how	 it	 actually	 works).	 However	 this	 diagram,	 in	 itself,	 doesn’t
contain	sufficient	 information;	what	we	also	need	to	show	is	all	system	messaging,	both
between	objects	 and	 to/from	 the	 outside	world.	Adding	messages	 to	 the	 object	 diagram
results	 in,	 of	 course,	 the	 object	 communication	 diagram.	 The	 information	 given	 there
enables	us	to	specify	two	things	(figure	9.4):

	
The	structures	of	the	software	machines	that	implement	the	objects	and
The	structure	and	behaviour	of	the	executable	code.

Figure	9.4	Object-first	OOD	design	approach

As	the	design	doesn’t	include	classes	it	can	(if	desired)	be	implemented	using	procedural
languages	such	as	C.	In	this	case	it	is	entirely	up	to	the	designer	to	decide	how	the	objects
should	be	built	and	how	messaging	is	supported.	One	simple	method	is	to	implement	the
objects	using	 functions	 (sub-programs),	having	parameter	passing	as	 the	communication
mechanism.

A	frequently	asked	question	is	‘what’s	the	upper	limit	to	the	number	of	objects	in	any	one
design?’.	There	isn’t	a	simple	answer	to	this;	much	depends	on	individual	designs	and	the
degree	of	coupling	between	objects.	Based	on	personal	experience,	 I	believe	 that	 if	you
have	more	 than	10	objects	 showing	at	 any	one	 level,	 the	design	 should	be	 carefully	 re-
assessed.	 Above	 this	 number	 it	 becomes	 increasingly	 difficult	 to	 quickly	 and	 easily
understand	 the	design	 structure	and	 its	operation.	Review	your	design,	 look	at	how	you
arrived	 at	 the	 object	 model	 in	 the	 first	 place,	 and	 consider	 using	 modular	 objects	 to
simplify	the	design.

The	basis	 for	 the	OOP	technique	 is	shown	 in	 figure	9.5.	Here,	as	before,	 the	object	and
object	communication

Figure	9.5	Object-first	OOP	design	approach

diagrams	are	 the	 first	 to	be	produced.	From	these	we	can	generate	 the	specifications	for
the	executable	code	 structure	and	behaviour.	Next,	 the	class	model	can	be	derived	 from
the	object	model	via	a	classification	process	(as	described	earlier).	This	is	used	to	specify
the	structure	of	the	software	machines	needed	to	implement	the	objects.

Now	for	a	very	personal	point	of	view.	I	consider	that	the	client-server	software	model	is	a
poor	choice	 for	 the	development	of	embedded	software	 systems.	 Instead,	 right	 from	 the
word	 go,	 base	 your	 design	 on	 a	 materials	 flow	 model	 using	 composite	 connectable
structures.	This,	of	course,	doesn’t	preclude	client-server	techniques	(or	publish-subscribe
methods),	but	these	should	be	used	sparingly.

Don’t	even	consider	using	model-based	designs	unless	you:

	
Are	developing	quite	large	systems	and
Have	the	appropriate	technology	at	hand.

Finally,	 what	 of	 package,	 artifact	 and	 deployment	 diagrams?	 Although	 they	 have
interesting	and	useful	features,	many	developers	instead	prefer	to	use	commercial	products
such	as:

	
Integrated	development	environments.
CASE	tools.
Analysis,	 visualization	 and	 maintenance	 tools	 such	 as	 Understand

(scitools.com)	or	Polyspace	(mathworks.com)

9.3.4	Behaviour	and	interactions

If	your	design	includes	concurrently	executing	software	units	it	is	essential	to	describe	the
details	of	 their	 interactions.	And	 the	best	way	of	modelling	such	 interactions	 is	 to	 show
them	 using	 sequence	 diagrams.	 Being	more	 dogmatic;	 all	 intercommunication	 between
concurrent	 units	 should	 always	 be	 modelled	 using	 sequence	 diagrams.	 Moreover,
important	 timing	 information	should	also	be	 included	on	such	diagrams.	The	purpose	of
doing	 this	 is	 to	 very	 explicitly	 specify	 to	 implementers	 exactly	 what	 the	 performance
requirements	of	the	software	are.

Sequence	 diagrams	 can	 also	 be	 very	 helpful	 during	 the	 development	 of	 sequentially-
executing	 software	 units.	 A	 particularly	 useful	 feature	 is	 to	 show	 the	 message	 flows
through	the	system	(on	a	scenario	by	scenario	basis)	and	so	test	the	object	model	design.
This	same	technique	should,	of	course,	be	applied	to	concurrent	software	designs.

9.3.5	Behaviour	and	dynamics

Where	systems	and/or	software	are	dynamically	simple,	then	text	is	sufficient	to	describe
their	behaviour.	However,	as	things	become	more	complex,	so	too	does	the	complexity	of
text	descriptions.	It	is	much	much	better	to	now	replace	such	text	with	diagrams.	And	the
most	appropriate	one	is	the	state	diagram.

State	 modelling	 is	 a	 very	 powerful	 technique,	 one	 that	 should	 always	 be	 applied	 to
complex	dynamical	systems.	It	is	at	its	best	when	used	to	describe	the	behavioural	aspects
of	individual	entities	including,	for	example:

	
Real	devices	such	as	robots,	digital	watches,	smart	televisions,	etc.
Software	units	such	as	components,	tasks,	threads	and	modules.

A	 personal	 view:	 state	 machines	 are	 not	 well	 suited	 to	 describing	 the	 behaviour	 of
concurrent	units.	 If	you	go	down	this	 route	 then	you’ll	 find	yourself	 regularly	having	 to
split	and/or	combine	individual	state	models:	not	a	trivial	task.

9.3.6	Processing

First,	 it	 is	 worth	 clarifying	 the	 distinction	 between	 the	 dynamical	 and	 the	 processing
models	(in	diagram	terms,	state	diagrams	vs	activity	diagrams).	A	simple	view	is	that	state
diagrams	 essentially	 define	 when	 things	 should	 be	 done;	 activity	 diagrams	 describe
exactly	what	is	to	be	done.	Recognize	that	these	are	complementary,	not	alternatives.

As	 you	 will	 have	 seen	 from	 the	 processing	 model	 chapter,	 activity	 diagrams	 have	 a
number	of	uses.	They	are,	for	example,	a	neat	way	to	describe	the	processing	carried	out
by	concurrent	units,	especially	where	activities	have	to	be	synchronized.	In	cases	like	this
they	are	mainly	used	 to	explain	how	systems	work	or	 to	specify	how	they	should	work.

We	don’t	necessarily	intend	to	translate	such	diagrams	directly	into	code	(their	role	being
more	 of	 a	 communication	 rather	 than	 implementation	mechanism).	Also,	when	 parallel
activities	 interact,	 such	 interactions	 should	 always	 be	 described	 using	 activity	 diagrams
(unless	the	interactions	are	trivial).

In	practice	the	greatest	use	of	activity	diagrams	is	to	describe	the	processing	carried	out	by
software	units	 (these	acting	as	program	structure	diagrams).	Any	processing	beyond	 the
very	simplest	should	always	be	defined	in	this	way.	Therefore	we’d	expect	to	find	activity
diagrams	being	used	in	virtually	all	software	projects,	irrespective	of	size.

9.4	Using	the	right	diagrams	-	2
If	you’ve	understood	the	advice	given	so	far	you	should	have	a	good	idea	which	diagrams
best	suit	your	needs.	In	effect	you’ve	selected	the	range	of	diagrams	most	useful	to	you.
But	there	is	still	one	question	left	unanswered;	which	ones	are	you	going	to	use	in	specific
situations?	 So	 to	 help	 you	 on	 your	 way	 this	 section	 sets	 out	 to	 provide	 some	 useful,
practical	guidance.	And	please,	treat	it	only	as	guidance;	in	the	end	you	have	to	make	your
own	decisions.

Nine	 levels	 of	 software	 complexity	 are	 shown	 in	 figure	 9.6,	 level	 1	 being	 the	 simplest,
level	9	the	most	complex.

Figure	9.6	Software	project	complexity	level

So,	which	diagrams	should	we	use	in	these	various	situations?	And	note	well:	it’s	implicit
here	that	the	software	requirements	for	these	cases	have	already	been	established.

(a)	Level	1	-	Simple	functionality.

An	 example	 of	 simple	 functionality	 is	 the	 work	 need	 to	 configure	 a
programmable	 I/O	 port	 on	 a	 processor	 or	 peripheral	 chip.	 This,	while	 usually
quite	 detailed,	 normally	 requires	 only	 a	 few	 lines	 of	 sequential	 code	 for	 its
implementation.	There	really	is	no	need	to	use	diagrams	in	situations	like	this;
well-commented	 source	 code	 is	 perfectly	 good	 enough.	 Typically	 we	 use
software	functions	to	encapsulate	the	code.

(b)	Level	2	-	More	complex	board-specific	software.

Now	 consider	 a	 somewhat	 more	 complex	 example;	 the	 code	 needed	 to
implement	board	level	full	self-test	routines.	Although	much	of	this	is	sequential
in	nature	it	usually	employs	many	conditional	and	repetitive	operations.	In	such
cases	 it	 may	 be	 difficult	 to	 quickly	 and	 correctly	 understand	 the	 software
function	 and	 operation	 from	 text	 descriptions.	 A	 far	 better	 approach	 is	 to
describe	such	aspects	using	activity	diagrams.
If	programming	is	to	be	done	using	an	OO	language,	it	may	be	useful	to	develop
a	board	test	class.

(c)	Level	3	-	Complex	interfacing	software.

Higher	 levels	 of	 complexity	 are	 often	 a	 feature	 of	 driver	 software.	 Take,	 for
example,	 the	 software	 needed	 to	 provide	 full	 interfacing	 to	 a	 4-colour	 inkjet
cartridge	 unit	 via	 a	 serial	 link.	 Here	 the	 required	 code	 is	 usually	 extensive,
having	 a	 variety	 of	 operational	 modes.	 Any	 text	 description	 is	 going	 to	 be
complex,	 possibly	 tortuous	 and	 likely	 to	 be	 difficult	 to	 understand.	 Diagrams
should	definitely	be	used,	 the	most	appropriate	ones	being	 the	activity	and	the
state	diagram.
For	an	OO	implementation	a	class	may	be	used	to	encapsulate	the	code.

(d)	Level	4	-	Algorithm-type	application.

Typical	 of	 this	 is	 the	 software	 needed	 to	 implement	 a	 digital	 three	 term
controller.	 The	 code	 is	 basically	 algorithmic	 in	 nature	 (with	 little	 or	 no
dynamics),	best	described	using	activity	diagrams.
For	an	OO	implementation	a	class	may	be	used	to	encapsulate	the	code.

(e)	Level	5	-	Simple	dynamical-type	application.

Requirements	 of	 this	 nature	 are	 frequently	met	 in	 applications	 such	 as	 single-
axis	robotic	control.	Such	systems	usually	have	a	number	of	distinct	operational
states,	each	one	 involving	specific	 (and	sometimes	extensive)	processing.	This
calls	for	the	use	of	both	state	and	activity	diagrams.
As	before,	 for	 an	OO	 implementation,	 a	 class	may	be	used	 to	 encapsulate	 the

code.

(f)	Level	6	-	Complex	state	functionality.

Applications	 such	 as	 sequence	 controllers	 for	 small	 plants	 (e.g	 industrial	 air
treatment	 units,	 pick	 and	 place	 units,	 etc.)	 usually	 involve	 complex	 state
functionality.	 To	 model	 this	 we	 need,	 at	 the	 very	 least,	 to	 employ	 state	 and
activity	 diagrams.	 For	 somewhat	 larger	 systems	 we	 may	 well	 develop	 a	 full
object	model,	bringing	into	use	sequence,	object	communication	and	(possibly)
class	diagrams.

(g)	Level	7	-	Multitasking	designs	(quasi-concurrency).

This	 level	 of	 complexity	 is	 often	 met	 in	 single-processor	 designs	 used	 for
control,	monitoring	 and	 alarming	 functions	 in	 small	 plants.	Here	 the	 required
concurrency	 is	 usually	 provided	 either	 by	 interrupts	 or	 a	 real-time	 operating
system	(RTOS).	Thus	a	full-blown	design	must	be	carried	out,	involving	object
communication,	sequence,	state,	activity	and	(possibly)	class	diagrams.

(h)	Level	8	-	Multitasking	designs	(true	concurrency,	multiprocessor/multicore	units)

Multiprocessor	 or	 multicore	 structures	 are	 normally	 used	 where	 system
performance	 requirements	 can’t	 be	 satisfied	 by	 single-processor	 designs.	 The
overall	 software	 design	 approach	 is	 very	 similar	 to	 that	 used	 in	 the	 previous
level;	 hence	 the	 same	 set	 of	 diagrams	 should	 be	 produced.	 However,	 extra
information	 is	 needed	 if	 the	 designer	 is	 responsible	 for	 allocating	 code	 to	 the
various	 processors.	 It	 is	 necessary	 to	 show	 how	 the	 design	 is	 partitioned	 and
where	 the	 resulting	 executable	 code	 is	 housed.	 If	 you	 don’t	 really	 care	 about
being	 totally	 semantically	 correct,	 then	 you	 could	 press	 the	 package	 diagram
into	 use	 (but	 risk	 the	 ire	 of	 UML	 pedants).	 The	 deployment	 diagram	 doesn’t
really	 suit,	 especially	 for	multicore	designs.	An	alternative	path	 is	 to	use	non-
UML	diagrams,	such	as	the	block	diagram	of	SysML.

(i)	Level	9	-	Multicomputer	designs,	distributed	systems.

This	is	the	most	complex	level,	and	so	you’d	expect	to	be	using	just	about	the
full	range	of	UML	diagrams.	But	it’s	really	impossible	to	generalise	beyond	this
as	 there	 are	many	 and	 varied	multicomputer	 architectures.	 Take,	 for	 instance,
federated	 structures,	where	 individual	units	may	be	designed	and	produced	by
different	manufacturers.	Here	 the	 role	 of	 the	 system	 designer	 is	 to	 get	 all	 the
units	 working	 together	 correctly;	 software	 design	 doesn’t	 enter	 the	 equation.
Conversely,	with	avionic	Integrated	Modular	Electronics,	system	designers	may
well	 carry	 out	 very	 high-level	 software	 design.	 Some	 form	 of	 deployment
diagram	 is	 needed	 to	 show	 the	 location	 and	 interconnection	 of	 the	 individual
units	 (in	 my	 experience	 these	 are	 usually	 company-specific;	 the	 UML
deployment	diagram	is	a	somewhat	bland	piece	of	work).

A	concise	view	of	the	use	of	diagrams	at	the	different	design	levels	is	given	in	figure	9.7.

Figure	9.7	Diagram	applicability

Review
You	should	now:

	
Understand	the	concepts	of	the	independent	design	and	build	of	software.
Appreciate	 the	 distinction	 between	 application-level	 and	 service-level
software	and	recognize	that	this	split	makes	for	good	structuring.
Know	 that	 service	 software	 contains	 modules	 that	 are	 essentially
independent	of	their	application.
Be	 able	 to	 give	 examples	 of	 hardware-independent	 and	 hardware-related
service	modules.
Be	able	to	specify	precisely	what	the	following	are	used	for	and	when	they
should	be	used:

	
Use	case	diagrams	and	associated	scenario	descriptions.
Object	and	object	communication	diagrams.

Class	diagrams.
Sequence	diagrams.
State	diagrams.
Activity	diagrams.

Understand	what	OOD	 is	 and	 see	how	 such	designs	 can	be	 implemented
using	procedural	languages.
Understand	 what	 OOP	 is	 and	 see	 that	 that	 such	 designs	 are	 best
implemented	using	OO	languages.
Feel	confident	to	categorize	the	complexity	level	of	your	own	projects.
Be	able	to	select	the	set	of	UML	diagrams	best	suited	to	your	own	work.

Chapter	10	-	Outline	guide	to	UML	notation

10.1.	Overview	of	the	diagram	set

UML	2	diagrams	as	specified	in	the	UML	superstructure	document

UML	2	diagrams	-	an	application-based	view

	

10.2.	Activity	diagrams

Activity	diagram	symbols	(basic)

Simple	activity	diagram	example

Activity	diagram	describing	sequential	and	parallel	processing

Activity	diagram	swimlanes	(activity	partitions)

10.3.	Artifacts

Examples	of	artifacts

A	package	and	its	corresponding	artifact

Relating	packages,	artifacts	and	dependencies

10.4.	Class	diagrams

Class	symbol

Associations	and	multiplicity

	

Composite	aggregation	example

	

Inheritance	example

	

10.5.	Component	diagrams

The	component	-	external	view

Wiring	components	together	using	assembly	connectors

Component	containing	components

10.6.	Deployment	diagrams

Nodes	and	system	architecture

Example	node	types

Example	deployment	diagram

10.7.	Interaction	diagrams

UML	message	notations

UML	sequence	diagrams	and	object	lifelines

Sequence	diagram	interaction	fragment

	

	

Interaction	overview	diagram

Combined	fragment	specifying	alternative	courses	of	action

Combined	fragment	specifying	optional	actions

Combined	fragment	specifying	a	loop

Sequence	diagram	-	example	timing	information

Timing	details	of	object	behaviour	-	the	state	lifeline	diagram

10.8.	Object	diagrams

Example	class	and	object	notation	-	single	class

Example	object	and	class	diagram	-	multiple	classes

Object	communication	diagram

Composite	object

10.9.	Composite	structure	diagrams

Composite	object	diagram	showing	roles

Composite	structure	diagram

	

Composite	structure	diagrams	and	ports

Interfaces	on	ports

10.10.	Package	diagrams

Basic	package	diagrams

Packaging	classes

	

	

Package	dependencies

10.11.	State	diagrams

Basic	UML	notation	for	state	machines

Events	and	responses

	

State	diagrams	and	guards

Transition	caused	by	time	elapse

Do	activity	within	a	state

Entry	action

Exit	action

State	machine	-	self-transitions

Combined	transition	and	state	related	behaviour

Refinement	and	substates

Entry	and	exit	points

Concurrent	state	modelling	in	UML

State	model	of	parallel	processing

Receive	and	send	signals

Junction	pseudo-states

Choice	pseudo-state

10.12.	Use	case	diagrams

The	components	of	the	use	case	model

Example	use	case	diagrams

The	include	relationship

The	extend	relationship

Use	case	behaviour	-	state	machine	description

Use	cases	and	packages

	
References,	further	reading	and	bibliography

1.	Papers.
T.R.G.Green:	Pictures	of	programs	and	other	processes,	or	how	to	do	 things	with	 lines,,
Behaviour	and	Information	Technology,	Vol.1,	No.1,	pp3-36,	1982.

G.A.Miller:	The	magical	number	seven,	plus	or	minus	two,	Psychological	Review,	63(2),
pp	81-87,	1956.

N.M.Rothon:	 Design	 structure	 diagrams:	 a	 new	 standard	 in	 flow	 diagrams,	 Computer
Bulletin,	series	2,	no.19,	pp	4-6,	1979.

B.	 Henderson-Sellers;	 C.	 Gonzalez-Perez	 (2006):	 “Uses	 and	 Abuses	 of	 the	 Stereotype
Mechanism	in	UML	1.x	and	2.0”.	in:	Model	Driven	Engineering	Languages	and	Systems.
Springer	Berlin	/	Heidelberg.

===

2.	Books.
Jim	Cooling:	Real-Time	Operating	Systems.

Available	as	an	ebook	from	Amazon:

UK:	www.amazon.co.uk/dp/B00GO6VSGE
USA:	www.amazon.com/dp/B00GO6VSGE

Jim	Cooling:	Software	Engineering	for	Real-Time	Systems.

UK:	www.amazon.co.uk/dp/B00L1FXOCY
USA:	www.amazon.com/dp/B00L1FXOCY

Miro	Samek:	Practical	Statecharts	in	C/C++,	cmpBooks,	ISBN	1-57820-110-1

===

3.	Useful	web	references.
Architecture	Analysis	&	Design	Language	(AADL)

http://standards.sae.org/as5506a/

Source	code	analysis	tools:

1.	Understand	(https://scitools.com)
2.	Polyspace	(mathworks.com/products/polyspace/)

Systems	Modelling	Language	SysML.

http://www.omgsysml.org/

Tri-Pacific	Software	 Inc:	RapidRMA	for	 IBM	Rational	Rhapsody:	The	Art	of	Modeling
Real-Time	Systems	in	UML.

http://www.tripac.com/html/prod-fact-rry.html

Unified	Modeling	Language	documents:

http://www.omg.org/spec/UML/2.3.
http://www.omg.org/spec/UML/2.3/Infrastructure
http://www.omg.org/spec/UML/2.3/Superstructure
http://www.omg.org/spec/UML/2.5/Beta1/

UML	Profile	for	MARTE:

http://www.omg.org/spec/MARTE/1.0

Enterprise	Architect	CASE	tool:

http://www.sparxsystems.com/resources/uml2_tutorial/).

===

4.	Discussion	papers.

1.	Conrad	Bock	(http://www.jot.fm/issues/issue_2004_11/column5/)
2.	 Steve	 Cook	 (http://blogs.msdn.com/b/stevecook/archive/2009/06/17/uml-
structured-classes-part-1.aspx)

Index
A

Acivity	diagrams	-	action	nodes
Acivity	diagrams	-	as	program	strucuture	diagrams
Acivity	diagrams	-	control	nodes
Acivity	diagrams	-	decision	nodes
Acivity	diagrams	-	exception	handler	activity
Acivity	diagrams	-	exception	handling
Acivity	diagrams	-	final	flow	node
Acivity	diagrams	-	fork	and	join	nodes
Acivity	diagrams	-	formalizing	written	specifications
Acivity	diagrams	-	guards
Acivity	diagrams	-	merge	nodes
Acivity	diagrams	-	partitions	and	swimlanes
Acivity	diagrams	-	protected	node
Acivity	diagrams	-	send	and	receive	signals
Acivity	diagrams	-	showing	sequential	and	parallel	actions
Acivity	diagrams	-	time	signal
Acivity	diagrams	-	time	signal	as	a	trigger
Acivity	diagrams	-	wait	time	action
Active	objects
Activity	diagram	example
Activity	diagram	symbols
Activity	diagram	symbols	on	interaction	overview	diagrams
Activity	diagrams	-	activities	and	actions
Activity	diagrams	-	and	structured	programming
Activity	diagrams	-	decomposition	symbol
Activity	diagrams	-	mapping	to	pseudo-code
Activity	diagrams	-	mapping	to	source	code
Activity	diagrams	-	structured	activity	and	sub-activities
Activity	diagrams	-	structuring	and	decomposing	(general)
Artifact	example
Attribute	values

B

Ball	and	socket	notation

C

Class	-	abstract
Class	-	active
Class	-	base
Class	-	denoting	private	and	public	items
Class	-	introduction

Class	-	operations
Class	associations
Class	attributes
Class	diagram	and	multiplicity
Class	symbol
Classes	-	concrete
Client-server	relationship	-	basics
Coding	aspects	-	client-server	relationships
Coding	aspects	-	explicit	wiring	functions
Coding	aspects	and	bi-directional	associations
Coding	aspects	and	peer-to-peer	relationships
Coding	aspects	and	uni-directional	associations
Coding	aspects	of	composite	aggregation
Coding	aspects	of	interface	inheritance
Coding	example	-	implementation	inheritance
Coding	example	of	modular	construction
Communication	diagram	-	object
Component	-	basics
Component	-	external	view
Component	-	UML	definition
Component	interfaces
Component	object	-	informal	notation
Components	-	internal	structures
Composie	objects	-	whole	and	parts
Composite	aggregation
Composite	classes	-	design	example
Composite	diagrams	and	connectors
Composite	object	diagram
Composite	structure	and	class	design
Composite	structure	diagram
Composite	structure	diagrams	and	ports
Composite	structures	and	parts
Composition	and	composite	objects
Context	diagram
CORBA	IDL
CORBA	IDL	module

D

Deployment	diagrams
Diagrams	-	a	communication	vehicle
Diagrams	-	high	and	low-level	views
Diagrams	-	key	qualities
Diagrams	and	post-design	work
Diagrams	and	the	two-stage	design	process
Diagrams	as	a	design	tool
Diagrams	for	documenting	designs

H

Hidden	object	-	‘main’

I

Implementation	inheritance
Inheritance	-	general	aspects
Inheritance	and	dynamic	polymorphism
Inheritance	and	interfaces
Inheritance	and	polymorphism
Inheritance	and	static	polymorphism
Inheritance	and	subclasses
Inheritance	and	subclassing
Inheritance	and	superclasses
Inheritance	structures
Inheritance	vs	adaption
Interface	inheritance
Interfaces	-	required	and	provided

M

Message	-	asynchronous
Message	-	synchronous
Methods	and	messages	-	concepts
Model	definition
Modelling	as	a	specification	method
Modelling	for	analysis
Modelling	for	performance	improvement
Modelling	for	prediction
Modelling	qualities	-	Dynamic	behaviour
Modelling	qualities	-	Interactions
Modelling	qualities	-	Processing
modelling	qualities	-	structure
Modelling	qualities	-	Usage
Modelling	reality	with	diagrams
Modular	construction	-	basics

N

Node	types
Nodes

O

Object	-	active
Object	-	alternative	notations
Object	-	global	view

Object	communication	diagram
Object	icon
Object	model	-	flat
OO	design	-	the	simple	model
OO	design	techniques	-	basics
OO	models	-	broad	perspective
OO	programming	design	techniques	-	basics
OOD	method	definition
OOP	design	method

P

Package	and	artifact	diagram	relationship
Package	dependencies
Passive	objects
Peer-to-peer	relationships
Ports	as	a	connecting	mechanism
Process	models-	typical	applications
Processing	modelling	and	examples

R

Real-time	CORBA
Relationships	-	uni	and	bi-directional

S

Sequence	diagram	-	active	object	interactions
Sequence	diagram	-	alt	interaction	operator
Sequence	diagram	-	assert	interaction	operator
Sequence	diagram	-	break	interaction	operator
Sequence	diagram	-	combined	fragments
Sequence	diagram	-	concurrent	operations
Sequence	diagram	-	consider	interaction	operator
Sequence	diagram	-	critical	interaction	operator
Sequence	diagram	-	duration	constraint
Sequence	diagram	-	duration	observation
Sequence	diagram	-	dynamic	object	creation
Sequence	diagram	-	dynamic	object	deletion
Sequence	diagram	-	execution	specification
Sequence	diagram	-	focus	of	control
Sequence	diagram	-	found	message
Sequence	diagram	-	fundamentals
Sequence	diagram	-	gates
Sequence	diagram	-	ignore	interaction	operator
Sequence	diagram	-	interaction	constraint
Sequence	diagram	-	interaction	fragments
Sequence	diagram	-	interaction	occurrence

Sequence	diagram	-	interaction	operand
Sequence	diagram	-	interaction	operand	separator
Sequence	diagram	-	interaction	operator
Sequence	diagram	-	interaction	overview	diagram
Sequence	diagram	-	interaction	use
Sequence	diagram	-	loop	interaction	operator
Sequence	diagram	-	lost	message
Sequence	diagram	-	maintenance
Sequence	diagram	-	navigation
Sequence	diagram	-	neg	interaction	operator
Sequence	diagram	-	opt	interaction	operator
Sequence	diagram	-	overview	of	timing	information
Sequence	diagram	-	par	interaction	operator
Sequence	diagram	-	passive	object	interactions
Sequence	diagram	-	seq	interaction	operator
Sequence	diagram	-	sequential	operations
Sequence	diagram	-	strict	interaction	operator
Sequence	diagram	-	time	constraint
Sequence	diagram	-	time	observation
Sequence	diagram	-	timing	information
Sequence	diagram	lifelines
Sequence	diagrams	-	message	types
Software	-	application-level
Software	-	logical	design	model
Software	-	physical	design	model
Software	-	service-level
Software	development	-	independent	design	and	build
Software	machine	-	defined
Software	machine	and	the	object
Software	machines	-	essentials
Software	object	-	template
State	and	value	lifelines	-	combined	view
State	lifeline	diagram
State	machine	-	event
State	machine	-	transition
State	machine	diagram	-	basic	UML	notation
State	machine	diagram	-	core	constructs
State	machines	-	actions
State	machines	-	actions	and	effects
State	machines	-	activities	within	a	state
State	machines	-	after	keyword
State	machines	-	behavioural	state	machines
State	machines	-	choice	pseudostate
State	machines	-	combining	state	models
State	machines	-	composite	state	machine
State	machines	-	compound	events

State	machines	-	concurrent	machines
State	machines	-	concurrent	state	modelling
State	machines	-	controller	code	for	generalized	state	machine
State	machines	-	decomposition	indicator
State	machines	-	deep	history
State	machines	-	do	keyword
State	machines	-	entry	action
State	machines	-	entry	and	exit	point	pseudo-states
State	machines	-	event	attributes
State	machines	-	exit	action
State	machines	-	firing	a	transition
State	machines	-	for	a	composite	unit
State	machines	-	fork	pseudo-state
State	machines	-	generalized	state	machine
State	machines	-	guards
State	machines	-	history	pseudostate
State	machines	-	history	pseudostate	icon
State	machines	-	join	pseudo-state
State	machines	-	junction	pseudostates
State	machines	-	Mealy	machine
State	machines	-	merge	junction
State	machines	-	merge/split	junction
State	machines	-	Moore	machine
State	machines	-	multiple	events
State	machines	-	multiple	responses
State	machines	-	protocol	state	machine
State	machines	-	pseudo	states
State	machines	-	responses
State	machines	-	self-transition
State	machines	-	shallow	history
State	machines	-	signal	receive	icon
State	machines	-	signal	send	icon
State	machines	-	split	junction
State	machines	-	state	controller
State	machines	-	state-related	behaviour
State	machines	-	sub-state	model
State	machines	-	transient	states
State	machines	-	transition-related	behaviour
State	machines	-	triggers	and	events
State	machines	-	when	keyword
State	modelling	-	simple	example
Structured	classifiers

U

UML	-	overview
UML	artifacts	-	examples

UML	diagram	set	-	overview	diagram
UML	in	real-time	systems
UML	origins
UML	package
Use	case	-	the	base	use	case
Use	case	analysis	-	overview
Use	case	definition
Use	case	diagrams	-	actors
Use	case	diagrams	-	basics
Use	case	diagrams	-	notation	for	devices	as	actors
Use	case	diagrams	-	roles
Use	case	extend	relationship
Use	case	flow	chart	description
Use	case	goal
Use	case	include	relationship
Use	case	model	-	component	parts
Use	case	models	and	text	descriptions
Use	case	packaging
Use	case	scenarion	types
Use	case	scenarios
Use	case	state	machine	description
Use	case	symbol
Use	cases	-	definition
Use	cases	-	external	systems	as	actors
Use	cases	-	include	vs	extend	relationships

V

Value	lifeline	diagram

W

Wiring	components	using	assembly	connectors
Wiring	objects	at	declaration	time
Wiring	objects	together	-	intro

	Dedication
	Glossary
	Preface
	///

	Chapter 1 Modelling - What and why
	1.1 Why bother to model in the first place?
	1.2 What we can learn from modelling
	1.3 Modelling the qualities of systems
	1.3.1 Introduction
	1.3.2 Structure
	1.3.3 Processing
	1.3.4 Interactions
	1.3.5 Dynamic behaviour
	1.3.6 Usage

	1.4 The modelling of software - key aspects
	1.4.1 The software machine and object-oriented techniques
	1.4.2 Modelling OO software with UML diagrams - a broad perspective

	Review

	Chapter 2 Diagramming techniques - The world in pictures
	2.1 Diagrams - why?
	2.1.1 Introduction
	2.1.2 Reality, modelling and diagrams
	2.1.3 Diagrams as a design tool
	2.1.4 Diagrams for design documentation
	2.1.5 Diagrams for maintenance
	2.1.6 Diagrams for communication

	2.2 The essentials of software diagrams
	2.2.1 Fundamentals
	2.2.2 Basic qualities

	Review

	Chapter 3 Diagramming and UML - a broad perspective
	3.1 Setting the groundwork
	3.2 Software diagramming - a historical prelude.
	3.2.1 The evolution of software diagramming - the embedded world
	3.2.2 The evolution of software diagramming - the MIS world
	3.2.3 Enter UML

	3.3 UML - a simple overview
	3.4 UML - assumptions, issues and remedies.
	3.4.1 Underlying assumptions of the UML specification
	3.4.2 UML issues
	3.4.3 UML and domain-specific issues
	3.4.4 Employing UML in real-time systems

	Review

	Chapter 4 - The structural design model
	4.1 Some important preliminaries
	4.2 Objects and their classes - the 'simple' model of OO design
	4.3 Collaborating objects
	4.3.1 The design models
	4.3.2 Coding aspects of associations - C++ examples

	4.4 Modular objects
	4.5 Software reuse - inheritance
	4.5.1 General aspects
	4.5.2 Implementation inheritance (subclassing)
	4.5.3 Interface inheritance (subtyping)
	4.5.4 Interface inheritance - flexibility aspects

	4.6 Building connectable structures - composite structures, parts and ports
	4.6.1 Setting the scene
	4.6.2 The composite structure - why?
	4.6.3 Wiring objects together using Ports.

	4.7 Building larger modular structures - components
	4.7.1 Some background
	4.7.2 Components - constructs and notation
	4.7.3 Practical aspects of using components

	4.8 Packages, artifacts and deployments
	4.8.1 Why things need to be organized
	4.8.2 Packages and package diagrams
	4.8.3 Artifacts
	4.8.4 Deployment diagrams and nodes

	Review

	Chapter 5 - The behavioural interactions model
	5.1 Object types and their interactions
	5.2 Modelling interactions - the basics of sequence diagrams
	5.2.1 Introduction
	5.2.2 Basics of UML sequence diagrams
	5.2.3 CASE tool issues
	5.2.4 Some lesser-used constructs

	5.3 Modelling interactions - efficiently handling sequence diagrams
	5.3.1 Brief introduction
	5.3.2 Diagram maintenance
	5.3.3 Diagram navigation
	5.3.4 Diagram comprehension

	5.4 Modelling the timing of interactions
	5.5 The communication diagram
	Review

	Chapter 6 - The behavioural dynamics model
	6.1 Introduction to dynamical modelling
	6.1.1 The basics of state modelling.
	6.1.2 State machine fundamentals

	6.2 Transition-related behaviour
	6.3 State related behaviour
	6.4 Combining state-related and transition-related behaviours
	6.5 States and substates - composite states
	6.5.1 Composite states and sequential state machines
	6.5.2 Concurrent state machines

	6.6 Minor topics - diagram simplification and decluttering
	6.6.1 History pseudostate
	6.6.2 Junction and choice pseudostates

	6.7 Code-related aspects
	Review

	Chapter 7 - The processing model
	7.1 Introduction to process modelling
	7.2 Basics of UML process modelling - activity diagrams
	7.2.1 Introduction to activity diagrams
	7.2.2 Using signals
	7.2.3 Important but lesser-used constructs

	7.3 Why program structure diagrams?
	7.4 Structuring and decomposing activity diagrams
	7.5 Applying activity diagram symbols to interaction overview diagrams
	7.6 Code-related aspects of program design
	Review

	Chapter 8 - The usage model
	8.1 Introduction to usage modelling - use case analysis
	8.2 Describing, structuring and packaging use cases
	Review

	Chapter 9 - Practical diagramming issues
	9.1 Setting the scene
	9.2 Building well-structured embedded software
	9.3 Using the right diagrams - 1
	9.3.1 General comment
	9.3.2 Usage
	9.3.3 Structure
	9.3.4 Behaviour and interactions
	9.3.5 Behaviour and dynamics
	9.3.6 Processing

	9.4 Using the right diagrams - 2
	Review

	Chapter 10 - Outline guide to UML notation
	10.1. Overview of the diagram set
	UML 2 diagrams as specified in the UML superstructure document
	UML 2 diagrams - an application-based view

	10.2. Activity diagrams
	Activity diagram symbols (basic)
	Simple activity diagram example
	Activity diagram describing sequential and parallel processing
	Activity diagram swimlanes (activity partitions)

	10.3. Artifacts
	Examples of artifacts
	A package and its corresponding artifact
	Relating packages, artifacts and dependencies

	10.4. Class diagrams
	Class symbol
	Associations and multiplicity
	Composite aggregation example
	Inheritance example

	10.5. Component diagrams
	The component - external view
	Wiring components together using assembly connectors
	Component containing components

	10.6. Deployment diagrams
	Nodes and system architecture
	Example node types
	Example deployment diagram

	10.7. Interaction diagrams
	UML message notations
	UML sequence diagrams and object lifelines
	Sequence diagram interaction fragment
	Interaction overview diagram
	Combined fragment specifying alternative courses of action
	Combined fragment specifying optional actions
	Combined fragment specifying a loop
	Sequence diagram - example timing information
	Timing details of object behaviour - the state lifeline diagram

	10.8. Object diagrams
	Example class and object notation - single class
	Example object and class diagram - multiple classes
	Object communication diagram
	Composite object

	10.9. Composite structure diagrams
	Composite object diagram showing roles
	Composite structure diagram
	Composite structure diagrams and ports
	Interfaces on ports

	10.10. Package diagrams
	Basic package diagrams
	Packaging classes
	Package dependencies

	10.11. State diagrams
	Basic UML notation for state machines
	Events and responses
	State diagrams and guards
	Transition caused by time elapse
	Do activity within a state
	Entry action
	Exit action
	State machine - self-transitions
	Combined transition and state related behaviour
	Refinement and substates
	Entry and exit points
	Concurrent state modelling in UML
	State model of parallel processing
	Receive and send signals
	Junction pseudo-states
	Choice pseudo-state

	10.12. Use case diagrams
	The components of the use case model
	Example use case diagrams
	The include relationship
	The extend relationship
	Use case behaviour - state machine description
	Use cases and packages

	Reference material
	Index

