Processing
A Programming
Handbook for

Visual Designers

and Artists

Féeeword by fohn Maeda

Casey Reas
Ben Fry

Processing

Second edition

Processing:

a programming
handbook for
visual designers
and artists

Second edition

Casey Reas
Ben Fry

The MIT Press
Cambridge, Massachusetts
London, England

© 2014 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means
(including photocopying, recording, or information storage and retrieval) without permission in writing from the
publisher.

MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For
information, please email special_sales@mitpress.mit.edu.

This book was set in TheSerif and TheSansMono from LucasFonts by Toppan Best-set Premedia Limited. Printed
and bound in the United States of America.

Library of Congress Cataloging-in-Publication

Reas, Casey.
Processing : a programming handbook for visual designers and artists / Casey Reas and Ben Fry.—Second
edition.

pages cm

Includes bibliographical references and index.
ISBN 978-0-262-02828-8 (hardcover : alk. paper) 1. Computer programming. 2. Computer graphics—
Computer programs. 3. Digital art—Computer programs. 4. Art—Data processing. 5. Art and
technology. I. Fry,Ben. II Title.

QA76.6.R4138 2014

006.60285—DC23
2014016283

10987654321

For the ACG

45

5

92

93 104 106
Five)
E?}{mp mLHR . meanwhile..
qaieicly.
i XL
114 151 154 157 158 160 164

=

190

vi

Contents

xiii

XV

21
39
51
65
83
103

125

143
149
163
175
187
199
215

247

265

293

305

333

359
381

vii

Foreword

Preface

W 00 N O U1 b W N P

10

11
12
13
14
15
16
17
18

19

20
21
22
23
24
25
26

Processing...
Using Processing
Draw

Color

Variables

Flow
Interactivity
Repeat

Synthesis 1

Interviews: Image

Text
Typography
Image
Transform
Vertices

3D Drawing
Shapes
Synthesis 2

Interviews: Interaction

Calculate
Random
Motion
Time
Functions
Objects
Synthesis 3

415
431
439
453
489
509
529
547
559

579

597

601
603
604
609
613
619

627
633
637
639

27

28
29
30
31
32
33
34
35
36

37

38

Interviews: Motion, Performance

Arrays

Animation
Dynamic Drawing
Simulate

Data

Interface

Image Processing
Render Techniques
Synthesis 4

Interviews: Environment

Continuing...

Appendix A: Order of Operations

Appendix B: Reserved Words
Appendix C: ASCII, Unicode
Appendix D: Bit, Binary, Hex

Appendix E: Optimization

Appendix F: Programming Languages

Related Media
Glossary

Code Index
Index

RIS
299 311 319 321 323 325 328

IV
E RN ﬁ“' n
chhtety ek
483 506

viii

Extended contents

X

XV

ix

iii

XV

XV
xvi
xvi
iii

xix

o o M DM W R P

O

10
11
16
16
17
17
18
19
19
20

21
21
23
28
32
32
34
35

Foreword

Preface

Contents

How to read this book
Casey’s introduction
Ben's introduction
Acknowledgments

Processing...
Software
Literacy
Open
Education
Network
Context

Using Processing
Download, Install
Environment

Export

Example walk-through
Coding is writing
Comments

Functions

Expressions, Statements
Case sensitivity
Whitespace

Console

Reference

Draw
Coordinates
Basic shapes
Curves
Drawing order
Gray values
Attributes
Modes

40
43
45
48

51
51
52
54
55
56
58
59
61
62

65
65
69
71
72
77
80
81

83
84
89
90
93
94
94
97
98
100

4 Color
Color by number
Blend
RGB, HSB
Hexadecimal

5 Variables
Data types
Variables
Variable names
Processing variables
Arithmetic
Mind the data types
Data conversion
Order of operations
Shortcuts

6 Flow
Looping
Controlling the flow
Relational expressions
Conditionals
Logical operators
Variable scope
Formatting code blocks

7 Interactivity
Mouse data
Mouse buttons
Keyboard data
Coded keys
Events
Mouse events
Key events
Event flow
Cursor icon

103
103
104
106
110
111

115
115
116
117

125
127

131

143
144
145
146

149
150
151
152
155
156
158
159

163
164
166
169
172

8 Repeat
Iterate
while loop
for loop
Loop and draw()
Nested loops

9 Synthesis 1

Sketching software
Programming techniques
Examples

10 Interviews: Image

Manfred Mohr, Une
Esthétique Programmeée
LettError, RandomFont
Beowolf

Jared Tarbell, Fractal.Invaders,
Substrate

Benjamin Maus, Perpetual
Storytelling Apparatus

11 Text

Characters
Words, Sentences
Strings are objects

12 Typography

Draw text

Load media

Vector fonts

Pixel fonts

Text attributes

Typing

Typography and interaction

13 Image

Display

Tint, Transparency
Filter

Mask

215
215
218

247
249
253

257

14 Transform

15

16

17

18

19

Translate

Controlling transformations
Rotate

Scale

Combining transformations
Transformation and interaction
New coordinate systems

Vertices
Vertex
Points, Lines
Geometry
Curves
Contours

3D Drawing

3D form
Camera

Lights, Materials
Texture maps

Shapes
Display SVG
Display OBJ
Transform
Create
Modify

Synthesis 2
Iteration
Debugging
Examples

Interviews: Interaction

Lynn Hershman Leeson, Lorna
Robert Winter, Ludwig van
Beethoven: Symphony No. 9
Josh On, They Rule

Steph Thirion, Eliss

265
265
266
269
272
274
276
279
287
289

293
293
296

300

305
305
310
314
318
321

327
327
330
331

333
334
335
338
346
347
349
354

xi

20

21

22

23

24

Calculate

Exponents, Roots
Normalize, Map
Simple curves
Constraining numbers
Distance

Easing

Angles, Waves

Circles, Spirals
Direction

Random
Unexpected values
Distributions
Random seed
Noise

Motion

Controlling motion
Motion along curves
Mechanical motion
Organic motion
Kinetic typography

Time

Seconds, Minutes, Hours
Milliseconds

Date

Functions

Abstraction

Why functions?

Create functions

Overload functions
Calculate and return values
Parameterize

Recursion

397

399

403
407

411

415
417
418
420
423
426
428

431
432
435
436

439
440
442
444
445
447
448

25

26

27

28

29

30

Objects

Object-oriented programming

Classes and objects
Multiple files
Multiple constructors
Composite objects
Inheritance

Synthesis 3
Modularity, reusability
Algorithm

Examples

Interviews: Motion,
Performance

Larry Cuba, Calculated

Movements

Bob Sabiston, Waking Life

Golan Levin and Zachary

Lieberman, Messa di Voce

SUE.C, Mini Movies

Arrays

Define an array

Read array elements
Record data

Array functions

Arrays of objects
Two-dimensional arrays

Animation
Arrays of images

Animation format, resolution

Save sequential images

Dynamic Drawing
Simple tools

Draw with media
Speed

Orientation
Drawings in motion
Active tools

453
453
457
464
472
480

489
489
490
493
495
497
499
504

509
510
516
518
520
523

529
529
533
534
535
540
544

547
547
548
552
553

xii

31

32

33

34

35

Simulate

Motion

Particle systems
Springs

Cellular automata

Autonomous agents

Data

Format data
Export files
Data structure
Strings

Table

XML

JSON

Interface
Rollover, Button
Drag and drop
Check boxes
Radio buttons
Scrollbar

Image Processing
Read pixels

Write pixels

Copy pixels

Color components
Pixel array

Pixel components

Render Techniques
Renderers

Another drawing surface

OpenGL surfaces
Combine surfaces

593

36

37

38

Synthesis 4
Collage engine
Waves

3D letter

Noise landscape
Network

Interviews: Environment
Mark Hansen, Listening Post
Jirg Lehni, Hektor and
Scriptographer

Jennifer Steinkamp,
Madame Curie

Ash Nehru, Origin

Continuing...
Extend Processing
Processing and Java
Other programming languages

Appendix A: Order of Operations

Appendix B: Reserved Words
Appendix C: ASCII, Unicode
Appendix D: Bit, Binary, Hex
Appendix E: Optimization
Appendix F: Programming
Languages

Related Media
Glossary

Code Index
Index

Foreword

At MIT, the full-time graduate studio that I once administered attracted a uniquely gifted
Iot: people who had a fundamental balance issue in the way they approached the
computer as an expressive medium. On the one hand, they didn’t want the programming
code to get in the way of their designs or artistic desires; on the other hand, without
hesitation, they wrote sophisticated computer codes to discover new visual pathways. The
two sides of their minds were in continual conflict. The conclusion was simple for them:
Do both.

Hybrids that can fluidly cross the chasm between technology and the arts are
mutations in the academic system. Traditionally, universities create technology students
or art students—but never mix the two sides of the equation in the same person. During
the 1990s, the mutants that managed to defy this norm would either seek me out, or else
I would reach out to find them myself. Bringing these unique people together was my
primary passion, and that’s how I came into contact with Casey Reas and Ben Fry.

It is said that the greatest compliment to a teacher is when the student surpasses
the teacher. This corner was turned quickly after I began to work with them, and the
finishing blow came when Ben and Casey created Processing. They prominently elevated
the call for visual experimentation with their timely mastery of the Internet to engage at
first tens, hundreds, and then tens of thousands of hybrids all over the world. Wherever I
might travel, young technology artists are always talking about Processing and ask me to
pass on their thanks to Casey and Ben.

And now in my role as Design Partner at Kleiner Perkins Caufield & Byers, I can see
the economic impact of the many hybrid design/engineering talents in Silicon Valley.
These computational designers have brought needed craft and emotional sensitivity to the
products of companies like Flipboard, Pinterest, Square, AirBnB, and Nest. If not by directly
using Processing in their design process, the folks at these companies, and their teams,
appreciate the work of “the processing guys”—a duo that has expanded to a boy band that
now includes pixel magician Daniel Shiffman.

So it is here that I express my thanks to you, Ben and Casey. On behalf of all of the
people who follow where Processing might take the field of computational art and design,
I wish you more sleepless nights in the relentless pursuit of perfecting the bridge that
connects the art-mind with the computer-mind. I look to your continued impact in the
galleries, agencies, and startups of our world. All of us look to you to lead the way for
when art on the computer becomes simply, art—without the icky technology connotations.
We’re all counting on you to take us there.

John Maeda

Design Partner
Kleiner Perkins Caufield & Byers

xiii

7
L
‘ / Ay
\\ A \\\ \\\\\\\\\\\ / \\\\\\ &\M
| " \\Y \\\\\\\\ 7 s 77 \\\\
i | _\\\ \\ / / / 4 \\\\ Z -
o | YA - g
AR R ///i/ I :\ \\\\\\\\\\\ \\\\\\\\\\\\\ \\\W\\\“
NN /////%:/2, i i Ty A ezt
N\ \ W / s ~ _
VAR ////// i ”:/,, | ! \\\\\é\\w\ A A
////ﬂ////// //V \ // \ /: :\ \\\\\\\ /0 W\\ - 7~ = -
N \ AR W 7y 7 s =
NN N W WYy /1 Sy S py ==
//////// N /// \ //%/ /// _ | / \\\\ \\\\\ \\\ oz “\\ ~ \H\
/0///////// R \ X ! \\\\ /) \\\\\ / > o= g =
D NN ///////: NN V_ NS Y z = T = -
,//U AN o\ AR _ /7 J \\\\\\\\\\\\\\ -
NN N \ ///// // - E\\\ \\\\\\\\\\\\ e - \M -7 - =
SRS NN Q N nWe Y \\\\\\\\\ == - —
ANIEENINGNS N S N W\ \ | \\\ g — - -
NN M Ll 7% S - = —= =
N XN A\ \Y /: I /7 \\\ T T _ T _ — —
NN h NN N N \\\ ~ T = = _ — —_
~ ~ o~ N //// // d ~ = \H\\\ - = T _
S N AN N A - - - — = = - = =
~ ///Nﬂ/// NN Vo o - - — T .
_ == ~ //// - = uhuunuh| — = = =
T I - U T SR
ST =L o = 7\ N~ — - = - =z
- — = s = -t = ,
- - = - = T= R O\ > R = ==
= T = = \\\\\\://////// ////M///// T~
— — / ~N ~
— \\\\\\\\\ “\\ / ﬂ/ AR ////// N SN ~ > NS
_ T = A LRI o N ~ > s S
T = \\\\\\\\\\\\ NN ///////// =~ S
- 2 S Ay) W AN NN <
= \\\\\ /o //////// N~ //////////
— - = _ \\\ /) ,,/ //// \ NN ///// ~ ~ Ny
x\\ L ,// NN /////// N
\\ \\ g \\\\ / \\ \\: _ ///// RN ,/ ,,/,
\\\\\\\\\\\\\ 710 0" T T N
z \\w\\\\\\\ V.
vy .
Vaz

Preface

This book was written as an introduction to the ideas of computer programming within
the context of the visual arts. It targets an audience of computer-savvy individuals who
are interested in creating interactive and visual work through writing software but
have little or no prior experience. We are tremendously excited about the potential of
software as a medium for communication and expression, and we hope this book will
open the potential to a wide audience.

Processing is the result of over ten years of software development and teaching
experience. The ideas presented have been continually tested in the classrooms,
computer labs, and basements of universities, art and design schools, and arts
institutions. The authors have taught related courses at the University of California—Los
Angeles, the Interaction Design Institute Ivrea, Harvard University, and Carnegie Mellon
University and have given numerous workshops and lectures on this topic at
conferences and institutions around the globe. The contents of this book have been
continually improved through the generous feedback of students and fellow educators.
The refined curriculum is presented here in book form with the intention of
distributing the results of this endeavor to a larger and more diverse community.

Contents

Four types of content are featured in these pages. The majority of the book is divided
into tutorial chapters that discuss specific elements of software and how they relate to
the arts. These chapters introduce the syntax and concepts of software such as
variables, functions, and object-oriented programming. They cover topics such as
photography and drawing in relation to software. They feature many short, prototypical
example programs with related images and explanation. More advanced professional
projects from diverse domains including animation, performance, and installation are
discussed in interviews with their creators (pp. 125, 247, 397, 579). The appendixes

(p. 601) provide reference tables and more involved explanations of technical topics.
The related media section (p. 627) is a list of references to additional material on
associated topics. The technical terms used in the book are defined in the glossary

(p- 633). The extension sections, featured online at www.processing.org/handbook,
present concise introductions to further domains of exploration including computer
vision, sound, and electronics.

This book is full of example programs written using the Processing programming
language developed by the authors. Processing is a free, open source programming
language and environment used by students, artists, designers, architects, researchers,
and hobbyists for learning, prototyping, and production. Processing is developed by
artists and designers as an alternative to proprietary software tools in the same

XV

domain. The project integrates a programming language, development environment,
and teaching methodology into a unified structure for learning and exploration. The
software allows people to make a smooth transition from beginner to advanced
programmer, and the Processing language is a good basis for future learning. The
technical aspects of the language and the deeper programming concepts introduced in
this text translate well to other programming languages, particularly those used
frequently within the arts.

Most of the examples presented in this book have a minimal visual style. This
represents not a limitation of the Processing software, but rather a conscious decision
by the authors to make the code for each example as brief and clear as possible. We
hope the stark quality of the examples gives additional incentive to the reader to
extend the programs to her or his own visual language.

How to read this book

Learning with this book requires more than reading the words. It is also essential to
run, modify, and interact with the code found within. Just as it’s not possible to learn to
cook without cooking, it’s not possible to learn how to program without programming.
Many of the examples can be fully understood only in motion or in response to the
mouse and keyboard. The Processing software and all of the code presented in this
book can be downloaded and run for future exploration. Processing can be downloaded
from www.processing.org/download and the examples from www.processing.org/
handbook.

The code, diagrams, and images convey essential content to augment the text.
Because this book was written for visually oriented people, it’s assumed that diagrams
and images will be read with as much care as the text. Typographic and visual
conventions are used to assist reading. Code elements within the text are presented in a
monospaced font for differentiation. Each code example is numbered sequentially to
make it easy to reference. The numbers appear in the right margin at the first line of
each example. The number “15-02” refers to the second example in chapter 15.
Unfortunately, sometimes a code example wraps to the next page. When the
abbreviation “cont.” appears as a part of the code number, this signifies the code is
continued from the previous page. Many of the code examples run differently when the
variable values are changed. When numbers appear to the left of an image (p.300),
these numbers were used to produce that image.

Casey’s introduction
I started playing with computers as a child. I played games and wrote simple programs
in BASIC and Logo on my family’s Apple Ile machine. I spent years exploring and testing

it, but I preferred drawing, and my interest in computers dissipated. As a design student
at the University of Cincinnati in the early 1990s, I started to use Adobe’s Photoshop

xvi

and Ilustrator programs during my first year, but I wasn'’t permitted to use them in my
design studio classes until the third year.I spent the first two years of my education
training my eyes and hands to construct composition and meaning through visual
form.I focused my energy on drawing icons and letters with pencils and painting them
with Plaka, a matte black paint. This was intensely physical work.I often produced
hundreds of paper sketches while working toward a single refined image. I later focused
my efforts on the design of printed materials including books, magazines, and
information graphics. In this work I used software as a tool during an intermediate
stage between concept and the final result on paper.

Over time, I shifted from producing printed media to software. When the
multimedia CD-ROM industry emerged, I worked in that area to integrate my interests
in sound, video, image, and information design. With the rise of the Internet in the
mid-1990s, I focused on building large, database-integrated websites. As I shifted my
work from paper to screen, static grids and information hierarchies evolved into kinetic,
modular systems with variable resolutions and compositions. The time and energy once
spent devoted to details of materials and static composition shifted to details of motion
and response. I focused on building real-time processes to generate form, define
behavior, and mediate interactions. To pursue these interests at a more advanced level, I
realized I would need to learn to program computers. After a childhood of playing with
computers and years of working with them professionally, I started down a
new path.

In 1997, I met John Maeda and was introduced to the experimental software work
of his students in the Aesthetics and Computation Group at MIT. They created a new
type of work by fusing traditional arts knowledge with ideas from computer science.
My new direction emerged as I experienced this work, and in 1998 I started learning
to program computers in earnest. I began graduate studies at MIT the following year.
My time there was personally transforming as I shifted from a consumer of software
to a producer. I expanded my views of technology in relation to culture and the history
of art.

While a graduate student at the MIT Media Lab, I was introduced to a culture of
individuals who combined skills from more than one field of study. The knowledge in
common was computing technology, and people had backgrounds in other disciplines
including architecture, art, mathematics, design, and music. At that time, few software
environments afforded both a sophisticated programming language and the ability to
created refined graphics, so my predecessors and colleagues at MIT built their own
software to meet their unique needs. These new software tools led to the emergence of
a unique culture that synthesized knowledge from visual culture with knowledge from
computer science. The desire to make this information accessible to people outside of
technical fields and institutions has been my motivation for dedicating the last twelve
years to developing Processing. I hope this book will act as a catalyst to increase
software literacy within the arts.

xvii

Ben's introduction

Like lots of people who wind up in similar careers, I've always been interested in taking
things apart to understand how they work. This began with disassembling and
comparing the contents of household electronics, looking for similar components. Once
I ran out of telephones and radios, I moved to software. The computer provided an
endless range of questions, like having an infinite number of telephones. With a
burnt-yellow binder that described “IBM BASIC by Microsoft,” my father introduced me
to the “for” loop, and I gradually taught myself programming—mostly by staring at
others’ code, sometimes modifying it to make it do something else. Over time, it became
easier to write code from scratch.

I had a separate interest in graphic design, and I was curious about typography,
layout, and composition. A family friend ran a design firm, and I thought that seemed
like the most interesting job on earth.I later applied to design school, thinking of
studying user interface design or creating “interactive multimedia CD-ROMs,” the only
possibilities I could see for intersecting my two interests. Attending design school was
significant for me, because it provided thinking and creative skills that could be applied
to other areas, including my interest in software.

In 1997, during my final year of undergraduate school, John Maeda gave a lecture
at our program. It was overwhelming for several of us, including one friend who sat
mumbling “Whoa, slow down...” as we watched from the back of the room. In the
presentation, I finally saw the intersection between design and computation that I
couldn’t figure out before. It was a different perspective than building tools, which
sounded mundane, or building interfaces, which also left something to be desired.

A year later, I was lucky to have the opportunity to join John Maeda at MIT.

Pedagogy was a persistent theme during my six years working with John at the
Media Laboratory. Casey, other students, and I contributed to the Design By Numbers
project, which taught us a great deal about teaching computation to designers and gave
us a lot of feedback on what people wanted. Casey and I began to see a similarity
between this feature set and what we did in our own work at the “sketching” stage, and
we started to discuss how we might connect the two in what would later be called
Processing.

We wanted Processing to include lots of code that could be viewed, modified, and
tested —reflecting the way in which I learned programming. But more important has
been the community that has formed around the project, whose members are eager to
share code with one another and help answer each other’s questions. In a similar
manner, the code for Processing itself is available, which for me has a lot to do with
repaying the favor of a previous generation of developers who shared their code and
answered my questions.

One of my personal goals for this project is to facilitate designers’ taking control of
their own tools. It has been more than twenty years since desktop publishing helped
reinvent design in the mid-1980s, and we’re overdue for more innovations. As designers
have become fed up with available tools, coding and scripting have begun to fill the
widening gap between what’s in the designer’s mind and the capability of the software

xviii

they’ve purchased. While most users of Processing will apply it to their own work, I
hope that it will also enable others to create new design tools that come not from
corporations or computer scientists, but from designers themselves.

Acknowledgments

This book is the synthesis of more than twenty years of studying visual design and
software. John Maeda is the person most responsible for the genesis of Processing and
this book. His guidance as our adviser in the Aesthetics and Computation Group (ACG)
at the MIT Media Lab and the innovations of the Design By Numbers project are the
foundation for the ideas presented here. Processing has also been strongly informed by
the research and collaboration with our fellow graduate students at the ACG from 1999
through 2004. We are grateful for our collaboration with Peter Cho, Elise Co, Megan
Galbraith, Simon Greenwold, Omar Khan, Axel Kilian, Reed Kram, Golan Levin, Justin
Manor, Nikita Pashenkov, Jared Schiffman, David Small, and Tom White. We also
acknowledge the foundation built by our predecessors in the ACG and the Visual
Language Workshop.

While Processing’s origin is at MIT, it has grown up within a set of other
institutions including UCLA, the Interaction Design Institute Ivrea, the Broad Institute,
and Carnegie Mellon. Casey’s colleagues in Los Angeles and Ivrea have provided the
environment for many of the ideas in this text to evolve. We thank UCLA faculty
members Rebecca Allen, Mark Hansen, Erkki Huhtamo, Robert Israel, Willem Henri
Lucas, Peter Lunenfeld, Rebeca Mendez, Vasa Mihich, Christian Moeller, Jennifer
Steinkamp, Eddo Stern, and Victoria Vesna. We thank Ivrea faculty members and
founders Gillian Crampton-Smith, Andrew Davidson, Dag Svanaes, Walter Aprile,
Michael Kieslinger, Stefano Mirti, Jan-Christoph Zoels, Massimo Banzi, Nathan Shedroff,
Bill Moggridge, John Thackara, and Bill Verplank. From the Broad Institute, we thank
Eric Lander for funding Ben Fry’s visualization research, most of which was built with
Processing.

The ideas and structure of this book have been refined over the last decade of
teaching at UCLA, Carnegie Mellon, Interaction Design Institute Ivrea, MIT, and Harvard.
We're particularly grateful to the students in Casey’s DESMA 28, 1524, and 152B classes
for their ideas, effort, and energy. Casey’s graduate students at UCLA have provided
invaluable feedback: Gottfried Haider, Rhazes Spell, Eric Parren, Lauren McCarthy, David
Wicks, Pete Hawkes, Andres Colubri, Michael Kontopoulos, Christo Allegra, Tyler Adams,
Aaron Siegel, Tatsuya Saito, Krister Olsson, Aaron Koblin, John Houck, Zai Chang, and
Andrew Hieronomi.

Processing was first introduced to students through workshops. We are grateful to
the first institutions that took a chance on our new software in 2001 and 2002:
Musashino Art University (Tokyo), ENSCI-Les Ateliers (Paris), HyperWerk (Basel), and
the Royal Conservatory (Hague). Many universities have integrated Processing into their
curriculum, and we're grateful to the pioneer faculty members and students at these
institutions. They are too numerous to mention here. The students and faculty in New

x1x

York University’s Interactive Telecommunication Program (ITP) deserve a special thank
you for their early adoption and promotion, particularly Dan O’Sullivan, Tom Igoe, Josh
Nimoy, Amit Pitaru, and Dan Shiffman.

The Processing software is a community effort. Over the last decade, the software
has evolved through a continuous conversation. The goals of this book and of the
Processing software have expanded and contracted as a result of invaluable suggestions
and lively debates. The 2.0 release of the software was enabled by contributions from
Andres Colubri, Dan Shiffman, Florian Jenett, Elie Zananiri, Patrick Hebron, Peter
Kalauskas, David Wicks, Scott Murray, Philippe Lhoste, Cedric Kiefer, Filip Visnjic, and Jer
Thorp.

It’s impossible to make a list of everyone who has collaborated and contributed. The
people who have formally contributed to the software include Andreas Schlegel,
Jonathan Feinberg, Chris Lonnen, Eric Jordan, Simon Greenwold, Karsten Schmidt,

Ariel Malka, Martin Gomez, Mikkel Crone Koser, Koen Mostert, Timothy Mohn, Dan
Mosedale, Jacob Schwartz, Sami Arola, and Dan Haskovec.

This text has been rewritten and redesigned countless times. We're indebted to
Shannon Hunt, who read and edited the first draft and also proofread the final
manuscript. Karsten Schmidt and Larry Cuba read early chapters and provided feedback.
Tom Igoe and David Cuartielles provided essential feedback for the Electronics
extension. Rajorshi Ghosh and Mary Huang provided invaluable first edition production
assistance. Anna Reutinger, Philip Scott, and Cindy Chi’s assistance made the second
edition possible. Chandler McWilliams executed a thorough technical review of the
final first edition manuscript. Gottfried Haider scrutinized and greatly improved the
second edition manuscript. The 3D Drawing chapter added for the second edition was
adapted from Simon Greenwold’s 3D extension chapter in the first edition.

We've enjoyed working with the folks at MIT Press, and we thank them for their
dedication to this project. Doug Sery has guided us through every step of the
publication process and that has made this book possible. For the first edition, we thank
Katherine Almeida and the editorial staff for minding our Ps and Qs, and we
are grateful for the production wisdom of Terry Lamoureux and Jennifer Flint. The
anonymous reviewers of the proposal and draft provided extremely valuable feedback
that helped to refine the book’s structure. For the second edition, we thank Doug Sery
and Katherine Almeida for their continued support as well as Susan Buckley and
Mary Reilly.

We thank the many contributing artists and authors. They were generous with
their time, and this book is greatly enhanced through their efforts.

Most important, Casey thanks Cait, Ava, Julian, Molly, Bob, and Deanna. Ben thanks
Shannon, Augusta, Chief, Rose, Mimi, Jamie, Leif, Erika, and Josh.

XX

1 Processing...

Processing relates software concepts to principles of visual form, motion, and
interaction. It integrates a programming language, development environment, and
teaching methodology into a unified system. Processing was created to teach
fundamentals of computer programming within a visual context, to serve as a software
sketchbook, and to be used as a production tool. Students, artists, design professionals,
and researchers use it for learning, prototyping, and production.

The Processing language is a text programming language specifically designed to
generate and modify images. Processing strives to achieve a balance between clarity
and advanced features. Beginners can write their own programs after only a few
minutes of instruction, but more advanced users can employ and write libraries with
additional functions. The system facilitates teaching many computer graphics and
interaction techniques including vector/raster drawing, image processing, color models,
mouse and keyboard events, network communication, and object-oriented
programming. Libraries extend Processing’s ability to generate sound, send/receive data
in diverse formats, and to work with video.

Software

A group of beliefs about the software medium set the foundation for Processing and
inform decisions related to designing the software and environment.

Software is a unique medium with unique qualities

Ideas and emotions that are not possible to express in other media may be expressed in
this medium. Software requires its own terminology and discourse and should not be
evaluated in relation to prior media such as film, photography, and painting. History
shows that technologies such as oil paint, cameras, and film have changed artistic
practice and discourse, and while we do not claim that new technologies improve art,
we do feel they enable different forms of communication and expression. Software
holds a unique position among artistic media because of its ability to produce dynamic
forms, process gestures, define behavior, simulate natural systems, and integrate other
media including sound, image, and text.

Every programming language is a distinct material

As with any medium, different materials are appropriate for different tasks. When
designing a chair, a designer decides to use steel, wood or other materials based on
the intended use and on personal ideas and tastes. This scenario transfers to writing
software. The abstract animator and programmer Larry Cuba describes his experience
this way: “Each of my films has been made on a different system using a different

programming language. A programming language gives you the power to express some
ideas, while limiting your abilities to express others.” There are many programming
languages available from which to choose, and some are more appropriate than others
depending on the project goals. The Processing language utilizes a common computer
programming syntax that makes it easy for people to extend the knowledge gained
through its use to many diverse programming languages.

Sketching is necessary for the development of ideas

It is necessary to sketch in a medium related to the final medium so the sketch can
approximate the finished product. Painters may construct elaborate drawings and
sketches before executing the final work. Architects traditionally work first in
cardboard and wood to better understand their forms in space. Musicians often work
with a piano before scoring a more complex composition. To sketch electronic media,
it’s important to work with electronic materials. Just as each programming language is
a distinct material, some are better for sketching than others, and artists working in
software need environments for working through their ideas before writing final code.
Processing is built to act as a software sketchbook, making it easy to explore and refine
many different ideas within a short period.

Programming is not just for engineers

Many people think programming is only for people who are good at math and other
technical disciplines. One reason programming remains within the domain of this
type of personality is that the technically minded people usually create programming
languages. It is possible to create different kinds of programming languages and
environments that engage people with visual and spatial minds. Alternative languages
such as Processing extend the programming space to people who think differently. An
early alternative language was Logo, designed in the late 1960s by Seymour Papert as
a language concept for children. Logo made it possible for children to program many
different media, including a robotic turtle and graphic images on screen. A more
contemporary example is the Max programming environment developed by Miller
Puckette in the 1980s. Max is different from typical languages; its programs are created
by connecting boxes that represent the program code, rather than lines of text. It has
generated enthusiasm from thousands of musicians and visual artists who use it as a
base for creating audio and visual software. The same way graphical user interfaces
opened up computing for millions of people, alternative programming environments
will continue to enable new generations of artists and designers to work directly with
software. We hope Processing will encourage many artists and designers to tackle
software and that it will stimulate interest in other programming environments built
for the arts.

2 Processing...

Literacy

Processing does not present a radical departure from the current culture of
programming. It repositions programming in a way that is accessible to people who are
interested in programming but who may be intimidated by or uninterested in the type
taught in computer science departments. The computer originated as a tool for fast
calculations and has evolved into a medium for expression.

The idea of general software literacy has been discussed since the early 1970s.In
1974, Ted Nelson wrote about the minicomputers of the time in Computer Lib/Dream
Machines. He explained “the more you know about computers ... the better your
imagination can flow between the technicalities, can slide the parts together, can
discern the shapes of what you would have these things do.”” In his book, Nelson
discusses potential futures for the computer as a media tool and clearly outlines ideas
for hypertexts (linked text, which set the foundation for the web) and hypergrams
(interactive drawings). Developments at Xerox PARC led to the Dynabook, a prototype
for today’s personal computers. The Dynabook vision included more than hardware.

A programming language was written to enable, for example, children to write
storytelling and drawing programs and musicians to write composition programs.
In this vision there was no distinction between a computer user and a programmer.

Forty years after these optimistic ideas, we find ourselves in a different place.

A technical and cultural revolution did occur through the introduction of the personal
computer and the Internet to a wider audience, but people are overwhelmingly using
the software tools created by professional programmers rather than making their own.
This situation is described clearly by John Maeda in his book Creative Code: “To use a
tool on a computer, you need do little more than point and click; to create a tool, you
must understand the arcane art of computer programming.”s The negative aspects of
this situation are the constraints imposed by software tools. As a result of being easy to
use, these tools obscure some of the computer’s potential. To fully explore the computer
as an artistic material, it’s important to understand this “arcane art of computer
programming.”

Processing strives to make it possible and advantageous for people within the
visual arts to learn how to build their own tools—to become software literate. Alan Kay,
a pioneer at Xerox PARC and Apple, explains what literacy means in relation to
software:

The ability to “read” a medium means you can access materials and tools created by others. The ability to “write”
in a medium means you can generate materials and tools for others. You must have both to be literate. In print
writing, the tools you generate are rhetorical; they demonstrate and convince. In computer writing, the tools you

generate are processes; they simulate and decide.*

Making processes that simulate and decide requires programming.

3 Processing...

Open

The open source software movement is having a major impact on our culture and
economy through initiatives such as Linux, but it is having a smaller influence on the
culture surrounding software for the arts. There are scattered projects, but companies
such as Apple, Adobe, and Autodesk dominate software production and therefore
control contemporary software tools used within the arts. As a group, artists and
designers traditionally lack the technical skills to support independent software
initiatives. Processing strives to apply the spirit of open source software innovation to
the domain of the arts. We want to provide an alternative to available proprietary
software and to improve the skills of the arts community, thereby stimulating interest
in related initiatives. We want to make Processing easy to extend and adapt and to
make it available to as many people as possible.

Processing probably would not exist without its ties to open source software. Using
existing open source projects as guidance, and for important software components, has
allowed the project to develop in a smaller amount of time and without a large team of
programmers. Individuals are more likely to donate their time to an open source project,
and therefore the software evolves without a budget. These factors allow the software
to be distributed without cost, which enables access to people who cannot afford the
high prices of commercial software. The Processing source code allows people to learn
from its construction and by extending it with their own code.

People are encouraged to publish the code for programs they have written in
Processing. The same way the “view source” function in web browsers encouraged the
rapid proliferation of website-creation skills, access to others’ Processing code enables
members of the community to learn from each other so that the skills of the
community increase as a whole. A good example involves writing software for tracking
objects in a video image, thus allowing people to interact directly with the software
through their bodies, rather than through a mouse or keyboard. One project shared
online included code that made it possible to track the brightest object seen by the
camera, but it couldn’t track color, A more experienced programmer used this code as a
foundation for writing more general code that could track multiple colored objects at
the same time. This improved tracking code enabled Laura Hernandez Andrade, then a
graduate student at UCLA, to build Talking Colors, an interactive installation that
superimposes emotive text about the colors people are wearing on top of their projected
image. Sharing and improving code allows people to learn from one another and to
build projects that would be too complex to accomplish from scratch.

Education

Processing makes it possible to introduce software concepts in the context of the arts
and also to open arts concepts to a more technical audience. Because the Processing
syntax is derived from widely used programming languages, it’s a good base for future
learning. Skills learned with Processing enable people to learn other programming

4 Processing...

languages suitable for different contexts including web development, computer
graphics, and electronics.

There are many established curricula for computer science, but by comparison
there have been very few classes that strive to integrate media arts knowledge with
core concepts of computation. Using classes initiated by John Maeda as a model, hybrid
courses based on Processing are being created. Processing has proved useful for short
workshops ranging from one day to a few weeks. Because the environment is so
minimal, students are able to begin programming after only a few minutes of
instruction. The Processing syntax, similar to other common languages, is already
familiar to many people, and so students with more experience can begin writing
advanced syntax almost immediately.

In a one-week workshop at Hongik University in Seoul, the students were a mix of
design and computer science majors, and both groups worked toward synthesis. Some
of the work produced was more visually sophisticated and some more technically
advanced, but it was all evaluated with the same criteria. Students like Soo-jeong Lee
entered the workshop without any previous programming experience; while she found
the material challenging, she was able to learn the basic principles and apply them to
her ideas. During critiques, her strong visual skills set an example for the students from
more technical backgrounds. Students such as Tai-kyung Kim from the computer
science department quickly understood how to use the Processing software, but he was
encouraged by the visuals in other students’ work to increase his aesthetic sensibility.
His work with kinetic typography was a good example of a synthesis between his
technical skills and emerging design sensitivity.

Processing is also used to teach longer introductory classes for undergraduates and
for topical graduate-level classes. It has been used at small art schools, private colleges,
and public universities. At UCLA, for example, it is used to teach a foundation class in
digital media to second-year undergraduates and has been introduced to the graduate
students as a platform for explorations into more advanced domains. In the
undergraduate Interactivity class, students read and discuss the topic of interaction and
make many examples of interactive systems using the Processing language. Each week
new topics such as kinetic art and the role of fantasy in video games are introduced.
The students learn new programming skills, and they produce an example of work
addressing a topic. For one of their projects, the students read Sherry Turkle’s “Video
Games and Computer Holding Power”s and were given the assignment to write a short
game or event exploring their personal desire for escape or transformation. Leon Hong
created an elegant flying simulation in which the player floats above a body of water
and moves toward a distant island. Muskan Srivastava wrote a game in which the
objective was to consume an entire table of desserts within ten seconds.

Teaching programming techniques while simultaneously introducing basic theory
allows the students to explore their ideas directly and to develop a deep understanding
and intuition about interactivity and digital media. In the graduate-level Interactive
Environments course at UCLA, Processing is used as a platform for experimentation
with computer vision. Using sample code, each student has one week to develop
software that uses the body as an input via images from a video camera. Zai Chang

5 Processing...

developed a provocative installation called White Noise where participants’ bodies are
projected as a dense series of colored particles. The particle shadow of each person is
displayed with a different color, and when they overlap, the particles exchange, thus
appearing to transfer matter and infect each other with their unique essence. Reading
information from a camera is a simple action within the Processing environment, and
this facility fosters quick and direct exploration within courses that might otherwise
require weeks of programming tutorials to lead up to a similar project.

Network

Processing takes advantage of the strengths of web-based communities, and this has
allowed the project to grow in unexpected ways. Thousands of students, educators, and
practitioners across six continents are involved in using the software. The project
website serves as the communication hub, but contributors are found remotely in cities
around the world. Typical web applications such as forums host discussions between
people in remote locations about features, bugs, and related events.

For the last decade, many classes taught using Processing have published the
complete curriculum on the web, and students have published their software
assignments and source code from which others can learn. The websites for Daniel
Shiffman’s classes at New York University, for example, include online tutorials and
links to the students’ work. The tutorials for his Procedural Painting course cover topics
including modular programming, image processing, and 3D graphics by combining text
with running software examples. Students maintain web pages containing all of their
software and source code created for the class. These pages provide a straightforward
way to review performance and make it easy for members of the class to access each
other’s work.

The Processing Forum, an online discussion system located at http://forum
.processing.org/, is a place for people to talk about their projects and share advice. It has
thousands of members, with a subset actively commenting on each other’s work and
helping with technical questions. For example, one post focused on a problem with code
to simulate springs. Over the course of a few days, messages were posted discussing the
details of Euler integration in comparison to the Runge-Kutta method. While this may
sound like an arcane discussion, the differences between the two methods can be the
reason a project works well or fails. This thread and many others like it have become
concise Internet resources for students interested in detailed topics.

Context
The Processing approach to programming blends with established methods. The core

language and additional libraries make use of Java, which also has elements identical to
the C programming language. This heritage allows Processing to make use of decades of

6 Processing...

programming language refinements and makes it understandable to many people who
are already familiar with writing software.

Processing is unique in its emphasis and in the tactical decisions it embodies with
respect to its context within design and the arts. Processing makes it easy to write
software for drawing, animation, and reacting to the environment, and programs are
easily extended to integrate with additional media types including audio, video, and
electronics.

The network of people and schools using the software continues to grow. In the
decade since the origin of the idea for the software, it has evolved organically through
presentations, workshops, classes, and discussions around the globe. We plan to
continually improve the software and foster its growth, with the hope that the practice
of programming will reveal its potential as the foundation for a more dynamic media.

Notes

1. Larry Cuba, “Calculated Movements,” in Prix Ars Electronica Edition '87: Meisterwerke der Computerkunst (H.S.
Sauer, 1987), p. 111.

2. Theodore Nelson, “Computer Lib/Dream Machines,” in The New Media Reader, edited by Noah Wardrip-Fruin
and Nick Montfort (MIT Press, 2003), p. 306.

3. John Maeda, Creative Code (Thames & Hudson, 2004), p. 113.

4. Alan Kay, “User Interface: A Personal View,” in The Art of Human-Computer Interface Design, edited by Brenda
Laurel (Addison-Wesley, 1989), p.193.

5. Chapter 2 in Sherry Turkle, The Second Self: Computers and the Human Spirit (Simon & Schuster, 1984),
Pp. 64-92.

7 Processing...

Lines

Processing

7
V4

Display window

File Edit Sketch Debug Tools Help

clo
G @

void setup() {
size(100, 100);
noLoop();

void draw() {
diagonals(40, 90);
diagonals(60, 62);
diagonals(20, 40);

void diagonals(int x, int y) {
line(x, y, x+20, y-40);
line(x+10, y, x+30, y-40);
line(x+20, y, x+40, y-40);

Figure 1-1 Processing Development Environment (PDE)

Menu

Toolbar

Tabs

Text editor

Message area

Console

Use the PDE to create Processing sketches. Write the code in the text editor and use the

buttons in the toolbar to run, save, and export the code.

2 Using Processing

This chapter introduces the Processing Environment and the most basic elements for
writing software.

Syntax introduced:
// (comment), /* */ (multiline comment)
«.» « »

;7 (statement terminator), “,” (comma)
print(), println()

Download, Install

The Processing software can be downloaded from the Processing website. Using a web
browser, navigate to www.processing.org/download and click on the link for your
computer’s operating system. The Processing software is available for Linux, Macintosh,
and Windows.

Environment

The Processing Development Environment (PDE) consists of a simple text editor for
writing code, a message area, a text console, tabs for managing files, a toolbar with
buttons for common actions, and a series of menus. When programs are run, they open
in a new window called the display window.

Pieces of software written using Processing are called sketches. These sketches are
written in the text editor. It has features for cutting/pasting and for searching/
replacing text. The message area gives feedback while saving and exporting and also
displays errors. The console displays text output by Processing programs including
complete error messages and text output from programs with the print() and
println() functions. The toolbar buttons allow you to run and stop programs.

Run Compiles the code, opens a display window, and runs the program inside.

Stop Terminates a running program.

The menus provide the same functionality as the toolbar in addition to actions for file
management and opening reference materials.

File Commands to manage and export files.

Edit Controls for the text editor (Undo, Redo, Cut, Copy, Paste, Find, etc.)

Sketch Commands to run and stop programs and to add media files and code libraries.
Tools Tools to assist in using Processing (select a color, create fonts, etc.)

Debug Features to assist in finding errors in a sketch.

Help Reference files for the environment and language.

Each Processing sketch has its own folder. The main program file for each sketch has
the same name as the folder and is found inside. For example, if the sketch is named
Sketch_123, the folder for the sketch will be called Sketch_123 and the main file will be
called Sketch_123.pde. The PDE file extension stands for the Processing Development
Environment.

A sketch folder sometimes contains other folders for media files and code libraries.
When a font or image is added to a sketch by selecting “Add File” from the Sketch menu,
a data folder is created. Files can also be added by dragging them into the text editor.
For instance, if an image file is dragged into the Processing text editor, it is
automatically copied to the current sketch’s data folder. All images, fonts, sounds, and
other kinds of data files loaded in the sketch must be in this folder.

Sketches are stored in the Processing folder, which will be in different places on
your computer or network depending on whether you use PC, Mac, or Linux and on
how the preferences are set. To locate this folder, select the “Preferences” option from
the File menu (or from the Processing menu on the Mac) and look for the “Sketchbook
location.”

It is possible to have multiple files in a single sketch. These can be Processing text
files (with the extension .pde) or Java files (with the extension java). To create a new
file, click on the arrow button to the right of the file tabs. This button enables you to
create, delete, and rename the files that comprise the current sketch. You can write
functions and classes in new PDE files and you can write any Java code in files with the
JAVA extension. Working with multiple files makes it easier to reuse code and to
separate programs into small subprograms. This is discussed in more detail in the
Objects chapter (p.359).

Export

The export feature packages a sketch to run outside of the Processing Development
Environment. When code is exported from Processing, it is converted into Java code and
then compiled as a Java application. Processing can export applications for the Linux,
Macintosh, and Windows platforms. When a project is exported, a series of files is
written to a new folder that contains the application, the source code for the sketch,
and all required libraries for a specific platform. Every time a sketch is exported, the
contents of the application folder are deleted and the files are written from scratch. Any
changes previously made to the files within are lost.

Media files not needed for the application should be deleted from the data folder
before it is exported to keep the file size small. For example, if there are unused images
in the data folder, they will be included, thus needlessly increasing its size.

Additional and updated information about the Processing environment is available
at www.processing.org/reference/environment or by selecting the “Environment” item
from the Help menu of the Processing application.

10 Using Processing

Example walk-through

A Processing program can be as short as one line of code and as long as thousands of
lines. This scalability is one of the most important aspects of the language. The
following example walk-through presents the modest goal of animating a sequence of
diagonal lines as a means to explore some of the basic components of the Processing
language. If you are new to programming, some of the terminology and symbols in this
section will be unfamiliar. This walk-through is a condensed overview of the entire
book, utilizing ideas and techniques that are covered in detail later. Try running these
programs inside the Processing application to better understand what the code is doing.

Processing was designed to make it easy to draw graphic elements such as lines,
ellipses, and curves in the display window. These shapes are positioned with numbers
that define their coordinates. The position of a line is defined by four numbers, two for
each endpoint. The parameters used inside the 1ine () function determine the position
where the line appears. The origin of the coordinate system is in the upper-left corner,
and numbers increase right and down. Coordinates and drawing different shapes are
discussed on pages 21—32.

line(10, 80, 30, 40); // Left line 2-01
line(20, 80, 40, 40);
///// line(30, 80, 50, 40); // Middle line
line(40, 80, 60, 40);
line(50, 80, 70, 40); // Right line

The visual attributes of shapes are controlled with other code elements that set color
and gray values, the width of lines, and the quality of the rendering. Drawing attributes
are discussed on pages 32—37.

background(0); // Set the black background 2-02

stroke(255); // Set line value to white

///// strokeWeight(5); // Set line width to 5 pixels
line(10, 80, 30, 40); // Left line

line(20, 80, 40, 40);

line(30, 80, 50, 40); // Middle line

line(40, 80, 60, 40);
line(50, 80, 70, 40); // Right line

A variable, such as X, represents a value; this value replaces the symbol x when the code
is run. One variable can then control many features of the program. Variables are
introduced on pages 51-56.

11 Using Processing

int x 5; // Set the horizontal position

///// int y 60; // Set the vertical position
line(x, y, x+20, y-40); // Line from [5,60] to [25,20]
line(x+10, y, x+30, y-40); // Line from [15,60] to [35,20]
line(x+20, y, x+40, y-40); // Line from [25,60] to [45,20]

line(x+30, y, x+50, y-40); // Line from [35,60] to [55,20]
line(x+40, y, x+60, y-40); // Line from [45,60] to [65,20]

Adding more structure to a program opens further possibilities. The setup () and
draw() functions make it possible for a program to run continuously —this is required
to create animation and interactive programs. The code inside setup () runs once
when the program first starts, and the code inside draw() runs continuously. One
image frame is drawn to the display window at the end of each loop through draw().

In the following example, the variable x is declared as a global variable, meaning it
can be assigned and accessed anywhere in the program. The value of x increases by 1
each frame, and because the position of the lines is controlled by x, they are drawn to a
different location each time the value changes. This moves the lines to the right.

Line 14 in the code is an if structure. It contains a relational expression comparing
the variable x to the value 100. When the expression is true, the code inside the block
(the code between the { and } associated with the if structure) runs. When the
relational expression is false, the code inside the block does not run. When the value
of x becomes greater than 100, the line of code inside the block sets the variable x to
—40, causing the lines to jump to the left edge of the window. The details of draw() are
discussed on pages 65—72, programming animation is discussed on pages 431—438, and
the if structure is discussed on pages 72-77.

7 e

void setup() {
size(100, 100); // Set the window to 100 x 100 pixels

0; // Set the horizontal position
55; // Set the vertical position

void draw() {
background(204);
line(x, y, x+20, y-40); // Left line
line(x+10, y, x+30, y-40); // Middle line
line(x+20, y, x+40, y-40); // Right line

X = X + 1; // Add 1 to x

if (x > 100) { // If x is greater than 100,
X = -40; // assign -40 to x

}

12 Using Processing

2-03

2-04

When a program is running continuously, Processing captures data from input devices
such as the mouse and keyboard. This data can be used to affect what is happening in

the display window.Programs that respond to the mouse are discussed on pages 83—101.

/1

4

void setup() {
size(100, 100);

void draw() {

background(204);
/45 // Assign the horizontal value of the cursor to x
float x = mouseX;
// Assign the vertical value of the cursor to y
float y = mouseY;
line(x, y, x+20, y-40);
line(x+10, y, x+30, y-40);
line(x+20, y, x+40, y-40);

A function is a block of code within a program that performs a specific task. They make
programs easier to read and change because they group related lines of code together.
The diagonals () function in the following example was written to draw a sequence
of three diagonal lines each time it is run inside draw(). Two parameters, the numbers
in the parentheses after the function name, set the position of the lines. These numbers
are passed into the function definition on line 12 and are used as the values for the
variables x and y in lines 13—15. Functions are discussed in more detail on pages 333—358.

13

void setup() {

///// size(100, 100);

W

void draw() {
background(204);
diagonals(40, 90);
diagonals(60, 62);
diagonals(20, 40);

}

void diagonals(int x, int y) {
line(x, y, x+20, y-40);
line(x+10, y, x+30, y-40);
line(x+20, y, x+40, y-40);

Using Processing

2-05

2-06

Object-oriented programming is a way of structuring code into objects, units of code
that contain both variables (data) and functions. This style of programming makes a
strong connection between groups of data and the functions that act on this data. The
diagonals() function can be expanded by making it part of a class definition. Objects
are created using the class as a template. The variables for positioning the lines and
setting their drawing attributes then move inside the class definition to be more closely
associated with drawing the lines. Object-oriented programming is discussed further on

pages 359—361.
Diagonals da, db;

?// void setup() {
/fl//f}’/ size(100, 100);

// Inputs: x, y, speed, thick, gray

%{l/] da = new Diagonals(0, 80, 1, 2, 0);
///// db = new Diagonals(0, 55, 2, 6, 255);
/’W void draw() {

//j background(204);

//; da.update();

db.update();
¥

=
-

class Diagonals {
int x, y, speed, thick, gray;

Diagonals(int xpos, int ypos, int s, int t, int g) {
X = Xpos;
y = ypos;
speed = s;
thick = t;
gray = 8§;
}

void update() {
strokeWeight(thick);
stroke(gray);
line(x, y, x+20, y-40);
line(x+10, y, x+30, y-40);
line(x+20, y, x+40, y-40);

X = X + speed;
if (x > 100) {
X = -100;

14 Using Processing

2-07

} 2-07
t.
} con

}

The variables used in the previous sketches each store one data element. If we want to
have 20 groups of lines on screen, it will require 40 variables: 20 for the horizontal
positions and 20 for the vertical positions. This can make programming tedious and can
make programs difficult to read. Instead of using multiple variable names, we can use
arrays. An array stores a list of data elements as a single name. A for loop can be used
to cycle through each array element in sequence. Arrays are discussed on pages 415—430,
and the for loop is discussed on pages 105—109.

int num = 20; 2-08
int[] dx = new int[num]; // Declare and create an array
/// int[] dy = new int[num]; // Declare and create an array

void setup() {
size(100, 100);

/ for (int i = 0; 1 < num; i++) {
// dx[i] = i * 5;

dy[i] = 12 + (i * 6);
/// }

}
void draw() {
background(204);
for (int i = 0; 1 < num; i++) {
dx[1] = dx[i] + 1;
if (dx[i] > 100) {
dx[i] = -100;

}
diagonals(dx[i], dy[i]);

}

void diagonals(int x, int y) {
line(x, y, x+20, y-40);
line(x+10, y, x+30, y-40);
line(x+20, y, x+40, y-40);

}

This short walk-through serves to introduce, but not fully explain, some of the core
concepts explored in this text. Many key ideas of working with software were
mentioned only briefly and others were omitted. Each topic is covered in depth later in
the book.

15 Using Processing

Coding is writing

Creating software is an act of writing. Before starting to write code, it’s important to
acknowledge the difference between writing a computer program and writing an Email
or an essay. Writing in a human language allows the author to utilize the ambiguity of
words and to have great flexibility in constructing phrases. These techniques allow
multiple interpretations of a single text and give each author a unique voice. Each
computer program also reveals the style of its author, but there is far less room for
ambiguity. While people can interpret vague meanings and can usually disregard poor
grammar, computers cannot. Some of the linguistic details of writing code are discussed
here to prevent early frustration. If you keep these details in mind as you begin to
program, they will gradually become habitual.

Comments

Comments are ignored by the computer but are important for people. They let the
programmer write personal notes and remarks to others who read the code. Because
programs use symbols and arcane notation to describe complex procedures, it is often
difficult to remember how individual parts of a program work. Good comments serve as
reminders when a program is revisited and to explain ideas to others reading the code.
Commented sections appear in a different color than the rest of the code. This program
explains how comments work:

// Two forward slashes are used to denote a comment.

// All text on the same line is a part of the comment.

// There must be no spaces between the slashes. For example,
// the code "/ /" is not a comment and will cause an error

// If you want to have a comment that is many
// lines long, you may prefer to use the syntax for a
// multiline comment

J*
A forward slash followed by an asterisk allows the
comment to continue until the opposite

*/

// All letters and symbols that are not comments are run

// by the computer. Because the following lines are not comments,
// they are run and draw a display window of 200 x 200 pixels
size(200, 200);

background(102);

16 Using Processing

2-09

Functions

Functions allow a program to draw shapes, set colors, calculate numbers, and execute
many other types of actions. A function’s name is usually a lowercase word followed by
parentheses. The comma-separated elements between the parentheses are called
parameters, and they affect the way the function works. Some functions have no
parameters and others have many. This program demonstrates the size() and
background() functions.

// The size function has two parameters. The first sets the width 2-10
// of the display window and the second sets the height
size(200, 200);

// This version of the background function has one parameter.

// It sets the gray value for the background of the display window
// in the range of 0 (black) to 255 (white)

background(102);

Expressions, Statements

Using an analogy to human languages, a software expression is like a phrase. Software
expressions are often combinations of operators such as +, *, and / that operate on the
values to their left and right. A software expression can be as basic as a single number
or can be a long combination of elements. An expression always has a value,
determined by evaluating its contents.

Expression Value
5 5
122.3+43.1 125.4
((3+2)*-10) + 1 -49

Expressions can also compare two values with operators such as > (greater than) and <
(less than). These comparisons are evaluated as true or false.

Expression Value
6 > 3 true
54 < 50 false

One or more expressions create a statement, the programming equivalent of a sentence.
It’s a complete unit that ends with the statement terminator, the programming
equivalent of a period. In the Processing language, the statement terminator is a
semicolon.

Just as there are different types of sentences, there are different types of
statements. A statement can define a variable, assign a variable, run a function, or

17 Using Processing

Comment

// Create a 300 x 400 window
Function S i Ze (3 OO 3 400) ; Statement terminator
background(0); swemen

Parameter

Figure 2-1 Anatomy of a Processing sketch

Every sketch is composed of different language elements. These elements work together to describe the
intentions of the programmer so they can be interpreted by a computer. The anatomy of a more
complicated sketch is shown on page 68.

construct an object. Each will be explained in more detail later, but examples are shown
here:

size(200, 200); // Run the size() function 2-11
int x; // Declare a new variable x

X = 102; // Assign the value 102 to the variable x
background(x); // Run the background() function

Omitting the semicolon at the end of a statement, a very common mistake, will result
in an error message, and the program will not run.

Case sensitivity

In written English, some words are capitalized, and others are not. Proper nouns like
Ohio and John and the first letter of every sentence are capitalized, while most other
words are lowercase. In many programming languages, some parts of the language
must be capitalized and others must be lowercase. Processing differentiates between
uppercase and lowercase characters; therefore, writing “Size” when you mean to write
“size” creates an error. You must be precise in typing lowercase and uppercase letters.

size(200, 200); 2-12
Background(102); // ERROR! The B in "background" is capitalized

18 Using Processing

Whitespace

In many programming languages, including Processing, there can be an arbitrary
amount of space between the program elements. Unlike the strict use of statement
terminators and capitalization, spacing does not matter. The following two lines of code
are a standard way to write a program:

size(200, 200); 2-13
background(102);

However, the whitespace between the code elements can be set to any amount, and the
program will run the same way:

size 2-14

(200,
200) ;
background (102)

Console

When software runs, the computer performs operations at a rate too fast to perceive
with human eyes. Because it is important to understand what is happening inside the
machine, the functions print() and println() can be used to display data while a
program is running. These functions don’t send pages to a printer, but instead write
text to the console (pp. 19, 20). The console can be used to display a variable, confirm an
event, or check incoming data from an external device. Such uses might not seem clear
now, but they will reveal themselves over the course of this book. Like comments,
print() and println() can clarify the intentions and execution of computer
programs.

// To print text to the console, place the desired output in quotes 2-15
println("Processing..."”); // Prints "Processing..." to the console
// To print the value of a variable, rather than its name,

// don’t put the name of the variable in quotes

int x = 20;

println(x); // Prints "20" to the console

// While println() moves to the next line after the text

// is output, print() does not
print("10");

19 Using Processing

println("20"); // Prints "1020" to the console 2-15
println("30"); // Prints "30" to the console cont.

// Use a comma inside println() to write more than one value
int x2 = 20;

int y2 = 80;

println(x2, y2); // Prints "20 80" to the console

// Use the "+" operator to combine variables with custom

// text in between

int x3 = 20;

int y3 = 80;

println(x3 + " and " + y3); // Prints "20 and 80" to the console

Reference

The reference for the Processing language complements this book. We advise opening
the reference and reading it regularly while programming. The reference contains the
nitty-gritty technical details and the book puts them into context. To open the
reference, select the “Reference” option from the Help menu within Processing. It is
available online at www.processing.org/reference.

20 Using Processing

3 Draw

This chapter introduces the coordinate system of the display window and a variety of
geometric elements.

Syntax introduced:

size(), point(), line(), triangle(), quad(), rect(), ellipse(),
arc(), bezier()

background(), fill(), stroke(), noFill(), noStroke()

smooth(), noSmooth()

strokeWeight(), strokeCap(), strokeJoin()

ellipseMode(), rectMode()

Drawing a shape with code can be difficult because every aspect of its location must be
specified with a number. When you're accustomed to drawing with a pencil or moving
shapes around on a screen with a mouse, it can take time to start thinking in relation
to the screen’s strict coordinate grid. The mental gap between seeing a composition on
paper or in your mind and translating it into code notation is wide, but easily bridged.

Coordinates

Before making a drawing, it’s important to think about the dimensions and qualities of
the surface to which you'll be drawing. If you're making a drawing on paper, you can
choose from myriad utensils and papers. For quick sketching, newsprint and charcoal
are appropriate. For a refined drawing, a smooth handmade paper and range of pencils
may be preferred. In contrast, when you are drawing to a computer’s screen, the
primary options available are the size of the window and the background color.

A computer screen is a grid of small light elements called pixels. Screens come in
many sizes and resolutions. We have three different types of computer screens in our
studios, and they all have a different number of pixels. The laptops have 2,304,000
pixels (1920 wide x 1200 high), the flat panels have 3,686,400 pixels (2560 wide x 1440
high), and the older monitors have 786,432 pixels (1024 wide x 768 high). Millions of
pixels may sound like a vast quantity, but most screens still produce a poor visual
resolution compared to physical media such as paper. On the other hand, paper images
are fixed, but screens have the advantage of being able to change their image many
times per second.

Processing programs can control all or a subset of the screen’s pixels. When the Run
button is clicked, a display window opens and its pixels can be changed by Processing.
It’s possible to create images larger than the screen, but in most cases the window is
the size of the screen or smaller.

21

The size of the display window is controlled with the size () function:
size(w, h)

The size () function has two parameters: the first sets the width of the display
window and the second sets its height.

// Draw the display window 120 pixels
// wide and 200 pixels high
size(120, 200);

// Draw the display window 320 pixels
// wide and 240 pixels high
size(320, 240);

// Draw the display window 200 pixels
// wide and 200 pixels high
size(200, 200);

A position within the display window is defined by an x-coordinate and a y-coordinate.
The x-coordinate is the horizontal distance from the origin and the y-coordinate is the
vertical distance. In Processing, the origin is the upper-left corner of the display window
and coordinate values increase down and to the right. The diagram on the left shows
the coordinate system, and the diagram on the right shows a few coordinates placed on
the grid:

22 Draw

3-01

3-02

X —

0O 20 40 60 80 100 (0,0) (99,0)
Y 0 -4 1 1 1 1 1 1 1 1 1 1 .) .
I 2-
40 (50,50)
- (20,60) r
60 - .
. 4 (60,80)
100 - = -
(0,99) (99,99)

A position is written as the x-coordinate value followed by the y-coordinate, separated
with a comma. The notation for the origin is (0,0), the coordinate (50,50) has an
x-coordinate of 50 and a y-coordinate of 50, and the coordinate (20,60) is an
x-coordinate of 20 and a y-coordinate of 60. If the size of the display window is 100
pixels wide and 100 pixels high, (0,0) is the pixel in the upper-left corner, (99,0) is the
pixel in the upper-right corner, (0,99) is the pixel in the lower-left corner, and (99,99) is
the pixel in the lower-right corner. This becomes clearer when we look at examples
using point().

Basic shapes

A point is the simplest visual element and is drawn with the point () function:

point(x, y)

This function has two parameters: the first is the x-coordinate and the second is the
y-coordinate. Unless specified otherwise, a point is the size of a single pixel.

// Points with the same X and Y parameters 3-04
// are drawn on the diagonal axis from the

// upper-left corner to the lower-right

point(20, 20);

point(30, 30);

point(40, 40);

point(50, 50);

point(60, 60);

// Points with the same Y parameter have the 3-05
// same distance from the top and bottom

// edges of the display window

point(50, 30);

point(55, 30);

point(60, 30);

point(65, 30);

point(70, 30);

23 Draw

(a,b)

(x,y)
: d

point(x, y) rect(a, b, c, d)

(x1,y1)

(x2,y2)
(=

line(x1, y1, x2, y2) ellipse(a, b, c, d)

(x1,y1)

(x3,y3) (x2,y2)

triangle(x1, y1, x2, y2, x3, y3) arc(a, b, ¢, d, start, stop)

(x1,y1) (x4,y4) R (x2:y2)

(x2,y2) (x3,y3) .
(x4,y4) (x3,y3)

quad(x1, y1, x2, y2, x3, y3, x4, y4) bezier(x1, yi1, x2, y2, X3, y3, x4, y4)

Figure 3-1 Geometry Primitives
Processing has eight functions to draw simple shapes. These diagrams show the format for each. Replace the

parameters with numbers (or variables) to use them within a sketch.

24 Draw

// Points with the same X parameter have the 3-06
// same distance from the left and right

// edges of the display window

point(70, 50);

point(70, 55);

point(70, 60);

point(70, 65);

point(70, 70);

// Place a group of points side by side 3-07
// to create a line
point(50, 50);
point(50, 51);
point(50, 52);
point(50, 53);

point (50, 54);
point(50, 55);
point(50, 56);
point(50, 57);
point(50, 58);
point(50, 59);

// Points drawn outside the display 3-08
// area will not cause an error,

// but they won't be visible

point(-500, 100);

point (400, -600);

point(140, 2500);

point (2500, 100);

It is possible to draw any line as a series of points, but lines are more simply drawn
with the 1ine () function. This function has four parameters, two for each endpoint:

line(x1, yi1, x2, y2)

The first two parameters set the position where the line starts and the last two set the
position where the line stops.

25

Draw

// When the y-coordinates for a line are the 3-09
// same, the line is horizontal

line(10, 30, 90, 30);

line(10, 40, 90, 40);

line(10, 50, 90, 50);

// When the x-coordinates for a line are the

// same, the
line(40, 10,
line(50, 10,
line(60, 10,

line is vertical
40, 90);
50, 90);
60, 90);

// When all four

parameters are different,

3-11

— // the lines are diagonal
line(25, 90, 80, 60);
line(50, 12, 42, 90);
line(45, 30, 18, 36);

// When two lines share the same point they connect
line(15, 20, 5, 80);
line(90, 65, 5, 80);

s

The triangle () function draws triangles. It has six parameters, two for each point:
triangle(x1, y1, x2, y2, x3, y3)

The first pair defines the first point, the middle pair the second point, and the last pair
the third point. Any triangle can be drawn by connecting three lines, but the
triangle() function makes it possible to draw a filled shape. Triangles of all shapes
and sizes can be created by changing the parameter values.

triangle(60, 10, 25, 60, 75, 65); // Filled triangle
line(60, 30, 25, 80); // Outlined triangle edge
line(25, 80, 75, 85); // Outlined triangle edge
line(75, 85, 60, 30); // Outlined triangle edge

100);
100);
100);

100);

triangle(ss, 9, 110, 100, 85,
triangle(55, 9, 85, 100, 75,
triangle(-1, 46, 16, 34, -7,
triangle(16, 34, -7, 100, 40,

RN

The quad() function draws a quadrilateral, a four-sided polygon. The function has
eight parameters, two for each point:

quad(x1, yi1, x2, y2, x3, y3, x4, y4)

Changing the parameter values can yield rectangles, squares, parallelograms, and
irregular quadrilaterals.

26 Draw

quad(38, 31, 86, 20, 69, 63, 30, 76); 3-15

[/

quad(20, 20, 20, 70, 60, 90, 60, 40); 3-16
quad(20, 20, 70, -20, 110, O, 60, 40);

Drawing rectangles and ellipses works differently than the shapes previously
introduced. Instead of defining each point, the four parameters set the position and the
dimensions of the shape. The rect () function draws a rectangle:

rect(a, b, c, d)

By default, the first two parameters set the location of the upper-left corner, the third
sets the width, and the fourth sets the height. Use the same value for the third and
fourth parameters to draw a square. The rect () function can be used in different ways
that change the meaning of its parameters. See the rectMode () function on p. 37 for
more information.

rect(15, 15, 40, 40); // Large square 3-17
rect(55, 55, 25, 25); // Small square

N

rect(o, 0, 90, 50); 3-18
rect(5, 50, 75, 4);

E‘ rect(24, 54, 6, 6);

rect(64, 54, 6, 6);

rect(20, 60, 75, 10);

rect(10, 70, 80, 2);

The ellipse () function draws an ellipse in the display window:
ellipse(a, b, ¢, d)
The first two parameters set the location of the center of the ellipse, the third sets the

width, and the fourth sets the height. Use the same value for the third and fourth
parameters to draw a circle.

27 Draw

ellipse(40, 40, 60, 60); // Large circle 3-19
O ellipse(75, 75, 32, 32); // Small circle

ellipse(35, 0, 120, 120); 3-20
ellipse(38, 62, 6, 6);
ellipse(40, 100, 70, 70);

Curves

The most basic curve form, the arc, is a piece of an ellipse. To simplify drawing this
shape, Processing includes an arc () function:

arc(a, b, ¢, d, start, stop)

Arcs are drawn along the outer edge of an ellipse defined by the first four parameters
as explained for ellipse().The start and stop parameters define the angles where
the arc begins and ends. The angles for these parameters are radian values; radians are
angles specified in relation to m. Radians are discussed on page 279, so for the following
examples, the more common degree measurement is used for the angles. The degree
measurement o is at the far right of the ellipse, with the angle growing clockwise
around the shape:

270 n+n/2
180 0,360 b 0,2m
30 n/6
45 /4
90 /2
Degree values Radian values

The radians () function is used to convert the degree measurements to radians values
to work with arc().When one function is used as a parameter to another function, as
seen below, the calculation happens first. For instance, the radian angle is first
calculated with the radians () function, then the value is used as the parameter to
arc().

28 Draw

fill(204);
stroke(0);

noStroke();
£i11(204);

b b stroke(0);
(] noFill();

OPEN CHORD PIE

Figure 3-2 Arcs

The position, size, and angles of an arc are defined with six parameters. A seventh parameter
can be used to connect the ends of the arc in different ways. The figure shows how to use the
OPEN, CHORD, and PIE parameters.

arc(50, 50, 75, 75, radians(40), radians(320));

arc(50, 55, 50, 50, radians(0), radians(90));
/'\ arc(50, 55, 60, 60, radians(90), radians(180));
\/ arc(50, 55, 70, 70, radians(180), radians(270));

arc(50, 55, 80, 80, radians(270), radians(360));

There is another version of arc () that can render the shape in different ways:

arc(a, b, c, d, start, stop, mode)
The mode parameter can be one of three options: OPEN, CHORD, or PIE. As you can see
in figure 3-2, OPEN is the default mode, with CHORD and PIE rendering the shape in
alternate ways. The following example shows all of the drawing options, with fi11()

and stroke (). Notice that when stroke is disabled, there’s no visible difference
between OPEN and CHORD.

29 Draw

// Top row,
arc(20, 20,
arc(50, 20, 28,
arc(80, 20, 28,
// Middle row,
noStroke();
arc(20, 50,
arc(50, 50, 28,
arc(80, 50, 28,
// Bottom row,
stroke(0);
noFill();
arc(20, 80,
arc(50, 80,
arc(80, 80,

(A
O

28,

28,

28,
28,
28,

filled and stroked

28, radians(0),

28, radians(0),

28, radians(0),
not stroked

28, radians(0),

28, radians(0),

28, radians(0),
not filled

28,
28,
28,

radians(0),
radians(0),
radians(0),

radians(225),
radians(225),
radians(225),

radians(225),
radians(225),
radians(225),

radians(225),
radians(225),
radians(225),

OPEN);
CHORD) ;
PIE);

OPEN);
CHORD) ;
PIE);

OPEN);
CHORD) ;
PIE);

The bezier () function can draw curves that are more complex than an arc. A Bézier
curve is defined by a series of control points and anchor points. A curve is drawn
between the anchor points, and the control points define its shape:

bezier(x1i, yi1, x2, y2, x3, y3, x4, y4)

The function requires eight parameters to set four coordinate pairs. The curve is drawn
between the first and fourth coordinate pairs, and the control points are defined by the
second and third coordinate pairs. In software that uses Bézier curves, such as Adobe
lustrator, the control points are represented by the tiny handles that protrude from the

edge of a curve.

bezier(32, 20,

80,

// Draw the control points

line(32, 20,

80,

5);

ellipse(80, 5, 4, 4);
line(80, 75, 30, 75);

ellipse(80, 75,

bezier(85, 20, 40,

4, 4);

10, 60, 90,

// Draw the control points
line(85, 20, 40, 10);

ellipse(40, 10,

4, 4);

line(60, 90, 15, 80);

ellipse(60, 90,

30 Draw

4, 4);

5, 80, 75, 30, 75);

15, 80);

)
)

)
)

Y
|
\
:

N

Figure 3-3 Bézier curves
The geometry of a Bézier curve is defined by anchor points and control points. The curve is drawn between the
anchor points, but the shape of the curve is defined by the location of the control points.

31 Draw

Longer Bézier curves are made using the bezierVertex() function in combination
with vertex() and beginShape(). This is explained on page 193. Another category of
curves is defined by the curveVertex() function, defined on page 192.

Drawing order

The order in which shapes are drawn in the code defines which shapes appear on top of
others in the display window. If a rectangle is drawn in the first line of a program, it is
covered by an ellipse drawn in the second line of the program. Reversing the code order
flips the visual result.

rect(15, 15, 50, 50); // Bottom 3-26
ellipse(60, 60, 55, 55); // Top

ellipse(60, 60, 55, 55); // Bottom 3-27

_) rect(15, 15, 50, 50); // Top

Gray values

The examples so far have used the default light-gray background, black lines, and white
shapes. These default values are changed by the background(),fill(), and

stroke () functions. The background() function sets the gray value of the display
window with a number between o and 255. This range may be awkward if you're not
familiar with selecting colors on a computer. The value 255 is white and the value o is
black, with a range of gray values in between. If no background value is defined, the
default value 204 (light gray) is used.

background(0); 3-28

background(124); 3-29

32 Draw

background(230);

The f111() function sets the fill value of shapes, and the stroke () function sets the
outline value of the drawn shapes. If no fill value is defined, the default value of 255
(white) is used. If no stroke value is defined, the default value of o (black) is used.

rect(10, 10, 50, 50);
fill(204); // Light gray
rect(20, 20, 50, 50);
fill(153); // Middle gray
rect(30, 30, 50, 50);
fill(102); // Dark gray
rect(40, 40, 50, 50);

background(0);
r rect(10, 10, 50, 50);
stroke(102); // Dark gray

rect(20, 20, 50, 50);
stroke(153); // Middle gray
rect(30, 30, 50, 50);
stroke(204); // Light gray
rect(40, 40, 50, 50);

Once a fill or stroke value is defined, it applies to all shapes drawn afterward. To change
the fill or stroke value, use the fill() or stroke() function again.

fi11(255); // white
rect(10, 10, 50, 50);
rect(20, 20, 50, 50);
rect(30, 30, 50, 50);
fill(o); // Black

rect(40, 40, 50, 50);

An optional second parameter to fi11() and stroke() controls transparency. Set the
parameter to 255 to make the shape entirely opaque; set it to o to make the shape
totally transparent:

background(0);

fill(255, 220); // High opacity
rect(15, 15, 50, 50);

rect(35, 35, 50, 50);

33 Draw

fill(o);
rect(0, 40,
fill(255, 51); // Low opacity
rect(0, 20, 33, 60);

fill(255, 127); // Medium opacity
rect(33, 20, 33, 60);

fill(255, 204); // High opacity
rect(66, 20, 33, 60);

100, 20);

e

The stroke and fill of a shape can be disabled. The noFill() function stops Processing
from filling shapes, and the noStroke () function stops lines from drawing and
removes the outline from shapes.If noFi11() and noStroke () are both used, nothing
is drawn to the screen.

rect(10,
noFill();
rect(20,
rect (30,

10, 50, 50);

// Disable
20, 50, 50);
30, 50, 50);

the fill

rect(20, 15,
noStroke();

rect(50, 15,
rect(80, 15,

20, 70);
// Disable the stroke
20, 70);
20, 70);

Defining fill and stroke colors is introduced in the next chapter (p. 32).

Attributes

In addition to changing the fill and stroke values, it is also possible to change attributes
of the geometry. The noSmooth () and smooth() functions disable and enable
smoothing (also called antialiasing). Smoothing is applied by default, so use
noSmooth() to turn it off. Once smoothing has been turned off, use smooth() to
enable it again.

ellipse(30,
noSmooth();
ellipse(70,

48, 36, 36);

))

36, 36);

noSmooth();
ellipse(30,
smooth();

ellipse(70,

48, 36, 36);

(IO

48, 36, 36);

34 Draw

Line attributes are controlled by the strokeWeight(), strokeCap(), and
strokeJoin() functions. The strokeWeight () function has one numeric parameter
that sets the thickness of all lines drawn after the function is used. The strokeCap()
function requires one parameter that can be either ROUND, SQUARE, or PROJECT.

ROUND makes round endpoints, and SQUARE squares them. PROJECT is a mix of the
two that extends a SQUARE endpoint by the radius of the line. The strokeJoin()
function has one parameter that can be either BEVEL, MITER, or ROUND. These
parameters determine the way line segments or the stroke around a shape connects.
BEVEL causes lines to join with squared corners, MITER is the default and joins lines
with pointed corners, and ROUND creates a curve.

line(20, 20, 80, 20); // Default line weight of 1 3-40
— strokeWeight(6);

line(20, 40, 80, 40); // Thicker line

strokeWeight(18);

line(20, 70, 80, 70); // Thickest line

strokeWeight(12); 3-41
— strokeCap(ROUND);
= line(20, 30, 80, 30); // Top line
strokeCap(SQUARE);
line(20, 50, 80, 50); // Middle line
strokeCap(PROJECT);
line(20, 70, 80, 70); // Bottom line
strokeWeight(12); 3-42
strokeJoin(BEVEL);
nnn rect(12, 33, 15, 33); // Left shape
strokeJoin(MITER);
rect(42, 33, 15, 33); // Middle shape
strokeJoin(ROUND);
rect(72, 33, 15, 33); // Right shape
Modes

By default, the parameters for el1ipse () set the x-coordinate of the center, the
y-coordinate of the center, the width, and the height. The ellipseMode () function
changes the way these parameters are used to draw ellipses. The el1lipseMode()
function requires one parameter that can be either CENTER, RADIUS, CORNER, or
CORNERS. The default mode is CENTER. The RADIUS mode also uses the first and second
parameters of ellipse() to set the center, but causes the third parameter to set half of
the width and the fourth parameter to set half of the height. The CORNER mode makes
ellipse() work similarly to rect().It causes the first and second parameters to

35 Draw

C
o)

d
CENTER
C
(a,by—
d / \

N

CORNER

(a,b)

)
N

/

RADIUS

2
N

CORNERS

(c,d)

Figure 3-4 Drawing modes

The ellipseMode () and
rectMode () functions change how
ellipses and rectangles draw to the
screen. As shown in this figure, the
different parameters (e.g. CENTER)
adjust the position of the shapes. The
modes work the same for ellipse()
and rect(), but the default mode
forellipse() is CENTER and the
default mode for rect () is CORNER.

position the upper-left corner of the rectangle that circumscribes the ellipse and uses
the third and fourth parameters to set the width and height. The CORNERS mode has a
similar affect to CORNER, but it causes the third and fourth parameters to ellipse()
to set the lower-right corner of the rectangle.

noStroke();

ellipseMode (RADIUS);
£i11(126);

ellipse(33, 33, 60, 60);
f111(255);

ellipseMode (CORNER);
ellipse(33, 33, 60, 60);
fill(0);

ellipseMode (CORNERS);
ellipse(33, 33, 60, 60);

// Gray ellipse

// White ellipse

// Black ellipse

In a similar fashion, the rectMode () function affects how rectangles are drawn. It
requires one parameter that can be either CORNER, CORNERS, or CENTER. The default
mode is CORNER, and CORNERS causes the third and fourth parameters of rect() to
draw the corner opposite the first. The CENTER mode causes the first and second
parameters of rect() to set the center of the rectangle and uses the third and fourth
parameters as the width and height.

36 Draw

noStroke(); 3-44
rectMode (CORNER);

i £i11(126);
rect(40, 40, 60, 60); // Gray square

rectMode (CENTER);

f111(255);

rect(40, 40, 60, 60); // White square
rectMode (CORNERS);

fill(0);

rect(40, 40, 60, 60); // Black square

Exercises

1. On paper, draw a 4 x 4 grid of squares. Draw a different composition of lines and
circles in each square.

2. Select one of the compositions from exercise 1 and code it.

3. Modify the code for exercise 2 to change the fill, stroke, and background values.

4. Create a composition with three ellipses to create an illusion of depth in the display
window. Think about size, drawing order, and transparency.

5. Create a visual knot using only Bézier curves.

37 Draw

4 Color

This chapter introduces code elements and concepts for working with color in software.

Syntax introduced:
blendMode(), colorMode()

Working with color on screen is different from working with color on paper or canvas.
While the same rigor applies, knowledge of pigments for painting (cadmium red,
Prussian blue, burnt umber) and from printing (cyan, yellow, magenta) does not
translate into the information needed to create colors for digital displays. For example,
adding all the colors together on a computer monitor produces white, while adding all
the colors together with paint produces black (or a strange brown). A computer monitor
mixes colors with light. The screen is a black surface, and colored light is added. This is
known as additive color, in contrast to the subtractive color model for inks on paper and
canvas. This image presents the difference between these models:

Additive color Subtractive color

The most common way to specify color on a computer is with RGB values. An RGB
value sets the amount of red, green, and blue light in a single pixel of the screen. If you
look closely at a computer monitor or television screen, you will see that each pixel is
composed of three separate light elements of the colors red, green, and blue; but
because our eyes can see only a limited amount of detail, the three colors mix to create
a single color. The intensities of each color element are usually specified with values
between o and 255 where o is the minimum and 255 is the maximum. Many other
software applications also use this range. Setting the red, green, and blue components
to o creates black. Setting these components to 255 creates white. Setting red to 255 and
green and blue to o creates an intense red.

Selecting colors with convenient numbers can save effort. For example, it'’s common
to see the parameters (o, o, 255) used for blue and (o, 255, o) for green. These
combinations are often responsible for the garish coloring associated with technical
images produced on the computer. They seem extreme and unnatural because they

39

don’t account for the human eye’s ability to distinguish subtle values. Colors that appeal
to our eyes are usually not convenient numbers. Rather than picking numbers like o
and 255, try using a color selector to choose colors more carefully. Processing’s color
selector is opened from the Tools menu. Colors are selected by clicking a location on the
color field or by entering numbers directly. For example, in figure 4-1, the current blue
selected is defined by an R value of 35, a G value of 211, and a B value of 229. These
numbers can be used to recreate the chosen color in your code.

Color by number

In Processing, colors are defined by numeric parameters to the background(), fill(),
and stroke() functions. By default, the first parameter defines the red color
component, the second defines the green component, and the blue component is
defined by the third. The optional fourth parameter to fi11() or stroke () defines
the transparency. The parameter value 255 means the color is entirely opaque, and the
value o means it's completely transparent (it won't be visible).

background(242, 204, 47);

background(174, 221, 60);

background(129, 130, 87);
noStroke();

fi11(174, 221, 60);
rect(17, 17, 66, 66);

background(129, 130, 87);
noFill();
strokeWeight(4);
stroke(174, 221, 60);
rect(19, 19, 62, 62);

40 Color

4-01

4-02

4-04

Color Selector

Figure 4-1 Color Selector

Drag the cursor inside the window or input
numbers to select a color. The large square
area determines the saturation and
brightness, and the thin vertical strip

o

H |18
determines the hue. The numeric value of

the selected color is displayed in HSB, RGB,
and hexadecimal notation.

©

w
w =
v

v
B

S

o

211

N
N
©

|23D3E5

Color

background(116, 193, 206); 4-05
noStroke();

fill(129, 130, 87, 102); // More transparent

rect(20, 20, 30, 60);

fill(129, 130, 87, 204); // Less transparent

rect(50, 20, 30, 60);

background(116, 193, 206); 4-06
noStroke();

fill(129, 130, 87, 51);
rect(0o, 20, 20, 60);
fill(129, 130, 87, 102);
rect(20, 20, 20, 60);
fill(129, 130, 87, 153);
rect(40, 20, 20, 60);
fi11(129, 130, 87, 204);
rect(60, 20, 20, 60);
fill(129, 130, 87, 255);
rect(80, 20, 20, 60);

background(56, 90, 94); 4-07
strokeWeight(12);

stroke(242, 204, 47, 102); // More transparency

line(30, 20, 50, 80);

stroke(242, 204, 47, 204); // Less transparency

line(50, 20, 70, 80);

background(56, 90, 94); 4-08
strokeWeight(12);
stroke(242, 204, 47, 51);
line(o, 20, 20, 80);
stroke(242, 204, 47, 102);
line(20, 20, 40, 80);
stroke(242, 204, 47, 153);
line(40, 20, 60, 80);
stroke(242, 204, 47, 204);
line(60, 20, 80, 80);
stroke(242, 204, 47, 255);
line(80, 20, 100, 80);

Transparency can be used to create new colors by overlapping shapes. The colors
originating from overlaps depend on the order in which the shapes are drawn.

background(0); 4-09
noStroke();

fill(242, 204, 47, 160); // Yellow

ellipse(47, 36, 64, 64);

fill(174, 221, 60, 160); // Green

ellipse(90, 47, 64, 64);

fill(116, 193, 206, 160); // Blue

ellipse(57, 79, 64, 64);

background(255); 4-10
o noStroke();
v £i11(242, 204, 47, 160); // Yellow

ellipse(47, 36, 64, 64);

fill(174, 221, 60, 160); // Green
ellipse(90, 47, 64, 64);

fill(116, 193, 206, 160); // Blue
ellipse(57, 79, 64, 64);

42 Color

Blend

Colors can be mixed on screen according to the current blend mode of the sketch. By
default, Processing replaces colors or blends them if transparency is used. The
blendMode () function mixes pixels in different ways depending on a single
parameter. When shapes and images are drawn to the screen, the pixels mix according
to the rules of each blend mode. The mode options are BLEND, ADD, SUBTRACT,
DARKEST, LIGHTEST,DIFFERENCE, EXCLUSION, MULTIPLY, SCREEN, and REPLACE. Like
the fill and stroke settings, after the blend mode is set, it remains in that mode until is
it changed again. A selection of the modes is explained in figure 4-2, and code samples
follow.

size(100, 100);

stroke (153, 204);

strokeWeight(12);

background(0);

line(20, 20, 40, 80);

line(40, 20, 20, 80);

blendMode(ADD); // Change blend mode
line(60, 20, 80, 80);

line(80, 20, 60, 80);

The default mode is BLEND, so after the mode is changed, restore the default by setting
the mode back to BLEND. The next example is similar to the first, but it starts by
changing the blend mode to ADD, then restores the default after.

size(100, 100);

stroke (153, 204);

strokeWeight(12);

background(0);

blendMode (ADD); // Change blend mode

line(20, 20, 40, 80);

line(40, 20, 20, 80);

blendMode (BLEND); // Restore default blend mode
line(60, 20, 80, 80);

line(80, 20, 60, 80);

43 Color

ADD

Additive blending with maximum
value of white:

C = min(A*factor + B, 255)

SUBTRACT

Subtractive blending with minimum
value of black:

C = max(B - A*factor, 0)

LICHTEST
The lightest color is used:
C = max(A*factor, B)

DARKEST
The darkest color is used:
C = min(A*factor, B)

MULTIPLY

Multiply the colors, result will
always be darker:
C=A*B

>
@
(@}

Figure 4-2 Blending

The blendMode () function changes the way colors are mixed when a
shape or image is drawn to the display window. The equations shown
with each description mathematically define each blending technique. In
the diagram, the letters A and B are the pixels of the source images, and
C is the pixels of the resulting image. The factor is the alpha
component (transparency) of the source image. Additional blend modes
are documented in the Processing reference.

44 Color

RGB, HSB

Processing uses the RGB color model as its default for working with color, but the HSB
specification can be used instead to define colors in terms of their hue, saturation, and
brightness. The hue of a color is what most people normally think of as the color name:
yellow, red, blue, orange, green, violet. A pure hue is an undiluted color at its most
intense. The saturation is the degree of purity in a color. It is the continuum from the
undiluted, pure hue to its most diluted and dull. The brightness of a color is its relation
to light and dark.

The colorMode () function sets the color space for a sketch. The parameters to
colorMode () change the way Processing interprets color data. The first parameter is
either RGB or HSB. The optional, additional parameters allow Processing to use different
values to define the colors rather than the default of o to 255. Either a single parameter
sets the range for all the color components, or three parameters set the range for
each—either red, green, blue or hue, saturation, brightness, depending on the value of
the first parameter.

// Set the range for the red, green, and blue values from 0.0 to 1.0 4-13
colorMode(RGB, 1.0);

A useful setting for HSB mode is to set the parameters respectively to 360, 100, and 100.
The hue values from o to 360 are the degrees around the color wheel, and the
saturation and brightness values from o to 100 are percentages. This setting matches
the values used in many color selectors and therefore makes it easy to transfer color
data between other programs and Processing:

// Set the range for the hue to values from O to 360 and the 4-14
// saturation and brightness to values between 0 and 100
colorMode (HSB, 360, 100, 100);

The following examples reveal the differences between hue, saturation, and brightness.

// Change the hue, same saturation and brightness 4-15
colorMode (HSB, 360, 100, 100);

noStroke();

fill(o, 100, 100);

rect(o, 0, 25, 100);

fill(90, 100, 100);

rect(25, 0, 25, 100);

fil11(180, 100, 100);

rect(50, 0, 25, 100);

fill(270, 100, 100);

rect(75, O, 25, 100);

45 Color

Figure 4-3 Color by numbers
Every color in code is set by numbers, and there are more than 16 million colors to choose from. This diagram

255
252

249

226
196
171
148
126
108

95
102
107
114
122

127

151
156
162

169

185
192
197
202

202

16
23
31
38
45
51
58
67
73
81
87
95
122
145
168
186
200
216
216
214
214
211
211
209
206
206
204
201
201

200

RGB

45

85
126
160
192
226
237
237
234
232
232
229
227
227
224
224
221
219
219
207
195
185
177
172
169
169
175
180
183
190

193

HSB

360 100 100

351
342
332
323
314
304
295
285
276
267
257
248
239
229
220
210
201
192
182
173

164

126
117
107
98
89
79

70

96
93
90
87
84
81
78
75
71
68
65
62
59
56
53
50
46
43
40
37
34
31
28
25
21
18
15

12

99
98
98
97
96
96
95
95
94
93
93
92
91
91
90
90
89
88
88
87
86
86
85
85
84
83
83
82
81
81

80

HEX
#FFO000
#FCOA2E
#F91157
#F91881
#F720A4
#F427C4
#FA42EE7
#E235F2
#C43CF2
#ABASEF
#944BED
#7E53ED
#6C59EA
#5F61E8
#667DE8
#6B94E5
#72ACES
#7ABEE2
#7FCDEO
#86DDEO
#8BDDD4
#90DBC7
#97DBBD
#9CD8BS
#A2D8BO
#A9D6AD
#AFD3AD
#BAD3B3
#C1D1B8
#C5CEBB
#CACEC2

#CACCCS

presents a few colors and their corresponding numbers for the RGB and HSB color models. The RGB column is in
relation to colorMode (RGB, 255) and the HSB column is in relation to colorMode (HSB, 360, 100, 100).

IS

6

Color

// Change the saturation, same hue and brightness 4-16
colorMode (HSB, 360, 100, 100);
noStroke();

fill(180, 0, 80);

rect(o, 0, 25, 100);

fi11(180, 25, 80);

rect(25, 0, 25, 100);
fill(180, 50, 80);

rect(50, 0, 25, 100);
fill(180, 75, 80);

rect(75, O, 25, 100);

// Change the brightness, same hue and saturation 4-17
colorMode (HSB, 360, 100, 100);
noStroke();

fill1(180, 42, 0);
rect(o, 0, 25, 100);
fi11(180, 42, 25);
rect(25, 0, 25, 100);
fill(180, 42, 50);
rect(50, 0, 25, 100);
fill(180, 42, 75);
rect(75, O, 25, 100);

It’s easy to make smooth transitions between colors by changing the values used

for fi11() and stroke (). The HSB model has an enormous advantages over the

RGB model when working with code because it’s more intuitive. Changing the values of
the red, green, and blue components often has unexpected visual results, while
estimating the results of changes to hue, saturation, and brightness follows a more
logical path. The following examples show a transition from red to green. The first
example makes this transition using the RGB model. It requires calculating more than
one color value, and the saturation of the color unexpectedly changes in the middle. The
second example makes the transition using the HSB model. Only one number needs to
be altered, and the hue changes smoothly and independently from the other color
properties.

// Shift from red to green in RGB mode 4-18
colorMode(RGB, 255, 255, 255);
noStroke();

fi11(206, 60, 60);
rect(o, 0, 20, 100);
£i11(186, 89, 60);
rect(20, 0, 20, 100);
fill(166, 118, 60);

47 Color

rect(40, 0, 20, 100);
fill(147, 147, 60);
rect(60, 0, 20, 100);
fill(108, 206, 60);
rect(80, 0, 20, 100);

// Shift from red to green in HSB mode
colorMode (HSB, 360, 100, 100);
noStroke();

fill(o, 70, 80);

rect(o, 0, 20, 100);

fill(25, 70, 80);

rect(20, 0, 20, 100);

fill(so, 70, 80);

rect(40, 0, 20, 100);

fill(75, 70, 80);

rect(60, 0, 20, 100);
fill(100, 70, 80);

rect(80, 0, 20, 100);

Hexadecimal

Hexadecimal (hex) notation is an alternative notation for defining color. This method is
popular with designers working on the web because standards such as HyperText
Markup Language (HTML) and Cascading Style Sheets (CSS) use this notation. Hex
notation for color encodes each of the numbers from o to 255 into a two-digit value
using the numbers o through g and the letters A through F. In this way three RGB
values from o to 255 can be written as a single six-digit hex value. A few sample
conversions demonstrate this notation:

RGB Hex
255, 255, 255 #FFFFFF

o, o, o #000000
102, 153, 204 #6699CC
195, 244, 59 #C3F43B
116, 206, 206 #74CECE

Converting color values from RGB to hex notation is not intuitive. Most often, the value
is taken from a color selector. For instance, you can copy and paste a hex value from
Processing’s color selector into your code. When using color values encoded in hex
notation, you must place a # before the value to distinguish it within the code.

48 Color

4-18
cont.

// Code 4-03 rewritten using hex numbers 4-20
background(#818257);

noStroke();

fi11(#AEDD3C);

rect(17, 17, 66, 66);

There’s more information about hex notation in appendix D (p. 609).

Exercises

1. Open the color selector and choose different colors. Record the RGB, HSB, and
hexadecimal numbers for some of the colors you prefer.

2. Change code 4-08 to use the colors you discovered in exercise 1.

3. Modify codes 4-09 and 4-10 to use the blendMode () function. Notice how different
colors respond to different modes and backgrounds.

4. Switch the color mode for code 4-o5 to HSB and match the default RGB colors exactly.

5. Redraw your composition from exercise 2 to use hexadecimal color values.

49 Color

5 Variables

This chapter introduces different types of data and explains how to create variables, assign
values, and operate on them.

Syntax introduced:

int, float, boolean, true, false, = (assign), color, color()
width, height

+ (add), - (subtract), * (multiply), / (divide), % (modulus)
() (parentheses)

boolean(), byte(), char(), float(), int(), str()

++ (increment), -- (decrement), += (add assign), -= (subtract
assign) *= (multiply assign), /= (divide assign), - (negation)

What is data? Data often consists of measurements of physical characteristics. For
example, Casey’s California driver’s license states that his sex is M, his hair is BRN, and
his eyes are HZL. The values M, BRN, and HZL are items of data associated with Casey.
Data can be the population of a country, the average annual rainfall in Los Angeles, or
your current heart rate. In software, data is stored as numbers and characters. Examples
of digital data include a photograph of a friend stored on your hard drive, a song
downloaded from the Internet, and a news article loaded through a web browser. Less
obvious is the data continually created and exchanged between computers and other
devices. For example, computers are continually receiving data from the mouse and
keyboard. When writing a program, you might create a data element to save the
location of a shape, to store a color for later use, or to continuously measure changes
in cursor position.

Data types

Processing can store and modify many different kinds of data, including numbers,
letters, words, colors, images, fonts, and boolean values (true, false). The computer
stores each in a different way, so it has to know which type of data is being used to
know how to manage it. For example, storing a word takes more room than storing one
letter; therefore, storing the word Cincinnati requires more space than storing the letter
C.If space has been allocated for only one letter, trying to store a word in the same
space will cause an error. Every data element is represented as a sequence of bits

(os and 1s) in the computer’s memory (more information about bits is found in
Appendix D, p. 609). For example, 01000001 can be interpreted as the letter 4, and it can
also be interpreted as the number 65. It’s necessary to specify the type of data so the
computer knows how to correctly interpret the bits.

51

Numeric data is the first type of data encountered in the following sections of this
book. There are two types of numeric data used in Processing: integer and floating-
point. Integers are whole numbers such as 12, -120, 8, and 934. Processing represents
integer data with the int data type. Floating-point numbers have a decimal point for
creating fractions of whole numbers such as 12.8, -120.75, 8.125, and 934.82736. Processing
represents floating-point data with the float data type. Floating-point numbers are
often used to approximate analog or continuous values because they have decimal
resolution. For example, using integer values, there is only one number between 3 and 5,
but floating-point numbers allow us to express myriad numbers between such as 4.0,
4.5, 4.75, 4.825, etc. Both int and float values may be positive, negative, or zero.

The simplest data element in Processing is a boolean variable. Variables of this type
can have only one of two values—true or false. The name boolean refers to the
mathematician George Boole (b. 1815), the inventor of Boolean algebra—the foundation
for how digital computers work. A boolean variable is often used to make decisions
about which lines of code are run and which are ignored.

The following table compares the capacities of the data types mentioned earlier
with other common data types:

Name Size Value range

boolean 1 bit true or false

byte 8 bits -128 to 127

char 16 bits 0 to 65535

int 32 bits -2,147,483,648 to 2,147,483,647
float 32 bits 3.40282347E+38 to -3.40282347E+38
color 32 bits 16,777,216 colors

These data types are called primitive data types because they store a single data
element. The types for storing text (String), images (PImage), and fonts (PFont) are
different. Variables created from these data types are objects. Objects are usually
composed of several primitive data types (or other objects) and can also have functions
inside to act on their data. For example, a String object stores an array of characters
and has functions that return the number of characters or the character at a specific
location. These additional types of data are introduced and explained in Images (p.163),

Typography (p. 149), and Objects (p. 359).

Variables

A variable is a container for storing data. Variables allow a data element to be reused
many times within a program. Every variable has two parts, a name and a value. If the
number 21 is stored in the variable called age, every time the word age appears in the
program, it will be replaced with the value 21 when the code is run. In addition to its
name and value, every variable has a data type that defines the category of data it can
hold.

52 Variables

A variable must be declared before it is used. A variable declaration states the data
type and variable name. The following lines declare variables and then assign values to
them:

int x; // Declare the variable x of type int 5-01
float y; // Declare the variable y of type float

boolean b; // Declare the variable b of type boolean

X = 50; // Assign the value 50 to x

y = 12.6; // Assign the value 12.6 to y
b = true; // Assign the value true to b

As a shortcut, a variable can be declared and assigned on one line:
int x = 50; 5-02
float y = 12.6;

boolean b = true;

More than one variable can be declared in one line if they have the same data type, and
the variables can then be assigned separately:

float x, y, z; 5-03
X = -3.9;
y = 10.1;

z = 124.23;

When a variable is declared, it is necessary to state the data type before its name; but
after it’s declared, the data type cannot be changed or restated. If the data type is
included again for the same variable, the computer will interpret this as an attempt to
make a new variable with the same name. This will cause an error (an exception to this
rule is made when each variable has a different scope, p. 80):

int x = 69; // Assign 69 to x 5-04
X = 70; // Assign 70 to x
int x = 71; // ERROR! The data type for x is duplicated

The = symbol is called the assignment operator. It assigns the value from the right side
of the = to the variable on its left. Values can be assigned only to variables. Trying to

assign a constant to another constant produces an error:

// Error! The left side of an assignment must be a variable 5-05
5 = 12;

53 Variables

When working with variables of different types in the same program, be careful not to
mix types in a way that causes an error. For example, it is not possible to fit a floating-
point number into an integer variable:

// Error! It's not possible to fit a floating-point number into an int
int x = 24.8;

float f = 12.5;
// Error! It's not possible to fit a floating-point number into an int
int y = f;

Working with color data is a little different from creating integers and boolean
variables because the color must first be constructed with the color () function.

As with fi11() and stroke(), the parameters to the color () function define the
precise color. One parameter to the function defines a gray value, two parameters
define a gray value with transparency, three parameters define a color value, and four
parameters define a color value with transparency. Variables of the color data type can
store all of these configurations.

color c1 = color(51); // Creates gray
color c2 = color(51, 204); // Creates gray with transparency
color c3 = color(51, 102, 153); // Creates blue
color c4 = color(51, 102, 153, 51); // Creates blue with transparency

After a color variable has been defined, it can be used as the parameter to the
background(),fill(),and stroke() functions.

color ruby color(211, 24, 24, 160);
color pink = color(237, 159, 176);
background(pink);

noStroke();

fill(ruby);

rect(35, 0, 20, 100);

Variable names

The name of each variable is defined by the programmer; the name of the variable
should describe its content. This makes programs easier to read and can reduce the
need for verbose commenting. For instance, a variable storing the temperature of the
room could logically have the following names:

54 Variables

5-06

5-07

5-08

5-09

t

temp
temperature
roomTemp

roomTemperature

Variables like t should be used minimally or not at all because they are cryptic—there’s
no hint as to what they contain. However, long names such as roomTemperature can
also make code tedious to read. If we were writing a program with this variable, our
preference might be to use the name roomTemp because it is both concise and
descriptive. The name temp could also work, but because it’s used commonly as an
abbreviation for “temporary,” it wouldn'’t be the best choice.

There are a few conventions that make it easier for other people to read your
programs. Variables’ names should start with a lowercase letter, and if there are multiple
words in the name, the first letter of each additional word should be capitalized. There
are afew absolute rules in naming variables. Variable names cannot start with numbers,
and they must not be a reserved word. Examples of reserved words include int, if, true,
and null.A complete list is found in Appendix B (p.603). To avoid confusion, variables
should not have the same names as elements of the Processing language such as 1ine
and ellipse.The complete Processing language is listed in the reference included with
the software.

Another important consideration related to variables is the scope (p. 80). The scope
of a variable defines where it can be used relative to where it is created.

Processing variables

The Processing language has built-in variables for storing commonly used data. The
width and height of the display window are stored in variables called width and
height.If a program doesn’t include size (), the width and height variables are
both set to 100. Test by running the following programs. The printl1n() function is
used to write the variable values to the Processing console, the area below the text
editor:

println(width + ", " + height); // Prints "100, 100" to the console

size(300, 400);
println(width + ", " + height); // Prints "300, 400" to the console

size (1280, 1024);
println(width + ", " + height); // Prints "1280, 1024" to the console

Using the width and height variables is useful when writing a program to scale to

different sizes. This technique allows a simple change to the parameters of size() to
alter the dimensions and proportions of a program, rather than changing values

55 Variables

throughout the code. Run the following code with different values in the size()
function to see it scale to every window size.

size(100, 100); 5-13
ellipse(width*0.5, height*0.5, width*0.66, height*0.66);

line(width*0.5, 0, width*0.5, height);

line(0, height*0.5, width, height*0.5);

You should always use actual numbers in size() instead of variables. When a sketch is
exported, these numbers are used to determine the dimension of the program. More
information about this can be found in the reference for size().

Processing variables that store the cursor position and the most recent key pressed
are discussed in the Interaction chapter (p. 83).

Arithmetic

In programming, the visual properties of an image on the screen are defined by
numbers, which means that the image can be controlled mathematically. For example, a
rectangle might have a horizontal position of 10, a vertical position of 10, a width and
height of 55, and a gray value of 153. If the gray value is stored in the variable grayVal
and 102 is added to this variable, the gray value will become 255, and the shape will
appear white on screen. This is demonstrated succinctly in code:

int grayvVal = 153; 5-14
fill(grayval);

rect(10, 10, 55, 55); // Draw gray rectangle

grayVal = grayVal + 102; // Assign 255 to grayVal
fill(grayval);

rect(35, 30, 55, 55); // Draw white triangle

The expression to the right of the = symbol is evaluated before the value is assigned to
the variable on the left. Therefore, the statement a=5+4 first adds 5 and 4 to yield g and
then assigns the value g to the variable a.

Within the visual domain, addition, subtraction, multiplication, and division can be
used to control the position of elements on the screen or to change attributes such as
size or gray value. The + symbol is used for addition, the - symbol for subtraction, the *
symbol for multiplication, and the / symbol for division.

int a = 30; 5-15
line(a, 0, a, height);

a = a + 40; // Assign 70 to a

strokeWeight(4);

line(a, 0, a, height);

56 Variables

int a = 30; 5-16
int b = 40;

line(a, 0, a, height);

line(b, 0, b, height);

strokeWeight(4);

// A calculation can be used as an input to a function
line(b-a, 0, b-a, height);

int a = 8; 5-17
int b = 10;

line(a, 0, a, height);

line(b, 0, b, height);

strokeWeight(4);

line(a*b, 0, a*b, height);

int a = 8; 5-18
int b = 10;

line(a, 0, a, height);

line(b, 0, b, height);

strokeWeight(4);

line(a/b, 0, a/b, height);

int y = 20; 5-19
line(0, y, width, y);

y =y + 6; // Assign 26 to y

line(0, y, width, y);

y =y + 6; // Assign 32 to y

line(0, y, width, y);

y =y + 6; // Assign 38 to y

line(0, y, width, y);

float y = 20; 5-20
line(0, y, width, y);

y =y * 1.6; // Assign 32.0 to y

line(0, y, width, y);

y =y * 1.6; // Assign 51.2 to y

line(0, y, width, y);

y =y * 1.6; // Assign 81.920006 to y

line(o, y, width, vy);

The +, -, *, /,and = symbols are probably familiar, but the % is more exotic. The % operator
calculates the remainder when one number is divided by another. The %, the code
notation for modulus, returns the integer remainder after dividing the number to the

left of the symbol by the number to the right.

57 Variables

Expression Result Explanation

9 % 3 o] 3 goes into 9 three times, with no remainder
9 % 2 1 2 goes into 9 four times, with 1 as the remainder
35 % 4 3 4 goes into 35 eight times, with 3 remaining

Modulus can be explained with an anecdote. After a hard day of work, Casey and
Ben were hungry. They went to a restaurant to eat dumplings, but there were only 9
dumplings left, so they had to share. If they share equally, how many dumplings can
they each eat, and how many will remain? It’s obvious that each can have 4 dumplings
and 1 will remain. If there are 4 people and 35 dumplings, each can eat 8, and 3 will
remain. In these examples, the modulus value is the number of remaining dumplings.
The modulus operator is often used to keep numbers within a desired range. For
example, if a variable is continually increasing (o, 1, 2, 3, 4, 5, 6, 7, etc.), applying the
modulus operator can transform this sequence. A continually increasing number can be
made to cycle continuously between o and 3 by applying %4:

X % 4 (0] 1 2 3 (o] 1 2 3 [¢] 1 2

Many examples throughout this book use % in this way.

Mind the data types

When working with mathematical operators and variables, it is important to be aware
of the data types of the variables you're using. The combination of two integers will
always result in an int. The combination of two floating-point numbers will always
result in a float, but when an int and float are operated on, the result is a float.

println(4/3); // Prints "1" 5-21
println(4.0/3); // Prints "1.3333334"
println(4/3.0); // Prints "1.3333334"

println(4.0/3.0); // Prints "1.3333334"

Integer values can be assigned to floating-point variables, but not vice versa.
Assigning a float to an int makes the number less accurate, so Processing requires
that you do so explicitly (discussed on page 59). Working with an int and a float will
upgrade the int and treat both numbers as floating-point values, but the result won't
fit into an int variable.

int a = 4/3; // Assign 1 to a 5-22
int b = 3/4; // Assign 0 to b

int ¢ = 4.0/3; // ERROR!

int d = 4.0/3.0; // ERROR!

58 Variables

float e
float f

4.0/3; // Assign 1.3333334 to e 5-22
4.0/3.0; // Assign 1.3333334 to f cont.

The last two calculations require additional explanation. The result of dividing two
integers will always be an integer: dividing the integer 4 by the integer 3 equals 1. This
result is converted to a floating-point variable after the calculation has finished, so the 1
becomes 1.0 only once it has reached the left side of the = sign. While this may seem
confusing, it can be useful for more advanced programs.

float a = 4/3; // Assign 1.0 to a 5-23
float b 3/4; // Assign 0.0 to b

The rules of calculating int and float values can become obscured when variables are
used instead of the actual numbers. It’s important to be aware of the data types for
variables to avoid this problem.

int 1 = 4; 5-24
float f = 3.0;

int a = i/f; // ERROR! Assign a float value to an int variable
float b = i/f; // Assign 1.3333334 to b

It’s also important to pay attention to the value of variables to avoid making arithmetic
errors. For example, dividing a number by zero is undefined in mathematics, but in
software it just causes an error.

int a
int b

0; 5-25
12/a; // ERROR! ArithmeticException: / by zero

Similarly, dividing by an extremely small number can yield an enormous result. This
can be confusing when drawing shapes because they will not be visible in the display
window.

float a = 0.0001; 5-26
float b = 12/a; // Assign 120000.0 to b

Data conversion

Sometimes it is necessary or convenient to convert a value from one type of data to
another, a task for which Processing has several functions. Some data type conversions
are automatic and others need to be made explicit with functions written for data type
conversion. As alluded to previously, automatic conversions are made between
compatible types. For example, an int can be automatically converted to a float, but a
float can’t be automatically converted to an int:

59 Variables

float f = 12.6; 5-27
int i = 127;

f =1; // Converts 127 to 127.0

i = f; // Error: Can't automatically convert a float to an int

How does one know which data types are compatible and which require an explicit
conversion? Conversions that involve a loss of information must be explicit. When
converting an int to a float, nothing is lost. When converting a float to an int,
however, the numbers after the decimal point are lost. Explicit conversions are a way of
stating in code that this loss of information is intentional. The functions for explicit
data type conversion are boolean(), byte(), char(),float(),int(),and str().
Each is used to convert other data types to the type for which the function is named.

The boolean() function converts the number o to false and all other numbers to
true.It converts the string “true” to true and the string “false” to false.

int i = 0; 5-28
boolean b = boolean(i); // Assign false to b
int n = 12;

b = boolean(n); // Assign true to b
String s = "false";
b = boolean(s); // Assign false to b

The byte () function converts other types of data to a byte representation. A byte can
only be a whole number between -128 and 127; therefore, when a number outside this
range is converted, its value wraps to the corresponding byte representation.

float f = 65.0; 5-29
byte b = byte(f); // Assign 65 to b

char ¢ = 'E';

b = byte(c); // Assign 69 to b

f = 130.0;

b = byte(f); // Assign -126 to b

The char () function converts other types of data to a character representation. More
information about the char data type will be found later in the book (p. 144). An
explanation of the numbering can be found in Appendix C (p. 604).

int i = 65; 5-30
byte y = 72;

char ¢ = char(i); // Assign 'A' to ¢

¢ = char(y); // Assign 'H' to ¢

The float() function converts other types of data to a floating-point representation. It
is most often used when making calculations. As discussed, dividing two integers will

60 Variables

always evaluate as an integer, which is a problem when working with fractions. For
example, when the integer number 3 is divided by 6, the answer is the integer value o
rather than the often desired floating-point value o.5. Converting one of these values to
a float allows the expression to evaluate to a floating-point value.

int i = 2; 5-31
int j = 3;

float f1 = i/j; // Assign 0.0 to f1

float f2 = i/float(j); // Assign 0.6666667 to f2

The int () function converts other types of data to an integer representation. It

converts float values by dropping the values after the decimals rather than rounding.

Many of the math functions only return float values, and it’s necessary to convert

them to integers for use in other parts of a program.

float f = 65.9; 5-32
int i = int(f); // Assign 65 to i

char ¢ = 'E';

i = int(c); // Assign 69 to i

Order of operations

The order of operations determines which operators perform their calculations before

others. For example, multiplication is always evaluated before addition regardless of the
sequence of the elements. The expression 3+4*5 evaluates to 23 because 4 is first

multiplied by 5 to yield 20 and then 3 is added to yield 23. The order of operations

specifies that multiplication always precedes addition regardless of the order in which

they appear in the expression. The order of operations for evaluating expressions can be
changed by adding parentheses. For example, if an addition operation appears in

parentheses, it will be performed prior to multiplication. The expression (3+4)*5

evaluates to 35 because 3 is first added to 4 to yield 7, which is then multiplied by 5 to

yield 3s. This is more concisely expressed in code:

float x = 3 + 4 * 55 // Assign 23 to x 5-33
float y = (3 + 4) * 5; // Assign 35 to y

In many cases, parentheses are necessary to force elements of an expression to evaluate
before others, but sometimes they are used only to clarify the order of operations. The
following lines calculate the same result because multiplication always happens before
addition, but you may find the second line more clear.

float x = 10 * 20 + §5; // Assign 205 to x 5-34

float vy (10 * 20) + 5; // Assign 205 to y

61 Variables

The following table shows the operator precedence for the operators introduced so far.
Items at the top precede those toward the bottom.

Multiplicative * /%
Additive + -
Assignment =

This means, for example, that division will always happen before subtraction and
addition will always happen before assignment. A complete listing for the order of
operations is listed in Appendix A (p. 601).

Shortcuts

There are many repetitive expressions in calculating the value of variables, so code
shortcuts are used to make programs more concise. The increment operator ++ adds the
value 1to a variable, and the decrement operator -- subtracts the value of 1:

int x = 1; 5-35
println(x); // Prints "1" to the console

X++; // Equivalent to x = x + 1

println(x); // Prints "2" to the console

int y = 1;

println(y); // Prints "1" to the console

y--; // Equivalent to y = y - 1

println(y); // Prints "0" to the console

The value is incremented or decremented after the expression is evaluated. This often
creates confusion and is shown in this example:

int x = 1; 5-36
println(x++); // Prints "1" to the console
println(x); // Prints "2" to the console

To update the value before the expression is evaluated, place the operator in front of the
variable:

int x = 1; 5-37
println(++x); // Prints "2" to the console
println(x); // Prints "2" to the console

62 Variables

The add assign operator += combines addition and assignment. The subtract assign
operator -= combines subtraction with assignment:

int x = 1; 5-38
println(x); // Prints "1" to the console
X += 5; // Equivalent to x = x + 5

println(x); // Prints "6" to the console

int y = 1;
println(y); // Prints "1" to the console
y -=5; // Equivalent to y = y - 5

println(y); // Prints "-4" to the console

The multiply assign operator *= combines multiplication with assignment. The divide
assign operator /= combines division with assignment:

int x = 4; 5-39
println(x); // Prints "4" to the console
X *= 2; // Equivalent to x = x * 2

println(x); // Prints "8" to the console

int y = 4;
println(y); // Prints "4" to the console
y /= 2; // Equivalent to y =y / 2

println(y); // Prints "2" to the console

The negation operator - changes the sign of value to its right. It can be used in place of
multiplying a value by -1.

int x = 5; // Assigns 5 to x 5-40
X = -X; // Equivalent to x = x * -1
println(x); // Prints "-5"

Exercises
1. Think about different types of numbers you use daily and write them down.
Are they integer or floating-point numbers?
2. Make a few int and float variables. Try assigning them in different ways.
Write the values to the console with println().
3. Create a composition that scales proportionally with different window sizes.
Put different values into size () to test.
4. Use one variable to set the position and size for three ellipses.
5. Use multiplication to create a series of lines with increasing space between each.

63 Variables

6 Flow

This chapter focuses on creating programs that run continuously, therefore making motion
and interaction possible. The flow of these programs is further controlled with conditional
structures and logical operators.

Syntax introduced:

draw(), {} (braces), frameRate(), frameCount, setup(), noLoop()
> (greater than), < (less than)

>= (greater than or equal to), <= (less than or equal to)

== (equality), != (inequality)

if, else

|| (logical OR), 8% (logical AND), ! (logical NOT)

The programs we’ve seen so far run each line of code in sequence from top to bottom.
They run the first line, then the second, then the third, and so on. The program stops
when the last line is run. It’s often beneficial to change this order—sometimes skipping
lines or repeating lines many times to create movement. Although the lines of code in a
program are always positioned in an order from top to bottom on the page, this doesn’t
necessarily define the order in which each line is run. This order is called the flow of the
program.

Looping

Sketches that create animation or respond to input from the mouse or keyboard must
run their code continuously. This is achieved by adding a draw() function.

void draw() {
statements

}

The name of the draw() function is preceded by the keyword void (p.347) and is
followed by a { (left brace), one or more statements, then a } (right brace). (Sometimes
people alternatively call these squiggly characters curly brackets.)

The code inside a set of braces is called a block. The code inside a draw() block
runs continuously from top to bottom until the program is stopped. Each time the code
in the draw() block runs, the display window is updated and the code inside draw()
starts running again from the first line. Please note that a program can have only one
draw().

65

By default, the lines of code in the draw() block are run 6o times each second. This
is more typically referred to as 6o frames per second, often abbreviated as fps. The
frameRate () function is used to set the desired frames per second. A program will
always attempt to run at the speed set by the parameter to the frameRate() function,
but sometimes the ambitions of the programmer exceed the speed of the computer. The
frameRate() function controls only the maximum frame rate—it can not speed up a
program that runs slowly because of equipment limitations.

The frameCount variable always contains the number of frames displayed since
the program started. A program with draw() keeps displaying frames (1, 2, 3, 4, 5, ...)
until it is stopped, the computer is shut down, or the power goes out.

// Print each frame number to the console 6-01
void draw() {

println(frameCount);
}
// Run at around 4 fps, print each frame number to the console 6-02
void draw() {

frameRate(4);

println(frameCount);
}

Changing visual elements from frame to frame creates animation. For example,
changing a variable that defines the position of a line will cause it to move:

float y = 0.0; 6-03
void draw() {

line(o, y, 100, y);
y =y + 0.5;

66 Flow

When this code runs, the variables are replaced with their current values and the
statements are run in this order:

float y = 0.0

line(o, 0.0, 100, 0.0)
y = 0.5 .
... - Enter dr aw() for the second time
line(o, 0.5, 100, 0.5)

y = 1.0

... - Enter draw()forthe third time
line(o, 1.0, 100, 1.0)

y = 1.5

Etc...

- Enter draw()

The variable y must be declared outside draw() for this program to move the line
each frame. If the variable is declared inside draw(), it will be re-created each time the
draw() block is run and reassigned to the same value, therefore placing the line in the
same position.

The background of the display window does not refresh automatically, so lines will
simply accumulate. To clear the display window at each frame, insert a background()
function at the beginning of the draw() function. The background() function fills the
entire display window with the specified color. It overwrites every pixel in the display
window each time it is run. If the background() is not placed at the top of draw(), it
will cover any element drawn earlier.

float y = 0.0; 6-04

void draw() {
background(204);
line(o, y, 100, vy);
y =y + 0.5;

The variable that controls the line position can be used for other purposes; it’s a number
that can be used to control any aspect of the program. In the next example, it’s used to
move the line and set the color of the background.

67 Flow

Function

68

Variable name

Data type Assignment operator

i n t y = O ; Statement terminator

void setup() {
size (300, 300); weea oo

¥

Return value

void draw() {
line(0, y, 300, y);
y = y + 4; Parameters

} Expression

Figure 6-1 Anatomy of a Processing sketch 2

Each sketch can have only one setup() and one draw(). When the sketch starts, the code outside of
setup() and draw() is run. Next, the code inside setup() is run once. After that, the code inside
draw() is run continuously until the sketch is stopped. In this sketch, because the variable y is
declared outside of setup() and draw(), it’s a global variable and can be accessed and assigned
anywhere within the sketch.

Flow

69

float y = 0.0;

void draw() {
background(y * 2.5);
line(o, y, 100, vy);
y =y + 0.5;

}

Controlling the flow

Some parts of a program need to be run once, rather than every frame. The setup()
function is run before draw() so that functions like size () aren’t unnecessarily
executed on each frame. When a program is run, the code outside setup() and draw()
is handled first, then code inside setup() is run once, and finally the code inside
draw() is run in a continuous loop from top to bottom. In the following example, the
size and fill values don’t change, so they are included in setup().

. float y = 0.0;

void setup() {
size(100, 100);
fill(o);

}

void draw() {
background(204);

y =y + 0.5
}

Flow

ellipse(50, y, 70, 70);

6-05

6-06

When this code runs, the variables are replaced with their current values and the
statements are run in this order:

float y = 0.0

: - Enter setup()
size(100, 100)

ill(o

f () .. - Enter draw()
background(204)

ellipse(50, 0.0, 70, 70)

y = 0.5

... - Enter draw() for the second time
background(204)

ellipse(50, 0.5, 70, 70)

y = 1.0

... - Enter draw() for the third time
background(204)

ellipse(50, 1.0, 70, 70)

y = 1.5

Etc...

Variables that change with each iteration of draw() must be declared outside of both
setup() and draw(). As mentioned, if the variable y in the preceding example were
declared in draw(), it would be reassigned to 0.0 each time. The only statements that
should occur outside setup() and draw() are variable declarations and assignments.
Functions should not be run outside setup() and draw(); they will likely cause an
error.

If a program only draws one frame, it can be written entirely inside setup().
The only difference between setup() and draw() is that setup() is run once before
draw() starts looping, therefore shapes drawn within setup () will appear in the
display window.

void setup() { 6-07
size(100, 100);
fill(o);

ellipse(50, 50, 66, 66);

Use the noLoop() function to stop draw() from looping. This is another way to draw
only one frame. This example is similar to the previous one, but runs the code in
setup() once and then runs the code in draw() only once because noLoop () appears
insetup().

void setup() { 6-08
size(100, 100);
£i11(0);
noLoop();

}

70 Flow

void draw() { 608
ellipse(50, 50, 66, 66); cont.

The complement to noLoop() is a function called 1loop() that makes a program begin
to read the code in draw() continuously. It is discussed in more detail on p. 98.

Relational expressions

What is truth? It’s easy to answer this difficult philosophical question in the context of
programming because the logical notions of true and false are well defined. Code
elements called relational expressions evaluate to true and false. A relational
expression is made up of two values that are compared with a relational operator. In
Processing, two values can be compared with relational operators as follows:

Expression Evaluation
3 >5 false
3 <5 true
5 <3 false
5 >3 true

Each of these statements can be converted to English. Using the first row as an example,
we can say, “Is three greater than five?” The answer “no” is expressed with

the value false. The next row can be converted to “Is three less than five?” The answer
is “yes” and is expressed with the value true. A relational expression, two values
compared with a relational operator, evaluates to true or false—there are no other
possible values. The relational operators are defined as follows:

Operator Meaning

> greater than

< less than

>= greater than or equal to
<= less than or equal to

== equivalent to

1= not equivalent to

The following lines of code show the results of comparing the same group of numbers
with different relational operators:

println(3 > 5); // Prints "false" 6-09

println(5 > 3); // Prints "true"
println(5 > 5); // Prints "false"

71 Flow

println(3 < 5); // Prints "true"
println(5 < 3); // Prints "false"
println(5 < 5); // Prints "false"
println(3 >= 5); // Prints "false"
println(5 >= 3); // Prints "true"
println(5 >= 5); // Prints "true"
println(3 <= 5); // Prints "true"
println(5 <= 3); // Prints "false"
println(5 <= 5); // Prints "true"

The equality operator, the == symbol, determines whether two values are equivalent.
It is different from the = symbol, which assigns a value, but the two are often used

erroneously in place of each other. The only way to avoid this mistake is to be careful
and to remember to watch for it while proofreading code. It’s similar to using “their”
instead of “there” when writing in English—a mistake that even experienced writers

sometimes make. The | = symbol is the opposite of == and determines whether two
values are not equivalent. In code, the exclamation mark is used to define “not.”

println(3 == 5); // Prints "false"
println(5 == 3); // Prints "false"
println(5 == 5); // Prints "true"
println(3 != 5); // Prints "true"
println(s != 3); // Prints "true"
println(s != 5); // Prints "false"
Conditionals

Conditionals allow a program to make decisions about which lines of code run and
which do not. They let actions take place only when a specific condition is met.
Conditionals allow a program to behave differently depending on the values of their
variables. For example, the program may draw a line or an ellipse depending on the
value of a variable. The if structure is used in Processing to make these decisions:

if (test) {

statements

}

The test must be an expression that resolves to true or false. When the test
expression evaluates to true, the code inside the block, the area between the { (left
brace) and } (right brace) is run. If the expression is false, the code is ignored.

72 Flow

6-09
cont.

One interesting aspect of code 6-04 is the way the y value continues to increase

while the program runs. After the variable exceeds 100 and the line has moved off

the screen, the number continues to grow. Place the println(y); statement at the
bottom of the draw() to observe the value increase. An if structure can be used to
reset this value after it exceeds a value defined within a relational expression. For
instance, after the y variable increases past the height of the screen, it can be set to zero
again within the block of an if structure. A println() is used to reveal the y value in
the console.

float y = 0.0;

void draw() {
background(204);
line(o, y, 100, vy);
y =y + 0.5;
if (y > height) {
y = 0.0;
b
println(y); // Print value of y to the console

The following example uses two if structures to make a decision about what to draw
to the screen based on the value of the defined x variable. Because this variable is used
in the test of the if structures, its value affects which lines of code are run. When the
program starts, the ellipse draws because the value of x is less than 20. As the x value
grows so that its no longer less than 20, the ellipse is no longer drawn. When the x
value grows to greater than 8o, the rectangle draws. During the time the x value is
between 20 and 80, neither the ellipse nor the rectangle is drawn. A line is drawn
continuously using the x value to visualize the current value of the variable.

float x = 0.0;

Q void setup() {

size(100, 100);

}
void draw() {
background(204);
if (x < 20) { // If x is less than 20,
ellipse(50, 50, 60, 60); // draw this ellipse
}
if (x > 80) { // If x is greater than 80

73 Flow

rect(20, 20, 60, 60);

}
line(x, 0, x, 100);
X += 0.25;

// draw this rectangle 6-12

cont.

To run a different set of code when the relational expression for an if structure is not
true, use the else keyword. The keyword else extends an if structure so when the
expression associated with the structure is false, the code in the else block is run
instead. The following example has a similar behavior to the previous example, but it
works with only one if (augmented with an else), and there is never a time when the

ellipse or rectangle is not drawn.

float x = 0.0;

O void setup() {

size(100, 100);

void draw() {
background(204);
if (x < 20) {
ellipse(50, 50, 60, 60);
} else {
rect(20, 20, 60, 60);

}
line(x, 0, x, 100);
X += 0.25;

// If x
// draw
// else
// draw

is less than 20,
this ellipse,
if x is not less,
this rectangle

Conditionals can be embedded within other conditionals to further control a program'’s
behavior. In the next example, the code for drawing a large or small ellipse can be
reached only if x is less than 8o. If this first expression evaluates to true, a second

comparison of x determines which size to draw.

74 Flow

General case if structure

if (test) {

statements
}

A specific if structure

if (x < 150) {
line(20, 20, 180, 180);
}

General case if/else structure

if (test) {

statements 1
} else {

statements 2
}

A specific 1f/else structure
if (x < 150) {

line(20, 20, 180, 180);
} else {

ellipse(50, 50, 30, 30);
}

General case if/else if structure
if (test 1) {

statements 1

} else if (test 2) {
statements 2

}

A specific if/else if structure
if (x < 150) {
line(20, 20, 180, 180);
} else if (x > 150) {
ellipse(50, 50, 30, 30);

Figure 6-2 Decisions

lf false
true
statements
|
N
if false

true

line(20, 20, 180, 180);
|

\

lf false

true

statements 1
|

else l

statements 2
|

!

if false

true

line(20, 20, 180, 180);
|

else l

ellipse(50, 50, 30, 30);
|

!

1f false

true

statements 1

. 1
else if e
true

statements 2

if false
true

line(20, 20, 180, 180);

. 1
else if gz

true

ellipse(50, 50, 30, 30);

The flow of an if, else, and else if structures in diagrams. The code inside each block is run if the test evaluates
to true. For each set of diagrams, the general case shows the generic format and the specific case shows one
example of how the format can be used within a sketch.

75 Flow

float x = 0.0; 6-14

O void setup() {

size(100, 100);

void draw() {
background(204);
if (x < 80) {
if (x < 40) {
ellipse(50, 50, 20, 20); // Small circle

} else {
ellipse(50, 50, 60, 60); // Large circle
}
} else {
rect(20, 20, 60, 60);
}
line(x, 0, x, 100);
X += 0.25;

Conditionals can be extended further by combining an else with an if. This allows
conditionals to use multiple tests to determine which lines the program should run.
This technique is used when there are many choices and only one can be selected at a
time. When a series of conditionals is chained together with else, the order becomes
critical. As soon as one of the relational expressions is true, the remaining tests are
ignored. With this new technique, the following example presents a cleaner way to
write the prior example that doesn’t require embedding one if structure inside
another.

float x = 0.0; 6-15

O void setup() {

size(100, 100);

void draw() {

background(204);

if (x < 40) {
// If x is less than 40, draw a small circle
ellipse(50, 50, 20, 20);

} else if (x < 80) {
// If the previous test was false and x 1is
// also less than 80, draw a large circle

76 Flow

ellipse(50, 50, 60, 60); 6-15
} else { cont.

// If neither test was true, x is larger than

// or equal to 80, so draw a rectangle

rect(20, 20, 60, 60);

}
line(x, 0, x, 100);
X += 0.25;

This is the beginning of the journey with conditionals. The last few examples have
revealed the basic components of how to use them, but only start to demonstrate why
they are exciting. Later examples reveal more of their power to direct the flow of a
program and more interesting applications.

Logical operators

Logical operators are used to combine two or more relational expressions and to invert
logical values. They allow for more than one condition to be considered simultaneously.
The logical operators are symbols for the logical concepts of AND, OR, and NOT:

Operator Meaning
&& AND

[OR

| NOT

This table outlines all possible combinations and the results.

Expression Evaluation
true &8& true true
true && false false
false 8& false false
true || true true
true || false true
false || false false
Itrue false
Ifalse true

The logical OR operator, two vertical bars (sometimes called pipes), makes the relational
expression true if at least one part is true. The following example shows how to use
it. It operates similarly to code 6-12, but notice that it needs only one if structure
because of the logical OR operator.

77 Flow

float x = 0.0;

void setup() {
size(100, 100);

void draw() {
background(204);
// The expression "x < 20" must be true OR "x > 80"
// must be true. When one of them is true, the code
// in the block runs.
if ((x < 20) || (x > 80)) {
rect(20, 20, 60, 60);

}
line(x, 0, x, 100);
X += 0.25;

Compound logical expressions can be tricky to figure out, but they are simpler when
looked at step by step. Parentheses are useful hints in determining the order of
evaluation. Looking at the test of the if structure in line 12 of the previous example,
first the variables are replaced with their values, then each subexpression is evaluated,
and finally the expression with the logical operator is evaluated. For this demonstration,
let’s define the value of x as 15:

Step 1 (x < 20) || (x > 80)
Step 2 (15 < 20) || (125 > 80)
Step 3 true || false

Step 4 true

The logical AND operator, two ampersands, allows the entire relational statement to be
true only if both parts are true. The following example is similar to the last, but the
relational operators are reversed and the logical OR operator is changed to the logical
AND. The result has the opposite effect, the rectangle is now drawn when the x variable
is between 20 and 80, rather than less than 20 or larger than 8o.

78 Flow

float x = 0.0;

void setup() {
size(100, 100);

void draw() {
background(204);
// The expression "x > 20" must be true AND "x < 80"
// must be true. When both are true, the code
// in the block runs.
if ((x > 20) &8& (x < 80)) {
rect(20, 20, 60, 60);

}
line(x, 0, x, 100);
X += 0.25;

Technically, the steps shown are not the whole story. When using AND, the first part of
the expression will be evaluated. If that part is false, then the second part of the
expression won't even be evaluated. For example, in this expression...

(x > 20) & (x < 80)

..if x>20 evaluates to false, then x<80 is ignored for efficiency. This is called a short
circuit operator. The same happens for the OR operator, where the first true statement
will end evaluation. For example, if the expression is:

(x < 20) || (x > 80)

If x<20 is true, then the x>80 will be ignored, because the entire expression will
evaluate to true, regardless of the value of x>80. Outside of efficiency, this has many
practical applications in more advanced code.

The logical NOT operator is an exclamation mark. It inverts the logical value of the
associated boolean variables. It changes true to false,and false to true. The
logical NOT operator can be applied only to boolean variables.

boolean b = true; // Assign true to b

println(b); // Prints "true"
println(!b); // Prints "false"
b = Ib; // Assign false to b
println(b); // Prints "false"
println(!b); // Prints "true"
println(5 > 3); // Prints "true"

79 Flow

println(!(5 > 3)); // Prints "false"
int x = 5;
println(!x); // ERROR! It’s only possible to ! a boolean variable

// Because b 1is true, the line draws
boolean b = true;

if (b == true) { // If b is true,
line(20, 50, 80, 50); // draw the line

}

if (lb == true) { // If b is false,
ellipse(50, 50, 36, 36); // draw the ellipse

}

Variable scope

When setup() and draw() are added to a program, it becomes necessary to think
about where variables are declared and assigned. The location of a variable declaration
determines its scope—where it can be accessed within the program. The rule for
variable scope is stated simply: variables declared inside any block can be accessed only
inside their own block and inside any blocks enclosed within their block. Variables
declared at the base level of the program—the same level as setup() and draw()—
can be accessed everywhere within the program. Variables declared within setup()
can be accessed only within the setup() block. Variables declared within draw() can
be accessed only within the draw() block. The scope of a variable declared within a
block, called a local variable, extends only to the end of the block.

int d = 51; // Variable d can be used everywhere

void setup() {
size(100, 100);
int val = d * 2; // Local variable val can only be used in setup()
fill(val);

}

void draw() {
int y = 60; // Local variable y can only be used in draw()
line(o, y, d, y);
y -= 25;
line(o, y, d, y);
}

When a variable is created within a block, it is destroyed when the program leaves the
block. For instance, if a new variable is created inside an if block, it can be used within
but cannot be accessed outside the block.

80 Flow

6-18
cont.

void draw() { 6-21

int d = 80; // This variable can be used everywhere in draw()

if (d > 50) {
int x = 10; // This variable can be used only in this if block
line(x, 40, x+d, 40);

}

line(o, 50, d, 50);

line(x, 60, x+d, 60); // ERROR! x can’t be read outside block

Variable scope makes it possible to have more than one variable in a program with the
same name, but it can make a program difficult to read and maintain. In general,
including more than one variable with the same name is not recommended. The
following example demonstrates this potentially confusing case.

int d = 45; // Assign 45 to variable d 6-22

void setup() {
size(100, 100);
int d = 90; // Assign 90 to local variable d
rect(o, 0, 33, d); // Use local d with value 90

void draw() {
rect(33, 0, 33, d); // Use d with value 45

In general, a variable inside a block with the same name as a variable outside the block
is a common mistake that can be confusing to debug. If there are two variables that
share the same name as seen in the setup() in the preceding example, the local
variable defined within the block takes precedence over the more global variable.

Formatting code blocks

It’s important to format code so the block structures are clear. The lines inside a block
are typically offset to the right with spaces or tabs. When programs become longer,
clearly defining the beginning and end of the blocks reveals the structure of the
program and makes it more legible. This is the convention used most frequently in
this book:

int x = 50; 6-23

if (x > 100) {

81 Flow

line(20, 20, 80, 80);
} else {
line(80, 20, 20, 80);

This is an alternative format that is sometimes used elsewhere:
int x = 50;

if (x > 100)
{

line(20, 20, 80, 80);
}

else

{

line(20, 80, 80, 20);

It’s essential to use formatting to show the hierarchy of your code. The Processing
environment will attempt basic formatting as you type, and you can use the “Auto
Format” function from the Edit menu to clean up your code at any time. As an example
of what to watch out for, the 1ine () function in the following code fragment is

inside the if structure, but the spacing does not reveal this at a quick glance. Avoid
formatting code like this:

int x = 50;

if (x > 100) {
line(20, 20, 80, 80); // Avoid formatting code like this

} else { // because it makes it difficult to see
line(80, 20, 20, 80); // what is inside the block
}

Exercises

1. Make the code in draw() run at one frame per second and display the current frame
count to the console with printin().

2. Move a shape from left to right across the screen. When it moves off the right edge,

return it to the left.

. Utilize noLoop () to make a program run its draw() only one time.

. Create a few relational expressions and print their evaluation with println().

5. Create a composition with a series of lines and rectangles inside draw(). Use an if
structure to select which lines of code run and which are skipped at each frame.

N W

82 Flow

6-23
cont.

7 Interactivity

This chapter introduces mouse and keyboard input as a way to control the position and
attributes of shapes on screen.

Syntax introduced:

mouseX, mouseY, pmouseX, pmouseY, mousePressed, mouseButton,
keyPressed, key, keyCode

mousePressed(), mouseReleased(), mouseMoved(), mouseDragged()
keyPressed(), keyReleased()

loop(), redraw()

noCursor(), cursor()

The screen forms a bridge between our bodies and the realm of circuits and electricity
inside computers. We control elements on screen through a variety of devices such as
touch pads, trackballs, and joysticks, but the keyboard and mouse remain the most
common input devices for desktop computers.

The computer mouse dates back to the late 1960s, when Douglas Engelbart pre-
sented the device as an element of the oN-Line System (NLS), one of the first com-
puter systems with a video display. The mouse concept was further developed at the
Xerox Palo Alto Research Center (PARC), but its introduction with the Apple Macintosh
in 1984 was the catalyst for its current ubiquity. The design of the mouse has gone
through many revisions in the last forty years, but its function has remained the same.
In Engelbart’s original patent application in 1970 he referred to the mouse as an “X-Y
position indicator,” and this still accurately, but dryly, defines its contemporary use.

The physical mouse object is used to control the position of the cursor on screen
and to select interface elements. The cursor position is read by computer programs as
two numbers, the x-coordinate and the y-coordinate. These numbers can be used to
control attributes of elements on screen. If these coordinates are collected and
analyzed, they can be used to extract higher-level information such as the speed and
direction of the mouse. This data can in turn be used for gesture and pattern
recognition.

Keyboards are typically used to input characters for composing documents, email,
and instant messages, but the keyboard has potential for use beyond its original
intent. The migration of the keyboard from typewriter to computer expanded its
function to enable launching software, moving through the menus of software
applications, and navigating 3D environments in games. When writing your own
software, you have the freedom to use the keyboard data any way you wish. For
example, basic information such as the speed and rhythm of the fingers can be
determined by the rate at which keys are pressed. This information could control the
speed of an event or the quality of motion. It’s also possible to ignore the characters

83

printed on the keyboard itself and use the location of each key relative to the keyboard
grid as a numeric position.

The modern computer keyboard is a direct descendant of the typewriter. The
position of the keys on an English-language keyboard is inherited from early
typewriters. This layout is called QWERTY because of the order of the top row of letter
keys. It was developed for typewriters to put physical distance between frequently
typed letter pairs, helping reduce the likelihood of the typebars colliding and jamming
as they hit the ribbon. This more than one-hundred-year-old mechanical legacy still
affects how we write software today.

Mouse data

The Processing variables mouseX and mouseY (note the capital X and Y) store the
x-coordinate and y-coordinate of the cursor relative to the origin in the upper-left
corner of the display window. To see the actual values produced while moving the
mouse, run this program to print the values to the console:

void draw() {
frameRate(12);
println(mouseX +

+ mouseY);

When a program starts, the mouseX and mouseY values are o. If the cursor moves into
the display window, the values are set to the current position of the cursor. If the cursor
is at the left, the mouseX value is o and the value increases as the cursor moves to the
right. If the cursor is at the top, the mouseY value is o and the value increases as the
cursor moves down. If mouseX and mouseY are used in programs without a draw() or
if noLoop() is run in setup(), the values will always be o.

The mouse position is most commonly used to control the location of visual
elements on screen. More interesting relations are created when the visual elements
relate differently to the mouse values, rather than simply mimicking the current
position. Adding and subtracting values from the mouse position creates relationships
that remain constant, while multiplying and dividing these values creates changing
visual relationships between the mouse position and the elements on the screen. In the
first of the following examples, the circle is directly mapped to the cursor, in the second,
numbers are added and subtracted from the cursor position to create offsets, and in the
third, multiplication and division are used to scale the offsets.

84 Interactivity

7-01

void setup() {
size(100, 100);
noStroke();

void draw() {
background(126);
ellipse(mouseX, mouseY, 33, 33);

}

void setup() {
size(100, 100);
noStroke();

void draw() {
background(126);
ellipse(mouseX, 16, 33, 33);
ellipse(mouseX+20, 50, 33, 33);
ellipse(mouseX-20, 84, 33, 33);

4

}

void setup() {
size(100, 100);
noStroke();

void draw() {
background(126);
ellipse(mouseX, 16, 33, 33);
ellipse(mouseX/2, 50, 33, 33);
ellipse(mouseX*2, 84, 33, 33);

7-02
7-03
// Top circle
// Middle circle
// Bottom circle
7-04

// Top circle
// Middle circle
// Bottom circle

To invert the value of the mouse, subtract the mouseX value from the width of the
window and subtract the mouseY value from the height of the screen.

85 Interactivity

void setup() { 7-05
size(100, 100);
noStroke();

void draw() {
float x = mouseX;
float y = mouseY;
float ix = width - mouseX; // Inverse X
float iy = height - mouseY; // Inverse Y
background(126);
fill(255, 150);
ellipse(x, height/2, y, y);
fill(o, 159);
ellipse(ix, height/2, iy, iy);

The Processing variables pmouseX and pmouseY store the mouse values from the
previous frame. If the mouse does not move, the values will be the same, but if the
mouse is moving quickly there can be large differences between the values. To see

the difference, run the following program and alternate moving the mouse slowly and
quickly. Watch the values print to the console.

void draw() { 7-06
frameRate(12);
println(pmouseX - mouseX);

Draw a line from the previous mouse position to the current position to show the
changing position in one frame and reveal the speed and direction of the mouse. When
the mouse is not moving, a point is drawn, but quick mouse movements create long
lines.

void setup() { 7
size(100, 100);
strokeWeight(8);

void draw() {

\ background(204);
line(mouseX, mouseY, pmouseX, pmouseY);

86 Interactivity

Use the mouseX and mouseY variables with an if structure to allow the cursor to select
regions of the screen. The following examples demonstrate the cursor making a
selection between different areas of the display window. The first divides the screen
into halves, and the second divides the screen into thirds.

void setup() {
size(100, 100);
noStroke();
£i11(0);

void draw() {
background(204);
if (mouseX < 50) {
rect(o, 0, 50, 100); // Left
} else {
rect(50, 0, 50, 100); // Right

void setup() {
size(100, 100);
noStroke();
£i11(0);

void draw() {
background(204);
if (mouseX < 33) {
rect(o, 0, 33, 100); // Left
} else if (mouseX < 66) {
rect(33, 0, 33, 100); // Middle
} else {
rect(66, 0, 33, 100); // Right

Use the logical operator && with an if structure to select a rectangular region of
the screen. As demonstrated in the following example, when a relational expression
is made to test each edge of a rectangle (left, right, top, bottom) and these are
concatenated with a logical AND, the entire relational expression is true only when
the cursor is inside the rectangle.

87 Interactivity

7-08

void setup() {

size(100, 100);
noStroke();

£i11(0);
}

void draw() {
background(204);
if ((mouseX > 40) && (mouseX < 80) &%
(mouseY > 20) 8&8& (mouseY < 80)) {
fill(255);
} else {
£i11(0);
}
rect(40, 20, 40, 60);

}

This code asks, “Is the cursor to the right of the left edge and is the cursor to the left of
the right edge and is the cursor beyond the top edge and is the cursor above the
bottom?” The code for the next example asks a set of similar questions and combines
them with the keyword else to determine which one of the defined areas contains the
cursor.

void setup() {
size(100, 100);

noStroke();
£i11(0);
}
void draw() {
. background(204);
if ((mouseX <= 50) 88& (mouseY <= 50)) {
rect(o, 0, 50, 50); // Upper-left
} else if ((mouseX <= 50) &% (mouseY > 50)) {
rect(0, 50, 50, 50); // Lower-left
- } else if ((mouseX > 50) 8& (mouseY <= 50)) {

rect(50, 0, 50, 50); // Upper-right

. } else {
rect(50, 50, 50, 50); // Lower-right

88 Interactivity

Mouse buttons

Computer mice and other related input devices typically have between one and

three buttons; Processing can detect when these buttons are pressed with the
mousePressed and mouseButton variables. Used with the button status, the cursor
position enables the mouse to perform different actions. For example, a button press
when the mouse is over an icon can select it, so the icon can be moved to a different
location on screen. The mousePressed variable is true if any mouse button is pressed
and false if no mouse button is pressed. The variable mouseButton is LEFT, CENTER,
or RIGHT depending on the mouse button most recently pressed. The mousePressed
variable reverts to false as soon as the button is released, but the mouseButton
variable retains its value until a different button is pressed. These variables can be used
independently or in combination to control the software. Run these programs to see
how the software responds to your fingers.

void setup() { 7-12

. size (100, 100);
}

void draw() {

background(204);
if (mousePressed == true) {
till(255); // White
} else {
fill(o); // Black
}
rect(25, 25, 50, 50);
}
void setup() { 7-13

size(100, 100);

—

void draw() {
if (mouseButton == LEFT) {
. fill(o); // Black
} else if (mouseButton == RIGHT) {
till(255); // White

} else {
fi11(126); // Gray

}

rect(25, 25, 50, 50);

89 Interactivity

void setup() { 7-14
size(100, 100);

}

void draw() {
if (mousePressed == true) {
if (mouseButton == LEFT) {
fill(o); // Black
} else if (mouseButton == RIGHT) {
ti11(255); // white

}
} else {

£111(126); // Gray
}

rect(25, 25, 50, 50);

Not all mice have multiple buttons, and if software is distributed widely, the interaction
should not rely on detecting which button is pressed.

Keyboard data

Processing registers the most recently pressed key and whether a key is currently
pressed. The boolean variable keyPressed is true if a key is pressed and is false if
not. Include this variable in the test of an if structure to allow lines of code to run only
if a key is pressed. The keyPressed variable remains true while the key is held down
and becomes false only when the key is released.

void setup() { 7-15
size (100, 100);
D strokeWeight(4);
}
void draw() {
\ background(204);
if (keyPressed == true) { // If the key is pressed,
line(20, 20, 80, 80); // draw a line
} else { // Otherwise,
rect(40, 40, 20, 20); // draw a rectangle
}
}

90 Interactivity

int x = 20; 7-16

AN

void setup() {
size(100, 100);
strokeWeight(4);

/ |
void draw() {

background(204);
if (keyPressed == true) { // If the key is pressed

/ X++; // add 1 to x
}

line(x, 20, x-60, 80);

}

The key variable stores a single alphanumeric character. Specifically, it holds the most
recently pressed key. The key can be displayed on screen with the text () function

(p- 150).

void setup() { 7-17
size(100, 100);
textSize(60);

}

2 void draw() {

background(0);

text(key, 20, 75); // Draw at coordinate (20,75)
The key variable may be used to determine whether a specific key is pressed. The
following example uses the expression key=="A" to test if the A key is pressed. The
single quotes signify A as the data type char (p. 144). The expression key=="A" will
cause an error because the double quotes signify the A as a String, and it’s not
possible to compare a String with a char. The logical AND symbol, the 88 operator, is

used to connect the expression with the keyPressed variable to ascertain that the key
pressed is the uppercase A.

}

91 Interactivity

void setup() { 7-18

size(100, 100);
strokeWeight(4);

}
void draw() {
| background(204);
// If the 'A' key is pressed draw a line
if ((keyPressed == true) &8 (key == 'A"')) {

line(50, 25, 50, 75);

} else { // Otherwise, draw an ellipse
ellipse(50, 50, 50, 50);

}

The previous example works with an uppercase A, but not if the lowercase letter is
pressed. To check for both uppercase and lowercase letters, extend the relational
expression with a logical OR, the | | relational operator. Line g in the previous program
would be changed to

if ((keyPressed == true) && ((key == 'a') || (key == 'A"))) {

Because each character has a numeric value as defined by the ASCII table (p. 605), the
value of the key variable can be used like any other number to control visual attributes
such as the position and color of shape elements. For instance, the ASCII table defines
the uppercase A as the number 65, and the digit 1 is defined as 49.

void setup() { 7-19
size (100, 100);
stroke(0);
}
void draw() {
if (keyPressed == true) {
int x = key - 32;
line(x, 0, x, height);
}
}

92 Interactivity

float angle = 0; 7-20

void setup() {
size(100, 100);
fill(o);

}
void draw() {

' background(204);
if (keyPressed == true) {
if ((key >= 32) 88& (key <= 126)) {
b // If the key is alphanumeric,
// use its value as an angle
angle = (key - 32) * 3;
}
}
arc(50, 50, 66, 66, 0, radians(angle));

}

Coded keys

In addition to reading key values for numbers, letters, and symbols, Processing can also
read the values from other keys including the arrow keys and the Alt, Control, Shift,
Backspace, Tab, Enter, Return, Escape, and Delete keys. The variable keyCode stores the
ALT,CONTROL, SHIFT, UP,DOWN, LEFT, and RIGHT keys as constants. Before
determining which coded key is pressed, it’s necessary to check first to see if the key is
coded. The expression key==CODED is true if the key is coded and false otherwise.
Even though not alphanumeric, the keys included in the ASCII specification
(BACKSPACE, TAB, ENTER, RETURN, ESC, and DELETE) will not be identified as a coded
key. If you’re making cross-platform projects, note that the Enter key is commonly used
on PCs and UNIX and the Return key is used on Macintosh. Check for both Enter and
Return to make sure your program will work for all platforms (see code 12-17).

93 Interactivity

int y = 35; 7-21

void setup() {
size(100, 100);

JIL

void draw() {
background(204);
line(10, 50, 90, 50);
if (key == CODED) {

if (keyCode == UP) {

.

y = 20;
} else if (keyCode == DOWN) {
y = 50;
}
} else {
y = 35;
}
rect(25, y, 50, 30);

Events

A category of functions called events alter the normal flow of a program when an action
such as a key press or mouse movement takes place. An event is a polite interruption of
the normal flow of a program. Key presses and mouse movements are stored until the
end of draw(), where they can take action that won't disturb drawing that’s currently
in progress. The code inside an event function is run once each time the corresponding
event occurs. For example, if a mouse button is pressed, the code inside the
mousePressed() function will run once and will not run again until the button is
pressed again. This allows data produced by the mouse and keyboard to be read
independently from what is happening in the rest of the program.

Mouse events

The mouse event functions are mousePressed(), mouseReleased(), mouseMoved(),
and mouseDragged():

mousePressed() Code inside this block is run one time when a mouse button is pressed
mouseReleased() Code inside this block is run one time when a mouse button is released
mouseMoved() Code inside this block is run one time when the mouse is moved
mouseDragged() Code inside this block is run one time when the mouse is moved while a

mouse button is pressed

94 Interactivity

The mousePressed() function works differently than the mousePressed variable.
The value of the mousePressed variable is true until the mouse button is released.
It can therefore be used within draw() to have a line of code run while the mouse is
pressed. In contrast, the code inside the mousePressed() function only runs once
when a button is pressed. This makes it useful when a mouse click is used to trigger
an action, such as clearing the screen. In the following example, the background value
becomes lighter each time a mouse button is pressed. Run the example on your
computer to see the change in response to your finger.

int gray = 0; 722
void setup() {

size(100, 100);

void draw() {
background(gray);

void mousePressed() {
gray += 20;

The following example is the same as the one above, but the gray variable is set in
the mouseReleased() event function, which is called once every time a button is
released. This difference can be seen only by running the program and clicking the
mouse button. Keep the mouse button pressed for a long time and notice that the
background value changes only when the button is released.

int gray = 0; 7-23

void setup() {
size(100, 100);

void draw() {
background(gray);

void mouseReleased() {
gray += 20;

95 Interactivity

It is generally not a good idea to draw inside an event function, but it can be done
under certain conditions. Before drawing inside these functions, it’s important to
think about the flow of the program. In this example, squares are drawn inside
mousePressed() and they remain on screen because there is no background()
inside draw().But if background() is used, visual elements drawn within one of the
mouse event functions will appear on screen for only a single frame, or, by default,
1/60t* of a second. In fact, you’'ll notice this example has nothing at all inside draw(),
but it needs to be there to force Processing to keep listening for the events.If a
background() function were run inside draw(), the rectangles would flash onto the
screen and disappear.

void setup() {
size(100, 100);
fill(o, 102);

}

void draw() { } // Empty draw() keeps the program running

void mousePressed() {
rect(mouseX, mouseY, 33, 33);

The code inside the mouseMoved() and mouseDragged() event functions are run
when there is a change in the mouse position. The code in the mouseMoved () block is
run at the end of each frame when the mouse moves and no button is pressed. The code
in the mouseDragged() block does the same when the mouse button is pressed. If the
mouse stays in the same position from frame to frame, the code inside these functions
does not run.In this example, the gray circle follows the mouse when the button is not
pressed, and the black circle follows the mouse when a mouse button is pressed.

int dragX, dragY, moveX, moveY;

. void setup() {
size(100, 100);
noStroke();

. . void draw() {
background(204);
fill(o);
‘ ellipse(dragX, dragY, 33, 33); // Black circle

fi11(153);
ellipse(moveX, moveY, 33, 33); // Gray circle

96 Interactivity

void mouseMoved() { // Move gray circle 7-25
moveX = mouseX; cont.

moveY = mouseY;

void mouseDragged() { // Move black circle
dragX = mouseX;
dragY¥ = mouseY;

Key events

Each key press is registered through the keyboard event functions keyPressed() and
keyReleased():

keyPressed() Code inside this block is run one time when any key is pressed

keyReleased() Code inside this block is run one time when any key is released

Each time a key is pressed, the code inside the keyPressed() block is run once. Within
this block, it’s possible to test which key has been pressed and to use this value for any
purpose.If a key is held down for an extended time, the code inside the keyPressed()
block might run many times in a rapid succession because most operating systems will
take over and repeatedly call the keyPressed() function. The amount of time it takes
to start repeating and the rate of repetitions will be different from computer to
computer, depending on the keyboard preference settings. In this example, the value of
the boolean variable drawT is set from false to true when the T key is pressed; this
causes the lines of code to render the rectangles in draw() to start running.

boolean drawT = false; 7-26

void setup() {
size(100, 100);
noStroke();

void draw() {
background(204);
if (drawT == true) {
rect(20, 20, 60, 20);
rect(39, 40, 22, 45);

97 Interactivity

void keyPressed() { 7-26
if ((key == 'T') || (key == 't")) { cont:
drawT = true;
}
}

Each time a key is released, the code inside the keyReleased() block is run once.

The following example builds on the previous code; each time the key is released the
boolean variable drawT is set back to false to stop the shape from displaying within
draw().

boolean drawT = false; 7-27

void setup() {
size(100, 100);
noStroke();

void draw() {
background(204);
if (drawT == true) {
rect(20, 20, 60, 20);
rect(39, 40, 22, 45);

}
}
void keyPressed() {
if ((key == 'T') I (key == 't")) {
drawT = true;
}

void keyReleased() {
drawT = false;

}

Event flow

As discussed previously, programs written with draw() display frames to the screen
sixty frames each second. The frameRate() function is used to set a limit on the
number of frames that will display each second, and the noLoop() function can be
used to stop draw() from looping. The additional functions loop() and redraw()

98 Interactivity

provide more options when used in combination with the mouse and keyboard event
functions.

If a program has been paused with noLoop (), running loop() resumes its action.
Because the event functions are the only elements that continue to run when a
program is paused with noLoop(), the loop () function can be used within these
events to continue running the code in draw(). The following example runs the
draw() function for about two seconds each time a mouse button is pressed and then
pauses the program after that time has elapsed.

int frame = 0;

void setup() {
size(100, 100);

}
void draw() {
if (frame > 120) { // If 120 frames since the mouse
noLoop(); // was pressed, stop the program
background(0); // and turn the background black.
} else { // Otherwise, set the background
background(204); // to light gray and draw lines

line(mouseX, O, mouseX, 100); // at the mouse position
line(0, mouseY, 100, mouseY);
frame++;

void mousePressed() {

Loop();
frame = 0;

The redraw() function runs the code in draw() one time and then halts the
execution. It’s helpful when the display needn’t be updated continuously. The following
example runs the code in draw() once each time a mouse button is pressed.

void setup() {
size(100, 100);
noLoop();

void draw() {
background(204);
line(mouseX, 0O, mouseX, 100);

99 Interactivity

line(0, mouseY, 100, mouseY);

void mousePressed() {
redraw(); // Run the code in draw one time

Cursor icon

The cursor can be hidden with the noCursor () function and can be set to appear as a
different icon or image with the cursor () function. When the noCursor () function
is run, the cursor icon disappears as it moves into the display window. To give feedback
about the location of the cursor within the software, a custom cursor can be drawn and
controlled with the mouseX and mouseY variables.

void setup() {
size(100, 100);
strokeWeight(7);
noCursor();

void draw() {
background(204);
ellipse(mouseX, mouseY, 10, 10);

If noCursor () is run, the cursor will be hidden while the program is running until the
cursor () function is run to reveal it.

void setup() {
size(100, 100);
noCursor();

void draw() {
background(204);
if (mousePressed == true) {
cursor();

100 Interactivity

7-29
cont.

Add a parameter to the cursor () function to change it to another icon or image.
Either load and use image, or use the self-descriptive options are ARROW, CROSS, HAND,
MOVE, TEXT, and WATIT.
void setup() {

size(100, 100);

void draw() {

background(204);

if (mousePressed == true) {
cursor(HAND); // Draw cursor as hand

} else {
cursor (CROSS);

}

line(mouseX, 0, mouseX, height);

line(0, mouseY, height, mouseY);

These cursor icons are part of your computer’s operating system and will appear
different on different machines.

Exercises

1. Control the position of a shape with mouseX and mouseY. Strive to create a more
interesting relation than one directly mimicking the position of the cursor.

2. Modify exercise 1 so the shape reacts differently when the mousePressed variable

is true.

. Draw a simple composition with two lines that changes when the D key is pressed.

4. Draw a circle in the display window that is affected differently by each of the four mouse
event functions.

5. Create a custom cursor that changes as the mouse moves through the display window.

w

101 Interactivity

SIS I\ I\ I\
//:///t///t///:///\/
AN AN AN AN 24

AN NN 24
/

NNNNNN
/7
e

7
AN
7

AN
N\
N

AN
//\/
AN

NANNN
N
AN
N
NANNNNNNNNNNNNNN
NANNNNNNNNNNNNNNNNN
NONNNNNNNNNNNN

AN AL AL LTLTAUNNNNNNRN NN NN ANNNNNNNNNNNANANN

AR
N
AN
7/
N
SIS S S S

NANNN

N

AN

N

N\
AR

N

AN

7/
N

AR
N
AN
7/
N
N\

AR
N
AN
7/
NN\
N
AN
7/
N
N\

NANNN
AN
N\
N
N\

NANNN
AN
N\
N
N\
SIS S S S S S S SSSSSSSSSSSS

A N O R e S e S NN NN

A N N R O N N N N N NNNNSN
A N N N A N N S NN NS NNSN
A R R Y N N N N Ny es

7/
/7
77
77/
77/
4
7/
/7
77
77/
77/
4
7/
/7
77
77/
77/
4
7/
/7
77
77/
77/
4
7/
/7
77
77/
77/
4
7/
/7
77
77/
77/
77
7/
77/
77
77/
77/
77
7/
77/
77

s s
NN TN TINTN NI YN
AN AN NN ININ N
AN A AN AN NN ININ 4
AN AN AN N INIIN N
///\///\///\///\///\///\///\///
//\///\///\///\///\///\///\///
AN AN AN AN AN AN N
AN AN AN AN NN AN
AN AN NN NN IANGLLa

NANNN

s s
NN TN TINTON NI N
AN AN AN AN ININ N
AN AN AN NINAINING 4
AN A AN NN NN N
///\///\///\///\///\///\///\///
//\///\///\///\///\///\///\///
AN AN AN AN AN AN N
AN AN AN AN NN AN
AN AN NN NN IANGLLa

NANNN

s s
NN TN TINTON NI N
AN AN AN AN ININ N
AN AN AN NINAINING 4
AN A AN NN NN N
///\///\///\///\///\///\///\///
///\///\///\///\///\///\///\///
AN AN AN AN NN AN
AN AN AN AN NN AN
AN AN NN IN NG IANGLiL

AR

s
NN TN Y NN TIONIING
AN AN AN AN AN NN
AN AN AN NN NN
AN AN NN AINIIN N
///\///\///\///\///\///\///\///
///\///\///\///\///\///\///\///
AN AN AN AN AN AN N
AN AN AN AN NN AN
AN AN N NN AN IANGa

N\
N
N
AN
AN
N
N
N
AN
N\
N
N
AN
AN
N
N
N
AN
N\
N
N
AN
NNNNNNNNN

R R A R Y Y N N N Y N e e e e e eee
AR NANNN
AN
N\
N
N\
N
N\
AN
AN
N
AN
N\
N
N\
N
N\
AN
AN
N
AN
N\
N
N\

N R N e A O N N S N R S S R S N NN
SIS SIS SIS S S S S S S SSS
R R R R R O O O O O e O O O N R O O O e N N O N N S S S O N S S SN NN
N R e R R N N O N R N N N N NN NN LN RN
N R N N S N N N R N O N R N R N N R NN NN NN RN
SIS SIS SIS S S S S S S SS
N R R O N O O O O O N N O e O O O O R R N S O N e e N O e NS
N R e S N O N N N O N R N N S N A N NN NN NN
N R N N S N N N R N O N R N R N N R NN NN NN RN
R R A Y R Y N N S Y N e e e e eee
N N R O O R N O R R R O R O R R N NN NN

SNNNNNNN NN NANANNYN

“NNNNNNN

8 Repeat

This chapter focuses on controlling the flow of programs with looping structures.

Syntax introduced:
while, for

The early history of computers is the history of automating calculation. A “computer”
was originally a person who did math by hand. What we know as a computer today
emerged from machines built to automate tedious mathematical calculations. The
earliest mechanical computers were calculators developed for speed and accuracy in
performing repetitive calculations. Because of this heritage, computers are excellent at
executing repetitive tasks accurately and quickly and therefore at drawing accurately
and quickly.

Iterate

Iterative structures are used to shorten lines of repetitive code into a more compact, but
equivalent expressions. Once a line (or a group of code) is written within an iterative
structure, it can be run a single time or millions of times without increasing the length
of the program. This makes programs easier to manage and can also help to reduce
errors. In the visual realm, it makes is easier to generate dense and intricate patterns.

The table below shows equivalent programs written without an iterative structure
and with a for loop. The original 14 lines of code on the left are reduced to the 4 lines
on the right:

Original code: Code expressed using a loop:

size(200, 200); size(200, 200);

line(20, 20, 20, 180); for (int i = 20; i < 150; i += 10) {
line(30, 20, 30, 180); line(i, 20, i, 180);

line(40, 20, 40, 180); }

line(50, 20, 50, 180);
line(60, 20, 60, 180);
line(70, 20, 70, 180);
line(80, 20, 80, 180);
line(90, 20, 90, 180);
line(100, 20, 100, 180);
line(110, 20, 110, 180);
line(120, 20, 120, 180);
line(230, 20, 130, 180);
line(140, 20, 140, 180);

103

The preceding code without the loop is straightforward based on the previous chapters,
while the new code is cryptic in comparison. However, the new way is more flexible
and condensed and the strange quality of the syntax becomes familiar with
explanation and practice. Before the for loop is discussed, we start with the while
loop, a more primitive way of repeating a block of code.

while loop
The while loop allows a block of code to run many times. It is structured like this:

while (test) {

statements

The while loop looks identical to the if structure (p. 72), but the code inside the while
block will run continuously while the test expression is true. A while loop runs in the
following sequence:

1. The test is evaluated to true or false
2. If the test is false, exit the loop and continue the program

3. If the test is true, run the statement(s) in the block

Therefore, a program will get stuck inside the loop unless there is some code inside the
block that eventually makes the test expression false. Also like the if structure, if the
test isn’'t true when the code is first run, the code in the block won't ever run.

Most while loops use a variable in the test expression to calculate how many
times the code inside should run. That variable is typically defined before the loop, used
within the test, and then updated inside the block to eventually make the test evaluate
to false.The following example defines a variable named counter and then updates
that variable to control the number of repeats.

int counter = 0;

while (counter < 12) {
int y = 20 + (counter * 5);
line(20, y, 80, y+15);
counter += 1;

i

The following two examples are similar, but they use the variable within the test
expression and to define the position of the lines. In this way, the number of repetitions

defined in the test is less clear, but the code has fewer variables and is therefore shorter.

Both techniques are fine ways to write the code;it’s up to each programmer to write
the code she or he prefers.

10

e

Repeat

8-01

General case while structure

while (test) {

statements faise
}

true

statements

A specific while structure

int 1 = 0;

while (i < 80) { false

line(20, i, 80, i+15);
i=1+s5;

}

line(20, i, 80, i+15);

L= ol =t 5

Figure 8-1 The while loop

The flow of a while loop as a diagram. When the sketch reaches the while loop, it will run the
code in the block if the test expression is true, otherwise it will skip that code. The code inside the
block will continue to run until the test expression is false.

105 Repeat

int y = 20;

\%\ while (y < 80) {
§§§§§§ line(20, y, 80, y+15);
= y += 55
}
§ int x = -16;
\ while (x < 100) {
line(x, 0, x+15, 50);
Q\ X += 10;
}
strokeWeight(4);
x = -8;

while (x < 100) {
line(x, 50, x+15, 100);
X += 10;

}

The while loop and the related for loop, discussed next, are general code structures for
repetition. They have uses far beyond drawing a series of lines. For example, this short
program counts down from 10 to 1 without drawing anything. After the counting, it
writes “Blastoff!” to the console. Notice the loop is counting backward here, rather than
forward. Unlike the other examples, the variable is made smaller each time through the
loop so the test will eventually become false.

int n = 10;
while (n > 0) {
println(n);
n--;
}
println("Blastoff!");

More reasons to use loops are discussed as the chapter unfolds.

for loop

A for loop puts the pieces of code needed to control a while loop together within a
single structure. There’s nothing one type of loop can do that the other cannot, but the
for loop groups the parts together as a sequence of statements inside parentheses.
Compare the structure to that of the while loop:

for (init; test; update) {
statements

}

106 Repeat

8-02

8-03

8-04

General case for loop

for (init; test; update) { init
statements Foise
}
true
statements
update
\)
A specific for loop
for (int 1 = 20; i < 80; i +=5) { int i = 20
line(20, i, 80, i+15); false
}

line(20, i, 80, i+15);

{

i+=5

Figure 8-2 The for loop

The flow of a for loop as a diagram. These images reveal the central importance of the test
statement in deciding whether to run the code in the block or to exit. The general case shows the
generic format, and the specific case shows one example of how the format can be used within

a sketch.

107 Repeat

The test expression is the same, but the parentheses enclose three expressions: init, test,
and update. The statements inside the block are run continuously while the test
evaluates to true. The init portion assigns the initial value of the variable used in the
test. The update is used to modify the variable after each iteration through the loop. A
for loop runs in the following sequence:

1. Run the init statement

2. Evaluate the test to true or false

3. If the test is false, exit the loop and continue the program
4. If the test is true, run the statement(s) within the block
5

. Run the update statement and return to step 2

The following examples demonstrate how the for loop is used to control the way
shapes are drawn to the display window. For comparison, the first two examples are
translations of prior while loop examples. In the first example, the initis int y = 20,
the test is y < 80 and the update is y += 5. Notice the semicolon separating the first two
elements, but not the third. The single line of code inside the braces will continue to
draw a line until the y variable is greater than or equal to 8o.

for (int y = 20; y < 80; y += 5) {

§§§§§ // This line will continue to run until "y"
EESEEE // 1is greater than or equal to 80
== line(20, y, 80, y+15);
}
\ for (int x = -16; x < 100; x += 10) {
\\ line(x, 0, x+15, 50);
\ }
\ strokeWeight(4);
for (int x = -8; x < 100; x += 10) {
line(x, 50, x+15, 100);
}
noFill();
for (int d = 150; d > 0; d -= 10) {

ellipse(50, 50, d, d);

&J}

background(255);

strokeWeight(2);

for (int i = 0; i < 100; i += 4) {
// The variable is used for the position and stroke
stroke(i*2.5);
line(i, o, i, 200);

108 Repeat

8-05

8-06

8-07

8-08

for (int x = 20; x <= 80; x += 5) { for (int x = 20; x <= 80; x += 5) {

line(x, 20, x, 80); line(20, x, 80, x);
} }
for (int x = 20; x < 80; x += 5) { for (float x = 80; x > 20; x -= 5) {
line(x+20, 20, x, 80); line(20, x+20, 80, x);
} }
for (float x = 20; x < 80; x *= 1.2) { for (float x = 80; x > 20; x /= 1.2) {
line(x, 20, x, 80); line(20, x, 80, x);
} }
for (int x = 20; x <= 85; x += 5) { for (int x = 20; x <= 80; x += 5) {
if (x <= 50) { if ((x % 10) == 0) {
line(x, 20, x, 60); line(20, x, 50, Xx);
} else { } else {
line(x, 40, x, 80); line(50, x, 80, x);
} }
} }

Figure 8-3 All for one and one for all
The for loop is flexible, but it always follows the rules. These examples show how it can be
used to generate various patterns.

109 Repeat

The variable name i is often used to control a for loop as in example 8-08, but as
demonstrated in the other sample programs, any variable name can be used. As a
group, these examples have shown how the for loop may be used to create visual
patterns, but this is only one instance of what a for loop can do; it is a general
technique for repeating a block of code like the while loop. As seen in the next
examples, it can be used for iterative calculations.

// Calculates the powers of two from 2 to 1024 8-09
int p = 1;
for (int i = 0; i < 10; i++) {
p=p*2
println(p);
}
// Halves a number 10 times 8-10

float num = 20;

for (int i = 0; i < 10; i++) {
num = num / 2.0;
println(num);

Loop and draw()

When a while or for loop is used inside of draw(), the repetition happens multiple
times within one program. By default, the program will calculate this sequence of
repeats at sixty frames each second, once for each frame the program draws to the
display window. This opens the possibility for the loop to be different each time it runs
because it can be defined by changing variables. For instance, as the mouseX variable
increases, the loop can increase or decrease the number of times it runs at each frame:

void setup() { gt
size(100, 100);
strokeWeight(2);

background(204);

// Draw more lines as mouseX increases

for (int i = 10; i < mouseX; i+=5) {
line(i, 20, i, 90);

““ void draw() {

}

Sometimes a program will attempt to use a loop to animate something on screen. This
can’t work because the screen doesn’t update within a loop. The display window

110 Repeat

updates at the end of each draw(), so the incremental changes happening within a
loop won't be seen; only the final result at the end of draw() are visible on screen. The
following program shows an attempt to draw a line moving from left to right:

void setup() { 8-12

H‘H‘H‘H‘H‘H‘H‘H‘HHHHHHHHHHHHH e
}

void draw() {
int x = 0;
while (x < width) {
line(x, 20, x, 80);
X += 2;

To modify this program to move the line, pull the variable declaration and assignment
outside of draw() so it’s global in scope and then remove the while loop so only one
line is drawn each frame, rather than a series of lines. As the value of the x variable
grows by 2 each frame, the line moves to the right:

int x = 0; 8-13

| p—

size(100, 100);

line(x, 20, x, 80);

X += 2;

In later chapters, the for loop will be used with setup() and draw() to load and play
back a series of images (see Animation, p. 431), to read through the entries in a data file
(see Data, p. 489) and to work with arrays of software objects in an efficient way (see
Arrays, p. 415, and Simulate, p. 453).

Nested loops

The for loop produces repetitions in one dimension. Nesting one of these structures
into another compounds their effect, creating iteration in two dimensions. Instead of
drawing g points and then drawing another g points, they combine to create 81 points;
for each point drawn in the outer loop, 9 points are drawn in the inner loop. The inner
loop runs through a complete cycle for each single iteration of the outer loop. In the

111 Repeat

following examples, the two dimensions are translated into x-coordinates and

y-coordinates:

// The variable y iterates from 10 to 90 to draw 8-14
// the point 9 times
for (int y = 10; y < 100; y += 10) {

point(10, y);

// The variable x iterates from 10 to 90 to draw 8-15
// the point 9 times
for (int x = 10; x < 100; x += 10) {

point(x, 10);

// The variable y iterates from 10 to 90 to draw 8-16
// the point 9 times and the variable x iterates from
// 10 to 90 to draw the point 81 times
for (int y = 10; y < 100; y += 10) {
for (int x = 10; x < 100; x += 10) {
point(x, y);

This technique is useful for creating diverse patterns and effects. The numbers produced
by embedding iterative elements can be applied to color, position, size, transparency,
and any other visual attribute.

112 Repeat

fill(o); 8-17
noStroke();
for (int y = -10; y <= 100; y += 10) {

for (int x = -40; x <= 100; x += 10) {

ellipse(x + y/3.0, y + x/8.0, 4, 7);

}
}
noStroke(); 8-18

for (int y = 0; y < 100; y += 10) {
for (int x = 0; x < 100; x += 10) {
Fill((x+y) * 1.4);
rect(x, y, 10, 10);

for (int y = 20; y <= 80; y += 5) { for (int y = 20; y <= 80; y += 3) {
for (int x = 20; x <= 80; x += 5) { for (int x = 20; x <= 80; x += 10) {
point(x, y); point(x, y);
} }

N
ASSN

ASSNNN
EANNNNNNN
ASSNNNNNNN
AANNANNNNNY EEEEREERRER

ASSSSNNNNNNNEN

for (int y = 20; y <= 80; y += 10) { for (float y = 20; y <= 80; y *= 1.2) {
for (int x = 20; x <= y; x += 5) { for (int x = 20; x <= 80; x += 5) {
line(x, y, x-3, y-3); line(x, y, x, y-2);
} }
} }

77727777
NANANANNNNNNY
NRNNRNNNNNNNNNN

for (int y = 20; y <= 85; y += 5) { for (int y = 20; y <= 80; y += 5) {
for (int x = 20; x <= 85; x += 5) { for (int x = 20; x <= 80; x += 5) {
if (x <= 50) { if ((x % 10) == 0) {
line(x, y, x-3, y-3); line(x, y, x+3, y-3);
} else { } else {
line(x, y, x-3, y+3); line(x, y, x+3, y+3);
¥ }

Figure 8-4 Embedding (nesting)
Embedding one for loop inside another is a malleable technique for drawing patterns.
These examples show only a few of the possible options.

113 Repeat

x for (int y = 1; y < 100; y += 10) { 8-19
XX .
XX% for (int x = 1; x < y; x += 10) {

3

oleeeres line(x, y, x+6, y+6);

LS &6

EEERCHER line(x+6, y, X, y+6);

Nesting loops is a powerful idea that takes time to get comfortable with. Despite the
fact it was just introduced, the following two examples take it further to show how to
nest a third loop to create an even more complex visual pattern. To start, a one-
dimension pattern, a series of embedded rectangles, is placed within a regular grid:

rectMode (CENTER); 8-20
for (int d = 18; d > 0; d -= 4) {

rect(50, 50, d, d);
}

When this pattern is embedded into a nested loop to generate y- and x-coordinates, it
repeats as a grid as in the preceding examples. A quick look at the code shows how each
for loop is nested inside another. It is important for legibility to keep this spacing
intact to show the structure at a quick glance.

background(255); 8-21
rectMode (CENTER);
for (int y = 9; y < height; y += 20) {
for (int x = 9; x < width; x += 20) {
for (int d = 18; d > 0; d -= 4) {
rect(x, y, d, d);

Exercises

1. On paper, draw a 4 x 4 grid of squares. Draw a different regular pattern with five
lines in each square.

2. Select one of the patterns from exercise 1 and code it with a while loop.

3. Rewrite the code from the exercise 2 with a for loop.

4. Place a conditional (if) inside a for loop to change what it draws during the loop.
For example, half of the lines are short and the other half are long.

5. Draw a dense pattern by nesting two for loops.

114 Repeat

9 Synthesis 1

This chapter discusses the idea of sketching with code and the iterative
development process.

There are similarities between learning a programming language and learning a new
spoken language.Initially, one learns basic elements of the new language—such as
simple words and grammar rules—and mimics short phrases. Learning to communicate
ideas and express emotions within the language takes more time. Similarly, the first step
in computer programming is to understand the basic elements such as comments,
variables, and functions. The next step is to learn to read and modify simple example
programs. Later, one begins to write programs from scratch. The most interesting and
difficult stage of learning to program comes later, as one gains the ability to put the
language elements together to express ideas about form, motion, and behavior. Like
learning a foreign language, becoming fluent in a programming language can take years.

Sketching software

Sketching ranges from informal exploration to focused refinement. It is used to create
many variations within a short time or to develop a specific idea. Sketching forces the
definition of vague ideas by making them physical. Sketches are powerful
communication tools—they can get ideas out of one’s head and into a format that
others can better understand.

It is important to work out ideas on paper before investing time in writing code.
Paper and pencil allow for fast iteration in the early stages of a project. The most
important aspect of programming is figuring out what will be created and how it will
function, so working out these ideas away from a computer keeps the focus on an idea,
rather than on its implementation.

A good paper sketch for software will include a series of images that demonstrate
how the narrative structure of the piece works, much like an animator’s storyboard. In
addition to images that will appear on screen, sketches often contain diagrams of the
program’s flow, data elements, and notation for showing how forms will move and
interact. Programs can also be planned using combinations of image mock-ups, formal
schematics, and text descriptions.

After refined ideasreach a point where working on paper is no longer useful, code
can continue the development. Thefirst step in creating code is a continuation of the
sketching process. Write short pieces of code independently before worrying about the
structure of the larger program. Writing small, focused programs makes a developer better
atwriting code when it matters most: when working on amorerefined implementation.

Processing programs are called sketches to emphasize this method of working. The
Processing sketchbook is a way of storing and organizing programs. Code sketches can
be reviewed and developed incrementally, like drawings in a paper sketchbook. Ideas

115

that flash by while walking or just after waking up can be quickly made into code and
stored for future use. The Processing environment encourages this type of writing
because one need only select the “New” option from the File menu to start a new sketch.

Some programming languages encourage a sketching approach, and others make it
difficult. Scripting languages, such as Perl or Python, are designed to encourage rapid
development at the expense of running speed and control. Processing is not a scripting
language, but is designed to “feel” like a scripting language while providing the same
capabilities as a more complex language like Java. This topic is discussed in more depth
in appendix F (p. 619).

Programming techniques

There are as many ways to write programs as there are people who write software.
Some common strategies for creating programs include modification, augmentation,
collage, and writing code from scratch. People learning to code often expect most
programs to be written from scratch, but that is rarely the case, particularly for the style
of work built with Processing. Learning to read and modify code helps programmers
increase their skills. Even advanced programmers work from others’ examples when
learning new techniques.

Modification

Changing the values of variables in existing programs is a good way to explore code.
Programs can be modified by trial and error or more deliberately. One way to start
understanding a program is to change slightly the value of one variable and then run
the code to see the result. If there is no obvious difference, change the value again.
Making the correlation between a variable and a change in the way a program runs is a
good first step to understanding how it works. Disabling lines of code by placing them
inside a /* and */ comment block (called “commenting out”) is another way to decrypt
a program. A little understanding of the way a program is structured can facilitate
logical guesses about what different lines of code are doing. These modification
techniques aid in learning new skills or parsing an example. Making small changes to
an existing program encourages exploration and getting a feel for

the code.

Augmentation

Augmentation uses existing code as a base for further exploration. It is similar to but
more ambitious than modification. General program examples can serve as a
foundation for longer, more specific programs. For instance, an example that draws a
Bézier curve can be used as a base for drawing a series of curves. A program that
displays a photograph can form the basis of a collage application. Sample programs
provide a concise reminder of syntax. The spartan programs presented in this book
provide a broad base for making enhancements.

116 Synthesis 1

Collage

The collage technique involves cutting and pasting elements of different programs
together to create a new program. It’s analogous to creating music by sampling or
making a visual collage from newspaper and magazine clippings. In order to avoid
errors, combine code carefully by copying a few lines of code at a time and running
the program to make sure it’s always working. Copying large portions of code can
introduce a number of simultaneous errors. Mindlessly copying and pasting code can
create “Frankenstein” code that is difficult to debug. As an individual’s knowledge of
programming increases, using this technique becomes easier, and common problems
can be avoided, such as adding multiple copies of the same function, like draw()

or setup(),to the code.

Coding from scratch

Rarely do programmers write a complete program entirely from scratch. At the minimum,
most people start with a template. A template is an outline with code infrastructure
common to many programs. Sometimes it’s not possible to find a related example or
appropriate template and it’s necessary to start with a blank page.In this case, comments
are a great way to start building a program. Comments can be used to build an outline of
the program’s intention, logic, and flow. After this structure has been defined, lines of
code can be slowly added and run in an attempt to realize those decisions.

Regardless of the technique used for programming, writing a few lines of code or
making only a few changes at a time is a good tactic. Entering many lines of untested
code before running the program increases the potential for multiple errors. The more
errors in a program, the more difficult they become to find. Running a growing program
piece by piece reduces the chance for multiple errors. As your comfort with code and
your skills increase, it becomes possible to make more modifications between tests.

Examples

The previous chapters introduced concepts and techniques including coordinates,
variables, conditionals, and looping. Understanding each of these in isolation is the first
step toward learning how to program. Learning how to combine these elements is the
next step. This is best done through writing more ambitious software and studying
more complex programs written by others. The examples presented in this book are
intended as raw materials to build more refined programs. The code and descriptions
that follow are modified, augmented, and collaged from the earlier examples.

The first example draws two transparent circles that follow the cursor based on the
mouseX value. One circle is drawn at the x-coordinate of the cursor; its size grows as the
mouseY value increases. The other circle is drawn by reversing the values of the first
circle. For instance, if the first circle is on the right, the other circle is on the left. If the
first circle is large, the other circle is small. These inverted values are calculated by
subtracting the mouseX value from the width of the display window and the mouseY
value from the height. The result is an engaging choreography between the two shapes
while the cursor is in motion.

117 Synthesis 1

Figure 9-1
Screen captures for code 9-o1.

Figure 9-2
Screen captures for code 9-02.

118 Synthesis 1

void setup() { 9-01
size (600, 600);

void draw() {
background(0);
stroke(102);
line(0, height/2, width, height/2);
noStroke();
til1(255, 204);
int d = mouseY/2+10; // Diameter
ellipse(mouseX, height/2, d, d);
til1(255, 204);
int iX = width-mouseX; // Inverse X
int iY = height-mouseY; // Inverse Y
int iD = (iY/2)+10; // Inverse diameter
ellipse(iX, height/2, iD, iD);

The following sketch builds on top of code 7-10 (p. 88). The if structure in the program
calculates if the cursor is inside the black square or outside. When the cursor is outside,
two diagonal lines are drawn within the square. When the cursor is inside, lines are
drawn from each corner of the display window to each corner of the square. The logical
AND operator (88) is used to combine the relational expressions together to make sure
they are all true before drawing the lines outside the square. The noCursor ()
function is used to hide the cursor; it is replaced by a small circle defined at the end of
draw(). This sketch creates the illusion that the small circle is touching the square and
causing a reaction.

void setup() { 9-02
size (600, 600);
strokeWeight(2);
noCursor();

void draw() {
background(102);
noStroke();

fill(o);
rect(150, 150, 300, 300);

119 Synthesis 1

stroke(255); 9-02
if ((mouseX > 150) 8&& (mouseX < 450) 8& cont.
(mouseY > 150) 8& (mouseY < 450)) A

line(o, 0, 150, 150); // Upper-left

line(600, 0, 450, 150); // Upper-right

line(450, 450, 600, 600); // Lower-right

line(0o, 600, 150, 450); // Lower-left
} else {

line(150, 150, 450, 450); // Upper-left to lower-right

line(150, 450, 450, 150); // Lower-left to upper-right

noStroke();
fill(o);
ellipse(mouseX, mouseY, 12, 12);

The next example brings together the arc () function, the mouseX variable, and a

for loop. The length of each arc is based on the x-coordinate of the cursor. As the cursor
moves to the right, the length of the arcs increase. In the loop, the control variable i
sets the diameter and starting angle of each arc. The smallest is drawn first with each
following arc growing in diameter according to the gap variable.

int gap = 20; // Distance between arcs 9-03
int thickness = 2; // Thickness of each arc

void setup() {
size (600, 600);
noFill();
strokeWeight(thickness);
stroke(0);

void draw() {
background(255);
float arclLength = mouseX / 95.0;
for (int i = gap; i < width-gap; 1 += gap) {
float angle = radians(i);
arc(width/2, height/2, i, i, angle, angle + arclength);
}

120 Synthesis 1

Figure 9-3

Screen captures for code 9-03.

i

Figure 9-4

Screen captures for code 9-04.

Synthesis 1

121

The final example in this section combines modified versions of previous examples into
a single program. Each previous program is contained within a chain of if structures.
The value of an integer variable called mode determines what will draw to the screen
because it is used in the test expression for the conditionals. This code shows how one
sketch can have multiple stages or screens. The length of this program is the longest yet,
but think of it as a series of short programs collaged together to reduce the complexity.
Each block of code defined by an if structure can be edited with focus the same way an
individual paragraph within an essay can scrutinized. Learning how to code balances
the understanding of an entire program with the details of specific sections.

int mode = 1;
int lastMode = 3;

void setup() {
size (600, 600);

void draw() {

background(204);

if (mode == 1) {
// Based on code 3-20
fill(0);
noStroke();
ellipse(210, 0, 720, 720);
ellipse(228, 377, 36, 36);
ellipse(240, 605, 420, 420);

} else if (mode == 2) {
// Based on code 3-36
stroke(0);
strokeWeight(2);
fill(255);
rect(60, 60, 300, 300);
noFill();
rect(120, 120, 360, 360);
rect(180, 180, 360, 360);

} else {
// Based on code 8-05
stroke(0);
strokeWeight(10);
for (int y = 120; y < 480; y += 30) {

line(120, y, 480, y + 90);

122 Synthesis 1

9-04

void mousePressed() { 9-04

mode++; cont.
if (mode > lastMode) {

mode = 1;
}

123 Synthesis 1

10 Interviews: Image

Manfred Mohr (Une Esthétique Programmée)
LettError (RandomFont Beowolf)

Jared Tarbell (Fractal.Invaders, Substrate)
Benjamin Maus (Perpetual Storytelling Apparatus)

126 Interviews: Image

Manfred Mohr, P-049/621290,1970, drawn to canvas in 1990. Plotter drawing ink on canvas. 51.5 x 51.5”/130.8 x 130.8 cm.

Photo by John Berens. Image courtesy bitforms gallery nyc.

Une ESthetique Prog rammee (Interview with Manfred Mohr)

Creator Manfred Mohr
Year 1971

Medium Exhibition
Software FORTRAN IV

URL www.emohr.com

What is Une Esthétique Programmeée?

In the early 1960s I was reading “AESTHETICA IV” by Prof. Max Bense, a German
philosopher, whose writings went far beyond traditional art criticism. It led me into unfamiliar
intellectual territory. He argued, besides many other interesting ideas, that art should be created
by rational means rather than by emotions. At that time, however, the official “art” was abstract
expressionism, which I totally appreciated and in which I saw many parallels to modern and
free jazz, the music I was engaged in as an active jazz musician.

It came to me as a complete shock to read about “rational art,” but somehow a chord was
struck in my mind. This idea would not go away, and eventually I understood: If art is to reflect
and embrace our social and technological world, it should also be created from the same
“material.” Struggling with these thoughts over some time, my views on aesthetics and art
eventually changed dramatically. In fact, my whole life was turned upside down. The idea of
programming an “idea,” which meant writing down exactly what one wanted to do before doing
it, became a fascinating goal, and my basic research became the invention and systematic
development of two-dimensional signs, which I call “étres-graphiques.” These signs refer only to
themselves, and their content is the history of their creation.

Since the early 1970s, I've worked exclusively with the fixed structure of a cube as my visual
alphabet, which I later extended into the more complex structure of N-dimensional hyper cubes.
Through programming I created a quasi-musical instrument with which I could play
“algorithms” resulting in unimaginable visual constructs.

Why did you create Une Esthétique Programmée?

Une Esthétique Programmaée is, so to speak, my personal state of mind, in the surge of
finding a new frontier of artistic expression. To realize this, I first had to learn a programming
language and also find a computer with a plotter, a drawing machine connected to a computer.
In the 1960s, that was a very complicated task. There were no schools or universities to learn
programming, and very few books about programming existed. To find a computer was even
more challenging, because computer centers at that time consisted of millions of dollars’ worth
of hardware in large 2,000-square-foot air-conditioned rooms, which of course was not
affordable by any single person and was not easy to find or to get access to.

The interesting thing about learning to program one’s ideas, by logically defining what I
wanted to do, gave me a complete new look at my own aesthetic research and a deeper
understanding of my visual processes. The computer became a physical and intellectual
extension in the process of creating my art and the results somehow became bigger than the
sum of its parts. Subsequently, I called my art “generative work” because the signs were created
by the rational structure of programming algorithms, established in advance by myself. My

127 Interviews: Image

work is therefore an algorithmic art, a “programmed aesthetic,” which conceptually exists (as a
program) before it is actually realized.

What software tools were used?

Before I can answer the question about software, I have to tell you again that hardware
was at that time (1960s) as much of a problem as software to get hold of. Hardware was
cumbersome and almost unobtainable, and written software did literally not exist. I lived in
Paris, France, in the 1960s and 1970s, and only through lots of luck and persistency did I get
access to the French Meteorology Computer Center in Paris. It was heaven on earth for me. I
could use the biggest and fastest computers of that time, a CDC 6400, 6600, and eventually
7600. I also had access to a large Benson 1286 flatbed plotter. I was programming in FORTRAN
1V, a language that to this day has its merits, even though it looks today like the C language. In
those early days everybody had to write their own programs, because no written software
existed as yet. Growing up with this habit, I still write, to this day, all my programs specifically
for each work by myself. I understood right away, that the ability to program by myself is a
powerful and precise tool to translate my thoughts into action without an external interpreter.
It never came into my mind to use software written by someone else.

Why did you use these tools?

There was no other way to accomplish my task.

Why do you choose to work with software?

Programming has changed my life and my view on aesthetics. It became a normal
extension of myself to define and clarify my ideas through programming. In fact, it became the
basic way to express myself. Over the years it became so normal to me that even looking at
other artists’ work, for example, I could not help myself from trying to figure out the logical
content of the work.

The main interest of my work and, of course for myself, is a visual discovery through its
rational content. It is, however, not the system or logic I want to present in my work but the
visual invention which results from it. My artistic goal is reached when a finished work can
visually dissociate itself from its logical content and convincingly stand as an independent
abstract entity. Even though I could not create or invent the visual outcome of my work without
my software, it is clearly reflecting my thinking, my stylistic and artistic expression.

Top:
Installation view at bitforms gallery from Manfred Mohr: 1964—-2011, Réflexions sur une esthétique
programmeée. September g—October 15, 2011. Photo by John Berens. Image courtesy bitforms gallery nyc.

Bottom:

Manfred Mohr, P-021,1970-1983. Plotter drawing ink on paper.19.75 x 19.75"/50 x 50 cm.
Photo by John Berens. Image courtesy bitforms gallery nyc.

128 Interviews: Image

Randomized Beowolf letters created with DrawBot. Image courtesy of Just van Rossum and Erik van Blokland.

Ra ndO mFOTlt BeOWOl_f (Interview with Erik van Blokland)

Creators Just van Rossum and Erik van Blokland (LettError)
Year 1990

Medium Typeface

Software PostScript Type 3 font

URL www letterror.com/foundry/beowolf

What is RandomFont Beowolf?

In 1989, after finishing the graphic and typographic design course at the Royal Academy
of Arts in The Hague, Netherlands, Just and I were both experimenting with PostScript, a
powerful programming language designed for graphics. The only machines we had access to
that were capable of executing PostScript programs were laser printers, so we went through a
lot of paper. We figured it should be possible to build a font with random functions applied to
the letterforms when it prints. We made a test font containing one randomizing square to
prove the concept. Later we used a typeface I had drawn in school, which after some iterations
became Beowolf.

A font in PostScript in its most basic form is a dictionary with some standard entries and
drawing instructions for each letter. Fonts like this were called “Type 3,” and as long as you
managed to get the file in the printer, the letters could use all the functionality of the PostScript
language. So that’s what we built. Another PostScript font format, “Type 1,” was more compact
and offered faster processing and hinting, but it was proprietary, encrypted and required secret
tools to generate. In the summer of 1990 Adobe published the specifications of Type 1 but
unfortunately the increased speed of printing with Type 1 fonts came at a price of a very limited
instruction set.

Later we built “piggyback fonts,” which incorporated both Type 1 and Type 3 formats. Fonts
like this consisted of several Type 1 fonts and a special Type 3 font to contain logic to switch
glyphs and fonts while rendering a text. The fonts were all bundled together in a single file, then
the Macintosh printer driver would just download the whole thing, and all fonts would make it
to the printer. It was a wonderful hack.

The demands of the graphic design workflow made it increasingly difficult to deploy Type 3
formats, and we stopped shipping them. We've always made a case for fonts with executable
code; typography is a complex field which can benefit from programming on a font level. But we
can'’t expect the entire digital design industry to accommodate our whims.

The current OpenType font format (developed by Adobe and Microsoft) actually contains
ways to define rules for contextual substitution and positioning of glyphs.(Contextual
substitution is the process by which letters are changed based on the letters around them.
For instance, an f and i might be joined into a single glyph, a ligature that looks like fi.)
Though nothing like a fully featured programming language, it’s an improvement and fun to
develop for. We have an OpenType font with a decent simulation of a RandomFont, much like
our piggyback fonts. Visually it reconstructs the broken, edgy style Beowolf had, but
conceptually these OpenType Beowolves have very little to do with the original one.

131 Interviews: Image

Why did you create RandomFont Beowolf?

Curiosity. We were both trained as type designers, and we were interested in computers and
programming. At that time the fields of design and digital technology didn'’t really overlap.
After the first versions we started thinking about the context and implications of
randomization. Beowolf became an example of what digital type could be: not that the random
aesthetic itself was so appealing, but it was proof that fonts were no longer physical objects but
instructions. It also showed us that code and design can merge into a single process, a single
object. Code has a major influence on design, and I think it is too important to leave it to
anonymous engineers.

What software tools were used?

The first PostScript tests were written in a text editor. Then we took simple PostScript Type 3
fonts generated by Ikarus M (the first version, written by Petr van Blokland) and edited those.
These fonts had simple, readable text instructions and absolute coordinates that were easy to
modify. Later on, with some help from AltSys’s Jim Von Ehr, we moved on to a more complex
variation of Type 3 PostScript, editing in ResEdit. The last incarnation of the RandomFonts was
piggybacking on a Type 1 font so that there would be some sort of (nonrandom) preview when
used in a layout program; then later in the printer the Type 3 randomizing version would kick in
and do the work. The piggyback fonts were also made with ResEdit.

Why did you use these tools?

Type design is a small field, so there aren’t many developers interested in writing tools.
AltSys wrote Fontographer, at the time the popular choice for editing fonts, but it didn’t allow
the things we had in mind. Petr van Blokland and David Berlow convinced Jim Von Ehr to give
them access to the Fontographer source code and Petr started experimenting with adding a
layer using awk, a programming language for processing text data. Just suggested using a new
programming language that his brother had invented called Python. Python and Fontographer
became RoboFog and gained a small but dedicated group of users. Python is fast to develop in,
which allows a reqular iterative design process. After the first time you write a program you
know how it should have been done, and you can afford to start over and do it again, improving
the understanding of the problem.

When Mac OS X was released we couldn’t port RoboFog because the code base was so old.
The FontLab font development software had added Python scripting to their font editor, so we
started to work with that instead. We started reshaping their API into ours, and this grew into
the RoboFab library, an object model and API built on top of FontLab’s font and glyph objects.
RoboFab now also has an implementation that works independently of FontLab.

Why do you choose to work with software?

In any creative discipline, the tools influence the process and, indirectly, the results. We try
to be aware of this influence, and if it is something we don’t like we try to change it. Every
application makes certain things easy and others more difficult. This directs the average design
project towards the things that are easy, even though other ideas might be more relevant.

Writing your own tools makes the ideas direct the development of software, rather than the
other way round. Writing code is also an attractive process in itself. Analyzing problems,
breaking them down into ideas that can be coded, and discovering alternative new ways to solve
known problems is more universal than just the original design task.

132 Interviews: Image

Lo
S

\ X
D

Substrate, 2004. Image courtesy of Jared Tarbell.

Fra Cta l.Inva de TS, Su bStra te (Interview with Jared Tarbell)

Creator Jared Tarbell

Year 2003

Medium Software, Prints

Software Flash, Processing

URL www.complexification.net

What are Fractal.Invaders and Substrate?

Fractal.Invaders and Substrate are unique programs that both generate space-filling
patterns on a two-dimensional surface. Each uses simplified algorithmic processes to render a
more complex whole.

Fractal.Invaders begins with a rectangular region and recursively fills it with little
“invader” objects. Each invader is a combination of black squares arranged in a 5 x 5 grid
generated at random during runtime. The only rule of construction requires that the left side of
the invader be a mirror copy of the right side. This keeps them laterally symmetric, which
endows them with a special attractiveness to the human eye.

There are a total of 32,768 (2%) possible invaders. The magnitude of 15 comes from the
product of 3 columns and 5 rows (the last 2 columns of the grid are ignored since they are the
same as the first 2). The 2 comes from the fact that each space in the grid can be either black
or white.

A small bit of interactivity allows each invader to be clicked. Clicking an invader destroys it,
although the empty space left behind is quickly filled with smaller invaders. In this way, the user
is ultimately doomed.

Substrate begins similarly with an empty rectangular region. It has been compared to
crystal formation and the emergent patterns of urban landscapes. A single line (known
internally as a “crack” since the algorithm was inspired by sunbaked mud cracks) begins
drawing itself from some random point in some random direction. The line continues to draw
itself until it either (a) hits the edge of the screen or (b) hits another line, at which point it stops
and two more lines begin. The one simple rule used in the creation of new lines is that they
begin at tangents to existing lines. This process is repeated until there are too many lines to
keep track of or the program is stopped.

Before writing the program, I only had a vague idea of what it might look like. It wasn’t
until the first couple of bug-free executions that I realized something incredible was happening.
The resulting form was much more complex than the originating algorithm. This particular
quality of software is what keeps me interested.

Interesting effects can be created by introducing small variations in the way the first couple
of lines are drawn. One of my favorite initial conditions is the creation of three lines, each in its
own localized space with a direction that varies from the others by about 30 degrees. After
growing for a short time into coherent lattices, they eventually crash into each other, creating
an affluence of odd shapes and unexpected mazes.

The watercolor quality of the rendering is achieved by placing large numbers of mostly
transparent pixels perpendicular to each line’s growth. The trick is to deposit precisely the same

135 Interviews: Image

PRI

WD T EMAAAR N YT P A I RNAQADNDL S R W

THaAXE b mds W=
=:‘:ﬁ.'--'.'1."..:'i'I:F!'!‘:"F'E?..'Iiﬁﬂﬁléﬁﬁﬂtﬁﬂ‘r’l awHTEd~ATY IR TH RN YT

#-’-Em"'ﬁ‘i"‘i-'l‘-'-.“"‘) 'n'h'lﬁlnﬂ-_ﬁl'l'”'a meﬂ-'o'W-v--:':-"“’"‘-’-'-'-ﬂﬂ'l-‘i‘i"'ﬁ'

N W
LW
'”"ﬂ'ﬂﬂ-ﬂ-l?n

EEET: n#"'ﬁ.!.ul!l
: g ; i = ‘:’ number of pixels regardless of the length of the area being filled. This produces an interesting i :; :;: ﬁ :': 2 ':
TErry density modulation across an even mass of pixels. = o ': "
R R Why did you create this software? My 8aT
ER Tk For me, one of the most enjoyable subjects in computer science is combination. I ask AP L2 LY
- [N] o bd oy saz .t ap
: :‘: t'f ; ;,',: E. myself a question like, “Given some rules and a few simple objects, how many possible ;: il ; E - ; %
rw it 5t = Wwayscan they be combined?” Seldom can I answer this using thought alone, mainly G AN AR
Ew® M " because the complexity of even just a few elements is outside the realm of my ETTAG M
: E : El : :"ﬁ imagination. Instead, I write computer programs to solve it for me. Fractal.Invaders is LI = ‘-2; : T : -
r :) .é. definitely one of these questions, and is answered completely with the rendering of every o BRI Y Y .;
1i & 35w ¥ single invader. Substrate asks a similar question, but with results that, although beautiful, FHE SRR T
: : : g = : are a little less complete. :-:-: : * e E i
R G & What software tools were used? ‘:' o ':' : I "o
g y_' AHXM For Fractal.Invaders, I used a combination of Flash and custom software to create and Sl TE oy Ll
X MM capture the invaders, respectively. In Flash, all work was done using ActionScript. A single AN Pn
o R LAk
E : ¥ : ¥ symbolic element (black square) exists in the library. Code takes this square and duplicates it ﬁ ': E : : ; o
.M :-: ¢ K hundreds of thousands of times. The entire generative process takes about five minutes to & :11 -;-»- o
% L W complete, depending on the size of the region to be filled and the speed of the execution. TREI®LTA
E ; $ E : r Capturing a high-resolution image of the result is accomplished with a program that scales the ":; : '_': 3 : ﬁ L:
¢ v ma = i w Shockwave Flash (SWF) file very large and saves the screen image out to a file. @i .-'-. ; a—_ w i
AT ReT Substrate was created entirely in Processing. Processing was particularly well suited for this ~ i ll = & M 2 @
: ; 'l:" :': : !':'! because it excels at drawing, especially when dropping millions of deep-color pixels. Processing 3 " : g : g :
; a “ * ﬁ :: can also save out extremely large graphic images in an automated fashion. Oftentimes I will : ,; a e
L 4 L X = @ run a Processing project overnight. In the morning I awake to a vast collection of unique bR U W - I .,',
: : : ﬁ 22 images, the best of which are archived as print editions. L ;': ; ; E :
DOWi . . 5) :
AT, Why did you use these tools? . o ‘ . e HT G NE
[6 W I use Flash because I am comfortable working within it. I use Processing because it enables MaEsgs@gnw
L:: % * =W me todo things Flash simply cannot. Both environments allow me to take a program from @ W A
: ; ; f _:_ E concept to completion in a number of hours. Complex visual logic can be built up without the ; ﬂ 'u' f : : ;
7y e .:r:, '“' -1~ bulky overhead required in more traditional graphic programming languages. & ,ﬁ_ i ML
Ol - B Flash excels at rendering very high resolution images nicely, displaying native vector R HHE oI
"’ -; ; : '"' : objects with a high degree of precision and full antialiasing. Processing gives me the r E E : i ; l':‘
; i 54 4 n computational speed to increase the number of objects in the system by a magnitude of 20 or .'i'. i3 : ZuTlL
=3 = ™I W more. Both programs allow me to produce work that is capable of being viewed by a large EI.LmnS
: ; g = : ; number of people worldwide. &V ; wRAET
. - s W OW G b T
g Why do you choose to work with software? X [
TR] With software, anything that can be imagined can be built. Software has a mysterious, MMM LS
[& T M R ¥ undefined border. Programming is truly a process of creating something from nothing. I enjoy ATk RE
: :‘: g ﬁ i most John Maeda'’s perspective: “While engaged in the deepest trance of coding, all one needs to T =f : E ; 2 :!'
. ™ nwr Wish for is any kind of numerical or symbolic resource, and in a flash of lightning it is suddenly +TH I T M=
I W 2N there, at your disposal.” MUTZY MWL
ﬂl.lll-l'!"ﬂu “RMMAETL
Em T HRL MYPZIOWER
LF YL a TR . B
2 53 03 E O m FractalInvaders, 2004. Image courtesy of Jared Tarbell. & o ; nras T
P T o ® 'l-'l"“""""l.l'n'i"'i
Lt OENTR N e NA Sl Y TGOl T ORI PASAOER N WM EARIFANAM
LR e xR M P ol A YN VYUY RN ISR N TAYHE I SN SRR AmBE s
e VN EIE WY el Ul TRIAULN XD L AMTANT ORI o i el wlieg
M E RS LML O R SN E I W IR A Y VEMNAR AR IS RQIt Y RFETHET N X
RN LN R AN E A MR e AN FRN RN L A TSI T RN TUEMEH
g F whm ok i AR T CTT TR g o ot WE L e Y R o o LTV S W N W O b M TR WY MY L o b W O LT T O W Y W WA ET et e b

CERWTAUXRTHYE " GIRR LA TGS WA LM LAY wm T M T T AMSE R A D XM Ea
EaB AT I R AH A S e T Y FOeN T MO ETAL s TN E Ao MA g ra R LR
ALy L Y N AN Y Y AN W A NI LRI P+ MY A MMNT £
PRI M LT AR AT R WH X" A NN PO MY HR IAYM g m WA ALl g R
T Tl TRY eIl RGP e A G A a Y M ST 2?5 @ 50 3G
AR O Y YA E WOV EA AR ORI PR AT R wEa R WAL EAEIRAN I AN Ry AT,

MEY LR {wleR T MWy . s T MNP F TR vRAIETRE TR T &AM AR N
AR SR AN RN T e M TMEVELAUW AN Y WEEORE Y- IR L TN
e T SRS T MY T G YR m M P YRt HA T I AR TR I YOI AN T RUREL 8N
PWEHEd A IR T TN SN ENE N A TN AR RE T L i R T W
UHY s YA T e L MM A L g O T A RAN AR s AR @ @0 Ay
YO Y s R AN MmO Y TR R Y WO ARNMEAYN TR OEABREMN:
LT W T2 LR Rl NI TR FER I RS AU T E AR Y T WI A= @M gE,
H‘FL’:AHK““*ﬂ-ﬂ-"".'.""J.""-'i'-"l'#H'!T:E:H=¢.i.'.#ﬂ'ﬂlﬁii:'r:l'-'ll!!"'i'#ﬂ‘ SO A e X WO
ARGz E T AV MmN A O T Ay A MEA ARG YN Eh TN ERET R AN
Hﬂ-lﬂ"""‘ﬁ]ﬁ Ht'ﬁ'ﬂ:"‘h"""“**ﬁ'ﬂ"n"‘--Hb?"‘“’T"\'E--td.-ﬂi"!xh:-.i.-l"'-"-""H*Mﬁﬁ‘.'"I

He WYY Y O - T FLiMEL A E MmN AU wrya Y D R En "B ORIl
MVt saae MR A SNt A E R AT VU PAUER AT N B e MWl i Somly 'i
WO THY AR NaTaE I HiN s LA ey NS PR LAV EWARN YT R
'.-.."'"tl"lﬂ-ﬁ--'lﬁ‘i:i'ﬂﬁ'-'ﬁ'ﬂ"l'ﬂ":I'I:..I"I""Il:ll""#H'.'.'ili:i’:l'.‘l'l"UH“.‘IH'.‘U'I'.ii:.:'v'lli““‘”'r"ll
*U#’!‘ﬂ WA A E R T AT YRR DR F LIV ORAYRALT ®
PAAAaYERR T - WRLTAF W XA Y X Y EAFRMY T2 d 4200 T
e E TR ORI PRI T RR ST M T I LU TR F R RUT R T ¥ S
LR o I, ﬂH?"llWBt*ﬁﬂH:mnﬂ’F_ L UL L R e L S
’F“*HHEH“M a HH AW MWW U WA T T S LR L R L |
R LMD ot SRIANVNEARE Y s tAG Y
S AKRETOOAAT TRLTRAENDEYE
L Rl - LR R d.-:':'-"'..".w"h'-ll'l"l‘ﬁ?
'HACHLE AW Al SN A KH y B::--ﬂ-ﬂﬂ'ﬂ‘lﬂﬂ-ﬁ-mﬁ
TSR ey “ELYMEYTIHMTaAN !#.....;i:ll"-‘":'r.'?ﬂ:"‘:#'.’!.i.ﬂsﬁ
muéﬂéﬁ&ﬂuwn H.n.i'-‘imﬂ !’S.‘“:""'H'Iﬂ':':"lur*EE#":AT-?-HHNHWEHH?E;
W Aafe L &YX Sy W UANAAN Y S I T ol T Lo
mAEHLINY H!ﬁl.ll-ll Eww'"'-himﬁhe:".'ﬁwﬁT.HH'!.'-‘-"‘H...“E&Iﬁ-#?w—ﬂ-ﬁ-u'ﬁ-?i
...Ii-":l:ﬂ.n.l.?ﬁﬂ‘ HYENAR I Ex R I SFZWN LR Hl.uﬁﬂiﬂ?ﬂmlﬂ'&'uu
ToaWxTREYTR TR maYeUEYRcURNTHTR :I:
EE—MJ'-H:':'?H ﬂ EpgxvpEgmT IxE wamnwu:*:n
XofUTURAKAIBAL Hrh'ﬂ'u-.-.--h-ﬁﬁﬂ MRS WML
-
-
»

1= CHE:

it
X
LI
-5

R H: |ll‘,‘:
HEAR :-1:-
2
» B
BT

H
Eﬁliﬂ
=
+
&a
=
[]
3
[+
-
3
'I=H:."=:

-

FlEHCEAHE o

Bl cEAE
X[

l?-i- ||

e)
k.
]
L]
&
b
Iy aat Aa®, B
®

] B HE - | 3

B Wl it

]
LECE LR B T = o
=

;--

l‘:libﬂE ko
:E-IIJZ-H I##
G- R e O TR

-]
:
2
x*
;o
N
EH
I'E
B I
l-
l!

x-l =1

-
e
ﬂ

I-!E F-Iﬂ' FRnaad 3 -E

LA IR R LA TR P AL HELAAXE BN FU P NS LR
BEHMMSLIaon B ﬂ“‘ﬁwmﬁﬁunvﬁfiﬁ'ﬂﬂﬁﬂfﬁﬂ
Haﬁ'ﬂnﬂ“ﬂﬂﬁn"Hﬁﬂ'-r'h"‘!"t'a?lul""'ﬂ'""-H--E-En-rﬂ“'""‘
MmO =N XL iAWy H A DT T RRN u ’#IIIEI&-.:M-&T'"A.‘.#.
LHEACONM e T ORa R RS RIME Y WA RSN B TRELI T YT WEW IS WA W,
AMULE S MR T IELI R U T anmY J-?iwxﬂ“aifﬂlﬂth::hﬂ'uﬂ;! R T R N
POl TxmnEaidE!] '.’:"l'“---l- TR HAFN AN U HL NS T R aMIFT N L ow i,
PRy UEAUY P AR R P LS A S S AU AT R A AT XYM M E Y S D N i
ALY N Y I A AT SIS IR IR Al s R I T MY SRR AL
I-IK!'!.&....'I‘--EH\-EHHUJ!_EHIE'@'"!QE?QVEH'M# #Hﬂnmﬂnﬂv’#lﬂl ':'-'I'-..I.'F ?

MR ZA D EDoE S HadE

EEB - I 1N) E ﬁi':‘-ﬁ#i-

I:
LR) iﬁhﬁ. I-E-III-I

)
l"'lT
R

[

Eb&l-ﬁ
g]
ﬁ
#
(N H
E
It
E:
b |
<

7 FA
H

. ﬁ""ﬁ:’*""'ﬁ":

-ﬂﬁﬂ-lli-'l
I-I'I'-I?"E['Ia'
{I=I

l-t

Hﬂbﬁm".“..'!‘I*Hﬂ“ﬁ'ﬁ‘f#ﬂ?ﬁ"""l-ﬂ-ﬂ“#wﬁ H *M" i

oRT !-':J;‘-'-'-MEHHH 'I"Jl:l#ﬂ-:.

ﬂ'ﬂ""""ﬂ'.&iﬁOn#IHE‘IH*Hﬂ-:‘"--'E"'E.'.H“"‘ﬁﬂﬁﬂﬂﬁlu?:ﬁ:--ﬂnﬁ“’in.'l'l'!'!“'p.uﬂ"ﬂﬂ"
Maadp TR FN TN NN Y AR SR AT IMoEml], AT W MO T WEI
S AR e LA Y TR Y E A A HEEYYOD -2 NOLUG N YRAND TS TS AL
R LA TN YR YN AN Y i A YMESe TN EYIDO R TEY SV RXTW WML
WAt A T HE AW A TARGENSHNNTAT ISR BH""'.-."'."-'-""ﬂuﬂ"l"ﬁtﬁ"‘ﬁﬁﬂ“:#ﬁ‘
Amm Y OHM e YL AMENA RS TS l.l'mu-: U U R P IR XTIl AN,
GTELALNER O L EW: TP AR TR I T RN YANLAVRAN v L AL TR TAOL K
ii“*&h!?ﬁ#ﬂiliﬂdlﬁ“ﬁﬁﬁ‘ﬂﬂ P L RASGIRENTW Ali'i*n.'.m"a"ﬂ'ii!!ﬁi"ﬂ'!
LRI ECE R BB R o RN R R R LT T ARG TR L o e B R g

Hﬂu.tH*'ﬂh:HﬁE#n#H-ﬁ -l-lul:\ﬁ:0:I-t?“I|-|||#:".Hh'-.=|=.-"'-'!'-.--ﬁ-...#:Eﬂ'ﬂ-ﬁ!‘ﬁﬁin:n:"_"!'!.F.i.:.i?l".i
I:I!-:-!:I:Hr.ui'ﬂﬂ-! 'u'E"""lIl\llﬁu l'.'h.ﬁ.i:‘ Hﬂ..HF&.’L"‘I""EUR“*"HH“‘*GS"’#HH“I\MR“I

m.‘fﬂ Fﬁ'ﬂﬂ"ﬂv“ﬂﬁulﬂﬁﬁﬁ Ill-l’lf‘r'!--#u._‘!"xl'ltlﬁ“u KH‘"HH&EH'I"MmMEU--
TR 'mMNER 2RO E - SRy P LAl YL EARRMEH RO TS Y RN,
TR T AT E TN R VY T HEAN AT HAR TN LMY AN RO AS YU PR AT 0!
Sant i XL A AT WD HAR T XE R --'I'-u-"3#7"-"&”3?#?%?!‘.&!'&'1#“=9=."'.$IH
Fim R R s A TR T X RO T I - EN TN ESA R I A AN MATE R,
EREE L N MA LR T D v AMTIAF LA LA RALTEOA a2 LWL BB AYH AR
Mol o VWPY T oo A gk N " ome T AN GG PN et P bt bk L bk g S BN LT OY S A LT, o L TE Ut L Pl TN e = o Yo

' -. -

Y
B¢

Installation photos of the Perpetual Storytelling Apparatus. Images courtesy of Benjamin Maus and Julius von Bismarck.

Perpetual Storytelling Apparatus

(Interview with Benjamin Maus)

Creator Benjamin Maus and Julius von Bismarck

Year 2008

Medium Patent Drawings, Software, Drawing Machine
Software Custom Java Application

URL http://storyteller.allesblinkt.com/

What is the Perpetual Storytelling Apparatus?

The Perpetual Storytelling Apparatus is a drawing machine illustrating a never-ending
story by the use of patent drawings. The machine translates words of a text (e.g., a novel) into a
stream of patent drawings. Eight million patents—linked by over 22 million references—form
the vocabulary. By using references to earlier patents, it is possible to find paths between the
patents that have been found for word-combinations in the story. Those connections form a
subtext. New visual connections and narrative layers emerge through the interweaving of the
story with the depiction of technical developments.

The apparatus takes a combination of words in the story and searches for a patent
document, whose text contains those words. Then it extracts the main drawing from the patent
document and draws it. Advancing in the story, it finds the next patent document. Between the
found patent and the previously drawn patent, the patents that connect the two are drawn in
between. This process repeats and ingests one story after another, and generates an endless
stream of patent drawings.

The first two instances of the Perpetual Storytelling Apparatus are using the database of
the US Patent and Trademark Office. The third apparatus, which has recently been installed at
the German Patent Office in Munich, uses the whole backlog of patents applied for in Germany.

Why did you create the Perpetual Storytelling Apparatus?

We created the Perpetual Storytelling Apparatus because Julius and I were (and still are)
very interested in patents. They are a great way to look up technical principles when you are
creating something to see how other people solved a problem.

The patent database is a dictionary of inventions—a huge archive— but most people have
never had a look at a patent document. The Apparatus is also an archeological approach to this
huge amount of knowledge. It is meant to uncover what lies dormant. That is why there is also
the patent number drawn next to each image. The viewers can first construct a story in their
heads, but can also look up what is behind it.

Patents are also a mirror of their time. They show how individuals and corporations tried to
solve (perceived) needs and challenges. For example, before the time psychotropic drugs were
invented, you can find a lot of patents that describe methods for restraining people.

We constructed a drawing machine that translates the patent drawings back into an act of
drawing. Most of the patent drawings are very detailed and speak a common visual language,
even though some of them are centuries old.

139 Interviews: Image

What software tools were used?

Before we programmed the final systems, we tried out many individual aspects of the
concept, like finding a path between two arbitrary patents or isolating the most concise drawing
in a patent document. We wrote most of those prototypes in Processing, but we also tried out
many of the algorithms manually before writing a single line of code to see if they worked. The
final version is written in Java, but it still relies on a couple of things in Processing.

The only thing that relies on external software is the conversion of the scanned patent
documents into drawable paths. That is handled by a small utility called AutoTrace, which was
designed to digitize scanned samples of type.

Why did you use these tools?

Processing is very good for small sketches. It’s only a matter of seconds to try something
out. There is very little overhead, like setting up a toolchain and adding libraries. Sometimes it’s
not fast enough for production use, but it makes sense most of the time to use tools and
algorithms that you already know and that are easy to use, even if they are not the most
efficient from the standpoint of a computer scientist. One can always rewrite parts of the
program that need to be faster at a later time.

We ended up writing most of the software ourselves, because there were either no tools
available for the task or they did not allow the control we wanted. For example, the drawing
paths output by the tool that traces the scanned documents are unordered and messy. When
you draw them as they are, it’s very disturbing to watch. So we spent a lot of time on
determining the order and direction in which the lines are drawn. Direction matters, because
most of the drawings have lot of hatching. We wanted this part to have a distinctly human feel,
because the goal was to retranslate the documents through the action of drawing.

Why do you choose to work with software?

Working with software allows us to manifest the logic and behavior of an artwork. For a lot
of things, that would be very hard to do without software. Still, we do not consider the
Perpetual Storytelling Apparatus to be a software artwork. Artists have used software for a
few decades now, so it's only a matter of time before software as an artistic tool and medium
will be absorbed into the mainstream.

Idon’t like the fact that software and computer systems are still mystified. Software and
algorithms have become omnipresent; we cannot flee from them. Almost all processes and
actions in our daily lives are governed or at least backed up by software systems. For me, it is a
worrisome state that most people do not have a basic understanding of how those systems
work.

140 Interviews: Image

“yoIewsig UoA snim(pue sney ururefusg jo Asapmood sadewr] ‘snpivddy buljjayfiols jpnjadiad sy jo soyoyd uoryerrelsur

11 Text

This chapter introduces code elements for working with language.

Syntax introduced:

char, String

“.” (dot operator)

String.length(), String.startsWith(), String.endsWith(),
String.charAt(), String.subString(),
String.tolLowerCase(), String.toUpperCase()
String.equals()

I SENSE THE SUN IN THE STREET,
ALL SPACE IN THE STREET.
BANG! THE SUN HAS SLID.

This poem was generated from software written by Margaret Masterman and was
featured in the 1968 Cybernetic Serendipity exhibition at the Institute of Contemporary
Arts (ICA) in London. This exhibition exposed the public to examples of software-
generated poems, music, and drawings. While the poem may or may not conform to
your ideas about great poetry, the exhibition was important for its early emphasis on
using the computer as a language processing machine. A common misconception holds
that computer programming is applicable only to technical fields. While there is a
strong connection between programming and technology, it’s not the only realm in
which computers can make for interesting collaborators. Programming can be
approached with an emphasis on language, making computers potentially interesting
to a far broader audience.

Some of the earliest explorations of the computer outside scientific research
focused on software as a language engine. The history of artificial intelligence (AI) has a
strong component of language processing. John McCarthy’s LISP programming language
made processing text easy and became popular for early experimentation in Al The
controversial ELIZA software, written by Joseph Weizenbaum in 1966, parodies the
dialog between a Rogerian therapist and a patient by rephrasing the patient’s
statements as questions. People input statements through a keyboard and the software
constructs a reply. For example, if the patient types, “I feel depressed,” ELIZA might
respond, “Why do you say you are depressed?” Terry Winograd’s SHRDLU project, c. 1970,
used the same kind of interaction between keyboard input and text response, but it
earnestly explored the computer’s potential for understanding natural language.
SHRDLU made it possible for a person to have a discussion with the computer about an
arrangement of simulated blocks. For example, to the query “How many blocks are not
in the box?” the software would respond “Four of them” based on the current status of
the blocks.

143

Researchers have continued to explore language as a software interface. Emerging
software services such as automated translation and speech-to-text conversions are not
always reliable, but they are fascinating to explore. For example, if we take two simple
English sentences...

Translation requires nuance. Can it be performed by a machine?

..and convert them to Italian using an online translation service, we are given
this text:

La traduzione richiede la sfumatura. Puo essere effettuata da una macchina?
If we take the Italian translation and convert it back to English, we now have
The translation demands the shading. Can be carried out from one machine?

Similarly, software designed to convert spoken language into written language has its
limitations. Both technologies, however, can be used in controlled circumstances as
unique ways of working with text and software.

This chapter does not discuss artificial intelligence or language parsing, but text is
one of the most common types of data created and modified by software. The text
created for email, publications, and web pages is a vast resource of data that can be
stored and presented through the data types and functions introduced in what follows.

Characters

The char data type stores a single typographic symbol such as A, d, 5, and $. The name
char is short for character, and this type of data is distinguished from other typographic
symbols in the program by surrounding single quotes. Character variables are declared
and assigned in the same way as the int and float types.

char a = 'n'; // Assign 'n’' to variable a

char b n; // ERROR! Without quotes, n is a variable

char ¢ = "n"; // ERROR! The "" defines n as a String, not a char
char d = 'not'; // ERROR! The char type can hold only one character

The following example creates a new char variable, assigns values, and prints the
values to the console.

char letter = 'A'; // Declare variable letter and assign 'A’
println(letter); // Prints "A" to the console

letter = 'B'; // Assign 'B' to variable letter
println(letter); // Prints "B" to the console

144 Text

11-01

11-02

Many characters have a corresponding number on the standardized ASCII table. For
example, A is 65, B is 66, C is 67, etc. You can find which character matches which
number by looking at an ASCII table (such as in Appendix C, p. 604) or by testing with
the println() function:

char letter = 'A'; // Declare variable letter and assign 'A’
println(letter); // Prints "A" to the console

int n = letter; // Assign the numerical value of 'A’
println(n); // Prints "65" to the console

Appendix C also includes information about using non-ASCII characters (for instance, a
character with an accent or an umlaut) or characters from non-Roman alphabets such
as Japanese or Korean.

The mapping between numeric and alphabetic formats emphasizes the importance
of data types. The following program prints the letters A to Z to the console by
incrementing the char variable in a for loop.

char letter = 'A'; // Declare variable letter and assign 'A’
for (int i = 0; i < 26; i++) {
print(letter); // Prints a character to the console
letter++; // Add 1 to the value of the character
}
println('."); // Adds a period to the end of the alphabet

Words, Sentences

Use the String data type to store words and sentences. Surrounding double quotes
distinguish strings from characters and the rest of the program. Quotation marks define
“s” as a string, while single quotes (apostrophes) define ‘s’ as a character, and without
either it could be a variable name. The String data type is different from the data
types int, float, and char because it is a class (p. 359), a composite data type
containing multiple data elements and functions. String variables are declared and

assigned in the familiar way, but the word String must be capitalized:

String a = "Eponymous"; // Assign "Eponymous" to a

String b = 'E'; // ERROR! The '' define E as a char
String ¢ "E"; // Assign "E" to ¢

string d "E"; // ERROR! String must be capitalized

The following example demonstrates some basic ways to use this data type:

// The String data type can contain long and short text elements
String s1 = "Rakete bee bee?";

145 Text

11-03

11-04

11-05

11-06

String s2 = "Rrrrrrrrrrrrrrrrummmmmpffff tillffff tooooo?"; 11-06
println(s1); // Prints "Rakete bee bee?" cont.
println(s2); // Prints "Rrrrrrrrrrrrrrrrummmmmpffff tillffff

tooooo?"

// Strings can be combined with the + operator
String s3 = "Rakete ";
String s4 = "rinnzekete";
String s5 = s3 + s4;

println(s5); // Prints "Rakete rinnzekete"

If you have a large quantity of text to display in a program, it’s better to load the text
into the program from a file than to store it in String variables. This process is
explained in Data (p. 489).

Strings are objects

Variables created with the String data type are objects. Objects are software structures
that combine variables with functions that operate on those variables. For instance,
every String object has a built-in function that can capitalize its letters. Objects are
visually distinguished from primitive data types like int and float with
capitalization.

Variables within an object are called fields, and functions within an object are
called methods. Fields and methods are accessed with the dot operator, a period placed
between the name of the object and the name of a data element or function inside
the object.

The String data type includes methods for examining the individual characters
within, extracting parts of strings, converting an entire string to uppercase or lowercase
characters, and comparing two String variables. Some of the most common String
methods are introduced below, and more are discussed in the Processing reference.

The length() method returns the number of characters in a String object:

String s1 = "Azzurro"; 11-07
String s2 = "A";

println(si.length()); // Prints "7"

println(s2.length()); // Prints "1"

Later in the book, please notice the difference between the the String method
length() and the code for getting the length of an array (p. 418). They both calculate
the number of elements in their object, but because the technique for getting the
number of elements in a String is a method, the parentheses are necessary.

146 Text

The startsWith() and endsWith() methods test whether a string starts or ends
with the string used as the parameter:

String si1 = "Arancione";

println(si.startsWith("A")); // Prints "true"
println(si.startsWith("ione")); // Prints "false"
println(si.endsWith("ione")); // Prints "true"

The charAt () method is used to read a single character within a string. This method
has one parameter to define the character that is returned. Note that the first character
in the string is at position o, the second at position 1, etc.

String s = "Verde";

println(s.charAt(0)); // Prints "vV"
println(s.charAt(2)); // Prints "r"
println(s.charAt(4)); // Prints "e"

The String method substring() returns a new string that is a part of the original.
When the method is used with one parameter, the string is read from the position
given as the parameter to the end of the string. When two parameters are used, the
string between the two parameter positions is returned.

String s = "Giallo";
println(s.substring(2)); // Prints "allo"
println(s.substring(4)); // Prints "lo"

println(s.substring(1, 4)); // Prints "ial"
println(s.substring(o, s.length()-1)); // Prints "Giagll"

The String method toLowerCase () returns a copy of the string with all of the
characters made lowercase. The method toUpperCase () does the same for uppercase.

String s = "Nero";
println(s.toLowerCase()); // Prints "nero"
println(s.toUpperCase()); // Prints "NERO"

Because the String data type is an object, it’s not possible to compare two strings with
relational operators. Using == to compare two objects will compare only whether they
are stored in the same location in memory, not their actual contents. Instead, the
equals() method is used to determine whether two String variables contain the
same characters.

String s1 = "Bianco";
String s2 = "Bianco";
String s3 = "Nero";

147 Text

11-08

11-09

11-10

11-11

11-12

println(si.equals(s2)); // Prints "true"
println(s2.equals(s1)); // Prints "true"
println(si.equals(s3)); // Prints "false"

Now that the char and String data types have been introduced, they will be used
to more interesting ends in the proceeding chapter on Typography and further within
the book.

Exercises

1. Create five char variables and assign a character to each. Write each to the console with
println().

2. Create two String variables and assign a word to each. Write each to the console

with println().

. Store a long sentence in a String and write it to the console.

4. Change the values of the String variables in code 11-07 and notice how that affects the
results printed to the console.

5. Create a series of char variables by extracting characters from a String with the
charAt() method.

w

148 Text

11-12
cont.

12 Typography

This chapter introduces creating and setting fonts and displaying text on screen.

Syntax introduced:

text(), textSize()

createFont(), textFont(), PFont, loadFont()
textLeading(), textAlign(), textWidth()

The evolution of typographic reproduction and display technologies has and continues
to impact human culture. Early printing techniques developed by Johannes Gutenberg
in fifteenth-century Germany using letters cast from lead provided a catalyst for
increased literacy and the scientific revolution. Automated typesetting machines, such
as the Linotype invented in the nineteenth century, changed the way information was
produced, distributed, and consumed. In the digital era, the way we consume text has
changed drastically since the proliferation of personal computers in the 1980s and the
rapid growth of the Internet in the 1990s. Text from emails, websites, and instant
messages fill computer screens, and while many of the typographic rules of the past
apply, type on screen requires additional considerations for enhanced communication
and legibility.

Letters on screen are created by setting the color of pixels. The quality of the
typography is constrained by the resolution of the screen. Because, historically, screens
have a low resolution in comparison to paper, techniques have been developed to
enhance the appearance of type on screen. The fonts on the earliest Apple Macintosh
computers comprised small bitmap images created at specific sizes like 10, 12, and 24
points. Using this technology, a variation of each font was designed for each size of a
particular typeface. For example, the character A in the San Francisco typeface used a
different image to display the character at size 12 and 18. When the LaserWriter printer
was introduced in 1985, Postscript technology defined fonts with a mathematical
description of each character’s outline. This allowed type on screen to scale to large
sizes and still look smooth. Apple and Microsoft later developed TrueType, another
outline font format. More recently, these technologies were merged into the OpenType
format. In the meantime, methods to smooth text on screen were introduced. These
anti-aliasing techniques use gray pixels at the edge of characters to compensate for low
screen resolution.

The proliferation of personal computers in the mid-1980s spawned a period of
rapid typographic experimentation. Digital typefaces are software, and the old rules of
metal and photo type no longer apply. The Dutch typographers known as LettError
explain, “The industrial methods of producing typography meant that all letters had to
be identical... Typography is now produced with sophisticated equipment that doesn’t
impose such rules. The only limitations are in our expectations.”? LettError expanded
the possibilities of typography with their typeface Beowolf (p. 131). It printed every letter

149

differently so that each time an A is printed, for example, it will have a different
shape. During this time, typographers such as Zuzana Licko and Barry Deck created
innovative typefaces with the assistance of new software tools. The flexibility of
software has enabled extensive font revivals and historic homages such as Adobe
Garamond from Robert Slimbach and The Proteus Project from Jonathan Hoefler.
Typographic nuances such as ligatures—connections between letter pairs such as

fi and ee—made impractical by modern mechanized typography are flourishing again
through software font tools.

Draw text

The text () function is used to draw letters, words, and paragraphs to the screen. In the
simplest use, the first parameter can be a String, char, int, or float. The second and
third parameters set the position of the text. By default, the second parameter defines
the distance from the left edge of the window; the third parameter defines the distance
from the text’s baseline to the top of the window. The textSize () function defines
the size the letters will draw in units of pixels. The number used to define the text size
will not be the precise height of each letter, the difference depends on the design of
each font. For instance, the statement textSize(30); won't necessarily draw a
capital H at 30 pixels high. The f111 () function controls the color and transparency of
text. This function affects text the same way it affects shapes such as rect() and
ellipse(),but text is not affected by stroke().

Fi11(0);
LAX text("LAX", 0, 40); // Write "LAX" at coordinate (0,40)
AMS text("AMS", 0, 70); // Write "AMS" at coordinate (0,70)

= text("FRA", 0, 100); // Write "FRA" at coordinate (0,100)

textSize(32); // Set text size to 32
LAX £111(0);
OR text("LAX", 0, 40);
DAY text("ORD", 0, 70);

text("DAY", 0, 100);

textSize(32);
LAX £i11(0); // Fill color black
HKG text("LAX", 0, 40);
fill(126); // Fill color gray
text("HKG", 0, 70);
fill(255); // Fill color white
text("PVG", 0, 100);

150 Typography

12-01

12-02

12-03

textSize(64); 12-04
fill(o, 140); // Fill black with low opacity

text("8", 0, 60);

text("8", 15, 65);

text("8", 30, 70);

text("8", 45, 75);

text("8", 60, 80);

Another version of text() draws the characters inside a rectangle. In this use, the
second and third parameters define the position of the upper-left corner of the box and
fourth and fifth parameters define the width and height of the box. If the length of the
text exceeds the dimensions of the defined box, the text will not display.

e String s = "Five hexing wizard bots jump quickly."; 12-05
hexi i .

Ly fill(o);

bots jump text(s, 10, 10, 60, 80);

guickly.

o String s = "Five hexing wizard bots jump quickly."; 12-06
hexin fill(0);

wizar

text(s, 10, 10, 60, 55); // Box too small

Load media

The examples in this chapter are the first to load external media into a sketch. Up to
now, all examples have used only graphics generated within Processing through
drawing functions such as 1ine() and ellipse(). Processing is capable of loading
and displaying other media, including fonts, images, vector files, formatted data, and
sounds. While this chapter focuses on loading fonts and other chapters discuss specific
information about other media types, there are a few things about loading media that
apply to all categories. These similarities are discussed here.

Before external media can be used in a Processing sketch, it needs to be loaded
each time the program is run. Media can be loaded directly from a sketch’s folder,
another location on the computer, or though the Internet. Most typically, the media is
loaded directly from the sketch’s folder. Media is usually placed into a folder called data;
there are three ways to get media into this folder:

1. Add the file by selecting the “Add File” option in the Sketch menu of the Processing environment.

Navigate to the file’s location on your computer, select the file’s icon or name, and click “Open” to add
it to the sketch'’s data folder.

151 Typography

2. Afile (or group of files) can be dragged and dropped into the Processing text area. If successful, a note
will appear in the message area stating, for instance, “One file added to the sketch.”

3. Files can be added manually by opening the sketch folder by selecting the “Show Sketch Folder” option
from the Sketch menu. Create a folder inside called data if it doesn't exist and copy the file (or files)
into that folder.

To confirm the file was added correctly, select “Show Sketch Folder” from the Sketch
menu. The file will be inside the data folder. With the image file in the right place, it’s
ready to load. Be sure to include the file format extension as a part of the name and to
put the entire name in quotes (e.g., “pup.gif’, “kat.jpg’, “ignatz.png”). When loading the
file, be careful to use the correct capitalization when writing the file name. If the file is
arch.jpg, trying to load Arch.jpg or arch.JPG will create an error. Also, avoid the use of
spaces in file names, which can cause problems.

To make media files accessible from anywhere in a program, they are typically
declared as globally available variables outside of setup() and draw().Files are
usually loaded inside setup() because they need only be loaded once and because
it takes time to load them. Loading a file inside draw() reduces the frame rate of a
program because it causes the file to reload each frame. Once a file is loaded in
setup(), it may be utilized anywhere in the program. In most Processing programs,
all files are loaded when the program starts.

Vector fonts

To work with fonts different than the default, more functions are needed to prepare

a font to be used with Processing. The createFont() function is used to convert a
TrueType font (.ttf) or OpenType font (.otf) so that is can display through text (). The
textFont () function is used to define the current font to display. Any compatible font
installed on the computer running Processing or stored in the sketch’s data folder may
be used. The following short program is used to print the list of the available installed
fonts to the console:

String[] fontList = PFont.list();
printArray(fontList);

The printArray() function (p.420) is used to write each font on a new line. The first
few options printed to the console are general typographic classifications such as Serif,
SansSerif, and Monospaced. Use these options to define a style, but not a specific font.
When the list is generated on the computer used to write this book, a list of 573 font
options are printed to the console. Your computer will produce different results
depending on the operating system and custom fonts installed. The list starts with

152 Typography

12-07

general font categories that will work across platforms, then continues with specific

font names. A short excerpt from our list follows:

fo]
[1]
[2]
[3]
[4]
[s]

"Serif"
"SansSerif"
"Monospaced"
"Dialog"
"DialogInput”
"ACaslonPro-Bold"

[567] "zxXx-Sans"

[568] "ZXX-Xed"

[569] "ZapfDingbatsITC"
[570] "zZapfino"

[571] "ziggurat-Black"

[572] "Ziggurat-BlackItalic"

Before a font is used in a program, it must be converted and set as the current font.
Processing has a unique data type called PFont to store font data. Make a new variable
of the type PFont and use the createFont () function to convert the font. The first
parameter to createFont () is the name of the font to convert and the second
parameter defines the base size of the font. (Optional third and fourth parameters are
defined in the Reference.) The textFont () function must then be used to set the
current font. On our development computer, to work with Ziggurat Black, list option 571

above, the following code is run:

PFont zigBlack;

LAX
LHR oid setup() |
m size (100, 100);

153

zigBlack = createFont("Ziggurat-Black", 32);

textFont(zigBlack);
fill(o);

void draw() {
background(204);
text("LAX", 0, 40);
text("LHR", 0O, 70);
text("TXL", 0, 100);

Typography

12-08

To make this program work on your computer, you will likely need to modify line 5 to
work with a font on your machine. This program is similar to code 12-01, but notice the
differences in the letters in the Ziggurat font in relation to the default font.

To ensure a font will load on all computers, regardless if the font is installed, add
the file to the sketch’s data folder. (Fonts in the data folder don’t print in the console list
as demonstrated in code 12-07.) Follow the instructions on page 10 to add a font to the
data folder. When fonts inside the data folder are used, the complete file name,
including the data type extension, needs to be written as the parameter to
createFont(). The following example is similar to the prior example, but it uses an
OpenType font inside the data folder. It uses Source Code Pro, an open source typeface
that can be found online and downloaded through a web browser.

PFont sourcelight;

LAX
I_HR void setup() {
TX[_ size (100, 100);

sourcelight = createFont("SourceCodePro-Light.otf", 34);
textFont(sourcelight);
fill(o);

void draw() {
background(204);
text("LAX", 0, 40);
text("LHR", 0O, 70);
text("TXL", 0, 100);

To use two fonts in one program, create two PFont variables and use the textFont()
function to change the current font. Based on the prior two examples, the Ziggurat-
Black font loads from its location on the local computer and Source Code Pro loads from
the data folder.

PFont zigBlack, sourcelLight;

LAX
I_HR void setup() {
L size(100, 100);

zigBlack = createFont("Ziggurat-Black", 24);
sourceLight = createFont("SourceCodePro-Light.otf", 34);
fill(o);

154 Typography

12-09

12-10

void draw() {
background(204);
textFont(zigBlack);
text("LAX", 0, 40);
textFont(sourcelight);
text("LHR", 0, 70);
textFont(zigBlack);
text("TXL", 0, 100);

Pixel fonts

Processing can also work with fonts that it converts into small image textures. These
fonts aren’t as flexible and crisp as fonts converted for Processing with createFont()
and used with the default renderer, but they are more optimized for use with the P2D
and P3D renderers. The difference between renderers is discussed on page 547. The pixel
font format used by Processing was developed at the MIT Media Lab in the mid 1990s
in the Visual Language Workshop (VLW). The VLW format stores each alphanumeric
character as a grid of pixels. It is a quick way to render text and makes it possible to
include a font with a sketch without including the vector data.

To convert a font to the VLW format, select the “Create Font” option from the Tools
menu. A window opens and displays the names of the fonts installed on your computer
that are compatible. Select a font from the list and click “OK.” The font is generated and
copied into the current sketch’s data folder. To make sure the font is there, click on the
Sketch menu and select “Show Sketch Folder.” The Create Font tool offers the option to
set the size of the font and to select whether it will have smooth, antialiased edges. This
tool also offers the option to export “All Characters,” which means every character in
the font will be included and will therefore increase the file size.

The following example uses the same font as the prior createFont() example.
The only difference is the replacement of that function with loadFont(). To run these
examples, first use the “Create Font” tool to turn a font into a VLW file. Change the
name of the parameter to loadFont() to match the name of the VLW file created.

PFont zigBlack;

LAX
Lm void setup() {
TGI. size(100, 100);

zigBlack = loadFont("Ziggurat-Black-32.v1lw");
textFont(zigBlack);
fill(o);

155 Typography

12-10
cont.

12-11

void draw() {
background(204);
text("LAX", 0, 40);
text("LHR", 0, 70);
text("TXL", 0, 100);

When the font is drawn at a different size from the size at which it was created, it is
scaled and therefore does not always look as crisp and smooth. For example, if a font is
created at 12 pixels and is displayed at 96 pixels, it will appear blurry.

o PFont zigBlack;

void setup() {
size(100, 100);
zigBlack = loadFont("Ziggurat-Black-12.v1lw");
textFont(zigBlack);
fill(o);

void draw() {
background(204);
textSize(12);
text("A", 20, 20);
textSize(96);
text("A", 20, 90);

For the best results, draw a font at the size at which it was created. If the same font
needs to be used at multiple sizes, consider rendering and loading it at these precise
sizes. When VLW fonts are used in 3D, letters with different z-coordinates can
sometimes occlude other letters. This can be corrected with a hint, see page 547.

Text attributes

Processing includes functions to control the leading (the spacing between lines of text)
and alignment. Processing can also calculate the width of any character or group of
characters, a useful technique for arranging shapes and typographic elements.

The textLeading() function sets the spacing between lines of text. It has one
parameter that defines this space in units of pixels.

156 Typography

12-11
cont.

12-12

String lines = "L1 L2 L3";
textSize(12);

fill(o);

textLeading(10);

text(lines, 10, 15, 30, 100);
textLeading(20);

text(lines, 40, 15, 30, 100);
textLeading(30);

text(lines, 70, 15, 30, 100);

LRE
G K8 E

Letters and words can be drawn from their center, left, and right edges. The
textAlign() function sets the alignment for drawing text through its parameter,
which can be LEFT, CENTER, or RIGHT. It sets the display characteristics of the letters in
relation to the x-coordinate stated in the text () function.

fill(o);

Rigl textSize(12);

line(50, 0, 50, 100);
textAlign(LEFT);
text("Left", 50, 20);
textAlign(RIGHT);
text("Right", 50, 40);
textAlign(CENTER);
text("Center", 50, 80);

Center

The settings for textSize(), textLeading(), and textAlign() will be used for all
subsequent calls to the text () function. However, note that the textSize () function
will reset the text leading, and the textFont () function will reset both the size and
the leading.

The textWidth() function calculates and returns the pixel width of any character
or text string. This number is calculated from the current font and size as defined by
the textFont() and textSize() functions. Because the letters of every font are a
different size and letters within many fonts have different widths, this function is the
only way to know how wide a string or character is when displayed on screen. For this
reason, always use textWidth() to position elements relative to text, rather than
hard-coding them into your program.

String s = "AEIOU";
AEIOU float tw; // Text width
e .
AEIOU fill(o);
— textSize(14);
tw = textWidth(s);
text(s, 4, 40);
rect(4, 42, tw, 5);

157 Typography

12-13

12-14

12-15

textSize(28);

tw = textWidth(s);
text(s, 4, 76);
rect(4, 78, tw, 5);

Typing

Drawing letters to the screen becomes more engaging when used in combination with
the keyboard. The keyPressed() event function introduced on page 97 can be used to
record each letter as it is typed. The following two examples use this function to read
and analyze input from the keyboard by using the String methods introduced in the
Text chapter (p.143). In both, the String variable letters starts empty. Each key typed
is added to the end of the string. The first example displays the string as it grows as
keys are pressed and removes letters from the end when backspace is pressed. The
second example builds on the first—when the Return or Enter key is pressed, the
program checks if the word “gray” or “black” was typed. If one of these words was input,
the background changes to that value.

String letters = 5

void setup() {
size(100, 100);
stroke(255);
fill(o);

mea textSize(16);

void draw() {
meanw background(204);
float cursorPosition = textWidth(letters);
line(cursorPosition, 0, cursorPosition, 100);
text(letters, 0, 50);
meanwhil }

void keyPressed() {
if (key == BACKSPACE) {
if (letters.length() > 0) {
letters = letters.substring(0, letters.length()-1);

meanwhile..

}
} else if (textWidth(letters+key) < width) {

letters = letters + key;

158 Typography

12-15
cont.

12-16

String letters = 5
int back = 102;

void setup() {
size(100, 100);
textSize(16);
textAlign(CENTER);

}

black

void draw() {
background(back);
text(letters, 50, 50);

}

gr void keyPressed() {
if ((key == ENTER) || (key == RETURN)) {
letters = letters.tolLowerCase();
println(letters); // Print to console to see input
if (letters.equals("black")) {
back = 0;
} else if (letters.equals('gray")) {
back = 204;
}
letters = ""; // Clear the variable
} else if ((key > 31) &8 (key != CODED)) {
// If the key is alphanumeric, add it to the String
letters = letters + key;

gray

Typography and interaction

Many people spend hours a day inputting letters into computers, but this action is very
constrained. What features could be added to a text editor to make it more responsive
to the typist? For example, the speed of typing could decrease the size of the letters, or a
long pause in typing could add many spaces, mimicking a person’s pause while
speaking. What if the keyboard could register how hard a person is typing (the way a
piano plays a soft note when a key is pressed gently) and could automatically assign
attributes such as italics for soft presses and bold for forceful presses? These analogies
suggest how conservatively current software treats typography and typing.

Many artists and designers are fascinated with type and have created unique ways
of exploring letterforms with the mouse, keyboard, and more exotic input devices. A
minimal yet engaging example is John Maeda’s Type, Tap, Write software, created in

159 Typography

12-17

1998 as homage to manual typewriters. This software uses the keyboard as the input to
a black-and-white screen representation of a keyboard. Pressing the number keys cause
the software to cycle through different modes, each revealing a playful interpretation of
keyboard data. In Jeffrey Shaw and Dirk Groeneveld’s The Legible City (1989—91),
buildings are replaced with three-dimensional letters to create a city of typography that
conforms to the streets of a real place. In the Manhattan version, for instance, texts
from the mayor, a taxi driver, and Frank Lloyd Wright comprise the city. The image is
presented on a projection screen, and the user navigates by pedaling and steering a
stationary bicycle situated in front of the projected image. Projects such as these
demonstrate that software presents an extraordinary opportunity to extend the way we
read and write.

Typographic elements can be assigned behaviors that define a personality in
relation to the mouse or keyboard. A word can express aggression by moving quickly
toward the mouse, or moving away slowly can express timidity. The following examples
demonstrate basic applications of this area. In the first, the word avoid stays away from
the mouse because its position is set to the inverse of the cursor position. In the second,
the word tickle jitters when the cursor hovers over its position.

void setup() {
size(100, 100);
textSize(24);
textAlign(CENTER);

void draw() {
background(204);
text("avoid", width-mouseX, height-mouseY);

}
float x = 33;
tickle float y = 60;

void setup() {
size(100, 100);
textSize(24);
tickle noStroke();

void draw() {
fil1(204, 120);
rect(0, 0, width, height);
fill(o);
// If cursor is over the text, change the position

tickle

160 Typography

12-18

12-19

if ((mouseX >= x) 8&% (mouseX <= x+55) && 12-19
(mouseY >= y-24) 8&% (mouseY <= y)) { cont.
X += random(-2, 2);
y += random(-2, 2);
}
text("tickle", x, y);

Exercises

1. Create a composition of letters in the display window. Define each with a different
size, color, and location.

2. Use createFont(), textFont(), and text() to draw every letter of the alphabet

to the display window.

. Modify exercise 2 to work with a VLW font made with the Create Font tool.

4. Draw a paragraph of text to the display window. Carefully select the text and
composition.

5. Use two different typefaces to display dialog between two characters.

w

Note

1. Ellen Lupton, Thinking with Type: A Critical Guide for Designers, Writers, Editors, & Students (Princeton
Architectural Press, 2004), p. 29.

161 Typography

13 Image

This chapter introduces loading, displaying, tinting, moving, masking, and filtering images.

Syntax introduced:

PImage, loadImage(), image(), imageMode()
tint(), noTint()

filter(), PImage.mask()

Digital photographs are fundamentally different from analog photographs captured on
film. Like computer screens, digital photos are rectangular grids of color. The dimensions
of digital images are measured in units of pixels. If an image is 320 pixels wide and 240
pixels high, it has 76,800 total pixels.If an image is 1280 pixels wide and 1024 pixels
high, the total number of pixels is 1,310,720 (1.3 megapixels). Every digital image has a
color depth. The color depth refers to the number of bits (p. 51) used to store each pixel. If
the color depth of an image is 1, each pixel can be one of two values, for example, black
or white. If the color depth is 4, each pixel can be one of 16 values. If the color depth of an
image is 8, each pixel can be one of 256 values. Looking at the same image displayed
with different color depths reveals how this affects the image’s appearance:

_gar- ins tSESaEd
4-bit (16 colors)

.

1-bit (1 color)

When the Apple Macintosh computer was introduced in 1984, it had a black-and-white
screen. Since then, the reproduction of color on screen has rapidly improved. Many
contemporary screens have a color depth of 24, which means each pixel can be one of
16,777,216 available colors. This number is typically referred to as “millions of colors.”

Digital images are numbers that represent colors. The file format of an image
determines how the numbers are ordered in the file. Some file formats store the color
data in mathematically complex arrangements to compress the data and reduce the
size of the resulting file. A program that loads an image file must know the file format
of the image so it can translate the file’s data into the expected image. Different types
of digital image formats serve specific needs. Processing can load GIF, JPEG, and PNG
images, along with some other formats as described in the reference. If you don't
already have your images in one of these formats, convert other types of digital
images to these formats with programs such as the GNU Image Manipulation Program
(GIMP) or Adobe Photoshop. Refer to the documentation for these programs if you're
unsure how to convert images.

163

How do you know which image format to use? They all have obscure names that
don’t help in making this decision, but each format’s advantages becomes clear through
comparison:

Format Extension Color depth Transparency
GIF .gif 1-bit to 8-bit 1-bit

JPEG .jpg 24-bit None

PNG .png 1-bit to 24-bit 8-bit

GIF images are useful for simple graphics with a limited number of colors and
transparency. PNG images have similar characteristics but support the full range of
colors and transparency. The JPEG format works well for photos, and JPEG files will be
smaller than most images saved as PNG. This is because JPEG is a “lossy” format, which
means it sacrifices some image quality to reduce file size.

Display

Processing can load images, display them on the screen, and change their size, position,
opacity, and tint. The data type for images is called PImage. The same way that integers
are stored in variables of the int data type and values of true and false are stored in
the boolean data type, images are stored in variables of the PImage data type. Before
displaying an image, it’s necessary to first load it with the loadImage() function. For
the image to load, it must be in the data folder of the current sketch. See the Load Media
section on page 151 for instructions.

The parameters for image () determine the image to draw and its position and
size. The first parameter must be a PImage variable. By default, the second and third
parameters set the position of the upper-left corner of the image. The image will display
at its actual size (in units of pixels), but you can change the size by adding the optional
forth and fifth parameters. Like the el1lipseMode() and rectMode() functions, the
imageMode () function changes the meaning of the parameters (see page 35). Like with
PFont, image variables are usually defined at the top of the sketch, outside setup()
and draw().

PImage img;

void setup() {
size(100, 100);
// Image must be in the sketch's "data" folder
img = loadImage("dwp-01.jpg");

void draw() {
image(img, 0, 0);

164 Image

13-01

PImage img; 13-02

void setup() {

size(100, 100);

img = loadImage("dwp-01.jpg");
}

void draw() {
image(img, 20, 20, 60, 60);

}
PImage img; 13-03

void setup() {

size(100, 100);

img = loadImage("dwp-01.jpg");
}

void draw() {
imageMode (CORNER);
image(img, 40, 40, 60, 60);
imageMode (CENTER);
image(img, 40, 40, 60, 60);

}

Each image in Processing stores its own width and height in units of pixels. Like with
the String data type (p. 495), PImage has a series of fields and methods that act on the
data inside. The width and height variables of the image are accessed with the dot
operator. The following examples draws a black box at the right edge of the image that
has the same width and height as the image:

PImage img; 13-04

void setup() {
size (600, 360);
img = loadImage("dwp-01.jpg");
noStroke();
fil11(0);
}

165 Image

void draw() { 13-04
. . cont.
image(img, 20, 20);
rect(20+img.width, 20, img.width, img.height);

}

Tint, Transparency

Images are colored with the tint () function. This function is used the same way as
fil11() and stroke(),but it affects only images. All images drawn after running
tint () will be tinted by the color specified in the parameters. This has no permanent
effect on the images, and running the noTint () function disables the coloration for all
images drawn after it is run.

PImage img; 13-05
! void setu
_— | setup() {
size(100, 100);

img = loadImage("dwp-02.jpg");
}

void draw() {
tint(102); // Tint gray
image(img, 0, 0);
noTint(); // Disable tint
image(img, 50, 0);

}
PImage img; 13-06

void setup() {

size(100, 100);

img = loadImage("dwp-02.jpg");
}

void draw() {
tint(o, 153, 204); // Tint blue
image(img, 0, 0);
noTint(); // Disable tint
image(img, 50, 0);

166 Image

PImage img; 13-07
I color yellow, green, tan;

i void setup() {
size(100, 100);
img = loadImage("dwp-02.jpg");
yellow = color(220, 214, 41);
green = color(110, 164, 32);
tan = color(180, 177, 132);

void draw() {
tint(yellow);
image(img, 0, 0);
tint(green);
image(img, 33, 0);
tint(tan);
image(img, 66, 0);

}

The parameters for tint () follow the color space determined by the colorMode ()
function (remember, the default color mode is RGB, with all values ranging from o to
255). If the color mode is changed to HSB or a different range, the tint values must be
specified relative to that mode.

To make an image transparent without changing its color, set the tint to white and

modify the alpha value. The value(s) to define white will depend on the current color
mode, but the default is 255.

PImage img; 13-08
void setup() {

size(100, 100);
img = loadImage("dwp-03.jpg");

}

void draw() {
background(255);
tint(255, 102); // Alpha 102 without changing the tint
image(img, 0, 0, 100, 100);
tint (255, 102, 0, 204); // Tint orange, alpha to 204
image(img, 20, 20, 100, 100);

167 Image

PImage img;
void setup() {
‘ size(100, 100);

img = loadImage("dwp-03.jpg");
}

void draw() {
background(255);
tint(255, 102);
// Draw the image 5 times, moving each to the right
for (int i = 0; 1 < 5; i++) {
image(img, i*20, 0);

}

GIF and PNG images retain their transparency when loaded and displayed in
Processing. Anything drawn before the image is visible through the transparent
sections of the image. GIF images have only 1-bit transparency; each pixel can only be
completely opaque or completely transparent. The PNG format supports 8-bit
transparency; each pixel has 256 levels of opacity. This means a GIF image cannot blend
as well into the background as a PNG.In the following examples, notice the edges of the
images.

PImage img;

void setup() {
size(100, 100);
// The GIF has 1-bit transparency
// so the edges are rough
img = loadImage("dwp-04.gif");
}

void draw() {
background(0);
image(img, 5, 0);
image(img, 5, 24);

}
PImage img;
void setup() {

size(100, 100);
// The PNG has 8-bit transparency

168 Image

13-09

13-10

13-11

// so the edges are smooth 13-11
img = loadImage("dwp-04.png"); cont.

void draw() {
background(0);
image(img, 5, 0);
image(img, 5, 24);

Filter

Digital images can be easily reconfigured and combined with other digital images.
Software now simulates complex and time-consuming operations formerly completed
in a darkroom with light and chemistry. Every pixel in a digital image is a grouping of
numbers that can be added, multiplied, or averaged with the numbers from any other
pixel. Some of these calculations are based on simple arithmetic and others use the
more complex mathematics of signal processing, but the visual results are most
important. Software programs such as the GIMP and Adobe’s Photoshop have made it
possible to perform many of the more common and useful calculations without
thinking about the math behind the effects. These programs allow users to easily
perform technical operations such as converting images from RGB colors to grayscale
values, increasing an image’s contrast, or tweaking color balance. Such tools also allow
users to apply filters that range from basic to kitschy. A filter might blur an image,
mimic solarization, or simulate watercolor effects. The actions of filtering can easily be
controlled with code to produce striking changes. Processing provides a function to
filter images; it operates by transforming the pixel values of a single image or by
performing an operation to merge pixels between two different images. The filter()
function has eight parameter options: THRESHOLD, GRAY, INVERT, POSTERIZE, BLUR,
OPAQUE, ERODE, and DILATE. Some of these options require a second parameter, and
others do not. For example, the THRESHOLD mode converts every pixel in an image to
black or white based on whether its value is above or below the value of the second
parameter.

The following example applies the THRESHOLD filter to an image with the second
parameter set to a value between o and 1, depending on the value of the v variable,
which is defined by mouseX. For example, if the value of the v variable is 0.3, this
defines that pixels with a gray value greater than 30 percent of the maximum
brightness will be set to white and pixels below that value will be set to black.

169 Image

BLUR

Execute a Gaussian blur with
the level parameter setting the
extent of the blur

POSTERIZE

Limit each channel of the image
to the number of colors specified
as the level parameter

THRESHOLD

Convert the image to black-
and-white pixels depending on
whether they are above or below
the threshold defined by the
level parameter

THRESHOLD, 0.2 THRESHOLD, 0.5

INVERT
Set each pixel to its
inverse value

GRAY
Convert all colors in the image to
grayscale equivalents

ERODE DILATE

Reduce the light Increases the light areas with
areas with the the amount defined by the level
amount defined by parameter

the level parameter

Filter

The filter () function modifies the pixels of the display window and images. The different kinds of filters seen
here provide a range of ready-made options, but it’s possible to write custom filters using the language elements
introduced in the Image Processing chapter (p. 529).

170 Image

PImage img; 13-12

void setup() {

size(100, 100);

img = loadImage("topanga.jpg");
}

void draw() {
image(img, 0, 0);
float v = mouseX / 100.0;
filter (THRESHOLD, v);

The filter() function affects only what has already been drawn. For example, if a
program draws two lines and blur is created after one line is drawn, it does not affect
the second line:

void setup() { 13-13
\ size(100, 100);
\ strokeWeight(5);

noFill();

void draw() {
background(204);
line(0, 30, 100, 60);
filter (BLUR, 3);
line(o, 50, 100, 80);

Changing the parameter value of filter () with each frame creates movement. The
effects of filter () are reset each time through draw(), but increasing or decreasing
the second parameter results in the filter becoming more or less pronounced as the
program runs:

171 Image

float fuzzy = 0.0; 13-14

void setup() {
size(100, 100);
strokeWeight(5);
noFill();

}

void draw() {

background(204);

if (fuzzy < 16.0) {
fuzzy += 0.05;

}

line(0, 30, 100, 60);

filter(BLUR, fuzzy);

line(o, 50, 100, 80);

[

}

The PImage class has a filter () method that can isolate a filter to a specific image
object. The following example shows how to use this method on an individual image
without affecting the rest of the sketch.

PImage imgi, img2; 13-15

void setup() {
size(100, 100);
imgl = loadImage("forest.jpg");
img2 = loadImage("forest.jpg");
img2.filter (INVERT);

}

void draw() {
image(imgl, 0, 0);
image(img2, 50, 0);

}

Mask

The mask () method of PImage sets the transparency values of an image based on the
contents of another image. The mask image should contain only grayscale data and
must be the same size as the image to which it is applied. If the image is not grayscale,
it may be converted with the filter () function (see p.169). The light areas of the
mask let the original image through, and the dark areas conceal the original. The
following example uses mask () to composite the images shown here:

172 Image

‘lll.l“;l!i |‘I::f; ‘l
airport.jpg airportmask.jpg

The resulting image and the code to produce it follow:

PImage img, maskImg;

4

void setup() {
size(100, 100);
img = loadImage("airport.jpg");
maskImg = loadImage("airportmask.jpg");
img.mask(maskImg);

}

void draw() {
background(255);
image(img, 0, 0);

}

Exercises
1. Create a composition with two complementary images.
2. Draw three images in the display window, each with a different tint.
3. Load a PNG image with transparency and create a dense collage by layering the image.
4. Load an image and alter it with filter (). Try different filters and their parameters to
affect the image.
5. Modify code 13-16 to use your own image and mask image.

173 Image

13-16

14 Transform

This chapter introduces coordinate system transformations for translation, rotation,
and scaling.

Syntax introduced:
translate(), pushMatrix(), popMatrix()
rotate(), scale()

The coordinate system introduced in the Draw chapter uses the upper-left corner of the
display window as the origin with the x-coordinates increasing to the right and the
y-coordinates increasing downward. This system can be modified with transformations.
The coordinates can be translated, rotated, and scaled so shapes are drawn to the
display window with different positions, orientations, and sizes. Transformations can
make it easier to work with complex geometry by grouping shapes and vertices
together so they can be changed with a single line of code. They obscure complicated
calculations like figuring out the location of each vertex point on a shape while it’s
rotating. Used individually or together, the transformation functions are powerful tools
for working with geometry in code.

Translate

The translate() function moves the origin from the upper-left corner of the screen
to another location. It has two parameters—the first is the x-coordinate offset, and the
second is the y-coordinate offset. The values of the parameters are added to any shapes
drawn after the function is run. If 10 is used as the first parameter and 30 is used as the
second parameter, a point drawn at coordinate (o,5) will instead be drawn at coordinate
(10,35). Only elements drawn after the transformation are affected. The following
examples show how this works.

rect(o, 5, 70, 30);
El translate(10, 30); // Shift 10 pixels right and 30 down
rect(o, 5, 70, 30);

rect(o, 5, 70, 30);
translate(10, -10); // Shift 10 pixels right and up
rect(o, 5, 70, 30);

175

14-01

14-02

The translate() function is additive. If translate (10, 30) is run twice, all the
elements drawn after will display with an x-offset of 20 and a y-offset of 60.

rect(o, 5, 70, 30);

translate(10, 30); // Shift 10 pixels right and 30 down
rect(o, 5, 70, 30);

translate(10, 30); // Shift everything again for a total
rect(o, 5, 70, 30); // 20 pixels right and 60 down

One might expect the additive nature of transformations to accumulate when used
inside of the draw() loop. However, all transformation are returned to the default
values with the start of each trip through the block. For instance, when example 14-01 is
placed inside of draw() there is no change to the effect of the translate()—the
rectangle doesn’t move further and further to the right and down. In the following
example, even though translate(10, 30) is run every time, the effect doesn'’t
accumulate because the transformations are reset each time through draw().

void draw() {
[izzzz%] rect(o, 5, 70, 30);
translate(10, 30); // Shift 10 pixels right and 30 down

rect(o, 5, 70, 30);

Controlling transformations

The functions to translate, rotate, and scale utilize the transformation matrix—a set

of numbers that defines mathematically how geometry is drawn to the screen.
Transformation functions such as translate() alter the numbers in this matrix and
cause the geometry to draw differently. In the previous examples, we saw how
transformations accumulate. To control these accumulations more carefully, the
pushMatrix() function records the current state of all transformations. By using
pushMatrix() with the companion function popMatrix(), a set of transformations
can be stored and then restored later in the program.

Think of each matrix as a sheet of paper with the current list of transformations
(translate, rotate, scale) written on the surface. When a function such as translate()
is run, it changes the numbers on the paper. To save the current matrix for later use, add
a new sheet of paper to the top of the pile and copy the information from the sheet
below. Any new changes are made to the top sheet of paper, preserving the numbers on
the sheet(s) below. To return to a previous coordinate matrix, remove and discard the
top sheet of paper to reveal the saved transformations that follow:

176 Transform

14-03

14-04

S o

pushMatrix () popMatrix()

This is essentially how coordinate matrices are updated and stored, but more technical
terms are used. Adding a sheet of paper is pushing, removing a sheet is popping, and
the pile of pages is called a stack. The pushMatrix() function is used to add a new
coordinate matrix to the stack, and popMatrix() is used to remove one from the stack.
Each pushMatrix() must have a corresponding popMatrix(). The function
pushMatrix() cannot be used without popMatrix() and vice versa.

Compare the two examples below. Both draw the same rectangles, but with
different results. The second example employs pushMatrix () and popMatrix() to
isolate the effects of the translate() function to apply only to the first rectangle.
Because the other rectangle is drawn after the call to popMatrix() it draws from its
x-coordinate without being affected by the translation.

translate(33, 0); // Shift 33 pixels right 14708
rect(o, 20, 66, 30);
rect(o, 50, 66, 30);

pushMatrix(); 14-06

translate(33, 0); // Shift 33 pixels right
rect(0, 20, 66, 30);

popMatrix(); // Remove the shift

// This shape is not affected by translate() because
// of the pushMatrix() and popMatrix()

rect(0, 50, 66, 30);

Embedding the pushMatrix() and popMatrix() functions can further control their
range. In the following example, the first rectangle is affected by the first translation,
the second rectangle is affected by the first and second translations, and the third
rectangle is only affected by the first translation because the second translation is
isolated with a pushMatrix() and popMatrix() pair. The fourth rectangle is not
affected by any of the translations because the popMatrix() on the second-to-last line
cancels the pushMatrix() on the first line.

pushMatrix(); 14-07
translate(20, 0);

rect(o, 10, 70, 20); // Draw at (20, 10)

pushMatrix();

177 Transform

translate(30, 0);

rect(o, 30, 70, 20); // Draw at (50, 30)
popMatrix();

rect(o, 50, 70, 20); // Draw at (20, 50)
popMatrix();

rect(o, 70, 70, 20); // Draw at (0, 70)

Rotate

The rotate() function rotates the coordinate system so that shapes can be drawn to
the screen at an angle. It has one parameter that sets the amount of the rotation as an

angle. The rotate function assumes that the angle is specified in units of radians (p. 279).

Shapes are always rotated around their position relative to the origin (0,0), and positive
numbers rotate them in a clockwise direction.

As with all transformations, the effects of rotation are cumulative. If there is a
rotation of 1t/4 radians and another of i/4 radians, objects drawn afterward will be
rotated rt/2 radians. The following examples show the most basic use of the rotate()
function.

rect(55, 0, 30, 45);
rotate(PI/8);
rect(55, 0, 30, 45);

rect(10, 60, 70, 20);
rotate(-PI/16);
rect(10, 60, 70, 20);
rotate(-PI/8);
rect(10, 60, 70, 20);

These examples make it clear that rotating objects around the origin has limitations. To
rotate an object at a different position, it’s necessary to use translate() followed by
rotate(). This is explained in the “Combining transformations” section that follows.

Scale

The scale() function modifies the coordinate system so that shapes are drawn larger
or smaller. It has one or two parameters to set the amount of increase or decrease.
When used with one parameter, it scales shapes in all dimensions. When used with two
parameters, it scales the x-dimension separately from the y-dimension. The parameters
to scale() are defined in terms of percentages expressed as decimals. Examples of

178 Transform

14-07
cont.

14-08

14-09

decimal percentages are 2.0 for 200%, 1.5 for 150%, and o.5 for 50%. The following
examples show the most basic use of the scale() function.

ellipse(32, 32, 30, 30); 14-10
scale(1.8);
ellipse(32, 32, 30, 30);

ellipse(32, 32, 30, 30); 14-11
O scale(2.8, 1.8);
‘ ellipse(32, 32, 30, 30);

As the previous examples show, the stroke weight is also affected by scale(). To keep
the same stroke weight and scale a shape, divide the parameter of the
strokeWeight () function by the scale value.

float s = 1.8; 14-12
ellipse(32, 32, 30, 30);
scale(s);

strokeWeight(1.0 / s);
ellipse(32, 32, 30, 30);

As with translate() and rotate(), the effects of each scale() accumulate each
time the function is run.

rect(10, 20, 70, 20); 14-13
scale(1.7);

rect(10, 20, 70, 20);

scale(1.7);

rect(10, 20, 70, 20);

Combining transformations

The transformation functions are powerful ways to modify the geometry displayed to
the screen. Using one at a time is straightforward, but combining them requires a
greater understanding of how they work. The order in which transformation functions
are run can affect the way they change the coordinates. When shapes are drawn to the
screen, the translate(),rotate(),and scale() functions affect them in relation to
the origin. For example, rotating a rectangle at coordinate (50,20) will cause the shape
to orbit around the origin and not around its center or corner as you might expect:

179 Transform

rotate(PI/12) rect(50,20,40,20)

To rotate this shape around its upper-left corner, you must place that point at the
coordinate (0,0). A translation is used to put the shape into the desired position in
relation to the global coordinates. When the rotate function is run, the shape now orbits
around its upper-left corner, the origin of its local coordinate system:

translate(50,20) rotate(PI/12) rect(0,0,40,20)

There are two ways to think about transformations. One method is to view the
coordinate system as modified and the coordinates for shapes as converted to the new
coordinate system. For example, if the coordinate system is rotated 30°, the coordinates
of any shape drawn to the screen are converted into this modified system and
displayed with a 30° tilt. The other school of thought applies the transformations
directly to the shapes. In this same example, the shape itself is perceived to be
rotated 30°.

The order in which transformations are made affects the results. The following two
examples have the same lines of code, but the order of the translate() and
rotate() functions is reversed :

translate(width/2, height/2);
rotate(PI/8);
rect(-25, -25, 50, 50);

rotate(PI/8);
translate(width/2, height/2);
rect(-25, -25, 50, 50);

180 Transform

14-14

14-15

These simple examples demonstrate the potential in combining transformations but
also make clear that transformations require thought and planning. More combined

examples follow:

translate(10, 60);
rect(0o, 0, 70, 20);
rotate(-PI/12);
rect(o, 0, 70, 20);
rotate(-PI/6);
rect(o, 0, 70, 20);

translate(45, 60);

L D

rect(-35, -5, 70, 10);
rotate(-PI/8);
rect(-35, -5, 70, 10);
rotate(-PI/8);
rect(-35, -5, 70, 10);
noFill();
translate(10, 20);
rect(0o, 0, 20, 10);
scale(2.2);

rect(0o, 0, 20, 10);
scale(2.2);

rect(o, 0, 20, 10);
noFill();

translate(50, 30);
rect(-10, 5, 20, 10);
scale(2.5);

rect(-10, 5, 20, 10);

=]

The effects of the transformation functions accumulate throughout the program, and

these effects can be magnified with a for loop.

w1

background(0);

stroke(255, 120);

translate(66, 33);

for (int 1 = 0; 1 < 18;
strokeWeight(i); //
rotate(PI/12);
line(o, 0, 55, 0);

181 Transform

// Set initial offset
i++) | // 18 repetitions
Increase stroke weight

// Accumulate the rotation

14-16

14-17

14-18

14-19

14-20

Code 14-14 analyzed from two perspectives

Coordinate view Translate Rotate Draw rectangle

Reading the code from

top to bottom

Shape view Draw rectangle Rotate Translate

Reading the code from
bottom to top

Code 14-15 analyzed from two perspectives

Coordinate view Rotate Translate Draw rectangle
Reading the code from

top to bottom

Shape view Draw rectangle Translate Rotate
Reading the code from

bottom to top — f
N

Figure 14-1 Transformation combinations

The order in which transformations occur in a sketch affects how they combine. For example, a rotate () after a
translate() will have a different effect than the reverse. These diagrams present two ways to think about the
transformations in codes 14-14 and 14-15.

182 Transform

background(0);

noStroke();

till(255, 48);

translate(33, 66); // Set initial offset

for (int i = 0; i < 12; i++) { // 12 repetitions
scale(1.2); // Accumulate the scaling

ellipse(4, 2, 20, 20);

Working with these examples will be more helpful than reading the explanation over
and over. Try these examples inside Processing and make modifications to the numbers
used and the sequence of translate, rotate, and scale to develop a sense of how these
functions work.

Transformation and interaction

When using the transformation functions in a program that runs continuously with a
draw() function, the most important thing to remember is the transformations are
reset each trip through the draw() block, but they accumulate within the block. This is
demonstrated in code 14-04. With this property as a foundation, the mouseX and
mouseY values can control translation, rotation, and scale by using them as parameters
in the transformation functions inside draw(). As one example, an ellipse can move
around the screen by changing the parameters to translate() rather than by
changing the x and y parameters of ellipse().

void setup() {
size(100, 100);
noStroke();

void draw() {
background(126);
translate(mouseX, mouseY);
ellipse(0, 0, 33, 33);

Before using mouseX and mouseY as parameters to transformation functions, it’s
important to think first about how they relate to the expected parameters. For example,
the rotate () function expects its parameters in units of radians (p. 279). To make a
shape rotate 360 degrees as the cursor moves from the left edge to the right edge of the

183 Transform

14-21

14-22

window, the values of mouseX must be converted to values from o.o to 2. In the
following example, the map () function (p. 267) is used to make this conversion. The
resulting value is used as the parameter to rotate() to turn the line as the mouse
moves back and forth between the left and right edge of the display window.

void setup() {
size(100, 100);
\ strokeWeight(8);

/ void draw() {
background(204);
float angle = map(mouseX, 0, width, 0, TWO_PI);
translate(50, 50);

rotate(angle);
line(o, 0, 40, 0);

The previous pair of basic examples unlock the possibilities for utilizing the
transformation functions for movement and interaction. The principles are used and
elaborated upon in later examples throughout the book.

New coordinate systems

The default position of the coordinate origin (0,0) is the upper-left corner of the display
window, the x-coordinate numbers increase to the right, the y-coordinates increase
from the top, and each coordinate maps directly to a pixel position. The transformation
functions can change these defaults to modify the coordinate system. The following
examples move the origin to the center and lower-left corner of the display window
and modify the scale.

\E void draw() {

background(204);
// Shift the origin to the center

N translate(width/2, height/2);
// Draw the origin
line(-width/2, 0, width/2, 0); // Draw x-axis
line(o, -height/2, 0, height/2); // Draw y-axis
// Draw within the new coordinate system
ellipse(0, 0, 45, 45); // Draw at the origin
ellipse(-width/2, height/2, 45, 45);
ellipse(width/2, -height/2, 45, 45);

184 Transform

14-23

14-24

The translate() and scale() functions can combine to change the range of values.
In the following example, the right edge of the screen is mapped to the x-coordinate of
1.0, the left edge to the x-coordinate -1.0, the top edge to the y-coordinate -1.0, and the
bottom edge to the y-coordinate 1.0. This system will always scale to fit the entire
display window. Run this program,but change the parametersto size() to see it work.

‘ \ void draw() {
N background(204);
—“\\,/"— // Shift the origin, scale the system
N [scale(width/2, height/2);

translate(1.0, 1.0);

strokeWeight(1.0/width);

// Draw the origin

line(-1, 0, 1, 0); // Draw x-axis

line(o, -1, 0, 1); // Draw y-axis

// Draw within new coordinate system

ellipse(o, 0, 0.9, 0.9); // Draw at the origin
ellipse(-1, 1, 0.9, 0.9);

ellipse(1, -1, 0.9, 0.9);

The translate() and scale() functions can be combined to put the origin in the
lower-left corner of the screen. Scaling the y-axis by -1 causes the y-coordinates to
increment in the opposite direction. This can be useful when converting a program
written using this coordinate system into Processing, rather than converting the
y-coordinate of every point.

\\ void draw() {

background(204);
Q // Shift the origin, scale the system

translate(0, height);

scale(1.0, -1.0);

// Draw the origin

line(0o, 1, width, 1); // Draw x-axis
line(0, 1, 0, height); // Draw y-axis

// Draw within new coordinate system

ellipse(0, 0, 45, 45); // Draw at the origin
ellipse(width/2, height/2, 45, 45);
ellipse(width, height, 45, 45);

185 Transform

14-25

14-26

Exercises
1. Draw a composition with two squares. Use translate () to reposition the shapes.

2. Modify exercise 1 to use pushMatrix () and popMatrix() to move only one
of the squares.

3. Use rotate () to change the orientation of a shape.
4.Use scale () with a for loop to scale a shape multiple times.
5. Combine translate() and rotate () to spin a shape around its own center.

186 Transform

15 Vertices

This chapter focuses on drawing lines, shapes, and curves from sequences of vertices.

Syntax introduced:

beginShape(), endShape(), vertex()
curveVertex(), bezierVertex()
beginContour(), endContour()

Geometric primitives such as lines and rectangles are simple and flexible, but a
programmer may often desire more complex shapes. Fortunately, there are many ways
to define visual form with software. This chapter introduces a way to define shapes

as a series of coordinates, called vertices. A vertex is a position defined by an x- and
y-coordinate. A line has two vertices, a triangle has three, a quadrilateral has four, and
so on. Organic shapes such as blobs or the outline of a leaf are constructed by
positioning many vertices in spatial patterns:

These shapes are simple compared to the possibilities. In contemporary video games,
for example, highly realistic characters and environmental elements may be made up of
many thousands of vertices. They represent more advanced uses of this technique, but
they are created using similar principles.

Vertex

To create a shape from vertex points, first use the beginShape () function, then specify
a series of points with the vertex() function and complete the shape with
endShape().The beginShape() and endShape() functions must always be used

in pairs. The vertex() function has two parameters to define the x-coordinate and
y-coordinate. By default, all shapes drawn with the vertex() function are filled white
and have a black outline connecting all points except the first and last. The f111(),
stroke(),noFi11(), noStroke(),and strokeWeight() functions control the
attributes of shapes drawn with the vertex() function, just as they do for those
drawn with the shape functions discussed in the Draw chapter (p.21). To close the
shape, use the CLOSE constant as a parameter for endShape().

187

The order of the vertex positions changes the way the shape is drawn. The following
example uses the same vertex positions as code 15-01, but the order of the third and

noFill();
beginShape();
vertex(30, 20);
vertex (85, 20);
vertex (85, 75);
vertex(30, 75);
endShape();

noFill();
beginShape();
vertex(30, 20);
vertex (85, 20);
vertex (85, 75);
vertex(30, 75);
endShape (CLOSE);

fourth points are reversed.

/

Adding more vertex points reveals more of the potential of these functions. The
following examples show variations of turning off the fill and stroke attributes and
embedding vertex() functions within a for loop.

noFill();
beginShape();
vertex(30, 20);
vertex (85, 20);
vertex(30, 75);
vertex (85, 75);
endShape();

fill(o);
noStroke();
beginShape();
vertex(10, 0);
vertex(100, 30);
vertex(90, 70);
vertex(100, 70);
vertex(10, 90);
vertex (50, 40);
endShape();

188 Vertices

15-01

15-02

15-03

15-04

noFill();
strokeWeight(20);
beginShape();
vertex(52, 29);
vertex(74, 35);
vertex (60, 52);
vertex(61, 75);
vertex (40, 69);
vertex(19, 75);
endShape();

noStroke();
fil11(0);
beginShape();
vertex (40, 10);
for (int i = 20;
vertex(20, 1i);
vertex(30, 1i);
}
vertex (40, 100);
endShape();

i <= 100; 1 += 5) {

A shape can have thousands of vertex points, but drawing too many points can slow
down your sketches.

Points, Lines

The beginShape() function can accept different parameters to define how to draw
the vertex data. For instance, the same points can be used to create a series of points, an
unfilled shape, or a continuous line. The parameters POINTS and LINES are used to
create different configurations of points and lines from the coordinates defined in the
vertex() functions. Remember to type these parameters in uppercase letters because
Processing is case-sensitive (p. 18).

189

// Draw a point at each vertex

strokeWeight(4);

beginShape (POINTS);

vertex(30, 20);
vertex(85, 20);
vertex(85, 75);
vertex(30, 75);
endShape();

Vertices

15-05

15-06

15-07

// Draw a line between each pair of vertices 15-08
beginShape (LINES);

vertex(30, 20);

vertex(85, 20);

vertex(85, 75);

vertex(30, 75);

endShape();

Geometry

Use the parameters TRIANGLES, TRIANGLE STRIP, TRIANGLE_FAN, QUADS, and
QUAD_STRIP with beginShape() to create other kinds of geometry. It’s important to
be aware of the spatial order of the vertex points when using these parameters because
they affect how a shape is rendered. If the order required for each parameter is not
followed, the expected shape will not draw. It’s easy to change between working with
TRIANGLES and a TRIANGLE_STRIP because the vertices can remain in the same
spatial order, but this is not the case for changing between QUADS and a QUAD_STRIP.
Refer to the following examples and figure 15-1 for more information.

// Connect each grouping of three vertices as a triangle 15-09

\ beginShape (TRIANGLES);

vertex(75, 30);

‘:::::? vertex(10, 20);
vertex(75, 50);
vertex(20, 60);
vertex(90, 70);
vertex(35, 85);
endShape();

// Starting with the third vertex, connect each 15-10
// subsequent vertex to the previous two

beginShape (TRIANGLE_STRIP);

vertex(75, 30);

vertex(10, 20);

vertex(75, 50);

vertex(20, 60);

vertex(90, 70);

vertex(35, 85);

endShape();

190 Vertices

POINTS, LINES

Vi Vi Vi .
. va ~—v s The same data can be interpreted
. as a sequence of points or lines.
The spatial order of the points
va . V4\ \& affects what is drawn when using
v3 V3 va LINES.
POINTS LINES LINES
v ve v ve TRIANGLES, TRIANGLE_FAN,
2 &
va va e TRIANGLE_STRIP
Groups of three vertices are
Vs o .
drawn as individual triangles or a
connected group.
vi V3 s vi V3 s V1,V6
TRIANGLES TRIANGLE_STRIP TRIANGLE_FAN
Unexpected results occur if the
V2 Ve
L > b o defined order is not followed.
M)
vi e vi V4 s v1,ve Vs
TRIANGLES TRIANGLE_STRIP TRIANGLE_FAN
QUADS, QUAD_STRIP
LI - V& e B Groups of four vertices are
drawn as individual quads or a
connected group. The spatial order
V3 (= Va V8 determines whether a quad or
va V6 v2 ve a “bow” is drawn. Note that the
ORDS ORD STRIP order is reversed for QUADS and
a a - QUAD_STRIP.
Vi Vs Vi Vs
V3 v7 \ Va j V8
V4 V8 V3 V7
V2 Ve V2 Vé
QUADS QUAD_STRIP

Figure 15-1 Parameters for beginShape()
There are a range of parameters for the beginShape () function, and each interprets vertex data in a different way.
The notation V1, V2, V3, etc, in these diagrams represents the order and position of each vertex point.

191 Vertices

// Connect the first vertex to each
= gg // following group of two

beginShape (TRIANGLE_FAN);

vertex(10, 20);

vertex(75, 30);

vertex(75, 50);

vertex(90, 70);

vertex(10, 20);
endShape();

// Connect each grouping of four vertices das a quad
beginShape (QUADS);
vertex(30, 25);
vertex(85, 30);
vertex(85, 50);
vertex(30, 45);
vertex(30, 60);
vertex(85, 65);
vertex(85, 85);
vertex(30, 80);
endShape();

(]

// Notice the different vertex order for

// this example in relation to example 15-12
Eg%%% beginShape(QUAD_STRIP);

vertex(30, 25);

vertex(85, 30);

vertex(30, 45);

vertex(85, 50);

vertex(30, 60);

vertex(85, 65);

vertex(30, 80);

vertex(85, 85);

endShape();

Curves

The vertex() function works well for drawing straight lines, but if you want to create
shapes made of curves, the two functions curveVertex() and bezierVertex()
can be used to connect points with curves. These functions can be run between
beginShape() and endShape() only when beginShape () has no parameter.

The curveVertex() function is used to set a series of points that connect with a
curve. It has two parameters that set the x-coordinate and y-coordinate of the vertex.

192 Vertices

15-11

15-12

15-13

The first and last curveVertex() within a beginShape() and endShape() act as
control points, setting the curvature for the beginning and end of the line. The
curvature for each segment of the curve is calculated from each pair of points in
consideration of points before and after. Therefore, there must be at least four
curveVertex () functions within beginShape () and endShape() to draw a
segment.

noFill();

beginShape();

f\ curveVertex(20, 80); // C1 (see p.194)
curveVertex(20, 40); // Vi
curveVertex(30, 30); // V2
curveVertex(40, 80); // V3
curveVertex(80, 80); // C2
endShape();

Each bezierVertex() defines the position of two control points, followed by one
anchor point. The first time bezierVertex() is used within beginShape(), it must
be prefaced with vertex() to set the first anchor point. The line is drawn between
the point defined by vertex() and the point defined by the x and y parameters to
bezierVertex(). The first four parameters to the function position the control points
to define the shape of the curve. The curve from code 3-24 (p. 30) was converted to this
technique to yield the following example:

noFill();

beginShape();

vertex(32, 20); // Vi (see p.194)

beziervertex(80, 5, 80, 75, 30, 75); // Ci, C2, V2
endShape();

Long, continuous curves can be made with bezierVertex(). After the first vertex()
and bezierVertex(), each subsequent call to the function continues the shape by
connecting each new point to the previous point.

noFill();

beginShape();

vertex(15, 30); // Vi (see p.194)

beziervVertex(20, -5, 70, 5, 40, 35); // C1, C2, V2
bezierVertex(5, 70, 45, 105, 70, 70); // C3, C4, V3
endShape();

193 Vertices

15-14

15-15

15-16

1 Curve vertices
Vi V2 The curveVertex() function
¢z, Vi defines coordinates that are
Vi connected with curved shapes. The
\—/ first and last points are control
&2 V3 a’ : ca), v3 points that define the shape of the
curve at the end and beginning,
but they are not drawn.
V3

-C 1 \% V4 ¢

\Z1
V3
Vs 21
C2
c1 V6
i V2
Vi
. Bézier vertices
Va2 Vi c1 C2e L.
Bézier curves are defined by vertex
Vi points and control points used as

5 & parameters to the bezierVertex()

le eC2

. function. The control points define
V2 c2 V2
Vi N the shape of the curves that are drawn
between the vertex points.
C1
.
* &2 o1 V1,C1
c2
Vi L
Vi V2
c2 V3
* V2
C
» v3 2 !
c3 c4 c3,v2
C4,V3
*cq
Yex
c2
2 e, .
C1,va,V
1,va,V3 2 Vi
° Vi V3
V2
Vs
o C3
V2 V3
\Z1
C3,v2 $C4
e C4

Figure 15-2 Curves

These curves are converted to software with the vertex(), curveVertex(), and bezierVertex() functions.
The notation vi, vz, v3, etc., represents the order and position of each vertex point, and the notation Ci, C2, C3, etc.,
represents the control points. Some of these curves are translated to software in codes 15-14 to 15-18.

194 Vertices

To make a sharp turn, use the same position to specify the vertex and the following
control point.

£i11(0);

beginShape();

‘ vertex(90, 39); // Vi (see p.194)
bezierVertex(90, 39, 54, 17, 26, 83); // C1, C2, V2
bezierVertex(26, 83, 90, 107, 90, 39); // C3, C4, V3

endShape();

Place the vertex() function within bezierVertex() functions to break the
sequence of curves and draw a straight line.

noFill();

beginShape();

vertex(15, 40); // Vi (see p.194)

bezierVertex(5, 0, 80, 0, 50, 55); // Cci, C2, V2
vertex(30, 45); // V3
vertex(25, 75); // Va4
beziervVertex(50, 70, 75, 90, 80, 70); // C3, C4, V5
endShape();

A good technique for creating complex shapes with beginShape () and endShape()
is to draw them first in a vector drawing program such as Inkscape or Adobe Illustrator.
The coordinates can be read as numbers in this environment and then used in
Processing. Another strategy for drawing intricate shapes is to create them in a vector-
drawing program and then import the coordinates as an SVG file. This is discussed in
the Shapes chapter (p. 215).

Contours

The ability to cut holes into shapes, like the center the letter O, is another benefit to
drawing shapes with the vertex() function. Cutouts within a shape are set by the
beginContour() and endContour () functions. They are placed inside of a
beginShape()/endShape() pair. First draw the vertices for the exterior shape in
clockwise order, then for internal shapes, draw the vertices counter-clockwise. The
following example shows the individual pieces, two triangles on top of a white line, and
the code after shows how to cut the smaller triangle cut out of the larger by utilizing
the beingContour()/endContour() pair.

195 Vertices

15-17

15-18

size(100, 100);
background(0);
stroke(255);
strokeWeight(2);
line(33, 0, 85, 100);
noStroke();

fill(102);

// Start outer triangle
beginShape();

vertex(5, 12);
vertex(95, 12);
vertex(50, 92);
endShape();

fill(255);

// Start inner triangle
beginShape();

vertex(50, 20);
vertex(66, 50);
vertex(33, 50);
endShape();

size(100, 100);
background(0);
stroke(255);
strokeWeight(2);
line(33, 0, 85, 100);
noStroke();

fill(102);

// Start outer triangle
beginShape();

vertex(5, 12);
vertex(95, 12);
vertex(50, 92);

// Start inner triangle
beginContour();
vertex(33, 50);
vertex(66, 50);
vertex(50, 20);
endContour();
endShape();

Like making any shape out of vertex functions, a cutout can be as basic as the triangles
in the above example or can be more detailed shapes made from thousands of points.
Additionally, there can be more than one cutout. The following example points the
way to more complicated shapes by introducing a second cutout. This example also

196 Vertices

15-19

15-20

positions the shape with the center at the origin so it can be easily rotated around

its center.

float angle = 0.0;

void setup() {
size(100, 100);
noStroke();

}

void draw() {
background(0);
fill(204); // Light gray
rect(0, 44, 100, 12);

// Position in middle, scale 75%, and rotate
translate(width/2, height/2);

scale(0.75);

rotate(angle);

fill(102);
beginShape();

// Outer shape
vertex(-25,-50);
vertex(25,-50);
vertex(25, 50);
vertex(-25, 50);
// Top hole
beginContour();
vertex(-15,-30);
vertex(-15,-10);
vertex(15,-10);
vertex(15,-30);
endContour();

// Bottom Hole
beginContour();
vertex(-15, 10);
vertex(-15, 30);
vertex(15, 30);
vertex(15, 10);
endContour();
endShape();

angle += 0.01;

197 Vertices

15-21

Exercises

1. Use beginShape () to draw a shape of your own design.

2. Explore different parameters for beginShape () in exercise 1 to change the way
the vertices are drawn. For instance, try POINTS and LINES.

3. Like code 15-06, create a detailed, repetitive shape by using a for loop to generate
vertices.

4. Draw a complex shape with both curved and straight segments by integrating
vertex() with either bezierVertex() or curveVertex().

5. Modify example 1 to cut a hole into the shape with beginContour () and
endContour().

198 Vertices

16 3D Drawing

This chapter introduces drawing and transformations in 3D, lighting, camera settings, and
textures.

Syntax introduced:

box(), sphere(), lights()

rotateX(), rotateY(), rotateZ()

camera()

directionallLight(), ambientLight(), pointLight(), spotLight()
ambient(), lightSpecular(), shininess(), specular(),
texture(), textureMode()

For as long as people have represented the three-dimensional world on two-
dimensional surfaces, they have invoked the help of machines. The 3D graphics we
know today have their origin in the theory of linear perspective, developed less than
600 years ago by the Florentine architect Filippo Brunelleschi. He used a variety of
optical devices to determine that all sets of parallel lines appear to the eye to converge
at a single “vanishing point” on the horizon. Shortly after the technique was codified,
artists such as Albrecht Diirer began devising machines to help produce convincing
representations of 3D scenes on 2D picture planes. The earliest on-screen 3D graphics
appeared in the 1950s, not on digital computers but using oscilloscopes, machines
designed to trace voltages in electronic circuits. It took thirty more years for 3D graphics
to enter the home by way of games for personal computers. Today, artists, designers,
engineers, and architects all make use of computers to create, manipulate, and output
3D form.

The goal of this chapter is to point out landmarks in the disciplines and bodies of
techniques that surround 3D graphics. Processing provides a practical foundation for
exploring ideas about interactive 3D environments. A phenomenal amount of academic
and commercial activity is occurring in computational 3D graphics for medicine,
architecture, art, engineering, and industrial design. Almost any field that deals with
the physical world has call for computational models of it, and our ability to produce
evocative simulated objects and environments is the domain of 3D graphics. Where we
will take ourselves in our new artificial worlds—or whether we even retain the power
to control them—is the subject of much speculation, but here we’ll cover the absolute
basics.

3D form

Before drawing 3D forms in Processing, it’s necessary to tell the software to use a 3D
renderer. A renderer is software that defines how geometry is turned into pixels to

199

represent that geometry on screen. The default renderer in Processing draws two-
dimensional shapes, but there are additional options like the P3D renderer, which is
capable or drawing 3D geometry. To use P 3D, specify it as a third parameter to the
size() function. For example:

size(600, 600, P3D);

A different coordinate system is used to draw in three dimensions. This new system
builds on the 2D coordinate system of x- and y-coordinates and extends it with
z-coordinates. Processing uses a coordinate system with the origin (0,0,0) in the front
upper left with the z-coordinates decreasing from the front of the image:

=7
(0,0,-100) (100,0,-100)

(100,0,0)
(0,0,0) +X

(100,100, -100)

(0,100,0) (100,100,0)

+Y

Processing has functions for drawing boxes and spheres. (The language doesn’t include
additional 3D primitive shapes such as cylinders and cones because we encourage
people to craft their own.) A sphere has only one parameter to set its size. A box has
three parameters to set the width, height, and depth, but can be used with a single
parameter to make a cube. These shapes are drawn with their center point at the
coordinate (0,0), so a translation is needed to place them on screen. The translate()
function works the same way in 3D, but it has a third parameter to shift the coordinates
along the z-axis. With translation, a shape can appear smaller or larger because the
three-dimensional space is drawn with a simulated perspective.

size(100, 100, P3D);
background(0);

translate(0, height/2, -height/4);
box (60, 80, 60);

translate(width, 0, -height/2);
box (60, 80, 60);

200 3D Drawing

16-01

size(100, 100, P3D);

background(0);

translate(0, height/2, -height/4);
sphere(50);

translate(width, 0, -height/2);
sphere(50);

Like the functions for drawing rectangles and other basic shapes, the 3D shapes are
affected by fill() and stroke().In the previous examples, it is clear that the
outlines of the box and the triangles that define the sphere geometry are stroked in
black by default. Unlike drawing in 2D, the colors can be affected by simulated lights
placed within a program. Lighting is discussed on upcoming pages, but the default
lights, turned on with the 1ights () function, define the contours and angles of the
geometry when the stroke is turned off. The sides of a shape are each at a different
angle in relation to the lights and reflect them differently.

size(100, 100, P3D);

noStroke();

background(0);

lights();

translate(0, height/2, -height/2);
fill(153);

box(50);

translate(width, 0, 0);

fill(255);

sphere(50);

Unlike fi11() and stroke(), which are persistent throughout a program after they
are defined, the 1ights () function must be run in the draw() block to set the lights
each frame. To test this, modify the previous example to move the first four lines into
setup() and the rest into draw() to see the difference.

The previously introduced point (), line(), and vertex() functions have
additional parameters to set coordinates in 3D. These parameters are defined in the
Processing reference, which can be accessed through the Help menu. Functions like
rect() and ellipse(), that don’t have 3D versions, can be placed in three dimensions
with transformation functions. As with translate(), the transformation function
scale() works the same way in 3D, with an added parameter for the z-dimension, but
the rotate () function is replaced by three separate functions: rotateX(),
rotatevY(),and rotatez().The rotatez() function is identical to the rotate()
function, but rotateX() and rotateY() are unique to working in 3D. Each rotates the
coordinates around the axis for which it is named:

201 3D Drawing

16-02

16-03

"

Rotate around the x-axis Rotate around the y-axis Rotate around the z-axis

The following example uses the mouseX and mouseY values to define the rotation
about the x-axis and y-axis. As the mouse movement continuously changes the rotation
values, the rectangle appears as a square, a line, and a range of parallelograms.

void setup() {
size(100, 100, P3D);
fill(153);
strokeWeight(8);

void draw() {
background(0);
translate(width/2, height/2, -width);
float rx = map(mouseY, O, height, -PI, PI);
float ry = map(mouseX, 0, width, -PI, PI);
rotateX(rx);
rotateY(ry);
noStroke();
rect(-50, -50, 100, 100);
stroke(255);
line(o, o0, -50, 0, 0, 50);

The pushMatrix() and popMatrix() functions work identically in 2D and 3D.
Pushing and popping the transformation matrix is particularly useful in 3D graphics to
establish a place of operation and then restore an old one. Use the pushMatrix()
function to push a transform onto the stack and set up the coordinate transform as you
want it, including scaling, translations, and rotations. Create the local geometry, and
then use popMatrix() to return to the previous coordinate system.

202 3D Drawing

16-04

void setup() {
size(100, 100, P3D);
noStroke();

void draw() {
lights();
background(0);
translate(width/2, height/2, -height);
float rz = map(mouseY, O, height, 0, PI);
float ry = map(mouseX, 0, width, 0, HALF_PI);

rotateZ(rz);
rotateY(ry);
for (int y = -1; y <= 1; y++) {
for (int x = -1; x <= 1; x++) {
for (int z = -1; z <= 1; z++) {

pushMatrix();

translate(50*x, 50*y, -50%z);
box(15);

popMatrix();

3D form is created with vertex points similarly to the way 2D shapes were created in
Vertices (p. 187), but the extra z-coordinate makes it possible to define volumetric
shapes. The following example constructs a parameterized tube shape and controls its
orientation with the mouse. It has four parameters to set the top and bottom radius, the
height, and the number of sizes. When the parameters are changed, the example can
create different forms including a pyramid, cone, or cylinder of variable resolutions and
sizes. The beginShape () function is used with values from sin() and cos() to
construct these extruded circular forms. Click the mouse while running the program to
more clearly see how the shapes are constructed.

203 3D Drawing

16-05

int topRadius = 70;

int bottomRadius = 70;

int tall = 120;

int sides = 32;

float angleIncrement = TWO_PI / sides;

void setup() {
size(100, 100, P3D);

void draw() {

background(0);

if (mousePressed) {
noFill();
stroke(255);

} else {
lights();
noStroke();
fill(255);

}
translate(width/2, height/2, -40);
rotateY(map(mouseX, 0, width, 0, PI));
rotateZ(map(mouseY, 0, height, 0, -PI));
float angle = 0;
beginShape(QUAD_STRIP);
for (int i = 0; i <= sides; i++) {
float ca cos(angle);
float sa = sin(angle);

vertex(topRadius * ca, 0, topRadius * sa);
vertex(bottomRadius * ca, tall, bottomRadius * sa);
angle += angleIncrement;

}
endShape();

Camera

All 3D renderings rely on a model of a scene and a camera (eye) that observes it.
Processing offers an explicit mapping of the camera analogy through its functions,
which is derived from OpenGL. OpenGL is a specification for rendering computer
graphics that was first initiated by Silicon Graphics and is now managed by the
Khronos Group, an industry consortium. The OpenGL documentation (available online;

204 3D Drawing

16-06

search for “OpenGL Red Book”) offers an excellent explanation of the workings of its
camera model. The perspective camera as modeled by OpenGL and Processing can be
defined with just a few parameters: focal length, and near and far clip planes.

The camera contains the “picture plane,” the theoretical membrane at which the
image is captured. In a real camera, the film (or digital sensor) forms the picture plane.
The focal length is a property that determines the field of view of a camera. It
represents the distance behind the picture plane at which all the light coming into the
camera converges. The longer the focal length, the tighter the field of view—it’s like
zooming in with a telephoto lens.

Eye

Perspective viewing volume

Rendering requires three transformations. The first transformation is called the view
transformation. This transformation positions and orients the camera in the world.
Establishing a view transformation implicitly defines “camera space,” in which the focal
point is the origin (the upper-left corner of the display window), the positive z-axis
points out of the screen, the y-axis points straight down, and the x-axis points to the
right. In Processing, the easiest way to establish a view transformation is with the
camera() function. On top of the view transformation is the model transformation.
Generally these two transformations are multiplied into each other and considered to
be a unit known as the model-view matrix. The model transformation positions the
scene relative to the camera. Finally there is the projection transformation, which is
based on the camera’s internal characteristics, such as focal length. The projection
matrix is the last step; it maps 3D geometry into a 2D grid of pixels.

Processing by default establishes a set of transformations that make the picture
plane in 3D coincide with the default 2D coordinate system. Essentially it is possible to
forget entirely that you are in 3D and draw as though it were a 2D canvas while the
z-coordinate is o. This is useful because of the integration of 2D and 3D in Processing,
although it differs from the default of other 3D environments. It also means that the
model’s origin is translated significantly in front of the picture plane so that it can
often be viewed without further transformation.

The position and orientation of the camera is set with the camera () function.
There are nine parameters, arranged in groups of three, to control the camera’s position,
the location it is pointing to, and the orientation. In the following example, the camera
stays pointed at the center of a cube, while mouseY controls its height. The result is a
cube that recedes into the distance when the mouse moves down.

205 3D Drawing

void setup() {
size(100, 100, P3D);
fill(204);
strokeWeight(2);

void draw() {

lights();

background(0);

// Change height of the camera with mouseY

camera(0.0, mouseY*2, 120.0, // eyeX, eyeY, eyeZ
0.0, 0.0, 0.0, // centerX, centerY, centerZ
0.0, 1.0, 0.0); // upX, upY, upZ

noStroke();

box(60);

stroke(255);

line(-80, 0, 0, 80, 0, 0);

line(o, -80, 0, 0, 80, 0);

line(o, 0, -80, 0, O, 80);

Lights, Materials

After 3D form is constructed and transformed, it is often rendered into static images or
frames of an animation. The state of the art advances so quickly that even graphics
produced a few years ago look crude today. The primary goal of software rendering has
been photorealism —the images produced should be indistinguishable from
photographs. However, there have been significant innovations in nonphotorealistic
rendering, which attempts to produce stylized images. For example, cartoon, charcoal, or
painterly renderers mimic the effects of a hand and natural materials.

The work of 3D rendering is primarily the mathematical modeling and efficient
computation of the interaction of light and surface. Ray-tracing and other variants
influence the most popular methods of rendering. Ray-tracing models rays of light
emerging from a light source and bouncing around the surfaces of a scene until they
hit the picture plane. This is computationally costly and fails to predict certain
important phenomena of natural lighting such as the “color bleed” when one colored
surface reflects onto another. Techniques like radiosity model “global illumination,”
which accounts not only for light that comes directly from predefined light sources but
also light reflected off of the regular surfaces in a scene.

206 3D Drawing

16-07

There are three methods of rendering that do not require calculating lighting:
wireframe, hidden-line, and flat-shaded:

Wireframe Hidden line Flat shading

Wireframe is the simplest rendering model. It renders lines and the edges of polygons
in their basic color. This is achieved in Processing by drawing with a stroke color and
without a fill. The hidden-line technique is next in complexity; only edges are drawn,
but they are not visible where solid faces would occlude them. Processing does not
support this directly, but it is possible to simulate the effect by using a fill identical to
the background color. The last unlit model is flat-shaded, in which faces of objects are
colored, but only using their base fill color.

Lighting and surface materials are modeled for images to look more realistic. The
techniques used for calculating real-time lighting are different from the ray-tracing and
radiosity methods discussed earlier. Those are too computationally expensive for fast
rendering, although it is a safe bet that the computing speed available in the future will
be able to supply it. Instead, several common simplified lighting techniques are used for
real-time graphics. In order to understand them, we need to introduce the model of
light and surface-material interaction that nearly all real-time 3D uses.

There are several different types of light that can be added to a scene: directional,
ambient, point, and spot. Directional and ambient lights are the only kinds that do not
have a position within the scene. Directional lights closely approximate a light source
located infinitely far from the scene. They hit the scene at a specific direction regardless
of location, so they are a good way to simulate sunlight. Other light types have positions
and are therefore subject to falloff, the diminishing of light intensity with distance.In
the real world, light intensity falls off proportionally to the square of the distance to the
source. In 3D scenes, it is common to use little or no falloff so that fewer light sources
are needed, which is more computationally efficient. Also, the extra light is needed
because light doesn’t bounce around a simulated scene the way it does in real life.

Directional lights defined by the directionallight() function have six
parameters to define a color and direction. The first three define the light color; the
second group defines the direction from which light falls along the x-, y-, and z-axes. In
the following example, click the mouse to see the light change from the left to the top
of the sphere:

207 3D Drawing

void setup() { 16-08
size(100, 100, P3D);
noStroke();

void draw() {

background(0);

if (mousePressed == true) {
directionallight(255, 255, 255, 0, 1, O);

} else {
directionallight(255, 255, 255, 1, 0, O);

}

translate(width/2, height/2, 0);

sphere(30);

Ambient lights are nondirectional and therefore have a different effect from a
directional light. As mentioned earlier, they can be used without a position, but they
can also have a position to determine their range (falloff). They are meant to model
light in the environment that has bounced around so much it is impossible to know
where it originally came from. All natural daytime scenes have a considerable amount
of ambient light. When used without a position, the ambientLight () function has
three parameters. It is used with six parameters to define a position. The following
example raises the amount of ambient light within the environment as the mouse
moves left and right.

void setup() { 16-09
size(100, 100, P3D);
noStroke();

void draw() {
background(0);
// The sphere is white by default so
// the ambient light changes the color
float r = map(mouseX, 0, width, 0, 255);
ambientLight(r, 255, 255);
translate(width/2, height/2, 0);
sphere(30);

Point lights model a bare bulb hanging in a room. They have a position, and their
directionality radiates outward from that position. They shine equally in all directions—
but only in a specific direction relative to any other point in the scene. The

208 3D Drawing

pointLight () function has six parameters. The first three are the color value; the
second three are the position. In the following example, the position of a point light

moves up and down with the cursor:

void setup() {

n £ size(100, 100, P3D);
noStroke();

void draw() {
background(0);

sphere(30);

sphere(30);

Spotlights have the most parameters of any light. The eleven parameters control color,
position, direction, angle, and concentration. The angle affects how wide the spot light
is open. A tiny angle casts a narrow cone of light, while a wider one illuminates more of
the scene. The concentration parameter affects how the light falls off near the edge of
the cone angle. Light in the center is brighter, and the edges of the cone are darker.
While spotlights are the most flexible, they require more calculations than other types
of lights and can therefore slow a program down. In the following program, the angle
and concentration of a spotlight are controlled separately with the mouseX and mouseY

variables:

void setup() {
size(100, 100, P3D);
noStroke();

void draw() {
background(0);

float concentration =

1, 0, O,

sphere(50);

209 3D Drawing

pointLight(255, 255, 255, width/2, mouseY, 0);
translate(0, height/2, 0);

translate(width, 0, 0);

float angle = map(mouseY, 0, height, PI/8, PI/2);
map(mouseX, 0, width, 1, 20);
spotLight(255, 255, 255,

0, height/2, o,

angle, concentration);
translate(width, height/2,

16-10

16-11

The way lights engage with geometry is determined by the simulated material
properties. The material properties define the way the geometry interacts with ambient
light, how shiny the material is, and determines if the geometry emits light. The
ambient color of a shape is specified with the ambient() function, which takes the
same parameters as Ti11() and stroke (). A material with an ambient color of white
(255, 255, 255) will reflect all of the ambient light that comes into it. A face with an
ambient color of dark green (o, 128, o) will reflect half of the green light it receives but
none of the red or blue. The following program shows how the ambient material
property affects the color of geometry when used with the default lights:

void setup() {
size(100, 100, P3D);
noStroke();

void draw() {
background(0);
lights(); // Default lights
// The sphere is white by default so
// the ambient light changes the color
float r = map(mouseX, 0, width, 0, 255);
ambient(r, r, 126);
translate(width/2, height/2, 0);
sphere(33);

The second directional component of light is specular reflection. This is light that is
bounced off of the surface reflected across the normal. The more specular reflection a
material has, the more reflective it appears. A perfect mirror, for example, has no diffuse
reflection and all specular reflection. The lightSpecular () function sets the specular
color for lights. The specular quality of a light interacts with the specular material
qualities set through the specular () function. The specular () function sets the
specular color of materials, which sets the color of the highlights.

Another property called shininess, controlled through the shininess () function,
also factors into specular reflection. It is the rate of decay of specular reflection as the
incoming ray deviates further from the normal. A high shininess will produce very
intense bright spots on materials, as on shiny metal. Lower shininess will still allow for
specular reflection, but the highlights will be softer. The following program varies the
shininess as the mouse moves left to right.

210 3D Drawing

16-12

void setup() {
size(100, 100, P3D);
noStroke();

void draw() {
background(0);
fill(o, 51, 102);
ambientLight(102, 102, 102);
lightSpecular (204, 204, 204);
directionallight(102, 102, 102, 0, 0, -1);
specular(255, 255, 255);
translate(width/2, height/2, 0);
float s = map(mouseX, 0, width, 1, 10);
shininess(s);
sphere(33);

Shapes are treated as a set of faces. For example, each of the six sides of a cube is a
single face. Each face has a normal, a direction vector that sticks straight out of it, like
an arrow that extends perpendicularly from the center of the face. The normal is used
to calculate the angle of a light relative to the object, so that objects facing the light are
brighter and objects at an angle are less so. Ambient light, since it is without direction,
is not affected by a surface’s normal, but all other types of light are. The material
reflects light in two ways. First is diffuse reflection. A material has a diffuse color that
affects the amount of light that scatters in all directions when it is hit by light. When
light hits the surface head-on (in line with the normal), the surface reflects all of its
diffuse color; when the light is at go degrees to the normal, the surface reflects none.
The closer to the normal a light hits a surface, the more diffuse light it will reflect (this

is calculated using the cosine of the angle between the incoming light and the normal).

The more diffuse a surface is, the rougher and less shiny it appears. Often the ambient
and diffuse components of a material are manipulated together. Physically, they are
essentially the same quantity. The f111 () function in Processing sets both together,
but the ambient color can be controlled separately with the ambient() function.

Texture maps

The texture of materials is an important component in a 3D scene’s realism. Processing
allows images to be mapped as textures onto the faces of objects. The textures deform
as the objects deform, stretching the images with them. In order for a face to have an
image mapped to it, the vertices of the face need to be given 2D texture coordinates:

211 3D Drawing

16-13

., €

Geometry Texture Texture mapped to geometry

These coordinates tell the 3D graphics system how to stretch the images to fit the faces.
Good texture mapping is a craft. Most 3D file formats support saving texture
coordinates with object geometry. With Processing, textures are mapped to geometry
using a version of the the vertex() function with two additional parameters, u and v.
These two values are the x-coordinates and y-coordinates from the texture image and
are used to map the vertex position with which they are paired.

The most straightforward technique maps a rectangular photo onto geometry of
the same shape. In the following example, the width and height of the rectangle
defined by vertex() is 100 x 100 pixels. The photo that is loaded and mapped has a
width and height of 200 x 200 pixels. These values are used in the vertex () functions
to define the mapping.

PImage tex;

void setup() {
size(100, 100, P3D);
tex = loadImage("dwp-parallel.png");
noStroke();

void draw() {
background(0);
translate(0, 0, -height/4);
float ry = map(mouseX, 0, width, 0, TWO _PI);
rotateY(ry);
beginShape();
texture(tex);
vertex(o, 0, 0, 0, 0);
vertex(100, 0, 0, 200, 0);
vertex(100, 100, O, 200, 200);
vertex(0, 100, 0, O, 200);
endShape();

212 3D Drawing

16-14

There are two ways to define the mapping coordinates; this is done with the
textureMode () function. The default parameter, IMAGE, sets the mapping coordinates
in relation to the number of pixels in the source image. The other option, NORMAL, sets
the mapping to normalized values (numbers between 0.0 and 1.0), where 1.0 represents
the maximum horizontal and vertical dimension of the image. The next program
converts the prior to normalized texture values.

PImage tex;

void setup() {
size(100, 100, P3D);
tex = loadImage("dwp-parallel.png");
noStroke();
textureMode (NORMAL) ;

void draw() {
background(0);
translate(0, 0, -height/4);
float ry = map(mouseX, 0, width, 0, TWO _PI);
rotateY(ry);
beginShape();
texture(tex);
vertex(o, 0, 0, 0, 0);
vertex(100, 0, 0, 1, 0);
vertex(100, 100, 0, 1, 1);
vertex(o, 100, 0, 0, 1);
endShape();

The final example in this chapter extrapolates on the preceding texture mapping
techniques to work with irregular geometry. The same image is used as the prior code,
but a custom shape is cut from the image, rather than displaying the entire square. The
default texture mode IMAGE is used because most newcomers are more comfortable
with using specific pixel coordinates rather than normalized values between o and 1.
Because the source image is twice the size in pixels as the geometry, notice the
numbers for the texture coordinates are correspondingly doubled.

213 3D Drawing

16-15

PImage tex;

void setup() {
size(100, 100, P3D);
tex = loadImage("dwp-parallel.png");
noStroke();

void draw() {
background(0);
translate(0, 0, -height/4);
float ry = map(mouseX, O, width, 0, TWO _PI);
rotateY(ry);
beginShape();
texture(tex);
vertex(o, 6, 0, 0, 12);
vertex (100, 45, 0, 200, 90);
vertex(100, 80, 0, 200, 160);
vertex(0, 44, 0, 0, 88);
endShape();

Exercises

1. Extend code 16-o04 to draw a box and sphere in place of the rectangle and line.
Explore a range of rotation values.

2. Modify code 16-07 to use different camera settings when the mouse is pressed.

3. Design a simple 3D scene with boxes and spheres and light it with the default 1ights()
function.

4. Place custom lights in your code from exercise 3 to change the mood of the image.

5. Load an image and use it as a texture for an irregular shape of your own design.

214 3D Drawing

16-16

17 Shapes

This chapter introduces loading and displaying 2D and 3D vector graphics, then
demonstrates how to create new shapes.

Syntax introduced:

PShape, shape(), shapeMode()

PShape.disableStyle(), PShape.enableStyle()

createShape(), PShape.setFill(), PShape.setStroke()
PShape.getVertexX(), PShape.getVertexY(), PShape.setVertex(),
PShape.getVertexCount()

In contrast to working with image formats like JPG and PNG, other file types such as
SVG (Scalable Vector Graphics) and OBJ store image data as vector geometry rather than
as a grid of colors. This difference affects how a specific file may be used. For instance,
bitmap image formats are best for displaying photographic imagery captured by a
camera, while vector files are most appropriate for drawn geometry such as maps,
typography, and logos. Vector files store graphics as coordinates and therefore don’t
have a native resolution like an image file. A bitmap PNG file saved at 480 x 270 pixels
will distort if enlarged to 1920 x 1080 pixels while a vector-based SVG file can be scaled
smaller or larger without distortion. Bitmap files and vector files are different enough
from each other that specialized software programs are typically used to create each
type. For example, Adobe Illustrator and Inkscape are used to create and edit vector
files, while Adobe Photoshop and the GNU Image Manipulation Program (GIMP) are
used to edit bitmap images. The early examples in this chapter reveal the benefits and
drawbacks to loading vector files made in other programs in contrast to building them
from scratch in Processing. The later examples show how to make and store shapes
created directly as sequences of vertices in code.

Display SVG

The SVG format specifies 2D graphics. SVG is an open standard that stores data in XML
format (p. 499). It is supported widely across programs, including all modern web
browsers. To load and display an SVG file within a program, the PShape data type is
used in tandem with the loadShape() and shape () functions. This is a parallel
process to working with images and fonts. As with loading images and fonts, the SVG
file must be in the data folder of the current sketch. See the Load Media section on
page 151 for instructions.

The following example shows how these functions operate in sequence by loading
a vector map of Antarctica and drawing it to the display window. As you can see, the

215

complexity of the Antarctica outline would be challenging and tedious to render using
individual vertex() functions.

PShape land; 17-01
void setup() {

size(100, 100);
land = loadShape("antarctica.svg");

void draw() {
background(204);
shape(land, 10, 10);

}

Like the the image () function, the shape() function has two versions. The one in the
above example has three parameters. The first is the name of the PShape variable and
is followed by the x- and y-coordinates. The second version of the function has a fourth
and fifth parameter to respectively set the width and height of the shape.

PShape land; 17-02
void setup() {

size(100, 100);
land = loadShape("antarctica.svg");

void draw() {
background(204);
shape(land, 10, 10, 80, 80);

}

The shapeMode () function, like imageMode (), changes the way the parameters to
shape() are interpreted. In the next example, scaling the geometry as the mouse
moves from left to right emphasizes this. It reveals how shapeMode (CENTER) draws
the SVG from the middle.

216 Shapes

PShape land;

* void setup() {

size(100, 100);
land = loadShape("antarctica.svg");
shapeMode (CENTER);

}

void draw() {
background(204);
translate(width/2, height/2);
float scalar = map(mouseX, 0, width, 0.1, 2.5);
scale(scalar);
shape(land, 0, 0);

}

Also, like the PImage class, the PShape class has internal variables to store the width
and height of the vector data as defined in the file. To scale the geometry at the same
width to height ratio, multiply the dimension variables by the same value. In this
example, the original geometry is larger than the 100 x 100 pixel display window, so a
number smaller than one is used as the multiplier to decrease the size to fit within the
window.

PShape land;

w void setup() {

size(100, 100);
land = loadShape("antarctica.svg");

void draw() {
background(204);
float scalar = 0.36;
shape(land, 8, 14,
land.width*scalar, land.height*scalar);

The last item to discuss about SVG files is the styling. By default, the shapes are
displayed as they are defined in the SVG, but it is possible to cancel these fill and stroke
attributes in order to define new values through the code. Before setting new fill and
stroke values, we need to tell the program to ignore the embedded styles. This is done
by calling the disableStyle() method on the PShape object. After the styles are
disabled, the fil1l() and stroke() functions in the code affect the appearance of the
shape. The original styles are restored with the enableStyle() method. Disabling the

217 Shapes

17-03

17-04

style is demonstrated in the following example to change the color of the map to white
and gray:

PShape land;

void setup() {
size(100, 100);
land = loadShape("antarctica.svg");
noStroke();

void draw() {
background(204);
land.disableStyle();
fill(255);
shape(land, -20, 0);
fill(102);
shape(land, 15, 0);
land.enableStyle();
shape(land, 50, 0);

}

The PShape class has a long list of additional methods to modify how a shape is drawn
to the screen.It hasarotate(), scale(),and translate() to transform how a
PShape object is drawn to the screen. These and additional functions described later in
this chapter allow the vertex and style data stored inside a PShape to be modified.

Display OBJ

The OBIJ file format stores 3D vector geometry. It is useful because it is relatively easy to
read and write and therefore is a good way to import and export geometry. In
additional to storing the vertex points, the OBJ format is capable of storing the texture
coordinates and normals for each vertex. As discussed in the prior chapter, the normals
are necessary for lighting. External material files may be referenced within the file
format as well.

Before working with a 3D file, it’s helpful to know the origin and the scale. For the
following examples, the Utah teapot is used. This is a 3D file first created by computer
graphics pioneer Martin Newell in 1975 that has subsequently appeared in examples
within research papers and as an in-joke within animated films. For this version of the
teapot, the origin coordinates (o, o) are at the center and bottom and the range of the
coordinates is small. The object is sized and positioned in the examples in relation to
the coordinates of the model. The following example loads the teapot and displays it to

218 Shapes

17-05

the screen. Note that P3D is used as a third parameters to size() to enable the ability
to draw three-dimensional shapes.

PShape pot;
void setup() {

size(100, 100, P3D);
pot = loadShape("teapot.obj");

void draw() {
background(0);
float scalar = 12.0; // Scalar
shape(pot, 50, 70,
pot.width*scalar, pot.height*scalar);

Unlike the map of Antarctica used in the SVG examples, the teapot is a 3D file, so it
makes sense to add the ability to rotate the object in the code to see the complete
model. This leads to a different way of thinking about how the model is positioned on
screen that utilizes the transformation functions to position, scale, and rotate the
model. The coordinates for the shape () function are changed to (0,0) so that the model
rotates around the center point of its internal coordinates. It’s moved to the desired
screen position with translate(), and the size is changed with scale(). The

lights () function simulates light across the model to reveal its surfaces.

PShape pot;
float angle = 0.0;

void setup() {
size(100, 100, P3D);
pot = loadShape("teapot.obj");

void draw() {

background(0);
lights();
translate(50, 50);
scale(12);
rotateX(angle);
shape(pot, 0, 0);
angle += 0.05;

219 Shapes

17-06

17-07

Different lights can be used to change the appearance of the model and like with SVG,
the disableStyle() method allows the values to affect the colors.

Transform

In the previous teapot example, the scale and rotation functions were used to affect the
teapot model. Alternatively, the model can be changed with its internal transformation
methods. In fact, every PShape object has its own methods to rotate, transform, and
scale it. There is one important difference. Unlike the main transformation functions
described in the Transform chapter, the PShape methods are cumulative and relative.
Let’s look at an example, and then we’ll explain what is happening.

PShape pot;

void setup() {
size(100, 100, P3D);
pot = loadShape("teapot.obj");
pot.scale(12);

void draw() {
background(0);
lights();
translate(50, 50);
pot.rotateX(0.05);
shape(pot, 0, 0);

The main transformation functions reset themselves each time through the draw()
block, but add together within draw(), while the methods for PShape are cumulative.
For example, the first time through draw(), the shape rotates o.o5 radians, the next
time through draw, it rotates another o.o5 radians, so now the total rotation is 0.1 at
that point in the program. Because the scale () method is in setup(), that code only
runs once, so the scalar value for the teapot remains the same while the program runs.
In comparison to example 17-07, the code is cleaner because the angle variable isn’t
needed, and the scale () happens only once in setup() rather than each time
through draw.

It’s important to say that one way of programming this little teapot example is not
better than the other. They are different ways of thinking about the shapes, and each
individual is best left to make a personal choice about what makes the most sense.

220 Shapes

17-08

Create

Working with primitive shapes like rectangles and ellipses is a bit like working with
blocks. A surprising amount of work can be done by composing primitives, but the level
of detail is limited by the scale of the building block relative to the scale of the
composite. It’s often appropriate to craft a shape from individual vertices as discussed
in the Vertices chapter. With a PShape, though, these custom shapes can be saved into
a new object capable of utilizing the PShape methods. This often makes the code more
legible and it can optimize the code to run faster. We’ll start by modifying code 15-04 to
create a new PShape object.

PShape zig;
void setup() {

size(100, 100);
zig = createShape();

zig.beginShape();
zig.fill(0);
zig.noStroke();
zig.vertex(10, 0);
zig.vertex(100, 30);
zig.vertex(90, 70);
zig.vertex(100, 70);
zig.vertex(10, 90);
zig.vertex(50, 40);
zig.endShape();

void draw() {
background(204);
shape(zig, 0, 0);

The new syntax in this example is the createShape() function. As the name suggests,
this function is used to construct the shape so it’s ready to be defined. As with the
examples in the Vertices chapter, the beginShape () and endShape () functions are
used to start and stop the list of geometry that is defined by a series of vertex()
functions. The difference is that these functions are now used directly on the new
PShape object, in this example it’s called zig. The dot syntax is used here in the same
manner as with Strings in the Text chapter. Each time a function such as Ti11() or
vertex() is run following the name of the shape and the dot operator, the action
applies directly to the shape. This is further discussed in the Objects chapter.

221 Shapes

17-09

This code is longer than example 15-04, but it’s also more modular and flexible—it’s
easier to do things with the shape now that it’s a PShape. For example, the shape can
be more simply rotated and scaled as shown here:

zig

2 ALy

zig

zig.
zig.
zig.
zig.
zig.
zig.
zig.
zig.
zig.
zig.
zig.
.translate(-50,

PShape zig;

void setup() {
size(100, 100);

= createShape();
beginShape();
£i11(0);
noStroke();
vertex(10, 0);
vertex(100, 30);
vertex(90, 70);
vertex(100, 70);
vertex(10, 90);
vertex (50, 40);
endShape();
scale(0.7);
-50);

void draw() {
background(204);
shape(zig, 50, 50);

zig.

rotate(0.01);

Everything about defining geometry in the Vertices chapter applies to creating custom
shapes including cutouts and curves. Both minimal and intricate forms can be created
in this manner. The next example, based on code 15-17, shows a combination of two

curves.

222 Shapes

17-10

PShape petal;

‘ void setup() {

size(100, 100, P3D);

petal = createShape();

petal.beginShape();

petal.noStroke();

petal.fill(0);

petal.vertex(90, 39);

petal.bezierVertex(90, 39, 54, 17, 26, 83);
’ petal.bezierVertex(26, 83, 90, 107, 90, 39);

petal.endShape();
petal.translate(-50, -50);

void draw() {
background(204);
shape(petal, 50, 50);
petal.rotateX(0.01);

Modify

When a shape is created as a PShape object, it is stored by Processing in a way that
makes it fast to draw to the screen. This is one of the great benefits of PShape objects
in relation to how fast a program will run, but it makes it a little more difficult to
change the shape after it is created. Drawing attributes such as color can be changed
and the position of each vertex can be changed as well, but new functions are needed,
because the fi11() and vertex() functions only affect geometry about to be drawn
and cannot change a drawing after the fact. For example, when a shape is first created,
as in the previous examples, the Ti11 () function is used to set the color of the vertices
that are added after it. But, once the shape is created, the specialized setFill()
method must be used to change the color. Requiring two separate functions to create
and then later modify the shape may seem confusing, but it’s necessary because they
work differently.

There is a wide range of methods that can affect a shape, but here we’ll focus on
the most essential: setFill(),setStroke(), getVertexx(), getVertexY(),
setVertex().In the following example, code 17-09 is modified to draw with different
gray values each time the shape is drawn. In comparison, note the noStroke()
function was removed from the shape and CLOSE was added to endShape () to make
the stroke wrap all of the way around. Most importantly, the setFill() and
setStroke () are not as flexible as the companion functions fil1() and stroke().
While £i11 (), for instance, can accept one number to define a gray value or three

223 Shapes

17-11

numbers to define a color, setFill() has only a single parameter of the color data
type. In this example, the color for the stroke and fill is changed each frame. The frame
rate is slowed down to make this clearer.

PShape zig;

void setup() {
size(100, 100);
zig = createShape();
zig.beginShape();
zig.fill(0);
zig.vertex(10, 0);
zig.vertex(100, 30);
zig.vertex(90, 70);
zig.vertex(100, 70);
zig.vertex(10, 90);
zig.vertex(50, 40);
zig.endShape(CLOSE);
frameRate(4);

void draw() {
background(204);
color strokevVal = color(random(255));
color fillval = color(random(255));
zig.setStroke(strokeval);
zig.setFill(fillval);
shape(zig, 0, 0);

The next and final example in this section shows how to get the coordinates of each
vertex point and how to modify them. A for loop is used to move through each vertex
in the shape, to grab the coordinates, and to move it slightly based on random values.
The getVertexCount () method returns the total number of vertices in the shape; this
value is used inside the loop to know when to stop counting.

224 Shapes

17-12

PShape zig;

void setup() {
size(100, 100);
zig = createShape();
zig.beginShape();
zig.fill(0);
zig.vertex(10, 0);
zig.vertex(100, 30);
zig.vertex(90, 70);
zig.vertex(100, 70);
zig.vertex(10, 90);
zig.vertex(50, 40);
zig.endShape(CLOSE);

void draw() {
background(204);

for (int i = 0; i < zig.getVertexCount(); i++) {

float x = zig.getVertexX(i);
float y = zig.getVertexY(i);
X += random(-1, 1);
y += random(-1, 1);
zig.setVertex(i, x, y);

}

shape(zig, 25, 25);

There’s a wide range of other things to do with PShape covered in the Processing
reference and examples. Please check there for more ideas and details.

Exercises
1. Create or find an SVG file and write a sketch to display it.

2. Modify your code from exercise 1 to disable the SVG’s drawing attributes and override

them with fil1() and stroke().

3. Create or find an OBJ file and write a sketch to display and rotate it.
4. Similar to the custom shape in code 17-09, build a new shape vertex by vertex.
5. Add to your code from exercise 4 to modify the shape each time a key is pressed.

225 Shapes

17-13

18 Synthesis 2

This chapter discusses the iterative software development process and the activity of
debugging code.

The code sketches up to this point in the book are short. Programs of this length can be
written without much forethought, but planning becomes important when writing
longer programs. The extent of the planning will be up to the programmer, but one
aspect of programming is always the same: large, complex programs must be divided
into series of short, simpler programs. Learning how to divide programs into
manageable parts takes time and experience. As the scope of a program grows, the
number of decisions involved in writing it multiplies. Making changes to a program,
evaluating the result, and then making additional changes is an iterative process. Like a
project in any medium, software improves through many cycles of changes and
evaluations.

Longer programs also present a higher likelihood of mistakes. The flow of logic and
data becomes less obvious in a larger program, and the errors—known as bugs—
introduced are subtler. Learning to track down and fix errors is an important skill in
writing software.

Iteration

There are many different models for software development, but they all contain
elements of analysis, synthesis, and evaluation. A continuous cycle of synthesis and
evaluation is the core of the iterative process. Every project demands variations on each
of these stages, but the purpose of each remains consistent. A more detailed description
of each stage illuminates how they interact.

Analysis

Analysis leads to an understanding of the software—its function, audience, and
purpose. This stage can involve months of research or mere seconds of consideration,
resulting in a proposal, project description, or other means of communicating the
project to others.

Synthesis

The goals and concepts that emerge from the analysis are realized through synthesis.
Early steps in synthesis often include paper sketches, followed by software sketches,
and then refinement of the finished software. The results of this stage are evaluated,
edited, and augmented with additional synthesis until the software is finished.

227

Evaluation

The results of the synthesis phase are evaluated in relation to the analysis to determine
what remains to be done. Is the project complete or is another round of synthesis
needed? What improvements can be made? What is working and what needs to be
fixed? Depending on the nature of the project, the evaluation sometimes returns to
analysis and the goals of the project are modified.

Programs change quickly, and sometimes the programmer prefers an earlier version.
Save multiple versions of the sketch while working so that it is always possible to
return to a previous iteration of the code. Simply select “Save As...” from the File menu
to save a new version of the program with a different name. The “Archive Sketch”
option from the Tools menu saves the code and all additional media for the current
sketch inside a ZIP archive with the name of the current sketch and the date. Saving
multiple versions of a sketch ensures that older, working examples of the code remain
intact.

Debugging

When a person first starts programming, errors (bugs) occur frequently; learning how to
find and fix (debug) them is an important part of learning to program. In The Practice of
Programming, the authors explain: “Good programmers know that they spend as much
time debugging as writing so they try to learn from their mistakes. Every bug you find
can teach you how to prevent a similar bug from happening again or to recognize it if it
does.”

Some bugs reveal themselves when the Run button is pressed, as they prevent the
program from starting. Other bugs appear while the program is running, causing the
program to stop. The message area (p. 9) turns red and reveals a summary of the
problem. Sometimes the bug message text is too long to fit in this area, but the full
message always appears in the console. The Processing environment always tries to
highlight the line where the bug occurs, but since the bug may be the result of
something that happened earlier in the program, the error does not always appear on
the highlighted line. The highlighted line is usually related to the error, but perhaps not
in an obvious way.

Not all bugs stop a program from running. Errors in logic or problems with
equations are sometimes more difficult to find because they don'’t stop the program.

Fixing bugs is one of the more difficult and less satisfying aspects of programming.
Sometimes they are obvious and quick to fix, but sometimes it can take hours. Finding
a bug is like solving a mystery. It’s necessary to search through the code to find clues in
pursuit of the culprit. Try the following:

Scrutinize the newest code

If the program is constructed step by step, the bug is often in the newest code or is
linked to it. Check these areas for bugs first.

228 Synthesis 2

Check related code

Sometimes a bug may linger within a program for a long time because the line
containing the bug is not run. When code is introduced that runs a line with a bug, or
when the value of a variable changes so that code within a previously unused if or for
loop is run, the bug will reveal itself.

Display output

Displaying the data produced by a program while it’s running can expose problems and
lead to a better understanding of the code in general. The println() function can be
used to display data as text to the console. This technique can answer questions about
the status of a variable and can be used to check whether a specific line or block of code
is running. The data can also be represented as positions or colors in the program’s
display.

Isolate the problem

It’s often difficult to find a bug within a large program. If possible, try to reduce the
problem to its essence. Is it possible to reproduce the bug by running only a few lines
of code or a much simpler program?

Learn from previous bugs

All programmers—new and experienced—inadvertently introduce bugs into their code.
The hardest time to find a particular bug is usually during its first occurrence. Learn
from previous mistakes to avoid the same bug in the future.

Take a break
Sometimes the best way to fix a bug is to take a break. After hours of programming, the
perspective gained from a diversion or rest can bring clarity.

As with all software, there are bugs in Processing, and some are added and removed
with each release of the software. For the most current information about bugs in the
Processing software, read the Frequently Asked Questions (FAQ) and Troubleshooting
pages accessible from the Help menu.

Examples

Following on the theme of iteration, these examples start with a basic idea and move
through the steps of realizing the idea by building the sketch one step at a time. The
ultimate goal is to build a structure to tell a branching story, where decisions change
the outcome of a narrative. Unlike a linear story that is told the same way each time,
a nonlinear story may be told in a different order each time and can have multiple
endings.

This type of story was introduced in software though games such as Colossal Cave
Adventure and Zork released in the late 1970s. These games allow a player to move

229 Synthesis 2

through a world by typing instructions to perform actions. For instance, the player can
walk through a forest or choose to enter a house. Each decision leads to new
information and discoveries that affect the future of the story. Contemporary games
like the Grand Theft Auto series and experimental works of electronic literature build
on the early ideas pioneered through games, HyperCard stacks, and other precedents.

Before coding a nonlinear story, decisions need to be made about the content and
structure. The specific reference for the following examples is the game Adventure
released for the Atari 2600 in 1979. This game involves searching a maze for items and
avoiding dragons with the ultimate goal of finding a chalice and taking it to the gold
castle. Each screen in Adventure links to other screens to build a larger environment.
We'd like to sketch out an environment of this scope, but these examples will start
simpler by creating two rooms to explore. To reach the defined goals, three short
programs are needed to sort out the details before they are brought together. These
three sketches are:

1. Control the hero with the arrows keys
2. Design and draw the first room
3. Design and draw the second room

The sketch to control the hero is based on code 7-21. It uses the four arrow keys to move
a circle, up, down, left, and right. This code is placed directly in draw() instead of the
keyPressed() function so the hero moves continuously while a key is pressed, rather
than once for each key press.

int x = 320; // Hero x-coordinate
int y = 240; // Hero y-coordinate
int r = 40; // Hero radius

float speed = 2.0; // Hero speed

void setup() {
size (640, 480);
ellipseMode (RADIUS);
noCursor();

void draw() {
background(204);

// Draw hero
noStroke();
f111(126);

ellipse(x, y, r, r);

230 Synthesis 2

18-01

Figure 18-1
Screen captures for code 18-o01.

// Move hero with arrow keys
if ((keyPressed == true) 8&8& (key == CODED)) {
if (keyCode == UP) {

y -= speed;

} else if (keyCode == DOWN) {
y += speed;

} else if (keyCode == LEFT) {
X -= speed;

} else if (keyCode == RIGHT) {
X += speed;

}

The next two sketches are outlines of each room in the story environment. The first
room has a gate, drawn as a column of dots, that keeps the hero from getting to a
dagger. The only way out of the room is the right edge of the screen, which connects to
the second room. This other room has only a key drawn with the beginShape() and
vertex() functions. Both rooms have minimal text to help the player along.

// Master variables

int w = 40; // Wall thickness

int tx = 620; // Text x-coordinate

int ty = 420; // Text y-coordinate

boolean gate = true; // Is the gate closed or open?

// Room 1 variables

int gx = 260; // Gate x-coordinate
int dx = 150; // Dagger x-coordinate
int dy = 210; // Dagger y-coordinate

231 Synthesis 2

18-01
cont.

18-02

Figure 18-2
Screen captures for code 18-02.

$AFERBIN IR RENEREN

void setup() { 18-02
size(640, 480); cont.
ellipseMode (RADIUS);
noCursor();
textSize(14);
textAlign (RIGHT);

void draw() {

// Walls

background(255);

noStroke();

£il11(0);

rect(0, O, width, w); // Top

rect(0o, 0, w, height); // Left

rect(0, height-w, width, w); // Bottom

// Gate
fill(o);
if (gate == true) {
for (int y = w; y <= height-w; y += 20) {
ellipse(gx, y, 5, 5);

}
text("Use the arrow keys to explore", tx, ty);

}

// Dagger
f111(102);
triangle(dx, dy, dx+5, dy-10, dx+10, dy);

232 Synthesis 2

rect(dx, dy, 10, 70);
rect(dx-10, dy+45, 30, 10);
}

// Master variables

int w = 40; // Wall thickness
int tx = 620; // Text x-coordinate
int ty = 420; // Text y-coordinate

boolean gate = true; // Is the gate closed or open?

// Room 2 variables
int kx = 440; // Key x-coordinate
int ky = 230; // Key y-coordinate

void setup() {
size (640, 480);
ellipseMode (RADIUS);
noCursor();
textSize(14);
textAlign (RIGHT);

void draw() {

// Walls

background(255);

noStroke();

£il11(0);

rect(o, 0, width, w); // Top
rect(width-w, 0, w, height); // Right
rect(0, height-w, width, w); // Bottom

// Key

if (gate == true) {
f111(102);
pushMatrix();
translate(kx, ky);
beginShape();
vertex(0, 10);
vertex (50, 10);
vertex(50, 0);
vertex(80, 0);
vertex (80, 30);

233 Synthesis 2

18-02
cont.

18-03

Figure 18-3
Screen captures for code 18-03.

vertex(50, 30);
vertex (50, 20);
vertex(30, 20);
vertex(30, 30);
vertex (20, 30);
vertex (20, 20);
vertex(10, 20);
vertex(10, 30);
vertex(0, 30);
endShape();

popMatrix();

// Text
£il11(0);
if (gate == true) {
text("Grab the key to open the gate", tx-w, ty);
}
else {
text("You have the key. The gate is open!", tx-w, ty);

After these short prototypes are working, they are put into a larger program and linked
together to create transitions. For instance, the current room is determined by the mode
variable, either a 1 or 2. When the hero moves off the right edge of the display window,
the mode variable is set to 2, which triggers the if conditional to run the code for the
second room. When the position of the hero is near the key, the gate “opens” in the first
room because the boolean variable gate is set to false. When the hero moves off the
left edge of the display window in the second room, the mode switches back to first

234 Synthesis 2

18-03
cont.

room.In both rooms, the hero is confined inside three walls with a series of conditional
expressions.

// Master variables 18-04
int mode = 1; // Current room

int w = 40; // Wall thickness

int tx = 620; // Text x-coordinate

int ty = 420; // Text y-coordinate

boolean gate = true; // Is the gate closed or open?

// Hero variables

400; // Hero x-coordinate
int vy 240; // Hero y-coordinate
int r = 40; // Hero radius

float speed = 2.0; // Hero speed

int x

// Room 1 variables

int gx = 260; // Gate x-coordinate
int dx = 150; // Dagger x-coordinate
int dy = 210; // Dagger y-coordinate

// Room 2 variables
int kx = 440; // Key x-coordinate
int ky = 230; // Key y-coordinate

void setup() {
size (640, 480);
ellipseMode (RADIUS);
noCursor();
textSize(14);
textAlign (RIGHT);

void draw() {
if (mode == 1) { // ROOM 1

// Walls

background(255);

noStroke();

fill(0);

rect(o, 0, width, w); // Top

rect(0o, 0, w, height); // Left

rect(0, height-w, width, w); // Bottom

235 Synthesis 2

Figure 18-4
Screen captures for code 18-04.

236 Synthesis 2

237

// Gate 18-04
£il11(0); cont.
if (gate == true) {
for (int y = w; y <= height-w; y += 20) {
ellipse(gx, y, 5, 5);

}
text("Use the arrow keys to explore", tx, ty);
} else {
text("Edit the code to grab the dagger", tx, ty);
}
// Dagger
fi11(102);

triangle(dx, dy, dx+5, dy-10, dx+10, dy);
rect(dx, dy, 10, 70);
rect(dx-10, dy+45, 30, 10);

// Stop the hero from walking through walls
if (gate == true) {
if (x < gx+r+5) { // Check gate
X = gX+Ir+5;

}
} else {
if (x < w+tr) { // Check left wall
X = wWtr;
}

}
if (y > height-w-r) { // Check bottom wall
y = height-w-r;

}

if (y < w+r) { // Check top wall
y = wtr;

}

// Move to room 2
if (x > width+r)
mode = 2;
X = 1;

} else { // RoOOM 2

Synthesis 2

238

// Walls

background(255);

noStroke();

fill(0);

rect(o, 0, width, w); // Top
rect(width-w, 0, w, height); // Right

rect(0, height-w, width, w); // Bottom

// Key
if (gate == true) {

fill(102);
pushMatrix();
translate(kx, ky);
beginShape();
vertex(0, 10);
vertex (50, 10);
vertex(50, 0);
vertex(80, 0);
vertex (80, 30);
vertex (50, 30);
vertex (50, 20);
vertex(30, 20);
vertex(30, 30);
vertex (20, 30);
vertex (20, 20);
vertex(10, 20);
vertex (10, 30);
vertex(0, 30);
endShape();
popMatrix();

// Text
fill(0);
if (gate == true) {

}

text("Grab the key to open the gate", tx-w,

else {

}

text("You have the key. The gate is open!", tx-w, ty);

Synthesis 2

ty);

18-04
cont.

// Check if hero is on top of the key 18-04

if (x > kx 88 x < kx+80 8% y > ky & y < ky+30) { cont.
gate = false;

}

// Stop the hero from walking through walls
if (x < -r) {
mode = 1;
x = width-r;
}
if (x > width-w-r) { // Check right wall
x = width-w-r;
}
if (y > height-w-r) { // Check bottom wall
y = height-w-r;

}

if (y < w+r) { // Check top wall
y = wtr;

}

// Move to room 2
if (x > width+r) {
mode = 2;
X = 1;

// Draw hero
fi11(126);
ellipse(x, y, r, r);

// Move hero with arrow keys
if (keyPressed &8 key == CODED) {
if (keyCode == UP) {

y -= speed;

} else if (keyCode == DOWN) {
y += speed;

} else if (keyCode == LEFT) {
X -= speed;

} else if (keyCode == RIGHT) {
X += speed;

}

239 Synthesis 2

This program is so simple that it’s not yet an exciting adventure, but it’s the right
complexity for this moment in learning to write code and it outlines how to continue to
add rooms and experiences. For example, the next step might be to add code for the
hero to pick up the dagger.

Now that the program is functioning, it’s time to think more about the visual
details. We decided to try an opposite approach to the clean geometry of the prototype.
We scanned and edited drawings from Jem (age 4) and Jules (age 2) to build the world.
These drawings were converted from color to grayscale and scaled to match the display
window size. Because a single image can contain dense information, the length of the
sketch is reduced by replacing code to draw a shape with a single image. This is most
noticeable with the key. Note that all images are loaded inside setup() so they are
ready at the beginning of the program. For more on loading and displaying images,
refer to the Image chapter (p. 163).

// Master variables

int mode = 1; // Current room

int w = 40; // Wall thickness

int tx = 620; // Text x-coordinate

int ty = 420; // Text y-coordinate

boolean gate = true; // Is the gate closed or open?
PImage scribbles; // Background image

PFont heroFont; // Font for the project

// Hero variables

PImage hero; // Hero image
int x = 440; // Hero x-coordinate
int y = 240; // Hero y-coordinate
int r = 110; // Hero radius

float speed = 2; // Hero speed

// Room 1 variables

int gx = 220; // Gate x-coordinate
int dx = 75; // Dagger x-coordinate
int dy = 120; // Dagger y-coordinate
PImage dagger; // Dagger image

// Room 2 variables

int kx = 390; // Key x-coordinate
int ky = 180; // Key y-coordinate
PImage gateKey; // Key image

240 Synthesis 2

18-05

void setup() { 18-05
size (640, 480); cont.
noCursor();
textAlign (RIGHT);
hero = loadImage("figure.png");
scribbles = loadImage("background.png");
heroFont = createFont("SourceCodePro-Bold", 16);
gateKey = loadImage("key.png");
dagger = loadImage("dagger.png");
textFont(heroFont);

void draw() {
if (mode == 1) { // ROOM 1

// Walls
imageMode (CORNER);
image(scribbles, 0, 0);

// Gate
if (gate == true) {
noStroke();
til11(255);
rect(gx, w, w, height-w*2);
ftill(o);
text("Use the arrow keys to explore", tx, ty);
} else {
text("Edit the code to grab the dagger", tx, ty);

// Dagger
image(dagger, dx, dy);

// Stop the hero from walking through walls
if (gate == true) {
if (x < gx+r+5) { // Check gate
X = gXx+r+5;
}
} else {
if (x < w+tr) { // Check left wall
X = Wtr;

241 Synthesis 2

Use the arrow keys to explore Grab the key to open the gate

Edit the code to grab the dagger You have the key, The gate is open!

Figure 18-5
Screen captures for code 18-05.

242 Synthesis 2

} 18-05
t.
} con

if (y > height-w-r) { // Check bottom wall
y = height-w-r;

}

if (y < w+r) { // Check top wall
y = wtr;

}

// Move to room 2
if (x > width+r) {
mode = 2;
X = 1;

} else { // RoOOM 2

// Walls
imageMode (CORNER);
image(scribbles, -width, 0);

// Key

if (gate == true) {
image(gateKey, kx, ky);

}

// Text
fill(0);
if (gate == true) {
text("Grab the key to open the gate", tx-w, ty);
}
else {
text("You have the key. The gate is open!", tx-w, ty);

}

// Check if hero is on top of the key
if (x > kx 8& x < kx+gateKey.width &8 y > ky 8&&
y < ky+gateKey.height) {
gate = false;
}

243 Synthesis 2

// Stop the hero from walking through walls
if (x > width-w-r) { // Check right wall
x = width-w-r;
}
if (y > height-w-r) { // Check bottom wall
y = height-w-r;

}

if (y < wtr) { // Check top wall
y = wtr;

}

// Move to room 1
if (x < -r) {
mode = 1;
x = width-r;

// Draw hero
imageMode (CENTER);
image(hero, x, y);

// Move hero with arrow keys
if ((keyPressed == true) &8 (key == CODED)) {
if (keyCode == UP) {

y -= speed;

} else if (keyCode == DOWN) {
y += speed;

} else if (keyCode == LEFT) {
X -= speed;

} else if (keyCode == RIGHT) {
X += speed;

}

These sketches are just the start of what this story can be. With the code covered in the
book so far, this game can continue with additional rooms and challenges, but the code
will begin to feel long and unstructured. With the techniques learned in future
chapters, this story can be written in a more modular way that allows it to grow while
still being well organized. From a visual point of view, different typography, images,

244 Synthesis 2

18-05
cont.

and shapes can be added. To see some of the changes (and similarities) to graphics over
the last thirty years, compare the original Adventure graphics (1979) with Age of Conan
(2008) and Sword & Sorcery (2011). Additionally, the entire adventure theme for this
example can be replaced with a different type of narrative. We encourage each reader to
expand and change the narrative based on what you know now and to revisit it after
you've finished the book.

Note
1. Brian W.Kernighan and Bob Pike, The Practice of Programming (Addison-Wesley, 1999), p. 117.

245 Synthesis 2

19 Interviews: Interaction

Lynn Hershman Leeson (LORNA)

Robert Winter (Ludwig van Beethoven: Symphony No. g)
Josh On (They Rule)

Steph Thirion (Eliss)

e j

DARE YOU TO PRESS -l
(STILL STEP FORWARD)

Screen captures from the LORNA laser disk. Image courtesy bitforms gallery nyc.

LORNA (Interview with Lynn Hershman Leeson)

Creator Lynn Hershman Leeson
Year 1979—1983

Medium LaserDisk

Software Custom software

URL www.lynnhershman.com
What is LORNA?

LORNA is an interactive installation as a vehicle for people to virtually adopt the persona
of the lead character LORNA, an agoraphobic woman who lives in fear of the outside world. Fear
is generated by ingested media that she sees via her remote unit on her TV set, which shows
wars and pervasive advertising through which she is manipulated. Viewers use an identical
remote unit to hers to transport themselves into her life and see the thirty-two chapters that
define her.

A precondition to video is that it does not talk back. It absorbs rather than reflects. While
video does not talk back, interactive works are like a two-way mirror that required dialogues. I
found this possibility deeply subversive! Unlike my live performance Roberta, who existed by
interactions in the world, LORNA, the main character of my first interactive videodisk, never left
her one-room apartment.

The objects in her room were very much like those in an earlier installation, the Dante
Hotel, except the television set. As LORNA watched the news and ads, she became fearful —
afraid to leave her tiny room. Viewers were invited to liberate LORNA from her web of fears by
accessing buttons on their remote control unit that corresponded to numbers placed on the
items in her room. Instead of being passive, the action was literally in the hands of the viewer—
now a participant. Each numbered object accesses information about LORNA's past, future and
personal conflicts. Many images on the screen are of the remote control device LORNA uses to
change television channels. Because the participant also uses a nearly identical unit to direct the
disc action, a metaphoric link or point of identification is established and surrogate decisions
are made for LORNA.

Participants chose to voyeuristically overhear conversations of different contexts as they
trespassed the space of her hard-pressed life. There were three endings: LORNA shoots her
television set, she commits suicide, or, what we Northern Californians consider the worst of all,
she moves to Los Angeles. The plot has multiple variations that can be seen backwards,
forwards, at increased or decreased speeds, and from several points of view. There is no
hierarchy in the ordering of decisions.

Why did you create LORNA?

I wanted to create a vehicle that showed architectural space and time, and was
simultaneously a virtual performance enacted by users. The word user did not yet exist, and I
invented it as a way of explaining how people would guide the interaction. In fact, I had to
invent most of the dialogue and iconic methods for interaction so people could understand how
to manipulate or interact with it.

249 Interviews: Interaction

LORNA is literally captured by a mediated landscape. Her passivity (presumably caused by
being controlled by media) is a counterpoint to the direct action of the player. As the branching
path is deconstructed, the player becomes aware of the subtle yet powerful effects of fear caused
by media and becomes more empowered (active) through this perception. Playing LORNA was
designed to have viewer/participants transgress into an inverse labyrinth of themselves.

Despite some theories to the contrary, the dominant presumption is that making art is
active and viewing it is passive. Radical shifts in communication technology, such as the
marriage of image, sound, text, and computers, and consummation by the public of this
consort, have challenged this assumption. Users of LORNA reported that they had the
impression that they were empowered because they held the option of manipulating LORNA's
life. Rather than being remotely controlled, the decision unit was literally placed in their hands.
They were not simply watching a narrative with a structure predetermined by an invisible
omniscient. Implications of the relationship reversal between individuals and technological
media systems are immense. The media bath of transmitted prestructured and preedited
information that surrounds (and some say alienates) people is washed away. It is hosed down by
viewer input. Alteration of the basis for exchange of information is subversive in that it
encourages participation and therefore creates a different audience dynamic.

Interactive systems require viewers to react. Their choices are facilitated by means of a
keyboard, mouse, or touch-sensitive screen. As technology expands, there will be more
permutations available, not only between the viewer and the system, but between elements
within the system itself. Some people feel that computer systems will eventually reflect the
personality and biases of their users. They depend upon the architectural strategy of the
program. However, there is a space between the system and player in which a link, fusion, or
transplant occurs. Content is codified. Truth and fiction blur. Action becomes icon and relies on
movement and plasticity of time.

What software tools were used?

I wrote the design and flow chart, and Anna Marie Garti used traditional branching
software used by the company Videodisk Publishing to create and link the modular sound and
video unit into multiple narratives of infinite strategy.

Why did you use these tools?

Very little existed at the time; I started in 1979! So we improvised and designed what we
needed to make the piece function. Because of its early inception, LORNA is generally
inaccessible today. It was pressed in a limited edition of twenty-five, of which only four now
exist. It is only occasionally installed in galleries or museums. Creating a truly interactive work
demands that it exist on a mass scale, available and accessible to many people.

Why do you choose to work with software?

It was the only way to create this work that used invisible architecture for interaction. It
creates the space and time for contemplation and interpretation on multiple and infinite levels.

250 Interviews: Interaction

Screen captures from the LORNA laser disk. Image courtesy bitforms gallery nyc.

'; ISION REFLECTS
FEAHRS AND

WANT TO KNOW' HC]W
GRNA mn TIME?

———

PRESS_4/5L0R 6 BUJ ONE
LA A TIVIES f

THIS IS LORNAS| | slelelvL i B

CAN| YOU IMACNF_SQFNDING L .

THE| LAST 181385 LAYS | HIERE?

JUST LooK ATUALLY THAT JUNK

SE KEEPS ARGUND. 60 AHEAD,

FANTASY OR. LOOK. EACH OBUECT WILL GIVE

REALITY?) YOU A CLUE ABOUT LORBRNA.
S SEARCH THE CHAPTERS OF EACH

ONE AND SEE WHAT | MEAN.

©)

rHe DIVEV. A
MOTE (ONIROULLIFE

LUDWIG VAN
BEETHOVEN
W pios

No.

.

A POCKET GUIDE
BEETHOVEN'S WORLD
THE ART OF LISTENING
A CLOSE READING
THE NINTH GAME

LUDWIG var BEETHOVEN

Symphony No.Q
+ POCKET «- GUIDE

19 MOVEMENT [l 2vd MOVEMENT (Ml 31d MOVEMENT (l| 4th MOVEMENT
Sonata Form Sonata Sertional Form Sonata-Concerte
F [Scherzo] F
Exposition ml) A-Section a ‘:le.t I
Primary Area Exposition B-Section Epen.l SHemeta
Transition Development A-Section varied apositian -
Secondary Area Recapitulation B-Section Horror/Recitative
Closing firea f Interlude Jay Theme
Development ?mnqmm [Tria] A-Section waried Turlkfsh Musie
Recapitulation : Coda Development
Pr A First half Recapitulation
TLNATY Arey Serand half Jey Theme
Secondary Ares — :Y sy
Closing Ares Scherzo da capo MR LHRIRE
Caoda Coda Codas
Nos, 1 2 3

Beethoven’s

INTRODUCTION

Cn May 7, 1824, Ludwig van Beetho-
ver, aged 53, presided in Vienna over
the premiere of his ninth and last
symphony. Feeling unappredated by
the Viermese, he had threatened to
introduce the work in Berlin,

Against the advice of many of his
friends, the deaf compozer had been
persuaded by the theater manager to
"participate in the general direction.”

e e P e it

[

Screen captures from the Ludwig van Beethoven: Symphony No. 9 CD-ROM. Images courtesy of Robert Winter.

Ludwig van Beethoven: Symphony No. 9

(Interview with Robert Winter)

Creator Robert Winter

Year 1989

Medium CD-ROM

Software HyperCard

URL www.artsinteractive.org

What is Ludwig van Beethoven: Symphony No. 9?

Our program was the first commercial CD-ROM about music, and it was for many people
their first exposure to the new world of “multimedia.” I authored it hoping that the appeal
would extend from novices to experts—something the new medium not only allowed but
encouraged.

Why did you create Ludwig van Beethoven: Symphony No. 9?

On January 1, 1989, Bob Stein showed up at our New Year’s Day open house. Bob was the
prophet behind the Voyager Company, and for two years he had already been filling my head
with digital fantasies. This time he brought something with him: a preproduction Sony CD-ROM
drive. It weighed about fifteen pounds and sounded something like a 747 on takeoff. Bob lugged
it to my Macintosh Plus, whipped out an exotic SCSI cable, and fired the box up. After sticking in
one of my CDs, he spent about five comical minutes making one play button. After
demonstrating that I could start and stop the music anywhere on a track within tolerances of a
thousandth of a second, and that play events could be linked to graphics, he asked: “Could I do
anything with it?”

Twenty-three years and ten projects later, I'm still trying to answer that question.
Characteristically, Bob told me that he needed something to show the Markle Foundation in
New York the next week. They were handing out big money for something digital—and big. Bob
told me that he needed one genuine “Oh-my-God” moment. After one sleepless night I thought:
Why not use the same piece of music that the Philips-Sony team used in developing the Red
Book CD spec? The Japanese contingent had insisted that a single disk be capable of holding the
Leonard Bernstein recording of Beethoven'’s Ninth Symphony—an iconic work in the classical
music pantheon. Until now it required four sides of a 33 rpm LP. Serendipitously, I had already
spent ten years studying and publishing about the sketches.

I chose the sudden and electrifying modulation in the Scherzo (the second of the four
movements). I'd always believed I could teach anyone this seminal but otherwise complex
process if I could pinpoint the moment for them. I created a visual effect in which BAM!!!
popped up at the moment of the modulation. The breakthrough was that the user could repeat
the process as many times as they wished (the Vienna Philharmonic never got tired) until they
got it. It was better than me in a classroom. The Markle folks wrote Voyager a very healthy
six-figure check.

What software tools were used?

We created the finished program in just a few intense months using Apple’s new HyperCard
application. For humanists, it has only been recently surpassed by RunRev’s LiveCode, itself an
extension of HyperCard and what we currently use for laptops, iPads, and mobile devices. Bill

253 Interviews: Interaction

Atkinson’s HyperCard placed a lot of refreshing emphasis on text handling, including the first
hot text links. It's amazing how many great ideas are created by a single person’s vision rather
than by the Microsoft mega-team approach. The only thing HyperCard lacked was text flow;
twenty-three years later, I am still working without it. The best part was that my authoring
environment looked almost exactly like the run-time version, so I could see and hear at every
turn how the organism was evolving.

Why did you use these tools?

Although comparatively primitive by today’s standards, HyperCard was the most cutting
edge tool at the time. Almost every day Steve Riggins—the lead programmer—and I would
engage in intense, sometimes heated, discussions about what was possible and what was not.
The Apple engineers in Cupertino would tell Steve that the kinds of features I was demanding
were impossible. When I would periodically conclude with regrets that I would have to give up,
Steve would disappear for a few days and then call me to come in. He'd figured it out. He quietly
performed miracle after miracle—instant page turns, authoring tools that gave me more control
over the process, and ultimately the “bouncing bricks” over music notation or other descriptions
that still make our work unique.

The limitations were draconian. We were held to whatever could fit on a single floppy disk
(if memory serves, something like 800K). The 1-bit graphics (as the illustrations show) were
lower in quality than the average comic book. Any sounds that I added were—like the game
sounds of the time—in crunchy 8-bit. Yet somehow robotic-sounding Beethoven worked when it
empowered users to understand what they were hearing. I used up every byte with—in addition
to the Close Reading—sections on how to listen, the historical back-story, and (our coup de
grdce) a multiple-choice game in which a lightly animated face of Beethoven commented on the
veracity (or lack thereof) of your answers.

Why do you choose to work with software?

We all now understand that virtually everything in the digital world hinges on software,
not hardware. When we started showing our little baby we were astonished at the reception.
Reporters from major newspapers and magazines started showing up and writing stories with
words like “pathbreaking” and “prophetic” in them. The head of ABC News wrote us a tearful
note in which he said he had worshipped this piece for decades but never understood it until
now. At Macworld conventions people would line up ten deep and watch my 67-minute “Close
Reading” (textual commentary that follows the performance) from beginning to end. We had to
ask people to stop using the game so that others could have a crack. People would ask me: “Are
you the person who wrote Beethoven’s Ninth Symphony?” I developed a string of ironic
responses.

Peter Bogdanoff (my collaborator for two decades) and I are at just this moment in the
process of retooling Beethoven (and our other early titles) for release on the full array of devices
available today. We now have color. We have for all practical purposes no storage limitations.
Processors are exponentially faster in 2012 than they were in 1989. Other differences are less
comforting. In 1989 tens of thousands of people cheerfully put out $99.95 for their floppy and a
recording of the Symphony by Hans Schmidt-Isserstedt with the Vienna Philharmonic. Many
had little initial interest in classical music but just wanted to see what multimedia was all
about. We are now post-CD-ROM crash and all looking up to the Cloud. Yet I sometimes wonder
if we will ever create something as fresh again.

254 Interviews: Interaction

Screen captures from the Ludwig van Beethoven: Symphony No. 9 CD-ROM. Images courtesy of Robert Winter.

THE ART - Tuble of Contents

Of ® IMusical Architecture
* Sonata Form Dernystified
LISTENING ® The Clagsical Orchestra
& Anatomy of a Symphony
o Movement 1
* Movement 2
e Movement 3
& Movement 4
® The Text of Schuller's Ode

FRoS| THE ART of LISTENING |24

STRINGS

The core sound of the dagsical orchestra wa:
provided by the strings, which indude (from
smallest to largest) the violin, viola, cella,
and double bass. This passage

from the beginning of the

third movement

combines the wioling,

violas, and cellos:

PLAY STRINGS

Datted rhythms seem to symbolize the defiance and struggle that char-
acterize the first movement. Rising out of the Void Musie, the Defiance
Theme opens with a succession of four highly charged daotted rhythms:

Click here to play entire Defiance Theme

T

Click here to play
dotted rhythms

Hawr muach less "defiant” this theme iz without its dotted rhythims!
| FLAY DEFIANCE THEME WITHOUT DOTTED RHYTHMS |

A ’“*';/ iy/ ,.‘aLwL

- 7\

Map of the Clear Channel board of directors and the connections created with They Rule. Image courtesy of Josh On.

They R u le (Interview with Josh On)

Creators Josh On, Amy Balkin, and Amy Franceschini
Year 2001, 2004

Medium Web

Software Flash, PHP, MySQL

URL www.theyrule.net

What is They Rule?

They Rule aims to provide a glimpse of some of the relationships of the U.S. ruling class. It
takes as its focus the boards of some of the most powerful U.S. companies, which share many of
the same directors. Some individuals sit on five, six, or seven of the top 500 companies. It allows
users to browse through these interlocking directories and run searches on the boards and
companies. A user can save a map of connections complete with their annotations and email
links to these maps to others. They Rule is a starting point for research into these powerful
individuals and corporations.

Why did you create They Rule?

America is a class-divided society. There is no greater contradiction in our society than the
fact that the majority of the people who do the work are not the ones who reap the benefit. In
1998 the top 1 percent of the population owned 38 percent of the wealth; the top 5 percent
owned over 60 percent. That was the situation in the “boom years.” This inequality might be
overlooked as long as the people at the bottom end of the scale have what they need. They don't.
According to the CIA World Fact Book, 12.5 percent of Americans live below the poverty line.
There is enough to go around; we just have a system that doesn't let it flow.

A few companies control much of the economy, and oligopolies exert control in nearly every
sector of the economy. The people who head up these companies swap on and off the boards
from one company to another, and in and out of government committees and positions. These
people run the most powerful institutions on the planet, and we have almost no say in who they
are. This is not a conspiracy. They are proud to rule, yet these connections of power are not
always visible to the public eye.

Karl Marx once called this ruling class a “band of hostile brothers.” They stand against each
other in the competitive struggle for the continued accumulation of their capital, but they stand
together as a family supporting their interests in perpetuating the profit system as a whole.
Protecting this system can require the cover of a “legitimate” force—and this is the role that is
played by the state. An understanding of this system cannot be gleaned from looking at the
interpersonal relations of this class alone, but rather how they stand in relation to other classes
in society. Hopefully They Rule will raise larger questions about the structure of our society and
in whose benefit it is run.

I wanted They Rule to provide a starting point for getting some facts. They Rule
graphically reveals this one surface reality of an interconnected ruling class, but it also
encourages visitors to dig deeper. It is easy to run a search on companies and individuals
straight from the site. It is not uncommon for the first result in an Internet search engine query
on a board member to come up with their name in connection with a government committee or

257 Interviews: Interaction

advisory board, or even to reveal that they were in government for a time. The people in They
Rule include an ex-president, an ex-secretary of the Treasury, and many ex-members of
Congress. The ongoing Enron scandal, which sparked much activity on the site, revealed just
how closely tied the state is to the corporate world. As Marx put it, the state is “the executive
committee of the ruling class.” Hopefully They Rule can help us confirm (or deny) this.

Far from being an exhaustive exposé of the ruling class, They Rule shows only the smallest
section of the relationships of control. It does not show the patterns of ownership or wealth, the
cultural ties, the institutional and social connections that these people have with each other and
others in their class that do not enter the map. Neither does it show the source of their power,
the exploitation of labor and nature. It is a challenge that stands before us to illustrate some of
these relations in a way that is compelling and revealing.

What software tools were used?

I used a variety of tools, the main one being Flash, which I used for the client side. I used
PHP, MySQL, and phpMyAdmin to build the back end and the databases. I used 3D Studio Max
to make the little people. I used Photoshop to export them for use in Flash. I used TextPad to do
lots of data formatting.

Why did you use these tools?

The main question was what to use for the front end. It may have been possible to build
They Rule with HTML and JavaScript—but it would have been a nightmare to make it cross-
browser compatible. Of all the other options available at the time, Flash had the biggest
adoption and smallest download. I already had a copy of 3D Studio Max—so that was an
obvious choice. Software for three-dimensional graphics is expensive, and there still doesn’t
seem to be a good consumer-level option. PHP is a great and very well documented scripting
language. I am not the best programmer, so it is great to use a program with so many online
examples to draw from. phpMyAdmin is the only software I have ever really used for creating
databases. I stumbled into this with no knowledge, read minimal documentation—and created
a clunky database (I would structure it differently now) that works just fine. Of course PHP and
MySQL and phpMyAdmin are all open source projects that can be downloaded for free, which is
how it should be!

Why do you choose to work with software?

No other medium allows the same combination of massive persistent social collaboration
and interaction—particularly software on the Internet where so many people (by no means all)
can connect through software and create meaningful relationships with each other. We have
only just begun to see the potential of the Internet for aiding social change. Unfortunately, the
NSA has also discovered its potential for social control. It is a contested arena, and it is
important that artists are amongst those in the fight!

258 Interviews: Interaction

. I Browse the list
of companies
and select one.

()

I Reveal the board
of directors.

Select one board
member and show
the other boards on
which he sits.

Search for and
then display a path
between two
companies.

Screen capture sequence while playing Eliss. Images courtesy Steph Thirion.

E l 1SS (Interview with Steph Thirion)

Creator Steph Thirion

Year 2009

Medium iPhone iOS

Software Objective-C, OpenGL ES 1
URL www little--eyes.com

What is Eliss?

Eliss is a multi-touch video game. Your screen gradually fills with circles of colors. The basic
idea is you can't let different colors touch. Additionally you have to place those circles inside
outlets to clear them and make space, but a circle must match the size of the outlet. To adjust
their size, you can split circles into two smaller circles, or combine two same colored circles into
a larger one.

Eventually there’s a lot going on at the same time and you need to use multiple fingers to
control multiple circles. It's a mix of space management, strategic problem solving, quick
observation and reflexes, and multi-touch agility. That’s got to be good for the brain.

Why did you create Eliss?

At the time I was designing/developing web stuff for clients, and didn'’t feel particularly
fulfilled. When the first generation of iOS devices (iPhone and iPod Touch) came out, people had
access to cheap tiny computers with touch screens, and for the first time in the consumer space,
multi-touch. When the App Store was announced as an easy way to get that content into
thousands of those little machines, it seemed like the perfect cue to try something else. I said
farewell to my clients and directed that freed energy into something I was excited to build from
start to finish. I enjoyed working on sound, music, interaction, code, and graphic design. A video
game seemed like a great place to gather all those aspirations together.

I started building a different game, but I got sidetracked with an accidental discovery. As I
was getting my head around the multi-touch programming, I had this surprisingly fun piece of
code where circles followed each finger. I wondered if there could be a game there, like what if I
have to get one of those circles to a certain area without any circle touching another. In the end
it got a little more complicated, but the game evolved from that idea.

What software tools were used?

I used TextMate for code editing, Xcode for resource linking and compiling, and Adobe
Fireworks for some mockups. I used Apple Logic Pro and Native Instruments PRO-53, a plugin
based on the classic Prophet-5 music synthesizer, to make the music and the sound effects. I
programmed the game in Objective-C, and used OpenGL ES 1 for drawing, OpenAL for sound
effects and AVFoundation for music playback. I reqularly used Processing to sketch visual ideas,
but also to build a little tool to create the simple vector fonts used in the game.

Why did you use these tools?

I wanted the game to be drawn by geometry, instead of using bitmaps. I enjoy the process
of designing visuals with code, and here restricting myself to primitives helped me find an
original style, and helped make it responsive and fluid.

261 Interviews: Interaction

I had three languages in my tool belt: ActionScript/Flash, Java/Processing and Ruby. These
are all fairly high level languages—they abstract many technical details from the coder, which
was appropriate for my graphic design education. But if you wanted to develop an app for the
iPhone OS, it was necessary to use Objective-C or C++, which are lower level, more complicated,
languages. I got used to it, but there was a learning curve. I focused on Objective-C; it’s simpler
than C++. I also had to learn OpenGL, which is a powerful but complex way of drawing pixels
that Processing had nicely abstracted away. At the time, there were basically no frameworks for
i0S. There was a lot of new complexity for me.

I missed Processing, where you simply call rect () orellipse() and the shape appears
on the screen. I spent a couple months learning and building layers of code to hide that
complexity away —to free my brain from the technical details and focus on creating the game. I
learned a lot by looking at the actual source code of Processing, and borrowed some useful ideas
from there. It was a friendly lighthouse while I was at sea. I was also inspired by Flash to build a
tree hierarchy system for the interface. I also used Processing itself for sketching, it allowed me
to experiment with and isolate some ideas before adding them to the game.

I used the same synthesizer for both sound and music, because I wanted something that
felt coherently tied to the feel of the game—like hardwired to the pixels, a little bit like what you
feel with the sound and music of old video games when the sounds were generated from
dedicated sound chips.

Why do you choose to work with software?

I drew comic books as a kid, with pen and paper. They looked pretty rough, like storyboards.
A well-executed drawing required practice, and some mistakes forced me to start from scratch.
That friction made it less interesting than actually making the story advance, and I never found
the patience to learn how to draw well. Software later on gave me flexibility. Things like “undo”
gave a shorter path to trial and error and back. The less friction when you iterate, the more you
can afford to change things until they feel just right. Software helped me give more attention to
detail in my work; it helped me become better at making things.

Programming pushed that flexibility into a whole new dimension. The limits of the tools
themselves became elastic. Learning to code has been a long process, but constantly rewarding,
every new thing you learn gives you more power, like a wizard learning new spells from an
ancient book. It's an endless source of new possibilities. And, being so powerful and yet so
precise, it’s also a great source of accidental discoveries.

262 Interviews: Interaction

Screen capture sequence while playing Eliss. Images courtesy Steph Thirion.

20 Calculate

This chapter introduces mathematical functions that can be applied to motion and
interaction techniques.

Syntax introduced:

sq(), sart(), pow(), norm(), lerp(), map()

ceil(), floor(), round(), min(), max(), constrain(), abs(), dist()
PI, QUARTER_PI, HALF_PI, TWO_PI, radians(), degrees()

sin(), cos(), atan2()

Basic mathematical expressions can be used to draw shapes to the screen and modify
their attributes. These techniques are the foundation for examples in the forthcoming
Motion and Dynamic Drawing chapters. They can control movement and the way
elements respond to user input. The numbers produced by these functions are useful to
accelerate and decelerate shapes in motion and move objects along curved paths; they
can modify and augment the data from interface devices to make new interaction
techniques possible. Likewise, the trigonometric functions sine and cosine generate
repeating numbers that can be used to draw waves, circles, and spirals and to move
shapes along these paths. These functions are different from those for drawing shapes,
such as 1ine() and ellipse(), because they return values. This means the function
outputs a number that can be assigned to a variable.

Exponents, Roots

The sq() function is used to square a number and return the result. The result is
always a positive number, because multiplying two negative numbers yields a positive
result. For example, -1 * -1 = 1. This function has one parameter, which can be any
number.

float a = sq(1); // Assign 1.0 to a, equivalent to 1 * 1
float b = sq(-5); // Assign 25.0 to b, equivalent to -5 * -5
float ¢ = sq(9); // Assign 81.0 to c¢, equivalent to 9 * 9

The sqrt () function is used to calculate the square root of a number and return the
result. It is the opposite of sq(). The square root of a number is always positive, even
though there may be a valid negative root. The square root s of number a satisfies the
equation s * s = a. This function has one parameter, which must be a positive number.

265

20-01

float a = sqrt(6561); // Assign 81 to a 20-02
float b = sqrt(625); // Assign 25 to b
float ¢ = sqrt(1); // Assign 1 to ¢

The pow() function calculates a number raised to an exponent. It has two parameters.
The first parameter is the number to multiply, and the second is the exponent, the
number of times to perform the calculation. The following example shows how it is

used:

float a = pow(1, 3); // Assign 1.0 to a, equivalent to 1%*1%*1 20-03
float b = pow(3, 4); // Assign 81.0 to b, equivalent to 3*3%3*3

float ¢ = pow(3, -2); // Assign 0.11 to ¢, equivalent to 1 / 3*3

float d = pow(-3, 3); // Assign -27.0 to d, equivalent to -3*-3*-3

Any number (except o) raised to the zero power equals 1. Any number raised to the
power of one equals itself.

float a pow(8, 0); // Assign 1 to a 20-04
float b pow(3, 1); // Assign 3 to b
float ¢ = pow(4, 1); // Assign 4 to c¢

Normalize, Map

Numbers are often converted to the range 0.0 to 1.0 for making calculations. This is
called normalizing the values. When numbers between 0.0 and 1.0 are multiplied
together, the result is never less than o.o or greater than 1.0. This allows any number
to be multiplied by another or by itself many times without leaving this range. For
example, multiplying the value o.2 by itself 5 times (0.2 * 0.2 * 0.2 * 0.2 * 0.2) produces
the result 0.00032. Because normalized numbers have a decimal point, all calculations
should be made with the float data type.

To normalize a number, divide it by the maximum value that it represents. For
example, to normalize a series of values between 0.0 and 255.0, divide each by 255.0:

Initial value Calculation Normalized value
0.0 0.0 / 255.0 0.0
102.0 102.0 / 255.0 0.4
255.0 255.0 / 255.0 1.0

This can also be accomplished via the norm() function. It has three parameters. The
number used as the first parameter is converted to a value between o.0 and 1.0. The

266 Calculate

second and third parameters set the respective minimum and maximum values of the
number’s current range. If the first parameter is outside the range set by the second
and third parameters, the result may be less than o or greater than 1. The following
example shows how to use the function to make the same calculations as the preceding
table.

float x = norm(0.0, 0.0, 255.0); // Assign 0.0 to x
float vy norm(102.0, 0.0, 255.0); // Assign 0.4 to y
float z norm(255.0, 0.0, 255.0); // Assign 1.0 to z

After normalization, a number can be converted to another range through arithmetic.
For example, to convert numbers between 0.0 and 1.0 in a range between 0.0 and 500.0,
multiply by 500.0. To put numbers between 0.0 and 1.0 to numbers between 200.0 and
250.0, multiply by 5o then add 200. The following table presents a few sample
conversions. The parentheses are used to improve readability:

Initial range of x Desired range of x Conversion

0.0 to 1.0 0.0 to 255.0 x * 255.0

0.0 to 1.0 -1.0 to 1.0 (x * 2.0) - 1.0
0.0 to 1.0 -20.0 to 60.0 (x * 80.0) - 20.0

The lerp() function can be used to accomplish these calculations. The name “lerp”is a
contraction for “linear interpolation.” The function has three parameters. The first and
second parameters define, in order, the minimum and maximum values. The third
parameter defines the value to interpolate between the values; it should always be
between o.0 and 1.0. The following example shows how to use lerp() to make the
value conversions on the last line of the previous table.

float x = lerp(-20.0, 60.0, 0.0); // Assign -20.0 to x
float vy lerp(-20.0, 60.0, 0.5); // Assign 20.0 to y
float z lerp(-20.0, 60.0, 1.0); // Assign 60.0 to z

The map () function is useful to convert directly from one range of numbers to
another. Because its five parameters are hard to keep track of, we’ll break them down
one by one:

map(value, starti, stopl, start2, stop2)
The first parameter is the number to re-map. Similar to the norm function, the second

and third parameters are the minimum and maximum values of the number’s current
range. The fourth and fifth parameters are the minimum and maximum values for the

267 Calculate

20-05

20-06

x = map(m, 0, 400, 0, 255) // Values from 0—400 to 0-255

m— (o] 40 80 120 160 200 240 280 320 360 400
Lo b b o] oo o] oo oo ool

TTTTTTTTITTTTT I I T I oI T T I ITITI T T ITTITTTIT T T]
X —> [0} 40 80 120 160 200 240

s = map(a, -1, 1, 0, 7) // Values from -1-1 to 0-7

a— -1 o] il

LLLLLL L

FTTTT 7T T T T T T T TP T T T Ty T T T T T T T T T T T T TTTd
s— O 1 2 3 4 4 5 6 7

Figure 20-1 Mapping values

The map () function changes the value of a number from one range of numbers to another. For example,
mouseX is always between o and the width of the window (e.g. 1024 pixels), but if a project idea requires
the mouseX variable to control a color, its range needs to be converted to values between o and 255. The
single function call map (mouseX, 0, width, 0, 255) calculates this conversion for each value of
mouseX. When mouseX is o, the result is also o. When mouseX is at the width of the window, the result
is 255, regardless of the width of the sketch. All values between the minimum and maximum are scaled
relative to actual and desired range.

268 Calculate

new range. The next example shows how to use map() to convert values from the
range o to 255 into the range -1 to 1. This is the same as first normalizing the value, then
multiplying and adding to move it from the range o to 1 into the range -1to 1.

float x = map(20.0, 0.0, 255.0, -1.0, 1.0); // Assign -0.84 to x
float vy map(0.0, 0.0, 255.0, -1.0, 1.0); // Assign -1.0 to y
float z map(255.0, 0.0, 255.0, -1.0, 1.0); // Assign 1.0 to z

The way map () works is easier to see through an interactive example. Here, the mouseX
variable is mapped to a series of different ranges. As the mouseX variable changes from
o to 100 (the width of the display window in the example) as the cursor moves left to
right those numbers are transformed to three different ranges from top to bottom:
0—20, -20—80, and 20-60.

void setup() {
size(100, 100);

void draw() {

background(204);
float x1 = map(mouseX, 0, width, 0, 20);

float x2 = map(mouseX, 0, width, -20, 80);
float x3 = map(mouseX, 0, width, 20, 60);
ellipse(x1, 25, 40, 40);
ellipse(x2, 50, 40, 40);
ellipse(x3, 75, 40, 40);

()

Simple curves
Exponential functions are useful to create simple curves. Normalized values are used

with the pow() function to produce exponentially increasing or decreasing numbers
that never exceed the value 1. These equations have the form:

269 Calculate

20-07

20-08

where the value of x is between 0.0 and 1.0 and the value of n is any integer. In these
equations, as the x value increases linearly the resulting y value increases
exponentially. When continuously plotted, these numbers produce this diagram:

X—
X v 0.0 0.2 0.4 0.6 0.8 1.0
Y o.0

0.0 0.0 i o3
0.2 0.0016

0.4
0.4 0.0256

0.6
0.6 0.1296

0.8
0.8 0.4096

1.0
1.0 1.0 y = x4

The following example shows how to put this equation into code. It iterates over
numbers from o to 100 and normalizes the values before making the curve calculation.

= for (int x = 0; x < 100; x++) {
float n = norm(x, 0.0, 100.0); // Range 0.0 to 1.0
float vy pow(n, 4); // Calculate curve
y *= 100; // Range 0.0 to 100.0

point(x, y);

Other curves can be created by changing the parameters to pow() in line 3.

for (int x = 0; x < 100; x++) {
float n = norm(x, 0.0, 100.0); // Range 0.0 to 1.0

; float y = pow(n, 0.4); // Calculate curve
y *= 100; // Range 0.0 to 100.0

point(x, y);

The following set of examples demonstrates how the same curve (y = x4) is used to draw
different shapes and patterns. The first draws a series of circles along the curve, the
second draws lines to the height of the curve, and the third draws a gradient, with the
gray values determined by the values of the curve.

noFill();

for (int x = 0; x < 100; x += 5) {
float n = norm(x, 0.0, 100.0); // Range 0.0 to 1.0
float vy pow(n, 4); // Calculate curve
y *= 100; // Scale y to range 0.0 to 100.0
strokeWeight(n * 5); // Increase thickness
ellipse(x, y, 120, 120);

270 Calculate

20-09

20-10

20-11

1.

271

X—

0.0 0.2 0.4 0.6 0.8 1.0

y = x y = x? y = x4 y = x8
y = 1-x y = 1-x* y = 1-x* y = 1-x*
- (1) y = (1-x)? y = (1-x)* y = (1x)°
\ \ \
y = 1-(1-x) - 1-(1-x)? - 1-(1x)¢ - 1-(1x)°

Figure 20-2 Exponential equations

Each of these curves shows the relationship between x and y determined by an equation. The linear
equations in the left column are contrasted with exponential curves to the right. Codes 20-09 and 20-10
demonstrate how to translate these curves into code.

Calculate

i

for (int x = 5; x < 100; x += 5) {

float n = map(x, 5, 95, -1, 1);
float p = pow(n, 4);

float ypos = lerp(20, 80, p);
line(x, 0, x, ypos);

for (int x = 0; x < 100; x++) {

float n = norm(x, 0.0, 100.0); // Range 0.0 to 1.0
float val = n * 255.0;

stroke(val);

line(x, 0, x, 50); // Draw top gradient

float valSquare = pow(n, 4) * 255.0;
stroke(valSquare);

line(x, 50, x, 100); // Draw bottom gradient

Exponential curves are used in this chapter to generate form, but codes 22-08 and 34-24
in subsequent chapters demonstrate their use to control motion.

Constraining numbers

The ceil(), floor (), round(),min(),and max() functions are used to perform
calculations on numbers that the standard arithmetic operators can’t. The ceil()
function calculates the closest int value that is greater than or equal to the value
of its parameter:

int
int
int

N < X =

int

ceil(2.
ceil(2.
ceil(2.
ceil(2.

0); // Assign 2 to w
1); // Assign 3 to x
5); // Assign 3 to y
9); // Assign 3 to z

The floor () function calculates the closest int value that is less than or equal to the
value of its parameter:

int w
int x
int y
int z

272

floor(2
floor(2
floor(2
floor(2

Calculate

.0); // Assign 2 to w
.1); // Assign 2 to x
.5); // Assign 2 to y
.9); // Assign 2 to z

20-12

20-13

20-14

20-15

The round() function calculates the int value closest to the value of its parameter.
Values ending with .5 round up to the next int value:

int w = round(2.0); // Assign 2 to w
int x = round(2.1); // Assign 2 to x
int y = round(2.5); // Assign 3 to y
int z = round(2.9); // Assign 3 to z

Even though ceil(), floor(),and round() act on floating-point numbers, the result
is always an integer, because that’s the way the result will most often be useful. To
convert to a float, simply assign the result to a float variable.

float w = round(2.1); // Assign 2.0 to w
The min() function determines the smallest value in a sequence of numbers. The

max () function determines the largest value in a sequence of numbers. Both functions
work with two or three parameters:

int u = min(5, 9); // Assign 5 to u
int v = min(-4, -12, -9); // Assign -12 to v
float w = min(12.3, 230.24); // Assign 12.3 to w
int x = max(5, 9); // Assign 9 to x
int y = max(-4, -12, -9); // Assign -4 to y

float z = max(12.3, 230.24); // Assign 230.24 to z

The constrain() function limits a number to a range and can therefore be

used to restrict drawing to parts of the screen.It has three parameters: the first
parameter is the number to limit, the second parameter is the minimum possible
value, and the third parameter is the maximum possible value. This function
returns the number defined as the second parameter if the first parameter is less
than or equivalent, returns the number defined as the third parameter if the

first parameter is greater than or equivalent, and returns the number defined as
the first parameter without change if it is between the second and third parameter
values.

int x = constrain(35, 10, 90); // Assign 35 to x

int y = constrain(5, 10, 90); // Assign 10 to y
float z = constrain(1.2, 0.5, 1.0); // Assign 1.0 to z

273 Calculate

20-16

20-17

20-18

20-19

When used with the mouseX or mouseY variables, this function can set maximum and
minimum values for the mouse coordinate data.

void setup() { 20-20
size(100, 100);
noStroke();

void draw() {
background(0);
// Limits variable mx between 35 and 65
int mx = constrain(mouseX, 35, 65);
// Limits variable my between 40 and 60
int my = constrain(mouseY, 40, 60);
fill(102);
rect(20, 25, 60, 50);
fill(255);
ellipse(mx, my, 30, 30);

Calculating the absolute value of a number is yet another way to constrain a value. The
absolute value is the magnitude of a number, regardless of whether it is a positive or
negative quantity. The name of the function is condensed to abs(), and it has a single
parameter. The following example shows how it works:

float x = abs(10); // Assign 10.0 to x 20-21
float y = abs(0); // Assign 0.0 to y

float z = abs(-60); // Assign 60.0 to z

Distance

The distance between two points is calculated with the dist () function. It has four
parameters. The first and second parameters define the coordinate of the first point,
and the third and fourth parameters define the coordinate of the second point. The
distance between the two points is calculated as a floating-point number and is
returned:

float x = dist(o, 0, 50, 0); // Assign 50.0 to x 20-22
float y = dist(50, 0, 50, 90); // Assign 90.0 to y
float z = dist(30, 20, 80, 90); // Assign 86.023254 to z

274 Calculate

The value returned from dist() can be used to set the properties of shapes so they
respond to the mouse position and movement. In the next example, the distance
between the position of the cursor and the center of the display window is calculated
continuously and set as the radius of a circle.

void setup() {
size(100, 100);

void draw() {
background(0);
float r = dist(width/2, height/2, mouseX, mouseY);
ellipse(width/2, height/2, r*2, r*2);

}

A similar calculation can be made for multiple positions on screen. In the following
example, a grid of circles are drawn with an embedded for loop. The size of each circle
is calculated depending on the distance between each circle and the cursor.

float maxDistance;

void setup() {
size(100, 100);
noStroke();
fill(o);
maxDistance = dist(0, 0, width, height);

void draw() {
background(204);
for (int i = 0; i <= width; i += 20) {
for (int j = 0; j <= height; j += 20) {
float mouseDist = dist(mouseX, mouseY, i, j);
float diameter = (mouseDist / maxDistance) * 66.0;
ellipse(i, j, diameter, diameter);

275 Calculate

20-23

20-24

Easing

Easing, also called interpolation, is a technique for moving between two numbers with
nonlinear increments. Easing is often used to smooth out irregular inputs and to move
between two points on screen. It’s most easily seen through animation, so a related
example will be discussed here. By moving a fraction of the total distance each frame, a
shape can decelerate (or accelerate) as it approaches a target location. Figure 20-3 shows
what happens when a point always moves part of the way between its current position
and the destination. As the shape approaches the target position, the distance moved
each frame decreases; therefore, the shape slows down.

In the following example, the x variable is the current horizontal position of the
circle and the targetX variable is the destination position. The easing variable sets
the fraction of the distance between the circle’s current position and the position of the
mouse that the circle moves each frame. The value of the easing variable changes how
quickly the circle will reach the target. The value must always be between 0.0 and 1.0,
and numbers closer to 0.0 cause the easing to take more time. An easing value of o.5
means the circle will move half the distance each frame and an easing value of o.01
means the circle will move one hundredth of the distance each frame. To show the
difference clearly in this example, the top ellipse is drawn at the targetX position, and
the bottom ellipse is drawn at the interpolated position.

float x = 0.0;
float easing = 0.05; // Numbers 0.0 to 1.0

void setup() {
size(100, 100);

}

void draw() {
background(0);
float targetX = mouseX;
X += (targetX - x) * easing;
ellipse(mouseX, 30, 40, 40);
ellipse(x, 70, 40, 40);

}

To apply the same principle simultaneously to the x- and y-coordinate values, add an
additional set of variables and test for the distance for both. In this example, the small
circle is always at the target position controlled by the cursor, and the large circle is
positioned with the easing equation.

276 Calculate

20-25

target

277

easing = 0.02

.
T rrrrrrrrrrrrrrrrrrrrrrrrrror T T T T Tl
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

easing = 0.05

easing = 0.1

PRCEr I R B B I A
.'-...--'.
PO)
.

.
°
. ®

easing = 0.4

ceee e et eeISOEIIOEOEIIOEOITIOIOEITIIOTTOITTOITOETOTTS

Figure 20-3 Easing

Easing is used to create a smooth transition between values. It's a technique where
one number moves closer to another based on a percentage of the distance
between them. For example, if the current value is o and it moves half way to 10,
the new number will be 5. When 5 is used as the starting value and it again moves
half way to 10, the new value will be 7.5. At the first step, the value changed by 5; at
the second step it changed by 2.5. When this calculation is made over and over, the
change at each step gets smaller as the numbers get closer.

Calculate

float x 0.0; 20-26
float vy 0.0;
float easing = 0.05; // Numbers 0.0 to 1.0

void setup() {
size(100, 100);
noStroke();

void draw() {
background(0);
float targetX
float targetY
X += (targetX
y += (targety
fil1(153);
ellipse(mouseX, mouseY, 20, 20);
fill(255);
ellipse(x, y, 40, 40);

mouseX;
mouseY;
x) * easing;

y) * easing;

The previous two examples continue to make the easing calculation for the circle
position even after it has reached the destination. This is inefficient, and if there are
thousands of circles all easing between positions, it will slow down the program. To
stop the calculations when they are no longer necessary, test to see if the target
position and destination position are near the same and stop the calculation if they are.
The abs () function is used to take the absolute value of a number; this is necessary
because the values used in easing are either negative or positive depending on whether
the position is to the left or to the right of the target. An if structure is used to update
the position only if it’s not at the same pixel as the target.

float x = 0.0; 20-27
float easing = 0.05; // Numbers 0.0 to 1.0

void setup() {
size(100, 100);

void draw() {
background(0);
float targetX = mouseX;
// Distance from position and target
float dx = targetX - x;

278 Calculate

// If the distance between the current position and the
// destination is greater than 1.0, update the position
if (abs(dx) > 1.0) {

X += dx * easing;
}
ellipse(mouseX, 30, 40, 40);
ellipse(x, 70, 40, 40);

Angles, Waves

While degrees are a common way to measure angles (a right angle is 9o°, halfway
around a circle is 180°, and the full circle is 360°), in working with trigonometry,
angles are measured in units called radians. With radians, the angle values are
expressed in relation to the mathematical value m, written in Latin characters as
“pi” and pronounced “pie.” In terms of radians, a right angle is /2, halfway around
a circle is simply m, and the full circle is 2m. The numerical value of m is the ratio

of the circumference of a circle to its diameter. When writing Processing code, use
the mathematical constant PI to represent this number. Other commonly used values
of tare expressed as QUARTER_PI,HALF_PI, and TWO_PI.Figure 20-4 compares
these measurements. Run the following line of code to see the value of m to

8 significant digits.

println(PI); // Print the value of PI to the console

In casual use, the numerical value of m is 3.14, and 2m is 6.28. Angles can be converted
from degrees to radians with the radians () function, or vice versa using degrees ().
This short program demonstrates the conversions between these representations:

float r1 = radians(90);
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>