

Programming Projects in C
 for Students of Engineering,
Science, and Mathematics

CS13_RostamianFM.indd 1 7/15/2014 9:34:38 AM

The SIAM series on Computational Science and Engineering publishes research monographs, advanced under-
graduate- or graduate-level textbooks, and other volumes of interest to an interdisciplinary CS&E
community of computational mathematicians, computer scientists, scientists, and engineers. The series
includes both introductory volumes aimed at a broad audience of mathematically motivated readers
interested in understanding methods and applications within computational science and engineering and mono-
graphs reporting on the most recent developments in the field. The series also includes volumes
addressed to specific groups of professionals whose work relies extensively on computational science and
engineering.

SIAM created the CS&E series to support access to the rapid and far-ranging advances in computer
modeling and simulation of complex problems in science and engineering, to promote the interdisciplinary
culture required to meet these large-scale challenges, and to provide the means to the next generation of
computational scientists and engineers.

Computational Science & Engineering

Editor-in-Chief
Donald Estep
Colorado State University

Editorial Board
Omar Ghattas
University of Texas at Austin

Max Gunzburger
Florida State University

Des Higham
University of Strathclyde

Michael Holst
University of California, San
Diego

David Keyes
Columbia University and KAUST

Max D. Morris
Iowa State University

Alex Pothen
Purdue University

Padma Raghavan
Pennsylvania State University

Karen Willcox
Massachusetts Institute
 of Technology

Series Volumes

Rostamian, Rouben, Programming Projects in C for Students of Engineering, Science, and Mathematics

Smith, Ralph C., Uncertainty Quantification: Theory, Implementation, and Applications

Dankowicz, Harry and Schilder, Frank, Recipes for Continuation

Mueller, Jennifer L. and Siltanen, Samuli, Linear and Nonlinear Inverse Problems with Practical
Applications

Shapira, Yair, Solving PDEs in C++: Numerical Methods in a Unified Object-Oriented Approach,
Second Edition

Borzì, Alfio and Schulz, Volker, Computational Optimization of Systems Governed by Partial
Differential Equations

Ascher, Uri M. and Greif, Chen, A First Course in Numerical Methods

Layton, William, Introduction to the Numerical Analysis of Incompressible Viscous Flows

Ascher, Uri M., Numerical Methods for Evolutionary Differential Equations

Zohdi, T. I., An Introduction to Modeling and Simulation of Particulate Flows

Biegler, Lorenz T., Ghattas, Omar, Heinkenschloss, Matthias, Keyes, David, and van Bloemen Waanders,
Bart, Editors, Real-Time PDE-Constrained Optimization

Chen, Zhangxin, Huan, Guanren, and Ma, Yuanle, Computational Methods for Multiphase Flows
in Porous Media

Shapira, Yair, Solving PDEs in C++: Numerical Methods in a Unified Object-Oriented Approach

CS13_RostamianFM.indd 2 7/15/2014 9:34:38 AM

Programming Projects in C
 for Students of Engineering,
Science, and Mathematics

Society for Industrial and Applied Mathematics
Philadelphia

ROUBEN ROSTAMIAN
University of Maryland, Baltimore County

Baltimore, Maryland

CS13_RostamianFM.indd 3 7/15/2014 9:34:38 AM

Copyright © 2014 by the Society for Industrial and Applied Mathematics

10 9 8 7 6 5 4 3 2 1

All rights reserved. Printed in the United States of America. No part of this book may be
reproduced, stored, or transmitted in any manner without the written permission of the publisher.
For information, write to the Society for Industrial and Applied Mathematics, 3600 Market Street,
6th Floor, Philadelphia, PA 19104-2688 USA.

Trademarked names may be used in this book without the inclusion of a trademark symbol. These
names are used in an editorial context only; no infringement of trademark is intended.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United States and other
countries.

Linux is a registered trademark of Linus Torvalds.

Mac is a trademark of Apple Computer, Inc., registered in the United States and other countries.
Programming Projects in C for Students of Engineering, Science, and Mathematics is an
independent publication and has not been authorized, sponsored, or otherwise approved by
Apple Computer, Inc.

Maple is a trademark of Waterloo Maple, Inc.

MATLAB is a registered trademark of The MathWorks, Inc. For MATLAB product information, please
contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA, 508-647-7000,
Fax: 508-647-7001, info@mathworks.com, www.mathworks.com.

PostScript is a registered trademark of Adobe Systems Incorporated in the United States and/or
other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Windows is a registered trademark of Microsoft Corporation in the United States
and/or other countries.

Figures 15.1 (right image) and 15.2 courtesy of Stockvault.

Figure 19.2 courtesy of the Library of Congress.

Library of Congress Cataloging-in-Publication Data

Rostamian, Rouben, 1949-
 Programming projects in C for students of engineering, science, and mathematics /
Rouben Rostamian.
 pages cm. – (Computational science and engineering series ; 13)
 Includes bibliographical references and index.
 ISBN 978-1-611973-49-5
1. Science–Data processing. 2. Engineering–Data processing. 3. Mathematics–Data processing.

4. C (Computer program language) I. Title.
 Q183.9R67 2014
 502.85’5133--dc23

2014012614

is a registered trademark.

CS13_RostamianFM.indd 4 7/15/2014 9:34:38 AM

root
2014/7/8
page v

�

�

�

�

�

�

�

�

Contents

Chapter interdependencies xi

Preface xiii

I A common background 1

1 Introduction 3
1.1 An overview of the book . 3
1.2 Why C? . 3
1.3 Which version of C? . 4
1.4 Operating systems . 7
1.5 The compiler and other software . 7
1.6 Interfaces and implementations . 9
1.7 Advice on writing . 11
1.8 Special notations . 11

2 File organization 13

3 Streams and the Unix shell 15

4 Pointers and arrays 19
4.1 Pointers . 19
4.2 Pointer types . 20
4.3 The pointer to void . 20
4.4 Arrays . 21
4.5 Multidimensional arrays . 23
4.6 Strings . 24
4.7 The command-line arguments . 25

5 From strings to numbers 27
5.1 The function strtod() . 27
5.2 The function strtol() . 28
5.3 The functions atof(), atol(), and friends 29

6 Make 31
6.1 Multifile programs . 31
6.2 Separate compilation and linking . 31
6.3 File dependencies . 32

v

root
2014/7/8
page vi

�

�

�

�

�

�

�

�

vi Contents

6.4 Makefile version 1 . 34
6.5 How to run make . 35
6.6 Makefile version 2 . 35
6.7 Makefile version 3 . 36
6.8 Makefile: The final version . 38
6.9 Linking with external libraries . 40
6.10 Multiple executables in one Makefile . 40

II Projects 43

7 Allocating memory: xmalloc() 45
7.1 Introduction . 45
7.2 A review of malloc() . 45
7.3 The program . 48
7.4 The interface and the implementation . 49
7.5 Project Xmalloc . 52

8 Dynamic memory allocation for vectors and matrices: array.h 53
8.1 Introduction . 53
8.2 Constructing vectors of arbitrary types 54
8.3 A scheme for dynamically allocated matrices 56
8.4 Constructing matrices of arbitrary types 57
8.5 Project array.h . 59

9 Reading lines: fetch_line() 63
9.1 Introduction . 63
9.2 Reading one line at a time with fgets() 63
9.3 Trimming whitespace and comments . 65
9.4 The program . 66
9.5 The files fetch-line.[ch] . 67
9.6 Project fetch_line . 70

10 Generating random numbers 71
10.1 The rand() and srand() functions . 71
10.2 Bitmap images . 73
10.3 The program . 74
10.4 The file random-pbm.c . 75
10.5 Project Random Bitmaps . 78

11 Storing sparse matrices 79
11.1 Introduction . 79
11.2 The CCS format . 80
11.3 The program . 81
11.4 The files sparse.[ch] . 81
11.5 Project Sparse Matrix . 82

12 Sparse systems: The UMFPACK library 85
12.1 Introduction . 85
12.2 The basics . 85
12.3 The program . 86

root
2014/7/8
page vii

�

�

�

�

�

�

�

�

Contents vii

12.4 umfpack-demo1.c . 87
12.5 umfpack-demo2.c . 89
12.6 umfpack-demo3.c and the triplet form . 90
12.7 Project UMFPACK . 92

13 Haar wavelets 93
13.1 A brief background . 93
13.2 The space L2(0,1) . 93
13.3 Haar’s construction . 94
13.4 The decomposition Vj =Vj−1⊕Wj−1 . 97
13.5 From functions to vectors . 98
13.6 The Haar wavelet transform . 100
13.7 Functions of two variables . 102
13.8 An overview of the wavelet module . 104
13.9 The file wavelet.h . 104
13.10 The file wavelet.c . 105
13.11 Project Wavelets . 109

14 Image I/O 113
14.1 Digital images and image file formats . 113
14.2 Bitmaps and the PBM image format . 114
14.3 Grayscale images and the PGM image format 116
14.4 Color images and the PPM image format 117
14.5 The libnetpbm library . 118
14.6 A no-frills demo of libnetpbm . 121
14.7 The interface of the image-io module . 121
14.8 The implementation of the image-io module 124
14.9 The file image-io-test-0.c . 129
14.10 Project Image I/O . 131

15 Image analysis 135
15.1 Introduction . 135
15.2 The truncation error in a grayscale image 137
15.3 The truncation error in a color image . 138
15.4 Image reconstruction . 138
15.5 The program . 139
15.6 The implementation of image-analysis.c 139
15.7 Project Image Analysis . 144

16 Linked lists 147
16.1 Linked lists . 147
16.2 The program . 148
16.3 The function ll_push() . 148
16.4 The function ll_pop() . 150
16.5 The function ll_free() . 151
16.6 The function ll_reverse() . 152
16.7 The function ll_sort() . 153
16.8 The function ll_filter() . 157
16.9 The function ll_length() . 159
16.10 Project Linked Lists . 159

root
2014/7/8
page viii

�

�

�

�

�

�

�

�

viii Contents

17 The evolution of species 161
17.1 Introduction . 161
17.2 A more detailed description . 162
17.3 The World Definition File . 165
17.4 The program’s user interface . 166
17.5 The program’s components . 167
17.6 The file evolution.h . 168
17.7 The files read.[ch] . 169
17.8 The files write.[ch] . 174
17.9 The files world-to-eps.[ch] . 175
17.10 Interlude (and a mini-project) . 176
17.11 The file evolution.c . 177
17.12 Experiments . 188
17.13 Animation . 190
17.14 Project Evolution . 191

18 The Nelder–Mead downhill simplex 193
18.1 Introduction . 193
18.2 The algorithm . 193
18.3 Problems with the Nelder–Mead algorithm 197
18.4 An overview of the program . 198
18.5 The interface . 198
18.6 The implementation . 200
18.7 Project Nelder–Mead: Unconstrained optimization 207
18.8 Constrained optimization . 211
18.9 Project Nelder–Mead: Constrained optimization 212
18.10 Appendix: Orthogonal projection onto Ax= b 213

19 Trusses 215
19.1 Introduction . 215
19.2 One-dimensional elasticity . 217
19.3 From energy to force . 221
19.4 The energy of a truss . 222
19.5 From energy to equilibrium . 223
19.6 The Truss Description File (TDF) . 224
19.7 An overview of the program . 226
19.8 The interface . 227
19.9 Reading and writing: truss-io.[ch] . 230
19.10 The files truss-to-eps.[ch] . 240
19.11 Interlude (and a mini-project) . 241
19.12 The file truss.c . 242
19.13 The file truss-demo.c . 247
19.14 Project Truss . 249

20 Finite difference schemes for the heat equation in one dimension 251
20.1 The basic idea of finite differences . 251
20.2 An explicit scheme for the heat equation 253
20.3 An implicit scheme for the heat equation 256
20.4 The Crank–Nicolson scheme for the heat equation 258
20.5 The Seidman sweep scheme for the heat equation 260

root
2014/7/8
page ix

�

�

�

�

�

�

�

�

Contents ix

20.6 Test problems . 263
20.7 The program . 266
20.8 The files problem-spec.[ch] . 267
20.9 The file heat-implicit.c . 272
20.10 Project Finite Differences in One Dimension 280

21 The porous medium equation 283
21.1 Introduction . 283
21.2 Barenblatt’s solution . 283
21.3 Generalizations . 284
21.4 The finite difference scheme . 285
21.5 The program . 286
21.6 The files problem-spec.[ch] . 288
21.7 The file pme-seidman-sweep.c . 288
21.8 Project Porous Medium . 289
21.9 Appendix: The porous medium equation as a population dynamics

model . 289

22 Gaussian quadrature 291
22.1 Introduction . 291
22.2 Lagrange interpolation . 292
22.3 Legendre polynomials . 294
22.4 The Gaussian quadrature formula . 295
22.5 The program . 296
22.6 The files gauss-quad.[ch] . 297
22.7 Project Gaussian Quadrature . 299

23 Triangulation with the Triangle library 301
23.1 Introduction . 301
23.2 The program . 302
23.3 The file problem-spec.h . 303
23.4 The file problem-spec.c . 305
23.5 The files mesh.h and mesh.c . 311
23.6 The file mesh-demo.c . 313
23.7 Installing Triangle . 315
23.8 Project Triangulate . 316

24 Integration on triangles 319
24.1 Introduction . 319
24.2 The Taylor, Wingate, and Bos (TWB) quadrature 321
24.3 The files twb-quad.[ch] . 322
24.4 The program . 326
24.5 The files plot-with-geomview.[ch] . 328
24.6 Modifying the file problem-spec.c . 329
24.7 The file twb-quad-demo.c . 330
24.8 Project TWB Quadrature . 334

25 Finite elements 337
25.1 The Poisson equation . 337
25.2 The weak formulation . 338
25.3 The Galerkin approximation . 340

root
2014/7/8
page x

�

�

�

�

�

�

�

�

x Contents

25.4 An overview of the FEM . 341
25.5 Error analysis . 345
25.6 The program . 347
25.7 Changes in problem-spec.c . 349
25.8 The file poisson.h . 350
25.9 The file poisson.c . 351
25.10 The file fem-demo.c . 358
25.11 Further reading . 359
25.12 Project FEM 1 . 360

26 Finite elements: Nonzero boundary data 361
26.1 The problem . 361
26.2 The weak formulation . 362
26.3 The Galerkin approximation . 364
26.4 The program . 366
26.5 The file problem-spec.[ch] . 366
26.6 The file poisson.c . 369
26.7 Project FEM 2 . 373

A Barycentric coordinates 375
A.1 Barycentric coordinates . 375
A.2 Calculus on a triangle . 377

Bibliography 381

Index 387

root
2014/7/8
page xi

�

�

�

�

�

�

�

�

Chapter interdependencies

7. Xmalloc
8. array.h

9. Fetch line
10. Random

11. Sparse matrices
12. UMFPACK

13. Wavelets
14. Image I/O

15. Image analysis
16. Linked lists

17. Evolution
18. Nelder–Mead

19. Trusses
20. Finite diffs in 1D

21. Porous medium
22. Gauss quadrature

23. Triangulation
24. TWB quadrature

25. FEM 1
26. FEM 2

A. Barycentric

7.
X

m
al

lo
c

8.
ar

ra
y.h

9.
Fe

tc
h

lin
e

10
.

R
an

do
m

11
.

Sp
ar

se
m

at
ri

ce
s

12
.

U
M

FP
A

C
K

13
.

W
av

ele
ts

14
.

Im
ag

e
I/

O
16

.
Li

nk
ed

lis
ts

18
.

N
eld

er
–M

ea
d

20
.

Fi
ni

te
di

ffs
in

1D

22
.

G
au

ss
qu

ad
ra

tu
re

23
.

Tr
ia

ng
ul

at
io

n
24

.
TW

B
qu

ad
ra

tu
re

25
.

FE
M

1
A

. B
ar

yc
en

tr
ic

•
• •• • •• •

•
• •• •• • ••

•• • • •• • •• • • •• •• • •
• •• • ••• • • • •• •• • • • ••• • •

To find the prerequisites of a chapter, find the chapter title along the left edge, go across
horizontally to the bullet marks, and then go vertically to the prerequisite chapters. For
instance, Chapter 23: Triangulation depends on Chapter 7: Xmalloc, and Chapter 8:
array.h. Chapters prior to Chapter 7 are not listed; these provide a general background
for the entire book and should be considered prerequisites for everything.

xi

root
2014/7/8
page xii

�

�

�

�

�

�

�

�

root
2014/7/8
page xiii

�

�

�

�

�

�

�

�

Preface

This book is written for graduate and advanced undergraduate students of sciences, en-
gineering, and mathematics as a tutorial on how to think about, organize, and implement
programs in scientific computing. It may be used as a textbook for classroom instruction,
or by individuals for self-directed learning. It is the outgrowth of a course that I have
taught periodically over nearly 20 years at UMBC. In the beginning it was targeted to
graduate students in Applied Mathematics to help them quickly acquire programming
skills to implement and experiment with the ideas and algorithms mostly related to their
doctoral researches. Over the years it has gained popularity among the Mechanical En-
gineering students. In recent years, about a quarter of the enrollment has come from
the College of Engineering. Additionally, I have had the pleasure of having a number of
advanced undergraduate student in the course; they have done quite well.

The course’s, and by extension the book’s, immediate goal is to provide an interesting
and instructive set of problems—I call them Projects—each of which begins with the pre-
sentation of a problem and an algorithm for solving it and then leads the reader through
implementing the algorithm in C and compiling and testing the results. The ultimate
goal in my mind, however, is pedagogy, not programming per se. Most students can at-
test that there is a substantial gap between what one learns in an undergraduate course
dedicated to programming and what is required to implement ideas and algorithms of
scientific computing in a coherent fashion. This book aims to bridge that gap through
a set of carefully thought-out and well-developed programming projects. The book does
not “lecture” the reader; rather, it shows the way—at times by doing, and at times by
prompting what to do—to lead him/her toward a goal. Paramount in my objectives is to
instill a habit of, and an appreciation for, modular program organization. Breaking a large
program into small and logically independent units makes it easier to understand, test/
debug, and alter/expand, and—as demonstrated abundantly throughout—it makes the
parts available for reuse elsewhere.

I hope that the reader will take away more than just programming techniques from
this book. I have strived to make the projects interesting, intriguing, inviting, challeng-
ing, and illuminating on their own, apart from their programming aspects. The range
of the topics inevitably reflects my tastes, but I hope that there is enough variety here
to enable any reader to find several rewarding projects to work on. Some of my favorite
projects are

• the Nelder–Mead simplex algorithm for minimizing functions inRn (with or without
constraints) with applications to computing finite deformations of trusses under
large loads via minimizing the energy;

• the Haar wavelet transform in one and two dimensions, with applications to image
analysis and image compression;

xiii

root
2014/7/8
page xiv

�

�

�

�

�

�

�

�

xiv Preface

• a very simple yet intriguing model of evolution through natural selection and the ef-
fect of the environment on the emergence of genetically distinct species (speciation);

• the comparison/contrast of several finite difference algorithms for solving the time-
dependent linear heat equation and extending one of the algorithms to solving the
(nonlinear and degenerate) porous medium equation; and

• a minimal implementation of the finite element method for solving second order
elliptic partial differential equations on arbitrary two-dimensional domains through
unstructured triangular meshes and linear elements.

Additionally, I am particularly pleased with the array.h header file of Chapter 8 which
provides a set of preprocessor macros for allocating and freeing memory for vectors and
matrices of arbitrary types entirely within the bounds of standard C. That header file is
used throughout the rest of the book.

To reach the book’s intended readership, that is, the advanced undergraduate through
beginning graduate students, I have made a consistent effort throughout to keep the math-
ematical prerequisites and jargon to a minimum and have not shunned from skirting
technical issues to the extent that I could. For instance, the Galerkin approximation
and the finite element method are introduced in Chapter 25 without explicit references
to Hilbert or Sobolev spaces, although these concepts are brought up in the subsequent
chapter. I have included plenty of references to the literature to help the curious reader
to learn more. I believe that a good knowledge of undergraduate multivariable calculus
and linear algebra is all that is needed to follow the topics in this book, but a graduate
student’s technical maturity certainly will help.

Part I of the book, consisting of Chapters 1 through 6, is a prerequisite for Part II,
which makes up the rest of the book. A working familiarity with the concepts intro-
duced in Part I is tacitly assumed throughout. The chapters of Part II consist of individual
projects. Part II is definitely not intended for linear/sequential reading. A chart on page xi
shows the chapter interdependencies. Chapter 18 on the Nelder–Mead simplex method,
for instance, depends on Chapters 7 (memory allocation) and Chapter 8 (vectors and ma-
trices). The way to read this book, therefore, is to pick a topic, look up its prerequisite in
the chart, and then sequence your reading accordingly.

For classroom teaching, I select topics that reflect the interests of the majority of the
class, which vary from semester to semester. The most recent semester’s syllabus con-
sisted of, in the order of coverage, the following:

• Chapter 7: allocating memory
• Chapter 8: constructing vectors and matrices
• Chapter 18: minimization through the Nelder–Mead simplex method
• Chapter 14: reading and writing digital images
• Chapter 23: using the Triangle library to triangulate two-dimensional polygonal

domains
• Appendix A: an introduction to barycentric coordinates
• Chapter 24: integration over a triangulated domain
• Chapter 11: storage methods for sparse matrices
• Chapter 12: solving sparse linear systems using the UMFPACK library
• Chapter 25: a finite element method for solving the Poisson equation with zero

Dirichlet boundary conditions
• Chapter 22: Gaussian quadrature

root
2014/7/8
page xv

�

�

�

�

�

�

�

�

Preface xv

• Chapter 26: second order elliptic partial differential equation with arbitrary Dirich-
let and Neumann boundary conditions

Naturally the syllabus and its pace should be adjusted to what the students can handle.
Parts marked [optional] in a chapter’s Projects section provide exercises that go beyond
minimal learning objectives. Most students voluntarily carry out all the parts, regardless
of the [optional] tags.

I should emphasize that neither the course nor this book is a primer on C. Most of my
students have had at least one semester of an undergraduate course in C or a C-like low-
level procedural programming language, although there have been a few whose prior pro-
gramming experience has been nothing but MATLAB®, and they have succeeded through
hard work, self-study, and some help from me and their classmates. In class I don’t dwell
on the basics of C programming. I do, however, devote time to pointing out the more sub-
tle programming issues in anticipation of questions that may arise in particular projects.
The topics in Part I reflect some of those class presentations. For a self-study, refresher,
and reference on the C programming language I recommend Kochan’s book [35].

Every program in this book is in full conformance with the 1999 ISO standard C, also
known as C99. With minor changes, pointed out in Section 1.3, you may revert them
to the 1989 standard, C89, if you so wish. The latest C standard, C11, was announced
in 2011, but as of this writing there are no C11 compilers that fully support it; therefore
I have avoided special features that were introduced in C11. See Section 1.3 for more
on this.

Some of the projects call for supplementary files, mostly consisting of programs or
program fragments, which may be obtained from the book’s website at

<www.siam.org/books/cs13/>.
These supplemental programs are not difficult per se but may require specialized knowl-
edge, such as the detailed syntax of the PostScript language or the interface to the Triangle
library, which I do not wish to make prerequisites for completing the projects. The web-
site also includes additional information, animations/demos, and other miscellany which
may be of help with completing the projects.

It is customary in a book’s preface to thank those who have been instrumental in
bringing the book about. For the present book my thanks go first and foremost to the
scores of students who have, over the years, put up with the loose sheets of printed paper
which I have distributed weekly in class in lieu of a conventional textbook. I trust that
having this book in hand will make for a less stressful—even pleasurable, I hope—learning
experience. I am also indebted to the anonymous reviewers whose many constructive
ideas and suggestions have been incorporated into the current presentation. Finally, my
heartfelt thanks go to SIAM’s amazing staff whose enthusiastic support and expert advice
in all phases of this book’s production have improved the original manuscript by an order
of magnitude.

Rouben Rostamian
UMBC, March 2014

root
2014/7/8
page 3

�

�

�

�

�

�

�

�

Chapter 1

Introduction

1.1 An overview of the book
This is a somewhat unusual computing/programming book in that essentially all of its
programs are presented in incomplete fragments. That is by design. You, the reader, are
charged with completing the programs by following the instructions and outlines in each
case, and thus developing your skills in programming scientific computing algorithms. In
that sense, this book serves a purpose similar to that of a book of études for a pianist. You
learn by doing.

Part I, consisting of Chapters 1 through 6, brings together a set of diverse topics that
form a part of the minimal working background for the rest of the book. If you feel
familiar with that material, skim through it just to be certain. If the material is new to
you, then read through those chapters patiently and internalize the concepts as much as
possible. As you work on the projects in Part II, you may want to revisit Part I from time
to time to reinforce your understanding of those topics.

Part II, which makes up the rest of the book, consists of Projects, one per chapter, of a
diverse collection of topics. Each project begins with the presentation of a problem and
an algorithm for solving it and then leads the reader through implementing the algorithm
in C. Every project comes with an outline that shows how the program is broken into
multiple files, and how each file is broken into individual functions, mostly by giving the
functions’ prototypes. The C code for the more difficult/tricky parts of the project is
often given in full. You are asked to supply the rest.

Part II is definitely not intended for linear/sequential reading. A chart on page xi shows
the chapter interdependencies. Pick a project that interests you, consult that chart to
determine its prerequisites, and then start with the very first prerequisite and make your
way forward.

There is a delicate balance between providing too much versus too little information if
a project is to be a worthwhile learning exercise without causing undue frustration. I have
strived to achieve that balance based on my experiences in the classroom.

1.2 Why C?
I have to admit that I have no good answer to the question “Why C?” Come to think of
it, I have no good answer to the question “Why English?” either. I have written this book
in English because that’s the language in which I feel most comfortable expressing my

3

root
2014/7/8
page 4

�

�

�

�

�

�

�

�

4 Chapter 1. Introduction

ideas. I can say the same thing about C. But to be less flip about it, C has many things
going for it. Let me itemize:

• C is a relatively old and well-established programming language. It dates back to the
early 1970s. C compilers have been available essentially for free on every platform
since its inception. That and Kernighan and Ritchie’s superbly lucid exposition [31]
were responsible for propelling the language to widespread popularity and perma-
nence. With C, you are not investing your time and effort in the faddish language
of the day.

• After evolving for several years, C was eventually standardized as ANSI C in 1989
and later adopted as a worldwide ISO standard. That ANSI/ISO version of C,
known as C89, is widely supported on all computing platforms. Programs written
according to the standard are assured to be portable across all platforms. Kernighan
and Ritchie’s second edition [32] reflected the C89 standard and helped continue
the spread of the language and its popularity. See Section 1.3 regarding C’s more
recent developments.

• The use of C in scientific computing is of a rather recent origin. C was conceived as a
low-level programming language—just a small step up from an assembly language—
whose initial applications were in writing operating systems and basic command-
line interface tools. An abstraction layer isolates C from the vicissitudes of the un-
derlying hardware and allows one to write portable code. Nevertheless, C remains
“close to the metal”, especially with respect to its memory management. The lan-
guage’s low-level nature imposes a somewhat steep learning curve—that’s one of its
drawbacks—but it rewards the patient learner with a sense of absolute control and
a total power over the hardware. In many cases one can almost see how the algo-
rithm is reduced to shuffling data in the computer’s memory. With some extra care,
one can detect and eliminate wasteful operations. Generally it is easier to write ef-
ficient code in C than it is in higher-level languages where the connection with the
hardware tends to be obscured by multiple layers of abstractions.
And ultimately, the joy of writing a program where you retain total control and
can see the minutest details from the ground up cannot be overestimated.

• C has the advantage of being a small language. It is not an exaggeration to claim
that one with some prior experience with programming languages can comfortably
learn most of the C in less than one week. If you go through about half of this
book’s projects, it is likely that you will have used nearly 90% of the C language
and a good part of the associated standard library. At the same time, one has to
acknowledge that a small language has its drawbacks: sometimes it takes quite a bit
of work to accomplish seemingly trivial tasks since the language lacks built-in “big
tools”. You, the user, are expected to build your own “big tools” from the miniature
components that the language provides. That may sound disheartening at first, but
it is not as bad as it may appear. True, to build a general utility for allocating and
freeing memory for vectors and matrices takes up two chapters in this book, but
you do that only once, as I did 30 years ago; then you use it an innumerable number
of times afterward.

1.3 Which version of C?
I sketched the early history of the development of C up to C89 in the previous section.
A new ISO standard C, known as C99, was announced in 1999. It introduced major

root
2014/7/8
page 5

�

�

�

�

�

�

�

�

1.3. Which version of C? 5

extensions and enhancements relative to C89, some of which, such as the complex data
type (as in z = x + i y), are vital to scientific computing, although we have no use for them
in this book. (The old C89 lacks a complex data type.) Despite that, the reaction of the
C programmer community to C99 was mostly cold, and not infrequently hostile. C99
was, and still is, perceived as deviating from C’s original minimalist philosophy. The latest
C standard, announced in 2011 and known as C11, addresses the objections by relegating
some of the most disputed C99 extensions to optional (i.e., not required) status. There has
been no great rush to embrace C11; the C programming world tends to be quite conserva-
tive in this regard. C89 has such a strong foothold within the C programming community
that, after almost 25 years (as of this writing) and the emergence of two newer standards,
C89 is still viewed by many as “the one true C”.

The programs in this book take advantage of some of the more useful (and noncon-
troversial) features introduced in C99, such as the //-style comments and structure initial-
izers with named members. All of the book’s programs are designed to conform fully to the
C99 standard. Failures in conformance, if any, are bugs, and I should take the blame for
them.

To those readers who wish to stay with the classic C89 version of C, I must give the
reassuring words that the infringements into the C99 territory, relative to C89, are by no
means essential. It is quite trivial to revert this book’s code to strict C89. To help you
with that, should you have a desire to do so, here is the complete list of the C99-specific
constructs that I have used in the book:

Comments: In C89, everything between a /∗ and a ∗/ is taken as a comment and therefore
skipped over. Such comments may span more than one line. C99 adds an alterna-
tive method of commenting: Everything from a // to the end-of-line is taken as a
comment and is skipped over. Naturally such comments cannot span more than
one line.1 The two types of comments may coexist in a C99 program. In this book
I use the //-style comments frequently since they take up less room on a printed
page.

For-loops: In C89, a for-loop’s index must be declared outside of the loop, as in

int i;
...
for (i = 0; i < 6; i++)

whatever;

Upon a normal exit from that loop, the value of i will be 6. In C99 we have the
option of declaring the index within the for-loop itself, as in

for (int i = 0; i < 6; i++)
whatever;

Here the index i is local; it’s not accessible outside the for-loop. I quite like this
C99 innovation; there is no sense in polluting the rest of the code with i if there is
no need for it. I have used the C99-style for-loops in quite a few places, but some
C89-style for-loops remain. Old habits die hard.

1Actually this is not strictly correct; a // -style comment may be continued into the next line if the line’s last
character is \, but I have never felt the urge to use that feature.

root
2014/7/8
page 6

�

�

�

�

�

�

�

�

6 Chapter 1. Introduction

Initializing structures: Consider the following structure:

struct mystruct {
int n;
double x;
double y;

};

In C89 we may define and initialize an instance of this structure through:

struct mystruct S = { 12, 3.14, 2.78 };

The values 12, 3.14, and 2.78 are assigned to the members n, x, and y of S,
respectively. Naturally, the numbers should be listed precisely in the order in which
the target symbols n, x, and y appear in the structure’s declaration.

In C99 we may define and initialize an instance of that structure in an alternative
fashion:

struct mystruct S = { .n = 12, .x = 3.14, .y = 2.78 };

The order of the entries here is immaterial since each number is identified explicitly
with the name of its target.

There hardly seems an advantage of one method over the other in such a simple
case, but you may agree that in a structure with tens of members, C99’s explicit
version would be less confusing.

Even in the simple case above there is an advantage to the C99 version. Suppose the
values of n and y are available at the initialization time but the value of x isn’t. In
the C99 syntax we do

struct mystruct S = { .n = 12, .y = 2.78 }; // x is not assigned

There is no way to do that in C89 other than by assigning a dummy value to x.

The z modifier in formatted printing: The proper way of printing the value of asize_t
variable is through printf()’s %zu conversion flag, as in

size_t n = ...;
printf("n = %zu\n", n);

The z modifier was introduced in C99. The (almost) equivalent code in C89 re-
quires a cast, as in

size_t n = ...;
printf("n = %lu\n", (unsigned long)n);

This assumes that size_t is equivalent to “unsigned long”, which it likely is,
but the C standard makes no such guarantee. Clearly the C99 way is the clean way
of doing this.

Mixing declarations and code: C89 requires that all identifier declarations come before
other code within a code block. (A code block is what is enclosed between curly
braces { and }.) Thus, for instance, one declares all identifiers as the first thing
in a function definition. C99 permits the mixing of declarations and code. I have
adhered to the C89 requirement throughout most of the book, with only a few
exceptions where I felt that a midblock declaration leads to a more expressive code.
I have explicitly noted such exceptions where they occur. To revert to C89, just
move those midblock declarations to the top of the block.

root
2014/7/8
page 7

�

�

�

�

�

�

�

�

1.5. The compiler and other software 7

Inline functions: The purpose of the inline function specifier, introduced in C99, is
to suggest to the compiler that the calls to a given function be as fast as possible.
The compiler may honor or ignore the request. Generally the inline specifier
makes sense in the context of small and intensely used functions. The one-liner
function random() in Chapter 10, for instance, is declared inline. You may
safely remove the inline specifier if you want a strict C89 code.

If you are not an expert C programmer, you should have a good C reference book
at hand when reading the present book. I wish I could tell you to go get Kernighan and
Ritchie’s third edition, but unfortunately there is no such a thing. The second edition [32]
dates back to 1989 and is showing its age, and of course it has no knowledge of C99.
I am sure there are some excellent C programming textbooks on the market. Use your
favorite if you have one. Otherwise, consider Kochan’s book [35], which is reasonably
good. Whatever you do, I suggest that you stay away from web tutorials; they tend to be
error-ridden and can lead you to form misunderstandings and develop bad habits which
may be difficult to unlearn afterward.

1.4 Operating systems
A C program does not live in the abstract; eventually you will compile and execute it
on some computer. Although a standard-conforming program is platform independent,
the way the program is compiled and executed depends very much on the platform, by
which I mean the computer’s operating system and its user interface. The most popular
computer platforms nowadays are Windows produced by Microsoft, OS X for Mac com-
puters produced by Apple, and the Unix operating system or its look-alikes, such as Linux,
which can run on just about any computer hardware.

Since the thrust of this book is writing standard-conforming programs, the target plat-
form is immaterial as far as the programs’ contents go. However, I am forced to resort to
a specific platform in order to demonstrate how the programs are used. I have chosen to
do all such demonstrations in the context of a command-line based Unix terminal mainly
because that is what I myself use, and also because the command-line exposes everything
there is to know about running a program; there are no menus or icons that potentially
can hide information.

If you are a Mac user, you may already know that the OS X operating system is a vari-
ant of Unix; therefore you gain full access to the Unix command-line utilities by bringing
up its Terminal application. This book’s Unix command-line examples should work on
a Mac without change.

If you are a Windows user, you may install Cygwin, which provides a Unix-like envi-
ronment within Windows. Then you should be able to compile, execute, and experiment
with most of this book’s programs. Some obstacles will remain, such as coaxing a large
utility such as Geomview to work under Cygwin. My students find it simpler to install
Linux alongside Windows on a separate partition and use that to gain unfettered access to
everything they need to carry out their projects.

1.5 The compiler and other software
It goes without saying that you need a C compiler to compile your programs. If your
platform comes with a native C compiler, then use it. Otherwise you will need to down-
load and install a C compiler. I use the GNU C compiler (almost always) and Intel’s C
compiler (just for testing) on Linux, and Sun’s C compiler on Solaris. See what is available
for yours. It is difficult to be more specific here.

root
2014/7/8
page 8

�

�

�

�

�

�

�

�

8 Chapter 1. Introduction

Read your compiler’s documentation. Generally a compiler is invoked on the com-
mand line with a set of flags that determine the details of its behavior. I invoke the GNU
C compiler as

gcc -Wall -pedantic -std=c99 -O2 files-to-compile

which compiles according to the C99 language specification and asks it to issue warnings
if the code deviates from it. Change -std=c99 to -std=c89 to compile according to
C89. The -O2 flag (that’s an uppercase letter “O”) asks it to produce optimized machine
code. See Chapter 6 on how to automate the compilation process.

In addition to a compiler, many projects call for specialized third-party software which
you will need to download and install as needed. These are the following:

Geomview: This is a utility for displaying and examining images of surfaces in three di-
mensions on your computer screen. We use Geomview to display the solutions of
partial differential equations in chapters dealing with finite differences and finite
elements. Geomview is a free and open software. On most Linux distributions you
may install a precompiled Geomview package through a few mouse clicks. On a
Mac, you may get Geomview from <http://www.macports.org/>. There is no
native implementation for Windows, but you may run Geomview in Windows un-
der Cygwin as noted earlier. Go to <http://www.geomview.org/> for instruc-
tions. You may even get Geomview’s source from there and compile it on your
computer yourself, although that is not quite a trivial task due to dependencies on
a slew of other program libraries.

Viewing an image in Geomview is as simple as typing “geomview file.gv” on
the command-line.

Remark 1.1. Paraview from <http://www.paraview.org/> provides a func-
tionality similar to Geomview, and like Geomview, it is a free and open software.
An advantage over Geomview is its availability on all common computing plat-
forms, i.e., Mac, Unix, and Windows. I have experimented with Paraview a bit
but prefer Geomview, perhaps because of my familiarity with it.

Triangle: This is a state-of-the-art utility for triangulating two-dimensional polygonal
domains. You may download the software from its source at

<http://www.cs.cmu.edu/~quake/triangle.html>,
but it won’t work out of the box since you will need to read the instructions and
set a few preprocessor options. I suggest that you get the slightly modified version
from this book’s website at <www.siam.org/books/cs13>. My modifications
amount to setting the necessary preprocessor options to make it compile into an
object file rather than a stand-alone program. The triangulation code itself is not
touched.

UMFPACK: This is a state-of-the-art library for solving linear systems of equations, as in
Ax = b , where A is an n × n sparse matrix. We use UMFPACK to solve the sys-
tems of equations that arise in our finite element implementations. On most Linux
distributions you may install the UMFPACK library through a few mouse clicks.
Look for a package namedlibsuitesparse-dev or umfpack-dev. On a Mac
you may get UMFPACK from <http://www.macports.org/>. You may even get

root
2014/7/8
page 9

�

�

�

�

�

�

�

�

1.6. Interfaces and implementations 9

UMFPACK’s source from its author’s website
<http://www.cise.ufl.edu/research/sparse/umfpack/>

and compile it yourself if you feel adventurous enough.

Netpbm: Netpbm is a suite of utilities and libraries for reading, writing, displaying,
and manipulating images. Our image processing projects in Chapters 14 and 15
rely on the Netpbm library for image I/O. On Linux, installing the netpbm and
libnetpbm10-dev packages will do. For a Mac, get Netpbm from

<http://www.macports.org/>.

An image viewer: The programs in Chapters 10, 14, and 15 produce images in the
PGM and PPM formats. You will need a means of viewing such images on your
computer screen. Just about any image viewing program should be able to recog-
nize and handle these.

A PostScript viewer: The programs in Chapters 19 and 23 produce images in the Encap-
sulated PostScript (EPS) format. Viewing an EPS image requires specialized soft-
ware. On Linux you may view an EPS image through the command-line as in
“evince file.eps”. It is likely that your Linux distribution installs evince
automatically. If not, then get and install it, or use your own favorite EPS viewer,
of which there are many. I have no specific recommendation for Mac. Search for
an EPS viewer. You will find several.

1.6 Interfaces and implementations
It is a common practice to break up a large C program into multiple files, where the code
in each file is responsible for performing a clearly defined and relatively simple task. Then
a controlling unit, sometimes called the driver, ties the pieces together and makes a whole
program. The benefit of splitting a program in this way is that smaller programming units
are easier to understand, verify for correctness, alter, and debug.

In this book, a module refers to a set of program files, other than the driver, that as
a whole serve to perform a well-defined task. For instance, the Nelder–Mead module
of Chapter 18 finds the minima of a given function. The Nelder–Mead module is used
in Chapter 19 to determine a truss’s deformation by minimizing its energy. The word
“module” is not an officially sanctioned term in C, although it is common in other pro-
gramming languages. So I have taken the liberty of using it in the C context in this book.

As a program is broken into multiple files, the code within each file is broken into
multiple functions, where each function performs a clearly defined and relatively sim-
ple task. Generally only a few—often just one or two—of the many functions within
a file are meant to be visible to the outside world. The rest tend to be for internal use
only within their own files, lending support to the other functions to accomplish the task
which that particular file is designed to accomplish, but do not communicate with, and are
not visible to, the outside. An experienced programmer marks such “internal use only”
functions with a static declaration specifier. That tells the compiler and the linker that
those functions have no visibility outside of their own files. This makes it possible for
a program to have two totally different functions with identical names in two different
files without risking conflict, as long as the functions are declared static. This is par-
ticularly significant in “real world” large projects where different parts of the program are
written by different teams of programmers.

root
2014/7/8
page 10

�

�

�

�

�

�

�

�

10 Chapter 1. Introduction

#ifndef H_NELDER_MEAD_H
#define H_NELDER_MEAD_H

struct nelder_mead {
double (*f)(...)
int n
double **s
double *x
double h
double tol
...

};

int nelder_mead(
struct nelder_mead *nm);

#endif /* H_NELDER_MEAD_H */

nelder-mead.h (the interface)

#include "nelder-mead.h"

static void get_centroid(...)
{

...
}

static int done(...)
{

...
}

int nelder_mead(
struct nelder_mead *nm)

{
...

}

nelder-mead.c (the implementation)

Figure 1.1: These fragments of the files nelder-mead.h and nelder-mead.c, extracted from
Chapter 18’s Project Nelder–Mead, illustrate the typical splitting of a program
into an interface and an implementation.

The box on the right in Figure 1.1 shows fragments of the file nelder-mead.c from
Chapter 18. Auxiliary functions get_centroid() and done() are declared static
since they are meant for internal consumption within nelder-mead.c, while the function
nelder_mead() is not declared static because it is the ultimate purpose of the file
to make that function available to the outside world.2

The availability of the function nelder_mead() is announced through the header
file nelder-mead.h shown in the left box in Figure 1.1. It provides a declaration of a
“struct nelder_mead” structure, asserts that the function nelder_mead() takes
a pointer to that structure as an argument, and returns an int.

The file nelder-mead.h is called the interface of the Nelder–Mead utility. The file nelder-
mead.c is called the implementation. To connect with the Nelder–Mead utility, what a
user3 needs is the interface. The details of the operation that are hidden in the implemen-
tation are not the user’s concern. (Think of “No User Serviceable Parts Inside” stamped on
the implementation.) An upgrade from version 1 to version 2 of the Nelder–Mead utility
may change the internals of the implementation, perhaps making it run more efficiently,
but if the interface does not change, then the users won’t have to change anything on their
sides to reap the benefits.

A program’s interface is analogous to a restaurant’s menu, while the implementation
is analogous to the restaurant’s kitchen. The restaurant’s patron interfaces with the menu
and partakes of the food but has no business entering the kitchen. The kitchen staff has
no “use” for the menu, but having a copy available in the kitchen can help coordinate the
staff’s work with what is advertised at the tables. For that same reason, it is an excellent

2If I were granted one wish to change C, I would make all functions static by default. A function with
outside visibility—the technical term is external linkage—would be required to be declared so explicitly. But alas,
we have to live with what we have.

3More often than not, that “user” is you. Once you are finished with implementing nelder-mead.c, you treat
it at a “black box” that takes data and spits out results. You have become a “user” of nelder-mead.c.

root
2014/7/8
page 11

�

�

�

�

�

�

�

�

1.8. Special notations 11

idea to make a program’s interface available to the implementation. That’s one reason for
having #include"nelder-mead.h" at the top of the file nelder-mead.c in Figure 1.1.
Every properly written implementation should #include its own header file, if it has
one. As to the #ifndef H_NELDER_MEAD_H, etc., appearing in nelder-mead.h, see the
discussion of #include guards in Chapter 7.

Most programs you will encounter in this book come in *.h and *.c pairs, reflecting
the interface and implementation paradigm. Hanson’s book [26] is an excellent resource
for learning about program organization in general, and interfaces and implementations
in particular.

1.7 Advice on writing
In the interest of eliminating excessive whitespace within printed pages, I have removed
almost all empty lines, and almost all comments, in the code samples shown. This is
definitely not the way I write my own code in general. I use empty lines liberally to make
the code as readable and appealing as possible. I preface every function definition with a
good deal of comments explaining its purpose, the nature of its arguments, and the value
that it returns. The comments may be obvious to me at the time of writing the function,
but experience shows that the human memory is fallible and one needs all the help one
can get from such comments when revisiting the code a few years hence.

Additionally, at the top of every file I identify its purpose and why it was written, and
the date, and by whom. Identifying yourself as the author is particularly important; oth-
erwise, 10 years down the road you will read the file again and will have no idea whether
it is something that you wrote or someone else sent it to you. Documenting the author-
ship will save you the embarrassment (or worse) of claiming a code of being yours when
it is not.

If I revise a file later on, I extend the comments by explaining when, how, and why
it was revised. Such considerations may seem to be of secondary importance in the heat
of the moment, but you will be thankful for having provided them years later when you
refer to the code again.

1.8 Special notations
Throughout this book I have taken the liberty of typesetting certain C operators in special
glyphs, merely for cosmetic appeal, as shown in the table below:

typewriter notation <= >= != ->

book’s glyph ≤ ≥ �= →
Naturally, you will translate the book’s glyphs into their conventional typewriter nota-
tions in your code.

Within the displayed code fragments, I have used the � and ... markers to indicate
a line of code that needs to be completed, e.g.,

� static void shrink(double **s, int n, int ia) ...

Mostly you will supply the elided code yourself, but I have provided the details in the
more complex cases.

root
2014/7/8
page 13

�

�

�

�

�

�

�

�

Chapter 2

File organization

The manner of organizing files and directories on one’s computer is very much a matter
of personal taste. I am not about to advise you to do what does not come naturally to you.
Nevertheless, I am going to tell you how I organize my files—at least those that pertain
to this book—in the hope that this may convey something worthwhile, especially in case
you don’t have strong preferences or prejudices in these matters.

My top-level directory is called c-projects since that’s what this book is about. Feel free
to call yours something else if you so wish. Under the c-projects directory I have individual
subdirectories for each of the book’s projects. Here is a partial listing:

$ cd c-projects
$ ls -F
nelder-mead/ vector-and-matrix/ xmalloc/

The “$” sign is the traditional symbol for the Unix shell prompt. You will see that
throughout the book. The Unix command ls displays the list of files and subdirectories
in the current directory. The -F flag tells ls to decorate directory names with trailing
slashes. That helps to distinguish directories from files of other kind.

The Unix mkdir command makes a new directory:

$ mkdir gauss-quad
$ ls -F
nelder-mead/ gauss-quad/ vector-and-matrix/ xmalloc/

There is a considerable interdependence among this book’s projects. For instance,
the xmalloc module, whose code is developed under the xmalloc directory, is used in just
about all other projects. So is the array.h header file, which is developed under the vector-
and-matrix directory. We need to devise a strategy to make files developed under one
directory available to a project in another directory. There are various ways of doing
this, the absolute worst of which is to copy files from one directory to another. Keeping
duplicate files on your computer is evil. You will edit one tomorrow and the other next
week, and end up with two irreconcilable versions and much to be sorry about.

I do a symbolic link (called a symlink for short) instead of copying. For instance, the
file array.h from the vector-and-matrix directory and the files xmalloc.c and xmalloc.h from
the xmalloc directory are needed in the nelder-mead directory. So I do

1 $ cd nelder-mead
2 $ ln -s ../vector-and-matrix/array.h .
3 $ ln -s ../xmalloc/xmalloc.[ch] .

13

root
2014/7/8
page 14

�

�

�

�

�

�

�

�

14 Chapter 2. File organization

nelder-mead.c
nelder-mead.h
xmalloc.c@
xmalloc.h@
array.h@

directory: nelder-mead

xmalloc.c
xmalloc.h

directory: xmalloc

array.h

directory: vector-and-matrix

directory: c-projects

Figure 2.1: The files xmalloc.c, xmalloc.h, and array.h under the nelder-mead directory
are symbolic links to files in the xmalloc and vector-and-matrix directories,
as shown. The -F flag in ls -F decorates symbolic links with trailing “@”
signs for displaying purposes. Beware that the “@” is not a part a file’s name.

4 $ ls -F
5 array.h@ nelder-mead.c nelder-mead.h xmalloc.c@ xmalloc.h@

The -F flag tells ls to decorate symbolic links with trailing “@” signs for displaying pur-
poses; the “@” is not a part of the file’s name. Don’t overlook the dots at the ends of lines 2
and 3; they signify “the current directory” to the Unix shell. So those lines are really say-
ing, “link files from such-and-such place into the current directory”. Figure 2.1 shows the
concept of symbolic links in a graphical way.

For most practical purposes, a symbolic link behaves like a real file, so having those
symbolic links in the nelder-mead directory is as good as having the actual files there.
Remember, however, that if you edit xmalloc.c that appears under nelder-mead, you are
actually editing the file ../xmalloc/xmalloc.c. There is only one copy of that file on the
system, and that’s a good thing; the one appearing under the nelder-mead directory is a
mere “pointer” to the real one.

You will see symbolic links used extensively throughout this book for file organiza-
tion purposes in the projects. Get into the habit of using them! They are available on
Unix/Linux, Mac, and Windows.

root
2014/7/8
page 15

�

�

�

�

�

�

�

�

Chapter 3

Streams and the
Unix shell

A C program communicates with the outside world by reading from and writing to
streams. A stream is an abstract concept; think of it as a pipe through which data flow.
The program opens a stream for reading, or writing, and closes it when it’s done. Three
streams, called the stdin, stdout, and stderr, are opened automatically at the begin-
ning of the execution of a C program—stdin for reading and the other two for writing.
The program may open a number of additional streams.

There is a plethora of standard library functions for reading from streams. These
include

fgetc() which reads one character at a time;
fgets() which reads one line at a time;
fscanf() which reads under the control of a format string; and
ungetc() which pushes a character back into a stream.

There are alsogetchar() and scanf()which are the specialized versions of fgetc()
and fscanf() for reading from the stdin.

For writing to streams there are

fputc() which writes one character at a time;
fputs() which writes one line at a time; and
fprintf() which writes under the control of a format string.

There are alsoputchar() andprintf()which are the specialized versions offputc()
and fprintf() for writing to the stdout.

When you type a program’s name, say progname, on the command-line at the Unix
terminal and press the Enter key, things are arranged—not by C, but by the Unix shell—
so that your keyboard’s output is directed to the program’s stdin, and the program’s
stdout and stderr are directed to the screen. It is important to appreciate that the
program itself is not aware of this arrangement; all it “sees” are the inner ends of the
streams; it has neither an awareness of, nor an interest in, whence the streams come or

15

root
2014/7/8
page 16

�

�

�

�

�

�

�

�

16 Chapter 3. Streams and the Unix shell

program

$ progname

stdin
stderr

stdout

keyboard screen

program

$ progname <infile >outfile

stdin
stderr

stdoutkeyboard

infile

screen

outfile

Figure 3.1: The two diagrams represent programs that read from the stdin and write
to the stdout and stderr. In the top diagram the program is in-
voked as “progname” at the command-line in a Unix shell. (The “$”
sign is the traditional symbol for the Unix shell prompt.) The shell at-
taches the stdin to the keyboard, and both stdout and stderr to
the terminal screen. In the bottom diagram the program is invoked as
“progname <infile >outfile” at the command-line, where infile
and outfile are file names. The shell directs the infile to the program’sstdin,
and it directs the program’s stdout to outfile. The stderr remains at-
tached to the terminal screen.

whither they go. It is the Unix shell4 that plays the “traffic cop” and directs the flow
outside the program. The top half of Figure 3.1 is a cartoon depiction of this idea.

The Unix user may, and often does, alter the default flow of the traffic through the
use of pipes and redirection. For instance, when you type

$ progname <infile >outfile

on the command-line, the shell directs the contents of the file infile to the program’s
stdin and directs the program’s stdout to the file outfile. The file infile should ex-
ist for this to work. On the other hand, the file outfile need not exist—it will be created
if it doesn’t, and it will be overwritten if it does.5 The stderr remains connected to the
screen. The bottom half of Figure 3.1 is a cartoon illustration of this idea.

Pipes are yet another way that the Unix shell manages traffic. Let us say we have a
program that generates a lot of output, say 1000 lines of text, through its stdout. We
want to examine the output line-by-line rather than let it scroll away on the screen. We
pipe the output through a pager such as more or less. Of these two, more is the older
and more established but is somewhat primitive; less is newer and much more powerful.
Almost always I use less.

4Strictly speaking, there is no such thing as the Unix shell. There are dozens of implementations of Unix
shells each with unique characteristics and capabilities. At the time of the creation of a Unix user account, the
system administrator associates a shell with the account. The Bourne shell (sh) is among the oldest of Unix
shells and a standard of some sort. The modern version is bash, also known as the Bourne-again shell. Among
the other popular shells are the Korn shell (ksh), the C shell (csh and its extension tcsh), the Z shell (zsh),
etc. Type “echo $SHELL” (without the quotes) at the command-line to find out the name of your shell. The
elementary shell constructs that I use in this book are common to all Unix shells; therefore the use of the phrase
“the Unix shell” is not entirely misguided.

5To append to, rather than overwrite, outfile, we enter “$ progname <infile >>outfile”. Note the
doubled redirection symbol.

root
2014/7/8
page 17

�

�

�

�

�

�

�

�

Chapter 3. Streams and the Unix shell 17

A pager receives a possibly very lengthy text and displays it one-screenful-at-a-time
on the terminal screen. You press the space-bar to display the next screenful. Both more
and less have significantly more features than this—read their man pages for the details—
but this should give you an idea of what they do. Invoking the program on the Unix
command-line as

$ progname <infile |less

directs infile to the progname’s stdin and channels progname’s stdout to less’s stdin.
Did you follow that?

Finally, let us address the natural question: why are therestdout andstderr? Why
does C open two output streams, and why are they treated differently by the Unix shell?

Let us say a part of a program’s computational task involves solving a linear system of
equations and printing the solution or, should the system be singular, printing an error
message to let the user know of the issue. What is wrong in sending all the program’s
output to the stdout?

What is wrong is this: Should the user redirect the output to a file, then the error
message will go into that file and possibly escape notice. On the other hand, if the er-
ror message is sent to the stderr while the normal output goes out on the stdout,
the error message will appear on the screen even when the output is redirected, because
as we have seen, the shell’s redirection operator “>” redirects the stdout but not the
stderr.

It’s the programmer—that’s you—who decides which parts of a program’s output
should be written tostdout and which to stderr. You will learn that with experience.

root
2014/7/8
page 19

�

�

�

�

�

�

�

�

Chapter 4

Pointers and arrays

4.1 Pointers
Objects in C not only have values, but they also have storage locations. For instance, the
declaration “int i;” associates a memory slot capable of holding an int value with
the identifier i. Setting i = 3 stores a representation of the number 3 in that slot.
Printing i, as in “printf("%d\n", i)”, sends i’s value, that is, 3, to the program’s
stdout.

The expression &i produces the memory address where i is stored. We may print that
address as well:

printf("%p\n", (void *)&i);

This will send a numeral such as 0xbf84823c to the stdout.6 The cast to “void *”
is necessary because printf()’s %p conversion expects it. The output is likely to vary
in every run of the program because there is no reason for i to be stored in the same
memory location every time.

The address produced by &i is of type pointer, or in this specific instance, a pointer
to int. Although a pointer appears to be of numeric sort, it definitely is not of type int.
Objects of type int obey the regular rules of arithmetic, e.g., 1+ 12= 13, while objects
of pointer type don’t. Compare, for instance, the numbers corresponding to &i and
1 + &i:

printf("%p\n%p\n", (void *)&i, (void *)(1 + &i));

This will print something like

0xbf84823c
0xbf848240

Note that the second number is not 1 plus the first. In fact, it is 4 plus the first. Why 4?
It’s because the size (in bytes) of an object of type int in my computer is 4. Adding 1 to
a “pointer to int” increments its value by sizeof(int). This generalizes to the funda-
mental property of pointer arithmetic:

Adding an integer n to a “pointer to type T” increments the pointer’s value
by n * sizeof(T).

6The 0x prefix signals that this is a hexadecimal (i.e., base 16) representation. Hexadecimal digits are 0, 1,
2, . . . , 9, a, b, c, d, e, f.

19

root
2014/7/8
page 20

�

�

�

�

�

�

�

�

20 Chapter 4. Pointers and arrays

What distinguishes C from many other programming languages is its ubiquitous use of
pointers and pointer arithmetic. A firm grasp of these concepts is essential for benefiting
from the rest of this book.

4.2 Pointer types
Let p = &i, where i is of type int. We saw in the previous section that although on
the surface the value of p is a number, p is not of type int. Rather, it is of type pointer
to int since it is the address of an object of int type. The proper declaration of p is
“int *p;”. Note the asterisk.

Thus, p holds the memory address of where i’s value is stored. Since we know the
address, we should be able to read its contents without referring to i. The expression *p
achieves that. In general, if p is a pointer to an object, then *p is the value stored in that
object.7 The following program accesses and prints the value stored in i, that is, 3, in two
different ways: once as i and once as *p. It also prints the address of the object’s location
in two different ways: once as &i and once as p. Try it out and be sure you understand
every detail before moving on.

#include <stdio.h>
int main(void)
{

int i = 3;
int *p = &i;
printf("value of i = %d, same as %d\n", i, *p);
printf("address of i = %p, same as %p\n",

(void *)&i, (void *)p);
return 0;

}

In effect, the asterisk (*) and ampersand (&) operators are inverses of each other. One
goes from value to address; the other goes from address to value. Applying the asterisk
operator to a pointer is called dereferencing the pointer.

4.3 The pointer to void
The statement “void *p;” declares a special type of pointer called a pointer to void, or
void pointer. There is no object of type void in C; therefore “void *p;” has no a priori
meaning. C defines it to be a pointer of “generic type” which can point to an object of
any type. This means that the usual pointer arithmetic does not apply to void pointers.
What would be the meaning of 1+p, for instance? The pointer arithmetic would want to
addsizeof(void) top, but since there is no object of typevoid, that operation would
make no sense. For the same reason, it makes no sense to dereference a void pointer.

The essential property of a void pointer is that it is compatible with all other pointers.
The following program illustrates this:

1 #include <stdio.h>
2 int main(void)
3 {
4 int a = 5;
5 double x = 3.14;
6 void *p;
7 p = &a;

7A pointer of type “void *” is an exception. More on that later.

root
2014/7/8
page 21

�

�

�

�

�

�

�

�

4.4. Arrays 21

8 printf("value of a = %d\n", *(int *)p);
9 p = &x;

10 printf("value of x = %g\n", *(double *)p);
11 return 0;
12 }

In line 7 p is set to hold the address of a, while in line 9 p is set to hold the address of x.
This illustrates that a void pointer is generic; it is compatible with assignments to pointers
to int and double, or any other type for that matter.

On line 8 we print the contents of the memory location pointed at by p. We noted
earlier that a void pointer may not be dereferenced; therefore *p would be illegal. That’s
why we cast p to a pointer to int first and then dereference the result. That should
explain the *(int *)p. The cast on line 10 serves a similar purpose.

The genericity of the void pointer enables us to write functions that may admit argu-
ments of unspecified types. For instance,

int compare(void *a, void *b);

declares a function named compare() that admits a pair of pointers to objects of any type
as arguments. That function’s implementation may cast and dereference its arguments as
appropriate, and return a value less than, equal to, or greater than zero, indicating that
the first argument is less than, equal to, or greater than the second. Such a function is
suitable for passing to the C standard library’s qsort() function, which will sort an
array according to compare()’s criterion. It is crucially important that the arguments
of compare() be generic; otherwise qsort() would be limited to sorting arrays of
only a fixed type.

4.4 Arrays
The statement “double a[100];” declares an array of length 100 of the type double.
This array can hold a sequence of 100 double-precision floating point numbers. The ar-
ray’s ith element is a[i]. The array index begins with zero; therefore the array ele-
ments are a[0], a[1], a[2], . . . , a[99]. This is in variance with the common usage
in mathematics where a vector’s index begins with one; therefore some care is necessary
when implementing mathematical algorithms in C. Experience shows that this cultural
difference is easy to overcome. The code fragment

double sum = 0.0;
for (int i = 0; i < 100; i++)

sum += a[i];

computes the sum of the array’s 100 entries.
An array is stored in a contiguous area of the memory; that is, the addresses of the

successive elements of its entries form an arithmetic progression, as illustrated in

#include <stdio.h>
int main(void)
{

double a[4];
printf("address of a[0] = %p\n", (void *)&a[0]);
printf("address of a[1] = %p\n", (void *)&a[1]);
printf("address of a[2] = %p\n", (void *)&a[2]);
printf("address of a[3] = %p\n", (void *)&a[3]);
return 0;

}

root
2014/7/8
page 22

�

�

�

�

�

�

�

�

22 Chapter 4. Pointers and arrays

This program prints something like this:

address of a[0] = 0xbffff6d8
address of a[1] = 0xbffff6e0
address of a[2] = 0xbffff6e8
address of a[3] = 0xbffff6f0

Note that the addresses, represented as hexadecimal numerals, are incremented by the
constant value 8 because on my machine an object of type double is 8 bytes wide.

Array names are handled in an interesting way in C. In most contexts—see Remark 4.1
below for an important exception—an array’s name is interpreted as a pointer to the ar-
ray’s first element. One says that the array’s name decays to a pointer. For instance, if you
insert the extra line

printf("value of a = %p\n", (void *)a);

in the program above, you will see that it prints the same hexadecimal number that it
prints for &a[0].

Remark 4.1. An important exception to the decay of array names occurs in conjunction
with the sizeof operator. In that case the array name does not decay to a pointer. Thus,
with “double a[100];”, the expression “sizeof a” evaluates to the total memory
(in bytes) taken up by the entire array, that is, 100 * sizeof(double), which would
be 800 bytes if a double is 8 bytes wide, as it is on my machine. Had the array decayed to
a pointer, then “sizeof a” would have evaluated to the size of a “pointer to double”,
which would be perhaps 8 bytes—this depends on your system—and has nothing to do
with the array’s length.

Remark 4.2. Since “sizeof a” is the total memory taken up by the array, and since
sizeof a[0] is the memory taken up by its first element (which is the same as the
memory taken up by any element), then “sizeof a / sizeof a[0]” is the number
of elements in the array. This is quite useful for finding the length, that is, the number of
elements, in an explicitly initialized array, as in

#include <stdio.h>
int main(void)
{

int a[] = { 1, 1, 2, 3, 5, 8, 13 };
printf("a has %d elements\n", sizeof a / sizeof a[0]);
return 0;

}

Remark 4.3. We noted earlier that in most contexts the name of the array, say a, is
treated as the address of its first element. In view of the properties of pointer arithmetic,
then a + 1 is the address of the next element. In general, a + i is the address of the
ith element. Dereferencing that, as in *(a + i), yields the value stored there. But the
value stored in the ith element is a[i]. We conclude that

a + i = &a[i] and a[i] = *(a + i).

From this point of view, the notation a[i] is mere syntactic sugar; its true meaning is
*(a + i), which says begin at the address a, step forward i memory slots, and then
dereference that address.

root
2014/7/8
page 23

�

�

�

�

�

�

�

�

4.5. Multidimensional arrays 23

Remark 4.4. The identity a[i] = *(a + i) has a curious consequence:

a[i] = *(a + i) = *(i + a) = i[a].

Therefore, 23[a] is a completely legal—albeit very unorthodox—way of writinga[23].
This is hardly more than an amusing curiosity, although some claim that this can be put
to good use for writing a more expressive code in certain rare circumstances. For example,
since literal strings are treated as arrays in C, bothprintf()s in the program below print
the 7th letter of "Hello World" , that is, W:

#include <stdio.h>
int main(void)
{

printf("%c\n", "Hello World"[6]);
printf("%c\n", 6["Hello World"]);
return 0;

}

You decide which is the more expressive.

Remark 4.5. Neither*(a + i) nora[i]has built-in error-checking mechanisms. It is
your responsibility as a programmer to make sure that the address a + i lies within the
array’s bounds. Stepping outside the array’s bounds is a fatal error and almost certainly
will crash the program with the dreaded segmentation fault message.

Remark 4.6. There are varying requirements on the declaration of arrays such as
“int a[n];” in C89, C99, and C11. In C89, the value of n is required to be a nu-
meric constant which is known at the time when the program is compiled. C99 allows
the value of n to be determined during the program’s execution. Such so-called variable-
length arrays proved to be quite unpopular when C99 was announced and raised strong
objections within the C programming community. C11 strikes a compromise by mak-
ing the support for variable-length arrays optional. This in effect eliminates the use of
variable-length arrays in writing portable programs because their support cannot be guar-
anteed on all compilers.

For this reason I will refrain from using C99’s variable-length arrays in this book.
Dynamically allocated arrays, the topic of Chapter 8, describe the portable way of dealing
with arrays whose sizes are not predetermined.

4.5 Multidimensional arrays
The declaration

double a[3][4];

makes a two-dimensional array that may be used to store a matrix of 3 rows and 4 columns.
The element in row i and column j is accessed through the syntax a[i][j]. The expres-
sion a[0][2] = 3.14 assigns the value 3.14 to the (0,2) element. Higher-dimensional
arrays work in the same way. For instance, the elasticity tensor of a linearly elastic mate-
rial is a 3× 3× 3× 3 array which may be declared as

double C[3][3][3][3];

Its elements will be accessed through the syntax C[i][j][p][q].

root
2014/7/8
page 24

�

�

�

�

�

�

�

�

24 Chapter 4. Pointers and arrays

4.6 Strings
There is no intrinsic string data type in C. A string is defined to be a contiguous (in
memory) sequence of characters terminated by and including the ASCII NUL character,
\0, which is called the string’s null terminator. For instance, the array s[] defined by

char s[8];
s[0] = ’T’; s[1] = ’e’; s[2] = ’x’; s[3] = ’t’; s[4] = ’\0’;

represents the string “Text”. The string’s length is 4, but it takes up 5 bytes of storage
because of the inclusion of the NUL. The array’s elements 5, 6, and 7 are past the null
terminator; therefore they are not a part of the string. Moreover, since they have not
been assigned to, they will hold garbage values. When we pass a string to a function, we
need not supply the string’s length because the receiving function can tell the string’s end
by its null terminator.8

The length and contents of the string defined above may be changed as long as we
don’t exceed the array bounds. For instance,

s[2] = ’s’; s[4] = ’i’; s[5] = ’n’; s[6] = ’g’; s[7] = ’\0’;

changes the string from “Text” to “Testing”.
The declaration and initialization steps of a string may be merged into a single state-

ment, as in

char s1[8] = { ’T’, ’e’, ’x’, ’t’, ’\0’ };

or simply:

char s2[] = { ’T’, ’e’, ’x’, ’t’, ’\0’ };

In the latter case, the length of the array will be exactly 5.
It is also possible to define a string simply as

char s3[] = "Text";

or

char *s4 = "Text";

Any of the strings s1 · · · s4 may be used with identical results in most contexts where
strings are used—all four represent “Text”. However, there are subtle differences that one
needs to be aware of, especially in relation to the sizeof operator, as can be seen here:

#include <stdio.h>
int main(void)
{

char s1[8] = { ’T’, ’e’, ’x’, ’t’, ’\0’ };
char s2[] = { ’T’, ’e’, ’x’, ’t’, ’\0’ };
char s3[] = "Text";
char *s4 = "Text";

printf("s1 = %s, sizeof s1 = %d\n", s1, sizeof s1);
printf("s2 = %s, sizeof s2 = %d\n", s2, sizeof s2);
printf("s3 = %s, sizeof s3 = %d\n", s3, sizeof s3);
printf("s4 = %s, sizeof s4 = %d\n", s4, sizeof s4);
return 0;

}

8Old joke floating on the Internet: These two strings walk into a bar and sit down. The bartender
says, “So what’ll it be?” The first string says, “I think I’ll have a beer fulk boorg jdk@¿ÇjfdŁ¡ kjk3s
d#f67hower89åøvyo. . . “Please excuse my friend,” the second string says, “she isn’t null-terminated.”

root
2014/7/8
page 25

�

�

�

�

�

�

�

�

4.7. The command-line arguments 25

This prints

s1 = Text, sizeof s1 = 8
s2 = Text, sizeof s2 = 5
s3 = Text, sizeof s3 = 5
s4 = Text, sizeof s4 = 4

Can you explain the result? Recall the discussion of the decay of array names and the
exception noted in Remark 4.1 on page 22.

Remark 4.7. A quoted set of characters, such as the "Text" in the definition of s3 and
s4 above, is called a string literal. Your C compiler is permitted to treat a string literal as
a read-only object, making it impossible to change its letters. For instance, with the s1
and s4 defined as above, setting s1[0] = ’N’ is quite legal and changes s1 to “Next”,
but setting s4[0] = ’N’ is illegal and may have unpredictable results.

The C standard library provides a dozen or so functions for working with strings.
There are functions to copy, concatenate, search, compare, tokenize, and print strings.
For instance the strlen() function gives a string’s length (not counting the null termi-
nator.)

4.7 The command-line arguments
Programs are often invoked with command-line arguments and options. For instance,
the Unix utility diff takes two file names as arguments, as in diff file1 file2,
and prints the differences between the contents of the two files. How are the file names
file1 and file2 conveyed from the command-line to the diff program?

C provides two alternative forms for declaring the function main(). If the pro-
gram has no use for command-line arguments, then we use the simpler alternative,
“int main(void)”. If the program needs to access the command-line arguments,
then we use the second alternative: “int main(int argc, char **argv)”.
In the latter case, the argc parameter will hold the number of command-line to-
kens with which the program is invoked. For instance, if the command-line is
“diff file1 file2”, then the value of argc will be set to 3. If a program is invoked
with no arguments, then the only command-line token is the program’s name; therefore
argc is set to 1.

The argv parameter is an array of length argc + 1 of pointers to char; argv[0]
points to a string corresponding to the first command-line token, which is the name of
the program; argv[1] through argv[argc-1] point to strings corresponding to the
remaining command-line tokens; argv[argc] is the NULL pointer—it marks the end of
the argv array much in the same way that the null terminator marks the end of a string.
Figure 4.1 is a schematic representation of the idea.

The following program prints the command-line arguments and exits:

#include <stdio.h>
int main(int argc, char **argv)
{

while (*argv �= NULL)
printf("%s\n", *argv++);

return 0;
}

Can you think of other ways of doing this?

root
2014/7/8
page 26

�

�

�

�

�

�

�

�

26 Chapter 4. Pointers and arrays

argv[0]

argv[1]

argv[2]

NULL

argv d i f f \0

f i l e 1 \0

f i l e 2 \0

Figure 4.1: The schematic representation of the memory layout of the command-line
arguments when the program is invoked as “diff file1 file2”.

Remark 4.8. This section’s discourse on the values of argc and argv is intentionally
simplistic and not quite accurate. My aim has been to cover the most common case, and
in that sense what I have written is accurate. It is possible, however, to step outside of
the ordinary and encounter behaviors which are quite at odds with what I have said. For
instance, Unix’s exec() family of functions allows one to execute a program in such a
way that argc appears to be zero or in such way that argc is nonzero but argv[0] is
something other than the program’s name. These issues are not of relevance to this book’s
material; therefore I will not go into them.

root
2014/7/8
page 27

�

�

�

�

�

�

�

�

Chapter 5

From strings to numbers

In Section 4.7 we saw how to access the user-supplied command-line arguments as strings
argv[0], argv[1], etc. If any of these arguments is supposed to be interpreted as
a number, then we need a means of converting a string to a number. The C standard
library provides several functions for that purpose. In this chapter we will learn about a
few of these which are used frequently in the rest of this book.

5.1 The function strtod()

The standard library’s strtod() (think of it as string to double) function “converts the
initial portion of a string” to a number of type double. The expression in the quotes,
which comes from the C standard, requires some explanation. The function is declared
in the standard header file stdlib.h as

double strtod(const char *nptr, char **endptr);

We see that it takes two arguments. The first argument is expected to be a pointer
to a string that expresses a floating point number such as “3.14”, “-0.123”, or
“6.0221415e+23”. Leading whitespace, if any, is ignored. The parsing of the string
stops when the end of the number is detected. Thus, the string may include trailing junk.
For instance, “ 6.022e+23xyz” yields the same number as “6.022e+23”. Here
I have used “ ” to mark whitespace characters.

The second argument, called the end-pointer, is the address of a pointer tochar. Upon
reaching the end of the numeric portion of the string, strtod() sets the end-pointer
to point to the memory location next to the number’s last character. For instance, if
the string is “6.022e+23xyz”, then the end-pointer points to the character “x”. In
particular, if there is no trailing junk, then the end-pointer points to the string’s null
terminator, that is, the “\0” character. It follows that if, after strtod() returns, the end-
pointer is pointing to anything other than “\0”, then the string contains trailing junk. It’s
conceivable that the user put the junk there on purpose, but more often than not, trailing
junk is the result of an unintended error in the input—perhaps a slip of the finger on the
keyboard—and we would want to catch that. Therefore, a typical call to strtod() takes
the form

#include <stdlib.h>
char *str = ...; // some string here
char *endptr;

27

root
2014/7/8
page 28

�

�

�

�

�

�

�

�

28 Chapter 5. From strings to numbers

double x;
x = strtod(str, &endptr);
if (*endptr �= ’\0’)

fprintf(stderr, "your string has trailing junk!\n");
else

printf("the number is %g\n", x);

Remark 5.1. The standard library also provides strtof() and strtold(), which
return floating point numbers of types float and long double, respectively. The
function strtod() dates back to C89. The other two were added in C99. We will have
use only for strtod() in this book.

5.2 The function strtol()

The standard library’s strtol() (think of it as string to long int) function “converts the
initial portion of a string” to a number of type long int. The expression in the quotes
comes from the C standard which, in the header file stdlib.h, declares the prototype:

long int strtol(const char *nptr, char **endptr, int base);

We see that strtol() takes three arguments. The first argument is expected to be a
string that expresses an integer such as “123”, “-321”, or “beef” (yes, that’s a hex-
adecimal number). Initial whitespace, if any, is ignored. The parsing of the string stops
when the end of the number is detected. Thus, the string may include trailing junk. For
instance, “ -321#@x” yields the same number as “-321”.

The second argument, called the end-pointer, works exactly like that in the case of
strtod() described in the previous section; therefore I will not repeat that descrip-
tion here. The third argument is the base in which the number is to be interpreted. For
decimal numbers the base is 10. For hexadecimal numbers it is 16. The base may be as
small as 2 (a binary number) or as large as 35. The digits in base 35 are 0,1, . . . , 9,a, b , . . . , z
(uppercase or lowercase letters are equivalent). Setting the base to zero has a special mean-
ing which is not worth getting into in this brief overview. Read your C reference to find
out if you are curious.

Here is a typical call to strtol():

#include <stdlib.h>
char *str = ...; // some string here
char *endptr;
long int n;
n = strtol(str, &endptr, 10);
if (*endptr �= ’\0’)

fprintf(stderr, "your string has trailing junk!\n");
else

printf("the number is %d\n", n);

Remark 5.2. The standard library also provides the function strtoll()which returns
extended range integers of the type long long int. You may use strtoll() to find
out the base 10 equivalent of the hexadecimal number deadbeef. On a typical computer
it is likely that deadbeef is beyond the range of long int, so strtol() won’t do.

There are alsostrtoul() and strtoull()which return unsigned long int
and unsigned long long int. The functions strtol() and strtoul() date

root
2014/7/8
page 29

�

�

�

�

�

�

�

�

5.3. The functions atof(), atol(), and friends 29

back to C89. The other two were added in C99. We will have use only for strtol() in
this book.

5.3 The functions atof(), atol(), and friends
The C standard library function atof() (think of it as ascii to float) is the lazy man’s
version of strtod(). It is declared in stdlib.h as

double atof(const char *nptr);

Thus, atof() takes a pointer to a string and produces a floating point number of type
double. Initial whitespace and trailing junk, if any, are silently ignored. Therefore,
atof(6.022e+23xyz) returns 6.022e+23.

The C standard library function atol() (think of it as ascii to long int) is the lazy
man’s version of strtol(). It is declared in stdlib.h as

long int atol(const char *nptr);

Thus, it takes a pointer to a string and produces an integer of type long int. Initial
whitespace and trailing junk, if any, are silently ignored. Therefore, atol(-321xyz)
returns -321. Unlike strtol(), there is no provision for bases other than 10.

There are also atoi() and atoll() which work just like atol() but return int
and long long int, respectively. The functions atof(), atol(), and atoi() date
back to C89. The function atoll() was introduced in C99.

This section’s ato*() functions can be handy for quick-and-dirty jobs and throw-
away programs. For a work of any permanence, I recommendstrtod() andstrtol().
We won’t use the ato*() functions in this book.

root
2014/7/8
page 31

�

�

�

�

�

�

�

�

Chapter 6

Make

6.1 Multifile programs
It helps to split a program into as many logically independent parts as possible. Generally
a small programming unit is easier to comprehend, debug, and improve. A “logically
independent part” does not stand in vacuum, however. It is always connected through
thin filaments to the other parts; otherwise one could remove it and nothing would be
the worse for it.

The “parts” of the program generally manifest themselves as files or groups of files.
Programs that are spread over dozens, if not hundreds, of files are quite common. Unix’s
make utility is an essential tool for managing a multipart program.

To provide a context to this exposition, I will refer to Chapter 17’s Project Evolution,
although a knowledge of the details of that chapter is not a prerequisite for understand-
ing this chapter. Project Evolution is spread over five *.c files and six *.h files:9

$ cd evolution
$ ls -F
array.h@ read.c world-to-eps.h xmalloc.c@
evolution.c read.h write.c xmalloc.h@
evolution.h world-to-eps.c write.h

It’s possible to compile the entire program via a single command:10

$ gcc -Wall -pedantic -std=c99 -O2 evolution.c read.c \
world-to-eps.c write.c xmalloc.c -o evolution

Indeed, this will compile the five *.c files and produce an executable file named “evolu-
tion”; the -o flag precedes the name of the desired executable. The *.h files are not listed
explicitly; the compiler inserts them where indicated by the preprocessor’s #include
directives.

6.2 Separate compilation and linking
The single-line compilation method works, but it’s rather primitive and is hardly ever ad-
visable. If you edit one of the files, say write.c, then of course you will have to recompile it,

9Files decorated with “@” are symbolic links, as explained in Chapter 2.
10I have broken the line in two, as it is too long to fit between the margins of this book. A backslash (\) at

the end of a Unix command-line indicates that the line is continued into the next. See Section 1.5 regarding the
compilation flags -Wall -pedantic -std=c99 -O2.

31

root
2014/7/8
page 32

�

�

�

�

�

�

�

�

32 Chapter 6. Make

but there should be no need to recompile the rest of the *.c files if you haven’t touched
them. The sensible thing to do is to compile the files individually, and when a particular
file changes, then recompile just that one, leaving the rest alone. Here is how that’s done:

$ gcc -c -Wall -pedantic -std=c99 -O2 evolution.c
$ gcc -c -Wall -pedantic -std=c99 -O2 read.c
$ gcc -c -Wall -pedantic -std=c99 -O2 world-to-eps.c
$ gcc -c -Wall -pedantic -std=c99 -O2 write.c
$ gcc -c -Wall -pedantic -std=c99 -O2 xmalloc.c

The -c flag tells gcc to compile each *.c file into a corresponding *.o file, called an object
file. Although an object file is a finished product as far as compilation goes, it’s not suitable
for stand-alone execution since it’s only a fragment of a whole program. Consider, for
instance, the first of the five lines shown above. Within evolution.c there is a reference
to the function read_world_def() which is defined elsewhere (in read.c, to be exact).
The header file read.h, which is #included in evolution.c, reassures the compiler that
the function read_world_def()with a specific prototype will be made available later.
That satisfies the compiler, and it produces the object file evolution.o with a dangling
reference to the promised read_world_def().

There are many more dangling references in evolution.o. In evolution.c there are sev-
eral references to the function printf(), for instance, which is defined elsewhere (in
the C standard library, to be exact). The header file stdio.h, which is #included in evo-
lution.c, reassures the compiler that the function printf() with a specific prototype
will be made available later.

The loose ends are tied together in a process called linking. It’s done by giving the
names of the object files to gcc, as in

$ gcc evolution.o read.o world-to-eps.o write.o xmalloc.o \
-o evolution

Again I have broken the long line in two, but you can see what is going on. There are no
compilation flags, such as -Wall, because no compilation takes place here. Gcc sees a
list of object files and recognizes the request for linking. It ties the loose ends among the
listed *.o files and the standard library, and produces the executable file named “evolution”
because that’s what the -o flag tells it.

Suppose we make a change in write.c. Producing a new executable amounts to

$ gcc -c -Wall -pedantic -std=c99 -O2 write.c
$ gcc evolution.o read.o world-to-eps.o write.o xmalloc.o \

-o evolution

That is, we recompile write.c and relink. The other *.c files were not touched; therefore
they need not be recompiled.

6.3 File dependencies
This is all quite straightforward until we change a header file, say write.h. Which files need
to be recompiled now? We need to inspect each of the other *.c and *.h files to find out
which of them #includes the file write.h and then recompile the affected files. Doing
this manually can be daunting because a program’s various files may be interrelated in
complex ways. Figure 6.1 shows the dependencies of the files in Project Evolution. At the
very top is the executable evolution which depends on the five *.o files. We see that the
object file write.o depends on write.h, write.c, and evolution.h. We also see that the object
file evolution.o depends on evolution.c as well as the six header files *.h.

root
2014/7/8
page 33

�

�

�

�

�

�

�

�

6.3. File dependencies 33

evolution.h read.h write.h xmalloc.hwrite-to-eps.harray.h

evolution.o read.o write.o xmalloc.owrite-to-eps.o

evolution.c read.c write.c xmalloc.cwrite-to-eps.c

evolution

Figure 6.1: This diagram shows the dependency tree among the files pertaining to
Project Evolution. The executable evolution (at top) depends on the *.o files
in the second row. Each of the *.o files depends on one or more *.c and *.h
files, listed at the bottom two rows.

Fortunately, we don’t have to discover these dependencies through laborious manual
inspection; gcc’s -MM flag will do that for us. In response to the command

$ gcc -MM evolution.c read.c world-to-eps.c write.c xmalloc.c

it prints

evolution.o: evolution.c evolution.h xmalloc.h array.h read.h \
write.h world-to-eps.h

read.o: read.c xmalloc.h read.h evolution.h
world-to-eps.o: world-to-eps.c world-to-eps.h evolution.h
write.o: write.c write.h evolution.h
xmalloc.o: xmalloc.c xmalloc.h

Each line has the form “target: dependency1 dependency2 . . . ”. For instance, we see that
write.o depends on write.c, write.h, and evolution.h, as was noted earlier. Item or items to
the left of the colon are called targets. Item or items to the right of the colon are called
dependencies.

The form of the output of gcc -MM is designed specifically to mesh with the Unix
utility called make. Make reads a file, usually called Makefile, that contains the list of
targets/dependencies of a project in the textual form shown above. It then figures out
what needs to be done to compile the program without further human intervention.

You, the programmer, write the appropriate Makefile for your program. Writing a
Makefile may seem akin to black magic if you don’t know the principles behind it. In the
next several sections I will construct a sequence of Makefiles, initially some rather prim-
itive ones and then progressively more sophisticated and complex ones but with greater
utility. The later versions are much more practical, and I recommend that you use those
rather than the simplistic early versions, but don’t skip over the earlier versions as you read
this chapter; they show the progression of logic that leads to the somewhat complex final
product which may not be easily decipherable otherwise.

root
2014/7/8
page 34

�

�

�

�

�

�

�

�

34 Chapter 6. Make

Listing 6.1: Makefile version 1. Make recognizes a backslash \ at the end of a line as a directive to
continue to the next line, as the Unix shell does.

1 evolution: evolution.o read.o world-to-eps.o write.o xmalloc.o
2 gcc evolution.o read.o world-to-eps.o write.o xmalloc.o \
3 -o evolution
4

5 evolution.o: evolution.c evolution.h xmalloc.h array.h read.h \
6 write.h world-to-eps.h
7 gcc -Wall -pedantic -std=c99 -O2 evolution.c
8

9 read.o: read.c xmalloc.h read.h evolution.h
10 gcc -Wall -pedantic -std=c99 -O2 read.c
11

12 world-to-eps.o: world-to-eps.c world-to-eps.h evolution.h
13 gcc -Wall -pedantic -std=c99 -O2 world-to-eps.c
14

15 write.o: write.c write.h evolution.h
16 gcc -Wall -pedantic -std=c99 -O2 write.c
17

18 xmalloc.o: xmalloc.c xmalloc.h
19 gcc -Wall -pedantic -std=c99 -O2 xmalloc.c

6.4 Makefile version 1
The first version of our Makefile shown in Listing 6.1 is quite verbose but also quite simple
to comprehend. Line 1 says that the target file called “evolution” depends on the five *.o
files shown. That single line is exactly equivalent to the top half of Figure 6.1.

As it stands, line 1 is incomplete: it asserts what the target depends on but does not
tell how to build it from its dependencies. We, the humans, know that it’s done through
linking:

$ gcc evolution.o read.o world-to-eps.o write.o xmalloc.o \
-o evolution

but make doesn’t know that and needs to be told. That’s where line 2 comes in. In a
Makefile we may associate a command with a target/dependency pair. The command tells
make what needs to be done to produce the target out of the dependencies. The syntax is

target : dependencies

commandtab

The tab that precedes the command is a literal Tab character and is absolutely essential;
spaces won’t do. The GNU make’s manual thus puts it emphatically: “You need to put
a tab character at the beginning of every command line! This is an obscurity that catches
the unwary.”

Equipped with this knowledge, you should have no problems in deciphering the
Makefile of Listing 6.1. Line 15, for instance, says that write.o depends on write.c, write.h,
and evolution.h. Line 16 supplies the command that produces write.o out of those
dependencies. The indentation of that line is due to the presence of the leading tab.

root
2014/7/8
page 35

�

�

�

�

�

�

�

�

6.6. Makefile version 2 35

6.5 How to run make

At this point we have a file named Makefile whose contents are shown in Listing 6.1.
Execute the Unix command

$ make

and—voilà!—make reads and executes the instructions in the Makefile and produces the
file evolution. What is even more impressive, if you change any of your source files and
run make again, it will detect what has changed and will know exactly which files to
recompile—since it knows their interdependencies—to create a new evolution file. If you
rerun make without having made any changes, it will know that there is nothing to do
and will tell you so.

Remark 6.1. Occasionally it is useful to run make with the -n flag:

$ make -n

This does a “dry run”—it prints out what will be done without doing them.

Let us look once more at the Makefile in Listing 6.1. Note that there are six targets
in it. When we run make, it picks up the very first target to build. It sees that the first
target, that is, evolution, depends on evolution.o among other things. So it looks up and
executes the instructions for building evolution.o. It repeats this for the other *.o files and
then puts them together to build the first target.

In view of the special role of a Makefile’s first target, it is a good idea to put the most
frequently needed object as the first target in a Makefile. This is not absolutely necessary,
however. Had we placed the evolution target somewhere else, let’s say at the end of the
Makefile, we still could have requested make to build it by giving the name of the target
explicitly on the command-line:

$ make evolution

Putting the most frequently needed object as the first target in a Makefile makes life a little
easier since it won’t be necessary to type the target’s name on the command-line.

6.6 Makefile version 2
Line 16 of Listing 6.1 instructs make to compile write.c in order to build write.o. But
that’s rather obvious; how else would one build write.o out of write.c? Can’t make figure
that out by itself? It turns out that yes, it can! Make has a built-in rule for producing an
object file from a C file. If we don’t specify the command ourselves, make will apply the
built-in rule. This means that line 16 is superfluous and may be removed.

There remains an issue regarding gcc’s compilation options. If we remove line 16,
then how do we tell make to compile write.c with our favorite compilation flags?

Make recognizes a built-in variable named CFLAGS. We may define CFLAGS in the
Makefile as we wish. Make will apply CFLAGS along with its built-in compilation rules.
Implementing these observations, we arrive at version 2 of our Makefile shown in List-
ing 6.2. Relative to the previous version, I have removed the commands associated with
the *.o targets to let make apply its own built-in rules instead. Note the CFLAGS defined
at the top.

Lines 3 and 4 have remained exactly as before because we still need to tell make how to
build the evolution target from the object files. That part is very much project-dependent;
no built-in rule can help there.

root
2014/7/8
page 36

�

�

�

�

�

�

�

�

36 Chapter 6. Make

Listing 6.2: Makefile version 2.

1 CFLAGS = -Wall -pedantic -std=c99 -O2
2

3 evolution: evolution.o read.o world-to-eps.o write.o xmalloc.o
4 gcc evolution.o read.o world-to-eps.o write.o xmalloc.o \
5 -o evolution
6

7 evolution.o: evolution.c evolution.h xmalloc.h array.h read.h \
8 write.h world-to-eps.h
9 read.o: read.c xmalloc.h read.h evolution.h

10 world-to-eps.o: world-to-eps.c world-to-eps.h evolution.h
11 write.o: write.c write.h evolution.h
12 xmalloc.o: xmalloc.c xmalloc.h

Remark 6.2. Lines from 7 on down are exactly what “gcc -MM” produces (see the
output shown on page 33); therefore one does not type those lines by hand. I certainly
didn’t.

There are several ways to grab the output of “gcc -MM” and stick it into the Makefile.
If you are working on a terminal that allows copying and pasting with the mouse, you
may do just that, that is, copy the output of “gcc -MM” and paste it into the Makefile,
but that is probably the clumsiest way of doing it. A better way is to rely on your Unix
shell’s redirection ability to append11 gcc’s output to the Makefile:

$ gcc -MM evolution.c read.c world-to-eps.c \
write.c xmalloc.c >>Makefile

You should remember, however, as you add and remove files, or change any #include
lines in your sources, or anything else that may alter the file dependency tree, you need to
refresh those dependency lines. To do that, edit the Makefile, delete the previous depen-
dency lines, and then regenerate them as instructed above.

There are ways to automate the updating of the dependency lines in a Makefile but
they will probably be more confusing to a beginner than of help, so I won’t go there.

6.7 Makefile version 3
There is something disconcerting about version 2 of the Makefile in Listing 6.2: line 4
repeats the file names from line 3. That’s rather annoying because any change in one
line requires the identical change in the other. To avoid repetition, we introduce a new
variable, let’s call it OFILES,12 that declares the names of the object files:

OFILES = evolution.o read.o world-to-eps.o write.o xmalloc.o

Then we may refer to that variable instead of listing the object files explicitly. To refer to
OFILES, we write $(OFILES). Thus, lines 3 and 4 simplify to

evolution: $(OFILES)
gcc $(OFILES) -o evolution

Can it be made any simpler? Yes, it can! The word “evolution” appears in two places.
We may avoid the repetition by changing the above to

11See the remark in footnote 5 on page 16.
12Unlike CFLAGS, which is a make built-in, the name “OFILES” has no special significance; you may call it

as you wish. Many programmers use “OBJS” for this purpose.

root
2014/7/8
page 37

�

�

�

�

�

�

�

�

6.7. Makefile version 3 37

evolution: $(OFILES)
gcc $(OFILES) -o $@

The “$@” is an internal variable in make that holds the name of the associated target. The
choice of the symbol “@” is apropos since it looks so much like a target/bull’s-eye.

Let us remark that we have managed to reduce the bulky first three lines of Makefile
version 1 (see Listing 6.1 on page 34) to a quite simple and almost generic two-liner. It
would be even more generic if could we get rid of the occurrence of the word “evolution”
there as well. In fact, we can. Let us define a new variable, let’s call it TARGET, as in

TARGET = evolution

Then the previous block of code changes to

$(TARGET): $(OFILES)
gcc $(OFILES) -o $@

To make this completely generic, we change gcc to $(CC). The latter is defined to ex-
pand to the name of your system’s default C compiler. On most Linux machines $(CC)
expands to cc, which is a link to gcc. If your system is equipped with multiple C com-
pilers, then you may define CC in your Makefile, as in

CC = icc

which tells make to use Intel’s C compiler, icc, instead of the default.13 With this final
change, we arrive at

$(TARGET): $(OFILES)
$(CC) $(OFILES) -o $@

Hooray! This is completely generic! There are no references there to any specific project
or any compiler; therefore this fragment of the Makefile will be the same in all projects.
We celebrate this achievement by making version 3 of our Makefile, shown in Listing 6.3.
In effect, only the first two lines in that Makefile are project-dependent. Everything else
is generic. I am not counting the material that appears below line 8 since that is automat-
ically generated by “gcc -MM”.

Remark 6.3. The “#” character in a Makefile signals the beginning of a comment. Make
ignores everything from there to the end of line. The entire line 8 of Listing 6.3 is a
comment.

Remark 6.4. Up to this point I have adhered strictly to the syntax and semantics of
original make, which dates back to 1977. You should expect that any implementation of
the make utility—and there are quite a few—should respect the Makefiles constructed up
to this point, and should process them as intended.

The more recent versions of make add features of their own as extensions to the orig-
inal make. One of the more popular implementations, the GNU make, adds a “$^”
internal variable which expands to the list of a target’s dependencies. Thus, the second
occurrence of $(OFILES) in the previous code snippet may be replaced by “$^”, as in

$(TARGET): $(OFILES)
$(CC) $^ -o $@

13Compiler flags vary wildly from one compiler to another. If you switch to another compiler, you may have
to change CFLAGS accordingly.

root
2014/7/8
page 38

�

�

�

�

�

�

�

�

38 Chapter 6. Make

Listing 6.3: Makefile version 3.

1 OFILES = evolution.o read.o world-to-eps.o write.o xmalloc.o
2 TARGET = evolution
3 CC = gcc
4 CFLAGS = -Wall -pedantic -std=c99 -O2
5 $(TARGET): $(OFILES)
6 $(CC) $(OFILES) -o $@
7

8 # below this is the output of "gcc -MM":
9 evolution.o: evolution.c evolution.h xmalloc.h array.h read.h \

10 write.h world-to-eps.h
11 read.o: read.c xmalloc.h read.h evolution.h
12 world-to-eps.o: world-to-eps.c world-to-eps.h evolution.h
13 write.o: write.c write.h evolution.h
14 xmalloc.o: xmalloc.c xmalloc.h

There is not much of an advantage in using “$^” in this particular instance, but it can be
quite handy in a Makefile that builds multiple executables, e.g.,

target1: file1.o file2.o
$(CC) $^ -o $@

target2: file3.o file4.o
$(CC) $^ -o $@

You will have to balance the convenience of using “$^” against the possible lack of porta-
bility.

6.8 Makefile: The final version
The program for Project Evolution consists of five *.c files and six *.h files. Compiling the
program adds five *.o files as well as the executable which we have named evolution. Oc-
casionally you will want to “clean up” the directory by removing all machine-generated
files, leaving only the original source files. You want to do that when sending your pro-
gram to someone else—there is no point in sending object files and executables since these
are specific to your operating system. Such a cleanup is also helpful when you wish to
recompile the entire program from scratch and watch for any compiler warnings that you
may have missed earlier.

We may remove the object file and executables in Project Evolution through the Unix
command-line

$ rm evolution.o read.o world-to-eps.o write.o \
xmalloc.o evolution

but that’s too tedious and error-prone, especially if we have a large number of files. We
may enlist make to help us here as well. Note that the parameters given to the “rm ...”
command above are exactly what were called $(OFILES) and $(TARGET) in our Make-
file. Therefore, within the Makefile, that command takes the form

rm $(OFILES) $(TARGET)

root
2014/7/8
page 39

�

�

�

�

�

�

�

�

6.8. Makefile: The final version 39

Listing 6.4: Makefile, final version. Only the first two lines are project-dependent. Everything else
is generic. I am not counting the material that appears toward the end because that is
automatically generated by “gcc -MM”.

1 OFILES = evolution.o read.o world-to-eps.o write.o xmalloc.o
2 TARGET = evolution
3 CC = gcc
4 CFLAGS = -Wall -pedantic -std=c99 -O2
5 $(TARGET): $(OFILES)
6 $(CC) $(OFILES) -o $@
7

8 clean:
9 rm -f $(OFILES) $(TARGET)

10

11 # below this is the output of "gcc -MM":
12 evolution.o: evolution.c evolution.h xmalloc.h array.h read.h \
13 write.h world-to-eps.h
14 read.o: read.c xmalloc.h read.h evolution.h
15 world-to-eps.o: world-to-eps.c world-to-eps.h evolution.h
16 write.o: write.c write.h evolution.h
17 xmalloc.o: xmalloc.c xmalloc.h

Where do we put that line in the Makefile? We make up a “phony” target, let’s call
it “clean”, which has no dependencies and whose associated command performs the
removal:

clean:
rm $(OFILES) $(TARGET)

As we noted in Section 6.5, typing “make” on the command-line with no arguments
picks up the very first target in the Makefile. To pick up some other target, we give it as an
argument to make. Thus, to reach the “clean” target, on the Unix command-line we type

$ make clean

This will work fine, but it can be improved. It’s true that the command “make clean”
will remove $(OFILES) and $(TARGET), as intended, but executing the command
“make clean” for a second time will elicit a complaint from rm since there will be
no such files to remove. The -f flag suppresses such complaints from rm:

clean:
rm -f $(OFILES) $(TARGET)

Remark 6.5. Our use of the target “clean” constitutes an abuse of themake utility. Make
is designed with the assumption that targets will be actual file names, but “clean” is not
a file name; it’s a phony target. This is not an issue unless for some reason you happen
to have a file named “clean” in the same directory. That will confuse make to no end.
The generic solution is to avoid having a file named “clean”, or if you must, then consider
changing the name of the target to something else, like “cleanup”. A solution specific to
GNU make is to explicitly declare clean a “phony target”. Look up the Phony Targets
section in GNU make’s manual if you are interested.

We add the “clean” target to our Makefile and arrive at the final version shown in
Listing 6.4. Admittedly, calling it the “final version” is somewhat premature: it is missing

root
2014/7/8
page 40

�

�

�

�

�

�

�

�

40 Chapter 6. Make

important features such as a means to link with external libraries. Nevertheless, what we
have here is a good foundation to build upon, as we will see in the following sections.

6.9 Linking with external libraries
We will have several occasions in this book to link our programs with third-party libraries.
For instance, the finite element solver of Chapter 25 relies on the Triangle library to tri-
angulate the domain, the UMFPACK library to solve the resulting linear system, and the
standard library’s mathematics library for mathematical functions, such as sqrt(). To
link with these libraries, we pass the-ltriangle -lumfpack -lm flags to the linker.
A good way of doing this in a Makefile is to define

LIBS = -ltriangle -lumfpack -lm

and then change the command that performs the linking to

$(TARGET): $(OFILES)
$(CC) $(OFILES) $(LIBS) -o $@

6.10 Multiple executables in one Makefile
In Project Nelder–Mead of Chapter 18 we write several independent demonstration pro-
grams named demo-1D, demo-2D, demo-energy, demo-constrained, etc. Here are the rules
to build the first two:

OFILES_1D = xmalloc.o nelder-mead.o demo-1D.o
OFILES_2D = xmalloc.o nelder-mead.o demo-2D.o

demo-1D: $(OFILES_1D)
$(CC) $(OFILES_1D) -o $@

demo-2D: $(OFILES_2D)
$(CC) $(OFILES_2D) -o $@

If demo-1D is the first target, then the command make, with no arguments, will
build the executable demo-1D. To produce the remaining executables, we will have to give
their names on the command-line, as in “make demo-2D”, “make demo-energy”,
“make demo-constrained”, etc. This can be irksome if we have to rebuild the tar-
gets repeatedly. Fortunately, a simple trick can automate the building of any number of
targets with a single command. Listing 6.5 shows how.

There we define the variable ALL as the list of the desired executables. As the Make-
file’s first target we define a phony target called all which depends on $(ALL). Thus,
entering make on the command-line picks up that first target, that is, all. Since all
depends on the list of executables, building all amounts to building all the executables.

root
2014/7/8
page 41

�

�

�

�

�

�

�

�

6.10. Multiple executables in one Makefile 41

Listing 6.5: This is a typical Makefile for building multiple executables. Entering the command
make on the command-line will pick the first target, all, which depends on $(ALL),
which in turns is the list of the desired executables.
Note: If you are willing to use GNU make’s $^ extension (see Remark 6.4),
then you may simplify this Makefile by replacing every “$(CC) ...” line with
“$(CC) $^ -o $@”.

OFILES_RANK_VERTICES = rank-vertices-test.o
OFILES_1D = xmalloc.o nelder-mead.o demo-1D.o
OFILES_2D = xmalloc.o nelder-mead.o demo-2D.o
OFILES_ENERGY = xmalloc.o nelder-mead.o demo-energy.o
OFILES_CONSTRAINED = xmalloc.o nelder-mead.o demo-constrained.o

CFLAGS = -Wall -pedantic -std=c99 -O2

ALL = rank-vertices-test demo-1D demo-2D demo-energy demo-constrained

all: $(ALL)

rank-vertices-test: $(OFILES_RANK_VERTICES)
$(CC) $(OFILES_RANK_VERTICES) -o $@

demo-1D: $(OFILES_1D)
$(CC) $(OFILES_1D) -o $@

demo-2D: $(OFILES_2D)
$(CC) $(OFILES_2D) -o $@

demo-energy: $(OFILES_ENERGY)
$(CC) $(OFILES_ENERGY) -o $@ -lm

demo-constrained: $(OFILES_CONSTRAINED)
$(CC) $(OFILES_CONSTRAINED) -o $@

clean:
rm -f $(ALL) $(OFILES_RANK_VERTICES) $(OFILES_1D) $(OFILES_2D) \

$(OFILES_ENERGY) $(OFILES_CONSTRAINED)

the output of "gcc -MM" goes here
...

root
2014/7/8
page 45

�

�

�

�

�

�

�

�

Chapter 7

Allocating memory:
xmalloc()

Prerequisites: None

7.1 Introduction
The C standard library’s malloc() function, declared in the header file stdlib.h, allocates
a contiguous block of memory of the requested size (in bytes) and returns a void pointer
(cf. Section 4.3) that points to the beginning of the block. The request may fail if the
requested amount is greater than what’s available. In that case malloc() returns NULL.

The action to take when malloc() fails is dictated by the nature of the application.
For instance, if a text editing program runs out of memory, the proper action would
be to notify the user of the fact and give him the opportunity to save the work before
exiting. Similarly, if the overnight execution of a lengthy scientific computation runs out
of memory, it would be prudent that it saves its current state before quitting, so that it
may be resumed later from where it was cut off rather than starting anew. At the other
extreme, if the program has nothing worthwhile to save, then the proper action would be
to issue an alert and then quit.

All of this book’s programs fall in the latter category. Therefore we introduce a function
malloc_or_exit() that serves as a front end to malloc(). It calls malloc() and
checks the result. If NULL, then it prints a diagnostic to the stderr and calls exit() to
terminate the program. Otherwise it returns the result to the caller. By implementing this
wrapper around malloc(), we are freeing the user of the responsibility of checking ex-
plicitly for malloc()’s success—if the program is still alive after malloc_or_exit()
returns, then malloc() must have succeeded. This simplifies and streamlines our pro-
grams substantially.

Furthermore, we introduce a function-like preprocessor macro, xmalloc(), which
offers a simplified interface to malloc_or_exit(), as we shall see below. All memory
allocation in the rest of this book is done through the xmalloc() macro.

7.2 A review of malloc()
Our xmalloc module relies on the standard library’s malloc() function for allocating
memory. A typical usage of malloc() is shown in Listing 7.1. There are quite a few
ideas there, so let us go through it line by line (but not necessarily in sequential order).

45

root
2014/7/8
page 46

�

�

�

�

�

�

�

�

46 Chapter 7. Allocating memory: xmalloc()

Listing 7.1: A typical use of the standard library’s malloc() function.

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main(void)
4 {
5 int n = 10;
6 double *x = malloc(n * sizeof *x);
7 if (x == NULL) {
8 fprintf(stderr, "%s:line %d: malloc(%u) failed\n",
9 __FILE__, __LINE__, n * sizeof *x);

10 return EXIT_FAILURE;
11 }
12 for (int i = 0; i < n; i++)
13 x[i] = 1.0 / (i + 1);
14 for (int i = 0; i < n; i++)
15 printf("x[%d] = %g\n", i, x[i]);
16 free(x);
17 return EXIT_SUCCESS;
18 }

Line 6: A lot is happening on this line. The “double *x” part declares x as a pointer
to double. Then “sizeof *x” determines the size of what x points to. Since
x points to a double, then “sizeof *x” produces the size of the storage for a
double (which is 8 bytes on my machine but may be different on yours). Then
malloc() is called to request storage for n times the size of a double, where n
is defined on the preceding line. Finally, the address of the memory block returned
by malloc() is assigned to x.

Remark 7.1. A contiguous memory block capable of storing n doubles is just the
right object to hold a (mathematical) vector of floating point numbers. This is the
subject of Chapter 8.

Lines 7–11: If the call tomalloc() fails—which can happen if there is insufficient mem-
ory available to meet the request—it returns NULL. We check for that on line 7, and
if so, we print a message to stderr and return. Returning from main() ends the
program. The value EXIT_FAILURE, which is defined in stdlib.h, is passed to the
calling program (typically the user’s terminal) to signal the program’s failure.

A large program may be spread over several functions and several files, and may
make numerous calls to malloc(). A helpful failure message will tell the user the
point at which the failure occurred. In the case of a failure, our program prints a
message like

malloc-demo.c:line 10: malloc(2115098112) failed

The message shows the file name and line number where malloc() failed, as
well as the amount of memory requested, in bytes. The C preprocessor macros
__FILE__ and __LINE__ embedded anywhere in a program take on the file name
and line number of that location.14

14Since it may be difficult to discern in a typeset document, let me point out that each of the __FILE__ and
__LINE__ symbols has two leading and two trailing underscores.

root
2014/7/8
page 47

�

�

�

�

�

�

�

�

7.2. A review of malloc() 47

Line 12: We fill the allocated space with the sequence of numbers { 1
i+1 }n−1

i=0 . Note that
the pointer x is being treated exactly like a C array. How is that?

The answer lies in the pointer arithmetic of Section 4.1. For one thing, x points
to the beginning of the allocated memory block. For another thing, since x is
a pointer to double, adding i to x will move forward by “i times the size of
double” bytes in the memory space. Thus, “*(x + i)” will represent the
value stored in the ith position. Accordingly, line 13 could have been written as
“*(x + i) = 1.0 / (i + 1);”. However, *(x + i) is the same as x[i],
as we noted on page 22. This explains the form of line 13.

Remark 7.2. What we have learned here is that memory allocated by malloc()
may be handled with a syntax identical to that of the built-in C arrays, although
the two are quite different objects as far as C goes. What makes the identical syntax
possible is the clever design of the pointer arithmetic.

Line 14: We go through the allocated memory and print out its contents. There is noth-
ing new here, but observe again that the syntax to access the content of the ith
location is just as if x were an ordinary C array.

Line 16: We call free(), which is declared in stdlib.h along with malloc(), to release
the memory that was procured by malloc(). A well-designed program will have
as many calls to free() as there are calls to malloc(). In fact, the allocated
memory should be freed as soon as it is no longer needed so that the program may
reclaim it for other use. There is no reason to hog a system resource if it’s no longer
needed.15

Modern operating systems automatically release all memory allocated by a pro-
gram when the program terminates. In such systems, releasing memory explicitly
just before the exit is redundant. Nevertheless, a fastidious attention to releasing all
allocated memory before leaving the program is the mark of an experienced pro-
grammer, much in the same way that cleaning up the area before striking the tent
is an indicator of a conscientious camper. There are tangible benefits as well, other
than just making you feel good about yourself. Experience shows that attention to
the details of allocation and freeing memory imposes a certain self-discipline which
ultimately results in better structured and more elegant programs. Furthermore, if
it happens that your program is imbedded later in a larger program, the place where
your program used to exit is no longer a point of exit of the larger program. If your
program does not clean up after itself, it can wreak havoc with the larger program.

As a case in point, think of your program as a solver of a static partial differential
equation and the larger program as a time-stepper that simulates an evolving dy-
namics. At every one of the thousands of time-steps, the time-stepper calls your
program to update its state. A memory leak in your program can bring the larger
program to a halt. I know; I am speaking from experience.

Valgrind from <http://valgrind.org/> is an open source free software that can
check your program for memory leaks. Invoked at the command-line as

$ valgrind your-program’s-name your-program’s-arguments

15This is especially important for programs that run over extended periods of time, such as web browsers,
system daemons, and servers. Memory allocated and abandoned without freeing can grow over time and bring
the system to standstill. Programs that suffer from this malady are said to “leak memory”.

root
2014/7/8
page 48

�

�

�

�

�

�

�

�

48 Chapter 7. Allocating memory: xmalloc()

it will run the program under its control, and at the end will print a report indicat-
ing the number of times your program called malloc() and free() and whether
there was a memory leak.

You will find an extensive discussion of memory management issues in Chapter 8 of
C Unleashed [27]. You may be interested in the memtrack utility described there
to track memory allocation and release in a complex program.

Line 17: The value of EXIT_SUCCESS, defined in stdlib.h, is passed to the calling pro-
gram (typically the user’s terminal shell) to signal the program’s successful termina-
tion. Returning EXIT_SUCCESS from main() is equivalent to returning 0. The
macro EXIT_SUCCESS exists for symmetry with the macro EXIT_FAILURE.
There is no standard numerical code corresponding to the latter.

Line 1: The functions printf() and fprintf() are declared in the header file stdio.h.

Line 2: The functions malloc() and free(), as well as the macros EXIT_SUCCESS
and EXIT_FAILURE, are declared in the header file stdlib.h.

Line 5: The value of n, defined here as 10, is used in the argument to malloc() and
a couple of other places in the program. It is important to note that n need not
have been a preassigned constant. With a little more effort, we could have arranged
things so that the program would read the value of n from the command-line, for
example. The point is, the vector x need not have a predetermined length. This is
very much in contrast to C’s native arrays, which can only have a priori fixed sizes.
See Remark 4.6 on page 23 for details.

7.3 The program
This chapter’s xmalloc module facilitates allocating and freeing memory, and is used for
that purpose in almost every chapter in the rest of this book. The files xmalloc.h and
xmalloc.c constitute the module’s interface and implementation. The files xmalloc-demo-
1.c and xmalloc-demo-2.c are two drivers for demonstrating some of the uses and features
of the module. This project’s directory contains

$ cd xmalloc
$ ls -F
xmalloc-demo-1.c xmalloc-demo-2.c xmalloc.c xmalloc.h

We may automate the compilation with the help of a Makefile along the lines of the in-
structions in Chapter 6, but the current demos are so small that writing a Makefile for
them may be an overkill. To compile them manually, we do

$ gcc -c -Wall -pedantic -std=c99 -O2 xmalloc.c
$ gcc -c -Wall -pedantic -std=c99 -O2 xmalloc-demo-1.c
$ gcc xmalloc.o xmalloc-demo-1.o -o xmalloc-demo-1
$ gcc -c -Wall -pedantic -std=c99 -O2 xmalloc-demo-2.c
$ gcc xmalloc.o xmalloc-demo-2.o -o xmalloc-demo-2

The only reason for specifying -std=c99 is the use of the fprintf()’s%zu conversion
specifier for printing values of type size_t. The z specifier was introduced in C99. See
the discussion on page 6 for the C89 alternative.

root
2014/7/8
page 49

�

�

�

�

�

�

�

�

7.4. The interface and the implementation 49

Here is the transcript of an interactive session with the first demo:

$./xmalloc-demo-1
allocating 1000 bytes
memory freed
allocating 0 bytes
xmalloc-demo-1.c:line 18: malloc(0) failed

As we see, the program allocates 1000 bytes successfully and then frees it. Next, it attempts
to allocate 0 bytes. Our program refuses such a request (what does it mean to allocate
0 bytes?), so it prints a diagnostic message and exits. (See Part 7.1 of Section 7.5 for more
on this.)

Here is the transcript of an interactive session with the second demo:

./xmalloc-demo-2
1: 1000000000 bytes allocated
2: 1000000000 bytes allocated

� (the next 140730 lines deleted)
140734: 1000000000 bytes allocated
140735: 1000000000 bytes allocated
xmalloc-demo-2.c:line 10: malloc(1000000000) failed

This demo allocates memory chunks of 1,000,000,000 bytes (1 gigabyte) in an unending
while-loop without freeing them. It prints a line upon each pass through the loop. After
stepping through the loop 140,735 times, my computer’s memory is exhausted; therefore
the program exits with a diagnostic.

Does my computer truly have 140,735 gigabytes of memory? Not a chance! What
we see here is a Linux artifact—I am running this program on a computer with a 64-bit
Linux operating system—which allocates memory generously in a virtual memory space
far beyond what is physically available, in the hope that not all of the requested memory
will actually be needed. Under a more conservative operating system the program may
have stopped in fewer than 8 iterations since I have only 8 gigabytes of physical memory
on this computer.

7.4 The interface and the implementation
The xmalloc module is needed in almost all of this book’s projects; therefore I expect
that every reader will go through this chapter early in their studies. For that reason,
I will devote more than the usual amount of attention to details here. In particular, in the
following two subsections I will present essentially the entire contents of the files xmalloc.c
and xmalloc.h. You will make a slight adjustment to my xmalloc.c in the Projects section.

7.4.1 xmalloc.c: The implementation

Listing 7.2 gives a preliminary version of the file xmalloc.c which implements our xmalloc
module. It defines a function malloc_or_exit()which receives, as its first argument,
the number of bytes of memory to be allocated, and as the second and third arguments
the file name and line number whence it was invoked. If the allocation is successful, it
returns a pointer to the start of the allocated memory; otherwise it prints a message of
the sort

foo.c:line 123: malloc() of 10000 bytes failed

root
2014/7/8
page 50

�

�

�

�

�

�

�

�

50 Chapter 7. Allocating memory: xmalloc()

Listing 7.2: This is a preliminary version of the file xmalloc.c. The functionmalloc_or_exit()
attempts to allocatenbytes of memory. If successful, it returns a pointer to that mem-
ory; otherwise it prints a message and exits the program. See Part 7.1 of Section 7.5
regarding a subtle flaw and how to fix it.

1 #include <stdio.h>
2 #include "xmalloc.h"
3 void *malloc_or_exit(size_t nbytes, const char *file, int line)
4 {
5 void *x;
6 if ((x = malloc(nbytes)) == NULL) {
7 fprintf(stderr, "%s:line %d: malloc() of %zu bytes failed\n",
8 file, line, nbytes);
9 exit(EXIT_FAILURE);

10 } else
11 return x;
12 }

to the stderr and then calls exit() to quit the program. Note the two occurrences
of the void pointer in that listing, and be sure to understand their purpose. Refer to
Section 4.3 for an explanation of void pointers.

Here is a typical call to malloc_or_exit():

double *x;
x = malloc_or_exit(100 * sizeof *x, __FILE__, __LINE__);
... use x ...
free(x);

This allocates a contiguous area of memory capable of holding 100 numbers of the type
double. The C preprocessor macros __FILE__ and __LINE__ take on the file name
and the line number of where they are invoked, as noted on page 46.

The call tomalloc_or_exit()may be simplified by noting that although the value
passed to its first argument will vary in general from one instance to the next, the second
and third arguments are always __FILE__ and__LINE__. This motivates the introduc-
tion of the preprocessor macro16

#define xmalloc(nbytes) malloc_or_exit((nbytes), __FILE__, __LINE__)

which expands the expression xmalloc(nbytes) into a full-fledged call to the function
malloc_or_exit(). The caller’s interface will look like this:

double *x = xmalloc(100 * sizeof *x);
... use x ...
free(x);

and that’s as simple as it’s going to get.

From now on we will call the xmalloc()wrapper instead of malloc_or_exit()
(or malloc()) to allocate memory in our programs.

Remark 7.3. The memory fetched by malloc() can be resized using the standard
library’s realloc() function. If a call to realloc() fails, it returns NULL just like

16Here I am violating the C tradition of all-capital names for macros. The all-caps XMALLOC, however, looks
too ungainly to me; therefore I will break from the tradition in favor of the gentler lowercase xmalloc.

root
2014/7/8
page 51

�

�

�

�

�

�

�

�

7.4. The interface and the implementation 51

Listing 7.3: The header file xmalloc.h provides the xmalloc module’s interface.

1 #ifndef H_XMALLOC_H
2 #define H_XMALLOC_H
3 #include <stdlib.h>
4 void *malloc_or_exit(size_t nbytes, const char *file, int line);
5 #define xmalloc(nbytes) malloc_or_exit((nbytes), __FILE__, __LINE__)
6 #endif /∗ H_XMALLOC_H */

malloc(); therefore for completeness it would be useful to have an xrealloc() to
accompany xmalloc(). However, we don’t have a use for realloc() in this book;
therefore I will not explore that idea any further.

7.4.2 xmalloc.h: The interface

The header file xmalloc.h, shown in its entirety in Listing 7.3, provides the interface to
our xmalloc module. A few comments on its structure are in order:

Lines 1, 2, and 6: These are the header file’s so-called header guards or #include guards.
Their purpose is to prevent unintended multiple inclusions of this header file in
other units. To illustrate a case of multiple inclusion in the absence of #include
guards, consider two header files header1.h and header2.h and a program file prog.c
that #includes both of them. If header2.h also #includes header1.h, then
header1.h will be read twice into prog.c, leading to potential complications.

If a header file is equipped with #include guards, as is our xmalloc.h, then this is
what happens. When xmalloc.c #includes xmalloc.h for the first time, line 1
determines that the symbol H_XMALLOC_H is undefined; therefore control passes
to line 2, where H_XMALLOC_H gets defined. The rest of xmalloc.h is read as usual.

Should xmalloc.c attempt to #include xmalloc.h for a second time, line 1 will
determine that the symbol H_XMALLOC_H is already defined; therefore control will
pass to line 6, thus bypassing the main body of xmalloc.h.

Every header file should be equipped with #include guards. The guard symbol, which is
H_XMALLOC_H in our case, is arbitrary, but it should be unique within all header
files of the entire project. The usual way of creating such a unique symbol is by
basing it on the name of the corresponding header file. Since our header file is
named xmalloc.h, any of the choices XMALLOC, XMALLOC_H, H_XMALLOC_H, or
variations thereof, will serve the purpose. The second one is the traditional choice
in C. I prefer the third one since the leading H avoids an (admittedly remote) clash
with IEEE’s POSIX standard, which reserves symbol names beginning with E for
its own use.

The comment on line 6 is not required; its sole purpose is to remind one that the
#endif on that line corresponds to the #ifndef H_XMALLOC_H on line 1. In
a short header file such as our xmalloc.h, this is rather superfluous, but in a header
file that spans hundreds of lines, the reminder is a nice touch.

Remark 7.4. It is a common beginner’s mistake to name the #include guard sym-
bols with a leading underscore, such as _XMALLOC, mimicking those in the C stan-
dard library. The C standard, however, reserves preprocessor symbols that begin

root
2014/7/8
page 52

�

�

�

�

�

�

�

�

52 Chapter 7. Allocating memory: xmalloc()

with an underscore for its own private use. If you name your symbols with a lead-
ing underscore, you run the risk of stepping over your compiler’s internals. That’s
very bad. Don’t do it!

Line 3: At first sight it may look odd why we have #include <stdlib.h> in xmal-
loc.h while #include <stdio.h> in xmalloc.c. The reason for including stdio.h
in xmalloc.c is to provide a prototype for fprintf() that occurs in that file. There
is no fprintf() in xmalloc.h and hence no need for stdio.h there. On the other
hand, we include stdlib.h in xmalloc.h because it defines the symbol size_t which
is needed in xmalloc.h.17 There is yet another—and not so obvious—minor benefit of
including stdlib.h in xmalloc.h. Programs that call xmalloc() to allocate memory
eventually will call free() to release that memory. When they include xmalloc.h,
they receive stdlib.h (which declares the prototype of free()) as a bonus; therefore
they need not include it separately.

7.5 Project Xmalloc

Part 7.1. The function malloc_or_exit() in Listing 7.2 allocates nbytes bytes
of memory and returns that memory’s address. But what should it return if nbytes is
zero? The C99 standard has the following to say:

Section 7.20.3: If the size of the space requested is zero, the behavior is
implementation-defined: either a null pointer is returned, or the behavior
is as if the size were some nonzero value, except that the returned pointer
shall not be used to access an object.

In short, allocating zero bytes is ill-defined, so we might as well treat it just as when
malloc() fails. Modify malloc_or_exit() to account for this.

Part 7.2. Implement the adjustment suggested in the previous part. Then write a pro-
gram, let’s say xmalloc-demo-1.c, that does the following:

1. calls xmalloc() to allocate 1000 bytes of memory and then prints a message say-
ing that the memory was allocated;

2. frees that memory and then prints a message saying that the memory was freed;

3. calls xmalloc() to allocate 0 bytes of memory and then prints a message saying
that the memory was allocated; and

4. frees that memory and then prints a message saying that the memory was freed.

Will the program print 4 lines? See the transcript of the interactive session on page 49.

Part 7.3. Write a program, let’s say xmalloc-demo-2.c, that allocates memory in chunks
of 1,000,000,000 bytes (1 gigabyte) and abandons them (that is, does not free them), in
a nonterminating (infinite) loop. Print a message on each pass. Will the program run
forever? See the transcript of the interactive session on page 49.

17The symbolsize_t is also defined in the standard header file stddef.h; therefore one could include it instead
of stdlib.h if the only objective were to define size_t.

root
2014/7/8
page 53

�

�

�

�

�

�

�

�

Chapter 8

Dynamic memory
allocation for vectors
and matrices: array.h

Prerequisite: Chapter 7

8.1 Introduction
In this chapter we introduce a preprocessor trick to construct vectors, matrices—and even
higher-dimensional array-like objects—in a type-generic way in standard C.18 The prepro-
cessor macro make_matrix(), for instance, constructs a matrix of any type. Thus, to
construct 5× 7 matrices of the types int, double, and “struct point”, we do

int **a;
double **x;
struct point {double x; double y;} **p;
int m = 5, n = 7;
make_matrix(a, m, n);
make_matrix(x, m, n);
make_matrix(p, m, n);
x[0][0] = 3.14159; // use x, etc.
free_matrix(a);
free_matrix(x);
free_matrix(p);

Observe how the three matrices of varying types are constructed and freed through an
identical interface. There is also a make_vector() to construct type-generic vectors,
and make_3array() and make_4array() to construct type-generic three- and four-
dimensional arrays. All these are bundled in a header file named array.h. There is no
associated array.c file.

Preprocessor macros are not the most elegant part of the C programming language,
and they are best avoided if the job can be done without them. Unfortunately, type-
generic construction of arrays, as laid out above, is impossible in C89 and C99 without
the help of preprocessor macros since C lacks polymorphism. On the balance, the ab-
solutely simple user-interfaces and the versatility of these macros far outweigh the some-
what ungainly code that resides in array.h. At any rate, what we have here is better than
any alternatives of which I know. We rely on the macros provided in array.h throughout
the rest of this book to create and destroy vectors and matrices. Thankfully, we won’t
have to look inside array.h every time we use it.

18The trick works equally well in C89 and C99.

53

root
2014/7/8
page 54

�

�

�

�

�

�

�

�

54 Chapter 8. Dynamic memory allocation for vectors and matrices: array.h

8.2 Constructing vectors of arbitrary types
The xmalloc() wrapper of Chapter 7 provides a convenient way for creating vectors
of various lengths and types. With simple wrappers such as19

int *make_ivector(size_t n) // provisional
{

int *v = xmalloc(n * sizeof *v);
return v;

}
double *make_dvector(size_t n) // provisional
{

double *v = xmalloc(n * sizeof *v);
return v;

}

we may call make_ivector(n) and make_dvector(n) to make vectors of length n
of the types int and double.

If this were the end of the story, the functions above could justly be criticized on
grounds that they make things more complicated than necessary. After all, allocating
memory for a vector of n double-precision floating point numbers can be as simple as

double *v = malloc(n * sizeof *v);

where make_dvector() and xmalloc() don’t come into the play at all. However,
this is not the end of the story. What we have so far is an infrastructure upon which
we are going to build extensively. The significance of this will become apparent when
we construct type-generic vectors, matrices, and higher-dimensional arrays later in this
chapter.

Before doing that, however, let us revisit the two functions defined above. There is
something unsatisfactory in their approach since, continuing along those lines, we will
need to write a special-purpose vector allocation function for every new data type that
comes along. That’s annoying, particularly since the number of potential data types is
infinite. It would be more elegant having a single function capable of constructing vectors
of all types. Although such a function is infeasible—there is no polymorphism in C—the
equivalent effect is achieved easily through a function-like preprocessor macro

#define make_vector(v,n) ((v) = xmalloc((n) * sizeof *(v)))

which is type-agnostic and may be used to allocate memory for vectors of any type.20 In
the following code fragment, we apply the make_vector() macro to make a vector of
length 100 of type double:

double *x;
make_vector(x, 100);
for (int i = 0; i < 100; i++)

x[i] = 1.0 / (1 + i);
free_vector(x);

In the next example, we apply the same make_vector() macro to make a vector of
length 30 of type “struct point”:

19I have marked these functions “provisional” since the make_vector() macro, to be introduced shortly,
does the same job and much more!

20The plethora of parentheses in this macro definition is standard fare. Consult the chapter on preprocessor
macros in your C reference book for an explanation. Also see footnote 16 on page 50 regarding a break with
tradition.

root
2014/7/8
page 55

�

�

�

�

�

�

�

�

8.2. Constructing vectors of arbitrary types 55

struct point {double x; double y;} *p;
make_vector(p, 30); // make a vector of 30 points
p[0]→x = 3.14; p[0]→y = 2.78; // define p[0]’s coordinates
p[1]→x = 12.1; p[1]→y = -0.3; // define p[1]’s coordinates
... etc. ...
free_vector(p);

What is free_vector()? It frees the memory allocated by make_vector(). In
principle, freeing that memory is a matter of calling the standard library’s free(), as
in “free(x)” or “free(p)” in the two examples above. Nevertheless, we introduce
the free_vector() macro as a simple wrapper around free(p), for the sake of sym-
metry with make_vector(). And as long as we are at it, we go one step further and
arrange things so that after freeing the memory, the corresponding pointer is set to NULL.
This is an unnecessary and insignificant frill, but there are those who are passionate about
NULL-ing freed pointers. This should please them:

#define free_vector(v) do { free(v); v = NULL; } while (0)

The free(v) and v = NULL parts require no explanation, but the do and while(0)
would definitely look strange if you are seeing this well-known construction for the first
time. Let me explain.

Preprocessor macros consisting of multiple statements must be handled with care.
Consider a hypothetical macro consisting of two statements:

#define bad_macro statement1; statement2

Then observe that the code fragment

if (test1)
bad_macro;

else
something_else;

expands to

if (test1)
statement 1;
statement 2;

else
something_else;

which is syntactically incorrect—braces are missing. Adding braces to the macro

#define bad_macro { statement1; statement2; }

does not help because now the code fragment expands to

if (test1) {
statement 1;
statement 2;

}; else
something_else;

which is still incorrect—the semicolon before the else shouldn’t be there. However,
setting

#define good_macro do { statement1; statement2; } while (0)

root
2014/7/8
page 56

�

�

�

�

�

�

�

�

56 Chapter 8. Dynamic memory allocation for vectors and matrices: array.h

a[0]

a[1]

a[2]

NULL

a a[0][0] a[0][1] a[0][2] a[0][3] a[0][4]

a[1][0] a[1][1] a[1][2] a[1][3] a[1][4]

a[2][0] a[2][1] a[2][2] a[2][3] a[2][4]

pointer to the
“pointer vector”

the “pointer vector”

Figure 8.1: The schematic representation of the memory layout for a 3×5 matrix. The
“pointer vector” that appears as a vertical column on the left is a vector of
pointers to the matrix’s rows.

does the trick. The while(0) condition ensures that the block inside the braces is exe-
cuted exactly once. The code fragment expands to

if (test1)
do {

statement 1;
statement 2;

} while (0);
else

something_else;

which is just right.

8.3 A scheme for dynamically allocated matrices
Figure 8.1 is a schematic representation of memory layout for a dynamically allocated
3 × 5 matrix. The matrix rows are viewed as vectors of length 5 obtained by calls to
make_vector(). The addresses of the first elements of those vectors are stored in a
“column” vector of length 4 shown along the diagram’s left edge. We call that the pointer
vector because its elements are pointers to the row vectors. The last element of the pointer
vector is set to NULL; it serves as a sentinel that marks the end of the vector. Compare
Figure 8.1 with Figure 4.1 on page 26 concerning C’s storage scheme for the command-line
arguments. They reflect identical ideas.

The identifier a, which serves as the name of the matrix, holds the address of the
pointer vector’s first element. Since the elements of the pointer vector are pointers, then
a is a pointer to pointer.

The elements of the pointer vector are a[i], i = 0, . . . , 3; therefore the address of
the ith row is a[i], and hence the values stored in that row are a[i][j]. We see that
such dynamically allocated matrices and C’s native two-dimensional arrays have identical
syntax for addressing the matrix’s elements. However, their internal storage and repre-
sentations can be entirely different. Matrices constructed here should not be confused with
C’s native two-dimensional arrays.

The provisional21 make_dmatrix() function defined below implements the scheme
described above for constructing an m× n matrix of type double:

21I have marked this function “provisional” since the make_matrix() macro developed in the next section
does the same job and much more!

root
2014/7/8
page 57

�

�

�

�

�

�

�

�

8.4. Constructing matrices of arbitrary types 57

double **make_dmatrix(size_t m, size_t n) // provisional
{

double **a;
make_vector(a, m + 1); // make the pointer vector
for (size_t i = 0; i < m; i++)

make_vector(a[i], n); // make the row vectors
a[m] = NULL;
return a;

}

Thus, to create a 10× 10 Hilbert matrix, we do22

double **H;
int n = 10;
H = make_dmatrix(n, n);
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)
H[i][j] = 1.0 / (1 + i + j);

... work with H ...
free_dmatrix(H);

Thefree_dmatrix(H), which frees the memory allocated bymake_dmatrix(),
looks suspicious at first—how does free_dmatrix() know how many rows there are
to free? As it turns out, free_dmatrix() need not know the number of rows. What
it will do is walk down the pointer vector and free the memory pointed to by each
of its elements. When it reaches the pointer vector’s NULL sentinel, it will know that
all the rows have been freed. (That’s the sole reason for building a sentinel into the
pointer vector.) All there remains is to free the pointer vector and it’s done. Here is the
implementation:

void free_dmatrix(double **a) // provisional
{

if (a �= NULL) {
for (size_t i = 0; a[i] �= NULL; i++)

free_vector(a[i]);
free(a);

}
}

Remark 8.1. Passing NULL to free_dmatrix() is safe, as the function checks for it.
In that respect, free_dmatrix() behaves like the standard library’s free() function
which is also a no-op against NULL.

Moreover, note that without that check, passing NULL to free_dmatrix() will
have crashed it because inside the for-loop it will have attempted to access the nonexis-
tent a[i].

8.4 Constructing matrices of arbitrary types
The previous section’s make_dmatrix() and free_dmatrix() functions suffer
from the same malady as make_dvector() did in the section prior to that—they are

22The Hilbert matrix is a square matrix with entries hi j = 1/(1+ i+ j), where the indices i and j are counted
from zero.

root
2014/7/8
page 58

�

�

�

�

�

�

�

�

58 Chapter 8. Dynamic memory allocation for vectors and matrices: array.h

limited to constructing and freeing matrices of the type double. To make a matrix of
the type int, for instance, we will have to write another version.

In Section 8.2 we overcame the problem in the case of vectors with the help of a pre-
processor macro. In this section we extend that preprocessor trick to matrices. This is
quite straightforward other than the issue of handling the loop counter i in the func-
tion make_dmatrix() defined on page 57. The scope of that counter is limited to
the body of the function, and as such it is invisible to the outside world. Convert-
ing the function to a preprocessor macro, however, exposes its innards and poses a po-
tential for a clash between its loop counter and another identifier of the same name
which may be lurking in the code. The way around this is to use a reserved identi-
fier name instead of a generic i and alert the macro’s users23 of its presence. I call the
counter “make_matrix_loop_counter” since the close association with the name
“make_matrix” makes it unlikely that a user will encroach upon it inadvertently. With
this out of the way, here is the promised macro:

#define make_matrix(a, m, n) do { \
size_t make_matrix_loop_counter; \
make_vector(a, (m) + 1); \
for (make_matrix_loop_counter = 0; \

make_matrix_loop_counter < (m); \
make_matrix_loop_counter++) \

make_vector((a)[make_matrix_loop_counter], (n)); \
(a)[m] = NULL; \

} while (0)

In the same way, we convert the function free_dmatrix() to a macro:

#define free_matrix(a) do { \
if (a �= NULL) { \

size_t make_matrix_loop_counter; \
for (make_matrix_loop_counter = 0; \

(a)[make_matrix_loop_counter] �= NULL; \
make_matrix_loop_counter++) \

free_vector((a)[make_matrix_loop_counter]); \
free_vector(a); \
a = NULL; \

} \
} while (0)

The backslashes (“\”) indicate line continuation in a preprocessor macro. I have aligned
them vertically purely for aesthetic reasons; they don’t have to be aligned. I have used the
reserved identifier make_matrix_loop_counter in both macros; there is no reason
to introduce two different reserved words. Additionally, I have added a = NULL at the
end of free_matrix() for the same reason we did so in the case of free_vector().

On the surface, these macros are ungainly. Nevertheless they are quite general and
offer particularly clean interfaces, and ultimately that’s what matters. Here is the previous
section’s Hilbert matrix, constructed with the help of make_matrix():

double **H;
int n = 10;
make_matrix(H, n, n); // was H = make_dmatrix(n, n);

23The “users” includes you!

root
2014/7/8
page 59

�

�

�

�

�

�

�

�

8.5. Project array.h 59

Listing 8.1: An outline of the file array.h.

1 #ifndef H_ARRAY_H
2 #define H_ARRAY_H
3 #include "xmalloc.h"
4 � #define make_vector(...
5 � #define free_vector(...
6 � #define make_matrix(...
7 � #define free_matrix(...
8 #endif /∗ H_ARRAY_H */

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

H[i][j] = 1.0 / (1 + i + j);
... work with H ...
free_matrix(H);

Only one line (as marked) has changed relative to the previous version.

8.5 Project array.h
Create a directory, say vector-and-matrix, to hold this chapter’s material. Our macros
rely on Chapter 7’s xmalloc module for allocating memory. If you organize your files as
suggested in Chapter 2, your directory will look like this:

$ cd vector-and-matrix
$ ls -F
array.h hilbert-matrix.c xmalloc.c@ xmalloc.h@

where the “@” decoration at the end of a file name indicates a symbolic link, as explained
in Chapter 2. The details of the files array.h and hilbert-matrix.c are described below.

Part 8.1. Put the definitions of the macros make_vector(), free_vector(),
make_matrix(), and free_matrix() in a file array.h, and add #include guards, as
shown in an outline form in Listing 8.1. See page 51 regarding the significance of #include
guards.

Part 8.2. Listing 8.2 provides an outline of a file named hilbert-matrix.c. In it we have
a function named hilbert_matrix() which constructs and returns the address of an
n × n Hilbert matrix for a given n. (See footnote 22 on page 57 for the definition of a
Hilbert matrix.) The function hilbert_matrix() is called from within main() to
build an 8×8 Hilbert matrix. The program exits after printing the matrix and freeing the
allocated memory.

Supply the details, compile, and execute the program. Its should print something like
this:
1.000 0.500 0.333 0.250 0.200 0.167 0.143 0.125
0.500 0.333 0.250 0.200 0.167 0.143 0.125 0.111
0.333 0.250 0.200 0.167 0.143 0.125 0.111 0.100
0.250 0.200 0.167 0.143 0.125 0.111 0.100 0.091
0.200 0.167 0.143 0.125 0.111 0.100 0.091 0.083
0.167 0.143 0.125 0.111 0.100 0.091 0.083 0.077
0.143 0.125 0.111 0.100 0.091 0.083 0.077 0.071
0.125 0.111 0.100 0.091 0.083 0.077 0.071 0.067

root
2014/7/8
page 60

�

�

�

�

�

�

�

�

60 Chapter 8. Dynamic memory allocation for vectors and matrices: array.h

Listing 8.2: An outline of hilbert-matrix.c.

� the necessary #includes
double **hilbert_matrix(int n)
{
� call make_matrix() to make and return the
address of an nxn Hilbert matrix

}
int main(void)
{

double **H;
int n = 8;
H = hilbert_matrix(n);
� print the matrix
� free the matrix
return 0;

}

Listing 8.3: A type-generic implementation of the preprocessor macro print_vector(). We
use the symbol print_vector_loop_counter for a loop counter. The users of
this macro should be told that this is a reserved word and should not be interfered with.

#define print_vector(fmt, v, n) do { \
size_t print_vector_loop_counter; \
for (print_vector_loop_counter = 0; \

print_vector_loop_counter < (n); \
print_vector_loop_counter++) \

printf(fmt, (v)[print_vector_loop_counter]); \
putchar(’\n’); \

} while (0)

Listing 8.4: Code fragment showing a sample usage of the print_vector()macro. This should
print “ 1.000 0.500 0.333 0.250 0.200”.

double *v;
int i, n = 5;
make_vector(v, n);
for (i = 0; i < n; i++)

v[i] = 1.0 / (1 + i);
print_vector("%7.3f ", v, n);
free_vector(v);

Part 8.3. [optional] Add the type-generic print_vector() and print_matrix()
macros in array.h for printing vectors and matrices to stdout. I have shown my imple-
mentation of print_vector() in Listing 8.3 and a sample usage in Listing 8.4.

I will leave it to you to write print_matrix(). You may call print_vector()
from within print_matrix() to print each row.

Part 8.4. [optional] Revise your program of Part 8.2 to use print_matrix() to print
the Hilbert matrix.

root
2014/7/8
page 61

�

�

�

�

�

�

�

�

8.5. Project array.h 61

Part 8.5. [optional] Extend array.h by macros for making and freeing three- and four-
dimensional arrays. Then you should be able to do

double ***C;
double ****D;
make_3array(C, 3, 5, 10);
make_4array(D, 3, 3, 3, 3);
C[0][0][0] = 1;
D[0][0][0][0] = 1;
... etc ...
free_3array(C);
free_4array(D);

Hint: Think of a three-dimensional array as a “column” vector whose entries are the ad-
dresses of matrices. Similarly, think of a four-dimensional array as a “column” vector
whose entries are the addresses of three-dimensional arrays.

root
2014/7/8
page 63

�

�

�

�

�

�

�

�

Chapter 9

Reading lines:
fetch_line()

Prerequisites: None

9.1 Introduction
Some of this book’s projects involve moderately complex configuration parameters and
data. For instance, the truss solver of Chapter 19 requires information about the truss’s
geometry, loads, supports, and materials. The evolution simulator of Chapter 17 needs
information about the size of the “world”, the initial state of the animals, their genetic
structures and energy content, among other things.

How does one convey such information to a C program? Hard-coding the parameters
and data into a program would be rather primitive because any change—for instance, an
adjustment of a truss’s loads—will require editing and recompiling the program. There is
much greater flexibility and freedom if the data stands separate from the program, typi-
cally in a text file supplied by the user. The program will read the data from the file and
perform the required tasks. Changing the data will not require recompiling the program.

In this chapter we implement afetch_line() function whose purpose is to retrieve
the next available nonempty line from an input stream. Specifically, after reading a line, it
trims it of comments and leading and trailing whitespace. If what remains is a string of
zero length, it goes on to read the next line and repeat the process; otherwise it returns a
pointer to the first character of the trimmed string. Upon the end of the input or an error
condition, it returns NULL.

9.2 Reading one line at a time with fgets()

Underlying our fetch_line() is the standard library’s fgets() function which reads
one line of text from an input stream and stores it in an array of char—commonly re-
ferred to as a buffer—that the user provides. In the following minimal illustration, we call
fgets() to read one line from the stdin:

char buf[12];
fgets(buf, 12, stdin);

The buffer’s length (12 in this case) is passed to fgets() to let it know how much room
it has to work with.24 It reads at most 11 characters, one character at a time, from the

24A buffer length of 12 is much too small for most applications—100 or 128 would be more realistic—but 12
is a good size for this section’s drawings/illustrations.

63

root
2014/7/8
page 64

�

�

�

�

�

�

�

�

64 Chapter 9. Reading lines: fetch_line()

stream and stores them in the buffer. Reading stops when any of the following occurs:

1. The input stream ends or an error occurs.

2. It reaches the limit of 11 characters.

3. It encounters the newline (\n) character. It stores the newline in the buffer.

In any case, it inserts an ASCII NUL (\0) character after the last character read25 to make
the contents of buf into a properly null-terminated string.

In cases 2 and 3, fgets() returns a pointer to buf, which is rather redundant, be-
cause we already know where buf lives. In case 1 it returns the NULL pointer26, which is
significant—it tells us that there is nothing more to read.

At the end of case 3, the buffer looks like this:

⊗ ⊗ ⊗ ⊗ ⊗ \n \0 × × × × ×
the string junk

buf[12]

The buffer in case 3:

where a ⊗ indicates any character other than \0 and \n, and a × indicates any character
at all. At the end of case 2 the buffer looks like this:

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ \0

the string

buf[12]

The buffer in case 2:

where the character before last may or may not be the newline character.
For the benefit of those readers who have not had much experience with thefgets()

function, I have provided a complete and self-contained demo program, called fgets-demo.c,
in Listing 9.1 to illustrate its use. The program reads one line at a time from the stdin
and writes what it has read to the stdout until the end of input is reached. Examine it
and be sure to understand every detail. Then compile it

$ gcc -Wall -pedantic -std=c89 -O2 fgets-demo.c -o fgets-demo

to produce the executable fgets-demo. To test, pass the contents of any text file to fgets-demo
to see what it does. A good candidate for a text file is the program fgets-demo.c itself:

$./fgets-demo <fgets-demo.c

If all is well, the program should print the exact contents of fgets-demo.c to the screen.

Remark 9.1. In fgets-demo.c the buffer’s length is obtained from the value of the prepro-
cessor macro BUFLEN which I have arbitrarily set to 16. Defining the buffer length as a
preprocessor macro makes it possible to change the length without delving too deeply into
the innards of the program. Note that some of fgets-demo.c’s lines are significantly longer
than 16; therefore fgets() will read those lines piecemeal. Nevertheless, the program’s
output will be identical to the input. Study the three cases described at the beginning of
this section, and see if you can explain why that is so.

25That’s the reason for the maximum of 11 rather than 12 characters.
26The ASCII NUL character has nothing to do with C’s NULL pointer. Be sure not to confuse the two.

root
2014/7/8
page 65

�

�

�

�

�

�

�

�

9.3. Trimming whitespace and comments 65

Listing 9.1: The file fgets-demo.c is a self-contained program that demonstrates the use of the stan-
dard library’s fgets() function. The program reads from the stdin and writes to
the stdout.

1 #include <stdio.h>
2 #define BUFLEN 16
3 int main(void)
4 {
5 char buf[BUFLEN];
6 while (fgets(buf, BUFLEN, stdin) �= NULL)
7 printf("%s", buf);
8 return 0;
9 }

9.3 Trimming whitespace and comments
Data files are written by people, and people like having a certain amount of leeway in
how they format their writings. Among the most basic desiderata are the ability to

• indent lines;

• leave any number of spaces between data items within a line;

• insert any number of blank lines to emphasize data groupings; and

• insert notes and comments which should be ignored by the program.

To implement such a wish list, we need to make precise the meanings of the terms “space”,
“blank line”, and “comment”.

9.3.1 Comments

It’s quite common, and convenient, to include comments in a data file in the way of doc-
umentation and clarification. The program that reads the data file should skip over the
comments. It’s up to the program’s designer—that’s you—on how comments are marked.
In a C program, for instance, comments are enclosed between the /* and */ delimiters.
Such comments may span multiple lines. C++ and C99 allow one-line comments marked
by the // marker. The compiler ignores everything from that mark to the end of line.
The % character in TEX and LATEX, the ; character in Lisp, and the # character in Unix
shell scripts mark one-line comments in the same way. I will use the # character for com-
menting in our data files.

Ignoring everything after a # character to the end of line is quite simple. Suppose that
the contents of a buffer fetched by fgets() looks like this:

⊗ ⊗ ⊗ ⊗ # ⊗ ⊗ ⊗ ⊗ \n \0 ×
data comment

To truncate the line at the # mark, simply overwrite the # by \0:

⊗ ⊗ ⊗ ⊗ \0 ⊗ ⊗ ⊗ ⊗ \n \0 ×
data ignored

root
2014/7/8
page 66

�

�

�

�

�

�

�

�

66 Chapter 9. Reading lines: fetch_line()

Since the ASCII NUL character (\0) marks the end of a string, anything that comes after
it is immaterial.

9.3.2 Whitespace

When typing text into a text editor, you press the keyboard’s “space-bar” key to enter
spaces between words; you may press the keyboard’s “Tab” key to indent the lines of
your C program; you press the “Enter” key to insert a new line. These keys generate what
are known as whitespace characters. Words in a text document are typically separated by
whitespace.

There are other whitespace characters, although the common typewriter and com-
puter keyboards don’t have dedicated keys for them. The C standard recognizes at least
six whitespace characters (although it doesn’t call them “whitespace”): an ordinary space
(), form-feed (\f), newline (\n), carriage return (\r), horizontal tab (\t), and vertical
tab (\v).27 It is important for our purposes to note that the ASCII NUL character (\0) is
not a whitespace character.

The C standard library provides the isspace() function which receives an object
as its argument and returns true if it is deemed whitespace, and false otherwise. The func-
tion isspace() and a dozen or so other character-testing functions are declared in the
header file ctype.h; you need to #include it if you are going to use them. All those func-
tions expect an unsigned char (or EOF) for their arguments; therefore the proper way
for checking for a whitespace character requires a cast, as in

if (isspace((unsigned char)c))
... do something ...

9.4 The program
As promised earlier, our fetch_line() reads the next available line from an input
stream, trims it of comments and leading and trailing whitespace, and returns a pointer
to the trimmed string if the string is nonempty; otherwise it goes on to the next line and
repeats the process.

The file fetch-line.c contains the implementation of the function fetch_line().
The header file fetch-line.h is the interface. The pair of files fetch-line.[ch] constitute our
fetch-line module. A third file, fetch-line-demo.c, contains a driver to demo that module.
Thus, this project’s directory will contain

$ cd fetch-line
$ ls -F
fetch-line-demo.c fetch-line.c fetch-line.h fgets-demo.c

The stand-alone test program fgets-demo.c was described in Section 9.2. The other three
program files are described below. We may automate the program’s compilation through
a Makefile along the lines of the instructions in Chapter 6, but the current program is so
small that writing a Makefile for it may be an overkill. To compile it manually, we do

$ gcc -c -Wall -pedantic -std=c89 -O2 fetch-line.c
$ gcc -c -Wall -pedantic -std=c89 -O2 fetch-line-demo.c
$ gcc fetch-line.o fetch-line-demo.o -o fetch-line-demo

27Additional characters may pass for whitespace depending on your locale environment. You will have to
consult the C standard if you want more details on this.

root
2014/7/8
page 67

�

�

�

�

�

�

�

�

9.5. The files fetch-line.[ch] 67

Listing 9.2: The header file fetch-line.h is fetch-line module’s interface.

1 #ifndef H_FETCH_LINE_H
2 #define H_FETCH_LINE_H
3 #include <stdio.h>
4 char *fetch_line(char *buf, int buflen, FILE *stream, int *lineno);
5 #endif /∗ H_FETCH_LINE_H */

You may change the std=c89 to std=c99 if you wish. The program is compatible with
both C89 and C99.

Here is a transcript of an interactive session with the program:

$./fetch-line-demo <fgets-demo.c
trimmed line 3: int main(void)
trimmed line 4: {
trimmed line 5: char buf[BUFLEN];

*** reading error: input line 6 too long for fetch_line’s buf[40]

As you see, we are feeding the file fgets-demo.c (which we encountered in Listing 9.1 on
page 65) to our demo program.28 Compare the program’s output shown here to the con-
tents of fgets-demo.c. From fetch_line()’s point of view, the first two lines of the in-
put are comments(!) since each begins with the # character; therefore they are discarded.
The third line receives fetch_line()’s approval; hence it duly prints it, prefacing it
with the phrase “trimmed line 3:”. Line 4, consisting of a single { character, is also
printed without change. Line 5’s leading whitespace is trimmed away, and what remains
is printed. Line 6 is not acceptable to fetch_line(); it is too long to fit in a buffer of
length 40 which it is given to work with. Therefore it prints an error message and quits.
If we increase the buffer size sufficiently (see the BUFLEN preprocessor macro in Part 9.1
of Section 9.6), the program will read the file all the way to the end.

9.5 The files fetch-line.[ch]
The files fetch-line.h and fetch-line.c contain our fetch-line module’s interface and imple-
mentation, respectively. The contents of fetch-line.h are shown in their entirety in List-
ing 9.2. That file’s sole purpose is to declare the prototype of the functionfetch_line()
(on line 4). The standard library’s stdio.h header file is #included on line 3 to make the
FILE symbol available for use in the next line. You will find an explanation of the #in-
clude guards #ifndef ..., etc., on page 51.

The contents of the implementation file fetch-line.c are shown in an outline form in
Listing 9.3. It defines two functions, trim_line() and fetch_line(), whose pur-
poses I will now describe.

9.5.1 The function trim_line()

The function trim_line() that appears on line 5 in Listing 9.3 is declared static29,
indicating that it is only for internal use within the file fetch-line.c. The function’s sole ar-
gument is a pointer s to a buffer which is expected to contain a properly NUL-terminated
string. It trims the string of any leading or trailing whitespace and comments, as detailed

28You may feed any text file to the program; there is nothing special about fgets-demo.c, but it works nicely
for demonstrating some of the features of our fetch-line module.

29See Section 1.6 regarding the static declaration specifier.

root
2014/7/8
page 68

�

�

�

�

�

�

�

�

68 Chapter 9. Reading lines: fetch_line()

Listing 9.3: An outline of the file fetch-line.c, which is fetch-line module’s implementation.

1 #include <string.h>
2 #include <ctype.h>
3 #include <stdlib.h>
4 #include "fetch-line.h"
5 � static char *trim_line(char *s) ...
6 � char *fetch_line(char *buf,
7 int buflen, FILE *stream, int *lineno) ...

⊗ ⊗ ⊗ ⊗ # ⊗ ⊗ ⊗ \n \0 ×
whitespace data whitespace comment

⊗ ⊗ ⊗ ⊗ \0 \0 \0 \0 ⊗ ⊗ ⊗ \n \0 ×

the trimmed string

s t’t’’

Figure 9.1: The top drawing shows a string buffer that contains a data segment along
with leading and trailing whitespace and comments. The bottom drawing
shows the associated trimmed string. A⊗ indicates any character other than
a \0, and a× indicates any character at all. The pointer s points to the first
character of the trimmed string in a dark outline. The pointer t starts at
s and slides down to either \# or \0, whichever comes first, and arrives at
the position t’. Then in a retrograde motion it overwrites all whitespace
by \0 until it arrives at a nonwhitespace character at the position t’’.

in Section 9.3, and returns a pointer to the trimmed string’s first character. To help you
get started, I have shown its operation graphically in Figure 9.1. The top part of Fig-
ure 9.1 shows a buffer that contains a data part along with leading and trailing whitespace
characters and a comment. The bottom part shows the trimmed buffer in a dark outline.
The arrows show pointer positions at the various stages of the processing of the string
according to the following procedure:

1. Move the pointer s forward, one character at a time, skipping over whitespaces, if
any, and stopping at the first nonwhitespace character. This ends the trimming
of the data segment’s leading whitespace. Now the pointer s is stationed at the
start of the data segment. It is shown with the arrow marked s in Figure 9.1.

2. Set a second pointer, t, initially at s, and then move it forward until you arrive at
either a \0 or a # character. If it’s #, change it to \0 to truncate the comment as
per the instructions in subsection 9.3.1. The stopping position of t is shown with
the arrow marked t’ in Figure 9.1 (but it will be just a plain t in your code).

3. If the position t’ is other than s, move t backward, one character at a time, over-
writing any whitespace with a \0, stopping at the first nonwhitespace character.
This trims the data segment’s trailing whitespace, if any. Now the pointer is sta-
tioned at the position marked with the arrow t’’ in Figure 9.1 (but it will be just
a plain t in your code).

root
2014/7/8
page 69

�

�

�

�

�

�

�

�

9.5. The files fetch-line.[ch] 69

Listing 9.4: The function fetch_line() reads and returns the next nonempty trimmed line
from the input stream. If the input line is too long to fit in the given buffer, it prints a
diagnostic and calls exit().

1 char *fetch_line(char *buf, int buflen, FILE *stream, int *lineno)
2 {
3 char *s;
4 if (fgets(buf, buflen, stream) == NULL)
5 return NULL;
6 ++*lineno;
7 if (buf[strlen(buf) - 1] �= ’\n’) {
8 fprintf(stderr, "*** reading error: input line %d too "
9 "long for %s’s buf[%d]\n",

10 *lineno, __func__, buflen);
11 exit(EXIT_FAILURE);
12 }
13 s = trim_line(buf);
14 if (*s �= ’\0’)
15 return s;
16 else
17 return fetch_line(buf, buflen, stream, lineno); // recurse
18 }

At the completion of the process, the pointer s points to the trimmed data string. The
function trim_line() returns that pointer to the caller. You have all the necessary
information now to implement your own trim_line().

Remark 9.2. If a string contains nothing but comments and whitespace, then it
is reduced to an empty string after trimming. Consequently, the pointer returned by
trim_line() points to \0. We use this observation in the next subsection to skip over
empty lines in an input stream.

9.5.2 The function fetch_line()

The function fetch_line() that appears on line 6 in Listing 9.3 is presented in its
entirety in Listing 9.4. The caller of fetch_line() supplies the buffer buf of length
buflen and a stream which is open for reading. fetch_line() calls fgets() to
read a line from stream into buf and then passes that line to trim_line() to strip
it of comments and leading and trailing whitespace. If the trimmed string is nonempty,
then fetch_line() returns a pointer to the start of that string; otherwise it calls itself
recursively in search of a nonempty line. If the end of the input is reached, or if the call
to fgets() experiences an error, fetch_line() returns NULL.

Our fetch_line() is not designed to resize the buffer. If an input line is too long to
fit, fetch_line() takes a very drastic action: it prints a diagnostic message to stderr
and then calls exit() to abort the program! There are other ways of handling such
contingencies; I have chosen this extremely drastic route because it’s the only useful action
for our purposes.

How does fetch_line() tell if a line is too long to fit? Since the lines are read
by fgets(), and since fgets() includes the line’s terminating newline character in
the fetched buffer, as shown in the “case 3” figure on page 64, then a properly fitting line
will be a string terminated by the two characters \n\0; that is, the string’s last character,

root
2014/7/8
page 70

�

�

�

�

�

�

�

�

70 Chapter 9. Reading lines: fetch_line()

Listing 9.5: The file fetch-line-demo.c is a driver for the fetch-line module.

1 #include <stdio.h>
2 #include "fetch-line.h"
3 #define BUFLEN 40
4 int main(void)
5 {
6 char buf[BUFLEN];
7 char *s;
8 int lineno = 0;
9 while ((s = fetch_line(buf, BUFLEN, stdin, &lineno)) �= NULL)

10 printf("trimmed line %3d: %s\n", lineno, s);
11 return 0;
12 }

just before the null terminator, will be \n. In Listing 9.4 we determine a string’s last
character with the help of the standard library’s strlen() function, which returns a
string’s length.

fetch_line()’s fourth argument, lineno, is a pointer to an integer that holds the
value of the current line number. Whenever fetch_line() reads a line, it increments
the number stored there. The caller may refer to that number when issuing diagnostics
about possible errors in the input.

9.6 Project fetch_line

Part 9.1. Listing 9.5 shows a minimalistic driver to demonstrate the functionality of our
fetch-line module. It sets up a buffer of length BUFLEN and then calls fetch_line() in
a loop to read lines from the program’s stdin into that buffer. It also sets up an integer
counter, lineno, initialized to zero, whose address is passed to fetch_line(). As we
saw in subsection 9.5.2, fetch_line() increments that counter every time it reads a
line. Therefore lineno will contain the line number of the current line at any time. The
program writes out that information to the stdout in Listing 9.5, line 10.

Encode, compile, and test your fetch_line program. See the sample session on
page 67.

Part 9.2. Suppose BUFLEN is 40, as before. Create a file with gradually increasing line
lengths, e.g.,

35xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
36xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
37xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
... more lines here ...
42xx

where the number at the beginning of each line equals the total length of that line. What
happens when you feed that file to your program? Explain what you observe.

Part 9.3. Add whitespace (spaces, tabs, empty lines) and comments in various places in
the file that you created in Part 9.2. Verify that your program behaves as intended.

root
2014/7/8
page 71

�

�

�

�

�

�

�

�

Chapter 10

Generating random
numbers

Prerequisites: Chapters 7, 8

10.1 The rand() and srand() functions
The C standard library provides a pseudorandom number generator through the rand()
function. Together with the associatedsrand() function, they are declared instdlib.h
as “int rand(void);” and “void srand(unsigned int seed);”.

Each call to rand() returns a random integer n with a uniform probability distribu-
tion in the range 0 ≤ n ≤ RAND_MAX. The value of RAND_MAX, a large positive integer,
is built into your C library and cannot be changed. The C library on my computer has
RAND_MAX = 231 − 1 = 2,147,483,647. It may be something else on yours.30 Here is a
complete program that prints four random numbers:

#include <stdio.h>
#include <stdlib.h>
int main(void)
{

for (int i = 0; i < 4; i++)
printf("%d ", rand());

putchar(’\n’);
return 0;

}

Here is what it prints:

1804289383 846930886 1681692777 1714636915.

If you run the program once again, it will print exactly the same four numbers! This is
not a bug—even a statistician likes reproducible experiments!

Nevertheless, if you truly want your program to generate a different sequence of ran-
dom numbers, invoke srand(n) with some positive integer n—called the random gen-
erator’s seed—to alter the random generator’s initial state, as in

#include <stdio.h>
#include <stdlib.h>

30You can find out the value of RAND_MAX on your machine by printing it in a C program, as in
printf("RAND_MAX = %u\n", RAND_MAX); Alternatively, you may just look it up in stdlib.h if you
know where to find that header file. On a typical Unix installation it is /usr/include/stdlib.h.

71

root
2014/7/8
page 72

�

�

�

�

�

�

�

�

72 Chapter 10. Generating random numbers

int main(void)
{

srand(7); // set seed to 7
for (int i = 0; i < 4; i++)

printf("%d ", rand());
putchar(’\n’);
return 0;

}

Now the program prints

1045618677 1863967299 1272579899 461085871.

Setting the seed to 1 is equivalent to not calling srand() at all.
To generate random fractional numbers r in the closed interval [0,1], divide the value

returned by rand() by RAND_MAX, as in r = (double)rand()/RAND_MAX. The
cast is necessary; otherwise the quotient is zero according to C’s integer division rules.
To generate random fractional numbers R in a prescribed interval [a, b], generate them
in [0,1] as above and then map them to [a, b] through scaling, as in R= a+(b − a)r .

Producing random integers on a prescribed integer range is a more challenging prob-
lem. To simulate a coin tossing experiment, for instance, we want random numbers in the
set {0,1}. To simulate the tossing of dice, we want random numbers in the set {1,2, . . . , 6}.
Unfortunately there is no simple and perfect way of doing this. A reasonably good way of
generating uniformly distributed random integers r in the set {0,1, . . . , n− 1} is through
the formula

r=
rand()

RAND_MAX

n
+ 1

(n	 RAND_MAX),

where both divisions are performed in the sense of integer arithmetic; that is, the quotient
is computed and the remainder is discarded. (C’s integer arithmetic does that by default.)
The formula works well when n is much smaller than RAND_MAX.31 To dramatize that
statement, let us say RAND_MAX is 1,000. (This is far from realistic; on a typical imple-
mentation, RAND_MAX will be millions of times larger.) If n = 6, as in a die throwing
experiment, then the likelihood of obtaining a 0 (or a 1, or 2, or 3, or 4) according to that
formula is 167/1001, but the likelihood of obtaining a 5 is 166/1001, which is just slightly
lower but not too bad. On the other hand, if n = 30, then the likelihood of obtaining
a 0 (or a 1, or . . . 28) is 34/1001, but the likelihood of obtaining a 29 is 15/1001, which is
significantly lower.

In the applications of interest to us, the values of n are millions of times smaller than
RAND_MAX; therefore we run no risk of skewing our statistics by using that formula. In
fact, we package the formula in a convenient function, which we call random(), for
future use. Listing 10.1 shows the essentially one-line implementation.

Remark 10.1. The inline specifier in the function’s declaration makes it an inline func-
tion, which has the effect of suggesting to the compiler that the calls to this function are to
be as fast as possible. The C standard does not prescribe how that is to be accomplished.
The compiler may, at its discretion, dismantle the function and conceptually embed its
body where it’s called, thus obviating the overhead of a function call altogether. Or it

31I learned about this formula from <http://www.c-faq.com/lib/randrange.html>. That page
also offers a method, at the cost of some loss of efficiency, for dealing with situations where n is not necessarily
small compared to RAND_MAX.

http://www.c-faq.com/lib/randrange.html

root
2014/7/8
page 73

�

�

�

�

�

�

�

�

10.2. Bitmap images 73

Listing 10.1: Returns a random integer in the set {0,1, . . . , n − 1} with uniform distribution. As-
sumes n is much smaller than RAND_MAX.

1 inline int random(int n)
2 {
3 return rand()/(RAND_MAX/n + 1);
4 }

may take some other measures to speed up the function’s use. Or it may just ignore the
inlining request altogether.

The inline specifier was introduced in C99. If your compiler does not support it,
it’s safe to remove it.

Remark 10.2. The C standard does not prescribe an algorithm for the pseudoran-
dom number generator (PRNG) associated with rand(). Its only requirement is that
RAND_MAX be at least 32767. The algorithm is left up to the implementation.

Earlier implementations of the standard library’s rand() developed a (well-deserved)
reputation for being too naive; the data they generated could hardly pass even the sim-
plest tests for randomness. Serious users shunned the standard library’s rand() and
used PRNGs of their own, or something else made by third parties. Some computer plat-
forms supplied their own (nonstandard) PRNG, usually called random(), as an alter-
native to the standard rand(). Things have improved over the years. The rand()
and random() functions that comes with modern Linux distributions, for instance,
both use the same rather sophisticated algorithm, which has a period of approximately
16× (231 − 1). To learn more about PRNGs, consult Numerical Recipes in C [53], which
devotes an entire chapter to the subject.

Remark 10.3. The name “random” used for the function defined in Listing 10.1 is quite
legitimate within standard C. It is likely, however, that your computer platform supplies
a nonstandard PRNG called random(), as noted in the previous paragraph. So, which of
the two random() functions will your program use?

To avoid a potential clash between the two, be sure to tell your compiler to treat your
program as strictly standard C. For example, if you use the GNU C compiler, invoke
it with the -std=c89 or the -std=c99 flag. In the worst case, if you have a broken
compiler that refuses to understand about standards, then rename the random() in List-
ing 10.1 to Random(), or somesuch.

10.2 Bitmap images
We intend to exercise our random() function of Listing 10.1 to produce bitmap images
like those shown in Figure 10.1. A bitmap image is a rectangular array of black and white
dots.

It is natural to represent a bitmap image as a matrix of zeros and ones. Each of the
matrix’s entries corresponds to a dot in the image. A zero represents a white dot, a 1 a
black dot. The Portable Bitmap (PBM) convention for storing bitmap images formalizes
this idea: You put the matrix of zeros and ones in a file, say sample-bitmap.pbm, and add
a header consisting of the two-character magic number32 P1, along with the image’s width
and the height (in that order). Then you may view the image by passing the file name

32See footnote 43 on page 115 for the meaning of the “magic number”.

root
2014/7/8
page 74

�

�

�

�

�

�

�

�

74 Chapter 10. Generating random numbers

(a) (b) (c)

Figure 10.1: Three 100× 200 bitmap images of random noise. From left to right, the
fill ratio is 0.10, 0.20, and 0.40.

P1
4 7
1 1 1 1
1 0 0 0
1 0 0 0
1 1 1 0
1 0 0 0
1 0 0 0
1 0 0 0

Figure 10.2: On the left are the contents of a PBM definition file. On the right is the
corresponding 7×4 bitmap image. I have superimposed a grid to delineate
the pixels. Beware that the image shown is greatly magnified; a 7×4 bitmap
image in its natural size is too small for viewing on a computer screen, but
you can ask your image viewer to magnify it.

sample-bitmap.pbm to almost any image viewer. Figure 10.2 shows the contents of a PBM
file and the corresponding image.

Remark 10.4. As simple as it is, the plain PBM format which I have described here is
the most wasteful way of storing a bitmap image. Much better ways are available. See
Chapter 14 for further discussion of bitmaps and other forms of representing images.

10.3 The program
In principle, one can encapsulate the random() function of Listing 10.1 in a module
consisting of a pair of files random.h and random.c. I will not take that route, however,
since the function is so simple—a one-liner, actually—that the ado about an interface and
an implementation will blow things way out of proportion. I would rather just insert a
copy of the four lines of Listing 10.1 into a program, wherever it’s needed. I will take that
approach in this chapter and elsewhere.

Here is this chapter’s project. Take an m × n matrix, and imagine that its entries
represent a rectangular array of m rows and n columns of white dots. Then begin selecting
random dots and coloring them black. Repeat until a certain percentage, say 10%, of the
dots have been colored. That will produce a picture like Figure 10.1(a). We say that the
fill ratio of that picture is 0.10. The pictures (b) and (c) have fill ratios of 0.20 and 0.40,
respectively.

Figure 10.1(a) was produced by executing the command

$./random-pbm 100 200 1 0.10 rand-10.pbm

Those command-line arguments request a 100× 200 image and set the random number
generator’s seed to 1, the fill ratio to 0.10, and the name of the output file (that is, the image

root
2014/7/8
page 75

�

�

�

�

�

�

�

�

10.4. The file random-pbm.c 75

Listing 10.2: An outline of the file random-pbm.c.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "array.h"
4 � static inline int random(int n) ...
5 � static int write_pbm(char **M, int m, int n, char *outfile) ...
6 � static char **make_random_matrix(int m, int n, double f) ...
7 � static void show_usage(char *progname) ...
8 � int main(int argc, char **argv) ...

file) to rand-10.pbm. If the program is invoked with insufficient or illegal command-line
arguments, it prints a help message to the stderr and exits, as in

$./random-pbm
Usage: ./random-pbm m n s f outfile

writes an mxn random bitmap to a file named ‘outfile’
f: fill ratio 0.0 <= f <= 1.0
s: integer >= 1: seeds the random number generator

We use Chapter 7’s Xmalloc module and Chapter 8’s array.h header file to allocate
memory for the bitmap’s matrix. Therefore, following the suggestions of Chapters 2
and 6, the program’s directory will look like this:

$ cd random
$ ls -F
Makefile array.h@ random-pbm.c xmalloc.c@ xmalloc.h@

I will describe the contents of the file random-pbm.c in the next section.

10.4 The file random-pbm.c
Listing 10.2 gives an outline of the file random-pbm.c. The function random() that ap-
pears on line 4 is the same as that shown in Listing 10.1. The function show_usage()
that appears on line 7 is responsible for printing the help message shown in Section 10.3.
I will let you write it. The remaining three functions are described in the following sub-
sections.

10.4.1 The function main()

The function main() that appears on line 8 of Listing 10.2 is responsible for parsing the
command-line arguments and then directing the rest of the program’s flow. The initial
part of the function main() is shown in Listing 10.3. Let me explain some of the details.

Line 5. The matrix M will hold the bitmap’s data. Since the data consists of zeros and
ones, any integer data type will do. We choose char here since it is the smallest
such data type.

Line 8. The variable status holds the program’s exit status. We initialize it to the de-
fault of EXIT_FAILURE. Later on, after obtaining reassurance that the program
has succeeded (line 38 in Listing 10.4), we will change it to EXIT_SUCCESS.

Line 9. As we saw in Section 10.3, the program is expected to be invoked with five ar-
guments, and therefore argc should be 6; see Section 4.7 regarding command-line

root
2014/7/8
page 76

�

�

�

�

�

�

�

�

76 Chapter 10. Generating random numbers

Listing 10.3: The initial part of the function main() in file random-pbm.c.

1 int main(int argc, char **argv)
2 {
3 int m, n, s; // image is m× n, seed is s
4 double f; // fill ratio
5 char **M;
6 char *outfile;
7 char *endptr;
8 int status = EXIT_FAILURE;
9 if (argc �= 6) {

10 show_usage(argv[0]);
11 return EXIT_FAILURE;
12 }
13 m = strtol(argv[1], &endptr, 10);
14 if (*endptr �= ’\0’ || m < 1) {
15 show_usage(argv[0]);
16 return status;
17 }
18 // · · · similarly, extract n, s, f, and outfile

arguments. If argc is not 6, we print a usage message and exit. We pass argv[0]
toshow_usage() so that it can print the program’s name along with the message.
See the sample message shown in Section 10.3.

Line 13. We call the standard library’s strtol() function (Chapter 5) to translate the
string argv[1] to an integer. Subsequently, we verify that argv[1] is a proper
representation of an integer and that its numerical value is no less than 1. If not, we
print a usage message and exit.

Lines 18–34. Here I have excised several lines from main() to give you an opportunity
to insert your own code. You will need to extract the integers n and s, the floating
point number f, and the string outfile from the command-line arguments. You
will use the strtod() function (Chapter 5) to extract the value of f.

The remaining part of the function main() is shown in Listing 10.4. Let us examine the
details.

Line 35. Now that we have extracted the user-specified value of the seed s for the random
number generator, we call srand() to set the seed to s.

Line 36. We call the function make_random_matrix() (to be described later) to pro-
duce an m× n matrix of random zeros and ones with a fill ratio of f .

Line 37. We call the function write_pbm() (to be described later) to write the matrix’s
data as a PBM file. The function returns 1 on success and 0 on failure. (The most
likely cause of failure is the lack of permission to open the file for writing.) If the
call returns 1, then it has succeeded; therefore we change the value of status to
EXIT_SUCCESS.

root
2014/7/8
page 77

�

�

�

�

�

�

�

�

10.4. The file random-pbm.c 77

Listing 10.4: The end of the function main() in file random-pbm.c.

35 srand(s);
36 M = make_random_matrix(m, n, f);
37 if (write_pbm(M, m, n, outfile) == 1)
38 status = EXIT_SUCCESS;
39 free_matrix(M);
40 return status;
41 }

Listing 10.5: The function make_random_matrix() in file random-pbm.c.

1 static char **make_random_matrix(int m, int n, double f)
2 {
3 char **M;
4 int i, j, k;
5 make_matrix(M, m, n);
6 for (i = 0; i < m; i++)
7 for (j = 0; j < n; j++)
8 M[i][j] = 0;
9 k = 0;

10 while (k < f*m*n) {
11 i = random(m);
12 j = random(n);
13 if (M[i][j] == 0) {
14 M[i][j] = 1;
15 k++;
16 }
17 }
18 return M;
19 }

10.4.2 The function make_random_matrix()

The function make_random_matrix() that appears on line 6 of Listing 10.2 allocates
memory for an m× n matrix, fills it with random zeros and ones (with a fill ratio of f),
and returns a pointer to that matrix. Listing 10.5 shows the function in its entirety. The
implementation is mostly self-explanatory; therefore I will highlight the interesting as-
pects only. First, we call make_matrix() (defined in array.h) to allocate memory for
the matrix, and then we zero all its entries. Recall that zero in the PBM specification
means white.

In the while-loop that follows, we call random() to generate random row and col-
umn indices i and j in the ranges 0 ≤ i < m and 0 ≤ j < n. If M[i][j] is zero,
we change it to one and then increment the counter k, which keeps a count of the black
dots. The test is necessary since if M[i][j] is already black, making it black again has
no effect.

10.4.3 The function write_pbm()

The function write_pbm() that appears on line 5 of Listing 10.2 receives the bitmap
matrix created by make_random_matrix() and writes it in the PBM format to a file
whose name it receives as an argument. It returns 1 on success and 0 on failure.

root
2014/7/8
page 78

�

�

�

�

�

�

�

�

78 Chapter 10. Generating random numbers

I will describe the function’s overall plan in words and let you fill in the details. First,
call the standard library’s fopen() to open the output file for writing. If unsuccessful,
print an appropriate message to the stderr, and then return 0. Next, write the image’s
header as described in Section 10.2. See Figure 10.2 for a sample. Then write the data part
according to the contents of the matrix M. Finally, close the output stream and return 1.
You may use the print_matrix() macro from Part 8.3 of Project array.h (page 60) to
print the matrix M.

10.5 Project Random Bitmaps
Complete the file random-pbm.c according to the given instructions, and then compile
and experiment. Width and height values in the range 100 to 400 produce bitmaps of
reasonable size for viewing on a computer screen.

There are very many utilities for viewing images. The choice depends in your platform
and personal preference. I do all of my work on a Linux laptop. Mostly I use feh for
viewing images. Occasionally I use thedisplay utility that comes with the ImageMagick
package and the venerable xv, which, unfortunately, is no longer actively maintained.

root
2014/7/8
page 79

�

�

�

�

�

�

�

�

Chapter 11

Storing sparse matrices

Prerequisites: Chapters 7, 8

11.1 Introduction
A sparse matrix is a matrix whose entries are mostly zero. Large sparse matrices occur
quite frequently in computing. In solving a linear Partial Differential Equation (PDE)
with the Finite Element Method (FEM), for instance, one subdivides the equation’s do-
main into a fine mesh of simple objects such as triangles or tetrahedra and approximates
the PDE’s solution with low degree polynomials in each. This reduces the task of solv-
ing the PDE to solving a linear system of equations Ax = b , where the n× n coefficient
matrix A tends to be quite large; n = 10,000 is not out of the ordinary. Storing such a
humongous matrix can pose challenges for the computer’s memory and disk utilization.
Fortunately, it is hardly ever necessary to store the matrix in toto since by the nature of
the FEM, all but a tiny fraction of the matrix’s entries are zeros in general.

Depending on the FEM’s algorithm, the total number of nonzero entries in the n×n
matrix A may be as little as 3n. When n = 10,000, for instance, such a matrix will have a
total of 100,000,000 entries, only 30,000 of which are nonzero. In other words, only one
out of 3,333 entries is nonzero! So it would make sense to store only the nonzero entries
along with their indices into A, rather than a hundred million zeros.

There is no standard way of storing sparse matrices—see [18, Chapter 2] and [6, Sec-
tion 4.3] for surveys of the various methods—although the Compressed Column Storage
(CCS) format appears to be the favorite choice nowadays, perhaps because that’s what
MATLAB uses.

It is this chapter’s objective to introduce the CCS format and see how it translates
to C code. The functions sparse_pack() and sparse_unpack() developed in the
process convert a matrix to and from the CCS format. I must point out that we have
no practical use for these functions in the rest of the book since our work with sparse
matrices will be handled through the facilities provided by the UMFPACK library, which
is the subject of the next chapter. Interacting with UMFPACK, however, does require some
understanding of the CCS format, and that’s what you are expected to take with you from
this chapter.

79

root
2014/7/8
page 80

�

�

�

�

�

�

�

�

80 Chapter 11. Storing sparse matrices

11.2 The CCS format
I will explain the CCS format in terms of the concrete 4× 5 matrix

A=

⎛⎜⎜⎝
0 7 0 0 1
0 4 0 3 0
6 6 5 1 4
5 5 0 0 0

⎞⎟⎟⎠ ,

which is neither large nor truly sparse; nevertheless, it will serve quite adequately for
conveying the idea behind CCS.

The matrix has 11 nonzero entries. Following [16] and [18], I will write nz for the
number of a matrix’s nonzero entries. The obvious—but not the best—way of storing the
matrix’s nonzero entries is as a set of nz triplets (i , j ,Ai j) of locations and values. We
put the first components of such triplets into a vector Ai, the second components into a
vector Aj, and the third components into a vector Ax, and thus we get three vectors of
length nz each:

Ai= [2 3 0 1 2 3 2 1 2 0 2],
Aj= [0 0 1 1 1 1 2 3 3 4 4],
Ax= [6 5 7 4 6 5 5 3 1 1 4].

(Note that we are counting the row and column indices beginning with zero.) To produce
this list, I scanned the matrix by columns from top to bottom and then from left to right.
That’s where the “column” in the CCS comes in.33 There is a “Fortran accent” in this
since that’s the order in which matrix entries are stored in Fortran. (In contrast, C’s
built-in array types store two-dimensional arrays in the row order.) The CCS format was
developed when Fortran was—some say it still is—the dominant programming language
in scientific computing.

As I noted above, the storage of A as the three vector set { Ai, Aj, Ax } is not the best
we can do. A hint to the suboptimality of that representation is provided by the repetitive
nature of the entries of the Aj vector. Have a look. The first two “0”s in Aj tell us that
the matrix A has two nonzero entries in its first column. The next four “1”s in Aj tell us
that A has four nonzero entries in its second column, and so on. Can’t we express that
information in a more concise way? Yes, we can! For instance, the vector

A’= [2 4 1 2 2]

conveys exactly the same information as Aj (two entries in the first column, four entries
in the second column, etc.) and it is shorter.

The CCS format is a slight variant of this idea. For an m× n matrix A it introduces
a vector Ap of length n + 1 with the property that Ap[j] gives the index in the vector
Ax of where the matrix’s column j begins. More precisely, the vector Ap is such that the
entries in the matrix’s jth column are given by

{ Ax[k] : Ap[j] ≤ k < Ap[j+1] }.34 (11.1)

33It should be obvious that the order in which the matrix’s entries are scanned is immaterial for the purpose
of its representation as the { Ai, Aj, Ax } three-vector set. But the order does matter where the vector Ap is
introduced later on.

34This implies, in particular, that Ap[n] = nz.

root
2014/7/8
page 81

�

�

�

�

�

�

�

�

11.4. The files sparse.[ch] 81

For our matrix A we have Ap= [0 2 6 7 9 11] because
the values { Ax[k] : 0 ≤ k < 2 } go to the matrix’s first column,
the values { Ax[k] : 2 ≤ k < 6 } go to the matrix’s second column,
the values { Ax[k] : 6 ≤ k < 7 } go to the matrix’s third column,
the values { Ax[k] : 7 ≤ k < 9 } go to the matrix’s fourth column,
the values { Ax[k] : 9 ≤ k < 11 } go to the matrix’s fifth column.

To conclude, the matrix A and its CCS representation are

A=

⎛⎜⎜⎝
0 7 0 0 1
0 4 0 3 0
6 6 5 1 4
5 5 0 0 0

⎞⎟⎟⎠ ⇐⇒
⎧⎪⎨⎪⎩

Ap= [0 2 6 7 9 11],
Ai= [2 3 0 1 2 3 2 1 2 0 2],
Ax= [6 5 7 4 6 5 5 3 1 1 4].

The sparse matrix representation is not particularly useful in this instance since it would
have been more economical to store the matrix’s 4× 5= 20 entries, zeros and all, instead
of the 6+ 11+ 11 = 28 numbers that make up the vectors Ap, Ai, Ax. The benefits of
sparse storage become apparent only when the matrix is large and has a small fraction of
nonzero entries.

11.3 The program
We are going to write a sparse matrix module in a file sparse.c that contains two C func-
tions, sparse_pack() and sparse_unpack(). The first receives an m× n matrix
and computes the corresponding CCS vectors Ap, Ai, Ax. The second does the reverse;
that is, it receives the CCS vectors Ap, Ai, Ax and constructs the matrix A. Additionally,
we will write a test/demo program in sparse-test.c to exercise those functions. The pro-
gram depends on array.h (Chapter 8) and xmalloc.[ch] (Chapter 7) for allocating memory
for vectors and matrices; therefore, following the suggestions of Chapters 2 and 6, your
project’s directory will look like this:

$ cd sparse
$ ls -F
Makefile array.h@ sparse.c sparse.h xmalloc.c@ xmalloc.h@

Our implementations of sparse_pack() and sparse_unpack()work with ma-
trices of type double. These are the types of matrices that most frequently require sparse
storage. Should you have a need to work with matrices of a different type, you will have
to write another pair of functions for that type. It is possible to apply Chapter 8’s pre-
processor trick to produce type-generic versions of these, but it’s probably not worth the
effort since the need for sparse storage of matrices other than the type double is so rare.

11.4 The files sparse.[ch]
The functions sparse_pack() and sparse_unpack(), defined in the file sparse.c,
deal with preallocated vectors and matrices. That is, the caller is expected to have allocated
properly sized vectors and matrices before calling these function. They do no memory
allocations on their own.

The implementation of the function sparse_pack() is quite straightforward, so I
will leave it to you to write. The function sparse_unpack(), which is only slightly
more involved, is shown in Listing 11.1. It receives the CCS vectors Ap, Ai, Ax and
populates the m× n matrix A with them.

root
2014/7/8
page 82

�

�

�

�

�

�

�

�

82 Chapter 11. Storing sparse matrices

Listing 11.1: The implementation of the function sparse_unpack(). It receives the CCS vec-
tors Ap, Ai, Ax and populates the m× n matrix A with them.

1 void sparse_unpack(double **a, int m, int n,
2 int *Ap, int *Ai, double *Ax)
3 {
4 int i, j, k;
5 for (i = 0; i < m; i++)
6 for (j = 0; j < n; j++)
7 a[i][j] = 0.0;
8

9 for (j = 0; j < n; j++)
10 for (k = Ap[j]; k < Ap[j+1]; k++) {
11 i = Ai[k];
12 a[i][j] = Ax[k];
13 }
14

15 }

The function begins with storing zeros for all entries in the matrix A. After all, A is
supposedly sparse; therefore most of its entries are zeros anyway. The nested for-loop
that begins on line 9 decodes the CCS vectors. The outer for-loop steps through the
columns 0 ≤ j < n. The inner for-loop extracts that column’s entries according to the
formula (11.1) on page 80 and inserts them into the matrix A.

To complete the module, write a header file, sparse.h, that provides the module’s in-
terface. Don’t forget to put #include guards in sparse.h and #include"sparse.h" in
sparse.c.

11.5 Project Sparse Matrix
Complete the files sparse.c and sparse.h, as instructed in the previous sections. Then write
file sparse-test.c, which provides a test/demo of our sparse module. I will describe its con-
tents in words and let you make it into a C program.

• Create the 4× 5 matrix A of Section 11.2. Thus, let m = 4, n = 5, and then

double **a;
make_matrix(a, m, n);
a[0][0] = 0; a[0][1] = 7; ...

• Step through the matrix and count the number of its nonzero entries. Call it nz.

• Print the matrix and nz.

• Callmake_vector() to make the CCS vectors Ap, Ai, Ax of appropriate lengths.

• Call sparse_pack() to encode the matrix into the CCS vectors.

• Print the vectors Ap, Ai, Ax.

• Make an m × n matrix b. Call sparse_unpack() to unpack the CCS vectors
into the matrix b.

root
2014/7/8
page 83

�

�

�

�

�

�

�

�

11.5. Project Sparse Matrix 83

• If your code is working properly, the matrices a and b should be identical; therefore
their difference should be zero. To verify this, make a third m × n matrix; let’s
call it c. In a doubly nested for-loop, set c[i][j] = a[i][j] - b[i][j].
Print the matrix c. Is it all zeros?

• Free all allocated memory before exiting.

For your reference, here is what my program prints:

The sparse matrix is
0 7 0 0 1
0 4 0 3 0
6 6 5 1 4
5 5 0 0 0

matrix is 4x5, nz = 11

Ap = 0 2 6 7 9 11
Ai = 2 3 0 1 2 3 2 1 2 0 2
Ax = 6 5 7 4 6 5 5 3 1 1 4

The difference of the original and reconstructed matrices:
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

As you see, there are quite a few calls to print vectors and matrices. You may put the
type-generic print_vector() and print_matrix() macros developed in Part 8.3
of Project array.h (page 60) to good use here.

root
2014/7/8
page 85

�

�

�

�

�

�

�

�

Chapter 12

Sparse systems:
The UMFPACK library

Prerequisites: Chapters 7, 8, 11

12.1 Introduction
UMFPACK (pronounced in two syllables: “umph”–“pack”) is a library of C functions for
solving systems of linear equations Ax = b , where A is an n × n matrix and b is an
n-vector. Although it will work with any nonsingular A, it is particularly effective in the
situations where A is large and sparse. The library, written by Tim Davis, is available as
an open and free software from

<http://www.cise.ufl.edu/research/sparse/umfpack/>.
It incorporates state-of-the-art algorithms for solving large sparse systems developed by
Davis and a host of collaborators, and underlies many computational algorithms in soft-
ware packages such as Comsol, Maple, and MATLAB.

This chapter introduces some of the most basic aspects of the UMFPACK library and
shows how to interface with it in a C program. We cover only what is needed in appli-
cations to finite elements in Chapters 25 and 26. To learn more, you should read UMF-
PACK’s Quick Start Guide and User Guide (17 pages and 133 pages, respectively, as of
Version 5.4.0, dated May 20, 2009) that come with UMFPACK as PDF files. Additionally,
you may benefit from reading Davis’s book [16] and the articles [14, 15].

12.2 The basics
UMFPACK expects the n × n coefficient matrix A of the system Ax = b to be given in
the CCS format, that is, as the three vectors Ap, Ai, and Ax, as seen in Chapter 11. The
vector Ap is of length n+1, while Ai and Ax are of length nz each, where nz is the count
of A’s nonzero entries. The system’s right-hand side, b , is an ordinary vector of length n.
Solving the system Ax = b proceeds in three stages:

Stage 1: Symbolic analysis. We pass the matrix A (actually, the CCS vectors Ap, Ai, and
Ax) to the UMFPACK function umfpack_di_symbolic() for symbolic analysis.
The goal of this stage is to analyze the pattern of distribution of the nonzero entries
in the sparse matrix A; their numeric values are immaterial. UMFPACK applies a
series of row and column permutations to arrange the pattern of the nonzeros in a
certain optimal way. This transforms the matrix A to a matrix PAQ, where P and Q
are permutation matrices.

85

root
2014/7/8
page 86

�

�

�

�

�

�

�

�

86 Chapter 12. Sparse systems: The UMFPACK library

Remark 12.1. A permutation matrix is the result of shuffling the rows or columns
of the n× n identity matrix. If the permutation matrix P is produced by shuffling
the rows of the identity matrix, then the left-multiplication PA with an arbitrary
n × n matrix A applies exactly those row shuffles to A. If the permutation ma-
trix P is produced by shuffling the columns of the identity matrix, then the right-
multiplication AP with an arbitrary n × n matrix A applies exactly those column
shuffles to A. A permutation matrix is an orthogonal matrix, that is, P T P = I ,
where I is the identity matrix and P T is the transpose of P .

Stage 2: Numeric analysis. We pass the matrix A and the permutation data (effectively
the P and Q permutations matrices from the previous step) to the UMFPACK func-
tion umfpack_di_numeric(), which applies Gaussian elimination to perform
an LU factorization of the permuted matrix; that is, it computes L and U so that
PAQ = LU , where L and U are n × n matrices, L is lower-triangular, and U is
upper-triangular.

Stage 3: Solving the system. We pass the matrix A, the LU factorization data from the
previous step, the vector b , and the address of a preallocated vector x to the UMF-
PACK function umfpack_di_solve(), which solves the system Ax = b and
places the solution in the vector x.

Let me explain that last step in a little more detail. From the LU factorization PAQ =
LU and the orthogonality of P and Q it follows that A= P T LU QT ; therefore the system
Ax = b takes the form P T LU QT x = b , or equivalently, LU QT x = P b . Introducing the
temporary variable y = U QT x reduces the equation to the linear system Ly = P b , which
is quite trivial to solve for y since the coefficient matrix L is lower-triangular. Once we
have y, we go back to y =U QT x and rewrite it as y = U z by introducing the temporary
variable z = QT x. The system of linear equations U z = y is trivial to solve for z since
the coefficient matrix U is upper-triangular. Once we have z, we compute the solution x
of the original system from z =QT x, that is, x =Q z.

That’s a lot of computation, but fortunately we don’t have to do it ourselves. UMF-
PACK sees to it that it’s done. For our part, we need to know how to invoke the three
steps that lead to the solution. I will explain those through several sample programs in
the rest of this chapter.

12.3 The program
We are going to write several stand-alone demos, umfpack-demo[123].c, which show, in
successively greater details, how to work with the UMFPACK library. The programs rely
on xmalloc.[ch] (Chapter 7) and the header file array.h (Chapter 8) for allocating and free-
ing memory for vectors and matrices. Furthermore, we will have use for the sparse mod-
ule of Chapter 11. Therefore, following the suggestions of Chapters 2 and 6, your project’s
directory will look like this:

$ cd umfpack
$ ls -F
Makefile sparse.c@ umfpack-demo1.c umfpack-demo3.c xmalloc.h@
array.h@ sparse.h@ umfpack-demo2.c xmalloc.c@

To compile and run this chapter’s programs, you will need a properly installed UMF-
PACK library on your computer. On most Linux distributions, UMFPACK is supplied
as an optional package which may be installed with a few commands or mouse clicks.

root
2014/7/8
page 87

�

�

�

�

�

�

�

�

12.4. umfpack-demo1.c 87

The package may be called umfpack-dev, libsuitesparse-dev, or somesuch, de-
pending on the distribution. On a Mac, you may download and install UMFPACK from
<http://www.macports.org/>. On other operating systems you may have to down-
load UMFPACK’s source and then compile and install the library yourself. UMFPACK’s
User Guide tells you how.

The header file umfpack.h provides the interface to the UMFPACK library. In many in-
stallations, that header file and several dozen others that come with UMFPACK are placed
into a directory of their own, as a subdirectory of the main “include” directory which is in
the compiler’s default search path. On my computer that directory is named suitesparse;
therefore, to include umfpack.h in my programs, I do

#include <suitesparse/umfpack.h>

Installations vary. You will have to find out where your umfpack.h lives and #include
it accordingly.

Additionally, you will need to tell the compiler where to find the library itself (not the
header file) for the purposes of linking. If the library is installed in the compiler’s search
path, then something like this should do:

$ gcc -Wall -std=c99 -pedantic -O2 umfpack-demo1.c -lumfpack

Again, there are too many variations on the possible names and locations of the library
for me to provide a definitive recipe. You may ask your computer guru for help if the
basic suggestions above don’t work for you.

At any rate, see Section 6.9 on how to present the required information in your
Makefile.

12.4 umfpack-demo1.c
The file umfpack-demo1.c presents an absolutely bare-bones demo of the UMFPACK li-
brary. It solves the system of five equations in five unknowns Ax = b , where

A=

⎛⎜⎜⎜⎜⎝
2 3 0 0 0
3 0 4 0 6
0 −1 −3 2 0
0 0 1 0 0
0 4 2 0 1

⎞⎟⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎜⎝
8

45
−3

3
19

⎞⎟⎟⎟⎟⎠ .

You may verify that the solution to the system is x =
�

1 2 3 4 5
T . This problem

comes directly from UMFPACK’s User Guide.
The demo file umfpack-demo1.c consists of a single function, main(), outlined in

Listing 12.1. Lines 1 through 15 essentially duplicate what was done in sparse.c in Chap-
ter 11’s Project Sparse Matrix; that is, they encode the matrix A into the CCS vectors Ap,
Ai, and Ax.35 The only new feature here are the variables declared on line 3, which will
be explained below. Let us look at the rest of the main() now.

Line 16. The first call to the UMFPACK library occurs on line 16. The function
umfpack_di_symbolic() corresponds to Stage 1 of the three stages of UMF-
PACK’s operation described in Section 12.2. The first two arguments are the number
of rows and columns of the matrix A. Since our A is square, then both arguments

35In a small problem such as the present one, you may compute the CCS vectors by hand, in which case there
won’t be a need for Chapter 11’s sparse_pack() function at all.

root
2014/7/8
page 88

�

�

�

�

�

�

�

�

88 Chapter 12. Sparse systems: The UMFPACK library

Listing 12.1: An outline of the function main() in umfpack-demo1.c.

1 int main(void)
2 {
3 void *Symbolic, *Numeric;
4 double **a;
5 double *b, *x, *Ax;;
6 int *Ap, *Ai;
7 int n = 5;
8 int i, j, nz;
9 ... allocate memory for the matrix a and the vectors b and x ...

10 ... populate the matrix a and vector b with the given numbers ...
11 ... compute nz as in Project Sparse Matrix ...
12 ... print out a, b, and nz as in Project Sparse Matrix ...
13 ... allocate memory for the vectors Ap, Ai, and Ax ...
14 sparse_pack(a, n, n, Ap, Ai, Ax); // populate the CCS vectors
15 ... print out Ap, Ai, Ax ...
16 umfpack_di_symbolic(n, n, Ap, Ai, Ax, &Symbolic, NULL, NULL);
17 umfpack_di_numeric(Ap, Ai, Ax, Symbolic, &Numeric, NULL, NULL);
18 umfpack_di_solve(UMFPACK_A, Ap, Ai, Ax, x, b, Numeric, NULL, NULL);
19 ... print out x ...
20 umfpack_di_free_symbolic(&Symbolic);
21 umfpack_di_free_numeric(&Numeric);
22 ... also free the allocated memory for a, b, x, Ap, Ai, Ax ...
23 return 0;
24 }

are n. The next three arguments are the three vectors of A’s CCS encoding, as
computed earlier with the help of our function sparse_pack() on line 14. The
next argument is the address of the Symbolic pointer variable which is declared
on line 3. UMFPACK sets Symbolic to point to an (opaque) structure which it
allocates and uses internally for the purpose of storing the permutation matrices
P and Q (or rather, their encodings) described in Section 12.2. The final two ar-
guments are NULL. It is possible to set them to certain control arrays to pass addi-
tional information to UMFPACK or extract information from it. We will not use
those control arrays in this book.

Line 17. The call to umfpack_di_numeric() on line 17 corresponds to Stage 2 of
the three stages described in Section 12.2. All arguments except the fifth are those
we have seen before. The fifth argument receives the address of the Numeric
pointer variable which is declared on line 3. UMFPACK sets Numeric to point
to an (opaque) structure which it allocates and uses internally for the purpose of
storing information regarding the matrix’s LU factorization.

Line 18. The call to umfpack_di_solve() on line 18 corresponds to Stage 3 of the
three stages described in Section 12.2. We have encountered all the arguments except
the first. The first argument is set to the preprocessor symbol UMFPACK_A which
tells UMFPACK to solve the system Ax = b and place the computed solution in the
vector x. That’s all we need for the purposes of this book’s projects, but you may
be interested to know that you may solve the system AT x = b by setting the first
argument to UMFPACK_At. UMFPACK’s User Guide gives more than a dozen other
options for the first argument.

root
2014/7/8
page 89

�

�

�

�

�

�

�

�

12.5. umfpack-demo2.c 89

Line 19. Here we print the solution x of the problem.

Lines 20 and 21. I have pointed out that UMFPACK stores permutation and factoriza-
tion data in internal structures and sets the Symbolic and Numeric variables
to point to them. It also provides functions umfpack_di_free_symbolic()
and umfpack_di_free_numeric() to free the memory associated with those
structures. Here we invoke those function to release the memory.

Line 22. We free the memory associated with the matrix a and several vectors.

You have all the necessary information for completing, compiling, and running umfpack-
demo1.c. Do it now! Here is what my version prints:

$./umfpack-demo1
The sparse matrix is:

2 3 0 0 0
3 0 4 0 6
0 -1 -3 2 0
0 0 1 0 0
0 4 2 0 1

matrix is 5x5, nz = 12

Ap = 0 2 5 9 10 12
Ai = 0 1 0 2 4 1 2 3 4 2 1 4
Ax = 2 3 3 -1 4 4 -3 1 2 2 6 1

x = 1 2 3 4 5

12.5 umfpack-demo2.c
Our next program, umfpack-demo2.c, is only a minor variation on umfpack-demo1.c; there-
fore you may copy your first program to umfpack-demo2.c and then make the necessary
changes.

Most UMFPACK library functions return status codes to indicate the success or fail-
ure of the computations which they perform. In umfpack-demo1.c I ignored the return
values in order to bring out the simple structure of the program’s logic. But ignoring
the returned status values is hardly advisable. Things can go wrong. Memory allocation
may fail, the matrix may be singular or very ill-conditioned, etc. A well-written program
should be prepared to take proper action when such exceptional conditions occur.

There are dozens of status codes defined in UMFPACK, the most important of which
is UMFPACK_OK, which indicates a successful return from an UMFPACK function. Other
common status codes are UMFPACK_ERROR_out_of_memory, which is returned by
any function when it runs out of memory, and

UMFPACK_WARNING_singular_matrix,
which is returned by umfpack_di_numeric() if the LU factorization succeeds but it
detects that the matrix is singular. There is nothing wrong with a matrix being singular
as far as its LU factorization is concerned, but such a matrix is not suitable for passing to
umfpack_di_solve() since it will amount to dividing by zero.

To account for the return values, we introduce a variable “int status” and then
replace the line 16 in Listing 12.1 with

root
2014/7/8
page 90

�

�

�

�

�

�

�

�

90 Chapter 12. Sparse systems: The UMFPACK library

status = umfpack_di_symbolic(n, n, Ap, Ai, Ax, &Symbolic, NULL, NULL);
if (status �= UMFPACK_OK) {

fprintf(stderr, "file %s, line %d: umfpack_di_symbolic() failed\n",
__FILE__, __LINE__);

return EXIT_FAILURE;
}

Padding every occurrence of an UMFPACK function this way results in a lot of clutter.
A better strategy is to isolate the error reporting to a function of its own. Here is an idea.
Define

static void error_and_exit(int status, const char *file, int line)
{

fprintf(stderr, "*** file %s, line %d: ", file, line);
switch (status) {

case UMFPACK_ERROR_out_of_memory:
fprintf(stderr, "out of memory!\n");
break;

case UMFPACK_WARNING_singular_matrix:
fprintf(stderr, "matrix is singular!\n");
break;

default:
fprintf(stderr, "UMFPACK error code %d\n", status);

}
exit(EXIT_FAILURE);

}

It prints an informative error message to stderr and then calls exit() to terminate
the program. With this function on hand, you may replace line 16 in Listing 12.1 with

status = umfpack_di_symbolic(n, n, Ap, Ai, Ax, &Symbolic, NULL, NULL);
if (status �= UMFPACK_OK)

error_and_exit(status, __FILE__, __LINE__);

This is more compact than the previous suggestion.
Change lines 17 and 18 in the same way, and then compile and test the program. The

output should be identical to that of the previous version.
To check the proper functioning of error_and_exit(), change the matrix A to

a singular one. (You may do that, for instance, by changing the two entries in the first
column to zeros.) Try again. Does your program behave as designed?

12.6 umfpack-demo3.c and the triplet form
Each of the two previous demo programs begins with a fully formed matrix A and then
calls sparse_pack() to produce its CCS representation vectors Ap, Ai, and Ax. If you
think about it, this is totally insane! The sole purpose of sparse storage is to avoid wasting
memory in storing a matrix’s zero entries. But what do we do? In the first place, we
commit the sin of storing the entire matrix, zeros and all, in the array A. Then we add
insult to injury by allocating yet more memory for its CCS vectors. That can’t be right,
can it? No, it’s not. A proper implementation will have no matrix A at all! It will begin
with a list of A’s nonzero entries only and go from there. Let’s see how.

root
2014/7/8
page 91

�

�

�

�

�

�

�

�

12.6. umfpack-demo3.c and the triplet form 91

12.6.1 The triplet form

How do we produce a matrix’s nonzero entries without producing the matrix itself? A
nonzero entry may be identified as a triplet (i , j , x), where the i and j are the entry’s row
and column indices, and x is its value. A sparse matrix is specified completely by a list of
such triplets. There is no need to store the full matrix at all.

Let’s say we wish to store N such triplets. One way is to make a vector of length N
whose entries are structures that hold triplets. Another way, and this is the way it’s done
in UMFPACK, is to make three vectors of length N each, let’s call them Ti, Tj, Tx, and
store the kth triplet as (Ti[k], Tj[k], Tx[k]). Thus, the matrix A of Section 12.4
may be encoded as

int N = 20, k = 0; // N = 20 is an overestimate; N = 12 will do
int *Ti, *Tj;
double *Tx;
make_vector(Ti, N);
make_vector(Tj, N);
make_vector(Tx, N);
Ti[k] = 0; Tj[k] = 0; Tx[k] = 2.0; k++; // the (0,0) entry is 2.0
Ti[k] = 1; Tj[k] = 0; Tx[k] = 3.0; k++; // the (1,0) entry is 3.0
Ti[k] = 0; Tj[k] = 1; Tx[k] = 3.0; k++; // the (0,1) entry is 3.0
...

As you see, we are defining the sparse matrix here without constructing the full matrix. In
UMFPACK, a representation of a matrix through the Ti, Tj, Tx vectors is called the triplet
form of that matrix. Let me point out that the order in which the entries are defined is
immaterial. For instance, the (0,1) entry is 3.0 no matter where it appears in the sequence
of assignments above.

This brings up an issue to ponder: Suppose that we enter

Ti[5] = 3; Tj[5] = 4; Tx[5] = 2.0; // the (3,4) entry is 2.0
Ti[8] = 3; Tj[8] = 4; Tx[8] = 9.0; // the (3,4) entry is 9.0

One line says that the matrix’s (3,4) entry is 2.0. The other line says that it is 9.0. So
which is it? UMFPACK answers the question by adding the entries! Thus, the two lines
shown above are interpreted to mean that the (3,4) entry is 11.0. In general, if an entry
is given multiple times, its values accumulate. This is exactly what is needed in finite
element programs. In Chapter 25, for instance, the matrix A (called the system’s stiffness
matrix) is constructed piecemeal. The information about its entries becomes available a
little at a time and accumulates, just as in the snippet above.

12.6.2 From the triplet form to CCS

The triplet form is a temporary (but very useful) means of storing a sparse matrix. It needs
to be translated to CCS because that’s what UMFPACK’s functions call for. UMFPACK’s
umfpack_di_triplet_to_col() function translates from the triplet form to CCS.
Thus, suppose that the triplet vectors Ti, Tj, Tx vectors (of length N each) represent an
n× n sparse matrix. To obtains A’s CCS representation, we do

make_vector(Ap, n + 1);
make_vector(Ai, N);
make_vector(Ax, N);
status = umfpack_di_triplet_to_col(n, n, N, Ti, Tj, Tx, Ap, Ai, Ax, NULL);
if (status �= UMFPACK_OK)

error_and_exit(status, __FILE__, __LINE__);

root
2014/7/8
page 92

�

�

�

�

�

�

�

�

92 Chapter 12. Sparse systems: The UMFPACK library

The call to umfpack_di_triplet_to_col() reads the triplet vectors Ti, Tj, Tx
and populates the CCS vectors Ap, Ai, Ax with the corresponding data. The triplet vec-
tors are not needed beyond this point, so you may free their memory now.

Remark 12.2. In view of the accumulation effect of the triplet representation, it should
be clear that the number of triplets specified in the Ti, Tj, Tx vectors is not the same as
the number of nonzero entries, nz, of the matrix A, which are fewer in general. Had I
known nz, I would have allocated vectors of lengths nz, rather than N , for Ai and Ax
in the code fragment above. But generally we don’t know nz ahead of the time, so I used
N instead. That’s an overestimate and a bit wasteful but perhaps not worth fretting over
too much.

Remark 12.3. Continuing on the issue brought up in the previous remark, recall that
Ap[n] equals the number of nonzero entries in a CCS representation. Therefore we can
tell a matrix’s true nz value by looking up the number that is stored in Ap[n]. Unfor-
tunately that information arrives too late—we need to allocate the vectors Ai and Ax of
length N before calling umfpack_di_triplet_to_col(). Only then we may look
up the value of nz in Ap[n].

12.6.3 umfpack-demo3.c

Copy umfpack-demo2.c to umfpack-demo3.c. Remove the declaration “double **a;”
and all references to the matrix a. Remove the header file sparse.h because it’s no longer
needed. In main(), replace the definition of the matrix A by its triplet form. Apply
umfpack_di_triplet_to_col() to convert it to CCS. The rest of the file remains
the same. It solves the system Ax = b and prints the solution, as before.

12.7 Project UMFPACK

Part 12.1. Implement, compile, and test the programs umfpack-demo1.c, umfpack-demo2.c,
and umfpack-demo3.c, as discussed in this chapter.

Part 12.2. The matrix A on our programs has an entry of 3.0 in its first column and
second row. Copy umfpack-demo3.c to umfpack-demo4.c and modify umfpack-demo4.c
so that the entry is specified twice: once as 1.0, and once again as 2.0. Entries in the
triplet form accumulate; therefore that change should not affect the result. See if your
program confirms that.

root
2014/7/8
page 93

�

�

�

�

�

�

�

�

Chapter 13

Haar wavelets

Prerequisites: Chapters 7, 8

13.1 A brief background
Among the disconcerting findings in the nascent field of functional analysis in the late 19th
century was the discovery of continuous functions on a closed interval whose (trigono-
metric) Fourier series converged pointwise but not uniformly; see Zygmund [84, The-
orem 1.13, p. 300]. The generalization of the classical trigonometric Fourier series to
the geometric abstraction of the Hilbert space in the first decade of the 20th century
provided great impetus to study that and related pathological behaviors in a new light.
Haar [24, 25], in a dissertation written under Hilbert, constructed a complete orthonor-
mal basis for the Hilbert space L2(0,1) with the property that the (generalized) Fourier
series in that basis of any continuous function converged uniformly to that function.
This showed that the failure of uniform convergence noted above is due to the choice of
trigonometric functions for the basis, rather than a generic property of all Fourier series.

Haar’s basis functions gained a new-found prominence in the 1980s, where it was
noted that they formed a very special case of the more general theory of wavelets that
was being developed then. Thus, they were dubbed Haar wavelets retroactively.

I will not deal with general wavelets in this book. The present exposition is driven by
the ultimate goal of applications to image analysis in Chapter 15. Haar wavelets are suited
particularly well to that purpose; therefore I will limit the discussion to them.

Much of this chapter’s material comes from the introductory articles of Stollnitz,
DeRose, and Salesin [66, 67] that later developed into the book [68]. I have found Niev-
ergelt’s book [51] also quite informative and learned the “in place” wavelet transformation
(see Section 13.6) from it. Strang’s expository articles [69, 70] make for good readings as
well. For algorithmic and programming issues dealing with general wavelets see [53].

13.2 The space L2(0, 1)
I will use the usual notation L2(0,1) for the linear space of square (Lebesgue) integrable
real-valued functions on the interval (0,1). The inner product(·, ·) and the norm ‖ · ‖ in
L2(0,1) are defined by

(f , g) =
∫ 1

0
f (x)g (x)d x, ‖ f ‖2 = (f , f) =

∫ 1

0
| f (x)|2 d x, f , g ∈ L2(0,1).

93

root
2014/7/8
page 94

�

�

�

�

�

�

�

�

94 Chapter 13. Haar wavelets

It can be shown (see, e.g., [48] for a very readable account) that the norm satisfies the
triangle inequality:

‖ f − g‖ ≤ ‖ f − h‖+ ‖h − g‖ for all f , g , h ∈ L2(0,1);

therefore ‖ f − g‖ is a metric, that is, a meaningful measure of “distance” between the
functions f and g .

The inner product generalizes the idea of the dot product inRn . Thus, the functions f
and g are said to be orthogonal in L2(0,1) if (f , g) = 0. An orthogonal set� ⊂ L2(0,1) is a
collection of functions such that every pair of functions in� is orthogonal. Furthermore,
an orthogonal set� is said to be orthonormal if ‖ f ‖= 1 for all f ∈� . Since it is possible
to construct orthonormal sets in L2(0,1) that have arbitrarily many elements, L2(0,1) is
an infinite-dimensional space.

In analogy with the decomposition of vectors in Rn along an orthonormal basis, we
say the orthonormal set� = { fi }∞i=1 ⊂ L2(0,1) is a complete orthonormal basis in L2(0,1)
if any function f ∈ L2(0,1)may be expressed as

f =
∞∑

i=1

(f , fi) fi = (f , f1) f1+(f , f2) f2+ · · · , (13.1)

where the convergence of the infinite sum is understood in the sense of the norm ‖·‖. The
infinite sum here is called the generalized Fourier series of the function f with respect to
the basis� . One of the outcomes of Haar’s 1910 article [24] is the explicit construction
of a basis � of L2(0,1) such that the generalized Fourier series of any continuous func-
tion converges not only in the sense of the norm ‖ · ‖ but also uniformly to that function.
We will study the details of Haar’s construction in the next section.

13.3 Haar’s construction
Pick an integer j ≥ 0, and then partition the interval [0,1] into 2 j subintervals of equal
lengths through the dividing points with coordinates i/2 j , i = 0,1, . . . , 2 j . Let Vj be the
set of piecewise-constant functions on [0,1] whose discontinuities, if any, fall on those
dividing points. Clearly Vj is a linear subspace of L2(0,1). Toward the construction of an
orthonormal basis� j in Vj , define φ : R→R as36

φ(x) =

�
1 if 0≤ x ≤ 1,
0 otherwise,

(13.2)

and for any i = 0,1, . . . , 2 j − 1, set

φ j
i (x) = 2 j/2φ(2 j x − i), 0≤ x ≤ 1, (13.3)

and then let � j = {φ j
i }2 j−1

i=0 . (The j in φ j
i is merely a superscript, not an exponent.) To

understand � j , let us study the set �2 = {φ2
0,φ2

1,φ2
2,φ2

3} first. The graphs of�2’s four
functions are shown in the top row in Figure 13.1. It should be clear that any function
in V2 may be expressed uniquely as a linear combination of these; therefore �2 is a ba-
sis for V2. In particular, the dimension of V2, which is defined as the number of basis

36The values ofφ(x) at x = 0 and x = 1 are irrelevant in wavelet applications and will be ignored. Those were
relevant to Haar, whose aim was to prove the uniform convergence of the generalized Fourier series.

root
2014/7/8
page 95

�

�

�

�

�

�

�

�

13.3. Haar’s construction 95

0 1
4

1
2

3
4

1

φ2
0

0 1
4

1
2

3
4

1

φ2
1

0 1
4

1
2

3
4

1

φ2
2

0 1
4

1
2

3
4

1

φ2
3

0

1
4

1
2

3
4

1

ψ2
0

0 1
4

1
2

3
4

1

ψ2
1

0 1
4

1
2

3
4

1

ψ2
2

0 1
4

1
2

3
4

1ψ2
3

Figure 13.1: The Haar scaling functions {φ2
0,φ2

1,φ2
2,φ2

3} form a basis for V2. The Haar
wavelets {ψ2

0,ψ
2
1,ψ2

2,ψ2
3} form a basis for W2. Taken together, the eight

functions form a basis for V3 = V2 ⊕W2. Since j = 2, the height of the
nonzero part of each of the functions shown above is 2 j/2 = 2. (These are
not drawn to scale.) All function have unit L2 norms.

elements, is 4. We write that as dimV2 = 4. Moreover, it should also be clear that the
functions in�2 are orthogonal, that is, (φ2

i1
,φ2

i2
) =

∫ 1
0 φ

2
i1
(x)φ2

i2
(x)d x = 0 if i1 �= i2. This

is because the regions where φ2
i1

and φ2
i2

are nonzero don’t overlap.37 The coefficient 2 j/2

in (13.3) is chosen on purpose so that∫ 1

0

���φ j
i (x)

���2 d x =
�
2 j/22× 2− j = 1 for all j .

Thus,�2 is an orthonormal basis in V2.
The observations of the previous paragraph regarding V2 generalize in a straightfor-

ward way to Vj for any j ≥ 0. Thus,� j is an orthonormal basis in Vj , and dimVj = 2 j .
The spaces Vj form a nested hierarchy of increasingly richer subspaces of L2(0,1):

V0 ⊂V1 ⊂V2 ⊂ · · · ⊂ L2(0,1).

For each j , let Wj be the orthogonal complement of Vj in Vj+1. In other words, Wj is the
set of all functions in Vj+1 which are orthogonal to all functions in Vj . That’s written as
Vj+1 = Vj ⊕Wj . Since dimVj+1 = 2 j+1 = 2× 2 j and dimVj = 2 j , then dimWj = 2 j .
We conclude that any function in the 2 j+1-dimensional space Vj+1 may be decomposed
uniquely into the sum of two functions in the 2 j -dimensional orthogonal subspaces Vj

and Wj .
Toward constructing an orthonormal basis for Wj , let’s define ψ : R→R as38

ψ(x) =

⎧⎪⎨⎪⎩
+1 if 0< x < 1

2 ,
−1 if 1

2 < x < 1,
0 otherwise

37Technical note: The closure of the set where a function is nonzero is called that function’s support. We
are saying that the supports of φ2

i1
and φ2

i2
don’t overlap. This is not literally true because two such supports

may have a point in common. But integration over a point produces zero; therefore the statement regarding the
orthogonality of φ2

i1
and φ2

i2
still holds.

38As in the case ofφ, the values ofψ at its points of discontinuity are irrelevant in wavelet applications. Haar
gave them specific values because his aim was to study uniform convergence.

root
2014/7/8
page 96

�

�

�

�

�

�

�

�

96 Chapter 13. Haar wavelets

and, for any i = 0,1, . . . , 2 j − 1, set

ψ j
i (x) = 2 j/2ψ(2 j x − i), 0≤ x ≤ 1. (13.4)

Let �′
j = {ψ j

i }2 j−1
i=0 . The graphs of the four functions �′

2 = {ψ2
0,ψ2

1,ψ2
2,ψ2

3} are shown
in the bottom row in Figure 13.1. It is clear that they form an orthogonal set, that is,
(ψ2

i1
,ψ2

i2
) =

∫ 1
0 ψ

2
i1
(x)ψ2

i2
(x)d x = 0 if i1 �= i2. It is also clear that any of the functions in

the bottom row is orthogonal to any of the function in the top row, that is, (ψ2
i1

,φ2
i2
) =∫ 1

0 ψ
2
i1
(x)ψ2

i2
(x)d x = 0 for all i1 and i2. Moreover, the coefficient 2 j in (13.4) is chosen on

purpose so that ‖ψ j
i ‖ = 1 for all i and j . Thus, �′

2 is an orthonormal set, and span{�′
2}

is orthogonal to V2. Additionally, let us observe that every element of �′
2 is in V3. (Do

you see that?)
The observations of the previous paragraph regarding the case j = 2 generalize in a

straightforward way to any j ≥ 0. Thus,

a. �′
j is an orthonormal set;

b. span{�′
j } is orthogonal to Vj ; and

c. span{�′
j } ⊂Vj+1.

Recalling that Wj is the orthogonal complement of Vj in Vj+1, it follows that span{�′
j } ⊂

Wj . But since span{�′
j } has 2 j elements, and since dimWj = 2 j , we conclude that

span{�′
j }=Wj , that is,�′

j is an orthonormal basis of Wj .

In the context of the modern theory of wavelets, the basis functionsφ j
i of Vj are called

the Haar scaling functions, and the basis functions ψ j
i of Wj are called the Haar wavelets

on account of their wiggly graphs; see the graphs in the bottom row in Figure 13.1.
For future reference, let us note that the functions 2− j/2φ j

i and 2− j/2ψ j
i both are of

amplitude 1; therefore,

2−(j−1)/2φ j−1
i = 2− j/2φ j

2i + 2− j/2φ j
2i+1,

2−(j−1)/2ψ j−1
i = 2− j/2φ j

2i − 2− j/2φ j
2i+1.

Solving for φ j−1
i and ψ j−1

i we get

φ j−1
i =

1�
2

�
φ j

2i +φ
j
2i+1

, i = 0,1, . . . , 2 j−1 − 1, (13.5a)

ψ j−1
i =

1�
2

�
φ j

2i −φ j
2i+1

, i = 0,1, . . . , 2 j−1 − 1. (13.5b)

These express the basis functions of Vj−1 and Wj−1 as linear combination of the basis
functions of Vj . In effect, these are the concrete realizations of the decomposition Vj =
Vj−1 ⊕Wj−1. Figure 13.2 is an attempt to express this in a schematic diagram. Try to
make a sense of it.

root
2014/7/8
page 97

�

�

�

�

�

�

�

�

13.4. The decomposition Vj =Vj−1⊕Wj−1 97

V1 = span{φ1
0,φ1

1}

W
1
=

sp
an
{ψ

1 0,ψ
1 1}

sp
an
{φ

2
0
,φ

2
1
}span{φ 2

2 ,φ 2
3 }

V1 = span{φ1
0,φ1

1}
W1 = span{ψ1

0,ψ1
1}

V2 = span{φ2
0,φ2

1,φ2
2,φ2

3}
=V1⊕W1

Figure 13.2: This schematic diagram is an attempt to illustrate the decomposition V2 =
V1 ⊕W1. The circle represents the four-dimensional space V2. The hori-
zontal and vertical lines represent the two-dimensional mutually orthog-
onal subspaces V1 = span{φ1

0,φ1
1} and W1 = span{ψ1

0,ψ
1
1}. The dashed

lines represent V2’s natural basis {φ2
0,φ2

1,φ2
2,φ2

3}. Their rotated positions
emphasize that they are not aligned with the spaces V1 and W1. Equa-
tions (13.5a) and (13.5b) give the rotation equations that relate the solid
and dashed spaces.

13.4 The decomposition Vj =Vj−1⊕Wj−1

Let us introduce the notation

α j
i = (f ,φ j

i), β j
i = (f ,ψ j

i), where f ∈ L2(0,1). (13.6)

In view of (13.5a) and (13.5b), we have

α j−1
i = (f ,φ j−1

i) =
�

f ,
1�
2

�
φ j

2i +φ
j
2i+1

�
=

1�
2

�
α j

2i +α
j
2i+1

,

β j−1
i = (f ,ψ j−1

i) =
�

f ,
1�
2

�
φ j

2i −φ j
2i+1

�
=

1�
2

�
α j

2i −α j
2i+1

.

This is a very significant result—it expresses the components of f along the bases � j−1

and �′
j−1 in terms of those along the basis � j , and thus it offers yet another way of

viewing the decomposition Vj =Vj−1⊕Wj−1. Let us state it formally as a theorem.

Theorem 13.1. For any function f ∈Vj , the components α j
i andβ j

i defined in (13.6) satisfy
the recursive relations

α j−1
i =

1�
2

�
α j

2i +α
j
2i+1

, i = 0,1, . . . , 2 j−1− 1, (13.7a)

β j−1
i =

1�
2

�
α j

2i −α j
2i+1

, i = 0,1, . . . , 2 j−1− 1. (13.7b)

root
2014/7/8
page 98

�

�

�

�

�

�

�

�

98 Chapter 13. Haar wavelets

Equations (13.7a) and (13.7b) may be written in matrix form as�
α j−1

i

β j−1
i

�
=

�
1�
2

1�
2

1�
2
− 1�

2

��
α j

2i

α j
2i+1

�
. (13.8)

The 2× 2 coefficient matrix is an orthogonal matrix;39 therefore the equations may be
inverted easily: �

α j
2i

α j
2i+1

�
=

�
1�
2

1�
2

1�
2
− 1�

2

��
α j−1

i

β j−1
i

�
. (13.9)

This is also a very significant result—it expresses the components of f ∈ Vj in the basis
� j in terms of its components in the bases� j−1 and�′

j−1 of Vj−1 and Wj−1. Let us state
it formally as a theorem.

Theorem 13.2. For any function f ∈Vj , the components α j
i andβ j

i defined in (13.6) satisfy
the recursive relations

α j
2i =

1�
2

�
α j−1

i +β j−1
i

, i = 0,1, . . . , 2 j−1 − 1, (13.10a)

α j
2i+1 =

1�
2

�
α j−1

i −β j−1
i

, i = 0,1, . . . , 2 j−1 − 1. (13.10b)

13.5 From functions to vectors
In view of the notation α j

i = (f ,φ j
i) introduced in (13.6) and the general orthogonal

expansion (13.1), any function f ∈Vj may be written as

f =
2 j−1∑
i=0

α j
iφ

j
i . (13.11)

This associates with any function f ∈ Vj a unique vector x = [α j
0,α j

1, . . . ,α j
n−1] ∈ Rn ,

where n = 2 j = dimVj , and conversely, to any vector in Rn there corresponds a unique
function in Vj . The association preserves the algebraic structure of spaces; that is, if f and
g in Vj are associated with vectors x and y in Rn , then the function a f +b g corresponds
to the vector ax+ by for any a, b ∈R. Additionally, if we equip Rn with the Euclidean
norm ‖x‖ = �∑n−1

i=0 |α j
i |2
1/2, then the association also preserves the metric structure of

the spaces because then (f , g) = x · y, and ‖ f ‖ = ‖x‖. Collectively, these properties
are expressed by saying that the association between f ∈Vj andx ∈Rn is an isomorphism.
In that sense, the spaces Vj and Rn (with n = 2 j) are indistinguishable as far as their
algebraic and metric properties are concerned. In effect, any assertion regarding Vj maps
to a corresponding assertion in Rn , and vice versa.

At this point we part ways from Haar’s original work. His focus was on the behavior
of the function spaces Vj in the limit as j →∞. In the context of wavelets the focus is
on the properties of Vj for a fixed j . Moreover, in view of the isomorphism between Vj

39A square matrix A is orthogonal if its product with its transpose is the identity matrix, that is, AT A= I . It
follows that an orthogonal matrix is invertible, and the inverse equals the transpose: A−1 =AT .

root
2014/7/8
page 99

�

�

�

�

�

�

�

�

13.5. From functions to vectors 99

and Rn , our study will shift gradually from the function spaces Vj to the corresponding
vector spaces Rn . That shift is very evident in the following discussion.

Let us illustrate Theorems 13.1 and 13.2 in the case j = 3. Since V3 = V2 ⊕W2,
then an f ∈ V3 may be expressed in two ways: (a) as a linear combination of the basis
functions�3, or (b) as the sum of a linear combinations of the bases �2 and�′

2:

f = α3
0φ

3
0+α

3
1φ

3
1+α

3
2φ

3
2+α

3
3φ

3
3+α

3
4φ

3
4+α

3
5φ

3
5+α

3
6φ

3
6+α

3
7φ

3
7,

f =
�
α2

0φ
2
0+α

2
1φ

2
1+α

2
2φ

2
2+α

2
3φ

2
3

+
�
β2

0ψ
2
0+β

2
1ψ

2
1+β

2
2ψ

2
2+β

2
3ψ

2
3

.

The first representation is associated with the vector�
α3

0 α3
1 α3

2 α3
3 α3

4 α3
5 α3

6 α3
7

�
(13.12)

in R8. The second representation is associated with the pair of vectors [α2
0,α2

1,α2
2,α2

3] and
[β2

0,β2
1,β2

2,β2
3] in R4. Let us merge the latter two vectors into a single vector in R8 by

alternating their components, as in�
α2

0 β2
0 α2

1 β2
1 α2

2 β2
2 α2

3 β2
3

�
. (13.13)

Theorems 13.1 and 13.2 establish the transformation rule between the vectors (13.12)
and (13.13). Specifically, according to Theorems 13.1,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α2
0

β2
0

α2
1

β2
1

α2
2

β2
2

α2
3

β2
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1�
2

1�
2

1�
2
− 1�

2
1�
2

1�
2

1�
2
− 1�

2
1�
2

1�
2

1�
2
− 1�

2
1�
2

1�
2

1�
2
− 1�

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α3
0

α3
1

α3
2

α3
3

α3
4

α3
5

α3
6

α3
7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Only the nonzero entries of the coefficient matrix are shown. The matrix’s block-diagonal
structure indicates that the transformation is local in the sense that the first pair of com-
ponents in (13.13) is determined by the first pair in (13.12). Similarly, the second pair
of components in (13.13) is determined by the second pair in (13.12), and so on. Thus,
transforming the vector (13.12) to (13.13) may be performed by a “moving window” of
width 2 as follows:

α3
0 α3

1 α3
2 α3

3 α3
4 α3

5 α3
6 α3

7

α2
0 β2

0 α2
1 β2

1 α2
2 β2

2 α2
3 β2

3

the vector (13.12)→

the vector (13.13)→
moving window

Here, within each window the entries in the top corners determine the entries in the bot-
tom corners (Theorem 13.1), and conversely, the entries in the bottom corners determine
the entries in the top corners (Theorem 13.2).

root
2014/7/8
page 100

�

�

�

�

�

�

�

�

100 Chapter 13. Haar wavelets

0 1
4

1
2

3
4

1

φ0
0

0 1
4

1
2

3
4 1ψ0

0

0

1
4

1
2

3
4 1ψ1

0

0 1
4

1
2

3
4

1ψ1
1

0

1
4

1
2

3
4

1

ψ2
0

0 1
4

1
2

3
4

1

ψ2
1

0 1
4

1
2

3
4

1

ψ2
2

0 1
4

1
2

3
4

1ψ2
3

Figure 13.3: The wavelet basis �3 = {φ0
0,ψ

0
0,ψ1

0,ψ1
0,ψ2

0,ψ2
1,ψ2

2,ψ
2
3} of the eight-

dimensional space V3 shown to scale. The amplitudes of the first two are
2 j/2 = 20/2 = 1. The amplitudes of the next two are 2 j/2 = 21/2 =

�
2. The

amplitudes of the last four are 2 j/2 = 22/2 = 2. All function have unit L2

norms.

13.6 The Haar wavelet transform
We have seen that Vj = Vj−1 ⊕Wj−1. By the same token, Vj−1 = Vj−2 ⊕Wj−2. Substi-
tuting the Vj−1 from the second equation into the first, we get Vj =Vj−2⊕Wj−2⊕Wj−1.
By applying this idea repeatedly, we reduce V ’s index on the right-hand side to zero and
arrive at

Vj =V0⊕W0⊕W1⊕ · · · ⊕Wj−1. (13.14)

This expression is called the wavelet decomposition of the space Vj . The union of the bases
of the individual parts,� j =�0∪�′

0∪�′
1∪· · ·∪�′

j−1, is an orthonormal basis in Vj and
is called the Haar wavelet basis of the space Vj . When a function f ∈Vj is expressed as a
linear combination of the Haar wavelet basis, the coefficients of that linear combination
are called the function’s Haar wavelet coefficients. For instance, if f ∈ V3 = V0 ⊕W0 ⊕
W1⊕W2, then

f = α0
0 φ

0
0︸ ︷︷ ︸

∈V0

+β0
0 ψ

0
0︸ ︷︷ ︸

∈W0

+β1
0 ψ

1
0+β

1
1 ψ

1
1︸ ︷︷ ︸

∈W1

+β2
0 ψ

2
0+β

2
1 ψ

2
1+β

2
2 ψ

2
2+β

2
3 ψ

2
3︸ ︷︷ ︸

∈W2

and the wavelet coefficients are [α0
0,β0

0,β1
0,β1

1,β2
0,β2

1,β2
2,β2

3]. Figure 13.3 shows the
graphs of the Haar wavelet basis functions in �3. The purpose of the rest of this section is
to obtain a simple algorithm for computing the Haar wavelet coefficients of functions f ∈Vj
for any j .

Remark 13.1. The space V0 consists of constant functions on the interval [0,1]. Each
wavelet in Wi is a function of zero average. Therefore in the decomposition (13.14) the
component in V0 picks up f ’s average over the interval [0,1]. The wavelet components
add progressively finer details to that average and ultimately reconstruct f .

13.6.1 Computing the wavelet coefficients

Theorem 13.1 tells us how to decompose Vj into Vj−1 ⊕Wj−1. The full wavelet decom-
position in (13.14) is a matter of repeated application of that theorem. I will explain the

root
2014/7/8
page 101

�

�

�

�

�

�

�

�

13.6. The Haar wavelet transform 101

α4
0 α4

1 α4
2 α4

3 α4
4 α4

5 α4
6 α4

7 α4
8 α4

9 α4
10 α4

11 α4
12 α4

13 α4
14 α4

15

α3
0 β3

0 α3
1 β3

1 α3
2 β3

2 α3
3 β3

3 α3
4 β3

4 α3
5 β3

5 α3
6 β3

6 α3
7 β3

7

α2
0 β2

0 α2
1 β2

1 α2
2 β2

2 α2
3 β2

3

α1
0 β1

0 α1
1 β1

1

α0
0 β0

0

1.

2.

3.

4.

5.

Figure 13.4: Rows 1 through 5 show the various stages of an in place Haar transform of
an f ∈V4. Row 1 is the vector of the 16 coefficients of the expansion of f
in the basis�4. To reduce clutter, only the vector’s changed elements are
shown in each row. Blanks indicate values that are to be carried over from
a previous row.

procedure in the case of j = 4, that is,

V4 =V0⊕W0⊕W1⊕W2⊕W3.

The generalization to arbitrary j should should be evident.
Figure 13.4 illustrates the algorithm. It begins with a function f =

∑15
i=0 α

4
iφ

4
i ∈V 4.

The associated vector in R16, that is,�
α4

0 α4
1 α4

2 α4
3 α4

4 α4
5 α4

6 α4
7 α4

8 α4
9 α4

10 α4
11 α4

12 α4
13 α4

14 α4
15

�
,

(13.15)

is entered in row 1 in Figure 13.4. The algorithm that I will describe changes that vector
into its Haar wavelet transform in place; that is, the vector is overwritten by the trans-
form. No extra storage is required. Rows 1 through 5 show the successive stages of the
conversion of that vector. To eliminate clutter, each row shows only the parts of the vec-
tor that are changed relative to the previous row. The unchanged parts are left blank. For
instance, there are only two changed entries in row 5. The remaining 14 entries (which
are not shown) are as they were in the previous rows.

The procedure begins with the “moving window” idea, described in the previous sec-
tion, applied to the vector of row 1 to produce the vector of row 2. This amounts to the
decomposition V4 = V3 ⊕W3. The α3

i and β3
i in row 2 are the components of f in V3

and W3. The α3
i entries await further work since V3 is to be decomposed into V2 ⊕W2.

The β3
i entries are finalized at this stage. In the subsequent rows their positions are left

blank to indicate that their previous values carry over.
The moving window that takes us from row 2 to row 3 moves in steps of 4 because

it is interested in the α3
i coefficients only—it skips over the β3

i ’s. Similarly, the moving
window that takes us from row 3 to row 4 moves in steps of 8. Finally the moving window
that takes us from row 4 to row 5 moves in steps of 16, so it doesn’t move at all. It finalizes
the coefficients α0

0 andβ0
0 and ends the process. The overall outcome of the process is the

vector�
α0

0 β3
0 β2

0 β3
1 β1

0 β3
2 β2

1 β3
3 β0

0 β3
4 β2

2 β3
5 β1

1 β3
6 β2

3 β3
7

�
.

(13.16)

root
2014/7/8
page 102

�

�

�

�

�

�

�

�

102 Chapter 13. Haar wavelets

The transformation of the vector (13.15) into (13.16) is called the Haar wavelet trans-
form on V4. The transformation may be reversed since every step of the procedure is
reversible. Going from (13.16) to (13.15) is called the inverse Haar wavelet transform.

13.6.2 An extra twist

Throughout this section I have worked with functions f ∈Vj expressed in the basis � j
of Vj , as in (13.11). In practice, however, a function f ∈ Vj is not given in terms of the
� j basis. It is more likely given as a list of values that it takes on the 2 j subintervals of
the interval [0,1], as in

f (x) = ci 2− j i < x < 2− j (i + 1), i = 0,1, . . . , 2 j − 1.

So to get started with the transformation algorithms described earlier, the first step would
be to calculate the coefficients α j

i from the values ci . This is quite easy, actually. Since the
amplitude of each φ j

i is 2 j/2, then c j and α j
i are related through c j = 2 j/2α j

i , or equiva-
lently,

α j
i =

1�
dimVj

c j , (13.17)

because dimVj = 2 j . In words, the coefficients α j
0,α j

1, . . . of the expansion of f in the� j

basis of Vj are obtained simply by dividing the list of the f ’s values by
�

dimVj .

13.7 Functions of two variables
The study of the previous sections led to the construction of the wavelet basis� j of piece-
wise constant functions defined on the interval [0,1] partitioned into 2 j equal subinter-
vals. Figure 13.3 shows the 23 = 8 members of�3.

The two-dimensional generalization partitions the square [0,1]2 through a uniform
2 j1×2 j2 rectangular grid, where j1 and j2 are nonnegative integers, and considers functions
f : (x, y) ∈ [0,1]2 →R which are constant on each cell of the grid.

A basis for the resulting function space is given by the functions

� j1, j2
=
�

h(x, y) = f (x)g (y) : f ∈� j1
, g ∈� j2

.

Figure 13.5 shows the 16 elements of the basis�2,2 from two different perspectives.
The theory of wavelets in two dimensions—indeed, in n dimensions—proceeds along

lines similar to what we have seen in one dimension. I will not go through the details
here but will refer you to the very readable accounts in [68] and [51]. After all is said
and done, it turns out that computing the Haar wavelet transform of functions in two
dimensions reduces to the following. Represent the function f (x, y) as a 2 j1 × 2 j2 matrix
A which holds the (constant) values of f on the cells of the grid described above. Then
do the following:

• Apply the one-dimensional Haar wavelet transform to every row of the matrix A.
Let T be the resulting matrix.

• Apply the one-dimensional Haar wavelet transform to every column of the ma-
trix T . The result is the Haar transform of A.

root
2014/7/8
page 103

�

�

�

�

�

�

�

�

13.7. Functions of two variables 103

φ0
0(x)φ

0
0(y) ψ0

0(x)φ
0
0(y) ψ1

0(x)φ
0
0(y) ψ1

1(x)φ
0
0(y)

φ0
0(x)ψ

0
0(y) ψ0

0(x)ψ
0
0(y) ψ1

0(x)ψ
0
0(y) ψ1

1(x)ψ
0
0(y)

φ0
0(x)ψ

1
0(y) ψ0

0(x)ψ
1
0(y) ψ1

0(x)ψ
1
0(y) ψ1

1(x)ψ
1
0(y)

φ0
0(x)ψ

1
1(y) ψ0

0(x)ψ
1
1(y) ψ1

0(x)ψ
1
1(y) ψ1

1(x)ψ
1
1(y)

up down flat

Figure 13.5: Two different views of the 16 basis functions of �2,2. At the top is a per-
spective view of their graphs. The relative heights of the blocks are drawn
to scale. At the bottom is the “bird’s eye view” of those graphs.

root
2014/7/8
page 104

�

�

�

�

�

�

�

�

104 Chapter 13. Haar wavelets

Listing 13.1: The header file wavelet.h.

1 #ifndef H_WAVELET_H
2 #define H_WAVELET_H
3 #define WT_FWD 0
4 #define WT_REV 1
5 void haar_transform_vector(double *v, int n, int dir);
6 void haar_transform_matrix(double **a, int m, int n, int dir);
7 #endif /∗ H_WAVELET_H */

The order of application of the two steps is immaterial. That is, you may transform all
the columns first and then transform all the rows. Either way you will arrive at the same
answer. For the inverse transform, just reverse the process.

13.8 An overview of the wavelet module
Our wavelet module provides functions for applying the Haar wavelet transform, and its
inverse, to vectors and matrices. The files wavelet.c and wavelet.h provide the module’s
implementation and the interface. The module itself is self-contained in the sense that
it has no need for anything else that we have developed in this book. The testing of the
module, however, calls for allocating and freeing vectors and matrices. We do those with
the help of the xmalloc() function developed in Chapter 7 and the header file array.h
developed in Chapter 8. Therefore, following the suggestions of Chapters 2 and 6, your
project’s directory will look like this:

$ cd wavelets
$ ls -F
Makefile wavelet-test.c wavelet.h xmalloc.h@
array.h@ wavelet.c xmalloc.c@

The file wavelet-test.c provides a test/demonstration of our wavelet routines. You will
see what it is about, and the output of a test run, in this chapter’s Projects section. I will
describe the contents of the files wavelet.h and wavelet.c next.

13.9 The file wavelet.h
Listing 13.1 shows the header file wavelet.h in its entirety. It declares two functions:

• haar_transform_vector() receives a pointer to a vector v of length n and
applies the forward or reverse Haar transform to it, depending on the setting of the
third argument, dir (short for direction), which can be one of WT_FWD or WT_REV.

• haar_transform_matrix() receives a pointer to an m×n matrix and applies
the forward or reverse Haar transform to it, depending on the setting of the third
argument, which can be one of WT_FWD or WT_REV.

Any other value passed for the third argument is an error; these functions will print an
error message to the stderr and call exit() to terminate the program in that case.
Furthermore, the following hold:

• It is assumed that m and n are powers of 2; we don’t check for that!
• The functions do their work in situ; that is, they overwrite the given vector or ma-

trix with the requested transform. If you are going to need the original object after-
ward, save a copy before calling these functions.

root
2014/7/8
page 105

�

�

�

�

�

�

�

�

13.10. The file wavelet.c 105

Listing 13.2: An outline of the file wavelet.c.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <math.h>
4 #include "wavelet.h"
5 #define SQRT1_2 sqrt(1.0/2)
6 � static void haar_transform_vector_forward(double *v, int n) ...
7 � static void haar_transform_vector_reverse(double *v, int n) ...
8 � static void haar_transform_matrix_forward(double **a, int m, int n) ...
9 � static void haar_transform_matrix_reverse(double **a, int m, int n) ...

10 � void haar_transform_vector(double *v, int n, int dir) ...
11 � void haar_transform_matrix(double **a, int m, int n, int dir) ...

Remark 13.2. The values 0 and 1 of the preprocessor symbol WT_FWD or WT_REV
defined in wavelet.h are not significant; any two distinct integers will do.

13.10 The file wavelet.c
Listing 13.2 shows an outline of the file wavelet.c. The math.h header file is included to
provide a declaration of the C library function sqrt(), which is used in several places
in the code. The special case of 1/

�
2 is handled separately by assigning it to a macro

named SQRT1_2. An optimizing compiler will recognize that SQRT1_2 evaluates to a
constant and therefore will replace all occurrences of SQRT1_2 in the program with the
corresponding numerical value at the time when the program is compiled. Gcc works that
way. If your compiler doesn’t, then it may evaluate 1/

�
2 thousands of times during the

program’s execution and thus degrade its performance. If you face that problem, change
the definition of SQRT1_2 to

#define SQRT1_2 0.70710678118654752440 /* sqrt(1.0/2) */

The implementation’s front end is provided by the two functions defined on lines 10
and 11, which we met in the previous section. These enlist the help of the four functions
defined on lines 6 through 9, which do the real work, that is, apply the forward or reverse
Haar wavelet transform to vectors and matrices. Their names clearly indicate which does
what. All four functions are specified static, and thus they are not accessible from
outside wavelet.c.

13.10.1 The function haar_transform_vector()

The implementation of haar_transform_vector() that appears on line 10 of List-
ing 13.2 is quite straightforward; it is shown in its entirety in Listing 13.3. You will write
the equally simple haar_transform_matrix(), which appears on line 11.

13.10.2 The function haar_transform_vector_forward()

The function haar_transform_vector_forward() that appears on line 6 of List-
ing 13.2 receives a pointer v to a vector of length n and applies the algorithm of
Section 13.6 to convert that vector to the corresponding Haar wavelet transform. The
function is destructive in the sense that it overwrites the original vector, but it has the

root
2014/7/8
page 106

�

�

�

�

�

�

�

�

106 Chapter 13. Haar wavelets

Listing 13.3: The function haar_transform_vector() calls one of two auxiliary functions
to do the real transformation work. It expects to be called with the third argument set
to one ofWT_FWD orWT_REV; otherwise it prints an error message and callsexit().

1 void haar_transform_vector(double *v, int n, int dir)
2 {
3 if (dir == WT_FWD)
4 haar_transform_vector_forward(v, n);
5 else if (dir == WT_REV)
6 haar_transform_vector_reverse(v, n);
7 else { // shouldn’t be here!
8 fprintf(stderr, "*** error in haar_transform_vector(): "
9 "the third argument should be one of "

10 "WT_FWD or WT_REV\n");
11 exit(EXIT_FAILURE);
12 }
13 }

Listing 13.4: The function haar_transform_vector_forward().

1 static void haar_transform_vector_forward(double *v, int n)
2 {
3 double h = sqrt(n);
4 int i, d;
5 for (i = 0; i < n; i++)
6 v[i] /= h;
7 for (d = 1; d < n; d *= 2)
8 for (i = 0; i < n; i += 2*d) {
9 double x = SQRT1_2 * (v[i] + v[i+d]);

10 double y = SQRT1_2 * (v[i] - v[i+d]);
11 v[i] = x;
12 v[i+d] = y;
13 }
14 }

advantage of not requiring extra storage to do its work. The length of the vector, n, is
assumed to be a power of 2; the function does not check for that!

Before getting into the details of the function’s implementation, let us recall the discus-
sion in Section 13.5 regarding the isomorphism between (piecewise constant) functions
in Vj and vectors in Rn , where n = 2 j .

A function in f ∈ Vj is identified by the values it take on the 2 j subintervals of the
interval of [0,1]. Those values form a vector v = [c0, c1, . . . , c2 j−1], which is what the
function haar_transform_vector_forward() receives. The first order of things
is to apply the formula (13.17) (page 102) to calculate the components α j

i of f in Vj . The

rest of the algorithm deals with the α j
i coefficients.

The complete implementation of the function is shown in Listing 13.4. Note the
application of the formula (13.17) at the very outset on line 6.

The transformation algorithm begins on line 7. The index d begins with 1 and doubles
its value on each iteration. For instance, when n = 16, as in the example of Figure 13.4
on page 101, then d takes on the values 1, 2, 4, 8. These correspond, respectively, to

root
2014/7/8
page 107

�

�

�

�

�

�

�

�

13.10. The file wavelet.c 107

transforming lines 1 to 2, 2 to 3, 3 to 4, and 4 to 5 in that figure. The inner loop on line 8
moves the “moving windows” within each row in steps of 2d . The width of the window
is d + 1.

To understand lines 9 and 10, let us focus on the specific case of d = 4 and i = 0.
This corresponds to the first of the two moving windows that straddle lines 3 and 4 of
Figure 13.4. (The other window on that row corresponds to the next value of i which
is 2d , that is, 8.) It’s the job of that window to read the values of α2

0 and α2
1 (at its upper

corners) and compute the values of α1
0 andβ1

0 (at its lower corners) through the formulas
(13.7a) and (13.7b) in Theorem 13.1. Note that α2

0 is located at the 0th place (which is the
ith place) in vector v, and α2

1 is located at the 4th place (which is the (i + d)th place) in
vector v. This, together with Theorem 13.1, should explain the calculations on lines 9
and 10. Subsequently, on lines 11 and 12, the calculated values are inserted in the ith and
(i + d)th places in the vector v, completing that step of the moving window’s operation.

Something to think about: Why are the calculations on lines 9 and 10 separated from the
insertions on lines 11 and 12? What if we do away with the intermediate x and y and
collapse those four lines into two:

v[i] = SQRT1_2 * (v[i] + v[i+d]);
v[i+d] = SQRT1_2 * (v[i] - v[i+d]);

Is there anything wrong with that?

13.10.3 The function haar_transform_vector_reverse()

The function haar_transform_vector_reverse() that appears on line 7 of List-
ing 13.2 implements the inverse Haar wavelet transform—it receives a pointerv to a vector
of length n and applies the algorithm of Section 13.6 in reversed steps. The function is
destructive in the sense that it overwrites the original vector, but it has the advantage of
not requiring extra storage to do its work. The length of the vector, n, is assumed to be a
power of 2. The function does not check for it!

The successive applications of haar_transform_vector_forward() followed
by haar_transform_vector_reverse() to a vector should leave that vector un-
changed (other than inaccuracies due to floating point arithmetic).

I will leave it to you to implement haar_transform_vector_reverse(). It’s
a matter of reversing the order of computations of Listing 13.4. Let me point out that
lines 9 and 10, which reflect Theorem 13.1, should be replaced, in principle, by those
from Theorem 13.2. However, upon a closer scrutiny we see that the transformation
matrices in (13.8) and (13.9) are identical! As a result, lines 9 through 12 of Listing 13.4
carry over without change to the new function.

13.10.4 The function haar_transform_matrix_forward()

Following the ideas introduced in Section 13.7, consider a partitioning of the square
[0,1]× [0,1] into an m×n grid of identical rectangular cells, where n = 2 j1 and m = 2 j2

for some nonnegative integers j1 and j2. A piecewise constant function on that gird is iden-
tified by the m×n matrix of the values that it takes on the grid’s cells. In Section 13.7 we
learned that the Haar wavelet transform of such a function is obtained by applying the
one-dimensional Haar wavelet transform to every row and then to every column of the
matrix.

The function haar_transform_matrix_forward() that appears on line 8 of
Listing 13.2 receives a pointer a to such an m×n matrix and overwrites the matrix with

root
2014/7/8
page 108

�

�

�

�

�

�

�

�

108 Chapter 13. Haar wavelets

the corresponding Haar wavelet transform. It expects m and n to be powers of 2; it does
not check for that!

At first glance, the implementation of haar_transform_matrix_forward()
appears to be trivial; it’s a matter of passing the matrix’s rows and columns to the one-
dimensional haar_transform_vector(), as in

for (i = 0; i < m; i++) // transform rows
haar_transform_vector(a[i], n, WT_FWD);

for (j = 0; j < n; j++) // transform columns
haar_transform_vector(... column j (how?) ...);

We see that transforming the rows is trivial indeed since a[i] points to the vector that
makes up the matrix’s row i . Transforming the columns is not so straightforward because
the matrix’s columns cannot be accessed as vectors.

There are at least two ways around this difficulty. One way is to set aside an auxiliary
vector of length m, copy the values of the matrix’s column j into the vector, pass the
vector tohaar_transform_vector(), and then copy the values from the vector back
into the matrix:

for (i = 0; i < m; i++) // transform rows
haar_transform_vector(a[i], n, WT_FWD);

for (j = 0; j < n; j++) { // transform columns
for (i = 0; i < m; i++) // step 1: copy column to tmp

tmp[i] = a[i][j];
haar_transform_vector(tmp, m, WT_FWD); // step 2: transform tmp
for (i = 0; i < m; i++) // step 3: copy tmp to column

a[i][j] = tmp[i];
}

Another way of transforming columns is to forgo haar_transform_vector()
altogether. Instead, duplicate the code from haar_transform_vector() and cus-
tomize it for the specific purpose of transforming matrix columns:

for (i = 0; i < m; i++) // transform rows
haar_transform_vector(a[i], n, WT_FWD);

h = sqrt(m); // transform columns
for (j = 0; j < n; j++) {

// customized version of haar_transform_vector()
for (i = 0; i < m; i++)

a[i][j] /= h;
for (d = 1; d < m; d*=2)

for (i = 0; i < m; i += 2*d) {
double x = SQRT1_2 * (a[i][j] + a[i+d][j]);
double y = SQRT1_2 * (a[i][j] - a[i+d][j]);
a[i][j] = x;
a[i+d][j] = y;

}
}

I don’t have a strong preference of one method over the other. The first method has
a cleaner code, as it relies entirely on haar_transform_vector() to do its work.
However, it requires allocating and freeing an auxiliary vector. Furthermore, the back-
and-forth copying of the matrix’s columns into the auxiliary vector is ugly and wasteful.
The second method avoids those disadvantages; however, the wisdom of the code dupli-
cation is questionable and certainly ugly. I leave it to you to decide between the two

root
2014/7/8
page 109

�

�

�

�

�

�

�

�

13.11. Project Wavelets 109

methods. Pick one, and write a haar_transform_matrix_forward() for your
wavelet.c.

13.10.5 The function haar_transform_matrix_reverse()

The function haar_transform_matrix_reverse() that appears on line 9 of List-
ing 13.2 implements the two-dimensional inverse Haar wavelet transform—it receives a
pointer a to an m×n matrix and applies the one-dimensional inverse wavelet transform
to every column and then to every row. The result overwrites the original matrix. It
expects m and n to be powers of 2; it does not check for that! There is not much else I can
add regarding this function; it’s just like the forward transform.

13.11 Project Wavelets
Your wavelets module should be ready to test now. We are going to write a test/demo
program, let’s call it wavelet-test.c, to exercise that module and verify that it works cor-
rectly. Listing 13.5 gives an outline of wavelet-test.c. The function test_vector()
that begins on line 4 makes a vector of length n (assuming n is a power of 2) and sets
its entries to vi =

1
1+i , i = 0,1, It prints the vector to stdout, then it applies the

Haar wavelet transform to it and prints the result, and then it applies the inverse Haar
wavelet transform to it and prints the result again. If the program works correctly, then
the first and third vectors will be the same. Vectors and matrices are printed by calling
print_vector() and print_matrix() defined in Chapter 8’s array.h.

The functiontest_matrix() on line 28 performs a similar test on matrices. Specif-
ically, test_matrix()makes an m×n matrix (assuming that m and n are powers of 2),
sets its entries to ai j =

1
1+i+ j , and then prints the matrix, its wavelet transform, and its in-

verse wavelet transform. If the program works correctly, then the first and third matrices
will be the same. Listing 13.6 shows the output of my version of the program.

root
2014/7/8
page 110

�

�

�

�

�

�

�

�

110 Chapter 13. Haar wavelets

Listing 13.5: An outline of wavelet-test.c.

1 #include <stdio.h>
2 #include "array.h"
3 #include "wavelet.h"
4 static void test_vector(int n)
5 {
6 double *v;
7

8 make_vector(v, n);
9 for (int i = 0; i < n; i++)

10 v[i] = 1.0/(1+i);
11

12 printf("original vector:\n");
13 print_vector("%8.4f ", v, n);
14 putchar(’\n’);
15

16 haar_transform_vector(v, n, WT_FWD);
17 printf("transformed vector:\n");
18 print_vector("%8.4f ", v, n);
19 putchar(’\n’);
20

21 haar_transform_vector(v, n, WT_REV);
22 printf("reconstructed vector:\n");
23 print_vector("%8.4f ", v, n);
24 putchar(’\n’);
25

26 free_vector(v);
27 }
28 � static void test_matrix(int m, int n)
29 {
30 ... a[i][j] = 1.0/(1+i+j) ...
31 }
32 int main(void)
33 {
34 test_vector(8); // test an 8-vector
35 test_matrix(4,8); // test a 4×8 matrix
36 return 0;
37 }

root
2014/7/8
page 111

�

�

�

�

�

�

�

�

13.11. Project Wavelets 111

Listing 13.6: The output of wavelet-test.

original vector:
1.0000 0.5000 0.3333 0.2500 0.2000 0.1667 0.1429 0.1250

transformed vector:
0.3397 0.1250 0.1620 0.0208 0.1811 0.0083 0.0175 0.0045

reconstructed vector:
1.0000 0.5000 0.3333 0.2500 0.2000 0.1667 0.1429 0.1250

original matrix:
1.0000 0.5000 0.3333 0.2500 0.2000 0.1667 0.1429 0.1250
0.5000 0.3333 0.2500 0.2000 0.1667 0.1429 0.1250 0.1111
0.3333 0.2500 0.2000 0.1667 0.1429 0.1250 0.1111 0.1000
0.2500 0.2000 0.1667 0.1429 0.1250 0.1111 0.1000 0.0909

transformed matrix:
0.2238 0.0500 0.0732 0.0119 0.0934 0.0056 0.0121 0.0032
0.0393 0.0295 0.0333 0.0029 0.0314 0.0008 0.0016 0.0004
0.0604 0.0333 0.0417 0.0048 0.0432 0.0016 0.0031 0.0007
0.0107 0.0029 0.0048 0.0008 0.0061 0.0004 0.0007 0.0002

reconstructed matrix:
1.0000 0.5000 0.3333 0.2500 0.2000 0.1667 0.1429 0.1250
0.5000 0.3333 0.2500 0.2000 0.1667 0.1429 0.1250 0.1111
0.3333 0.2500 0.2000 0.1667 0.1429 0.1250 0.1111 0.1000
0.2500 0.2000 0.1667 0.1429 0.1250 0.1111 0.1000 0.0909

root
2014/7/8
page 113

�

�

�

�

�

�

�

�

Chapter 14

Image I/O

Prerequisites: Chapters 7, 8

14.1 Digital images and image file formats
A digital image is made up of tiny colored dots called pixels.40 Colors vary from one pixel
to the next, but within each pixel the color is fixed. Almost always one thinks of a digital
image as an arrangement of pixels on a rectangular grid—and that’s what we do in this
chapter—but other possibilities exist. An arrangement of pixels on a hexagonal grid may
have some advantages (see [47] for a survey), but as far as I know, no hardware exists to
display such images.

Digital images seem to be everywhere you look nowadays. A typical computer screen
has between 1000 to 2000 pixels horizontally, and 700 to 1500 vertically. Some high-
resolution monitors go substantially beyond that. A “five megapixel” digital camera pro-
duces 2560× 1920 images:

2560× 1920= 4,915,200≈ 5 million pixels= 5 megapixels.

The resolution of a laser printer is measured in “dots per inch” (dpi). Ordinary ones tend
to do 300 dpi or 600 dpi, but 1200 dpi and 2400 dpi ones are also available.

A rectangular image maps quite naturally to a (mathematical) matrix, but there are a
variety of ways of mapping that matrix into a computer file (or a digital camera’s memory
chip). That results in the variety of image formats—BMP, GIF, PNG, JPG, TIFF, etc.—
that you may encounter daily. I cannot afford to talk about all possible formats. Instead,
I will focus on the Netpbm family of image formats, which were introduced by Jeffrey
Poskanzer in the mid-1980s and developed into the current Netpbm41 suite of image ma-
nipulation utilities and libraries about which we will learn in this chapter.

Netpbm recognizes three distinct image types:

• In a Portable Bitmap (PBM) image, pixels are either black or white (or any other pair
of colors).

• In a Portable Graymap (PGM) image, pixel colors are shades of gray depending on
the pixel’s gray value, which is an integer g in the range 0 ≤ g ≤ M for some M

40The word “pixel” is a combination of “pix” (slang for “picture”) and “element”; thus “picture element”.
41Netpbm is a free and open source software. It’s quite portable and works on all of the currently popular

operating systems.

113

root
2014/7/8
page 114

�

�

�

�

�

�

�

�

114 Chapter 14. Image I/O

(M = 255 being quite common). A pixel of gray value g = 0 is absolutely black,
and a pixel of gray value g = M is maximally white. The in-between gray values
correspond to varying shades of gray.

• In a Portable Pixmap (PPM) image, pixels range over a wide spectrum of colors.
A pixel’s color is specified as an integer triplet (r, g , b) of the intensities of its red,
green, and blue components, where 0 ≤ r, g , b ≤ M for some M (M = 255 being
quite common).

Each of the three image formats has a “plain” and “raw” variant. They are closely
related. The storage of the plain variant is entirely text based—it is trivial to inspect and
edit such image data with an ordinary text editor—but it is quite wasteful in disk usage.
The raw variant is stored in the binary format and is more frugal in disk usage. In the
following sections I will describe the details of Netpbm’s PBM, PGM, and PPM image file
formats.

The Netpbm library offers C functions to read and write images. It’s this chapter’s
objective to learn how to use those library functions. You will need a properly installed
Netpbm library42 on your computer in order to compile this chapter’s programs.

Remark 14.1. The formats of the PBM, PGM, and PPM image files are so simple that
to appeal to a specialized library to read and write them is somewhat an overkill. Nev-
ertheless, the Netpbm library is there, and interfacing with it provides a good learning
experience. I must add that what we see in this chapter is a minuscule part of what that
library offers. To learn more about the library’s capabilities you will have to read its
documentation, which unfortunately is rather disorganized and not quite reader-friendly.

Remark 14.2. You may use your favorite image viewer to display this chapter’s images
on your computer screen. Most viewers recognize the PBM, PGM, and PPM image for-
mats. Under Linux I use the feh image viewer most of the time. Occasionally I use the
display utility that comes with the ImageMagick utilities and the venerable xv, which,
unfortunately, is no longer actively maintained.

Remark 14.3. I have provided a small collection of PBM, PGM, and PPM images in the
book’s website at <www.siam.org/books/cs13>, which you are invited to download
and experiment with.

14.2 Bitmaps and the PBM image format
Bitmaps are the simplest of digital images; each pixel is either black or white (or any other
color pair). The mathematical representation of the image is a matrix of zeros and ones.
Netpbm stores a bitmap image to a format called a portable bitmap (that’s where the name
PBM originates) which comes in plain and raw variants, as noted earlier. By convention,
a PBM image file (of either variety) is named with a .pbm extension.

The PBM format is not used in the current project; however, I begin the discussion
with it since it is so simple and intuitive. There is an elementary application involving
images in the PBM format in Chapter 10.

42On many Linux platforms the Netpbm library may be packaged under the name
libnetpbm10-dev or something similar. On other platforms you may download the source from
<http://netpbm.sourceforge.net> and follow the instructions to compile it yourself; it’s not
difficult.

http://netpbm.sourceforge.net

root
2014/7/8
page 115

�

�

�

�

�

�

�

�

14.2. Bitmaps and the PBM image format 115

P1
a sample PBM f i l e
16 16
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 1 1 0 1 1 1 0 0 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 1 1 1 1 1 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 14.1: On the left are the contents of a plain PBM file. On the right is the corre-
sponding 16×16 bitmap image. I have superimposed a grid to show where
the pixels are. Line 2 of the file is a comment.

14.2.1 The plain PBM format

A plain PBM image file consists entirely of ASCII characters. Here is a minimal template
for the contents of such a file:

P1 w h x x x x x · · ·
The first two characters, P1, signal that this is a plain PBM file.43 The w and h are the
image’s width and height (in pixels). They should be given as ordinary decimal numbers.
The x x x · · · is a sequence of w × h of zeros and ones. What I have shown as spaces
between the characters can be one or more whitespaces of any kind, i.e., space, tab, new-
line, etc.; see Section 9.3.2 for the definition of “whitespace”. Optionally, a PBM file may
contain comments between P1 and w. A comment begins with a “#” character and ex-
tends to the end of the line. Figure 14.1 shows the contents of a plain PBM file and the
corresponding 16×16 bitmap image.

14.2.2 The raw PBM format

The raw PBM format stores the image according to the template

P4 w h ----- · · ·
where the magic number P4 identifies the content as a raw portable bitmap, the w and h
are image width and height, as before, and each “-” represents a byte of storage. No
spaces are allowed between those bytes, and there should be exactly one whitespace character
between the h and the following “-”. In modern computer hardware, a byte is typically
8 bits, although this is not a firm requirement. For the purpose of this discussion, let’s
assume 8-bit bytes. Referring to the bitmap of Figure 14.1, the 16 pixels along the image’s

43The character sequence P1 is called the file’s magic number, although it’s not really a number. Magic num-
bers are employed extensively as file content “signatures”. Unix’s file utility identifies the contents of a given
file with some help from the file’s magic number. For example,

$ file sample-bitmap.pbm
prints

sample-bitmap.pbm: Netpbm PBM image, ASCII text

root
2014/7/8
page 116

�

�

�

�

�

�

�

�

116 Chapter 14. Image I/O

top row may be encoded in just two bytes, as in

0 0 0 0 0 0 1 1byte 1 1 0 0 0 0 0 0 0byte 2

In contrast, the plain encoding of the 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 se-
quence of 16 zeros, ones, and spaces takes up at least 32 bytes. Therefore, the raw storage
format wins by a factor of 16(!) in terms of economy of space.

The wastefulness of the plain PBM format is compensated by its robustness. Quoting
from Netpbm’s documentation: “It was originally designed to make it reasonable to mail
bitmaps between different types of machines using the typical stupid network mailers we
have today. Now it serves as the common language of a large family of bitmap conversion
filters.”

14.3 Grayscale images and the PGM image format
A bitmap’s pixels are either on or off—no shades of gray are possible. A grayscale image is
like a bitmap in that it maps to a matrix. However, the matrix entries are not limited to
zeros and ones; they take values within a prescribed range of integer values from 0 to M
(typically M = 28− 1 = 255). The magnitude of an entry measures the brightness of the
corresponding pixel. Zero is absolutely black, M is maximally white, and the numbers
in between correspond to varying shades of gray. Netpbm stores a grayscale image in a
format called a portable graymap (that’s where the name PGM originates), which comes
in plain and raw variants, as noted earlier. By convention, a PGM image file (of either
variety) is named with a .pgm extension.

14.3.1 The plain PGM format

A plain graymap image file consists entirely of ASCII characters. Here is a minimal tem-
plate for the contents of such a file:

P2 w h M x x x x x · · ·
The magic number P2 signals that this is a plain PGM file. The w and h are the image’s
width and height (in pixels), and M is the image’s maximal gray value. They should be
given as ordinary decimal numbers. The x x x · · · is a sequence of w× h of integers in
the range 0 to M inclusive, written as ordinary decimal numbers, with zero being black
and M being white. What I have shown as spaces between the file’s entries can be one
or more whitespaces of any kind, i.e., space, tab, newline, etc.; see Section 9.3.2 for the
definition of “whitespace”. Additionally, a PGM file may contain comments between P2
and w. A comment begins with a “#” character and extends to the end of the line. Fig-
ure 14.2 shows the contents of a plain PGM file and the corresponding 16×16 graymap
image. Here M is 15; therefore the gray intensities range from 0 to 15.

14.3.2 The raw PGM format

The raw PGM format stores the grayscale image according to the template

P5 w h M ----- · · ·
where the magic number P5 identifies the content as raw PGM, the w and h are image
width and height, and M is the image’s maximal gray value, as before. If M < 28 = 256,
then each “-” represents a byte that encodes the gray value as an 8-digit binary integer
in the range 0 to M inclusive. If 28 ≤ M < 216 = 65536, then each “-” represents a pair

root
2014/7/8
page 117

�

�

�

�

�

�

�

�

14.4. Color images and the PPM image format 117

P2
a sample PGM f i l e
16 16
15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Figure 14.2: On the left are the contents of a plain PGM file. On the right is the cor-
responding 16×16 graymap image. Gray intensities vary from 0 (black) to
15 (white). I have superimposed a grid to show where the pixels are.

of bytes which together encode the gray value as a 16-digit binary integer in the range 0
to M inclusive. Larger values of M are not permissible. No spaces are allowed between
those bytes, and there should be exactly one whitespace character between the M and the
following “-”.

14.4 Color images and the PPM image format
Within the human eye there are light receptors that are sensitive to red light. There are
another type of receptors that are sensitive to green light, and yet another type that are
sensitive to blue light. A typical light source emits a mixture of lights of various colors
(that is, frequencies). When a light source excites the red and green receptors equally, we
perceive a yellow hue. When the intensity of the red and green varies, but their propor-
tions are kept fixed, we perceive darker or brighter yellow. If the light is richer in red than
green, we perceive an orange hue.

In general, the colors that we perceive may be broken down to a mixture of primary
colors, red, green, and blue, of various intensities. An RGB color image, also known as a
pixmap image, is a rectangular array of pixels, where each pixel presents a combination
of red, green, and blue colors in varying intensities. The corresponding mathematical
model is a matrix of red/green/blue triplets where each part of a triplet takes values in a
range 0 to M for some M (typically M = 28− 1 = 255). Netpbm stores pixmap images in
a format called a portable pixmap (that’s where the name PPM originates), which comes
in plain and raw variants, as in the previous cases. By convention, a PPM image file (of
either variety) is named with a .ppm extension.

14.4.1 The plain PPM format

A plain pixmap image file consists entirely of ASCII characters. Here is a minimal tem-
plate for the contents of such a file:

P3 w h M r g b r g b · · ·
The magic number P3 signals that this is a plain PPM file. The w and h are the image’s
width and height (in pixels), and M is the maximal value of the red/green/blue intensities.

root
2014/7/8
page 118

�

�

�

�

�

�

�

�

118 Chapter 14. Image I/O

P3
a sample PPM f i l e
8 8
7
7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0
0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0
0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7
7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0
7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7
0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7
7 7
0 black

white

cyan
magenta
yellow
blue

green
red

Figure 14.3: On the left are the contents of a PPM file. On the right is the corresponding
8×8 pixmap image. I have superimposed a grid to show where the pixels
are. The RGB intensities vary from 0 (black) to 7 (full color). The matrix
entries should be read three at a time. The first row consists of eight triplets
of the form {7 0 0}, which indicates that the top row of pixels are all red.
The second row consists of eight triplets of the form {0 7 0}, which
indicates that the second row of pixels are all green.

They should be given as ordinary decimal numbers. The rest of the template consists of
a sequence of w× h of integer triplets, “r g b”, where each component is in the range 0
to M inclusive, written as ordinary decimal numbers, with zero indicating an absolutely
dim color (black) and M indicating the brightest possible color. What I have shown as
spaces between the file’s entries can be one or more whitespaces of any kind, i.e., space,
tab, newline, etc.; see Section 9.3.2 for the definition of “whitespace”. Additionally, a PPM
file may contain comments between P3 and w. A comment begins with a “#” character
and extends to the end of the line. Figure 14.3 shows the contents of a plain PPM file and
the corresponding 8×8 pixmap image. Here M is 7; therefore color intensities may range
from 0 to 7, although I have used only 0 and 7 in that sample.

14.4.2 The raw PPM format

The raw PPM format stores the pixmap image according to the template

P6 w h M ----- · · ·
where the magic number P6 identifies the content as raw PPM, the w and h are image
width and height, and M is the upper range of color values, as before. If M < 28 = 256,
then the rest of the file is a set of 3×w×h consecutive bytes. Each byte triplet encodes the
red/green/blue colors of a pixel as three 8-digit binary numbers. If 28 ≤M < 216 = 65536,
then rest of the file is a set of 6×w × h consecutive bytes. Each byte sextet encodes the
red/green/blue colors of a pixel as three pairs of 16-digit binary numbers. Larger values
of M are not permissible. Spaces and comments conform to the same requirements as
those of raw PGM files.

14.5 The libnetpbm library
Netpbm’s libnetpbm library provides C functions for reading and writing PBM, PGM,
and PPM images. The interface is declared in the header file pam.h, which declares a C
structure called “struct pam” for storing all characteristics of an image other than its
pixel values. Some of the structure’s members deal with issues outside the scope of this
presentation. Those members that are relevant to our work shown in Listing 14.1. The
meanings of the file, height, width members should be evident from the associated

root
2014/7/8
page 119

�

�

�

�

�

�

�

�

14.5. The libnetpbm library 119

Listing 14.1: A fragment of libnetpbm’s “struct pam” structure. Only those parts that are rele-
vant to our work are shown.

1 typedef unsigned long sample;
2 struct pam {
3 ...
4 FILE *file; // the image’s input or output stream
5 int format; // coded value of image type
6 int plainformat;// boolean: “true” if plain format, “false” if raw format
7 int height; // image height, in pixels
8 int width; // image width, in pixels
9 int depth; // 1 for PBM and PGM, 3 for PPM

10 sample maxval; // same as M in the previous sections
11 ...
12 };

comments. The format member is an integer that encodes the image type. It is one of
PBM_FORMAT, PGM_FORMAT, PPM_FORMAT in the case of plain image formats or one of
RPBM_FORMAT, RPGM_FORMAT, RPPM_FORMAT in the case of raw image formats. The
plainformat member is a Boolean variable which is true (i.e., 1) if the image format is
plain and false (i.e., 0) if the image format is raw. Considering that the format member
already carries the information regarding raw versus plain, the plainformat member
appears to be redundant. In a sense, it is—it exists as a hack to address compatibility issues
with the earlier versions of libnetpbm. When writing an image to a file, the latest versions
of the library ignore the raw versus plain information contained in the format member
and use the raw format as a default. To get a plain format in the output, you will need to
set plainformat to true.

The depth member is set to 1 for PBM and PGM images because these require a
single number to specify a pixel value. It is set to 3 for a PPM image because it requires
3 numbers to specify a pixel value.

The maxval member is what I called M in the previous section. Pixel values are
integers in the range 0,1, . . . , M . The maxval is declared as an object of type “sample”.
We see on line 1 that this is an alias for unsigned long in libnetpbm.

Libnetpbm provides a multitude of functions for manipulating image objects. In the
rest of this section I will describe those functions—10, to be precise—that we need in our
work. The descriptions are terse but should be adequate for most purposes. For more
details you should consult libnetpbm’s documentation.

void pm_init(const char *progname, unsigned int flags);

Every libnetpbm program should call pm_init() to initialize the library. The first
argument is the program’s name. The second argument is always zero. (It’s really a place-
holder for possible future expansions of the library.)

FILE *pm_openr(char *name);
FILE *pm_openw(char *name);
FILE *pm_close(FILE *fp);

These are the fancy versions of the standard library’s fopen() and fclose() func-
tions. Specifically, pm_openr() and pm_openw() open a file for reading or writing,
respectively, and call exit() if something goes wrong. The file name "-" is interpreted
as the stdin or stdout, as the case may be. The function pm_close() closes a previ-
ously opened stream.

root
2014/7/8
page 120

�

�

�

�

�

�

�

�

120 Chapter 14. Image I/O

· · ·

g g g

a tuplerow of a PGM image

· · ·

R

G

B

R

G

B

R

G

B

a tuplerow of a PPM image

Figure 14.4: A tuplerow array holds the pixel data of one row of an image. The ar-
ray’s length equals the image’s width. The array’s entries point to tuple
vectors that hold a pixel’s gray values in the case of a PGM image (shown
on the left) or the RGB values in the case of PPM image (shown on the
right). The tuple vectors of a PGM image are of length 1. Those of a
PPM image are of length 3.

void pnm_readpaminit(FILE *fp, struct pam *pam, int size);
void pnm_writepaminit(struct pam *pam);

The function pnm_readpaminit() reads an image’s header information44 from the
streamfp and populates thepam structure with it. It expects to find the stream positioned
at the start of the image’s header and leaves it positioned at the start of the image’s data.

The meaning of the size argument is a bit too complex to explain here, and probably
an explanation won’t be very illuminating. Suffice it to say that you should always pass
the expression PAM_STRUCT_SIZE(tuple_type) for that argument. This assumes
that you have a relatively recent libnetpbm library. In the older versions of the library
(specifically, versions before Netpbm 10.23) pass sizeof(struct pam) instead.

The function pnm_writepaminit() writes an image’s header, according to the
information supplied in thepam structure, to the output stream associated with the image.

tuple *pnm_allocpamrow(struct pam *pam);
void pnm_freepamrow(tuple *tuplerow);

These functions allocate and free memory for storing one row of an image’s pixel data
into an array called a tuplerow, shown schematically in Figure 14.4. The array’s length
equals the image’s width. Each entry of the tuplerow is a pointer to an array, called a
tuple array. In the case of a PGM image, a tuple array has length 1. It holds the pixel’s
gray value. In the case of a PPM image, a tuple array has length 3. It holds the pixel’s
red, green, and blue values, in that order.

void pnm_readpamrow(struct pam *pam, tuple *tuplerow);
void pnm_writepamrow(struct pam *pam, const tuple *tuplerow);

The function pnm_readpamrow() reads one row of an image into a tuplerow
array (see the previous paragraph). It expects to find the input stream associated with the
image to be positioned at the start of the desired row and leaves it positioned just after it.

The function pnm_writepamrow() writes one row of an image from a tuplerow
array. It expects to find the output stream associated with the image to be positioned
where the row should start and leaves it positioned just after it.

44The image header is everything in the image file other than the pixel data section.

root
2014/7/8
page 121

�

�

�

�

�

�

�

�

14.7. The interface of the image-io module 121

14.6 A no-frills demo of libnetpbm
The file netpbm-minimal.c shown in Listing 14.2 provides a no-frills demo of libnetpbm.
It reads a PGM image into a matrix a, draws a black line over it by changing the pixels
ai i , i = 0,1,2, . . ., to zero, and then writes the result into another PGM file. If you have
read the descriptions of the libnetpbm functions in the previous section, you should have
no difficulty in following the program’s logic and understanding what it does; therefore
I will not elaborate on it any further other than pointing out that on line 42 we set the pam
structure’s plainformatmember to true or false, according to the input image’s format,
so that a plain format input results in a plain format output and a raw format input results
in a raw format output. In the absence of that line, the output image will be in the raw
format regardless of the input image’s format because that is libnetpbm’s default behavior.

The program depends on Chapter 8’s array.h, which in turn depends on Chapter 7’s
xmalloc module. Therefore I suggest that you construct a Makefile according to the in-
structions of Chapter 6 to build netpbm-minimal as well as the several other programs
which you will develop in this chapter. Here is the beginning part of the Makefile:

CFLAGS = -Wall -pedantic -std=c99 -O2
LIBS = -lnetpbm
netpbm-minimal: xmalloc.o netpbm-minimal.o

$(CC) $^ $(LIBS) -o $@

14.7 The interface of the image-io module
We are going to develop an image-io module which will provide functions for reading
and writing PGM and PPM images. Listing 14.3 shows the file image-io.h that pro-
vides the module’s interface. It declares a “struct image”, which extends libnetpbm’s
“struct pam” by adding new members r, g, b that point to h ×w matrices that hold
an image’s red, green, and blue pixel values. (Here h and w are the image’s height and
width in pixels.) Additionally, it declares the prototypes of functions that read and write
images and free the allocated memory.

We use “struct image” with both PGM and PPM image types. In the case of a
PGM image only one of the three matrix pointers r, g, b is needed. I will use theg pointer
consistently for that purpose since “g” may be thought of as standing both for “green” and
“gray”. The r and b pointers are not used in that case and may be left unassigned.

Remark 14.4. Why are the r, g, b matrices in “struct image” of type double?
The pixel values of an image are integers in the range 0 to M , where typically M is 28−1.
Isn’t it more natural to store the numbers in a matrix of type unsigned char? Even
in the worst case, when M is 216−1= 65535), a matrix of type unsigned short int
ought to suffice.

Those observations are valid. Nevertheless, the type of storage for an image is dictated
by the application. I am using the type double for storage in anticipation of applications
of the wavelet transform to image analysis, which is the subject of the next chapter. There
we overwrite an image matrix with the corresponding wavelet transform, which is no
longer a matrix of integers. If your applications don’t do such drastic things to your im-
ages, then feel free to change double to unsigned char or unsigned short int
in image-io.h.

The image-io module relies on the xmalloc module (Chapter 7) for memory allocation
and the array.h header file (Chapter 8) for building matrices. Therefore, following the
suggestions in Chapter 2, the project’s directory will contain

root
2014/7/8
page 122

�

�

�

�

�

�

�

�

122 Chapter 14. Image I/O

Listing 14.2: The file netpbm-minimal.c provides a no-frills demo of the libnetpbm functions.
It reads a PGM image into a matrix, draws a black line over it, and then writes
the result into another PGM file. Calls to the libnetpbm functions are set on a
shaded background .

1 #include <stdio.h>
2 #include <pam.h>
3 #include "array.h"
4 int main(int argc, char **argv)
5 {
6 char *infile = "aya_matsuura.pgm";
7 char *outfile = "zz.pgm";
8 struct pam pam;
9 FILE *fp;

10 double **a;
11 tuple *row;
12 int i, j;
13

14 pm_init (argv[0], 0); // initialize the library
15

16 // read image header
17 fp = pm_openr (infile);

18 pnm_readpaminit (fp, &pam, PAM_STRUCT_SIZE(tuple_type));

19 printf("image: %dx%d, depth: %d\n",
20 pam.width, pam.height, pam.depth);
21 if (!(pam.format == PGM_FORMAT || pam.format == RPGM_FORMAT)) {
22 fprintf(stderr, "Sorry, this demo handles PGM images only.\n");
23 return EXIT_FAILURE;
24 }
25

26 make_matrix(a, pam.height, pam.width); // matrix to store image data
27 row = pnm_allocpamrow (&pam); // tuplerow vector
28 for(i = 0; i < pam.height; i++) { // read pixel data
29 pnm_readpamrow (&pam, row);

30 for (j = 0; j < pam.width; j++) { // copy tuplerow into matrix
31 a[i][j] = row [j][0];
32 }
33 }

34 pm_close (fp);

35
36 for (i = 0; i < pam.width && i < pam.height; i++)

37 a[i][i] = 0.0; // change the ai i pixels to black
38

39 // write image header
40 fp = pm_openw (outfile);

41 pam.file = fp;
42 pam.plainformat = pam.format == PGM_FORMAT ? 1 : 0;

43 pnm_writepaminit (&pam);

44

45 for (i = 0; i < pam.height; i++) { // write pixel data
46 for(j = 0; j < pam.width; j++)
47 row[j][0] = a[i][j];

48 pnm_writepamrow (&pam, row);

49 }

50 pm_close (fp);

51 free_matrix(a);

52 pnm_freepamrow (row);

53 return EXIT_SUCCESS;
54 }

root
2014/7/8
page 123

�

�

�

�

�

�

�

�

14.7. The interface of the image-io module 123

Listing 14.3: The file image-io.h.

1 #ifndef H_IMAGE_IO_H
2 #define H_IMAGE_IO_H
3 #include <pam.h>
4 struct image {
5 struct pam pam;
6 double **r;
7 double **g;
8 double **b;
9 };

10 struct image *read_image(char *filename);
11 void write_image(char *filename, struct image *img);
12 void free_image(struct image *img);
13 #endif /∗ H_IMAGE_IO_H */

$ cd image-io
$ ls -F
Makefile image-io-test-3.c netpbm-minimal.c
array.h@ image-io-test-4.c xmalloc.c@
image-io-test-0.c image-io-test-5.c xmalloc.h@
image-io-test-1.c image-io.c
image-io-test-2.c image-io.h

The stand-alone file netpbm-minimal.c was presented in Section 14.6. The image-io
module itself is contained in the files image-io.[ch]. The files image-io-test-[0–5].c are inde-
pendent drivers for demonstrating the module’s functionality in various ways, as will be
described later. They compile to executables named image-io-test-[0–5]. Each executable
is invoked with two arguments, as in

$ image-io-test-0 infile outfile

The program reads an image from infile, modifies the images in certain ways, and writes
the modified image to outfile. You may name the input and output files as you wish,
but it is customary to name images in PGM and PPM formats with the .pgm and .ppm
extensions, respectively. The program does not rely on a file name to determine the im-
age format. Rather, it detects the image format through the magic number embedded in
the file.

Remark 14.5. In the descriptions of libnetpbm’s pm_openr() and pm_openw() func-
tions in Section 14.5, we noted that these functions treat the special file name "-" as a
reference to the stdin or stdout. Therefore, the program may also be invoked as

$ image-io-test - outfile.pgm <infile.pgm

or even as

$ image-io-test - - <infile.pgm >outfile.pgm

These will work in Unix or in Unix-like systems where a file is treated a stream of bytes.
On an operating system such as Windows that distinguishes between text and binary files,
the redirection may corrupt a raw image.

root
2014/7/8
page 124

�

�

�

�

�

�

�

�

124 Chapter 14. Image I/O

Listing 14.4: An outline of the file image-io.c.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "array.h"
4 #include "image-io.h"
5 � static void read_pgm_pixel_data(struct image *img) ...
6 � static void read_ppm_pixel_data(struct image *img) ...
7 � struct image *read_image(char *filename) ...
8 � static void write_pgm_pixel_data(struct image *img) ...
9 � static void write_ppm_pixel_data(struct image *img) ...

10 � void write_image(char *filename, struct image *img) ...
11 � void free_image(struct image *img) ...

Listing 14.5: An implementation of the function read_image().

1 struct image *read_image(char *filename)
2 {
3 struct image *img = xmalloc(sizeof *img);
4 struct pam *pam = &img→pam;
5 FILE *fp = pm_openr(filename);
6 pnm_readpaminit(fp, pam, PAM_STRUCT_SIZE(tuple_type));
7 if (pam→format == PGM_FORMAT || pam→format == RPGM_FORMAT)
8 read_pgm_pixel_data(img);
9 else if (pam→format == PPM_FORMAT || pam→format == RPPM_FORMAT)

10 read_ppm_pixel_data(img);
11 else {
12 fprintf(stderr, "error: file ‘%s’ contains neither "
13 "a PGM nor a PPM image\n", filename);
14 exit(EXIT_FAILURE);
15 }
16 pm_close(fp);
17 return img;
18 }

14.8 The implementation of the image-io module
Listing 14.4 shows an outline of the file image-io.c. I will give the details of the parts
dealing with PGM images. You will write the parts dealing with PPM images.

14.8.1 The function read_image()

The function read_image() that appears on line 7 of Listing 14.4 receives the name of
an existing image file. It reads the file’s contents, allocates memory for a “struct image”
structure and its members, populates the structure with the image’s data, and returns a
pointer to that structure. If anything fails in the process, it prints a diagnostic message to
the stderr and calls exit() to kill the program. Listing 14.5 shows my implementa-
tion of read_pgm_image(). It handles PGM and PPM images, both the plain and raw
types. Extending it to handle PBM images is straightforward, and you are welcome to try
it yourself, but I will refrain from doing so in the interest of brevity.

root
2014/7/8
page 125

�

�

�

�

�

�

�

�

14.8. The implementation of the image-io module 125

Let us go through the details of the function read_image().

Line 3. We allocate memory for a “struct image” and set img to point to that mem-
ory location. The purpose of the current function is to read image data from the
input file, deposit that information into that structure, and return the structure’s
address to the caller.

Line 4. The pointer &img→pam is needed in quite a few places in the rest of the code. It
wouldn’t be wrong to write &img→pam everywhere, but it would clutter things.
The pam variable defined here is a shorthand meant to reduce clutter; doing so isn’t
essential in any way.

Line 5. Here we call libnetpbm’s pm_openr() function, described in Section 14.5, to
open the image file for reading. We could have called C’s standard fopen() in-
stead, as in

FILE *fp = fopen(filename, "r");

but, as noted in Section 14.5, pm_openr() offers a couple of extra helpful features.
For one thing, it treats the file name "-" as a request for stdin, as seen in the usage
examples in Remark 14.5 on page 123. For another thing, it checks for errors. If
the requested file cannot be opened for reading, it prints a message to stderr and
exits the program! Consequently, there is no point in checking for the success of
the pm_openr() call.

Line 6. Here we call libnetpbm’s pnm_readpaminit() function, described in Sec-
tion 14.5, to read the image’s header data. The first argument is the stream fp,
which was set up on the previous line. The second argument, pam, points to the
“struct pam”, which is embedded in “struct image”. The function will
populate pam’s members (see Listing 14.1) with the information that it extracts
from the image’s header. The third argument, as noted in Section 14.5, is always
the expression I have shown. Also as was noted there, you may have to change it to
sizeof(struct pam) if you have an older version of libnetpbm.

Line 7. Here the program branches depending on the image type. The format member
of “struct pam” encodes the image type that has just been read from the input
stream (see Section 14.5 for the details of the “struct pam”). If the image is of
type PGM, we callread_pgm_pixel_data() to read the pixel data. If the image
is of type PPM, we call read_ppm_pixel_data() to read the pixel data. (These
functions will be described shortly.) If the image is something else—presumably a
PBM or a PAM45—then we print a message saying that we are not prepared to handle
that type and exit the program.

Lines 16 and 17. We are done with reading the image; therefore we close the input stream
and returnimg to the caller. The functionpm_close(), described in Section 14.5,
is a wrapper around C’s standard fclose()—it checks for fclose()’s return
status and calls exit() if an error occurs.

45I have neither mentioned the PAM format up to this point, nor will I deal with it from here on. PAM is
an “adaptable” format in the sense that any PBM, PGM, or PPM image may be presented as a PAM image. You
will have to read Netpbm’s documentation if you want to learn more about that format.

root
2014/7/8
page 126

�

�

�

�

�

�

�

�

126 Chapter 14. Image I/O

Listing 14.6: The implementation of the function read_pgm_pixel_data().

1 static void read_pgm_pixel_data(struct image *img)
2 {
3 struct pam *pam = &img→pam;
4 tuple *row = pnm_allocpamrow(pam);
5 make_matrix(img→g, pam→height, pam→width);
6 img→r = img→b = NULL;
7 for (int i = 0; i < pam→height; i++) {
8 pnm_readpamrow(pam, row);
9 for (int j = 0; j < pam→width; j++)

10 img→g[i][j] = row[j][0];
11 }
12 pnm_freepamrow(row);
13 }

14.8.2 The function read_pgm_pixel_data()

The function read_pgm_pixel_data() that appears on line 5 of Listing 14.4 reads
the pixel data of a PGM image. Its implementation is shown in Listing 14.6. Let us go
through the details.

Line 3. The variable pam is introduced here for the same reason as that on line 4 of List-
ing 14.5. It’s not essential in any way; it’s a shorthand meant to reduce clutter.

Line 4. Here we call libnetpbm’s pnm_allocpamrow() function, described in Sec-
tion 14.5, to allocate memory for a tuplerow array. We are going to read the
image one row at a time into that array and then copy the result into a matrix. Fig-
ure 14.4 shows a schematic representation of a tuplerow array. There is no need
to check for success—if memory allocation fails, pnm_allocpamrow()will print
a message to stderr and exit the program.

Lines 5 and 6. We call the make_matrix() macro from the header file array.h (see
Chapter 8) to allocate a matrix of double, assigned to img→g, to hold the pixel
data of a (pam→height) × (pam→width) image. The members img→r and
img→b are meant for use in PPM images, so they are not needed here. We set
them to NULL so that they can be passed to free_matrix() with no ill effects;
see subsection 14.8.5.

Lines 7–11. The for-loop goes through the image one row at a time. At each step it calls
libnetpbm’s pnm_readpamrow() function, described in Section 14.5, to read an
entire row into therow array. Thus, row[j] points to the tuple associated with the
pixel at rowi and columnj. Since this is a PGM image, the tuple vector has length 1
(see Figure 14.4); therefore its first (and only) element is given by row[j][0]. We
store that value in img→g[i][j].

Line 12. We are done with reading. We call libnetpbm’s pnm_freepamrow() function,
described in Section 14.5, to free the memory allocated on line 4.

14.8.3 The function write_image()

The function write_image() that appears on line 10 of Listing 14.4 receives the name
of an output file and a pointer to a fully populated “struct image”. It writes the

root
2014/7/8
page 127

�

�

�

�

�

�

�

�

14.8. The implementation of the image-io module 127

Listing 14.7: The implementation of the function write_image().

1 void write_image(char *filename, struct image *img)
2 {
3 struct pam *pam = &img→pam;
4 pam→file = pm_openw(filename);
5 pam→plainformat
6 = (pam→format == PGM_FORMAT || pam→format == PPM_FORMAT) ? 1 : 0;
7 pnm_writepaminit(pam);
8 if (pam→format == PGM_FORMAT || pam→format == RPGM_FORMAT)
9 write_pgm_pixel_data(img);

10 else if (pam→format == PPM_FORMAT || pam→format == RPPM_FORMAT)
11 write_ppm_pixel_data(img);
12 else {
13 fprintf(stderr, "error: file %s, line %d: shouldn’t be here!\n",
14 __FILE__, __LINE__);
15 exit(EXIT_FAILURE);
16 }
17 pm_close(pam→file);
18 }

image’s data into the named file as a PGM or PPM image. If a file of the given name
does not exist, it’s created. If it exists, it’s overwritten. If anything fails in the process, it
prints a diagnostic message to the stderr and exits the program. Listing 14.7 shows the
implementation of write_image().

Line 3. We introduce the variable pam as a shorthand for &img→pam, just as we did in
read_image(). This is not essential; it serves only to reduce clutter.

Line 4. Here we call libnetpbm’s pm_openw() function, described in Section 14.5, to
open the image file for writing. We could have called C’s standard fopen() in-
stead, as in

FILE *fp = fopen(filename, "w");

but, as noted in Section 14.5, pm_openw() offers a couple of extra helpful features.
For one thing, it treats a file named "-" as a request for stdout; see the usage
examples in Remark 14.5 on page 123. For another thing, it checks for errors. If
the requested file cannot be opened for writing, it prints a message to stderr and
exits the program! Consequently, there is no point in checking for the success of
the pm_openw() call.

Note that we set pam→file to the stream opened by pm_openw(). Other func-
tions which write to the stream look up the stream’s address in the pam structure.

Line 5. As noted in Section 14.5, libnetpbm ignores the format encoded in the pam struc-
ture’s formatmember and writes images in the raw format by default. Here we ex-
amine theformatmember. If it indicates a plain format, we set theplainformat
member to true to override the library’s default behavior.

Line 7. Libnetpbm’spnm_writepaminit() function, described in Section 14.5, writes
an image’s header data (e.g., the “P5 w h M” part described in subsection 14.3.2)
by extracting the needed information from the pam structure. The output goes to
the stream pam→file.

root
2014/7/8
page 128

�

�

�

�

�

�

�

�

128 Chapter 14. Image I/O

Listing 14.8: The implementation of the function write_pgm_pixel_data().

1 static void write_pgm_pixel_data(struct image *img)
2 {
3 struct pam *pam = &img→pam;
4 tuple *row = pnm_allocpamrow(pam);
5 for (int i = 0; i < pam→height; i++) {
6 for (int j = 0; j < pam→width; j++)
7 row[j][0] = img→g[i][j];
8 pnm_writepamrow(pam, row);
9 }

10 pnm_freepamrow(row);
11 }

Line 8. Here the program branches depending on the image type. If the image is of type
PGM, we call write_pgm_pixel_data() to write the pixel data. If the im-
age is of type PPM, we call write_ppm_pixel_data() to write the pixel data.
(These functions will be described shortly.) Unless we have carelessly meddled with
the pam structure’s format member, these two should be the only possibilities.
Anything else is abnormal and should never occur. Nevertheless, we supply code
to catch the hypothetical implausible case, write a diagnostic, and exit the program.

Line 17. We are done with writing; therefore we call pm_close(), described in Sec-
tion 14.5, to close the output stream. The function pm_close() is a wrapper
around C’s standard fclose()—it checks for fclose()’s return status and calls
exit() if an error occurs.

14.8.4 The function write_pgm_pixel_data()

The function write_pgm_pixel_data() that appears on line 8 of Listing 14.4 has
many aspects in common with read_pgm_pixel_data(); therefore my comments
will be somewhat terser here. It receives a pointer to a fully populated “struct image”
corresponding to a PGM image and writes the image’s pixel data into an output stream.
Its implementation is shown in Listing 14.8. Let us go through the details.

Lines 3 and 4. These are just like what we had in read_pgm_pixel_data(). Read
the explanations there.

Lines 5–9. The outer for-loop goes through the img→g matrix one row at a time.
The inner for-loop goes through the row and copies the value of img[i][j]
to the first (and only) element of the tuple associated with the pixel row[j]. (This
is the opposite of what we did when reading the image.)

Remark 14.6. Note that img→g[i][j] is of type double, while row[j][0]
is of type “sample”, which is an alias for unsigned long. C’s automatic con-
version rules are applied during the assignment. If the right-hand side is an integer
stored as a double, then the left-hand side receives the exact value of that integer. If
the right-hand side is a noninteger, then its fractional part is dropped! For instance,
both 3.1 and 3.9 are converted to 3; no rounding takes place. It is the responsibility
of the caller to do all necessary rounding/processing on the image’s sample values
before arriving here. In particular, it is the caller’s responsibility to ensure that the

root
2014/7/8
page 129

�

�

�

�

�

�

�

�

14.9. The file image-io-test-0.c 129

Listing 14.9: The implementation of free_image() in file image-io.c.

1 void free_image(struct image *img)
2 {
3 if (img �= NULL) {
4 free_matrix(img→r);
5 free_matrix(img→g);
6 free_matrix(img→b);
7 free(img);
8 }
9 }

sample values lie in the range 0 to M , where M is the image’s maximum sample
value. In Chapter 15’s applications of wavelets to image analysis, we take care of
these details before write_pgm_pixel_data() is called. This is the purpose of
the clip_matrx() function introduced in subsection 15.6.2.

Line 8. The function pnm_writepamrow(), described in Section 14.5, writes the pixel
data for an entire row of an image to the output stream.

Line 10. Here we free the memory associated with the row vector which was previously
allocated on line 4.

14.8.5 The function free_image()

The function free_image() that appears on line 11 of Listing 14.4 (page 124) frees
memory resources associated with a “struct image”. The implementation shown in
Listing 14.9 is quite straightforward. It frees the following:

• The memory associated with the matrices img→r, img→g, img→b, allocated in
read_pgm_pixel_data() or read_ppm_pixel_data(); see line 5 of List-
ing 14.6 on page 126.

• The memory associated with the img structure, allocated in readimage(); see
line 3 of Listing 14.5 on page 124.

As with all other free_*() functions in this book, as well as the standard library’s
free(), calling free_image() with a NULL argument is safe.

Remark 14.7. Note the significance of NULL-ing the img→r and img→b pointers on
line 6 in Listing 14.6. Our free_matrix() in array.h is implemented to handle a NULL
argument gracefully.

14.9 The file image-io-test-0.c
The file image-io-test-0.c, shown in Listing 14.10, provides a driver for exercising the image-
io module. It simply reads a PGM or PPM image (plain or raw format) and writes it out
without change, except for embedded comments, if any, which are discarded. The names
of the input and output files are obtained from argv[1] and argv[2]. Thus, it is
invoked as

$ image-io-test-0 infile outfile

root
2014/7/8
page 130

�

�

�

�

�

�

�

�

130 Chapter 14. Image I/O

Listing 14.10: The file image-io-test-0.c, shown in its entirety here, provides a driver for exercising
the image-io module. It reads a PGM or PPM file and writes it out without change,
except for embedded comments, if any, which are discarded. The names of the input
and output files are obtained from argv[1] and argv[2].

1 #include <stdio.h>
2 #include "image-io.h"
3 int main(int argc, char **argv)
4 {
5 if (argc �= 3) {
6 fprintf(stderr, "Usage: %s infile outfile\n", argv[0]);
7 fprintf(stderr, "Reads PGM or PPM from infile, "
8 "writes identical image to outfile\n");
9 return EXIT_FAILURE;

10 }
11 pm_init(argv[0], 0);
12 struct image *img = read_image(argv[1]);
13 fprintf(stderr, "image is %dx%d, depth=%d, maxval=%d\n",
14 img→pam.height, img→pam.width,
15 img→pam.depth, (int)img→pam.maxval);
16 write_image(argv[2], img);
17 free_image(img);
18 return EXIT_SUCCESS;
19 }

See Section 14.7 regarding the invocation details. Here is a line-by-line description of
image-io-test-0.c:

Line 5. We expect the program to be invoked with exactly two arguments, Thus, argc
should be 3 (see Section 4.7). Then argv[0] is the program’s name, argv[1] is
the name of the input image file, and argv[2] is the name of the output image file.
If argc is other than 3, we print a message to stderr and exit.

Line 11. As noted in Section 14.5, every libnetpbm program is expected to callpm_init()
to initialize the library. The first argument of pm_init() should be the name of
the program. The second argument is always zero.

Line 12. The function read_image() (see subsection 14.8.1) reads the image file cor-
responding to argv[1]. When it returns, everything about the image is stored in
the img structure.

Note the midblock declaration of struct image. This is permissible in C99
but not in C89. If you wish to reduce the code to C89, then insert a declaration
struct image *img; at the top of the block and change the current line to
img = read_image(argv[1]);.

Line 13. We print some of the image’s data as a feedback to the user. The value of depth
will be 1 in the case of a PGM image and 3 in the case of a PPM image.

Line 16. The function write_image() (see subsection 14.8.3) writes the image from
the img structure into the file corresponding to argv[2].

Line 17. We call the function free_image() (see subsection 14.8.5) to free all memory
resources associated with the image and then exit.

root
2014/7/8
page 131

�

�

�

�

�

�

�

�

14.10. Project Image I/O 131

14.10 Project Image I/O

Part 14.1. Complete, compile, and test the netpbm-minimal program of Section 14.6.

Part 14.2. In the preceding sections I gave the complete code for reading and writing
PGM images. Complete the image-io module by adding functionality to handle PPM
images. This requires implementing the functions read_ppm_pixel_data() and
write_ppm_pixel_data(); see lines 6 and 9 of Listing 14.4 on page 124. Modifi-
cations relative to the PGM image handling code are very slight. Figure 14.4 on page 120
should provide all the hints you need to get started.

Part 14.3. Compile and test your image-io-test-0 using some of the PGM and PPM images
that I have provided in the book’s website.46 For instance,

$./image-io-test-0 aya_matsuura.pgm z0.pgm
image is 512x512, depth=1, maxval=255

The program reads the image file aya_matsuura.pgm and writes the new image file z0.pgm.
Since we have not modified the image, the two files should be identical. You may apply
the Unix utility called cmp to verify that the files are indeed identical:

$ cmp aya_matsuura.pgm z0.pgm

If the files being compared are different, cmp prints the location of the first byte where a
difference occurs. If the files are identical, cmp exists silently.

Remark 14.8. It is not true in general that the input and output files of image-io-test-0
will be identical. In the description of image file formats—see, e.g., subsection 14.3.2—I
noted that an image’s header material may be interspersed with optional comments and
whitespace. Our read_image() function discards header comments as they are read.
Therefore two identical images need not have identical files since their header sections may
be different. Nevertheless, the image files in the book’s website contain no comments (ex-
cept for the one noted explicitly as such), and the whitespace in their headers is according
to what libnetpbm’s utilities create; therefore your aya_matsuura.pgm and z0.pgm should
be identical. If not, your program is buggy.

Part 14.4. [optional]Write a program file, image-io-test-1.c, that converts a (color) PPM
image to a (grayscale) PGM image. I suggest that you start with a copy of image-io-test-
0.c shown in Listing 14.10. Between reading the image (line 12) and writing the image
(line 16) insert

img→pam.format = RPGM_FORMAT;
img→pam.depth = 1;

This sets the image’s output format to raw PGM and the image’s depth to 1 because a
PGM image’s pixel values are identified by a single number. Now, loop over the image,
and at each pixel do

double avg = (img→r[i][j] + img→g[i][j] + img→b[i][j])/3.0;
img→g[i][j] = (int)(0.5 + avg);

On the first line, we compute the average of the pixel’s red, green, and blue values. The
average is not necessarily an integer; however, a PGM image expects integers for its pixel

46See Remark 14.3 on page 114.

root
2014/7/8
page 132

�

�

�

�

�

�

�

�

132 Chapter 14. Image I/O

values. Therefore, on the second line we cast the result to an int before assigning it to
img→g[i][j]. Note that casting a double to int discards the number’s fractional
part. Adding the 0.5 ensures proper rounding. For instance, if avg is 3.1, then 0.5+ 3.1
is 3.6, which, after discarding the fractional part, is reduced to 3. On the other hand, if
avg is 3.9, then 0.5+ 3.9 is 4.4, which, after discarding the fractional part, results in 4.
You will find an extended discussion of this in subsection 15.6.2 on page 141.

Your program will expect to be invoked with two arguments, as in

$./image-io-test-1 infile outfile

where infile is expected to be a PPM image. It should complain if it is invoked with
the wrong number of arguments or if the infile is not a PPM image. Here is what mine
does:

invoked with too few args
$./image-io-test-1
Usage: ./image-io-test-1 infile outfile
Reads PPM image from infile, writes averaged PGM image to outfile

infile is not a PPM image
$./image-io-test-1 aya_matsuura.pgm z1.pgm
./image-io-test-1: expected a PPM image in input

a normal run
$./image-io-test-1 aya_matsuura.ppm z1.pgm
input image is 512x512, depth=3, maxval=255

Part 14.5. [optional] As natural as the straight averaging of the RGB values may seem,
it does not work quite well. The fact is, the human eye is not equally sensitive to the
luminosity of the red, green, and blue colors. Experience shows that a weighted average,
with a larger weight attached to the green component, produces more natural-looking
results. Libnetpbm’s conversion routines mix the red, green, and blue in the 77 : 150 : 29
proportions, although this is not a hard and fast rule.

Copy image-io-test-1.c to image-io-test-2.c, and, noting that 77+150+29= 256, change
the averaging formula to

double avg = (77*img→r[i][j] + 150*img→g[i][j]
+ 29*img→b[i][j])/256.0;

Apply the program to convert the previous PPM image into a file z2.pgm. View and
compare the images z1.pgm and z2.pgm.

Part 14.6. [optional] The image viewing program Xv averages the red, green, and blue
colors in the 20:32:12 proportions. Copy image-io-test-2.c to image-io-test-3.c, and change
the averaging algorithm according to this. Apply the program to convert the previous
PPM image into a file z3.pgm. View and compare the images z1.pgm, z2.pgm, and z3.pgm.

Part 14.7. [optional] Copy image-io-test-0.c to image-io-test-4.c. Modify it so that it “ro-
tates” the colors of a PPM image. That is, it writes the red colors to the green matrix, the
green colors to the blue matrix, and the blue colors to the red matrix. View the resulting
image.

Part 14.8. [optional]Write a program file, image-io-test-5.c, that draws a black “X” over
an image’s diagonals. In an image of height h and width w, the diagonal D1 that goes from

root
2014/7/8
page 133

�

�

�

�

�

�

�

�

14.10. Project Image I/O 133

the northwest to the southeast is given by

D1 = {(i , j) : i = 0, . . . , h − 1, j = i(w − 1)/(h − 1)}.
Observe that when i = 0, we get j = 0, and when i = h − 1, we get j = w − 1, as
expected. Note, however, that since i , h, and w are integers, the proper C encoding of the
formula is

int j = 0.5 + (double)i*(w-1)/(h-1);

You figure out how to do the other diagonal. See Part 14.4 for an explanation of the
extra 0.5.

root
2014/7/8
page 135

�

�

�

�

�

�

�

�

Chapter 15

Image analysis

Prerequisites: Chapters 7, 8, 13, 14

15.1 Introduction
In Chapter 14 we saw how to import a PGM or PPM image as a matrix of pixels. In
Chapter 13 we saw how to apply the Haar wavelet transform to express a matrix in terms
of the Haar wavelet basis. In this chapter we bring these techniques to their natural con-
clusion by applying the Haar wavelet transform to an image. This decomposes the image
into a sum of progressively finer wavelets. The very fine wavelets tend to have very small
coefficients because they measure the differences between the image’s nearby pixels. In
an ordinary photograph, say of a person’s face, the differences between adjacent pixels are
small, in general, because the texture and coloration vary smoothly. The cheeks, chin,
and the forehead tend to be wide expanses of slowly varying pixels. There are exceptions,
however. For instance, a finely knitted sweater, or distinctively combed hair, may exhibit
significant variations even at the pixel scale. In any case, even in images containing fine
textures, most of the coefficients of the finer wavelets tend to be very small. Figure 15.1
shows a 512×512 grayscale image47 on the right. The two graphs on the left show the ab-
solute values of the image’s wavelet coefficients, sorted in decreasing order in size. Thus,
the horizontal axis enumerates the coefficients (these go from 1 to 512× 512 = 262,144)
and the vertical axis is their magnitudes. The graph on the top shows the full range of the
over quarter million coefficients. You can hardly see anything there because essentially
all the coefficients are practically zero, and thus the graph coincides with the horizontal
axis. If you look very closely, you may discern a slight rounding near the origin. That’s
all there is to be seen of the graph. In the bottom graph I have expanded the horizontal
range 1, . . . , 80 of the upper graph to zoom into the details near the origin. The very first
coefficient is approximately 115. The next few are approximately 42, 41, 21, 16, 14, and
they drop rapidly after that.

This raises an intriguing question: What if we keep the first few thousand significant
wavelet coefficients and discard the rest? Reconstructing the image from the retained co-
efficients should yield a relatively faithful representation of the image since the discarded
ones are too small to matter.

47Actually the image that you see in the book has been reduced to fit the page. The actual image I analyzed
was 512× 512.

135

root
2014/7/8
page 136

�

�

�

�

�

�

�

�

136 Chapter 15. Image analysis

Figure 15.1: On the right we see a 512× 512 grayscale image. The graphs on the left
show the absolute values of the image’s Haar wavelet coefficients, sorted
in decreasing order in size. The upper graph shows all of the 512× 512=
262,144 coefficients, while the lower graph zooms into the first 80. There
is hardly anything visible in the upper graph because the points mostly
coincide with the coordinate axes. In the zoomed lower graph we see the
largest coefficient, which is approximately 115, as an isolated dot at the top
of the vertical axis. The next few coefficients are approximately 42, 41, 21,
16, and 14. Photograph courtesy of Stockvault.

It is this chapter’s objective to investigate that question. Experimenting with close-up
images of human faces, we find out that retaining around 5 percent of the largest wavelet
coefficients suffices to recreate an image which is hardly distinguishable from the original.
This observation has practical implications. For one thing, we may save a good deal of
storage space by storing a small fraction of the wavelet coefficients instead of a full image.
More importantly, if we are willing to accept a slightly deteriorated image, we may save
substantially in network transmission time and broadcast bandwidth if we send only the
significant wavelet coefficients. All that is needed is a Haar wavelet transformation and
truncation at the sending end and an inverse Haar wavelet transformation at the receiving
end. Most videos that you watch on the Internet are brought to you this way.

This chapter’s program reads a PGM or PPM image, applies the Haar wavelet trans-
form to it, and then discards as many of the smallest wavelet coefficients as possible, while
keeping the truncation error below a prescribed threshold. It then reconstructs the im-
age from the remaining wavelets and writes it out to a file. Since the wavelet techniques
that we developed in Chapter 13 work with matrices whose dimensions are powers of 2,
this chapter’s program handles images whose dimensions are powers of 2. Images of arbi-
trary sizes may be cropped or padded to make them conform to this requirement.

Remark 15.1. The word “discard” can be somewhat ambiguous in this context, so let
me clarify. By “discarding a coefficient” I mean setting it to zero. Afterward, when the
image is reconstructed as a sum of the products of the coefficients and the correspond-
ing wavelets, a zeroed coefficient does not contribute to the sum; therefore in effect it is
“discarded”.

Remark 15.2. Applying the wavelet transform to an image’s matrix and discarding
the small entries leaves us with a sparse matrix, that is, a matrix whose vast majority of

root
2014/7/8
page 137

�

�

�

�

�

�

�

�

15.2. The truncation error in a grayscale image 137

entries are zero. The sparse matrix storage techniques of Chapter 11 may be applied quite
profitably here to store such transformed and truncated images, but I will not pursue that
issue here. You may find it instructive to explore the idea on your own.

15.2 The truncation error in a grayscale image
We saw in Chapter 13 that the wavelet bases are orthonormal sets; therefore, if a = (ai j)

are the entries of a grayscale image’s wavelet coefficients, then ‖a‖ = �∑
i , j a2

i j

1/2 is a
norm on the space of grayscale images. The absolute error after dropping all coefficients
below a threshold t is eabs(t) =

�∑
|ai j |≤t a2

i j

1/2. The numerical value of the absolute error
by itself, however, is not of much interest. The relative error erel(t) = eabs(t)/‖a‖ is much
more illuminating since it puts the size of the truncation error in context. The relative
error is a number between 0 and 1.

Our program receives a grayscale image and a user-specified relative error êrel in the
interval [0,1]. It proceeds to determine the cut-off threshold t̂ so that erel(t̂) = êrel, or
equivalently,

eabs(t̂) = ‖a‖êrel.

The most obvious way of finding t̂ is through the bisection algorithm (or bisection method;
see, e.g., [4, 33]). Here is how:

1. Sweep through the matrix a to find the largest and smallest values of |ai j |. Call them
max and min. While you are at it, also compute ‖a‖.

2. The cut-off threshold t̂ lies somewhere in the interval [min,max]. As an initial
guess, pick t at the midpoint, that is, t = (max+min)/2.

3. Evaluate the truncation error eabs(t) =
�∑

|ai j |≤t a2
i j

1/2 corresponding to that cut-
off value.

4. There are three cases:

(a) Case eabs(t) = ‖a‖êrel: We have found just the right t . Stop.
(b) Case eabs(t) > ‖a‖êrel: We are truncating too much. Set max = t , and go to

step 2.
(c) Case eabs(t) < ‖a‖êrel: We are truncating too little. Set min = t , and go to

step 2.

In each iteration step, the length of the search interval is cut in half; therefore the iteration
will converge in a few steps. Or will it?

Unfortunately, chances are excellent that the iteration described above never will ter-
minate. The problem lies in the stopping criterion in step 4(a). Actually there are two
problems with that step. First, a comparison of floating point numbers for equality
is inherently problematic since most numbers have no exact representation as floating
numbers. A minuscule floating point rounding here and there may throw off the equal-
ity. Second, even in the absence of floating point rounding, we don’t expect the equality
eabs(t) = ‖a‖êrel ever to be satisfied in general. The eabs(t) is computed as a discrete sum of
terms. Adding or taking away an extra term is likely to move the sum from just below
‖a‖êrel to just above it. There may be no combination of ai j terms that hits the target
exactly.

The way to fix things is to change the stopping criterion in step 4(a) to something
with more certainty. We know that the length of the search interval is halved in every

root
2014/7/8
page 138

�

�

�

�

�

�

�

�

138 Chapter 15. Image analysis

step, so let’s stop if that length is smaller than a small fraction of the image’s norm, as in
max−min < ε‖a‖, and set ε arbitrarily to something small, like 10−6. In summary, we
change the stopping condition in step 4(a) to

4(a)’: Stop if max−min< ε‖a‖.
Remark 15.3. Although the definitions of the norm and the absolute error involve
square roots, there is no need for computing square roots at all in the algorithm described
above. For instance, the condition eabs(t) > ‖a‖êrel is equivalent to eabs(t)

2 > ‖a‖2 ê2
rel,

which involves no square roots.

15.3 The truncation error in a color image
In Chapter 14 we encoded a PPM image as a superposition of three matrices of the image’s
red, green, and blue intensities. Therefore we may apply the Haar wavelet transform
to each of the three matrices, truncate them in conformance to the prescribed relative
error êrel, and then reconstruct the approximate image from the set of remaining wavelet
coefficients. In that respect, color images offer no new challenges. There is a subtle issue
to account for, however.

Truncating the three color matrices independently of each other can distort the im-
age’s color balance. This is because a pixel’s blue component, for instance, may be elim-
inated while its red component survives. To remain faithful to the original colors, we
should change a pixel’s RGB colors in unison. Here is what I suggest. Let ri j , gi j , bi j be
the entries of the (wavelet transformed) red, green, and blue matrices. Create a composite
matrix, let’s call it T , such that T 2

i j =
1
3 (r

2
i j + g 2

i j +b 2
i j). That is, Ti j is the root mean square

of ri j , gi j , bi j . Truncate the matrix T in conformance to the prescribed relative error êrel,
just as if it represented a grayscale image. For any Ti j that gets dropped in the process,
drop all three of the corresponding ri j , gi j , bi j entries.

15.4 Image reconstruction
At this point we have discarded an image’s wavelet coefficients that fall below a certain
threshold. Now we apply the inverse wavelet transform to the truncated coefficients to
construct an approximation to the original image.

There is a slight complication here that requires our attention. Let’s say that the orig-
inal image’s pixel values (color or grayscale) range from 0 to M . If we apply the wavelet
transform to the image, followed by the inverse wavelet transform, without modifying
anything in between, the reconstructed image will be identical to the original, and of
course the reconstructed pixel values will be integers in the 0 to M range. However, if we
modify the transformed matrix, as we do when we discard some of its coefficients, there
is no guarantee that the pixel values of the reconstructed image will be integers, nor that
they will fall in the 0 to M range. The result would be an illegal PGM or PPM image in
general.

In practice, we find that only a handful of the hundreds of thousands of pixel values
fall outside the 0 to M range. We treat them by brute force. If a pixel value has fallen
below zero, we set it to zero. If it exceeds M , we set it to M . If it is not an integer,
we round it to the nearest integer. These are done in the clip_matrix() function in
subsection 15.6.2.

root
2014/7/8
page 139

�

�

�

�

�

�

�

�

15.5. The program 139

Listing 15.1: The transcript of an interactive session with this chapter’s program. If invoked with
too few or improper arguments, it prints a usage message to stderr and exits. The
image file profile.pgm is available at the book’s website.

$./image-analysis
Usage: ./image-analysis rel_err infile outfile

0.0 ≤ rel_err ≤ 1.0
1. Reads a PGM or PPM image from infile
2. Applies the Haar wavelet transform
3. Sets as many of the smallest wavelet coefficients to zero

as possible while keeping the relative error
(in the L^2 norm) just under rel_err

4. Reconstructs image with the truncated coefficients and
writes to outfile

$./image-analysis 0.05 profile.pgm profile-05.pgm
zeroed 258548 of 262144 wavelet coefficients, 3596 remaining

15.5 The program
This chapter’s program relies on the image-io module (Chapter 14) for reading and writing
images, the wavelet module (Chapter 13) for the Haar wavelet transform, the xmalloc
module (Chapter 7) for memory allocation, and the array.h header file (Chapter 8) for
making vectors and matrices. Therefore, following the suggestions in Chapters 2 and 6,
this project’s directory will look like this:

$ cd image-analysis
$ ls -F
Makefile image-analysis.c image-io.h@ wavelet.h@ xmalloc.h@
array.h@ image-io.c@ wavelet.c@ xmalloc.c@

The program is contained entirely in the file image-analysis.c, to be detailed below, and
compiles into an executable named image-analysis. It is expected to be invoked as in

$./image-analysis 0.12 infile outfile

The infile is the name of an existing PGM or PPM file; the 0.12 says that we want to
truncate the image’s wavelet coefficients with a relative error of 0.12, that is, 12 percent.
The program does that, constructs an image with the truncated coefficients, and writes
it into the file outfile. The file names can be anything, but beware that the output will
overwrite a file with the same name as the outfile, if one exists. The relative error can
be anything from 0.0 to 1.0.

Listing 15.1 shows the transcript of an interactive session. If the program is invoked
with too few or improper arguments, it prints a usage message to stderr and exits. Oth-
erwise it does what is expected of it and prints out a brief statistics regarding its operation.

15.6 The implementation of image-analysis.c
Listing 15.2 gives an outline of the file image-analysis.c. I have left out the headers to let
you figure out what to include. I will describe the details of the rest of the outline in the
following subsections.

root
2014/7/8
page 140

�

�

�

�

�

�

�

�

140 Chapter 15. Image analysis

Listing 15.2: An outline of the file image-analysis.c.

1 � #include ...
2 � static int prune_matrix(double **a, int m, int n, double rel_err) ...
3 � static void clip_matrix(double **a, int m, int n, int M) ...
4 � static void reduce_pgm_image(struct image *img, double rel_err) ...
5 � static void reduce_ppm_image(struct image *img, double rel_err) ...
6 � void show_usage(char *progname) ...
7 � int main(int argc, char **argv) ...

15.6.1 The function prune_matrix()

The function prune_matrix() that appears on line 2 of Listing 15.2 receives a pointer
a to an m× n matrix and a relative error, 0.0 ≤ rel_err ≤1.0, which is what was
called êrel in Section 15.2. It implements that section’s bisection algorithm to find the
cut-off threshold corresponding to êrel. It then zeroes all of the matrix’s entries that fall
below the threshold and returns the count of the zeroed entries to the caller.

I will describe the workings of the function prune_matrix() in words and leave it
to you to convert it to C code. You should read and understand Section 15.2 in order to
be able to follow these instructions.

1. Find the values maximum, max, and minimum, min, of the absolute values of
a[i][j]. Also compute norm2, which is square of the norm, that is, ‖a‖2.
Hint: Let min = max = fabs(a[0][0]); and norm2 = 0.0;. Scan the
matrix’s entries in a doubly nested for-loop, and adjust max, min, and norm2
as you go along.

Important: C has at least two functions for computing absolute values. The func-
tion abs() computes the absolute value of a number of integer type. The function
fabs() computes the absolute value of a number of floating point type. Carelessly
confusing the two can lead to nasty and hard-to-spot bugs in your code. Be on guard
when using abs() and fabs()!

Note: The function abs() is declared in stdlib.h, while fabs() is declared in
math.h. Do #include<stdlib.h> to use abs() and #include<math.h>
to use fabs(). In particular, in the case of fabs() you may have to link explic-
itly with the standard mathematics library through the “-lm” flag, as is the case with
gcc on Linux. If you are working on a Unix or Unix-like system, information such
as this is at your fingertips in your system’s man pages. Type, for instance

$ man 3 fabs

to read all about fabs(). The “3” specifies Section 3 of the man pages. Section 3
is the repository of the system’s documents on programming libraries. Type

$ man man

to learn about the organization of the man pages.
2. We wish to find t so that eabs(t) = ‖a‖êrel, that is, eabs(t)2 = ‖a‖2 ê2

rel. We have com-
puted ‖a‖2 and are given êrel; therefore we may calculate ‖a‖2 ê2

rel. Call itabs_err2.
You will need it in the next step.

3. Everything is all set to implement Section 15.2’s bisection algorithm for the cut-off
threshold t . Do it.

root
2014/7/8
page 141

�

�

�

�

�

�

�

�

15.6. The implementation of image-analysis.c 141

4. Now that we have t , scan the matrix and, wherever |ai j |< t , change it to zero. Keep
a count of the number of zeroed entries.

5. Return the number of zeroed entries to the caller.

15.6.2 The function clip_matrix()

The function clip_matrix() that appears on line 3 of Listing 15.2 receives a pointer a
to an m×n matrix which represents (approximately) the pixel values of a grayscale image
or one of the red, green, and blue pixel values of a color image. The matrix that arrives
here has been constructed through applying the inverse wavelet transform and may not
exactly conform to the requirements of a PGM or PPM image. Specifically, its entries are
not necessarily integers, and their values are not necessarily in the 0 to M range as they
are supposed to be if they were properly formed. The clip_matrix() function imple-
ments Section 15.4’s recommendations for bringing the matrix a into conformance with
the requirements of Netpbm. I will describe what it does in words and leave it to you to
convert it to C code. You should read and understand Section 15.4 in order to be able to
follow these instructions.

The function clip_matrix() scans the matrix a:

1. if ai j < 0, it sets ai j to zero;

2. else if ai j >M , it sets ai j to M ;

3. else, it rounds ai j to the nearest integer.

This should be straightforward except possibly for the “round to the nearest integer” part.
Since this issue comes up frequently in programming, I will explain the solution as a stand-
alone idea so that other chapters may refer to it.

Rounding a floating point number to an integer. Casting a floating point number
to an integer type in C discards the number’s fractional part. For instance, (int)3.1
yields 3 and (int)(-3.1) yields -3. We see that the casting mechanism rounds floating
point numbers “toward zero”.

This property may be adapted to achieve rounding “toward the nearest integer” through
the very common “0.5 trick” as follows. Suppose x = 3.1 and y = 3.9. We see
that

(int)(x + 0.5) = (int)3.6 = 3 // 3.1 is rounded to 3
(int)(y + 0.5) = (int)4.4 = 4 // 3.9 is rounded to 4

To round negative numbers “toward the nearest integer”, we subtract 0.5. Thus, if
x = -3.1 and y = -3.9, we see that

(int)(x - 0.5) = (int)(-3.6) = -3 // −3.1 is rounded to −3
(int)(y - 0.5) = (int)(-4.4) = -4 // −3.9 is rounded to −4

Remark 15.4. As an alternative to this “homemade” rounding trick, you may consider
the C standard library’s lrint() function, introduced in C99, which works equally well
with negative and positive numbers. Thus, lrint(3.1) yields 3 and lrint(-3.9)
yields -4. I continue using the “0.5 trick” out of a force of habit.

root
2014/7/8
page 142

�

�

�

�

�

�

�

�

142 Chapter 15. Image analysis

Listing 15.3: The function reduce_pgm_image().

1 static void reduce_pgm_image(struct image *img, double rel_err)
2 {
3 int m = img→pam.height;
4 int n = img→pam.width;
5 int M = img→pam.maxval;
6 int zero_count;
7 haar_transform_matrix(img→g, m, n, WT_FWD);
8 zero_count = prune_matrix(img→g, m, n, rel_err);
9 haar_transform_matrix(img→g, m, n, WT_REV);

10 clip_matrix(img→g, m, n, M);
11 fprintf(stderr, "zeroed %d of %d wavelet coefficients, %d remaining\n",
12 zero_count, m*n, m*n - zero_count);
13 }

15.6.3 The function reduce_pgm_image()

The function reduce_pgm_image() that appears on line 4 of Listing 15.2, receives
a pointer img to a “struct image” and a rel_err number in the range [0,1]. It
expects that img points to a PGM image. (It doesn’t check for this!) Here is what it does:

1. applies haar_transform_matrix() (with the WT_FWD flag) to the image’s ma-
trix;

2. applies prune_matrix() to zero those matrix entries that fall below the cut-off
threshold corresponding to the prescribed relative error rel_err;

3. applies haar_transform_matrix() (with the WT_REV flag) to reconstruct the
image from the truncated coefficients;

4. applies clip_matrix() to bring the matrix’s entries into conformance with the
PGM’s requirements; and

5. prints a brief report on the number of coefficients that were zeroed.

Listing 15.3 shows my implementation of the function.

15.6.4 The function reduce_ppm_image()

The function reduce_ppm_image() that appears on line 5 of Listing 15.2 receives
a pointer img to a “struct image” and a rel_err number in the range [0,1]. It
expects thatimg points to a PPM image. (It doesn’t check for this!) It performs exactly the
same tasks as the reduce_pgm_image() function described above, so I won’t repeat
them. However, you will need to read Section 15.3 carefully regarding the construction
of the T matrix because that’s what will be sent to prune_matrix() for truncation.

15.6.5 The function show_usage()

The function show_usage() that appears on line 6 of Listing 15.2 prints a brief help
about how to invoke the program. You can see the output of my implementation’s
show_usage() in Listing 15.1. It is more detailed than is customary in such things,
but I was driven to it because despite having worked with this program for many years,
I tend to forget the meanings of its command-line arguments and what the program is
meant to do. The show_usage() prints a little handy reminder.

root
2014/7/8
page 143

�

�

�

�

�

�

�

�

15.6. The implementation of image-analysis.c 143

Listing 15.4: The function main() in its entirety. The midblock declarations on lines 20 and 21
are allowed in C99 but not in C89. If you wish to reduce the code to C89, then follow
the instructions regarding Line 12 on page 130.

1 int main(int argc, char **argv)
2 {
3 char *infile, *outfile, *endptr;
4 double rel_err;
5

6 if (argc �= 4) {
7 show_usage(argv[0]);
8 return EXIT_FAILURE;
9 }

10 rel_err = strtod(argv[1], &endptr);
11 if (*endptr �= ’\0’ || rel_err < 0.0 || rel_err > 1.0) {
12 fprintf(stderr, "*** the rel_err argument should be "
13 "between 0.0 and 1.0\n");
14 return EXIT_FAILURE;
15 }
16 infile = argv[2];
17 outfile = argv[3];
18

19 pm_init(argv[0], 0);
20 struct image *img = read_image(infile);
21 struct pam *pam = &img→pam;
22 if (pam→format == PGM_FORMAT || pam→format == RPGM_FORMAT)
23 reduce_pgm_image(img, rel_err);
24 else if (pam→format == PPM_FORMAT || pam→format == RPPM_FORMAT)
25 reduce_ppm_image(img, rel_err);
26 else {
27 fprintf(stderr, "*** file %s, line %d: shouldn’t be here\n",
28 __FILE__, __LINE__);
29 return EXIT_FAILURE;
30 }
31

32 write_image(outfile, img);
33 free_image(img);
34 return EXIT_SUCCESS;
35 }

15.6.6 The function main()

The function main() that appears on line 7 of Listing 15.2 is the driver of the other
functions that have been discussed up to this point. It parses the command-line for the
user-specified relative error and the input and output file names. It reads the image from
the input file into a “struct img”, detects the type of the image (PGM or PPM), and
then dispatches the images to reduce_pgm_image() or reduce_ppm_image() for
processing. Subsequently, it writes the modified image into the output file and exits. List-
ing 15.4 shows my implementation of main(). I will proceed to describe some of its
more subtle points.

Line 6. We expect the program to be invoked with three arguments (see Section 15.5);
therefore argc should be 4.

root
2014/7/8
page 144

�

�

�

�

�

�

�

�

144 Chapter 15. Image analysis

Lines 10–17. The user-specified relative error is in argv[1] as a string. Here we apply
the standard library’s strtod() function (see Chapter 5) to extract its numerical
value.

Line 19. This initializes the libnetpbm library. See Section 14.5 for explanation.

Line 20. We call read_image() (see subsection 14.8.1) to read the image file that’s
given on the command-line.

Line 21. There are frequent references to img→pam in the rest of the code. We define a
shorthand here to reduce clutter. (We did the same in many place in Chapter 14.)

Lines 22–30. The meanings of preprocessor symbols PGM_FORMAT, etc., are described
in Section 14.5. Here we test for the image type. If it is a plain PGM or raw PGM,
we invoke reduce_pgm_image(). If it is a plain PPM or raw PPM, we invoke
reduce_ppm_image(). Otherwise we print an error message and exit because
we are not equipped to handle other types of images.

On line 27 I say “shouldn’t be here” and I mean it. The function read_image()
(see subsection 14.8.1) checks for the image type. If anything other than a PGM or
PPM, it prints an error message and exits the program. Therefore, if the program
is functioning correctly, line 27 cannot be reached. If it is reached, then there is a
bug.

Lines 32–34. We are done with image processing. We call write_image() (see sub-
section 14.8.3) to write the reconstructed image to the specified output file, free the
allocated memory, and exit.

15.7 Project Image Analysis
Complete the file image-analysis.c, compile, and test. You will find several PGM and PPM
images in the book’s website for your tests. For your reference, Figure 15.2 shows the
results I obtained on the 512×512 PGM image, profile.pgm. The unaltered image is shown
in Figure 15.1 on page 136.

Observe that the image obtained by setting êrel = 0.05 has suffered only a minor dete-
rioration relative to the original. Also observe that it is constructed as a sum of only 3,596
wavelets, while the original image is a sum of 512× 512 = 262,144 wavelets. In a sense,
the wavelet analysis of the image has achieved a compression ratio of 262,144/3,596≈ 73.

root
2014/7/8
page 145

�

�

�

�

�

�

�

�

15.7. Project Image Analysis 145

êrel = 0.03, nonzero coeffs = 13,163 êrel = 0.05, nonzero coeffs = 3,596

êrel = 0.07, nonzero coeffs = 1,163 êrel = 0.09, nonzero coeffs = 489

Figure 15.2: Results of four experiments with the image profile.pgm. The unaltered im-
age is shown in Figure 15.1. Original image courtesy of Stockvault.

root
2014/7/8
page 147

�

�

�

�

�

�

�

�

Chapter 16

Linked lists

Prerequisite: Chapter 7

16.1 Linked lists
A linked list is a data structure consisting of objects called nodes, where each node con-
sists of a pointer to user-supplied data and a pointer to the next node, as shown in this
schematic diagram:

list

data data

· · ·

data

NULL

The last node has no successor; therefore its next-node pointer is NULL. Access to the
linked list is provided through a pointer to the first node—it’s markedlist in the diagram
above, but you may name it anything you wish. Beginning with list, we may hop from
a node to the next following the next-node pointers and thus traverse the entire list. When
we arrive at NULL, we know we’re at the end. The C idiom for traversing a linked list is

for (p = list; p �= NULL; p = p→next {
... do whatever with p ...

}

where p has the type of a “pointer to node”.
Linked lists are particularly useful when dealing with collections of variable size. For

instance, in the evolution model of Chapter 17 we keep track of the “animals” in the
simulated world by chaining them into a linked list. When an animal dies, we remove the
corresponding node from the list. When an animal is born, we insert a node in the list.
Thus, the linked list shrinks and expands as the animal population changes.

C has no standardized linked lists facility. Some other languages do. The containers
library in C++, for instance, provides extensive support for linked lists. The Lisp pro-
gramming language and its derivatives have linked lists as their primary data types. (The
name “Lisp” is derived from “List processing”.) This chapter’s algorithms for manipulat-
ing linked lists are influenced by Lisp and Lisp idioms.

147

root
2014/7/8
page 148

�

�

�

�

�

�

�

�

148 Chapter 16. Linked lists

In the Lisp jargon, a node is called a cons cell48, and that’s what we will call it here to
carry on the tradition. A cons cell is very simple object; it is a pair of pointers, one of
which points to data and the other points to another cons cell. We introduce a new type,
a conscell, using C’s typedef mechanism:

typedef struct conscell {
void *data;
struct conscell *next;

} conscell;

data

next

The structure’s datamember is a void pointer which is—as all void pointers are—capable
of pointing to objects of any type; see the discussion of void pointers in Section 4.3. The
structure’s next member points to a “struct conscell” and thus enables the chain-
ing of cons cells.

16.2 The program
The goal of this chapter is to implement a linked lists module which is made up of an
interface file, linked-list.h, shown in its entirety in Listing 16.1, and an implementation
file, linked-list.c, which I will present in fragments in the rest of this chapter. It is your job
to assemble the pieces and complete linked-list.c.

The module consists of a suite of functions for manipulating linked lists. The purpose
and implementation of each function is explained in the individual sections below. Ad-
ditionally, each section offers a suggested driver (files test[1–7].c) to exercise that function
and presents a transcript of a sample interactive session to serve you as a guide. The Xmal-
loc module of Chapter 7 is used throughout for allocating memory. Therefore, following
the suggestions of Chapters 2 and 6, this project’s directory will look like this:

$ cd linked-lists
$ ls -F
Makefile test1.c test4.c test7.c xmalloc.c@
linked-list.c test2.c test5.c test8.c xmalloc.h@
linked-list.h test3.c test6.c test9.c

All function names in this module begin with a leading ll_ as a way of identifying
them with the linked lists module. This is a customary way of naming a suite of related
functions in C.

16.3 The function ll_push()

The function ll_push() that appears on line 7 of Listing 16.1 is the simplest and most
basic of this chapter’s suite of list manipulation functions. Its purpose is to prepend a
node, that is, a cons cell, to a linked list. Specifically, it receives a pointer to a list and a
pointer to some data. It creates a new cons cell and makes its data member point to the
given data and its next member point to the list’s head. It returns the address of the cons
cell, which is now the head of the linked list. Listing 16.2 shows the function’s self-evident
implementation. Study it closely, and then insert it in your linked-list.c.

48That name is derived from construct or constructor.

root
2014/7/8
page 149

�

�

�

�

�

�

�

�

16.3. The function ll_push() 149

Listing 16.1: The header file linked-list.h provides the interface of the linked lists module.

1 #ifndef H_LINKED_LISTS_H
2 #define H_LINKED_LISTS_H
3 typedef struct conscell {
4 void *data;
5 struct conscell *next;
6 } conscell;
7 conscell *ll_push(conscell *list, void *data);
8 conscell *ll_pop(conscell *list);
9 void ll_free(conscell *list);

10 conscell *ll_reverse(conscell *list);
11 conscell *ll_sort(conscell *list,
12 int (*cmp)(const void *a, const void *b, void *params),
13 void *params);
14 conscell *ll_filter(conscell *list,
15 int (*filter)(const void *a),
16 conscell **removed);
17 int ll_length(conscell *list);
18 #endif /∗ H_LINKED_LISTS_H */

Listing 16.2: The function ll_push() in linked-list.c prepends a node to a linked list.

1 conscell *ll_push(conscell *list, void *data)
2 {
3 conscell *new = xmalloc(sizeof *new);
4 new→data = data;
5 new→next = list;
6 return new;
7 }

16.3.1 A demo of ll_push(): test1.c

The file test1.c in Listing 16.3 provides a driver demonstrating a typical use ofll_push().
It begins with an empty linked list, then pushes four items into it, and then scans the list
and prints the data values stored in it. Let’s go through the code line by line:

Line 5. The list variable declared here points to the first element of our linked list. It
is initialized to NULL, indicating that the list is empty, i.e., it has no nodes.

Line 6. A few arbitrary numbers are introduced here to serve as data in our demonstra-
tion.

Line 7. We pass the address of the first number, &a, toll_push(), which creates a cons
cell and prepends it to the list and returns the address of the updated list. We update
the value of list by assigning the new address to it. The next three lines repeat
the process with &b, &c, and &d.

Line 12. We traverse the list and print the data stored in it. Since the data pointers are
void pointers, they cannot be dereferenced as they are; that’s the reason for casting
p→data to (int *) before dereferencing.

root
2014/7/8
page 150

�

�

�

�

�

�

�

�

150 Chapter 16. Linked lists

Listing 16.3: File test1.c provides a demo of ll_push(). It begins with an empty linked list and
then pushes four items into it.

1 #include <stdio.h>
2 #include "linked-list.h"
3 int main(void)
4 {
5 conscell *list = NULL; // an empty list
6 int a = 101, b = -45, c = 1000, d = 12;
7 list = ll_push(list, &a);
8 list = ll_push(list, &b);
9 list = ll_push(list, &c);

10 list = ll_push(list, &d);
11 printf("the original linked list:\n");
12 for (conscell *p = list; p �= NULL; p = p→next)
13 printf("%d ", *(int *)p→data);
14 putchar(’\n’);
15 return 0;
16 }

We compile the program into an executable called test1 and run it. We get

$./test1
the original linked list:
12 1000 -45 101

Note the reversed order relative to the original a, b, c, and d. Can you explain why that
happens?

Remark 16.1. Don’t take the program in test1.c as a finished product. A well-behaved
program will free all allocated memory before it exits. This one doesn’t. You may want
to return here and fix test1.c after you read about ll_free() in Section 16.5.

16.4 The function ll_pop()

The function ll_pop() that appears on line 8 of Listing 16.1 is almost an inverse of
ll_push()—it removes a linked list’s head node. Specifically, it frees the memory allo-
cated previously for that node’s cons cell and returns the address of the list’s new head.
We design ll_pop() so that it is safe to call it with an empty list; since there are no nodes
to remove, it will do nothing. Generally, the function is used as

list = ll_pop(list);

After popping a node, the associated data becomes inaccessible. Grab and save the data if
you are going to need it. If you have explicitly allocated memory for the data, it is your
responsibility to free that memory before you pop the node. The function ll_pop()
itself has no knowledge of the nature of data that the cons cell points to.

Write an implementation of ll_pop()—it’s not hard—and add it to your linked-list.c.

16.4.1 A demo of ll_pop(): test2.c

Copy test1.c to test2.c, and add code to pop two nodes then print the result. Then pop
three more nodes and print the result. Here’s what mine says:

root
2014/7/8
page 151

�

�

�

�

�

�

�

�

16.5. The function ll_free() 151

$./test2
the original linked list:
12 1000 -45 101
the list after popping two nodes:
-45 101
the list after popping three more nodes:

The last step prints nothing because the list is empty. Note that applying ll_pop()
five times to a linked list of four nodes is permissible according to our specifications of
ll_pop().

16.5 The function ll_free()

The function ll_free() that appears on line 9 of Listing 16.1 frees the memory allo-
cated for all the cons cells of a linked list. Normally you will apply ll_free() to a linked
list when you are done with it.

Have in mind that ll_free() has no knowledge of the nature of the data that the
list’s nodes point to. If you have explicitly allocated memory for the data, you will have
to traverse the list and free that memory before calling ll_free().

Here is a possible implementation of ll_free():

void ll_free(conscell *list) // version 1: iterative
{

while (list �= NULL) {
conscell *p = list→next; // remember the next node
free(list); // free the head node
list = p; // produce a shorter list

}
}

Note the delicate “tap dance” there. If we free a node prematurely, we will lose its next-
node pointer and therefore will be cut off from the rest of the list. The trick is to look
one node ahead and save its address before freeing the current node.

The implementation above is an iterative algorithm—it walks through the linked list
in a while-loop and performs an operation on each node until it reaches the end. Al-
ternatively, ll_free() may be implemented in a recursive algorithm that takes quite a
different point of view. I will describe the very Lisp-ish algorithm in words first:

1. If the list is empty, then there is nothing to do.
2. Otherwise detach and free the head node and apply ll_free() to the rest of the

list.

Here is the C implementation of that algorithm. Note that in contrast to the iterative
version, this one has no explicit looping constructs at all!

void ll_free(conscell *list) // version 2: recursive
{

if (list �= NULL) {
conscell *p = list→next; // remember the next node
free(list); // free the head node
ll_free(p); // recurse: free the rest of the list

}
}

root
2014/7/8
page 152

�

�

�

�

�

�

�

�

152 Chapter 16. Linked lists

Choose one or the other implementation of ll_free(), and insert it in your linked-
list.c. They have equivalent effects, so the choice does not matter for our purposes, but it
would be an excellent idea if you tried both methods for the sake of experimentation.

16.5.1 A demo of ll_free(): test3.c

Copy test1.c to test3.c. Add code to free the linked list before exiting, and print what it
does, as in

ll_free(list);
printf("linked list memory freed\n");

Here is what mine says:

$./test3
the original linked list:
12 1000 -45 101
linked list memory freed

Remark 16.2. The ll_free() function frees the memory allocated for a linked list’s
cons cells. It does nothing to free the memory allocated, if any, for the corresponding
data. It is the programmer’s responsibility to free all memory associated with the data
before calling ll_free(). To make this chapter’s examples as simple as possible, I have
limited the sample data to numerical values that require no memory allocation and there-
fore no freeing. In the more practical instances that we will encounter in the future chap-
ters, memory for data is always allocated and must be freed.

Remark 16.3. After ll_free(list) returns, the value of list is meaningless; it
points to an area of memory that no longer belongs to you, and of course you should not
even consider referring to it. Generally this is not a problem—why would you want to
refer to a nonexistent list, anyway?—but some programmers derive comfort from setting
the value of a freed pointer to NULL. If that’s what you want, then you will have to set
list = NULL explicitly after ll_free(list) returns.

Alternatively, you may redesign ll_free() completely so that instead of list, it
takes the list’s address, as in ll_free(&list), for argument. It this way it will know
where list is stored, and therefore it will be able to set it to NULL before it returns, thus
freeing the caller from the concern of NULL-ing the pointer explicitly. Hanson [26], for
instance, takes this approach.

16.6 The function ll_reverse()

You have observed that when we assemble a linked list one node at a time, the list comes
out in the reverse order of the insertions. This is not of concern in many cases, but in a
few cases where it is, we should like to be able to reverse the order of the nodes of a given
list. The function ll_reverse() that appears on line 10 of Listing 16.1 on page 149
does exactly that. It receives a list and returns the address of the reversed list:

list = ll_reverse(list);

An algorithm for ll_reverse() may not be immediately obvious—I know, it wasn’t
obvious to me the first time I thought about it—but once you see it, it turns out to be
absolutely trivial. I urge you, therefore, to stop reading now and spend a few minutes
thinking about how you would go about reversing a linked list. After you figure it out (or
if you give up) come back and read on.

root
2014/7/8
page 153

�

�

�

�

�

�

�

�

16.7. The function ll_sort() 153

The idea is this: think of two lists, list1 which is the original one, and list2 which is
initially empty. Remove the first node from list1, and prepend it to list2. Repeat until
list1 is exhausted. Then list2 is the desired reversed list. Return list2 to the caller. Done.

Write an implementation of the ll_reverse(), and add it to your collection in
linked-list.c.

16.6.1 A demo of ll_reverse(): test4.c

To test your work, copy test3.c to test4.c. Reverse the original list, and print it out. Here
is what mine says:

$./test4
the original linked list:
12 1000 -45 101
the reversed linked list:
101 -45 1000 12
linked list memory freed

16.7 The function ll_sort()

The purpose of the function ll_sort() that appears on line 11 of Listing 16.1 on
page 149 is to reorder a list’s nodes according to a prescribed comparison criterion. The
declaration ofll_sort() in that listing is somewhat long; therefore I have broken it into
three lines. This should not obscure the fact that ll_sort() takes three arguments:

1. The first argument, list, points to the linked list to be sorted.
2. The second argument, cmp(), is a user-supplied comparison function which con-

forms to the prototype

int cmp(const void *a, const void *b, void *params);

and which is the subject of subsection 16.7.1.
3. The third argument, params, is a pointer to a set of parameters which the compar-

ison function may or may not need. The function ll_sort() passes that pointer
to the comparison function whenever it calls it.

The function ll_sort() returns a pointer to the head of the reordered list; therefore a
typical call looks like this:

list = ll_sort(list, cmp, params);

If the comparison function has no use for parameters, then passing NULL for params
will do

list = ll_sort(list, cmp, NULL);

In the next subsection I will elaborate on the nature of the comparison function. In
the subsection after that I will describe the sorting algorithm.

16.7.1 The comparison function

I will explain the specifics of ll_sort()’s comparison function through the following
two examples.

Example 1: Suppose the data associated with each node is an integer. We wish to sort the
list in the increasing (or decreasing) order of those numbers.

root
2014/7/8
page 154

�

�

�

�

�

�

�

�

154 Chapter 16. Linked lists

Example 2: Suppose the data associated with each node is a coordinate pair (x, y). We
wish to sort the list according to increasing distances away from a given point p =
(x0, y0).

In each case the comparison function takes a pair of data items and decides which one
should come first in the list. Customarily, a compassion function cmp(a,b) returns
an integer less than, greater than, or equal to zero if the first argument is considered to
be “less than”, “greater than”, or “equal” the second, respectively, for sorting purposes.
A reasonable comparison function for Example 1 above would be

int cmp1(int a, int b) // tentative
{

if (a < b)
return -1;

else if (a > b)
return 1;

else
return 0;

}

For Example 2 it would make sense to introduce a structure to hold a coordinate pair

struct point { double x; double y; };

and then pass the addresses of such structures to the comparison function, as in

int cmp2(struct point *a, struct point *b, struct point *p) // tentative
{

double dx, dy, d1, d2;
dx = a→x - p→x; // the x distance of a from p
dy = a→y - p→y; // the y distance of a from p
d1 = dx*dx + dy*dy; // square of distance of a from p
dx = b→x - p→x; // the x distance of b from p
dy = b→y - p→y; // the y distance of b from p
d2 = dx*dx + dy*dy; // square of distance of b from p
if (d1 < d2)

return -1;
else if (d1 > d2)

return 1;
else

return 0;
}

The function calculates the distances (actually the squares of the distances) of the points
a and b from p and returns -1, 0, or +1 depending on the relationship between those
distances.

Unfortunately neither of the two preceding comparison functions is suitable for our
purposes since their arguments are so tightly coupled with their data types. We want the
sorting function ll_sort() to be generic, that is, applicable to any linked list, regardless
of the associated data types. With that in mind, we postulate a universal comparison
function in the form49

int cmp(const void *a, const void *b, void *params);

49The purpose of the const qualifiers here is to reassure the compiler that the data that a and b point to will
be read but not modified. This can help the compiler produce a better optimized code; otherwise they are not
essential. Don’t worry about them if they look unfamiliar.

root
2014/7/8
page 155

�

�

�

�

�

�

�

�

16.7. The function ll_sort() 155

Since a void pointer is compatible with pointers to all data types, this form of the com-
parison function is ideal; pointers to data of any type may be passed to it. The function’s
first two arguments point to the items that are to be compared. The third argument points
to parameters that may or may not be useful for the purpose of that comparison. Modi-
fying the previous comparison function cmp1() into the new form, we arrive at

int cmp1(const void *aa, const void *bb, void *pp) // correct form
{

int a = *(int *)aa;
int b = *(int *)bb;
if (a < b)

return -1;
else if (a > b)

return 1;
else

return 0;
}

The function casts the void pointer aa to a pointer-to-int and then dereferences it to
obtain its value, a. It does the same with bb. Then it proceeds just as in the previous
version of cmp1(). The parameter pp is not used. Similarly, the modified version of
cmp2() takes the form

int cmp2(const void *aa, const void *bb, void *pp) // correct form
{

struct point *a = (struct point *)aa;
struct point *b = (struct point *)bb;
struct point *p = (struct point *)pp;
double dx, dy, d1, d2;

dx = a→x - p→x;
dy = a→y - p→y;
d1 = dx*dx + dy*dy; // square of distance of a from p
dx = b→x - p→x;
dy = b→y - p→y;
d2 = dx*dx + dy*dy; // square of distance of b from p
if (d1 < d2)

return -1;
else if (d1 > d2)

return 1;
else

return 0;
}

Nowcmp1() andcmp2() have identical signatures/prototypes, and that’s what matters.
Their innards are quite different.

16.7.2 Quicksort

Sorting is a huge subject and there are books written on it. See, e.g., Knuth’s The Art of
Computer Programming [34]. I will describe what is known as the quicksort algorithm,
which, in its recursive form, is particularly well suited to sorting linked lists. Here is the
algorithm in words:

root
2014/7/8
page 156

�

�

�

�

�

�

�

�

156 Chapter 16. Linked lists

the original list (unsorted)1.

list12. list2head

sorted list13. sorted list2head

the reassembled (sorted) list4.

Figure 16.1: This diagram shows the four steps of the quicksort algorithm. Line 1 rep-
resent the original (unsorted) list. In line 2 we have isolated the list’s head
and split the rest into list1 and list2, where all items in list1 are “less than”
the head (according to the comparison criterion) and list2 consists of what’s
left. In line 3 we have sorted list1 and list2, and in line 4 we have pasted the
three pieces to form a completely sorted list.

1. If the list is empty, there is nothing to do. The result is the empty list.
2. Otherwise, detach the list’s first node (the head) and set it aside. Split the rest into

two lists, list1 and list2, where list1 consists of all the nodes that are “less than” the
first node (according to the comparison function) and list2 consists of the others.

3. Sort list1 and list2.
4. Reassemble the list as list1 →head→list2. This is the desired sorted list.

The procedure is highly recursive since the sorting of the sublists list1 and list2 in step 3
invokes the sorting procedure all over again. Figure 16.1 shows the procedure in a dia-
grammatic way. Listing 16.4 gives a quite literal implementation of that algorithm in C.
Study Listing 16.4 carefully, and be sure that you understand every bit of it; then add it
to your linked-list.c.

Remark 16.4. Although the ll_sort() function is unabashedly recursive in its out-
line, the while-loop embedded in the middle of Listing 16.4 is iterative. Is it possi-
ble to replace it with recursion as well? Certainly! The purpose of that while-loop
is to split a given list into list1 and list2 according to a given criterion. The function
ll_filter(), which is the subject of the next section, does exactly that and is strictly
recursive. Therefore one may, in principle, replace the while-loop in ll_sort() with
a call to ll_filter() and obtain a purely recursive ll_sort(). Unfortunately the
coding details of passing arguments from ll_sort() to ll_filter() become some-
what cumbersome and obscure the conceptual simplicity of the underlying idea.50 You
may want to try it for yourself to see that.

16.7.3 A demo of ll_sort(): test5.c

To test/demoll_sort(), copy test3.c to test5.c. Add two comparison function, cmp1()
and cmp2(), one for sorting the linked list in the ascending order of its numerical data
and the other in the descending order. Compile and run the program. Here is what mine
says:

50This is not a shortcoming of the idea. Rather, it is an indication that we have reached the limits of what one
may express comfortably in C. A functional programming language, such as Lisp, on the other hand, can express
the idea elegantly and succinctly.

root
2014/7/8
page 157

�

�

�

�

�

�

�

�

16.8. The function ll_filter() 157

Listing 16.4: A recursive implementation of the quicksort algorithm.

1 conscell *ll_sort(conscell *list,
2 int (*cmp)(const void *a, const void *b, void *params),
3 void *params)
4 {
5 conscell *list1 = NULL;
6 conscell *list2 = NULL;
7 conscell *p, *q, *head;
8 if (list == NULL)
9 return list;

10 head = list;
11 p = list→next;
12 while (p �= NULL) {
13 q = p→next; // remember the next node
14 if (cmp(p→data, head→data, params) < 0) {
15 p→next = list1;
16 list1 = p;
17 } else {
18 p→next = list2;
19 list2 = p;
20 }
21 p = q;
22 }
23 list1 = ll_sort(list1, cmp, params); // recursion
24 list2 = ll_sort(list2, cmp, params); // recursion
25 head→next = list2; // prepend head to list2
26

27 if (list1 == NULL)
28 return head;
29

30 for (p = list1; p→next �= NULL; p = p→next) // find list1’s tail node
31 ; // empty body!
32

33 p→next = head;
34 return list1;
35 }

$./test5
the original linked list:
12 1000 -45 101
the list sorted in the ascending order:
-45 12 101 1000
the list sorted in the descending order:
1000 101 12 -45
linked list memory freed

16.8 The function ll_filter()

Filtering a linked list splits it into two lists: one consisting of the items that are “caught”
by a given filter and the other of the items that have “passed through”. The user supplies
a function, we call it a filter, that examines a data item and returns 0 if the item is to be
passed through and nonzero if it is to be caught. For instance, the function

root
2014/7/8
page 158

�

�

�

�

�

�

�

�

158 Chapter 16. Linked lists

int catch_the_odds(int a) // tentative form
{

return a%2;
}

is a filter that catches odd integers and lets the evens pass through. For the reasons ex-
plained in the previous section, this function will have to be modified into the generic
form

int catch_the_odds(void *aa) // correct form
{

int a = *(int *)aa;
return a%2;

}

in order to mesh with the ll_filter() function which we intend to develop in this
section and which appears on line 14 of Listing 16.1 on page 149. The declaration of
ll_filter() in that listing is long; therefore I have broken it into three lines. The
function takes three arguments:

1. The first argument, list, points to the linked list that is to be filtered.
2. The second argument, filter(), is a user-supplied filter function as described

above.
3. The third argument, removed, is the address of a pointer to the linked list of the

items caught by the filter.

The function returns the linked list of the items that pass through the filter. A typical use
of the filter() takes the form

conscell *list, *removed = NULL;
... create the list, then ...
list = ll_filter(list, filter, &removed);

After the last line, removed points to the linked list of the caught items, and list
points to the linked list of the items that have passed through.

As to the implementation of ll_filter(), both iterative of recursive strategies are
possible. In the iterative strategy we keep track of the address of the previous node as
we traverse the list. If the current node is to be removed, we make the current node’s
previous node point to the current node’s next node. I will leave it to you to implement
this if you wish. It’s an instructive exercise; try it, it’s not very hard.

The recursive strategy, again very Lisp-ish, is short and sweet. Here it is in words:

1. If the list is empty, there is nothing to do; return the empty list.
2. Otherwise, if the filter catches the list’s head, (a) detach the head from the list, (b) at-

tach it to the removed list, and (c) filter and return the rest of the list.
3. Otherwise (a) detach the head from the list, (b) filter the rest of the list, (c) reattach

the head, and (d) return the list.

This maps essentially word for word to C. Study the following code, and then insert it
into your linked-list.c:

conscell *ll_filter(conscell *list,
int (*filter)(const void *a), conscell **removed)

{
if (list == NULL)

root
2014/7/8
page 159

�

�

�

�

�

�

�

�

16.10. Project Linked Lists 159

return list;
else if (filter(list→data)) {

conscell *p = list→next; // remember the next node
list→next = *removed;

*removed = list;
return ll_filter(p, filter, removed);

} else {
list→next = ll_filter(list→next, filter, removed);
return list;

}
}

16.8.1 A demo of ll_filter(): test6.c

To test/demo ll_filter(), copy test3.c to test6.c, define a filter that catches the odd
integers, apply the filter to the existing linked list, and print the caught and passed through
lists. Here is what mine says:

$./test6
the original list:
12 1000 -45 101
the list after removing the odds:
12 1000
these items were removed:
101 -45
memory of passed-through list freed
memory of caught list freed

16.9 The function ll_length()

The function ll_length(), whose prototype is given on line 17 of Listing 16.1 on
page 149, returns the length, that is, the number of nodes, of a linked list. As with the
other ll_*() functions, this may also be implemented in an iterative or recursive fash-
ion. Write one or the other version (or both!), and insert it in your linked-list.c.

To test/demo your work, copy test3.c to test7.c and add code to write and print the
number of nodes. Here is what mine says:

$./test7
the original linked list:
12 1000 -45 101
the list has 4 nodes
linked list memory freed

16.10 Project Linked Lists

Part 16.1. Complete and test your linked-list.[ch] and the driver files test[1–7].c as in-
structed in the preceding sections.

Part 16.2. [optional] Our ll_sort() handles comparison functions which may de-
pend on a parameter (which we named params). Modify the function ll_filter()
to handle filter functions that depend on a parameter in a similar way.

root
2014/7/8
page 160

�

�

�

�

�

�

�

�

160 Chapter 16. Linked lists

Part 16.3. [optional] Extend the linked lists module by adding a function ll_append()
with the prototype

conscell *ll_append(cons struct *list1, cons struct list2);

which concatenates list1 and list2; that is, it makes list1’s last node point to
list2’s first node. It returns the address of the new list. The return value is redun-
dant since it is no different from the address of list1. Nonetheless, it is a nice touch to
do so since that conforms to the style of the other ll_*() functions.

Write a driver, test8.c, to test/demonstrate the function.

Part 16.4. [optional] Extend the linked lists module by adding a function ll_map()
with the prototype

conscell *ll_map(conscell *list, void (*map)(void *data));

which applies a given function, map(), to the data at every node of a linked list. For
instance, if we let

void square_me(void *data)
{

int *n = data;

*n = (*n) * (*n);
}

then calling list = ll_map(list, square_me) with test1.c’s linked list should
produce

$./test9
the original list:
12 1000 -45 101
the squared list:
144 1000000 2025 10201
linked list memory freed

Write a driver, test9.c, to demonstrate this.

root
2014/7/8
page 161

�

�

�

�

�

�

�

�

Chapter 17

The evolution of species

Prerequisites: Chapters 7, 8, 9, 10, 16

17.1 Introduction
In the late 1980s Michael Palmiter devised a very simple model of evolution by natural
selection which exhibited a strikingly realistic behavior.51 A. K. Dewdney popularized it
in a Scientific American article [17]. I learned about these from Conrad Barski’s book [7],
where he develops a variant of the simulation in Lisp. In this chapter we will write a
C version and introduce variations of our own. The models appear to be quite robust
and insensitive to the details of the evolutionary mechanisms in the sense that all variants
exhibit similar evolutionary characteristics.

The simulation begins with one or more individuals endowed with random genetic
structures whose descendants reproduce, evolve, and gradually adapt to their environ-
ments in the course of many (millions of) generations. In the long run, genetically distinct
populations emerge in environmentally distinct regions of the simulated world.

Let me first briefly describe a rough overview of the basic ideas; then I will supply the
details.

In the simulation, time flows in discrete “time ticks”. The “world” consists of a two-
dimensional rectangular grid of cells. “Animals” move about in the world, hopping from
a cell to an adjacent cell at each time tick, expending a certain amount of energy on each
hop. If an animal’s energy drops to zero, it dies and is removed from the simulation.
Food sprouts in random cells. If an animal stumbles upon a cell containing food, it eats
the food and gains energy. If an animal’s energy increases past a certain threshold (the
reproduction threshold), it splits into two animals in a manner of asexual reproduction,
and each of the two inherits half of the parent’s energy.

Each animal is endowed with a “chromosome” which is a vector of length 8 of positive
integers. The chromosome remains unchanged over an animal’s lifetime. The vector’s
eight entries are the “genes”. If one or more of an animal’s genes are distinctly greater
than the rest, we say that those are its “dominant genes”. The chromosome is the only
characteristic that distinguishes one animal species from another in this model.

At every time tick one of the animal’s eight genes, selected at random, becomes “acti-
vated”. A gene of a larger value has a greater probability of being selected. The activation

51As of this writing (September 2013) Palmiter’s simulated evolution program is available for purchase at
<http://lifesciassoc.home.pipeline.com/instruct/evolution/>.

161

http://lifesciassoc.home.pipeline.com/instruct/evolution/

root
2014/7/8
page 162

�

�

�

�

�

�

�

�

162 Chapter 17. The evolution of species

of gene number k, k = 0, . . . , 7, makes the animal rotate in its place by an angle of 45× k
degrees relative to its current orientation. After the rotation, the animal takes one step
forward into the adjacent cell. Thus, an animal with a dominant gene 0 will tend to move
forward along a straight line, while an animal with a dominant gene 2 will tend to go
around in tight circles. An animal’s genetic structure, therefore, affects the mode of its
movements, which in turn affects its chances of finding food and survival.

An animal inherits its parent’s genetic structure modulo small mutations. If the mu-
tations are favorable to survival, then that animal and its descendants thrive. If the muta-
tions are unfavorable, the descendants dwindle and die out. In the long run, this leads to
a population which is increasingly more adept at survival.

Speciation, that is, the emergence of distinct species, occurs in response to environ-
mental pressures. To demonstrate this, we set aside a small area of the world as a fertile
region where food grows more plentifully than elsewhere, which is the desert, and where
food is sparse.

Simulations show that in the long run two distinct classes of species emerge. One
species consists of “desert dwellers” who are compelled by their dominant genes to travel
over long distances, whereby increasing their chances of finding the sparsely scattered
food in the desert. The others live in the fertile region and have dominant genes that limit
their movements to small jitters, thereby keeping them within the fertile region where
food is plentiful. As Dewdney puts it, “What normally is a disastrous genetic defect is
actually an advantage in an overpopulated Garden of Eden.”

Following Dewdney and Palmiter, I will refer to the fertile region as the “Garden of
Eden” or simply the “Eden”.

17.2 A more detailed description
The previous section’s brief sketch of the simulation’s setup should give you a reasonably
complete picture of the scenario which we intend to pursue. In the current section I will
dwell on the setup’s details. Thus, without further ado, let us proceed to the description
of the simulation’s components.

The world: The “world” is a rectangle whose opposite edges are identified; that is, if an
animal leaves the bottom edge, it emerges from the corresponding spot on the top
edge. The left and right edges are identified in a similar way.52 This obviates the
need for boundary conditions and thereby simplifies the model.

The world rectangle is discretized into an h×w grid of cells. The time is discretized
into discrete time-steps. We refer to the cell in the world’s ith row and j th column
as the cell (i , j) in analogy to the customary addressing of the rows and columns
of a matrix, but in contrast with matrices, our indices begin at zero. Figure 17.1(a)
shows a (much too small) 6×8 world. A 100×100 world is much more interesting
for simulations. Each cell has eight neighboring cells, numbered 0, . . . , 7, as shown
in the diagram of Figure 17.1(b). For a cell near an edge of the rectangle, neigh-
boring cells wrap around to the opposite edge according to the world’s toroidal
structure.

In the future we will have occasions to refer to the world’s “center” cell, which is a
cell that is closest to the world rectangle’s center. If h and w are odd, then the (i , j)
index of the center cell is exactly

�
(h − 1)/2, (w − 1)/2

. (You will have to draw a

little picture to see that. Remember that cell indices begin with zero.) For general

52A topologist would say that this world is a torus or has a toroidal topology.

root
2014/7/8
page 163

�

�

�

�

�

�

�

�

17.2. A more detailed description 163

food in cell (1,6)

animal in cell (0,0)

animal in cell (3,4)

j

i

(a) A 6× 8 world with a 2× 2 Eden

0
1

2

3
4

5

6

7

(b) A cell and its neighbors

Figure 17.1: The diagram on the left shows a (much too small) 6× 8 world. There is a
2× 2 Eden at the center. The i and j arrows at the top left are reminders
that cells are indexed as in a matrix—from left to right in columns, from
top to bottom in rows. The diagram on the right shows a generic cell and
its eight neighboring cells, which are numbered 0 through 7.

h and w, we define the center cell by rounding the fractions to integers according to

world’s center cell=
!"

h − 1

2

#
,
"

w − 1

2

#$
. (17.1)

The notation �x� indicates the greatest integer less than or equal to x. For non-
negative integers p and q , the quotient p/q in C is evaluated to

%
p/q

&
by default;

therefore no special effort is required to evaluate the expression in (17.1).

The Eden: The Eden is a rectangular subset of the world which has a richer than normal
food supply. The spatial inhomogeneity due to the presence of the Eden leads to
speciation, that is, the emergence of genetically distinct species. Figure 17.1(a) shows
a 2×2 Eden in a 6×8 world. Setting one or both of Eden’s dimensions to zero eliminates
the Eden altogether.

The world’s toroidal structure implies that the Eden’s location within the world is
immaterial; all placements of the Eden are equivalent for the purposes of the simu-
lation. The Eden’s location, however, does affect the ease of some of the computa-
tions. Specifically, to interpret the simulation’s results, it is essential, as we shall see
later, to sort the animals according to their distances away from the Eden. Calcu-
lating such distances is easy if the Eden is located at or near the world’s center cell
since the concept of the distance then coincides with the usual notion of distance.
If, however, the Eden is placed off center, then the distance calculations become
slightly more involved due to the wrapping of the rectangle’s edges. For this rea-
son, I will assume from now on that the Eden is “centered” on the world rectangle
as best as possible. Specifically, let the Eden be an h ′ × w ′ rectangle of cells. We
position the Eden so that the cell at its northwest corner coincides with the world’s

root
2014/7/8
page 164

�

�

�

�

�

�

�

�

164 Chapter 17. The evolution of species

cell (i , j), where

(i , j) =
!"

h − 1

2

#
,
"

w − 1

2

#$
−
!"

h ′ − 1

2

#
,
"

w ′ − 1

2

#$
. (17.2)

Convince yourself that this centers the Eden in a best possible way relative to the
world. Exact centering is not always possible since that depends on the parity of the
world’s and Eden’s dimensions. Deviations from the exact center are insignificant
if the world rectangle is large, as it is in our simulations.

When the Eden is positioned according to (17.2), then its “center” cell agrees—
modulo the usual parity issues—with the world’s center cell given in (17.1). We
record this here for future reference:

the Eden’s center cell=

!"
h − 1

2

#
,
"

w − 1

2

#$
. (17.3)

Food: At every time-step a morsel of food is dropped (or sprouts) in a randomly selected
cell.53 If an Eden exists, an additional morsel of food is dropped there. A food
morsel contains a certain amount54 of nutritional energy. A cell may hold more
than one morsel of food.

Animals: Animals move about from cell to cell. Any number of animals may occupy a
cell simultaneously. At every time-step every animal moves to a neighboring cell
according to a mechanism that we shall describe. A move costs the animal 1 unit
of energy. If the animal’s energy drops to zero, it dies and is removed from the
simulation. If it arrives at a cell that contains one or more morsels of food, it eats
one morsel and gains energy.

Genes: An animal has a “chromosome” 〈g0, g1, . . . , g7〉 consisting of eight integer-valued
“genes”, with gk ≥ 1 for all k. The chromosome is an intrinsic characteristic of an
animal; it does not change during the animal’s lifetime.

Movement: An animal may face in any of the eight possible directions numbered
0,1, . . . , 7, as shown in Figure 17.1(b). At every time-step one of the animal’s eight
genes is randomly selected and “activated”. The activation of the gene gk prompts
the animal to turn in its place by 45× k degrees counterclockwise, relative to its
current orientation. It follows that if the animal is facing the direction d (where
d ∈ {0,1 . . . , 7}), then after the activation of gene gk it will be facing the direction
d + k mod 8.

After turning, the animal steps forward to the neighboring cell that it faces. This
completes a movement cycle.

The probability of the selection of a gene is proportional to the gene’s value. That
is, a gene of larger value is more likely to be selected. For example, an animal with
the chromosome structure 〈1,3,42,2,1,3,4,2〉 will turn 90 degrees in almost every
move since g2 is the dominant gene.

Reproduction: If an animal’s energy exceeds a certain level,55 it splits in two in a man-
ner of an asexual reproduction. The two halves are almost identical clones of the

53We assume uniform probability distribution; that is, one cell is as likely to receive a morsel as another.
54This is called PlantEnergy in our program.
55This is called ReproductionThreshold in our program.

root
2014/7/8
page 165

�

�

�

�

�

�

�

�

17.3. The World Definition File 165

original, except for (i) each one inherits half of the original’s energy; and (ii) one
of the two may inherit a slightly mutated chromosome, as described in the next
paragraph.

Mutation: When copying a chromosome, we allow for a possible mutation by adding a
randomly selected number from the set {−1,0,1} to a randomly selected gene. (All
random numbers here are uniformly distributed.) If the gene value drops below 1,
we change it back to 1 because we don’t want genes of 0 or negative values.56

This completes the description of our imaginary world. We initialize it with zero
food and just one animal57 with an arbitrary genetic structure but endowed with a largish
initial energy; otherwise it’s likely that it will die before it finds the first food morsel or
has a chance to reproduce.

What becomes of the descendants of that animal in the long run? The principal tenet
of the theory of evolution by natural selection is that mutations that are deleterious to
survival wipe themselves out since, on the whole, animals with such mutations are out-
competed by the others; therefore they don’t live long enough to reproduce. Conversely,
mutations that are favorable to survival result in animals that successfully reproduce and
bring forth descendants who are equally good, if not better, at survival.

Our simulations indicate that in a world without an Eden, the genetics of the pop-
ulation evolve so that the genes g0, g1, and g7 gain dominance. These are the genes re-
sponsible for propelling the animal more or less in the forward direction. An animal that
covers large territories has a better chance of encountering food than a sedentary animal
that hovers in a small area waiting for food morsels to drop in its lap.

With the scenario described above, the animal population remains more or less ho-
mogeneous because probabilistically each animal is like the other. Simulations show that
the population evolves en masse toward a more fit species.

The situation is drastically different in the presence of the Eden. Simulations show
that in the long run the animals diverge into two very distinct species:

The desert-dwellers have dominant g0, g1, and g7 genes and consequently mostly move
forward and cover large territories.

The Eden dwellers have dominant g3, g4, and g5 genes and consequently hover in the
Eden area to partake of its rich food supply.

It is a testimony to the robustness of the natural selection mechanism that a primitive
model such as the one under consideration here exhibits the characteristic traits of evolu-
tion and speciation observed in the much more complex real world.

17.3 The World Definition File
Our program reads the simulation’s parameters from a user-supplied World Definition
File (WDF), a sample of which is shown in Listing 17.1. The WDF is read with the help
of the fetch_line() function developed in Chapter 9 which strips away blank lines,
comments, and leading and trailing whitespace from its input. The general form of a
stripped-down WDF is

56Genes of value zero are not objectionable; they just will have zero probability of getting activated. It may
be worthwhile to experiment with this alternative. I haven’t.

57The program allows initialization with any number of animals, but starting with just one is more striking.

root
2014/7/8
page 166

�

�

�

�

�

�

�

�

166 Chapter 17. The evolution of species

Listing 17.1: The WDF world-no-eden.wdf defines a world with only one animal and no Eden.
The animal is provided with a good amount of initial energy to give it a chance to
find food, and perhaps reach the reproduction threshold, before dying of starvation.

1 # A World Definition File for the evolution simulator
2 World 100 100 # height x width
3 Eden 0 0 # No Eden!
4 Plant Energy 80
5 Reproduction Threshold 300
6

7 # Animals:
8 (0 0) 0 200 | 5 5 5 5 5 5 5 5 |

1 World h w
2 Eden h w
3 Plant Energy e
4 Reproduction Threshold t
5 (n n) n n | n n n n n n n n |
6 ...

Line 1 gives the world’s height and width, that is, the number of vertical and horizon-
tal cells that make up the world rectangle, and line 2 gives the Eden’s height and width.
Lines 3 and 4 give the values of the plant and reproduction threshold energies. Line 5,
which specifies the initial state of an animal, may be repeated any number of times (hence
the “...” on line 6) to initialize the world with the desired number and kinds of animals.
The n’s in that line stand for integers, not necessarily all the same. Its meaning is better
explained through the explicit notation

(i j) d e | g0 g1 g2 g3 g4 g5 g6 g7 |,
where (i j) is the animal’s location (cell index) subject to 0≤ i < h, 0≤ j < w, where h
and w are the world’s height and width; d ∈ {0,1, . . . , 7} is the direction that it faces; e is
its energy; and g0 through g7 are its gene values, where every gk ≥ 1.

Note that the WDF does not prescribe the Eden’s location relative to the world rect-
angle. We are going to use the formula (17.2) for the Eden’s placement.

17.4 The program’s user interface
Our program reads the simulation’s parameters from the stdin, runs the simulation,
and writes the results to the stdout. If specifically requested, it also produces a number
of graphical snapshots of the world which may be viewed individually, or in sequence as
an animation as detailed in Sections 17.12 and 17.13.

Let us say that the program’s executable file is named evolution. We invoke it through
a command-line of the form

$./evolution options <world-no-eden.wdf >outfile.wdf

where world-no-eden.wdf is the WDF shown in Listing 17.1. The output, which is di-
rected to a file named outfile.wdf, contains the state of the world after a prescribed number
of time-steps. The format of the output conforms to the specifications of WDF ; therefore

root
2014/7/8
page 167

�

�

�

�

�

�

�

�

17.5. The program’s components 167

it can be used to reinitialize the simulation if you wish.58 Of course you may name the
input and output files as you wish; the program itself is unaware of those file names. It’s
your Unix shell that directs the data flow through the redirection symbols “<” and “>”;
see Chapter 3 for an overview of the Unix shell.

The number of time-steps, or updates as we call it in the program, is specified in the
options part of the command-line. If options is set to 1000000, as in

$./evolution 1000000 <world-no-eden.wdf >outfile.wdf

the simulation will perform 1,000,000 updates. The largest possible number you may en-
ter here is ULONG_MAX, which is defined in the standard header file limits.h and which
is the largest unsigned long int that your C compiler can handle. On a typical
computer nowadays it is likely to be one of 232 − 1 = 4,294,967,295 ≈ 4.3 × 109 or
264− 1 ≈ 1.8× 1019. Beware that if you enter a number larger than ULONG_MAX on the
command-line, it will be truncated to ULONG_MAX (silently!). In practice, however, there
is not much reason for that many iterations; 10 million updates are more than enough for
demonstrating evolutionary trends and speciation.

If you invoke the program as

$./evolution 1000000 20 <world-no-eden.wdf >outfile.wdf

it will perform the 1,000,000 updates as before; then it will take 20 snapshots of the world
interleaved with 19 updates. The snapshots will be written as Encapsulated PostScript
(EPS) files named fig0000.eps, . . . , fig0019.eps. Only then it will write the outfile.wdf and
exit.

Why only 19 updates? The sequence of operations consists ofS U S U ... S U S,
where S stands for a snapshot and U stands for an update. As you see, there is one less
update than there are snapshots. It follows that the command

$./evolution 0 1 <world-no-eden.wdf >outfile.wdf

will capture a snapshot of the world’s initial state which can be useful in itself.
If you enter unrecognizable options or no options at all, the program prints a brief

usage note and exits:

$./evolution
Usage: ./evolution n [f] <infile >outfile

n ≥ 0 : (required) number of updates
f ≥ 0 : (optional) number of snapshots after n updates
Reads World Definition from infile, performs
n updates, and writes result to outfile

This message is produced through the show_usage() function, which is the subject of
subsection 17.11.2.

17.5 The program’s components
The program relies on Chapter 7’s xmalloc module for allocating memory, Chapter 8’s
array.h for building vectors and matrices, Chapter 16’s linked lists module for managing
linked lists, and Chapter 9’s fetch-line module for reading lines from a WDF . Therefore,

58Actually the output does not record the complete state of the world since our WDF format carries no infor-
mation about which cells contain food. Consequently, the information about the food distribution is lost if you
stop and restart the program. Part 17.4 of this chapter’s Projects section suggests an extension to the program
whereby the locations of the food morsels are recorded in a WDF .

root
2014/7/8
page 168

�

�

�

�

�

�

�

�

168 Chapter 17. The evolution of species

Listing 17.2: The file evolution.h.

1 #ifndef H_EVOLUTION_H
2 #define H_EVOLUTION_H
3 #include "linked-list.h"
4 struct animal {
5 int i; // row number of animal’s position
6 int j; // column number of animal’s position
7 int d; // direction the animal is facing: 0, . . . ,7
8 int e; // animal’s energy
9 int genes[8]; // the animal’s chromosome (array of genes)

10 } animal;
11 struct world {
12 int world_h; // world’s height
13 int world_w; // world’s width
14 int eden_h; // Eden’s height
15 int eden_w; // Eden’s width
16 int plant_energy; // plant energy
17 int reproduction_threshold; // reproduction threshold
18 int **plants; // world_h × world_w array of plants
19 conscell *herd; // the head of the linked list of the animals
20 };
21 #endif /∗ H_EVOLUTION_H */

following the recommendations of Chapters 2 and 6, the program’s directory will look
like this:

$ cd evolution
$ ls -F
Makefile fetch-line.h@ read.h write.c
array.h@ interlude.c world-and-eden.wdf write.h
evolution.c linked-list.c@ world-no-eden.wdf xmalloc.c@
evolution.h linked-list.h@ world-to-eps.c xmalloc.h@
fetch-line.c@ read.c world-to-eps.h

The file named world-and-eden.wdf is just like world-no-eden.wdf of Listing 17.1 except
that it has a 10× 10 Eden. To get started with this project, make an evolution directory,
create the files world-no-eden.wdf and world-and-eden.wdf, and establish the symlinks as
shown above. In the rest of this chapter I will describe the contents of the remaining files.

17.6 The file evolution.h
The file evolution.h, shown in Listing 17.2, declares two structures, one to hold ani-
mal properties and the other to hold the world’s properties. The associated comments
should adequately explain the purpose of every member except, perhaps, the last two of
struct world.

The plants member points to a matrix of size world_h × world_w. The (i , j)
entry of that matrix is the number of food morsels in the world’s cell (i , j). The herd
member is the head of the linked list of the animals.

Since struct world refers to conscell, and since conscell is declared in the
header file linked-list.h, we #include that header file on line 3.

root
2014/7/8
page 169

�

�

�

�

�

�

�

�

17.7. The files read.[ch] 169

Listing 17.3: An outline of the file read.c.

1 #include <stdio.h>
2 #include "xmalloc.h"
3 #include "fetch-line.h"
4 #include "linked-list.h"
5 #include "read.h"
6 #define BUFLEN 1024
7 � static int get_world_dimens(struct world *world,
8 char *str, int lineno) ...
9 � static int get_eden_dimens(struct world *world,

10 char *str, int lineno) ...
11 � static int get_plant_energy(struct world *world,
12 char *str, int lineno) ...
13 � static int get_reproduction_threshold(struct world *world,
14 char *str, int lineno) ...
15 � static struct animal *get_animal_specs(char *str, int lineno) ...
16 � static char *fetch_line_aux(char *buf, int buflen,
17 FILE *stream, int *lineno) ...
18 � int read_wdf(struct world *world) ...

17.7 The files read.[ch]
Listing 17.3 shows an outline of the file read.c that defines a function read_wdf()
(line 18) whose purpose is to read a WDF and parse its contents. All the other func-
tions in read.c are for read_wdf()’s private use; therefore they are declared static
to make them invisible to the outside world. (See Section 1.6 for an explanation of the
static specifier.) In the following subsections I will describe the roles of the individual
functions that appear in Listing 17.3.

The function read_wdf() repeatedly calls the function fetch_line() (from the
fetch-line module of Chapter 9) to extract nonempty trimmed lines from a WDF that
arrives from the stdin. According to the conventions of a WDF (see Section 17.3), the
first four such lines are expected to be the specifications of the world’s and the Eden’s
dimensions and the plant and reproduction threshold energies. These may be followed
by any number of animal specification lines. Altogether, there are five distinct types of
lines that we expect to encounter; therefore we write five distinct function to handle those
types. These are the functions

get_world_dimens() get_reproduction_threshold_energy()
get_eden_dimens() get_plant_energy()
get_animal_specs()

that appear on lines 7 through 15 of Listing 17.3. I will describe the details of these and
the related functions in the following subsections.

17.7.1 The function get_world_dimens() and friends

The function get_world_dimens() that appears on line 7 of Listing 17.3 is respon-
sible for parsing the first line of a WDF , which is expected to be a string of the form
"World h w", where the integers h and w are the world’s height and width. If the
string is properly formed, get_world_dimens() extracts the numbers h and w, stores
them in the world_h and world_w members of the struct world, and returns 1 to

root
2014/7/8
page 170

�

�

�

�

�

�

�

�

170 Chapter 17. The evolution of species

Listing 17.4: The function get_world_dimens() in the file read.c.

1 static int get_world_dimens(struct world *world, char *str, int lineno)
2 {
3 if (sscanf(str, "World %d %d",
4 &world→world_h, &world→world_w) == 2)
5 return 1;
6 else {
7 fprintf(stderr, "stdin:line %d: expected to find "
8 "World dimensions here\n", lineno);
9 return 0;

10 }
11 }

indicate success. Otherwise the line is garbled; therefore it prints a diagnostic on the
stderr and returns 0 to indicate failure. Listing 17.4 shows my implementation of
get_world_dimens(). The function receives a pointer to struct world where
it will store the world’s height and width; a pointer to the string to parse; and the line
number of the string as it was read from the stdin. The error diagnostic prints that line
number to help the user locate the trouble spot.

The standard library function sscanf() returns the number of successfully matched
and assigned items in the call. Therefore, if the input string is properly formed, we expect
sscanf() to return 2. That’s what we are checking on line 3 of Listing 17.4.

I will let you write the functions get_eden_dimens(), get_plant_energy(),
and get_reproduction_threshold_energy() that appear in Listing 17.3. These
are close variants of get_world_dimens(). Add your implementations to read.c.

17.7.2 The function get_animal_specs()

The purpose of the function get_animal_specs() that appears on line 15 of List-
ing 17.3 is to read the specifications of one animal in a WDF . (Refer to the sample WDF
in Listing 17.1 on page 166 regarding animal specifications.) As such, it is very similar to
the previous subsection’s get_world_dimens() function. Nevertheless, I have shown
the entire function in Listing 17.5 because there is a slight twist.

The call to sscanf() works exactly as before, but it is reading 12 integers now. If
sscanf() returns other than 12, get_animal_specs() prints the usual diagnostic
message and returns NULL to indicate failure. Otherwise it stores the 12 numbers in a
struct animal. This is where the new aspect comes in; the structure has to be created.
So it calls xmalloc() to allocate memory for a struct animal and populates it with
the values retrieved by sscanf(). Finally it returns a pointer to the structure to the
calling function. Note that unlike the previous section’s get_*() functions that return
int, this one returns a pointer to a struct animal on success or NULL on failure.

17.7.3 The function fetch_line_aux()

The function fetch_line_aux() that appears on line 16 of Listing 17.3 is a helper
function which plays no deep role but is quite convenient for our purposes. Recall that
the function fetch_line() which we developed in Chapter 9 returns NULL when
the input is exhausted. In the context of reading a WDF , if the end of the input oc-
curs after all the required data is in, the situation is normal; we expect that to happen.
If, however, the end of the input occurs before all the world’s parameters are retrieved,

root
2014/7/8
page 171

�

�

�

�

�

�

�

�

17.7. The files read.[ch] 171

Listing 17.5: The function get_animal_specs() in file read.c

1 static struct animal *get_animal_specs(char *str, int lineno)
2 {
3 struct animal *animal;
4 int i, j, d, e, genes[8], r;
5 r = sscanf(str, "(%d %d) %d %d | %d %d %d %d %d %d %d %d |",
6 &i, &j, &d, &e,
7 &genes[0], &genes[1], &genes[2], &genes[3],
8 &genes[4], &genes[5], &genes[6], &genes[7]);
9 if (r == 12) {

10 animal = xmalloc(sizeof *animal);
11 animal→i = i;
12 animal→j = j;
13 animal→d = d;
14 animal→e = e;
15 for (int k = 0; k < 8; k++)
16 animal→genes[k] = genes[k];
17 return animal;
18 } else {
19 fprintf(stderr, "stdin:line %d: expected to find an "
20 "animal description here\n", lineno);
21 return NULL;
22 }
23 }

Listing 17.6: The function fetch_line_aux() in file read.c is a simple wrapper around
fetch_line().

1 static char *fetch_line_aux(char *buf, int buflen,
2 FILE *stream, int *lineno)
3 {
4 char *s = fetch_line(buf, buflen, stream, lineno);
5 if (s == NULL)
6 fprintf(stderr, "stdin:line %d: premature end of input\n",
7 *lineno);
8 return s;
9 }

there is cause for alarm; usually that’s an indication that the WDF is malformed. The
NULL returned by fetch_line() does not distinguish between these two cases. The
function fetch_line_aux(), whose implementation is shown in Listing 17.6, acts
just like fetch_line() but prints a diagnostic message to stderr when the end of in-
put is reached. We call the plain fetch_line() when “no more input” is an acceptable
outcome and call fetch_line_aux() when it is not. Add fetch_line_aux() to
your read.c.

17.7.4 The function read_wdf()

We have all the necessary ingredients now to put together the function read_wdf()
that appears on line 18 of Listing 17.3 on page 169 and whose purpose was outlined in the
beginning of the current section.

root
2014/7/8
page 172

�

�

�

�

�

�

�

�

172 Chapter 17. The evolution of species

Listing 17.7: A tentative sketch of the function read_wdf().

1 int read_wdf(struct world *world) // tentative
2 {
3 char buf[BUFLEN], *s;
4 int lineno = 0;
5 s = fetch_line_aux(buf, BUFLEN, stdin, &lineno);
6 get_world_dimens(world, s, lineno);
7 }

Here is the plan: We call fetch_line_aux() to skip over comments and blanks
of the WDF , and grab the first significant line, which is expected to define the world’s
dimensions. We pass that line to get_world_dimens() to retrieve the world’s height
and width. Listing 17.7 gives a tentative sketch. We initialize lineno to zero there be-
cause at the program’s startup we haven’t read any lines. On line 5 we pass buf59 to
fetch_line_aux(), which it will use to store the lines that it reads from the stdin.
Note that we call fetch_line_aux() rather than fetch_line() because hitting
the end of the input at this stage is premature and a diagnostic message should be printed
if it occurs. We pass the address of lineno to fetch_line_aux() so that it may
access that memory location to increment the value stored there as it reads lines from
the stdin. If successful, fetch_line_aux() returns a pointer to a trimmed string—
we call it s—where we should look for useful data. In line 6 we pass the pointer s to
get_world_dimens() for parsing. If successful, world’s world_h and world_w
members will be populated by the read data.

The statements in the previous two paragraph were qualified by “if successful”. What
would happen otherwise?

If fetch_line_aux() fails, it returns NULL. If get_world_dimens() fails, it
returns 0. In C’s Boolean algebra both of these are interpreted as false. Pointers other than
NULL and numbers other than 0 are interpreted as true. Consequently, the compound
expression

(s = fetch_line_aux(buf, BUFLEN, stdin, &lineno)) &&
get_world_dimens(world, s, lineno)

is true if and only if both function calls are successful. We apply the same logic to eval-
uating the outcomes of calls to get_eden_dimens(), get_plant_energy(), and
get_reproduction_threshold(). Altogether, these necessitate the checking of
the successes of eight function calls:

(s = fetch_line_aux(buf, BUFLEN, stdin, &lineno)) &&
get_world_dimens(world, s, lineno) &&
(s = fetch_line_aux(buf, BUFLEN, stdin, &lineno)) &&
get_eden_dimens(world, s, lineno) &&
(s = fetch_line_aux(buf, BUFLEN, stdin, &lineno)) &&
get_plant_energy(world, s, lineno) &&
(s = fetch_line_aux(buf, BUFLEN, stdin, &lineno)) &&
get_reproduction_threshold(world, s, lineno)

This compound expression evaluates to true if and only if each of the eight function calls
are successful.

59This decays to a pointer to the first element of the array buf[]. See Section 4.4 for the meaning of this.

root
2014/7/8
page 173

�

�

�

�

�

�

�

�

17.7. The files read.[ch] 173

Listing 17.8: The function read_wdf() in the file read.c. It reads a WDF and return 1 on success
and 0 on failure.

1 int read_wdf(struct world *world)
2 {
3 int animal_count = 0;
4 char buf[BUFLEN];
5 struct animal *animal;
6 int lineno = 0;
7 char *s;
8

9 int result =
10 (s = fetch_line_aux(buf, BUFLEN, stdin, &lineno)) &&
11 get_world_dimens(world, s, lineno) &&
12 (s = fetch_line_aux(buf, BUFLEN, stdin, &lineno)) &&
13 get_eden_dimens(world, s, lineno) &&
14 (s = fetch_line_aux(buf, BUFLEN, stdin, &lineno)) &&
15 get_plant_energy(world, s, lineno) &&
16 (s = fetch_line_aux(buf, BUFLEN, stdin, &lineno)) &&
17 get_reproduction_threshold(world, s, lineno);
18

19 if (!result)
20 return 0;
21

22 while ((s = fetch_line(buf, BUFLEN,
23 stdin, &lineno)) �= NULL) {
24 if ((animal = get_animal_specs(s, lineno)) == NULL)
25 return 0;
26 else {
27 world→herd = ll_push(world→herd, animal);
28 animal_count++;
29 }
30 }
31

32 fprintf(stderr, "# %d animal%s read from the input\n",
33 animal_count, animal_count == 1 ? "" : "s");
34

35 return 1;
36 }

The entire function read_wdf() is shown in Listing 17.8. Lines 9 through 17 assign
the value of the compound statement of the eight function calls to the variable result.
On line 19 we check the value of result; if it is not true, then at least one of the eight
function calls has failed. In that case we return from read_wdf() with a status value
of 0 to indicate failure. The calling function will have to deal with the consequences.
There is no need to print anything here because each of the eight functions prints its own
diagnostics when an error occurs.

Remark 17.1. Tacit in the logic detailed above is what is known as the short-circuiting
property of C’s Boolean operators. Specifically, C evaluates compound statements such
as A && B && C && · · · from left to right. It stops the evaluation chain as soon as the
outcome of the overall statement becomes evident. For instance, if A is false, then the

root
2014/7/8
page 174

�

�

�

�

�

�

�

�

174 Chapter 17. The evolution of species

Listing 17.9: The header file read.h.

1 #ifndef H_READ_H
2 #define H_READ_H
3 #include "evolution.h"
4 int read_wdf(struct world *world);
5 #endif /∗ H_READ_H */

entire compound statement is false regardless of the values of B andC; therefore B andC are
not evaluated at all. We often rely on the short-circuiting property in very crucial ways,
and what we have in the result = · · · construction is no exception. Note that if the call
to the first fetch_line_aux() fails, swill be NULL. If the next expression, that is, the
call to get_world_dimens(), were to be evaluated, the program would crash because
there is no provision in get_world_dimens() for handling a NULL input. But we
need not be concerned about that since the NULL outcome of the first call short-circuits
the computation and get_world_dimens() is never called.

Lines 22–30 of read_wdf() handle the animal specification lines. The input may
specify any number of animals; therefore we process those through a while-loop. We
stop when fetch_line() returns NULL, which signals that there is no more data to
read. Note that we call fetch_line() rather than fetch_line_aux() because
reaching the end of the input at this stage is normal.

The string fetched on line 22 is passed to get_animal_specs() on line 24. If
get_animal_specs() returns NULL, it indicates that the string is malformed. Then
we return from read_wdf() with a status of 0 to indicate failure. Otherwise, we have
received a pointer to a valid struct animal; therefore on line 27 we call ll_push()
to insert that animal in the linked list of animals and then increment animal_count.
The animal count does not have a great significance; it’s sent to the stderr on line 32
as an information item to reassure the user that the expected number of lines were read.
Finally, read_wdf() returns with a status of 1 to indicate the successful completion of
its task.

This completes the description of the file read.c. We add a companion read.h header
file, shown in Listing 17.9, that presents read.c’s interface. Since the functionread_wdf()
is the only one in read.c with external linkage—all others arestatic—thenread_wdf()
is the sole function declared in read.h. On line 3 we #include evolution.h since it con-
tains the declaration of “struct world”, which is referenced on line 4.

17.8 The files write.[ch]
The file write.c defines a function write_wdf() whose purpose is to write a report of
the current state of the world. The report’s format conforms to the specifications of a
WDF , making it possible to use it as input to the evolution simulator for a continuation
of the simulation. Listing 17.10 gives an outline of write.c, and Listing 17.11 shows a
sample report. The report’s top half is produced by simply writing out the information
that is available in the struct world. The listing of the animals in the bottom half is
produced through a call to the function print_herd() (line 4 of Listing 17.10), which
receives a pointer to the linked list of animals, walks through the list, and prints the in-
formation in each node. To simplify its work, print_herd() delegates the printing of
each animal line to a helper function, print_animal() (line 3 of Listing 17.10), which

root
2014/7/8
page 175

�

�

�

�

�

�

�

�

17.9. The files world-to-eps.[ch] 175

Listing 17.10: An outline of the file write.c.

1 #include <stdio.h>
2 #include "write.h"
3 � static void print_animal(struct animal *animal)
4 � static void print_herd(conscell *herd)
5 � void write_wdf(struct world *world)

Listing 17.11: A sample report produced by the function write_wdf() in the file write.c. The
“Math 625” is the course number for which this book was written. Change it to
something that’s more relevant to you.

Machine-generated by the Math 625 Evolution Simulator

World 60 100 # h x w
Eden 10 15 # h x w
Plant Energy 80
Reproduction Threshold 300

#(i j) d e | g[0] g[1] g[2] g[3] g[4] g[5] g[6] g[7]|
#-------------------|--|
(84 39) 6 98 | 10 2 4 8 3 6 5 7 |
(36 51) 7 117 | 7 8 2 7 1 3 2 9 |
(49 97) 2 94 | 6 8 5 9 3 4 9 10 |
(23 97) 7 106 | 3 6 4 8 6 7 6 1 |
(43 93) 7 86 | 3 8 7 4 7 2 5 9 |
(82 33) 1 113 | 4 7 10 6 7 9 5 10 |
(39 81) 5 116 | 5 3 10 10 2 9 7 5 |
(61 28) 6 19 | 5 3 2 3 6 5 2 10 |
animal count: 8

receives a pointer to an animal structure and formats and prints its data. You should be
able to complete the file write.c yourself, so I won’t tell more about it. You will supple-
ment this with a header file write.h that presents write.c’s interface.

17.9 The files world-to-eps.[ch]
I have written a function named world_to_eps() with the prototype

void world_to_eps(struct world *world, char *epsfile);

which receives a pointer to a struct world, from which it extracts the information
necessary for writing a graphical image of the world, in the EPS format, into a file whose
name is specified in the epsfile argument. The result depicts the world rectangle in a
white background, the Eden in a pale green background, the food morsels as green dots,
and the animals as red dots. In the monochrome rendering in Figure 17.2, the Eden,
the food, and the animals appear as a gray rectangle, light gray dots, and dark gray dots,
respectively.

Implementing the function world_to_eps() is not a part of this project because
that requires some familiarity with the PostScript language, which I don’t want to make
a prerequisite for this book. You should download my implementation of the files

root
2014/7/8
page 176

�

�

�

�

�

�

�

�

176 Chapter 17. The evolution of species

Figure 17.2: A sample PostScript image produced through the command
“./evolution 1000000 1 < world-and-eden.wdf”.
The small square near the center is the Eden.

world-to-eps.c and world-to-eps.h from this book’s website, drop them in this project’s di-
rectory, and compile them along with the rest of your files.

17.10 Interlude (and a mini-project)
We are at about the halfway mark through Project Evolution. It’s a good idea to stop for a
moment and test what we have thus far.

Your assignment is to write a program, say interlude.c, that calls read_wdf() to read
a WDF from the stdin and then calls write_wdf() to print a report to the stdout.

(a) Compile the program into an executable, say interlude; then run it as

$./interlude <world-no-eden.wdf

where world-no-eden.wdf is given in Listing 17.1 on page 166. If all is well, this
should print out the contents of the input file, minus comments and extra whites-
pace, and exit.

(b) Copy world-no-eden.wdf to a temporary file, say tmp.wdf. Insert a few more animals
in it, and try

$./interlude <tmp.wdf

(c) Introduce deliberate errors of various sorts in tmp.wdf, and verify that your program
catches them.

root
2014/7/8
page 177

�

�

�

�

�

�

�

�

17.11. The file evolution.c 177

Listing 17.12: An outline of the file evolution.c.

1 #include <stdio.h>
2 #include "evolution.h"
3 #include "xmalloc.h"
4 #include "array.h"
5 #include "read.h"
6 #include "write.h"
7 #include "linked-list.h"
8 #include "world-to-eps.h"
9 #define MAX(a,b) ((a) > (b) ? (a) : (b))

10 struct point {
11 int i;
12 int j;
13 };
14 � static inline int random(int n) ...
15 � static void free_herd(conscell *herd) ...
16 � static int dead_or_alive(const void *aa) ...
17 � static conscell *remove_the_dead(conscell *herd) ...
18 � static int nearer_the_eden(
19 const void *aa, const void *bb, void *params) ...
20 � static void initialize_plants(struct world *world) ...
21 � static void add_plants(struct world *world) ...
22 � static int gene_to_activate(int genes[8]) ...
23 � static void turn(struct animal *animal) ...
24 � static void move(struct world *world, struct animal *animal) ...
25 � static void feed(struct world *world, struct animal *animal) ...
26 � static struct animal *clone(struct animal *old) ...
27 � static void mutate(int genes[8]) ...
28 � static void reproduce(
29 struct world *world, struct animal *animal) ...
30 � static void update_world(struct world *world) ...
31 � static void evolve(struct world *world, unsigned int n) ...
32 � static void evolve_with_figs(
33 struct world *world, unsigned int n) ...
34 � static void show_usage(char *progname) ...
35 � int main(int argc, char **argv) ...

Remark 17.2. Your file interlude.c will be just a few lines long; don’t make a big produc-
tion of it. If you need help with getting started, have a peek at Listing 17.13 on page 178,
which treats a much more complex case. All you need are the simplified versions of lines 5,
6, 26, 38, and 43.

17.11 The file evolution.c
The core of the evolution simulator is in the file evolution.c. This somewhat longish file
consists of many short and simple functions. Listing 17.12 provides an outline. The best
place to begin the description of its contents is at the function main() that appears on
line 35, so that’s what we will do next.

root
2014/7/8
page 178

�

�

�

�

�

�

�

�

178 Chapter 17. The evolution of species

Listing 17.13: The function main() in file evolution.c.

1 int main(int argc, char **argv)
2 {
3 unsigned long int n; // number of updates
4 unsigned long int f = 0; // number of figures to generate
5 struct world World;
6 struct world *world = &World;
7 int exit_status = EXIT_FAILURE;
8 world→herd = NULL;
9 world→plants = NULL;

10

11 if (argc < 2 || argc > 3) {
12 show_usage(argv[0]);
13 goto cleanup;
14 }
15

16 if (sscanf(argv[1], "%lu", &n) �= 1) {
17 show_usage(argv[0]);
18 goto cleanup;
19 }
20

21 if (argc > 2 && sscanf(argv[2], "%lu", &f) �= 1) {
22 show_usage(argv[0]);
23 goto cleanup;
24 }
25

26 if (!read_wdf(world))
27 goto cleanup;
28

29 initialize_plants(world);
30 evolve(world, n);
31 if (f > 0)
32 evolve_with_figs(world, f);
33

34 struct point eden_center;
35 eden_center.i = (world→world_h - 1)/2;
36 eden_center.j = (world→world_w - 1)/2;
37 world→herd = ll_sort(world→herd, nearer_the_eden, &eden_center);
38 write_wdf(world);
39 exit_status = EXIT_SUCCESS;
40

41 cleanup:
42 free_matrix(world→plants);
43 free_herd(world→herd);
44 return exit_status;
45 }

17.11.1 The function main()

Listing 17.13 shows the function main() in its entirety. It is the longest of the functions
in evolution.c; the routine parsing of the command-line arguments is partly responsible
for that length. To explain the several new features introduced in this function, I will go
through it in detail. But before that, let me comment on its overall design.

root
2014/7/8
page 179

�

�

�

�

�

�

�

�

17.11. The file evolution.c 179

The execution of the function main() may have to be halted at various points due to
possible faulty data submitted by the user. For instance, the user may have given illegal
command-line arguments, or perhaps the WDF is incomplete or garbled. Whenever any
such error is encountered within main(), the program’s flow jumps via a goto to the
cleanup label on line 41, subsequent to which the memory resources are freed and the
program terminates with the exit status assigned to a variable named exit_status,60

which is assigned the default value of EXIT_FAILURE on line 7. Only when the program
nears the completion of its mission on line 39 is its value changed to EXIT_SUCCESS.

Here we begin the line by line analysis of the function main():

Line 1: We invoke main() with the argc and argv parameters because we intend to
capture the command-line arguments. Here you will need the information from
Section 4.7 on the details of how the command-line arguments are stored in mem-
ory.

Lines 3 and 4: The user specifies the number of iterations and the number of snapshots
on the command-line. The former is required; the latter is optional. Further down,
where we parse the command-line arguments, we store those numbers in the vari-
ables n and f, respectively. We set f to zero here as its default value.

Line 5: The World defined here is a struct worldwhich is to hold the complete data
that characterizes the world at every instant. Most of our program’s functions need
access to that data to perform their tasks. It suffices to pass World’s address to such
functions. They will query the structure for data through that address, and even
modify that data if they are supposed to.

Line 6: We define the auxiliary variable world (with lowercase w) to hold World’s ad-
dress. This is by no means essential since we may equally well use &World for
World’s address. There is a slight drawback to that, however. Within main() we
have access to both World and its address, &World. Outside of main() we have
access only to World’s address. Working with World in main() and World’s
address outside main() results in a certain cognitive dissonance that we wish to
avoid. That’s why we work with world instead of &World in the rest of main().

Line 7: Upon exit, the program will return the value of exit_status to the calling
environment. We set exit_status toEXIT_FAILURE as its default value. Only
if all is well will we change it to EXIT_SUCCESS.

Lines 8 and 9: The world→herd points to the head of the linked list of animals. We
set it to NULL here to indicate that initially the linked list is empty.

The world→plants is going to point to a world_h × world_w matrix (to be
allocated later) whose (i , j) entry holds the number of plants in cell (i , j). We set it
to NULL here for a different, and a more subtle, reason.

In several places in main() where we encounter unacceptable situations, we
bail out through a “goto cleanup”, which makes the execution jump to the
cleanup label where free_matrix(world→plants) is called, among other
things, to free the memory associated with the plants matrix. If we omit line 9,
then world→plantswill have an undetermined (junk) value; therefore the call to
free_matrix(world→plants) is likely to crash the program. On the other

60There is nothing special about the name “exit_status”. I called it that because it expresses its intent
well.

root
2014/7/8
page 180

�

�

�

�

�

�

�

�

180 Chapter 17. The evolution of species

hand, if world→plants has been set to NULL, then calling free_matrix() is
harmless since it is designed to handle a NULL argument gracefully. This may be a
good time to go back and have a look at free_matrix()’s code in Chapter 8.

Line 11: The next dozen lines or so extract the user-specified options from the command-
line arguments. To appreciate what happens here, you will have to compare the
code in main() with the layout of the command-line arguments shown in Fig-
ure 4.1 on page 26.

As we saw in Section 17.4, our program is expected to be invoked as
“progname n” or “progname n f”; therefore we expect argc to be either 2
or 3. If on line 11 we discover that argc is less than 2 or more than 3, we print a
“usage message” to remind the user what needs to be done and then quit the pro-
gram. The function show_usage() will be described later, but note that we pass
argv[0] to show_usage() so that it can compose a coherent message complete
with the program’s name.

Line 16: If we arrive here, then argc is at least 2. We apply sscanf() to the argv[1]
to extract its numerical value into n. If the extraction is successful, sscanf()
will return 1; otherwise the input is not an unsigned long int, so we call
show_usage() to alert the user, and then we exit the program.

Line 21: If argc > 2, then a third item is present on the command-line. We apply
sscanf() to argv[2] to extract its numerical value into f. Again, if the extrac-
tion fails, we call show_usage() and then exit the program.

Remark 17.3. What happens if the user enters -1 for n or f on the command-line?
Does that set n or f to -1? No! Since n and f are of type unsigned long int,
and due to the modular arithmetic of C’s unsigned types, that -1 is received as
ULONG_MAX, which is the largest value that an unsigned long int can hold.

Remark 17.4. ULONG_MAX = 232 − 1 = 4,294,967,295 on my computer. What
happens if I enter something larger, say 4,294,967,800, on the command-line? Is
the number reduced according to modular arithmetic? No! The C standard is quite
explicit about the behavior of sscanf() in that circumstance; if the specified num-
ber is too large, it is truncated to ULONG_MAX.61

Remark 17.5. What happens if the user enters 1000xyz for n? According to the
semantics of sscanf(), n is set to 1000 and the trailing junk is silently discarded.
If you wish to alert the user about such trailing junk, you should use the standard
library’s strtoul() instead of sscanf(). See Chapter 5 for details.

Line 26: We call the function read_wdf() (defined in file read.c) to read the user-
supplied WDF from the stdin. We pass world, which is the address of World,
to read_wdf(). That’s all it needs to do its work.

If read_wdf() encounters an error in the WDF —garbled text or incomplete data,
for instance—it returns false (actually 0). If all is well, it returns true (actually 1).

61Furthermore, the standard library’s errno variable is set to the macro ERANGE, which indicates a range
error. You may print a text version of that out-of-range message through the standard library’s perror()
function if you want.

root
2014/7/8
page 181

�

�

�

�

�

�

�

�

17.11. The file evolution.c 181

On line 26 we check the return value. If it’s other than true, we jump to cleanup
and therefore exit the program. No message is printed here because read_wdf()
itself prints diagnostics as it encounters problems.

Line: 29: The function initialize_plants() allocates memory for the matrix of
plants and sets all its elements to zero. The world begins with no plants at all.

Line: 30: This is where the real action takes place—evolve(world, n) takes the world
through n time-steps.

Line 31: If f is nonzero, then the program takes f graphical snapshots of the world,
interleaving world updates with snapshots.

Lines 34–37: We define eden_center according to the formula (17.3) on page 164. The
struct point structure that occurs on line 34 is declared on line 10 in List-
ing 17.12. We call ll_sort() to sort the linked list of the animals according
to increasing distance from eden_center. Thus, animals nearer the Eden will
come first in the list, and a listing of the herd should reveal genetic differences, if
any, between the animals near and far from the Eden. The comparison function,
nearer_the_eden(), that appears as an argument to ll_sort() on line 37 is
described in subsection 17.11.6 on page 182.

Remark 17.6. The placement of the declaration of eden_center on line 34
assumes C99. To revert to C89, move that declaration to the top of main() since
C89 requires all declarations to precede executable statements in a block.

Line 38: We write the world’s current data in the WDF format to the stdout.

At this point the program has accomplished its mission; therefore on the next line
we change the value of exit_status to EXIT_SUCCESS.

Line 41: The cleanup label has been the jumping target from many places throughout
main(). There is not much to do once we arrive here. We free the memory re-
sources and return from main()—and consequently exit the program—with the
status of exit_status, which has been set earlier to one of EXIT_SUCCESS or
EXIT_FAILURE.

This completes the description of the somewhat longish function main(). In com-
parison, the remaining functions in evolution.c are shorter and simpler. We set out to
describe those next.

17.11.2 The function show_usage()

The function show_usage() that appears on line 34 in Listing 17.12 on page 177 prints
a brief help message on the program’s usage. It is invoked from several places in main()
(in Listing 17.13) wherever the user’s input disagrees with the program’s expectations.
I will not give an outline; you write the whole thing. My version prints

Usage: ./evolution n [f] <infile >outfile
n ≥ 0 : (required) number of updates
f ≥ 0 : (optional) number of snapshots after n updates
Reads World Definition from infile, performs
n updates, and writes result to outfile

root
2014/7/8
page 182

�

�

�

�

�

�

�

�

182 Chapter 17. The evolution of species

Remark 17.7. The program’s name arrives as an argument to show_usage(). Use
that; don’t hard-code the program’s name into the function’s body.

Remark 17.8. On the “Usage” line I have placed f in square brackets. That’s the tradi-
tional way—at least in the Unix world—of indicating that the argument is optional.

17.11.3 The function random()

The function random() that appears on line 14 in Listing 17.12 on page 177 is exactly
the function random() of Listing 10.1 on page 73 in Chapter 10. Just copy the code
from there into your evolution.c.

17.11.4 The function free_herd()

The function free_herd() that appears on line 15 in Listing 17.12 on page 177 frees
the memory resources associated with a linked list of animals. Note that the function
ll_free() developed in Chapter 16 merely frees the memory of a linked list’s cons
cells. It does not touch the data that the cons cells point to. Freeing the linked list of
animals, therefore, requires two passes, first to free the data and then to free the cons cells,
as in

1 static void free_herd(conscell *herd)
2 {
3 for (conscell *p = herd; p �= NULL; p = p→next)
4 free(p→data);
5 ll_free(herd);
6 }

17.11.5 The functions dead_or_alive() and remove_the_dead()

After each time-step, the program scans the linked list of the animals and removes the
dead. An animal is dead if its energy has dropped to zero or below. The function
dead_or_alive() that appears on line 16 in Listing 17.12 on page 177 receives a
pointer to an animal and returns true or false (that is, 1 or 0) depending on whether the
animal is alive or dead, respectively. I will leave it to you to implement that function.

The function remove_the_dead() that appears on line 17 in Listing 17.12 is a
simple wrapper around Chapter 16’s ll_filter() function to cull the herd. Here it is
in its entirety:

1 static conscell *remove_the_dead(conscell *herd)
2 {
3 conscell *dead = NULL;
4 herd = ll_filter(herd, dead_or_alive, &dead);
5 free_herd(dead);
6 return herd;
7 }

Be sure to understand how it works, and then add it to your evolution.c.

17.11.6 The function nearer_the_eden()

The most striking and significant finding of this simulated evolution is that in the presence
of the Eden, the animals evolve into two distinct species: those who live in or near the

root
2014/7/8
page 183

�

�

�

�

�

�

�

�

17.11. The file evolution.c 183

Eden and those who live elsewhere. The two species are distinguished by their distinct
genetic structures. A good way of bringing out that distinction is to sort the linked list of
the animals according to their distances away from the center of the Eden. This puts the
species of one kind near the beginning of the list and the species of the other kind near
the end of the list.

The sorting is performed through the functionll_sort(), as explained on page 181.
That function, in turn, relies on a helper function, nearer_the_eden(), to determine
the order of the items in the linked list. The latter appears on line 18 in Listing 17.12
(page 177). We see that it is invoked with three arguments. The first two are pointers
to struct animal, and the third is a pointer to a struct point, which is declared
on line 10 in Listing 17.12 on page 177 and which holds the indices (ei , e j) of the Eden’s
center. The function nearer_the_eden() computes the distances of the two animals
from (ei , e j), and returns -1, 0, or 1 depending on whether the first animal is closer to, at
an equal distance from, or farther from the Eden, compared to the second. Distance may
be measured in any meaningful way. The easiest (and possibly the most relevant) metric
measures the distance between the cells (ai ,aj) and (ei , e j) through the formula

dist
�
(ai ,aj), (ei , e j)

=max

�|ai − ei |, |aj − e j |

,

where the max function produces the larger of its two arguments. You may use the pre-
processor macro MAX() defined on line 9 of Listing 17.12 for this purpose.

You have all the necessary bits now to implement the functionnearer_the_eden()
and add it to your evolution.c. It will be a slight variant of the function cmp2() of
page 155.

Remark 17.9. Implicit in the distance formula above is the assumption that the Eden
is located near the center of the world rectangle. (See the discussion on page 163.) If the
Eden were located significantly off center, that formula wouldn’t apply since it does not
account for the wrapping around of the world’s edges. For instance, if the Eden is near
one of the edges of the world rectangle, then a point on the opposite edge can be actually
quite close to the Eden, while the formula above says otherwise. Should you wish to
modify the program to allow for an off-center Eden, replace that distance formula with

dist
�
(ai ,aj), (ei , e j)

=max

�
φ(ai − ei , h),φ(aj − e j , w)

,

where h and w are the world’s height and width, and the function φ is defined as

int phi(int x, int L)
{

int d = abs(x);
if (d > L/2)

d = L - d;
return d;

}

17.11.7 The function initialize_plants()

The functioninitialize_plants() that appears on line 20 in Listing 17.12 (page 177)
calls make_matrix() to create the h×w matrix world→plants, where h and w are
the values stored in world→world_h and world→world_w. Furthermore, it sets all
of the matrix’s entries to zero so that the world starts out with no food.

Add your implementation of initialize_plants() to evolution.c.

root
2014/7/8
page 184

�

�

�

�

�

�

�

�

184 Chapter 17. The evolution of species

Listing 17.14: An outline of the function add_plants() in the file evolution.c.

1 static void add_plants(struct world *world)
2 {
3 int i = random(world→world_h);
4 int j = random(world→world_w);
5 world→plants[i][j]++;
6

7 if (world→eden_h > 0 && world→eden_w > 0) {
8 i = ... �
9 j = ... �

10 world→plants[i][j]++;
11 }
12 }

17.11.8 The function add_plants()

The function add_plants() that appears on line 21 in Listing 17.12 on page 177 is
executed once at the beginning of every time-step. It is responsible for depositing one
morsel of food in a random cell in the world and another morsel of food in a random cell
in the Eden, if an Eden exists.

Listing 17.14 shows an outline. On lines 3 and 4 we pick random numbers i and j
in the ranges {0,1, . . . , h − 1} and {0,1, . . . , w − 1}, where h and w are the dimensions
of the world, that is, world→world_h and world→world_w. Consequently, (i , j)
represents a random cell in the world. Incrementing world→plants[i][j] on line 5
amounts to depositing a morsel of food there.

The purpose of the function’s second half is to deposit an additional morsel of food in
the Eden. You should be able to fill the excised parts with the help of the formula (17.2)
on page 164.

17.11.9 The function gene_to_activate()

The functiongene_to_activate() that appears on line 22 in Listing 17.12 on page 177
receives a chromosome, i.e., an array of eight genes, 〈g0, g1, . . . , g7〉, and selects a random
gene to activate. It returns the index (i.e., a number in the set {0,1, . . . , 7}) of the selected
gene.

If we were to select any of the genes with equal probability, then it would have been
a matter of calling random(8) to get the desired index. But our task is a bit more com-
plicated; we wish to assign higher probability of selection to genes of larger values. The
way to do this is to consider eight line segments of lengths gk for k = 0,1, . . . , 7. Lay them
back-to-back, and in order, from left to right, to obtain a line segment of overall length
L =

∑7
k=0 gk . Figure 17.3 shows this for the chromosome 〈2,4,1,1,6,3,1,2〉, which has

L= 20.
Pick a random number r with uniform distribution in the range {0,1, . . . , L−1}. (Let-

ting r = random(L) will do that.) The key observation is that such a number is more
likely to fall on a longer segment than a short one.

The outcome r = 9, for instance, falls on the segment corresponding to the gene g4,
as seen in Figure 17.3. In that case gene_to_activate() will return 4 to signal that
the gene g4 is to be activated.

How does gene_to_activate() know that r = 9 falls on the interval g4? It sees
that r − (g0 + g1+ g2+ g3)> 0 but r − (g0+ g1 + g2+ g3 + g4)< 0. That’s how.

root
2014/7/8
page 185

�

�

�

�

�

�

�

�

17.11. The file evolution.c 185

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

r = 9

g0

2
g1

4
g2

1
g3

1
g4

6
g5

3
g6

1
g7

2

Figure 17.3: The chromosome 〈2,4,1,1,6,3,1,2〉 is viewed as a sequence of line seg-
ments of lengths 2, 4, etc., encompassing an overall line segment of
length 20. A random number r in the range 0 ≤ r < 20 is more likely
than not to fall on a longer line segment, thus selecting that segment for
activation. The outcome r = 9 (or any r ∈ {8,9,10,11,12,13} for that
matter) selects the gene g4, but only r = 7 selects the gene g3.

Write a function gene_to_activate() that determines on which of the eight in-
tervals the random number r falls and returns the index of that interval. Add it to your
evolution.c.

17.11.10 The function turn()

The purpose of the functionturn() that appears on line 23 in Listing 17.12 on page 177 is
to turn an animal in place according to the description under the Movement paragraph on
page 164. It receives a pointer to a struct animal, whence it determines the animal’s
current direction (it’s in animal→d) and its chromosome (it’s in animal→genes).
It callsgene_to_activate(animal→genes) to determine the gene to activate. Let’s
say it’s gene k. It turns the animal by incrementing animal→d by k modulo 8.

We may do that modular arithmetic in two equivalent ways. One way is through
C’s % operator: a%b gives the remainder of the division of the integer a by integer b.62

Therefore we may set the animal’s orientation after turning by

animal→d = (animal→d + k) % 8;

Alternatively, since we know that bothanimal→d andk are integers in the set {0,1, . . . , 7},
then the animal’s orientation after turning may also be set via

animal→d = animal→d + k;
if (animal→d > 7)

animal→d -= 8;

Pick one or the other method, and finish writing the function turn().

17.11.11 The function move()

The purpose of the function move() that appears on line 24 in Listing 17.12 on page 177
is to make an animal step forward (that is, in the direction it’s facing) to the neighboring
cell. The Movement paragraph on page 164 gives the specifics. Figure 17.1(b) on page 163
shows the neighboring cells in the directions 0,1, . . . , 7.

Suppose the animal is in the cell (i,j). If it faces in the direction 0, after the move
it will find itself in the cell (i+1,j); see Figure 17.1(b). We see that the new posi-
tion is (i,j) + (1,0), where the addition is performed componentwise as in vec-
tors. Similarly, if the animal is facing in the direction 1, then it will move to the cell

62Special care is called for when a or b are negative; consult your C reference book. That’s not a concern
here because we are dealing with nonnegative numbers.

root
2014/7/8
page 186

�

�

�

�

�

�

�

�

186 Chapter 17. The evolution of species

Listing 17.15: The function move() in the file evolution.c. It makes an animal step forward (that
is, in the direction it’s facing) to the neighboring cell.

1 static void move(struct world *world, struct animal *animal)
2 {
3 struct {
4 int i;
5 int j;
6 } motion_vectors[] = {
7 { 1 , 0 },
8 { 1 , 1 },
9 { 0 , 1 },

10 {-1 , 1 },
11 {-1 , 0 },
12 {-1 , -1 },
13 { 0 , -1 },
14 { 1 , -1 }};
15 int i = animal→i + motion_vectors[animal→d].i;
16 int j = animal→j + motion_vectors[animal→d].j;
17 if (i < 0)
18 i += world→world_h;
19 else if (i ≥ world→world_h)
20 i -= world→world_h;
21 if (j < 0)
22 j += world→world_w;
23 else if (j ≥ world→world_w)
24 j -= world→world_w;
25 animal→i = i;
26 animal→j = j;
27 }

(i,j) + (1,1). Generally speaking, each direction d has an associated movement
vector (i’,j’) such that the animal in the cell (i,j) and facing the direction d will
move to cell (i,j) + (i’,j’). It’s convenient to introduce a structure such as

struct {
int i;
int j;

};

to hold integer pairs (i’,j’) and then make an array of length 8 of such structures to
hold the (i’,j’) pairs for all eight possible directions. The declaration of the structure
and the initialization of the array may be done all at once, as seen in Listing 17.15, which
shows the function move() in its entirety. After computing the (i,j) index of the new
cell on lines 15 and 16, we check whether it has gone outside the world rectangle, and if
so, we bring it back—that’s where the edges wrap around and the world gets its toroidal
topology—by adding or subtracting the appropriate values.

17.11.12 The function feed()

The function feed() that appears on line 25 in Listing 17.12 on page 177 receives a
pointer to an animal. It determines the animal’s cell index (i,j) and then looks up the
(i,j) entry of the world→plants matrix. If there is food there, it takes one morsel

root
2014/7/8
page 187

�

�

�

�

�

�

�

�

17.11. The file evolution.c 187

and feeds it to the animal. The food count in the cell drops by one and the animal’s energy
increases by world→plant_energy. That’s all. You should be able to do the details.

17.11.13 The function clone()

The function clone() that appears on line 26 in Listing 17.12 on page 177 receives a
pointer to an animal. It creates an identical animal and returns a pointer to it. The func-
tion is quite straightforward. It calls xmalloc() as in

struct animal *new = xmalloc(sizeof *new);

to allocate memory for the clone and then copies all the data from the original to the
clone. You should be able to do the details.

17.11.14 The function mutate()

The function mutate() that appears on line 27 in Listing 17.12 on page 177 receives a
pointer to a chromosome and mutates it in the way described under the heading
Mutation on page 165. Its implementation is quite straightforward, so I will leave the
work to you, but here are two hints.

First, observe that random(3) returns a random integer in the set {0,1,2}; therefore
random(3)-1 is a random integer in the set {−1,0,1}. Second, you may have use for
the preprocessor macro MAX() defined on line 9 in Listing 17.12, which finds the larger
of its two arguments.

17.11.15 The function reproduce()

The function reproduce() that appears on line 28 in Listing 17.12 on page 177 receives
a pointer to an animal and splits it in two. Specifically, it cuts down the animal’s energy to
half, callsclone() to make an exact copy, calls mutate() to mutate the cloned animal’s
chromosome, and then pushes the cloned animal into the linked list of the animals. Here
is that function in its entirety:

1 static void reproduce(struct world *world, struct animal *animal)
2 {
3 animal→e /= 2;
4 struct animal *new = clone(animal);
5 mutate(new→genes);
6 world→herd = ll_push(world→herd, new);
7 }

Examine the code carefully, and especially note how ll_push() is used. When you feel
comfortable with your understanding, insert the function in your evolution.c.

17.11.16 The function update_world()

The function update_world() that appears on line 30 in Listing 17.12 on page 177
updates the world by one time-step. It sees to it that (a) dead animals are removed from
the linked list of animals; (b) each of the remaining animals turns and then moves to an
adjacent cell, eats food if there is any, and reproduces if it has sufficient energy; and (c) adds
a plant somewhere in the world, and another one somewhere in the Eden, if there is an
Eden. Listing 17.16 shows my implementation. As always, go through it carefully and
analyze every piece. Then insert it into your evolution.c.

root
2014/7/8
page 188

�

�

�

�

�

�

�

�

188 Chapter 17. The evolution of species

Listing 17.16: The function update_world() in the file evolution.c.

1 static void update_world(struct world *world)
2 {
3 world→herd = remove_the_dead(world→herd);
4 for (conscell *p = world→herd; p �= NULL; p = p→next) {
5 struct animal *a = p→data;
6 turn(a);
7 move(world, a);
8 feed(world, a);
9 a→e--;

10 if (a→e ≥ world→reproduction_threshold)
11 reproduce(world, a);
12 }
13 add_plants(world);
14 }

17.11.17 The function evolve()

The function evolve() that appears on line 31 in Listing 17.12 on page 177 calls the
function update_world() in a loop to update the world n times. It’s quite a straight-
forward function, so I will let you write the whole thing, which is not much.

Evolution by its nature is an extremely slow process. To achieve any discernible effect,
we need to run the simulation through millions of time-steps. Even on a fast computer
this may take several minutes. Now, it is annoying to stare at a silent computer screen
waiting for the program to finish and not knowing how much progress is being made. To
give some indication of the program’s state, it would be extremely nice if it could print
the current step number once every 100,000 steps, say. Make your evolve() to do that.

17.11.18 The function evolve_with_figs()

The purpose of the function evolve_with_figs() that appears on line 32 in List-
ing 17.12 on page 177 is to take a sequence of snapshots of the state of the world. Specif-
ically, if called with an argument of n, it produces n snapshots interleaved with n-1 up-
dates, as explained on page 167. Listing 17.17 shows an implementation. On line 5 we
synthesize the name of the graphics file in the array buf. The sequence of file names will
be fig0000.eps, fig0001.eps, and so on. On line 6 we pass the file name and the world struc-
ture to the function world_to_eps(), which extracts the necessary information and
writes it as an EPS image into a fig*.eps file. Then on line 8 it calls update_world() to
update the world by one time-step. The reason for the if-test is to avoid an extra update
after the last snapshot. This is so that the WDF written by the program agrees with the
last snapshot.

Add the function evolve_with_figs() to your evolution.c. This is the final ad-
dition to that file. You are done. Congratulations!

17.12 Experiments
Experiment #1: For the first experiment, try

$./evolution 1000 <world-no-eden.wdf >out-no-eden-1000.wdf

root
2014/7/8
page 189

�

�

�

�

�

�

�

�

17.12. Experiments 189

Listing 17.17: The function evolve_with_figs() in the file evolution.c.

1 static void evolve_with_figs(struct world *world, unsigned long int n)
2 {
3 char buf[16]; // an overkill – only 12 chars are needed
4 for (unsigned long int i = 0; i < n; i++) {
5 sprintf(buf, "fig%04lu.eps", i);
6 world_to_eps(world, buf);
7 if (i < n - 1)
8 update_world(world);
9 }

10 }

where world-no-eden.wdf is as in Section 17.3. Examine the contents of the output file
out-no-eden-1000.wdf. You will find that the initial single animal has multiplied into 120
animals (this number may vary, depending on the random number generator that comes
with your C library). Note that chromosomes of all the animals are very roughly the
same as those of their original ancestors. There are no discernible evolutionary trends.
One thousand time-steps are too few to evince evolutionary trends.

Experiment #2: Rerun the experiment over a greater time span:

$./evolution 10000 <world-no-eden.wdf >out-no-eden-10000.wdf

Examine the contents of the output file out-no-eden-10000.wdf. There are very slight in-
dications that animals are developing a more dominant g0 gene. That’s the gene that
promotes moving straight ahead.

Experiment #3: Rerun the experiment over a yet greater time span:

$./evolution 100000 <world-no-eden.wdf >out-no-eden-100000.wdf

Ah, now the trend is quite obvious; the evolution has led to dominant g0, g1, and g7 genes.
These are the genes that promote forward motion and sweeping vast expanses.

Experiment #4: Also try 1,000,000 and 10,000,000 time-steps:

$./evolution 1000000 <world-no-eden.wdf >out-no-eden-1000000.wdf
$./evolution 10000000 <world-no-eden.wdf >out-no-eden-10000000.wdf

What do you observe?

Experiment #5: Now let us try world-and-eden.wdf, which is just like world-no-eden.wdf
but has a 10× 10 Eden:

$./evolution 1000 <world-and-eden.wdf >out-with-eden-1000.wdf

Examine the output file out-with-eden-1000.wdf. There is no particularly interesting pat-
tern there.

Experiment #6: Try

$./evolution 1000000 <world-and-eden.wdf >out-with-eden-1000000.wdf

root
2014/7/8
page 190

�

�

�

�

�

�

�

�

190 Chapter 17. The evolution of species

Examine the output file out-with-eden-1000000.wdf. Do you see that there are two distinct
species now? Recall that the program sorts the animals according to their distances away
from the Eden.

Experiment #7: Also try

$./evolution 10000000 <world-and-eden.wdf >out-with-eden-10000000.wdf

The two distinct species stand out even more clearly now. Do you see the foreign species
streaking through the Eden?

17.13 Animation
Try

$./evolution 100000 20 <world-and-eden.wdf >/dev/null

This runs the evolution for an initial 100,000 steps; then it takes 20 snapshots inter-
leaved with updates. The snapshots are stored in the EPS files named fig0000.eps through
fig0019.eps. Figure 17.2 on page 176 shows a sample snapshot.

The /dev/null that appears in the command above is Unix’s “black hole”; any stream
directed to it just vanishes. I am redirecting the program’s stdout stream to /dev/null
since I am not interested in seeing the WDF file that it writes—I have seen it already in
the previous section’s experiments.

How do we view the snapshots? There are many ways, but these depend very much
on your computer’s operating system. I can tell you what I use on Linux. You will have
to find out what is available to you if your operating system is different.

• You may view the individual snapshots through any PostScript image viewer. The
programs display, evince, and gv are among the many such utilities freely
available on Linux platforms. I prefer evince for viewing single frames:

$ evince fig0007.eps

• The display utility noted above is a part of the ImageMagick suite of image view-
ing and manipulation programs. The suite also contains theanimate utility, which
animates a sequence of images. Try

$ animate -delay 25 fig*.eps

You will have to give it a few seconds at startup since it has to read and digest all the
frames ahead of time. Then it will show the 20 images in quick succession, as in a
movie, and will loop forever. To stop the animation, move the mouse cursor inside
the animation window and press the keyboard’s “q” key.
The-delay 25 option makes the animation pause for 25/100 of a second between
frames. Adjust it for slower or faster playback.

• I prefer more control in an animation. I like to stop it where I want to and move
forward or backward one frame at a time. For that, see if you have the feh image
viewing utility on your computer. It comes with most Linux distributions. You
may also download the source for free from <http://feh.finalrewind.org/>

and compile it yourself.
Feh does not recognize PostScript. You will have to convert the fig*.eps files to a
raster-based image format, such as PNG. This may be done through the convert
utility that comes with ImageMagick:

$ convert fig*.eps fig%04d.png

root
2014/7/8
page 191

�

�

�

�

�

�

�

�

17.14. Project Evolution 191

Within a few seconds, this will convert the PostScript files fig0000.eps through
fig0019.eps to PNG images fig0000.png through fig0019.png. The %04d specifies
4-digit, zero-filled numbering of the output files. View the resulting images with

$ feh fig*.png

Press the keyboard’s right and left arrows to move forward and backward through
the images. Or just hold down one of those keys to let feh flip through those images
as fast as it can, thus creating the illusion of an animation.

You will find a GIF animation in the book’s website. I made that by packing a se-
quence of individual snapshots into an animated GIF file. Read the website to learn how
it is done.

17.14 Project Evolution

Part 17.1. Complete and test the mini-project of Section 17.10.

Part 17.2. Run the experiments suggested in Sections 17.12 and 17.13. Then change the
parameters in the WDF s and try again. Is evolution always successful?

Part 17.3. [optional] Entering large numbers such as 10000000 on the command-line
is inconvenient because you have to carefully count the zeros. Modify the program’s
command-line parsing section to make it recognize the K, M, G suffixes63 for numbers.
Thus, 10K would mean ten thousand, 15M would mean 15 million, and 2G would mean
2 billion.

Part 17.4. [optional] The WDF defined in Section 17.3 carries no information about the
distribution of food in the world. That’s why our simulation begins with zero food. See
if you can extend the definition of WDF to handle a prescribed food distribution. You
may consider a syntax like

Food (i0,j0,n0) (i1,j1,n1) ...

to indicate that the cell (i0, j0) has n0 morsels of food, etc. You will need to modify the
functions read_wdf() and write_wdf() to handle such a specification.

This extension increases the program’s versatility significantly since the WDF written
by write_wdf() now contains the simulation’s complete state upon the program’s exit.
That WDF then may be used as input to the program to continue the simulation where
it was left off.

Part 17.5. [optional] Write a one-dimensional version of the evolution simulator. The
world would be a line interval whose ends are identified; i.e., an animal exiting at one end
emerges at the other end. (Topologically the world would be a circle.) The chromosome
will consist of two genes 〈g0, g1〉. If g0 is activated, the animal will not turn. If g1 is
activated, it will do an about-face.

63These are the first letters of Kilo, Mega, and Giga, which correspond to multiplicative factors of 103, 106,
and 109, respectively.

root
2014/7/8
page 193

�

�

�

�

�

�

�

�

Chapter 18

The Nelder–Mead
downhill simplex

Prerequisites: Chapters 7, 8

18.1 Introduction
The Nelder–Mead simplex method [49, 50] is an algorithm for finding the local minima
of a function f : Rn →R, called the objective function in optimization parlance. The idea
behind it is very geometric. It starts with a suitably chosen initial simplex64 in Rn and
evolves it according to certain rules. The simplex undergoes iterative expansions, contrac-
tions, and displacements, and if everything goes according to plan, it moves “downhill”
toward a local minimum of f . The term “downhill simplex” was used in [53] to refer to
this behavior. A significant merit of the algorithm is that it is gradient-free, that is, it does
not require a knowledge of the function’s gradient, which may be difficult or expensive
to compute. Consequently, it may be applied to minimize nondifferentiable functions,
but see the caveats in Section 18.3.

18.2 The algorithm
The algorithm works in iterative cycles. I will explain what is done in one cycle. The
cycles are repeated until certain convergence criteria are met. The calculations involve
four parameters, βr ,βe ,βc , andβs , which permit some customization of the algorithm,
although almost always these are taken as

βr = 1, βe = 2, βc =
1

2
, βs =

1

2
.

Now, without further ado, let us begin with the description of the algorithm.

Rank the vertices. Let us write x(i) ∈Rn , i = 0,1, . . . , n, for the simplex’s n+1 vertices
at the start of a cycle, and let yi = f (x(i)) be the function values at those vertices.
Three of the n+ 1 vertices play key roles in what happens next. The best vertex is

64A simplex in n dimensions is the generalization of a triangle (two dimensions) and a tetrahedron (three
dimensions). It is the convex hull of n + 1 points in the n-dimensional Euclidean space. Equivalently, it
may be thought of as the “solid” object formed by a set of n vectors emanating from a common point in the
n-dimensional space. If the vectors form a linearly independent set, then the simplex has a positive n-dimensional
volume; otherwise it is a degenerate simplex.

193

root
2014/7/8
page 194

�

�

�

�

�

�

�

�

194 Chapter 18. The Nelder–Mead downhill simplex

one with the lowest function value (it’s best because we are aiming to minimize the
function). The worst vertex is one with the highest function value. The next to worst
vertex is one with the highest function value after excluding the worst vertex. We
write ia, i y, and i z for the indices of the best, next to worst, and worst vertices,
respectively, because a, y, and z are the first, next to last, and last letters of the
alphabet.65

The definitions of ia, i y, and i z are not quite unambiguous. What are the best,
next to worst, and worst vertices if the vector of the function values is [7,7,7,7] or
[5,5,1,1,7,7]? We partially remove the ambiguity by requiring that ia, i y, and i z
be distinct. Stated formally, we require that

ia �= i y, i y �= i z, i z �= ia,
yia =min

i
yi , yi z =max

i
yi , yiy =max

i �=i z
yi

if n ≥ 2. (18.1a)

Thus, if the function values are [7,7,7,7], then ia = 0, i z = 1, i y = 2 will do,
but ia = i z = i y = 0 is not acceptable. Similarly, if the function values are
[5,5,1,1,7,7], then ia will have to be one of 2 or 3; and either of the choices i z = 4,
i y = 5 or i z = 5, i y = 4 will do.66

In defining the best, next to worst, and worst vertices above I have assumed implic-
itly that the simplex has at least three vertices, that is, the dimension of space n ≥ 2.
The one-dimensional case, n = 1, is special; the simplex is a line segment, and hence
it has only two vertices. From the definition of i y it follows that i y = ia. Therefore
picking distinct ia, i y, and i z is impossible. We make an exception in the case of
n = 1 and change the first line of the conditions (18.1a) to

ia = i y �= i z if n = 1. (18.1b)

The ambiguities noted above are not the only ones. There are quite a few decisions
in the rest of the algorithm that call for tie-breakings of various sorts, e.g., making
comparisons with “<” versus “≤”. I will gloss over the precise tie-breaking rules—as
did Nelder and Mead in their paper—therefore your program may not work exactly
as someone else’s that breaks the ties differently. See [40] for a set of precise tie-
breaking rules that lead to a uniquely defined Nelder–Mead algorithm.

Reflect. Compute the centroid x̂ of the simplex face opposite to x(i z),

x̂=
1

n

∑
i �=i z

x(i), (18.2)

compute the “reflection” x(r) of x(i z) through x̂,

x(r)− x̂=−βr (x
(i z)− x̂), (18.3a)

and let y (r) = f (x(r)). Ifβr = 1, as it almost always is, thenx(r) is the true reflection
of x(i z) through x̂ because then x(r) − x̂ = x̂− x(i z). The reflection diagram in
Figure 18.1 illustrates this.
At this point the algorithm branches into four cases, depending on the relationship
between the value of y (r) and the vertex values yi , i = 0,1, . . . , n.

65Here I am breaking away from the tradition in mathematics of using single letters for variable names because
I could not think of suitable replacements for the double-letter names ia, i y, and i z. From the programming
point of view, however, these are quite natural; programmers routinely use multiletter symbols for variables.

66Here, and everywhere else in this book for that matter, array indices begin with zero.

root
2014/7/8
page 195

�

�

�

�

�

�

�

�

18.2. The algorithm 195

x(i z)

x̂

x(r)

reflection

x(i z)

x̂

x(r)

x(e)

expansion

x(i z)

x̂

x(r)

x(c)
outer contraction

x(i z)

x(c)

x̂
inner contraction

x(ia)
shrink

Figure 18.1: These diagrams show all possible transformations of a Nelder–Mead sim-
plex in two dimensions (n = 2) with the standard choices of the parameter
values: βr = 1, βe = 2, βc = 1/2, βs = 1/2.

Case 1: y (r) < yia

This is a terrific occurrence; what used to be the worst vertex changes to the
best vertex upon reflection. Thus, the line that connects x(i z) through x̂ to
x(r) appears to be a direction of steep descent of the function f . Take advan-
tage of the opportunity, and expand the simplex in that direction by a factor
of βe . Thus, calculate a point x(e) such that

x(e)− x̂=βe (x
(r)− x̂), (18.3b)

and let y (e) = f (x(e)). Usually one takes βe = 2. This is illustrated in the
expansion diagram in Figure 18.1. Replace the vertex x(i z) with the better of
x(e) and x(r), and end the iteration cycle.

Remark 18.1. This is slightly different from Nelder and Mead’s original
prescription which is the following: Pick x(e) if y (e) < yia ; else pick x(r).

Case 2: yia ≤ y (r) < yiy

Replace the vertex x(i z) with x(r), and end the iteration cycle.

Case 3: yiy ≤ y (r) < yi z

Replacing x(i z) by x(r) under these conditions will constitute some improve-
ment, but it will not be very useful since the worst vertex remains the worst
vertex after the replacement. Thus, try another tack: push x(r) toward the

root
2014/7/8
page 196

�

�

�

�

�

�

�

�

196 Chapter 18. The Nelder–Mead downhill simplex

centroid x̂ by a factor of βc to arrive at a point x(c),

x(c)− x̂=βc (x
(r)− x̂), (18.3c)

and let y (c) = f (x(c)). Usually one takes βc = 1/2. The outer contraction
diagram in Figure 18.1 illustrates this. If y (c) < y (r), accept x(c) as a replace-
ment for the vertex x(i z) and end the cycle; otherwise shrink the simplex (see
below) and end the cycle.

Case 4: yi z ≤ y (r)

In this case a reflection is of no use at all since the worst point becomes even
worse. Try another tack: push x(i z) toward the centroid x̂ by a factor of βc
to arrive at a point x(c),

x(c)− x̂=βc (x
(i z)− x̂), (18.3d)

and let y (c) = f (x(c)). The inner contraction diagram in Figure 18.1 illustrates
this. If y (c) < yi z , accept x(c) as a replacement for the vertex x(i z) and end the
cycle; otherwise shrink the simplex (see below) and end the cycle.

Shrink. The shrink process referred to in cases 3 and 4 above shrinks the simplex toward
its best vertex x(ia) by moving all other vertices toward x(ia) by a factor of βs :

x(i)new−x(ia) =βs (x
(i)−x(ia)) for all i �= ia. (18.3e)

Usually one takesβs = 1/2. This is illustrated in the shrink diagram in Figure 18.1.

Are we there yet? There is no universally accepted stopping criterion for the Nelder–
Mead algorithm. Nelder and Mead’s original article [49] suggested the criterion√√√√ 1

n

n∑
i=0

(yi − ȳ)2 < ε,

motivated by applications in statistics, where ȳ is the average of the yi ’s, and ε is a
prescribed measure of accuracy. The stopping criterion proposed in [53] is

2
|yi z − yia |
|yi z |+ |yia | < ε

for some prescribed ε. Either criterion is met if the variation of the objective func-
tion’s values over the simplex’s vertices is small. The simplex’s size does not enter
into the consideration.

Wright [80] quotes others who have suggested

max
i �=ia

‖x(i)−x(ia)‖ ≤ εmax(1,‖x(ia)‖)

for the stopping criterion, where ε is a prescribed measure of accuracy. This crite-
rion is met if the simplex is sufficiently small. The objective function’s values do
not enter into the consideration.

The following hybrid criterion accounts for both the simplex’s size and the objec-
tive function’s values. It is quite robust and has worked well for my purposes, so
that’s what I prescribe for our program.

root
2014/7/8
page 197

�

�

�

�

�

�

�

�

18.3. Problems with the Nelder–Mead algorithm 197

The user supplies a number, h, that establishes a “length scale” in Rn . A good h
should be of an order of magnitude commensurate with the features of interest in
the objective function’s domain. The length scale h serves dual purposes. For one
thing, it enters the stopping criterion described below, and for another thing, it is
used to set the simplex’s initial size.

The user also supplies a dimensionless number, τ (for tolerance), that determines the
algorithm’s accuracy. The program lets ε = h × τ and declares that the algorithm
has converged if

‖x(i z)−x(ia)‖ ≤ ε and |yi z − yia | ≤ ε2. (18.4)

This assumes that ε is suitable for measuring the “smallness” of both x and y quan-
tities. It also assumes that the objective function behaves like a quadratic at the
minimizing point, which is generally the case if the function is smooth. You are
free to replace these generic conditions with others which you deem better suited
to problems of special interest to you.

To avoid runaway computations, should the algorithm fail to converge, the program
keeps a count of the number of times it evaluates the objective function. It halts the
iterations if the evaluation count exceeds a user-specified ceiling.

18.3 Problems with the Nelder–Mead algorithm
The Nelder–Mead algorithm is remarkable among computational algorithms in that
there are hardly any convergence theorems about it. It is not known, for instance, whether
the algorithm always converges for a function as simple as f (x, y) = x2+ y2.

McKinnon [45] has produced a clever example of a convex function f , defined on all
of R2, and an initial simplex which, when evolved according to the Nelder–Mead algo-
rithm, converges to a point which is not a local minimum of f . This rules out any un-
conditional convergence theorems, even for convex functions.

The function in McKinnon’s example is three times continuously differentiable (i.e.,
it is in C 3(R2) but not in C 4(R2)). It is not known whether additional smoothness may
play a role in yielding a convergence theorem. The only concrete convergence result is
in [40], where it is shown that the algorithm converges for a wide class of convex func-
tions in R1.

Many modifications of the Nelder–Mead algorithm exist. Convergence theorems are
available in some modified versions. See, e.g., Torczon [76], Kelley [30], and additional
references in [40]. If you are interested in gradient-free optimization methods in general,
you will find the survey article of Kolda, Lewis, and Torczon [36] quite informative.

In view of the lack of convergence theorems, and especially in view of McKinnon’s
counterexample, it may be a good idea to follow up an application of Nelder–Mead with
an independent check to verify that the computed point is indeed a local minimum. One
possibility, suggested in [53], is to restart the Nelder–Mead algorithm with a new initial
simplex centered at the point returned by a previous run and verify that the simplex con-
verges to the same point. Alternatively, one may use the minimizer produced by Nelder–
Mead as an initial guess for a different algorithm, such as a conjugate gradient method. If
the point produced by Nelder–Mead is indeed a minimum, any additional checks should
incur only a small computational cost.

root
2014/7/8
page 198

�

�

�

�

�

�

�

�

198 Chapter 18. The Nelder–Mead downhill simplex

18.4 An overview of the program
Our implementation of the Nelder–Mead algorithm is in the file nelder-mead.c. The
header file nelder-mead.h provides the application’s interface. Additionally, the program
relies on the previously developed xmalloc() for allocating memory and array.h for
managing vectors and matrices. Therefore, following the recommendations of Chapters 2
and 6, the program’s directory will look like this:

$ cd nelder-mead
$ ls -F
Makefile demo-2D.c nelder-mead.c xmalloc.c@
array.h@ demo-constrained.c nelder-mead.h xmalloc.h@
demo-1D.c demo-energy.c rank-vertices-test.c

The demo-*.c files are drivers for various demonstrations. I will describe their contents
and those of rank-vertices-test.c in the sections that follow.

Up to this point I have taken the objective function to be something of the type
f : Rn → R. This turns out to be too limiting in practice. Objective functions that
occur in many interesting applications involve adjustable parameters. Therefore we ex-
pand our scope to include objective functions of the form f (x,μ), where x ∈Rn , and μ
is a parameter. The C prototype of such a function is

double f(double *x, int n, void *params); // the objective function

where x points to an array of length n. The third argument, being a void pointer (see
Section 4.3), allows passing pointers to data of any type to such a function.

The program introduces a structure named struct nelder_mead, which is a
repository of data that completely specifies a minimization problem. The minimization
is performed by the function nelder_mead(), which has the prototype

int nelder_mead(struct nelder_mead *nm);

It receives the problem’s statement in its nm argument, applies the Nelder–Mead algo-
rithm as described earlier, and, if successful, inserts the computed minimum value and
the coordinates of the minimizing point back into the structure. It returns the number
of times that the objective function was evaluated in the process. That’s useful informa-
tion because it tells the user the amount of effort that was spent on finding the minimum.
There is a second, and more important, reason for returning the evaluation count. The
user specifies a number—we call it maxevals in the program—that sets an upper bound
on the number of evaluations of the objective function. The iteration halts if the num-
ber of function evaluations exceeds maxevals. This prevents a runaway computation in
case the algorithm fails to converge. Consequently, a representative call to the function
nelder_mead() takes the form

nevals = nelder_mead(nm);
if (nevals < maxevals)

printf("nelder-mead converged after %d evaluations\n", nevals);
else

printf("no convergence after %d evaluations\n", nevals);

18.5 The interface
The header file nelder-mead.h is shown in Listing 18.1. It declares the prototype of the
function nelder_mead() (on line 14) and the struct nelder_mead that holds the
necessary data for communicating between the Nelder–Mead minimizer and application

root
2014/7/8
page 199

�

�

�

�

�

�

�

�

18.5. The interface 199

Listing 18.1: The header file nelder-mead.h.

1 #ifndef H_NELDER_MEAD_H
2 #define H_NELDER_MEAD_H
3 struct nelder_mead {
4 double (*f)(double *x, int n, void *params); // the objective function
5 int n; // dimension of the space
6 double **s; // (n+ 1)× n matrix: the simplex
7 double *x; // n-vector: the iteration’s starting/ending point
8 double h; // the problem’s length scale
9 double tol; // tolerance; stopping criterion

10 int maxevals; // max number of evaluations
11 double minval; // the computed minimum value
12 void *params; // parameters to be passed to f ()
13 };
14 int nelder_mead(struct nelder_mead *nm);
15 #endif /∗ H_NELDER_MEAD_H */

programs. Let us begin by examining the structure’s details. Line numbers refer to those
in Listing 18.1.

Lines 4 and 12: The member f of struct nelder_mead is a pointer to a user-
supplied objective function. The function nelder_mead() will call f() repeat-
edly in the minimization process. When doing so, it will have to supply f() with
a parameter in its third argument. It takes that parameter from the structure’s
params member (line 12). The user sets the value of the latter as appropriate when
calling nelder_mead().

Line 5: The member n is the dimension of the space over which the minimization takes
place. That is, it is the n in f : Rn →R.

Line 6: The member s is a pointer to an (n + 1)× n matrix whose rows hold the co-
ordinates of the simplex’s vertices. Specifically, row i holds the coordinates of the
vertex x(i). As the simplex evolves, the entries of the matrix change. From now
on the word simplex may refer to the geometric object or to the matrix s; they are
isomorphic. The program offers two options regarding s:

Option 1: The user may set s to NULL, in which case the program will allocate
memory for and construct a simplex matrix based on the initial point x (line 7)
and the length scale h (line 8). It will free the memory allocated for that matrix
before returning.

Option 2: The user may set s to a custom-built matrix (using make_matrix())
that specifies the initial simplex. The program will overwrite the matrix’s
entries as the simplex evolves. The user remains responsible for freeing the
memory associated with the matrix.

Use the first option if you have no particular interest in building your own ini-
tial simplex. The second option is essential for constrained minimization; see Sec-
tion 18.8.

Line 7: The member x points to a vector of length n and plays a dual role. Before calling
nelder_mead() it holds a user-supplied initial point where the search is to begin.
When nelder_mead() returns, it holds the coordinates of the minimizing point.

root
2014/7/8
page 200

�

�

�

�

�

�

�

�

200 Chapter 18. The Nelder–Mead downhill simplex

If you supply your own simplex matrix (see the previous paragraph), the program
won’t have a use for a starting point; therefore there is no need to initialize x in that
case. Nevertheless, x must still point to a properly allocated n-vector because the
program is going to write the coordinates of the minimizing point into it.

Line 8: The member h provides nelder_mead() with an idea of the problem’s length
scale. Without it, nelder_mead() cannot tell whether 1000 is small or large
(small or large compared to what?). The value of h enters in two very different
places in the program: one, in building the initial simplex; and two, in determining
the stopping criterion.

To build the initial simplex (if the user has not supplied one) the program fills the
rows of an (n+1)×n matrix with n+1 copies of the coordinates of the initial point
x and then adds h to all members of the first subdiagonal:

s =

⎛⎜⎜⎜⎜⎜⎝
x0 x1 x2 · · · xn−1
x0 x1 x2 · · · xn−1
x0 x1 x2 · · · xn−1
...

...
...

. . .
...

x0 x1 x2 · · · xn−1

⎞⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
h 0 0 · · · 0
0 h 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · h

⎞⎟⎟⎟⎟⎟⎠ . (18.5)

Consequently, the rows of s correspond to the vertices of a simplex with one vertex
at x, from which n legs of length h each emanate parallel to the coordinate axes.

Lines 9, 10, and 11: The members tol and maxevals, together with h, determine the
calculation’s stopping criteria. We assume that the iteration has converged if (18.4),
or equivalently,

‖x(i z)−x(ia)‖2 < ε2 and |yi z − yia | ≤ ε2 (18.6)

holds, where ε = h × tol. When this happens, nelder_mead() copies the value
of the coordinates of the vertex x(ia) into the vector x, sets the minval to the value
of yia , and returns.

To prevent runaway computations, nelder_mead() keeps track of the number
of times the objective function is evaluated. If the number of evaluations exceeds
maxevals, it stops the iterations and returns.

Line 12: The user supplies a parameter here for nelder_mead() to pass as the third
argument to the objective function f(). If the objective function has no use for
parameters, pass NULL for its value.

18.6 The implementation
Listing 18.2 shows an outline of the implementation file nelder-mead.c. The only object
there with external linkage is the function nelder_mead(); everything else is for in-
ternal use and therefore declared static. I will describe the purposes of the various
functions in the following subsections.

18.6.1 The function rank_vertices()

Let us recall from Section 18.2 that {yi }n
i=0 are the objective function’s values at the sim-

plex’s vertices, and the indices of the best, next to best, and worst vertices are ia, i y,

root
2014/7/8
page 201

�

�

�

�

�

�

�

�

18.6. The implementation 201

Listing 18.2: An outline of the file nelder-mead.c. Flesh out the parts marked with �.

1 #include <stdio.h>
2 #include "array.h"
3 #include "nelder-mead.h"
4 #define REFLECT 1.0
5 #define EXPAND 2.0
6 #define CONTRACT 0.5
7 #define SHRINK 0.5
8 � static inline void rank_vertices(double *y, int m,
9 int *ia, int *iy, int *iz) ...

10 � static void get_centroid(double **s, int n, int iz,
11 double *C) ...
12 � static inline void transform(double *P, double *Q, int n,
13 double beta, double *R) ...
14 � static void shrink(double **s, int n, int ia) ...
15 � static inline void replace_row(double **s, int i,
16 double **r) ...
17 � static int done(double **s, int n, double *y,
18 int ia, int iz, double err2) ...
19 � int nelder_mead(struct nelder_mead *nm) ...

and i z. The function rank_vertices() that appears on line 8 in Listing 18.2 receives
a pointer y to a vector of length m (where in fact m equals n+1, but the function need
not know that) and calculates the three indices. Since a function in C cannot return
more than one value, we return the three index values indirectly through pointers that
the user provides as arguments. That’s why the arguments ia, i y, and i z are declared as
pointers to int in the function’s prototype. I will leave it to you to write the function
rank_vertices(). Have in mind the restrictions imposed in (18.1a) and (18.1b): The
indices should be distinct (when m ≥ 3) and ia = i y �= i z when m = 2. I suggest that
you focus on the m ≥ 3 case. If you do things right, your code will work without change
with m = 2 as a bonus.

The function rank_vertices() works in the iteration’s innermost loop;
therefore we want it to be as efficient as possible. Toward that end, I have added the
inline specifier on line 8 to help accelerate things a bit, if possible.67 Implementing
rank_vertices() is quite straightforward if one is willing to make two or three passes
over the vector y. Doing it in a single pass is more challenging but not overly difficult.
Challenge yourself to write rank_vertices() so that it works in one pass.

How do you know whether your rank_vertices() works correctly? I have writ-
ten a stand-alone program called rank-vertices-test.c, which you can get from the book’s
website. Near the top of that file there is a place where you insert your implementation
of the rank_vertices() function. Then compile and run the program:

$ cc -Wall -pedantic -std=c99 -O2 rank-vertices-test.c
$./a.out

If your rank_vertices() works correctly, the program will execute and exit silently;
otherwise it will print diagnostics telling you what’s not working.

Write your rank_vertices(), and be sure to test it with rank-vertices-test.c. If all
is well, then insert it in nelder-mead.c.

67The inline specifier was introduced in C99. Remove it if you wish to retain C89 compatibility.

root
2014/7/8
page 202

�

�

�

�

�

�

�

�

202 Chapter 18. The Nelder–Mead downhill simplex

18.6.2 The function get_centroid()

The function get_centroid() that appears on line 10 in Listing 18.2 computes the
centroid of the simplex’s face opposite the vertex x(i z) and writes its coordinates in the
vector C that it receives as an argument. Equation (18.2) gives the formula for computing
the centroid. The argument s points to the (n+1)×n simplex matrix (see Section 18.5).

I will leave the writing of that function to you. When you do so, it is likely that you
will find that your code sweeps the matrix s vertically, down its columns. Computers
tend to work more efficiently when they access memory in sequential order. The way we
have constructed our matrices, that means in the row order. See if you can rewrite your
code so that it sweeps the matrix s in the row order. This consideration may not be a
significant issue with modern computers that have megabytes of CPU cache. It used to
be a significant issue in the olden days. Nevertheless, it’s a good exercise to see whether
you can do it like the old pros did. See, however, the following remark.

Remark 18.2. The following code fragment sweeps the matrix s[i][j] in the column
order:

for (j = 0; j < n; j++)
for (i = 0; i < n + 1; i++)

work with s[i][j]

A common misconception among the beginner programmers is to assume that swapping
all occurrences of i to j as in

for (i = 0; i < n; i++)
for (j = 0; j < n + 1; j++)

work with s[j][i]

changes the sweep direction to the row order. But that’s not true. Changing the names of
the for-loop indices does not change the algorithm! The names of the index variables do
not matter; for all we care, they could have been named zork and pluto.

To get things right, adhere strictly to the convention that i is the row index and j is
the column index. Then build your algorithm around that convention.

18.6.3 The function transform()

Each of the geometric transformations (18.3a) through (18.3e) is of the form R−P =

β(Q−P), where P , Q, and R are points in space. Letting
→

PQ and
→

PR be the vectors
that extend fromP toQ andR, respectively, the equation above takes the form of a vector

equation
→

PR=β
→

PQ and has the geometric interpretation shown here for a β> 1:

P

R

Q

→
PQ

→
PR=β

→
PQ

The transformation from
→

PQ to
→

PR is a stretch ifβ> 1, a contraction if 0<β< 1, and a

reversal ifβ< 0. In particular, β=−1 produces a reflection because then
→

PR =− →
PQ.

root
2014/7/8
page 203

�

�

�

�

�

�

�

�

18.6. The implementation 203

The function transform() that appears on line 12 in Listing 18.2 receives points
P , Q and a number β and computes R from R−P =β(Q−P), or equivalently,

R= (1−β)P +βQ. (18.7)

Write an implementation of the function transform(), and add it to your nelder-
mead.c.

18.6.4 The function shrink()

The function shrink() that appears on line 14 in Listing 18.2 shrinks the simplex
toward the vertex x(ia) according to (18.3e). Actually (18.3e) is a set of n equations,
each of which transforms one vertex of the simplex. The obvious way of implementing
shrink() is to apply transform() in a loop.

Write an implementation of shrink(), and add it to your nelder-mead.c.

18.6.5 The function replace_row()

Consider the reflection diagram in Figure 18.1. What should the program do when the
algorithm decides to accept x(r) as the replacement for x(i z)? It will have to replace row
i z of the matrix s with the coordinates of the point x(r). Here is one possible way of
doing this:

for (j = 0; j < n; j++)
s[iz][j] = r[j];

(Here I have writtenr for the pointer to the array of length n that holds the coordinates of
the point x(r).) The same effect may be achieved with much greater efficiency by simply
exchanging the pointers to the vector x(r) and the matrix’s row i z:

double *tmp = s[iz];
s[iz] = r;
r = tmp;

This accomplishes the previous version’s for-loop (and n assignments) in exactly three
assignments (independently of n). The savings can be significant if n is large. Since such
exchanges are called for in several places in the algorithm, it makes sense to isolate the ex-
change code into a function. That is done in the function replace_row() that appears
on line 15 in Listing 18.2. Here is a very wrong implementation of replace_row():

/∗ wrong ! ∗/
static inline void replace_row(double **s, int i, double *r)
{

double *tmp = s[iz];
s[iz] = r;
r = tmp;

}

That code’s last line gives away what is wrong with it. Assigning a value to r just
before leaving accomplishes nothing because r is a private variable within the function
replace_row(); it goes away as soon as the function returns, so any assignment to it
is a waste.

The correct way is to set things up so that replace_row() receives not the value
of the pointer r but its address. Then replace_row() will be able to write into that

root
2014/7/8
page 204

�

�

�

�

�

�

�

�

204 Chapter 18. The Nelder–Mead downhill simplex

Listing 18.3: Here is the correct implementation of the function replace_row(). The argu-
ment r is the address of a pointer to a vector (in other words, a pointer to a pointer),
and hence the double asterisks.

1 static void inline replace_row(double **s, int i, double **r)
2 {
3 double *tmp = s[i];
4 s[i] = *r;
5 *r = tmp;
6 }

address, which will retain its value after replace_row() returns. Listing 18.3 shows
the correct implementation.

Be sure to understand what it does, and then add it to your nelder-mead.c.

18.6.6 The function done()

The purpose of the function done() that appears on line 17 in Listing 18.2 is to test
whether the termination conditions in (18.6) have been reached. It returns true if yes and
false if no. The arguments are the simplex s, the vector y of length n+1 that holds the
objective function’s values evaluated at the vertices, the indices ia and iz of the best and
worst vertices, and the argument err2 which has the value (h× tol)2 because that’s what
is needed in (18.6).

Write an implementation of done(), and add it to your nelder-mead.c.

18.6.7 The function nelder_mead()

The prototype of the function nelder_mead() appears on line 19 in Listing 18.2. It
implements the Nelder–Mead simplex algorithm with the help of the auxiliary functions
already described.

The function is somewhat long; therefore I have broken it into two pieces. Listing 18.4
shows the top part of the function; it deals mainly with housekeeping tasks. It defines the
aliases s, n, h, and tol as shorthands for nm→s, etc., because these occur so frequently
in the code. The variable err2 plays the role of ε2 of (18.6).

The pointers y, C, Pr, Pe, Pc declared on line 8 are going to be set to point to various
vectors. Specifically, y will point to a vector of length n + 1 that will hold the values
of the objective function at the simplex’s vertices. The pointer C will point to vector of
length n that will hold the coordinates of the centroid x̂ which we encountered in the
description of the algorithm. The pointers Pr, Pe, Pc will point to vectors of length n
each that will hold the coordinates of the points x(r), x(e), x(c). The variables yr, ye, yc
will hold the values of the objective function evaluated at the points x(r), x(e), x(c). The
variable simplex_to_be_freed is a Boolean flag; it is set to false if the user supplies
the simplex matrix s; otherwise it is set to true. Near the end of nelder_mead(),
just before it returns, the memory associated with the simplex matrix will be freed if
simplex_to_be_freed is true. Otherwise the function’s caller (who supplied the
matrix) is responsible for freeing it.

The variable fevalcount keeps a count of the evaluations of the objective function.
It is nelder_mead()’s return value.

The last five lines of Listing 18.4 call the macro make_vector() from array.h to
allocate memory for the vectors y, C, Pr, Pe, Pc.

root
2014/7/8
page 205

�

�

�

�

�

�

�

�

18.6. The implementation 205

Listing 18.4: An outline of the function nelder_mead() – part 1.

1 int nelder_mead(struct nelder_mead *nm)
2 {
3 double **s = nm→s;
4 int n = nm→n;
5 double h = nm→h;
6 double tol = nm→tol;
7 double err2 = (h*tol)*(h*tol);
8 double *y, *C, *Pr, *Pe, *Pc;
9 double yr, ye, yc;

10 int ia, iy, iz;
11 int simplex_to_be_freed = 0;
12 int fevalcount;
13 int i, j;
14

15 make_vector(y, n+1); // vertex values
16 make_vector(Pr, n); // the reflected point x (r)

17 make_vector(Pe, n); // the expanded point x (e)

18 make_vector(Pc, n); // the contracted ponts x (c)

19 make_vector(C, n); // centroid of the face opposite vertex i z

Let us turn now to the second part of the function nelder_mead(), shown in List-
ing 18.5. Normally the user sets the member s of the struct nelder_mead to NULL,
which has the effect of delegating the construction of the simplex matrix to the function
nelder_mead(). In that case, the make_matrix() macro from array.h is invoked
on line 21 to build that matrix. Then the flag simplex_to_be_freed is set to true
to signal that the memory allocated here should be freed before the function returns.
I have left out the part where the entries s[i][j] of the matrix are assigned values. Do
it according to (18.5).

Lines 25–27 evaluate the objective function at the simplex’s vertices and store their
values in the vector y. Since that takes n + 1 function evaluations, fevalcount is ini-
tialized to n+1. Remember to update fevalcount upon every future evaluation of the
objective function.

Let us turn for a moment to the last few lines of Listing 18.5. There we free all the allo-
cated memory and return fevalcount, the number of times that the objective function
was evaluated, to the caller. Note the checking of thesimplex_to_be_freed flag; this
function shouldn’t free memory that was handed to it by the caller.

The bulk of Listing 18.5 is one big while-loop, beginning on line 29 and ending on
line 57. It loops for as long as fevalcount ≤ nm→maxevals. The while-loop’s
body follows closely the algorithmic steps in Section 18.2. Thus, rank_vertices()
is called on line 30 to determine the simplex’s best, worst, and next to worst vertices;
then done() is called to see whether the termination criteria are met, and if so, then
y[ia], which is the value of the objective function at the simplex’s best vertex, is copied
to nm→minval. This is what the caller will see as the sought minimum value. We also
copy the coordinates of the simplex’s best vertex, that is, row ia of the simplex matrix,
into the vector nm→x to let the caller know where the minimum occurred. Line 33 is a
placeholder for that. Do it yourself. The break on line 34 terminates the while-loop.

If the call to done() returns false, control transfers to line 36, where the process of re-
flecting, expanding, contracting, and shrinking the simplex begins. Thus, the centroid C

root
2014/7/8
page 206

�

�

�

�

�

�

�

�

206 Chapter 18. The Nelder–Mead downhill simplex

Listing 18.5: An outline of the function nelder_mead() – part 2.

20 if (s == NULL) { // build simplex if not supplied by user
21 make_matrix(s, n+1, n);
22 simplex_to_be_freed = 1;
23 � assign values to s[i][j]; // see (18.5)
24 }
25 for (i = 0; i < n + 1; i++)
26 y[i] = nm→f(s[i], n, nm→params);
27 fevalcount = n+1;
28

29 while (fevalcount ≤ nm→maxevals) {
30 rank_vertices(y, n+1, &ia, &iy, &iz);
31 if (done(s, n, y, ia, iz, err2)) {
32 nm→minval = y[ia];
33 � copy the best vertex into the vector nm→x ...
34 break;
35 }
36 get_centroid(s, n, iz, C);
37 transform(C, s[iz], n, -REFLECT, Pr);
38 yr = nm→f(Pr, n, nm→params);
39 fevalcount++;
40

41 if (yr < y[ia]) { // Case 1
42 transform(C, Pr, n, EXPAND, Pe);
43 ye = nm→f(Pe, n, nm→params);
44 fevalcount++;
45 if (ye < yr) {
46 replace_row(s, iz, &Pe);
47 y[iz] = ye;
48 } else {
49 replace_row(s, iz, &Pr);
50 y[iz] = yr;
51 }
52 } else if (yr < y[iy]) { // Case 2
53 � ...
54 } else { // Cases 3 and 4
55 � ...
56 }
57 } // end of the while-loop
58

59 � free vectors y, C, Pr, Pe, Pc
60 if (simplex_to_be_freed)
61 free_matrix(s);
62 return fevalcount;
63 }

of the face opposite the worst vertex is computed on line 36; then transform() is called
to determine the reflection Pr of the worst vertex through C. Line 38 evaluates the objec-
tive function at Pr and assigns it to yr; then fevalcount is incremented. This brings
the program to where the description of the four cases begins on page 195. On lines 41–51
I have implemented Case 1. I have left the remaining three cases to you to complete.

root
2014/7/8
page 207

�

�

�

�

�

�

�

�

18.7. Project Nelder–Mead: Unconstrained optimization 207

Remark 18.3. Remember that an application of shrink() in Case 3 and Case 4,
moves n of the simplex’s n + 1 vertices. Therefore you should update the vector y[]
by reevaluating the objective function at the moved vertices and update fevalcount
accordingly.

Remark 18.4. Once you implement the four cases, you will observe that the code for
handling Case 3 is almost identical to that of Case 4. See if you can streamline the logic
to eliminate duplicate code.

18.7 Project Nelder–Mead: Unconstrained optimization

Part 18.1. It’s time to give our Nelder–Mead minimizer a try. The file demo-2D.c of
Listing 18.6 gives a rather trivial demo of the utility. It is set up to minimize the function
f (x, y) = 3+ (x − 2)2 + (y − 1)2. If all goes well, it will find the minimum value of 3
which occurs at the point (2,1), or actually something very close to that, depending on the
setting of the tol value. The demo illustrates the basics of initializing thenelder_mead
structure, calling nelder_mead(), and interpreting the results. See if your code finds
the minimum correctly. Here is what mine does:

$./demo-2D
converged after 87 function evaluations
Computed solution: min = 3 at (1.99999, 1)

Remark 18.5. The initialization of struct nelder_mead in demo-2D.c takes advan-
tage of a feature introduced in C99, whereby a structure’s members may be initialized by
naming them. See the discussion under the heading Initializing structures on page 6.

Part 18.2. Here is a more interesting minimization exercise (still in two dimensions).
(This is an extremely special case of a truss—a subject treated fully in Chapter 19.) Con-
sider a simple two-dimensional structure made of two elastic rods, AC and BC , hinged at
their ends, where A(0,0) and B(1,0) are fixed, but C (1,1) is free to move in the vertical
plane when a load is applied to it. The rods elongate and shorten to accommodate the
load, but they don’t bend. We wish to determine the structure’s deformed shape when a
load vector 〈a, b 〉 is applied at C .

A B

C (1,1)

The load-free state
C is at (1,1)

〈a, b 〉

A B

C (x, y)

Deformation due to load 〈a, b 〉
C moves from (1,1) to (x, y)

The mechanics of an elastic rod are completely characterized by its stored energy func-
tion W that measures the energy required to stretch or compress a rod of unit length and

root
2014/7/8
page 208

�

�

�

�

�

�

�

�

208 Chapter 18. The Nelder–Mead downhill simplex

Listing 18.6: The file demo-2D.c is a very simple two-dimensional test for nelder_mead().

#include <stdio.h>
#include "nelder-mead.h"
// f (x, y) = 3+ (x− 2)2+ (y− 1)2 = x2+ y2− 4x − 2y+ 8
static double obj_func(double *x, int n, void *params)
{

return x[0]*x[0] + x[1]*x[1] - 4*x[0] - 2*x[1] + 8;
}
int main(void)
{

double x[] = { 0.0, 0.0 }; // the initial point
int evalcount;
struct nelder_mead NM = { // Alert! C99-style initialization!

.f = obj_func, // the objective function

.n = 2, // the dimension of the space

.s = NULL, // delegate the construction of s

.x = x, // initial point / final point

.h = 0.1, // problem’s scale

.tol = 1.0e-4, // tolerance

.maxevals = 1000, // cap on function evaluations

.params = NULL, // no parameters
};
evalcount = nelder_mead(&NM);
if (evalcount > NM.maxevals) {

printf("No convergence after %d function evaluation\n",
evalcount);

} else {
printf("converged after %d function evaluations\n",

evalcount);
printf("Computed solution: min = %g at (%g, %g)\n",

NM.minval, x[0], x[1]);
}
return 0;

}

unit cross-sectional area made of that material. Specifically, changing that rod’s length to
λ requires an energy of W (λ). The bar stretches when λ> 1 and shrinks when 0<λ< 1.
A good choice for W is

W (λ) =
λ4

24
+

1

12λ2 −
1

8
. (18.8)

Note that W (1) = 0 (no energy in the undeformed state), and W (λ)→∞ as either λ→∞
(large stretch) or λ→ 0+ (severe compression). The energy required to stretch/compress
a rod of cross-sectional area A from its natural length L to the length λL is ALW (λ). I will
take A= 1 in the rest of this chapter. See Chapter 19 for the full story.

Returning to the two-link structure described above, let us say the point C moves
from (1,1) to (x, y) when a load 〈a, b 〉 is applied to it. The lengths of the links AC and

BC change from the original
�

2 and 1 to
�

x2+ y2 and
�
(x − 1)2+ y2, respectively.

root
2014/7/8
page 209

�

�

�

�

�

�

�

�

18.7. Project Nelder–Mead: Unconstrained optimization 209

It follows that structure’s total energy is

� (x, y) =
�

2W
��

x2+ y2

�
2

�
+W

*�
(x − 1)2+ y2

+
− a(x − 1)− b (y − 1). (18.9)

The last two terms express the work due to the displacement of the load.
It is shown in Chapter 19 that the structure’s equilibria (in general there are multiple

equilibrium states) correspond to the stationary points of the energy function � (x, y).68

If the stationary point is a (local or global) minimum, the equilibrium is stable. If the
stationary point is a (local or global) maximum or a saddle, the equilibrium is unstable.

Figure 18.2 shows the graphs and level sets of the energy function � (x, y) in two case
studies. In Case study 1 the load is 〈0,−0.3〉. The energy function has three stationary
points: D1 is the global minimum; D2 and D3 are saddles. In Case study 2 the load is
〈0,−0.1〉. The energy function has five stationary points: D1 and D2 are minima; D3, D4,
and D5 are saddles. The drawings along the bottom of Figure 18.2 show the structure’s
three possible equilibrium configurations corresponding to Case study 1. Can you draw
the five equilibrium configurations for Case study 2? You need not do any calculations
for this; just examine the energy surface and the positions of the five equilibria.

The Nelder–Mead algorithm is ideally suited for finding the local minima of � (x, y).69

Write a program demo-energy.c to compute the coordinates of the equilibrium point D1
in Case study 1 and the equilibrium points D1 and D2 in Case study 2. In Case study 1
my program prints

$./demo-energy
Expected answer: min = -0.6395281605 at (0.8319642234, -1.2505278260)
Computed solution: min = -0.6395281277 at (0.8315845906, -1.2505201990)
Converged after 71 function evaluations

The solution given on the “Expected answer” line is correct in all its digits. I computed that
independently by solving the system of nonlinear equations

,
∂ �/∂ x = 0,∂ �/∂ y = 0

-
with high precision in Maple and then pasted the answer into demo-energy.c for compar-
ison with the Nelder–Mead result. As to the computation’s parameters, I took h=1.0,
tol=1.0e-3 and chose (−1,1) for the starting point just to be nasty since that’s so ob-
viously far from the expected equilibrium. I initialized the simplex to NULL to let the
program build the simplex on its own.

To help you check your results, here are the coordinates and function values of the
local minima D1 and D2 of Case study 2:

D1: min = -0.2047379473 at (0.9208762303, -1.0926128103)
D2: min = -0.0055676481 at (1.1554672673, 0.8776603419)

Remark 18.6. The load 〈a, b 〉 enters the energy function (18.9) as a parameter. See if
you can set up your code so that the energy function reads the load vector through its
params argument.

Remark 18.7. The “smokestacks” in the graphs in Figure 18.2 are inherited from the
vertical asymptote at zero of the function W (x) in (18.8). They tell us that � (x, y)→+∞
as the point C is pushed too close to the points A or B . (Do you see that?) In particular,
� is undefined at A and B . This raises a serious concern: what would happen if a vertex

68A stationary point (also called a critical point) of a function f (x) : Rn →R is where∇ f (x) = 0.
69Nelder–Mead cannot find saddle points. I found the coordinates of the saddle points D2 and D3 shown in

Figure 18.2 by solving directly the nonlinear system of equations ∂ �/∂ x = 0 and ∂ �/∂ y = 0.

root
2014/7/8
page 210

�

�

�

�

�

�

�

�

210 Chapter 18. The Nelder–Mead downhill simplex

Case study 1: load = 〈0,−0.3〉.
D1

D2

D3
A

B

Case study 2: load = 〈0,−0.1〉.

D1

D2

D3

D4

D5
A

B

load

A B

C

D1

load

A B

C

D2

load
A B

C

D3

A(0,0) B(1,0) C (1,1)

D1(0.83,−1.25) D2(0.59,0.03) D3(−0.67,0.42)

Figure 18.2: The plots at the top are the graphs and level sets of the energy func-
tion (18.9) corresponding to (a) Case study 1 (on the left) where the load
is 〈a, b 〉 = 〈0,−0.3〉, and (b) Case study 2 (on the right) where the load is
〈a, b 〉= 〈0,−0.1〉. The former has three stationary points: D1 is the global
minimum; D2 and D3 are saddles. The latter has five stationary points: D1
and D2 are minima; D3, D4, and D5 are saddles. I have shown the plots of
the energy surface from two different perspectives in order to convey a bet-
ter sense of what they look like. The drawings along the bottom show the
truss’s three possible configurations corresponding to Case study 1. You
do similar drawings for Case study 2.

of the simplex steps on either A or B during the iteration? The outcome of that event
depends on your compiler. It may be set up to handle a floating point division by zero
gracefully and produce an “infinity” which is larger than all possible floating numbers,
or it may just crash the program. To be on the safe side, it would be a good idea to chop

root
2014/7/8
page 211

�

�

�

�

�

�

�

�

18.8. Constrained optimization 211

off and flatten the smokestacks at a sufficiently large elevation to avoid them running to
infinity. That certainly will not affect the locations of W ’s minima, which are the objects
of our interest. Thus, noting that W (10−3)≈ 83333, it would be safe to redefine W as

1 double W(double x)
2 {
3 double eps = 1.0e-3;
4 if (x < eps)
5 x = eps;
6 W(x) = ... � // enter (18.8) here
7 }

Part 18.3. Try your Nelder–Mead on a function of one variable. Write a program
demo-1D.c to minimize the function

f (x) = x2− 2x + 2= (x − 1)2+ 1.

18.8 Constrained optimization
The simplex algorithm may be applied to minimization problems subject to constraints
of certain types, as Nelder and Mead point out in their article [49]. Affine constraints are
particularly easy to handle. Specifically, let f : Rn →R as before, and let� be an affine
space in Rn defined by

� = {x ∈Rn : Ax= b},
where A is an m× n matrix and b is an m-vector. We wish to compute

min
x∈� f (x). (18.10)

We assume, without loss of generality, that rank(A) = m because otherwise we may re-
duce the matrix to the row echelon form, discard the zero rows that appear at the bottom,
and redefine A to what remains, without changing the space � . We also assume m < n
because otherwise� reduces to a point or an empty set. With such an A, the constraint
Ax= b is equivalent to a set of m scalar and linearly independent constraints:

n∑
j=1

ai j x j = bi , i = 1, . . . , m.

The key to extending the Nelder–Mead algorithm to the constrained problem (18.10)
is the realization that the Nelder–Mead transformations, given in (18.3a) through (18.3e)
and summarized in (18.7), are affine-preserving in the sense that if the points P and Q are
in an affine space� , then the point R= (1−β)P +βQ is also in� . Thus, to solve the
problem (18.10) it suffices to pick the initial simplex within � . Then the transformed
simplexes will remain within� , and if the iteration arrives at a minimizer, it would be a
solution of the constrained optimization problem (18.10).

One way to get the initial simplex to lie within� is to pick an unconstrained initial
simplex inRn and project it onto� . It can be shown (see Section 18.10) that the operator
P of the orthogonal projection onto� is given by

Px=
�
I −AT (AAT)−1A

�
x+AT (AAT)−1b, x ∈Rn , (18.11)

where I is the n× n identity matrix and the superscript T denotes the transpose.

root
2014/7/8
page 212

�

�

�

�

�

�

�

�

212 Chapter 18. The Nelder–Mead downhill simplex

Remark 18.8. If A is a 1×n matrix (that is, it is a row vector,) then the projection operator
takes on a particularly simple form. For convenience, let us introduce the n-vector a =
AT . Then the definition of the affine space � takes the form� = {x ∈Rn : a ·x= c},
where c is a constant.70 It’s not difficult to verify that the projection formula (18.11)
collapses to

Px=x+
1

‖a‖2

�
c −a ·xa. (18.12)

Remark 18.9. A full-fledged application of either of the projection formulas (18.11)
or (18.12) is an overkill in those simple cases where the nature of the projection is evi-
dent a priori. For instance, if� is a hyperplane perpendicular to one of the coordinates
axes, as in

� = ,x= (x1, x2, . . . , x7) ∈R7 : x5 = 12
-
, (� is perpendicular to the x5 axis),

then projecting the simplex onto� amounts to setting all entries in column 5 of the initial
simplex matrix to 12. Since the transformation (18.7) applied to the simplex matrix leaves
a column of constants invariant, the simplex remains in� as it evolves.71 This is how we
enforce the immobility of a truss’s fixed joints in Chapter 19.

Remark 18.10. Although projecting a simplex onto a proper affine space flattens it into
a degenerate simplex of zero volume, this does not seem to have an adverse effect on the
Nelder–Mead algorithm’s operation.

Remark 18.11. It is possible to transform the constrained optimization problem (18.10)
to an unconstrained one through elimination of variables. Specifically, we may solve the
m× n linear system Ax= b for m of the unknowns in terms of the rest. (Recall that we
are assuming that rank(A) = m, and m < n.) We eliminate the solved variables in f (x)
and thus arrive at an unconstrained function g : Rn−m →R. Applying the Nelder–Mead
simplex algorithm to the unconstrained and lower-dimensional function g is more effi-
cient compared to the projection method above—it requires fewer function evaluations,
as experiments show. This has to be balanced against the programmer’s time and effort
in reducing f to g .

18.9 Project Nelder–Mead: Constrained optimization

Part 18.4. Minimize f (x, y, z) = x2 + y2 + z2 subject to the constraint x + y + z = 3.
It is easy to see that the minimum is 3 and occurs at (1,1,1). Write a program, demo-
constrained.c, to do that with the projection method. My program says

$./demo-constrained
converged after 140 function evaluations
min = 3 at (1, 1, 1)

For the parameters I took h=0.1, tol=1.0e-5 and the initial point at (1,2,3). My pro-
gram builds the initial simplex according to (18.5) and then projects it onto the constraint
space by applying (18.12).

70Thus,� is a hyperplane in Rn , with a as a normal vector.
71This is pointed out in Nelder and Mead’s article [49].

root
2014/7/8
page 213

�

�

�

�

�

�

�

�

18.10. Appendix: Orthogonal projection onto Ax= b 213

0

Px−v = PN (A)(x−v)

x−v

v

Px

x

N (A)

� = v+N (A)

Figure 18.3: An imitation of a drawing on page 437 of [46].

18.10 Appendix: Orthogonal projection onto Ax = b

Although the projection formula (18.11) is well known among the specialists in linear
algebra, it is difficult to locate in ordinary textbooks. It may be derived through an ap-
plication of the singular value decomposition theorem, although that’s an overkill since
no singular values appear in the formula. Plesník [52] states the formula and refers the
reader to Meyer’s book [46]. I did not find an explicit form of the formula there, but the
book offers all the ingredients needed for deriving it. Let me state the result formally as a
theorem and then sketch a proof.

Theorem 18.1. Consider the m× n matrix A and the m-vector b, and let

� = {x ∈Rn : Ax= b}.
Suppose rank(A) =m. Then the orthogonal projector P : Rn →� is given by

Px=
�
I −AT (AAT)−1A

�
x+AT (AAT)−1b, x ∈Rn ,

where I is the n× n identity matrix.

Proof. The affine space � is parallel to the nullspace N (A) of A since for any u and v in
� we have Au= b and Av = b; therefore A(u−v) = 0. Figure 18.3 depicts the origin 0,
the nullspace N (A) of A, and the affine space� , which is parallel to N (A). Pick and fix a
v ∈� , that is, Av = b. It should be clear that� = v+N (A).

The diagram also shows an arbitrary point x ∈ Rn and its orthogonal projection
Px onto � . Subtracting v from both x and Px moves them to x− v and Px− v, as
shown, and thus the problem of projecting onto an affine space reduces to the problem
of projecting onto a subspace. Writing PN (A) for the orthogonal projector onto N (A), we
have Px−v = PN (A)(x−v). Thus,

Px= v+ PN (A)(x−v).

It remains to characterize the projector PN (A). It can be shown (see page 434 of [46]) that
if A is m × n and rank(A) = n, then PN (AT) = I −A(AT A)−1AT . It follows that if A is

root
2014/7/8
page 214

�

�

�

�

�

�

�

�

214 Chapter 18. The Nelder–Mead downhill simplex

m× n and rank(A) =m, then PN (A) = I −AT (AAT)−1A. We conclude that

Px= v+
�
I −AT (AAT)−1A

�
(x−v)

= v+
�
I −AT (AAT)−1A

�
x− �I −AT (AAT)−1A

�
v

=
�
I −AT (AAT)−1A

�
x+AT (AAT)−1Av

=
�
I −AT (AAT)−1A

�
x+AT (AAT)−1b.

root
2014/7/8
page 215

�

�

�

�

�

�

�

�

Chapter 19

Trusses

Prerequisites: Chapters 7, 8, 9, 16, 18

19.1 Introduction
A truss consists of a two- or three-dimensional network of slender links joined at nodes.72

The junctions at the nodes are assumed to be hinge-like; that is, no bending moment is
transmitted through a node. External loads are applied only at the nodes. The links are
straight and do not bend.

A truss deforms under loads: links shrink and stretch, nodes move, internal and ex-
ternal reaction forces are developed, and the truss either finds a new equilibrium state
or collapses. The natural (unloaded) geometry of a truss is called its reference configura-
tion. The shape of a truss after it reaches equilibrium under a set of applied loads is called
deformed configuration.

Trusses are ubiquitous in our daily lives. We see them in radio and cellular telephone
transmission towers, electric power transmission lines, bridges, roof supports, construc-
tion crane booms, and orbital space station platforms, both in fiction and reality.

Figure 19.1 shows a very simple two-dimensional truss supported on two nodes. The
left node is fully anchored; it cannot move, but the truss can pivot about it. The right
node is on rollers; it is free to move horizontally but not vertically. Truss bridges are
supported this way. Figure 19.2 is a photograph of a real truss bridge.

A major phase in the structural design and analysis of a truss is the determination of
stresses and strains in its links induced by the externally applied loads. A well-designed
truss utilizes its structural components in an optimal way; it is strong, lightweight, and
economical. At the same time it should not deform excessively or break under the loads
that it’s meant to support.

In the traditional engineering practice, the geometry of a truss, i.e., the positions of
its nodes and the links that connect them, is decided in advance. Then cross-sectional
sizes and materials of the links are selected to enable the truss to sustain the anticipated
loads. The geometric design is based on the engineer’s intuition, his/her aesthetic consid-
erations, the available structural materials, and his/her experience with robust structures
that have withstood the test of time.73

72Links and nodes are also known as members and joints, respectively.
73Recent developments in the area of topology design of structures replace this ad hoc design process with sophis-

ticated techniques that produce optimally designed structures without a priori assumptions on the geometry.
See [8, 3] for more information.

215

root
2014/7/8
page 216

�

�

�

�

�

�

�

�

216 Chapter 19. Trusses

Figure 19.1: A simple roof truss. The left support is fixed. The right support is free to
slide horizontally; it’s a roller support.

Figure 19.2: The McKees Rocks Bridge in McKees Rocks, Allegheny County, Penn-
sylvania, built in 1931, is listed on the US National Register of Historic
Places. Photo courtesy of the Library of Congress, Prints & Photographs Di-
vision, HAER, Reproduction number HAER PA, 2-MCKRO,2–1. Photogra-
pher: Joseph Eliott, 1997.

Trusses can be two-dimensional (also called flat or planar) structures, such as the mod-
ules used as roof supports, or three-dimensional, such as those used in power transmission
towers. With the possible exception of trusses used as orbital platforms, a truss is an-
chored by a number of supports to an immobile foundation to prevent it from running
away when forces are applied to it. In effect, supports constrain the possible movements
of some of the nodes. In the truss shown in Figure 19.1, the leftmost node is completely
immobilized, while the rightmost node is allowed to move horizontally but not vertically.
Loads applied to any of the truss’s nodes are transmitted via the links to the supports. The
supports, in turn, exert reaction forces on the truss to achieve an equilibrium.

Solving a truss means computing the forces in the truss’s links, and reaction forces
at its supports, in response to a set of applied loads. The loads deform the truss. The
deformation depends on the placement, magnitudes, and directions of the applied loads,
as well as the mechanical properties of the materials that go into building the truss.

root
2014/7/8
page 217

�

�

�

�

�

�

�

�

19.2. One-dimensional elasticity 217

In structural mechanics, large deformations of structures such as bridges or booms of
a crane are unacceptable. Such structures are designed purposely to deform only imper-
ceptibly under loads within the design range; you wouldn’t want to feel a bridge move
underneath you as you drive over it. A consequence of the small deformation require-
ment is that for design purposes the shape of the bridge my be assumed to be independent
of the applied forces. The effects of the infinitesimal extensions of the links have only
second order effects on the shape and may be ignored in engineering practice. Solving
such a truss reduces to solving a system of linear equations.

If, however, we admit large deformations whereby the geometry changes consider-
ably under the applied loads, the equilibrium equations form a fully nonlinear system.
Nonlinearity enters in the analysis of large deformations from two different sources:
(i) geometric nonlinearities are introduced due to the finite deformation of the truss’s
geometry, and (ii) mechanical nonlinearities are introduced because the elastic response
of materials under large deformation is generally nonlinear.

The program developed in this chapter solves trusses that may undergo arbitrarily
large deformations. Admittedly, large deformations are of no great practical interest;
however, they make for an interesting and fun academic exercise. I should emphasize,
however, that this does not mean that the program developed here is worthless. Let’s
note that if the truss members are sufficiently stiff and the applied loads are not too large,
then the truss’s deformation will be small; therefore our solver will pick up the usual
solution of an infinitesimally deformed truss.

Finally, let me point out that I have limited this chapter’s programs to planar trusses
only to simplify the exposition. The theory, however, is developed in the general
n-dimensional context. Extending the programs to three-dimensional trusses is straight-
forward and poses no conceptual or programming challenges.

19.2 One-dimensional elasticity
An elastic solid is a material that deforms when you exert forces on it and returns to its
original shape when you remove those forces. At least that’s the intuitive idea. A rubber
band, an automobile tire, a baseball, and a coiled spring are good examples of elastic solids.
Less conspicuous elastic behavior is all around us. You sit on a seat cushion and it deforms
to accommodate you; you rise and it bounces back to its original shape. A skyscraper
sways in high winds and earthquakes. When the wind and seisms subside, it returns to
its upright position. A bridge sags when a train passes over it. It resumes its normal
shape when the train is gone. A paper clip is elastic in small deformations; it regains its
original shape when you remove it from a thin stack of papers. It is not elastic under large
deformations; if you bend it severely, it will not return to its original shape. What we have
there is plastic behavior. That is the subject of study in the theoretical and experimental
plasticity. We won’t deal with plasticity in this book.

Theoretical elasticity is a deep and interesting subject. In this section I will present a
very special case of elasticity as it applies to one-dimensional deformations, that is, defor-
mations that are dominated by displacements in a single direction. The stretching of a
rubber band is an example of one-dimensional deformations, but the deformation of an
automobile tire where it hits the ground is not.

19.2.1 Stress

Figure 19.3 shows an elastic solid specimen in the shape of a cylinder of length L and
cross-sectional area A in its natural (undeformed) state. It also shows the deformed shape

root
2014/7/8
page 218

�

�

�

�

�

�

�

�

218 Chapter 19. Trusses

undeformed specimen

L

area A

Fstretched by force F

λL

Figure 19.3: At the top: a cylindrical specimen of length L and cross-sectional area of A
in its unstressed natural state. At the bottom: the specimen stretched to a
length λL, (λ > 1) due to the tensile force F applied to one end while the
other end is held fixed. The cross-sectional area shrinks.

of the bar when it is pulled by a force F while one end is held fixed. Its length in-
creases to λL (λ > 1), and the cross-sectional area shrinks. The factor λ is called the bar’s
stretch.

By convention, tensile forces are regarded as positive and compressive forces as neg-
ative. Thus, stretching the bar corresponds to λ > 1 and F > 0. Compressing the bar
corresponds to 0< λ< 1 and F < 0. It follows that the stretch-force function F (λ) is such
that F (λ)> 0 when λ > 1; F (λ)< 0 when 0< λ< 1; and F (1) = 0.

If the bar were twice as thick, that is, if its cross-sectional area were 2A, it would take
twice the force to stretch it by the same amount. In general, the force is proportional to
the bar’s cross-sectional area for a fixed amount of stretch. We express this as

F (λ) =Aσ(λ). (19.1)

The quantity σ(λ), which measures force per unit cross-sectional area, is called the stress
due to the stretch λ. The function σ is a mechanical property of the material much in the
same way that density and electric resistance are. Note that the A in this definition is the
bar’s natural (undeformed) cross-sectional area, not the one after the deformation.74

The stretch-stress function σ(λ) may be determined experimentally by subjecting a
specimen to a series of tensile and compressive forces. The left diagram in Figure 19.4
shows the graph of the function σ of a hypothetical elastic material. We see that σ(λ)→
−∞ as λ→ 0+, indicating that it takes an infinite compressive force to squash the bar to
zero length. We also see that σ(λ) → ∞ as λ → ∞, indicating that it takes an infinite
tensile force to stretch the bar to infinite length.

Such idealized material is far from realistic. The experimental determination of the
function in the 0< λ< 1 range is difficult, if not impossible, due to the unavoidable buck-
ling that occurs under compression. Furthermore, a typical solid will either break or go
into plastic behavior if severely compressed or stretched. Nevertheless, in our computa-
tions we will make the unwarranted assumption that σ(λ) is defined for all λ> 0 since we
don’t intend to turn this book into a treatise on materials science.

74The corresponding concept in the three-dimensional nonlinear elasticity is called the Piola–Kirchhoff stress.
It’s also possible to define the stress by dividing the force by the area of the bar’s current (deformed) cross-
sectional area. That would be the Cauchy stress. In linear elasticity, which deals with infinitesimal deformations
only, the two concepts coincide because the deformed and undeformed cross-sectional areas are only infinitesi-
mally different.

root
2014/7/8
page 219

�

�

�

�

�

�

�

�

19.2. One-dimensional elasticity 219

λ

σ(λ)

1 λ

W (λ)

1

d

dλ
W (λ) = σ(λ)

Figure 19.4: The graphs of the stress σ (λ) (left) and the stored energy function W (λ)
(right) for a hypothetical elastic material. We have σ (1) = 0 and W (1) = 0
since stress and stored energy are zero in the undeformed state.

19.2.2 Energy

The stored energy function W (λ) of an elastic material is defined by

W (λ) =
∫ λ

1
σ(ξ)dξ , (19.2)

or equivalently,
W ′(λ) = σ(λ), W (1) = 0. (19.3)

The right diagram in Figure 19.4 shows the graph of the energy function W corresponding
to the previously discussed stretch-stress function σ .

To explain the significance of W , consider the gradual stretching of the bar from its
original length L to a new length .L, and let λ = .L/L. At the intermediate stages of the
process where the length of the bar is x (L < x < .L), the stretch is x/L; therefore the
pulling force is Aσ(x/L). The incremental work performed by the force as the length
changes from x to x + d x is d� = Aσ(x/L)d x. Therefore the total work performed in
deforming the bar is

� =
∫ .L

L
Aσ(x/L)d x

let ξ=x/L
=

∫ .L/L

1
LAσ(ξ)dξ = LA

∫ λ

1
σ(ξ)dξ = LAW (λ). (19.4)

In the absence of a dissipative mechanism, the work is stored as internal elastic energy in
the bar. Since LA is the volume of the (undeformed) bar, this says that the W (λ) is the
energy stored per unit volume due to the stretch λ. That explains the name stored energy
function for W (λ).

19.2.3 Small deformations

Structural engineering is concerned mainly with small deformations where the stretch λ
is very close to 1. (You wouldn’t expect a tall building to get noticeably shorter because
of the weight of the snow on its roof.) In that sense, only the part of the graph of σ(λ)
near λ= 1 is of interest. In that context, the relevant measure of deformation is the strain

root
2014/7/8
page 220

�

�

�

�

�

�

�

�

220 Chapter 19. Trusses

λ

σ(λ)

1

ε

σ = Eε

slope = E

Figure 19.5: On the left is the graph of the stress-stretch function σ (λ) of a hypothetical
elastic material. Note that σ (1) = 0. The circle surrounding the point
λ = 1 indicates the region of interest in practical structural engineering
which is concerned mainly with λ≈ 1, or equivalently, ε= λ−1≈ 0. The
diagram on the right shows the enlarged image of that region. The stress-
strain relationship is approximately linear. It’s written σ = Eε, where the
slope E = σ ′(1) is called the material’s Young’s modulus.

(or more precisely, the infinitesimal strain) defined by ε= λ−1. In Figure 19.5, the graph
on the left duplicates the previous graph of the stretch-stress function σ . The graph on
the right magnifies the part of the graph near λ= 1 which now appears as a straight line.
That line’s slope, E , which equals σ ′(1), is called the material’s Young’s modulus. The
equation of that line, σ = Eε, is called the material’s linear strain-stress relationship.

19.2.4 A concrete model

In our demonstration programs we need an explicitly defined stretch-stress function σ .
Any function that has a graph like that of σ in Figures 19.4 or 19.5 will do. Its essential
features are the following: (a) σ(λ) is defined for all λ > 0, and (b)

lim
λ→0+

σ(λ) =−∞, lim
λ→∞σ(λ) =∞, σ(1) = 0, σ ′(1) = E , (19.5)

where the Young’s modulus E is prescribed by the user. The function

σ(λ) =
E

6

�
λ3− 1

λ3

�
, (19.6)

for instance, fits the bill, and that’s what we will use in our program. That choice, how-
ever, is by no means unique. The functions

σ(λ) =
E
4

�
λ2− 1

λ2

�
and σ(λ) =

E
3

�
λ2− 1

λ

�
also share the same properties and will work just as fine.

For future reference, let us note that the stored energy function corresponding to the
stress function (19.6) is

W (λ) = E

!
λ4

24
+

1

12λ2 −
1

8

$
. (19.7)

root
2014/7/8
page 221

�

�

�

�

�

�

�

�

19.3. From energy to force 221

19.3 From energy to force
Consider a rod of natural length L and cross-sectional area A, one end of which is attached
to, and can pivot about, a fixed point in space, call it a, and the other end is free to be
pushed, pulled, and moved about; call it x.

f

a

x

‖x−
a‖fixed

pivot

Let f be the force vector applied at x, and let e(x) be the elastic energy stored in the
rod. I will show that the gradient of e(x) equals f . Stated in symbols,

∇e(x) = f . (19.8)

To see why, note that the rod’s length is ‖x−a‖; therefore, according to (19.4), its elastic
energy is

e(x) = LAW
�‖x−a‖

L

�
.

Compute the gradient by applying the chain rule from multivariable calculus. We get

∇e(x) = LAW ′
�‖x−a‖

L

�
1

L

x−a

‖x−a‖ .

Now, (‖x−a‖)/L is the bar’s stretch, λ, and W ′(λ) = σ(λ) according to (19.3), so we get

∇e(x) =Aσ(λ)
x−a

‖x−a‖ .

According to (19.1), Aσ(λ) is the magnitude of the applied force. Since the expression
(x−a)/‖x− a‖ is a unit vector along the bar’s direction, the product of the two is the
applied force vector, as asserted.

Remark 19.1. Here I want to change the notation on you and rewrite (19.8) as

d
dx

e(x) = f . (19.8’)

The change may look odd at first sight, but it’s perfectly legal as long as one defines what
is meant by the notation d/dx, where x is not a scalar. But that’s nothing new. Consider
a function f : X → Y , where X and Y are normed spaces (they need not be finite dimen-
sional even). The Fréchet derivative D f of f at a point x ∈X is a bounded linear operator
(D f)(x) : X →Y such that

lim
h→0

/// f (x + h)− f (x)− �(D f)(x)
�
(h)

///
Y

‖h‖X
= 0.

root
2014/7/8
page 222

�

�

�

�

�

�

�

�

222 Chapter 19. Trusses

0 5 10

14

1383

1

7

11

2

6

12
4 9

0 1 2 3

4 5 6 7

F 3

F 7

Figure 19.6: On the left we see a cantilever truss of eight nodes and 15 links in its nat-
ural (unloaded) state. Nodes and links are numbered independently, in no
particular order. Nodes 0 and 4 are anchored and immobile; all others are
movable. On the right we see the deformed truss under the loads applied
at nodes 3 and 7.

When X = R and Y = R, this agrees with the definition of the derivative in freshman
calculus. If X =Rn and Y =R, this agrees with the definition of the gradient in multi-
variable calculus. In (19.8’) I have taken the liberty of changing the notation (De)(x) to

d
dx e(x), as it is more expressive for our purposes.

19.4 The energy of a truss
The left drawing in Figure 19.6 depicts a two-dimensional cantilever truss consisting of
eight nodes (labeled 0–7) and 15 links (labeled 0–14). Nodes 0 and 4 are anchored to a
wall and cannot move. The other nodes are free to move in response to applied loads.
The right drawing in Figure 19.6 shows the truss’s deformed state under loads applied to
nodes 3 and 7. In general, loads may be applied to any of the nodes.

Generalizing from that concrete example, let us consider a two- or three-dimensional
truss of n nodes, labeled 0,1, . . . , n−1, and l links, labeled 0,1, . . . , l −1. The order of the
enumeration of the nodes and links is immaterial.

For each link p, where p ∈ {0,1, . . . , l − 1}, let Lp and Ap denote the link’s unde-
formed length and cross-sectional area, Wp be the stored energy function of the link’s
material, and λp be the link’s stretch after the truss is loaded.

Furthermore, for each node q , where q ∈ {0,1, . . . , n− 1}, let F q denote the external
load (a vector) applied to the node q , and let �xq and xq be the node’s position in space
before and after loading, respectively.

Any arbitrary choice of positions {x0,x1, . . . ,xn−1} of the n nodes defines a (gener-
ally nonequilibrium) configuration of the truss in space. We define the total energy �
associated with that configuration as

� (x0,x1, . . . ,xn−1) =
l−1∑
p=0

Ap LpWp(λp)−
n−1∑
q=0

F q · (xq −�xq). (19.9)

The first summation expresses the total elastic energy stored in the links in that config-
uration. The second summation is the total work done by the loads due to their dis-
placements. Let us observe that since the positions of a truss’s nodes determines the
(deformed) lengths of the truss’s links, the stretches λp are easily computed in terms of
{x0,x1, . . . ,xn−1}.

root
2014/7/8
page 223

�

�

�

�

�

�

�

�

19.5. From energy to equilibrium 223

F k

F k

xk

xk + dxk

Figure 19.7: This shows a fragment of a truss, with a focus on the node xk and four
links that radiate from it. An external load F k is acting on the node. To
interpret the partial derivative ∂ �/∂ xk , displace the node xk by a small
amount dxk while keeping all other nodes fixed. We show that the change
in energy in that deformation equals the sum of the internal and external
forces applied to xk .

We will see the significance of the definition (19.9) when we analyze its implications
in the next section.

19.5 From energy to equilibrium
Consider the truss of n nodes and l links introduced in the previous section. Figure 19.7
shows a fragment of that truss, with a focus on some node xk which has four links radi-
ating from it. The choice of four links is for illustration only; the argument that follows
is independent of the number of links that join at xk . The nodes at the other ends of the
links are shown as little circles, but their labels are not since those labels are irrelevant to
the argument that follows.

The truss’s total energy � (x0,x1, . . . ,xn−1) is defined in (19.9). We may calculate the
partial derivatives of � with respect to each of its arguments with the help of the dif-
ferentiation formula (19.8’). But before we do that, let us examine the meaning of that
operation. The differential

�
∂ �/∂ xk

 ·dxk measures the change in � as the node xk is
displaced to a location xk +dxk while all other nodes are held fixed. Figure 19.7 shows the
“before” and “after” geometries.

Since all nodes except xk are held fixed, the only links that change in length are those
that connect to xk . Therefore the summation over p in (19.9) reduces to a sum over those
links that connect to xk . Similarly, the summation over q reduces to a single term since
nodes other than xk do not move. In summary,

∂ �
∂ xk

·dxk =
0 ∑

p∈ links to xk

∂

∂ xk

�
Ap LpWp(λp)

−F k
1
·dxk .

According to the differentiation formula (19.8’), each term in the summation above equals
the force vector f p within the corresponding link. Therefore the equation above takes
the form

∂ �
∂ xk

·dxk =
0* ∑

p∈ links to xk

f p
+
−F k

1
·dxk .

root
2014/7/8
page 224

�

�

�

�

�

�

�

�

224 Chapter 19. Trusses

This is an extremely important result! The quantity in the square brackets is the vector
sum of all forces (internal and external) applied to the point xk . When the truss is in
equilibrium, the sum of the forces applied to xk should be zero (this is Newton’s second law;
otherwise xk must accelerate). We conclude that the left-hand side is zero. But since dxk

is arbitrary, then the derivative of � is zero. We state this as the following.

Theorem 19.1. If a truss is in equilibrium with the external forces, then

∂ �
∂ xk

= 0, k = 0,1, . . . , n− 1.

In other words, the equilibrium configurations of a truss correspond to the stationary
points of the function � . There may be several stationary points of � corresponding to
different states of equilibrium. The local minima of � correspond to stable equilibria.
Figure 18.2 on page 210 shows that the energy function � can be quite complex even for
a trivially simple truss; the “truss” there has only three nodes and two links!

Remark 19.2. Structural engineering deals mostly with infinitesimal strains. In that
case the energy is a convex quadratic function of its arguments, and consequently it has
a unique stationary point which is a local minimum. In that context, Theorem 19.1 is
called the minimum energy principle.

The programs in the following sections find the equilibrium configurations of trusses
by searching for the minima of � via the Nelder–Mead downhill simplex algorithm.

19.6 The Truss Description File (TDF)
A Truss Description File (TDF) is a plain text file that specifies a truss’s geometry, materials,
supports, and applied loads. I have supplied the sample TDF s Cantilever.tdf and Pratt.tdf
in the book’s website to get you started. You may create your own TDF s quite easily and
add them to the collection.

To write a TDF , make a drawing of the intended truss, and then assign (a) coordi-
nates (xq , yq) to every node, and (b) numeric labels (integers) to every node and every
link. These may be assigned in no particular order, but there should be no duplicate la-
bels within the nodes and no duplicate labels within the links. In the supplied TDF s the
labels are assigned sequentially beginning with zero, but that’s not a requirement; gaps
within the sequence are quite alright. This allows you to insert or remove nodes and
links anywhere within an existing TDF .

Listing 19.1 shows the contents of the file Cantilever.tdf. Figure 19.6 shows the truss’s
geometry, along with the node and link labels.

As you see in Listing 19.1, a TDF consists of three sections that deal with the
nodes, the links, and the loads. Our truss solver utility reads the TDF through the
fetch_line() function that we developed in Chapter 9. Therefore a TDF may be
interspersed with comments and blanks since fetch_line() will trim them away. Let
us examine the details of the TDF .

The nodes section. The nodes section begins with the string “begin nodes” and ends with
“end nodes”. In between are lines of the form

node n: x y

where n is a node number, and x and y are that node’s coordinates.

root
2014/7/8
page 225

�

�

�

�

�

�

�

�

19.6. The Truss Description File (TDF) 225

Listing 19.1: Here are the contents of the file Cantilever.tdf. The truss’s geometry is shown in
Figure 19.6. It has eight nodes (labeled 0–7) and 15 links (labeled 0–14), and loads are
applied to nodes 3 and 7. Nodes 0 and 4 are fixed, as indicated by the asterisks.

Cantilever.tdf
A cantilever truss of eight nodes and 15 links

Format: "node n: x y" where x and y are the node’s coordinates
begin nodes

node 0: *0 *0
node 1: 1 0
node 2: 2 0
node 3: 3 0
node 4: *0 *1
node 5: 1 1
node 6: 2 1
node 7: 3 1

end nodes

Format: "link n: n1 n2 A E" where n1 and n2 are the node
numbers of the link’s ends, A is the link’s cross-sectional
area, and E is the link’s Young’s modulus.
begin links

link 0: 0 1 1 1
link 1: 0 5 1 1
link 2: 4 1 1 1
link 3: 4 5 1 1
link 4: 1 5 1 1
link 5: 1 2 1 1
link 6: 1 6 1 1
link 7: 5 2 1 1
link 8: 5 6 1 1
link 9: 2 6 1 1
link 10: 2 3 1 1
link 11: 2 7 1 1
link 12: 6 3 1 1
link 13: 6 7 1 1
link 14: 3 7 1 1

end links

Format: "load n: fx fy" where (fx, fy) is the load applied to node n.
Nodes not listed here have no externally applied loads.
begin loads

load 7: 0.003 -0.010
load 3: -0.008 -0.005

end loads

An asterisk preceding a coordinate immobilizes it. Thus, nodes 0 and 4 in List-
ing 19.1 are immobile/fixed/anchored. A node description “node n: x *y” in-
dicates that the node’s y coordinate is fixed but x is free to move. Such a constraint
is called a roller support. The right end of the truss in Figure 19.1 on page 216 is on
a roller support.

root
2014/7/8
page 226

�

�

�

�

�

�

�

�

226 Chapter 19. Trusses

The program recognizes four types of node specifications:

node n: x y # unconstrained
node n: *x y # vertical roller
node n: x *y # horizontal roller
node n: *x *y # anchored

Other types of constraints, such as nodes that roll on inclined planes, are possible,
but our program does not implement those.

The links section. The links section begins with the string “begin links” and ends with
“end links”. In between are lines of the form

links n: n1 n2 A E

where n is a link number, and n1 and n2 are the node numbers of the link’s ends,
A is its cross-sectional area, and E is its Young’s modulus. The program expects to be
supplied with templates�σ(λ) for the stress function and �W (λ) for the stored energy
function that satisfy the properties

lim
λ→0+

�σ(λ) =−∞, lim
λ→∞�σ(λ) =∞, �σ(1) = 0, �σ ′(1) = 1,

�W ′(λ) = �σ(λ), �W (1) = 0.

(Compare with (19.3) and (19.5).) The program takes W (λ) = E �W (λ) and σ(λ) =
E�σ(λ) as the link’s stress function and stored energy function, where the Young’s
modulus E is supplied by the user. In view of the models (19.6) and (19.7), the
functions

�σ(λ) =
1

6

�
λ3− 1

λ3

�
, �W (λ) =

λ4

24
+

1

12λ2 −
1

8
(19.10)

are suitable choices for such templates.

The loads section. The loads section begins with the string “begin loads” and ends with
“end loads”. In between are lines of the form

load n: fx fy

where n is a node number, and fx and fy are the horizontal and vertical compo-
nents of the load vector applied to that node. There is no need to list every node in
this section; nodes are assigned zero load by default.

19.7 An overview of the program
We are going to develop a truss solver utility. The solver reads the specifications of a truss
from the stdin, computes its deformations under a set of given loads, and writes the
result to the stdout. The shape of the deformed truss in Figure 19.6 on page 222 was
computed that way.

The program relies on the fetch-line module of Chapter 9 to read input, the xmalloc
module of Chapter 7) to allocate memory, the Nelder–Mead module of Chapter 18 to min-
imize the energy, the array.h header file of Chapter 8 to construct vectors and matrices,
and the linked lists module of Chapter 16 to manage linked lists. Therefore, if you or-
ganize your files as suggested in Chapters 2 and 6, this project’s directory will look like
this:

root
2014/7/8
page 227

�

�

�

�

�

�

�

�

19.8. The interface 227

$ cd trusses
$ ls -F
Cantilever.tdf fetch-line.h@ nelder-mead.h@ truss-to-eps.h
Makefile interlude.c truss-demo.c truss.c
Pratt.tdf linked-list.c@ truss-io.c truss.h
array.h@ linked-list.h@ truss-io.h xmalloc.c@
fetch-line.c@ nelder-mead.c@ truss-to-eps.c xmalloc.h@

You will get the files Cantilever.tdf, Pratt.tdf, and truss-to-eps.[ch] from the book’s web-
site. The first two are sample TDF s (see Section 19.6). The last two provide a function
truss_to_eps() that writes the geometry of a truss into a graphics file in the EPS
format. I will explain the purposes and contents of the remaining files in the forthcoming
sections.

The file truss-demo.c (details in Section 19.13) provides a demo of the truss solver. Run-
ning the compiled executable truss-demo as

$./truss-demo <Cantilever.tdf

reads the TDF Cantilever.tdf, solves the truss, i.e., determines the deformation under the
given loads, and writes out the result in a format conforming to the TDF specification
to the stdout (which is your computer screen by default). A typical output is sev-
eral screenfuls long; therefore one often pipes the output into the Unix pager program
“less”, which displays the result one screenful at a time

$./truss-demo <Cantilever.tdf |less

or redirects it to a file, as in

$./truss-demo <Cantilever.tdf >Cantilever.out

See Chapter 3 if you need a refresher on Unix’s stream redirection and pipes.
The program’s output corresponding to the TDF Cantilever.tdf of Listing 19.1 is

shown in Listing 19.2 and continues into Listing 19.3. The deformed configuration is
shown in Figure 19.6 on page 222, and also in Figure 19.10 on page 249.

19.8 The interface
The header file truss.h in shown in Listing 19.4. It declares the prototype of the func-
tion solve_truss() (on line 31), the structures struct node and struct link
that are capable of holding data for individual nodes and links, and the structure
struct truss, which is a wrapper around the overall data that characterizes a truss.

The truss’s nodes are stored in a linked list, and the nodes_list member of the
struct truss (line 25, Listing 19.4) points to the head of that list. Similarly, the truss’s
links are stored in a linked list, and the links_list member of the struct truss
(see line 26) points to the head of that list.

Let us examine the details of truss.h.

The struct node structure. The struct node structure, whose declaration be-
gins on line 5, has members to hold the coordinates (X,Y) (uppercase X and Y) of a node
in the truss’s reference configuration and the coordinates (x,y) (lowercase x and y) of
the same node in the deformed configuration. The members xfixed and yfixed are
Boolean variables; xfixed is true if the x coordinate of the node is fixed and false oth-
erwise. Similarly for yfixed. The fx and fy are the components of the load vector
applied to this node. If the node is a support node, then rx and ry are the components

root
2014/7/8
page 228

�

�

�

�

�

�

�

�

228 Chapter 19. Trusses

Listing 19.2: Here is the output of our truss solver corresponding to the TDF Cantilever.tdf of
Listing 19.1. (The output continues into Listing 19.3.) The deformed configuration
is seen in Figure 19.6 on page 222. The “Math 625” that appears near the top is the
course number for which this book was written. Change it to something that’s more
relevant to you.
The placements of the asterisks in the nodes section appears to be quite different
from those in Cantilever.tdf —there is excessive whitespace between an asterisk and
the coordinate value that follows. Removing the excessive whitespace requires a cer-
tain amount of extra maneuvering which is not worth the effort since all extra whites-
pace is ignored by our TDF reader.

Configuration of deformed truss computed by the
Math 625 truss solver utility.

node n: x y
begin nodes
node 0: * 0.0000 * 0.0000
node 1: 0.9530 -0.0636
node 2: 1.9136 -0.2008
node 3: 2.8828 -0.3804
node 4: * 0.0000 * 1.0000
node 5: 1.0420 0.9312
node 6: 2.0608 0.7885
node 7: 3.0567 0.6035
end nodes

link n: n1 n2 A E
begin links
link 0: 0 1 1.00 1.00e+00
link 1: 0 5 1.00 1.00e+00
link 2: 4 1 1.00 1.00e+00
link 3: 4 5 1.00 1.00e+00
link 4: 1 5 1.00 1.00e+00
link 5: 1 2 1.00 1.00e+00
link 6: 1 6 1.00 1.00e+00
link 7: 5 2 1.00 1.00e+00
link 8: 5 6 1.00 1.00e+00
link 9: 2 6 1.00 1.00e+00
link 10: 2 3 1.00 1.00e+00
link 11: 2 7 1.00 1.00e+00
link 12: 6 3 1.00 1.00e+00
link 13: 6 7 1.00 1.00e+00
link 14: 3 7 1.00 1.00e+00
end links

load nn: fx fy
begin loads
load 3: -0.0080 -0.0050
load 7: 0.0030 -0.0100
end loads

root
2014/7/8
page 229

�

�

�

�

�

�

�

�

19.8. The interface 229

Listing 19.3: This is a continuation of Listing 19.2.

node n: rx ry
begin reactions
reaction 0: 0.0548 0.0049
reaction 4: -0.0499 0.0101
end reactions

link n: stress
begin stresses
stress 0: -0.046042
stress 1: -0.011899
stress 2: 0.009763
stress 3: 0.043440
stress 4: -0.001223
stress 5: -0.030186
stress 6: -0.011875
stress 7: 0.010205
stress 8: 0.028330
stress 9: 0.000224
stress 10: -0.014397
stress 11: -0.011692
stress 12: 0.010383
stress 13: 0.012912
stress 14: -0.000872
end stresses

of the support’s reaction force, that is, the force that the support exerts on the truss. For
nonsupport nodes, rx and ry will be zero.

The struct link structure. The TDF (see Section 19.6) declares the node numbers
of a link’s end points. The link structure, whose declaration begins on line 14 in List-
ing 19.4, does not store those numbers. Instead, it stores pointers to the corresponding
node structures. This is much more useful since by following the pointer one gains access
not only to the node number but also to complete data stored in that node structure. It
is one of the program’s tasks to convert the node numbers that it reads from the TDF to
pointers to the corresponding nodes.

A link’s natural (undeformed) length occurs in many places in the computation. Rather
than computing it repeatedly on demand, we compute it once at the outset and store it
as the member L in the link structure. The link structure also has members A and E to
store the link’s cross-sectional area and its material’s Young’s modulus, which are read
from the TDF .

The struct truss structure. The struct truss structure declared on line 24 in
Listing 19.4 is a wrapper around the overall data that characterizes a truss. The members
nodes_list and links_list point to the heads of the linked lists of nodes and links,
and thus they provide a complete specification of the truss’s geometry and materials. Fur-
thermore, a node structure contains, among other things, the components of the load
vector applied to the node. Consequently, the function solve_truss() needs little
other than a pointer to the struct truss to get its work done.

root
2014/7/8
page 230

�

�

�

�

�

�

�

�

230 Chapter 19. Trusses

Listing 19.4: The header file truss.h.

1 #ifndef H_TRUSS_H
2 #define H_TRUSS_H
3 #include "linked-list.h"
4

5 struct node {
6 int n; // node number
7 double X, Y; // node coordinates before deformation
8 double x, y; // node coordinates after deformation
9 int xfixed, yfixed; // true if coord is constrained

10 double fx, fy; // components of the applied load
11 double rx, ry; // components of reaction at support, if any
12 };
13

14 struct link {
15 int n; // link number
16 struct node *np1; // pointer to node at one end
17 struct node *np2; // pointer to node at the other end
18 double L; // link’s natural length
19 double A; // link’s cross-sectional area
20 double E; // the Young’s modulus
21 double stress; // link’s stress
22 };
23

24 struct truss {
25 conscell *nodes_list; // linked list of nodes
26 conscell *links_list; // lined list of links
27 int nnodes; // number of nodes
28 int nlinks; // number of links
29 };
30

31 int solve_truss(struct truss *truss,
32 double h, double tol, int maxevals);
33

34 #endif /∗ H_TRUSS_H */

The function solve_truss(). The function solve_truss()whose prototype ap-
pears on line 31 in Listing 19.4 receives a pointer to a truss structure and calculates its
deformation by searching for a minimizer of the energy. It passes arguments h, tol, and
maxevals to nelder_mead(), which actually performs the minimization. The con-
figuration data of the deformed truss is printed to the stdout in a format compatible
with a TDF . The function returns true upon success and false if anything goes wrong.
Diagnostics are printed to the stderr.

19.9 Reading and writing: truss-io.[ch]
The task of reading and parsing a TDF is sufficiently complex to warrant isolating it into
a separate file truss-io.c with an associated header file truss-io.h.

In fact, truss-io.c makes up the bulk of the program. In my implementation it is 332
lines long, while the solver itself (in file truss.c, more on that later) is only 177 lines long.
Despite that length, the interface truss-io.h, shown in Listing 19.5, is quite simple.

root
2014/7/8
page 231

�

�

�

�

�

�

�

�

19.9. Reading and writing: truss-io.[ch] 231

Listing 19.5: The file truss-io.h.

1 #ifndef H_TRUSS_IO_H
2 #define H_TRUSS_IO_H
3 #include <stdio.h>
4 #include "truss.h"
5 struct truss *read_truss(FILE *stream);
6 void write_truss(struct truss *truss);
7 void free_truss(struct truss *truss);
8 #endif /∗ H_TRUSS_IO_H */

The function read_truss() reads a TDF from an input stream, aggregates the in-
formation into a truss structure, and returns a pointer to that structure. It allocates mem-
ory for the various structures as needed. Its sole argument, stream, is the stream from
which it is to read the data. Our program invokes read_truss() with stream set to
stdin, although other streams may be used equally well.

The function write_truss() acts almost as the inverse of read_truss(). It
writes the data of the deformed truss to the stdout in a format consistent with the TDF
specifications. It would be a trivial change to make it write to an arbitrary output stream
rather than to the stdout, as done in read_truss(). You may do it that way if you
wish.

The function free_truss() receives a pointer to a truss structure and frees the
memory resources previously allocated by read_truss(). Normally you will call
free_truss() at the end of the computation, just before exiting.

In addition to these three functions with external linkage, the file truss-io.c contains
10 functions with internal linkage, i.e., specified static. Listing 19.6 shows an outline
of truss-io.c. I will describe its details in the following subsections.

19.9.1 The function read_truss()

The function read_truss() that appears on line 34 of Listing 19.6 is the controlling
function of most of the rest of the file truss-io.c, and it has a big job to do. Nevertheless,
it is quite clean and straightforward, as it delegates the messy work to the other func-
tions. Its objective is to read a TDF from the specified stream, store the information in a
struct truss, and return that structure’s address. Listing 19.7 shows the contents of
the function read_truss() in its entirety. Let’s go through it line by line.

In the first few lines it declares a pointer to the truss structure that it’s going to con-
struct, as well as pointers to the linked lists of the truss’s nodes and links. The variable
lineno is initialized at 0; it will be incremented upon reading the input stream’s succes-
sive lines. Its purpose is to help the program issue helpful diagnostic messages, complete
with line numbers, when problems occur in the input. There’s not much use in saying
“there is an error somewhere” without saying where.

After these initial preparations, the function commences to read, on line 8, the TDF ’s
node specifications section since that is the first section in a TDF . Actually, it delegates the
task to the function get_nodes() which specializes in reading a TDF ’s nodes. We will
see the details of the implementation of get_nodes() in subsection 19.9.2. What we
need to know at this stage is that upon success, get_nodes() constructs and returns a
linked list of node structures that carries the information extracted from the TDF ’s nodes
section.

If get_nodes() fails for some reason, e.g., due to incomplete or garbled data, it frees
whatever memory it has allocated in its aborted attempt and returns NULL. In that case

root
2014/7/8
page 232

�

�

�

�

�

�

�

�

232 Chapter 19. Trusses

Listing 19.6: An outline of the file truss-io.c.

1 #include <stdio.h>
2 #include <string.h>
3 #include <math.h>
4 #include "linked-list.h"
5 #include "fetch-line.h"
6 #include "xmalloc.h"
7 #include "truss.h"
8 #include "truss-io.h"
9 #define BUFLEN 128

10 #define SQ(x) ((x)*(x))
11

12 // functions for reading nodes
13 � static void free_nodes_list(conscell *nodes) ...
14 � static struct node *make_node(int n, double x, double y,
15 int xfixed, int yfixed) ...
16 � static struct node *process_node_line(char *str) ...
17 � static conscell *get_nodes(FILE *stream, int *lineno) ...
18

19 // functions for reading links
20 � static void free_links_list(conscell *links) ...
21 � static struct link *make_link(int n, int n1, int n2,
22 double A, double E, conscell *nodes_list) ...
23 � static struct link *process_link_line(char *str,
24 conscell *nodes_list) ...
25 � static conscell *get_links(FILE *stream, int *lineno,
26 conscell *nodes_list) ...
27

28 // functions for reading loads
29 � static int process_load_line(char *str, conscell *nodes_list) ...
30 � static int get_loads(FILE *stream, int *lineno,
31 conscell *nodes_list) ...
32

33 // functions with external linkage
34 � struct truss *read_truss(FILE *stream) ...
35 � void write_truss(struct truss *truss) ...
36 � void free_truss(struct truss *truss) ...

the if (...) test on line 8 halts the function read_truss() and returns NULL to
the caller.

If the reading of the nodes section is successful, control transfers to line 10, where
another specialized function, get_links(), is called to read the TDF ’s links section.
If successful, get_links() constructs and returns a linked list of link structures that
carries the information extracted from the TDF ’s links section. Otherwise it frees what-
ever memory it has allocated in the process and returns NULL. In that case theif (...)
test on line 10 halts the function read_truss(), but before returning NULL to the
caller, it dutifully frees the memory associated with the linked list of nodes which it had
obtained earlier.

The next segment, beginning on line 15, calls the function get_loads(), which spe-
cializes in reading a TDF ’s loads section. Unlike the previous two segments, this function
does not return a linked list. It simply reads the loads vectors from the TDF and inserts

root
2014/7/8
page 233

�

�

�

�

�

�

�

�

19.9. Reading and writing: truss-io.[ch] 233

Listing 19.7: The function read_truss() in the file truss-io.c. It reads a TDF from the stream,
stores the information in a struct truss, and returns that structure’s address.

1 struct truss *read_truss(FILE *stream)
2 {
3 struct truss *truss;
4 conscell *nodes_list;
5 conscell *links_list;
6 int lineno = 0;
7

8 if ((nodes_list = get_nodes(stream, &lineno)) == NULL)
9 return NULL;

10 if ((links_list = get_links(stream, &lineno, nodes_list))
11 == NULL) {
12 free_nodes_list(nodes_list);
13 return NULL;
14 }
15 if (!get_loads(stream, &lineno, nodes_list)) {
16 free_nodes_list(nodes_list);
17 free_links_list(links_list);
18 return NULL;
19 }
20

21 nodes_list = ll_reverse(nodes_list);
22 links_list = ll_reverse(links_list);
23

24 truss = xmalloc(sizeof *truss);
25 truss→nodes_list = nodes_list;
26 truss→links_list = links_list;
27 truss→nnodes = ll_length(nodes_list);
28 truss→nlinks = ll_length(links_list);
29 fprintf(stderr, "read %d nodes, %d links\n",
30 truss→nnodes, truss→nlinks);
31 return truss;
32 }

them into the corresponding nodes. That’s the reason why it receives the linked list of
nodes as an argument. If the reading is successful, it returns true; otherwise it returns false.
In the latter case, the if (...) test on line 15 halts the function read_truss(), but
before returning NULL to the caller, it dutifully frees the memory associated with the
linked lists of nodes and links which had been constructed earlier.

If the reading of the TDF ends with success, control is transferred to line 21, where
the function ll_reverse() from Chapter 16 is called to reverse the order of the nodes
list. This is by no means necessary, but it’s desirable: A linked list is assembled by pushing
successive links into the head of the list, so it ends up in the reverse order of the arrival of
the items. Without the reversal, the nodes in the program’s output will be printed in the
reverse order of the input. Line 22 serves a similar purpose in relation to the linked list
of links.

At this point success is at hand. We call xmalloc() to allocate memory for a truss
structure, hang the linked lists of nodes and links on it, print a informational message (to
the stderr) announcing the number of nodes and links read, and return the address of
the truss structure to the caller.

root
2014/7/8
page 234

�

�

�

�

�

�

�

�

234 Chapter 19. Trusses

Listing 19.8: The function get_nodes() in the file truss-io.c. It is responsible for reading the
nodes section of a TDF . The preprocessor macro BUFLEN is defined on line 9 in
Listing 19.6 on page 232.

1 static conscell *get_nodes(FILE *stream, int *lineno)
2 {
3 conscell *nodes_list = NULL; // an empty list
4 struct node *node;
5 char buf[BUFLEN];
6 char *str;
7 if ((str = fetch_line(buf, BUFLEN, stream, lineno)) == NULL) {
8 fprintf(stderr, "*** error: no node data in input\n");
9 return NULL;

10 }
11 if (strcmp(str, "begin nodes") �= 0) {
12 fprintf(stderr, "*** error: no ‘begin nodes’ in input\n");
13 return NULL;
14 }
15 while ((str = fetch_line(buf, BUFLEN, stream, lineno)) �= NULL) {
16 if (strcmp(str, "end nodes") == 0)
17 return nodes_list;
18 if ((node = process_node_line(str)) == NULL) {
19 fprintf(stderr, "*** error: bad syntax on input line %d\n",
20 *lineno);
21 free_nodes_list(nodes_list);
22 return NULL;
23 }
24 nodes_list = ll_push(nodes_list, node);
25 }
26 fprintf(stderr, "*** error: no ‘end nodes’ in input\n");
27 free_nodes_list(nodes_list);
28 return NULL;
29 }

Remark 19.3. Normally the user will redirect the program’s stdout to a file to capture
the solution’s data. That informational message noted above is not a part of the solution,
so we print it to the stderr, which will flow to the screen and catch the user’s attention,
as explained in Chapter 3. The moral of the story: stderr is not exclusively for error
messages.

19.9.2 The function get_nodes()

The function get_nodes() that appears on line 17 of Listing 19.6 on page 232 is respon-
sible for reading the nodes section of a TDF . As we saw in subsection 19.9.1, it constructs
and returns a linked list of node structures carrying the information extracted from the
TDF .

In Listing 19.8 I have shown the function in its entirety, not because it’s particularly
long or complex, but because its gingerly, almost paranoiac, manner of stepping through
the TDF sets the tone for the several similar functions which we will encounter.

It begins with defining an empty linked list called nodes_list, and it sets up a char-
acter buffer buf[BUFLEN], which will hold successive lines read from the TDF through

root
2014/7/8
page 235

�

�

�

�

�

�

�

�

19.9. Reading and writing: truss-io.[ch] 235

calls to fetch_line(). The preprocessor macro BUFLEN is defined on line 9 in List-
ing 19.6 on page 232.

The first call to fetch_line() occurs on line 7. The expectation here is to find
the string “begin nodes”, which announces the beginning of the TDF ’s nodes section; see
Section 19.6 for the details of a TDF . If input ends before fetch_line() finds any-
thing substantive—remember that fetch_line() skips over blanks and comments—
fetch_line() returnsNULL, in which caseget_nodes() issues a diagnostic on line 8
and returns NULL to the caller.

On the other hand, if fetch_line() returns non-NULL, then control transfers to
line 11, where the fetched string is compared against the target “begin nodes” with the help
of the standard library’s strcmp(). The latter returns zero if the stings exactly match,
and nonzero otherwise.75 If the comparison fails, get_nodes() issues a diagnostic on
line 12 and returns NULL to the caller.76

If the string “begin nodes” is found, we expect that the subsequent lines will be either
node specifications or the “end nodes” string. The while-loop that spans lines 15–25
repeatedly calls fetch_line() to extract, examine, and processes successive lines from
the TDF .

Line 16 compares the fetched string against “end nodes”. If it’s a match, the nodes
section has ended and the function’s job is finished. The pointer nodes_list, which
points to the head of the linked list of the nodes, is returned to the caller.

Otherwise, the helper function process_node_line() is called on line 18 to pro-
cess the string. We will see the details of that function in the next subsection. What we
need to know at the moment is that if the string is malformed, it rejects it and returns
NULL, in which case a diagnostic message is printed (line 19), the linked list constructed
thus far is freed, and get_nodes() returns NULL. If the string is well formed, however,
it extracts the node number and the node’s coordinates from the string, allocates memory
for a node structure, inserts the extracted values in it, and returns that node’s address. On
line 24 the new node is pushed into the linked list of nodes, and then the while-loop
repeats.

The normal return from the function get_nodes() is from line 17, which happens
when the string “end nodes” is reached. If that string is missing, the while-loop falls off
its end and the control transfers to line 26, where an appropriate diagnostic is printed, the
linked list of nodes is freed, and get_nodes() returns NULL.

19.9.3 The function process_node_line()

The function process_node_line() appearing on line 16 of Listing 19.6 on page 232
receives a string as an argument which is expected to be a node specification line from a
TDF . If the string meets the expectation, it allocates a struct node, fills in the node’s
members with data that it extracts from the string, and returns the node’s address to the
caller. If the string is malformed, it returns NULL.

The first task of process_node_line() is to decide which of the four types of
node specifications listed on page 226 it has received. They are different only by the
placement of the asterisks that indicate immobile coordinates. Thus, a string of the form
“node n: x *y” specifies a node whose y coordinate is fixed but the x coordinate is

75Here we rely on the proper functioning of our fetch_line() function, which is designed to remove
both leading and trailing spaces from a string. An errant whitespace here will foul up the comparison.

76Perhaps that diagnostic is too cryptic. It could be made more explicit by saying something like
fprintf(stderr, Expected ‘begin nodes’but found %s on line %d\n",

str, *lineno);

root
2014/7/8
page 236

�

�

�

�

�

�

�

�

236 Chapter 19. Trusses

Listing 19.9: This fragment of the function process_node_line() (in the file truss-io.c) scans
a string for one of the four possible input types listed on page 226. You will add code
to handle the other three types. If the string fails to match one of the four types, the
function returns NULL.

1 static struct node *process_node_line(char *str)
2 {
3 double x, y;
4 int n;
5 if (sscanf(str, "node %d: %lf %lf", &n, &x, &y) == 3)
6 return make_node(n, x, y, 0, 0);
7 else if (sscanf(str, "node %d: *%lf %lf", &n, &x, &y) == 3)
8 ...
9 else

10 return NULL;
11 }

Listing 19.10: The function make_node() in the file truss-io.c.

1 static struct node *make_node(int n, double x, double y,
2 int xfixed, int yfixed)
3 {
4 struct node *node = xmalloc(sizeof *node);
5 node→n = n;
6 node→X = node→x = x;
7 node→Y = node→y = y;
8 node→xfixed = xfixed;
9 node→yfixed = yfixed;

10 node→fx = node→fy = 0.0;
11 node→rx = node→ry = 0.0;
12 return node;
13 }

free to move (it’s a horizontal roller support). Consequently, in the corresponding node
structure (see Listing 19.4 on page 230) it should set xfixed = 0 and yfixed = 1.

Our process_node_line() delegates the creation of the node structure and set-
ting the values of its various members to yet another helper function, make_node().
We will examine the details of make_node() in the next subsection. What we need
to know at the moment is that it receives the values of n, x, y, xfixed, and yfixed as
arguments; then it allocates memory for astruct node, fills in those five values, and re-
turns that node’s address. Equipped with that knowledge, you should be able to complete
the function process_node_line(), a fragment of which is shown in Listing 19.9.

19.9.4 The function make_node()

The function make_node() that appears on line 14 of Listing 19.6 on page 232 allocates
memory for a node structure and fills the values of the n, x, y, xfixed, and yfixed
members with those that it receives as arguments. Listing 19.10 shows its implementation.
As you see, it does more than just filling in the five members.

For one thing, on lines 6 and 7 it sets the node’s undeformed coordinates (X,Y),
as well as the deformed coordinates (x,y), to the values received (which are the values

root
2014/7/8
page 237

�

�

�

�

�

�

�

�

19.9. Reading and writing: truss-io.[ch] 237

read from the TDF). In subsection 19.12.6 we will see that the truss solver constructs the
Nelder–Mead initial simplex from the values stored in the (x,y) coordinates. Conse-
quently, the search for the minimum energy begins from the truss’s undeformed state. In
Part 19.5 of this chapter’s Projects section we will also see that the user has the opportunity
to override this default choice if he/she so wishes.

For another thing, the load vector components fx and fy are set to zero as defaults.
These may be overwritten later when the program reads the loads section of the TDF .
If a node is not mentioned in that section, the default values remain in effect.

Finally, the support reaction force components, rx and ry, are set to zero as defaults.
They will remain zero for nonsupport nodes. The reaction forces at the support nodes
will be calculated and updated after the truss is solved.

Remark 19.4. This ends the chain of function that collectively read a TDF ’s node
description section. Each function delegates the details of a complex task to the next
“specialist” function:

read_truss() � get_nodes() � process_node_line() � make_node()

Such a division of labor helps to make the logic of the program transparent and avoids
excessively long and complex functions which may be difficult to comprehend and debug.

19.9.5 The function free_nodes_list()

The function free_nodes_list() that appears on line 13 of Listing 19.6 on page 232
frees all memory resources associated with a linked list of nodes. Merely applying Chap-
ter 16’s ll_free() won’t suffice since that frees only the memory associated with the
cons cells, but the data members of the cons cells point to node structures which also
take up memory. Therefore, free_nodes_list() should traverse the linked list and
free those node structures first, and only then apply ll_free() to free the cons cells.
I leave it to you to implement free_nodes_list().

Normallyfree_nodes_list() is called when the program has completed its work
with the analysis of the truss—probably just before it exits—but there are other occasions
for it as well. For instance, it is called on line 21 of Listing 19.8 (page 234) to free a partially
built list when errors are encountered during the reading of the TDF .

19.9.6 Reading a TDF ’s links section

The functions on lines 20–25 of Listing 19.6 (page 232) are devoted to reading a TDF ’s
links section much in the same way that the functions on lines 13–17 were devoted to
reading the nodes section. The chain of the function calls is similar:

read_truss() � get_links() � process_link_line() � make_link()

The differences between the link and node reading functions are slight; therefore there is
no point in repeating what has been said in subsections 19.9.2 through 19.9.5. I will limit
my comments to pointing out a few differences.

The functions free_links_list() and get_links() basically are copies of
the functions free_nodes_list() and get_nodes(), where all occurrences of
“node” change to “link”. Note, however, unlike get_nodes(), get_links() receives
a pointer to the linked list of nodes. It has no direct use for that linked list itself; it merely
passes it to process_link_line(), which in turn passes it to make_link(), which
needs it for assigning node pointers to the link’s endpoints. Once make_link() de-
termines those endpoints, it extracts the node coordinates (X1,Y1) and (X2,Y2) of the

root
2014/7/8
page 238

�

�

�

�

�

�

�

�

238 Chapter 19. Trusses

Listing 19.11: A fragment of the function make_link() in the file truss-io.c.

1 struct link *link;
2 struct node *np1;
3 conscell *p;
4 for (p = nodes_list; p �= NULL; p = p→next) { // look for node number n1
5 struct node *node = p→data;
6 if (node→n == n1) {
7 np1 = node;
8 break;
9 }

10 }
11 if (p == NULL) // node number n1 not found
12 return NULL;
13 // repeat the same for n2. Then:
14 link = xmalloc(sizeof *link);
15 link→np1 = np1;
16 ... etc ...

endpoints and calculates the link’s natural (undeformed) length, which it stores in the
link structure’s L member; see line 18 in Listing 19.4 (page 230). You will find the pre-
processor macro SQ() defined on line 10 of Listing 19.6 (page 232) useful for calculating
the squares of numbers.

The function process_link_line() is similar toprocess_node_line() but
simpler since there is only one kind of link description line, “link n: n1 n2 A E”,
while there were four variants of a node description line. It reads the five numbers from
the string and passes them to make_link(), which sets up an appropriate link struc-
ture. It has no direct use for the pointer to the linked list of nodes that it receives as an
argument; it merely passes it to make_link(), which does. Add an implementation of
process_link_line() to your truss-io.c.

The function make_link() is a little more complex than the analogous function
make_node(). It receives the node numbers of a link’s end nodes, but what it needs
are the pointers to the corresponding node structures because that is what goes into a
struct link; see Listing 19.4 on page 230. The dilemma is not difficult to resolve.
It has received a pointer to the linked list of nodes. It traverses the list, looking for a node
with the desired node number. When it finds it, it inserts the node’s pointer in the link
structure. The code fragment in Listing 19.11 illustrates that.

Flesh out this sketch, and add implementations of make_link(), as well as the func-
tions free_links_list() and get_links(), to your truss-io.c.

19.9.7 Reading a TDF ’s loads section

A TDF ’s loads section is read with the help of the functions process_load_line()
and get_loads() that appear on lines 29 and 30 of Listing 19.6 (page 232). The func-
tion get_loads() essentially is a copy of get_links(), with two differences. First,
all occurrences of “link” change to “load”. Second, its job is to read the load vector compo-
nents from the TDF and pass them to process_load_line() for processing. Unlike
get_links(), it does not create a new linked list; therefore its returns true/false (that
is, 1 or 0) to indicate success or failure, respectively.

The function process_load_line() receives a node number and the load vector
components that are applied to it. It searches the linked list of nodes for a node with a

root
2014/7/8
page 239

�

�

�

�

�

�

�

�

19.9. Reading and writing: truss-io.[ch] 239

matching node number and deposits the components of the load vector in the node’s fx
and fy members, and then it returns 1 (true). If a node with the given node number does
not exist (this indicates an error in the TDF), it returns 0 (false). The search for the node
is performed exactly like that in make_link().

Add your implementation of process_load_line() andget_loads() to your
truss-io.c.

This concludes the description of the details of read_truss() and its ancillary
functions.

19.9.8 The function write_truss()

The function write_truss() that appears on line 35 of Listing 19.6 (page 232) is called
after the truss solver (described later) has done its job of determining the truss’s deforma-
tion. It writes to the solution to the stdout in a form conforming to the format of a
TDF , followed by extra data that give stresses in the links and reaction forces at the sup-
ports. Listing 19.2 on page 228 (continued into Listing 19.3 on the next page) shows the
output corresponding to the TDF Cantilever.tdf of Section 19.6.

The first part of the output, that shown in Listing 19.2, consists of the usual three sec-
tions of a TDF . In fact, the contents of the links and loads sections are identical—ignoring
the cosmetic formatting differences—to those of the input file because link connectivity
and applied loads are no different before and after. The contents of the nodes section, how-
ever, are very different; the coordinates here are those of the truss’s deformed state. I used
those coordinates to draw (manually) the deformed shape in Figure 19.6 on page 222.
Those same coordinates are used by the truss_to_eps() function of Section 19.10 to
automatically generate the drawing shown in Figure 19.10 on page 249.

Remark 19.5. As is noted in the caption of Listing 19.2, the placements of the aster-
isks against the nodes 0 and 4 are quite different from those seen in the (manually typed)
Cantilever.tdf, where the asterisks are attached to the respective x and y coordinate val-
ues. It is possible to achieve a similar effect on the output; however, the extra work is not
worth the effort, so I have left it as it is. Despite that annoying difference, the result still
conforms to the TDF specifications since sscanf() ignores extra whitespace.

The continuation of the output in Listing 19.3 shows additional data regarding the
truss’s state. The section between “begin reactions” and “end reactions” contains lines
of the form reaction n: rx ry, where n is a node number, and rx and ry are the
components of the support reaction at that node. A support reaction is the force exerted
by the support on the truss. Only the support nodes are listed. The calculation of the
support reactions is the subject of subsection 19.12.4.

The section between “begin stresses” and “end stresses” contains lines of the form
stress n: s, where n is a link number and s is the stress in that link. This is crucial
information for truss design—excessive stress will make a link buckle or snap. We will see
how to compute the stresses in subsection 19.12.3.

19.9.9 The function free_truss()

The function free_truss() that appears on line 36 of Listing 19.6 (page 232) is respon-
sible for freeing all the allocated memory associated with the truss. That memory consists
of those of the linked list of the nodes, the linked list of the links, and the truss structure
itself. We already have functions to free up the linked lists; therefore the implementation
of free_truss() is quite trivial:

root
2014/7/8
page 240

�

�

�

�

�

�

�

�

240 Chapter 19. Trusses

-0.00e+00

0.00e+00

co
m

pr
es

si
on

te
ns

io
n

0

0 1 2 3

4 5 6 7

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

-0.00e+00

0.00e+00

co
m

pr
es

si
on

te
ns

io
n

0

Figure 19.8: Two images of the truss Cantilever.tdf (see Section 19.6) in its reference
configuration produced by truss_to_eps(). The labels in the bottom
figure are produced by giving the TR_PLOT_WITH_LABELS option in the
function’s third argument.

1 void free_truss(struct truss *truss)
2 {
3 if (truss �= NULL) {
4 free_nodes_list(truss→nodes_list);
5 free_links_list(truss→links_list);
6 free(truss);
7 }
8 }

The check against NULL makes it safe to call free_truss() with a NULL argu-
ment. This is consistent with the standard library’s free() function, as well as all other
free_*() functions in this book, which handle a NULL gracefully.

Add this implementation of free_truss() to your truss-io.c.

19.10 The files truss-to-eps.[ch]
I have written a function named truss_to_eps() with the prototype

void truss_to_eps(struct truss *truss, char *epsfile, int labels);

which receives a pointer to a struct truss, from which it extracts the information
necessary for drawing an image of the loaded truss, in the EPS format, into a file whose
name is specified in the epsfile argument. The image depicts the truss, the supports,
and the load vectors. The third argument must be one of

TR_PLOT_WITH_NO_LABELS or TR_PLOT_WITH_LABELS

If the TR_PLOT_WITH_LABELS is given, the node and link numbers are drawn on the
image as well. Figure 19.8 shows images of the truss Cantilever.tdf (see Section 19.6) in its
reference configuration, with and without labels, produced by truss_to_eps(). The
deformed image of that same truss is shown in Figure 19.10 on page 249.

root
2014/7/8
page 241

�

�

�

�

�

�

�

�

19.11. Interlude (and a mini-project) 241

Listing 19.12: The file interlude.c is a simple driver for testing the read_truss() and
write_truss() functions.

1 #include <stdlib.h>
2 #include "truss-to-eps.h"
3 #include "truss-io.h"
4 #include "truss.h"
5 int main(void)
6 {
7 struct truss *truss;
8 if ((truss = read_truss(stdin)) == NULL)
9 return EXIT_FAILURE;

10 truss_to_eps(truss, "z-with-labels.eps", TR_PLOT_WITH_LABELS);
11 truss_to_eps(truss, "z-without-labels.eps", TR_PLOT_WITH_NO_LABELS);
12 write_truss(truss);
13 free_truss(truss);
14 return EXIT_SUCCESS;
15 }

Links are drawn in colors that represent the magnitudes of stress in them. Compres-
sion is shown in dark red, tension in dark blue, and neutral (zero or almost zero stress) in
light green. A color scale accompanying the drawing shows the correspondence between
the stress and the varying hues.

The function truss_to_eps() consults the values of the (lowercase) (x,y) node
coordinates77 to draw the truss. It follows that the resulting image corresponds to the
truss’s undeformed shape if truss_to_eps() is called before solving the truss and the
deformed shape if called after.

Implementing the function truss_to_eps() is not a part of this project because
that requires some familiarity with the PostScript language, which I don’t want to make a
prerequisite for this book. You should download my implementation of the files world-
to-eps.c and world-to-eps.h from this book’s website, drop them in this project’s directory,
and compile them along with the rest of your files.

19.11 Interlude (and a mini-project)
At this point we have functions to read and write a TDF . It’s a good idea to stop for a
moment and test those before we move on.

The file interlude.c shown in Listing 19.12 is a simple and self-explanatory driver for
testing your read_truss() and write_truss() functions. Compile and link with
everything else that it depends on to produce an executable named interlude, and then
run it:

$./interlude <Cantilever.tdf >Cantilever.out

where Cantilever.tdf is as in Section 19.6. If your program works correctly, its output
should agree with the Cantilever.tdf modulo cosmetic differences. Additionally, it will
produce two EPS files named z-with-labels.eps and z-without-labels.eps which you may view
with any PostScript viewer. Figure 19.8 shows the results.

For further testing, copy Cantilever.tdf to a temporary file, say tmp.tdf, introduce
deliberate errors of various sorts in it, and verify that your program catches them.

77See subsection 19.12.6 for an explanation of the distinction between the (x,y) and (X,Y) coordinates.

root
2014/7/8
page 242

�

�

�

�

�

�

�

�

242 Chapter 19. Trusses

Listing 19.13: An outline of the file truss.c.

1 #include <stdio.h>
2 #include <math.h>
3 #include "linked-list.h"
4 #include "array.h"
5 #include "nelder-mead.h"
6 #include "truss.h"
7 #define SQ(x) ((x)*(x))
8 � static double stress_function(double lambda) ...
9 � static double stored_energy_function(double lambda) ...

10 � static double link_stretch(struct link *link) ...
11 � static void evaluate_stresses(struct truss *truss) ...
12 � static void evaluate_reactions(struct truss *truss) ...
13 � static double total_energy(double *x, int n, void *params) ...
14 � int solve_truss(struct truss *truss,
15 double h, double tol, int maxevals) ...

19.12 The file truss.c
The file truss.c defines the function solve_truss(), which provides the primary user
interface to our truss solving utility. Listing 19.13 shows an outline of truss.c. Six ancillary
functions (lines 8–13) with internal linkage provide support to solve_truss(). I will
explains the purposes of each of those functions in the following subsections.

19.12.1 The stress_function() and stored_energy_function()

The functions stress_function() and stored_energy_function() that ap-
pear on lines 8 and 9 of Listing 19.13 evaluate the template functions �σ(λ) and �W (λ)
defined in equations (19.10) on page 226. Add your implementations of these to your
truss.c.

19.12.2 The function link_stretch()

The functionlink_stretch() that appears on line 10 of Listing 19.13 receives a pointer
to a link structure and calculates the link’s stretch λ, which, as defined in subsection 19.2.1,
is the ratio of the link’s deformed and reference lengths.

Since a link structure contains pointers to the nodes at the link’s endpoints, you may
follow those pointers to access the coordinates (x,y) of those nodes and thus calculate
the link’s deformed length through the usual formula

�
(x2− x1)

2+(y2− y1)
2. You will

find the preprocessor macro SQ() defined on line 7 of Listing 19.13 useful for calculat-
ing squares of numbers. You won’t need to calculate the link’s length in the reference
configuration—that length is available in the member L of the link structure.

Add your implementation of link_stretch() to your truss.c.

19.12.3 The function evaluate_stresses()

The function evaluate_stresses() that appears on line 11 of Listing 19.13 walks
through the truss’s linked list of links, calculates the stress in each link, and stores it
in the link structure’s stress member. According to (19.10), the stress is σ = E�σ(λ).
The values of λ and �σ(λ) are computed by calling the functions link_stretch() and

root
2014/7/8
page 243

�

�

�

�

�

�

�

�

19.12. The file truss.c 243

x j

−→
−→F

i j

−→←−
F i

xi

Figure 19.9: Four links connect to, and exert forces on, the support node xi . Addition-
ally, an external load of F i is applied directly to the node. The support’s
reaction is equal and opposite to the vector sum of the forces.

stress_function(). The value of Young’s modulus E is available as the link struc-
ture’s E member.

Add your implementation of evaluate_stresses() to your truss.c.

19.12.4 The function evaluate_reactions()

The function evaluate_reactions() that appears on line 12 of Listing 19.13 com-
putes the reactions at the support nodes. These are the forces that the supports exert on
the truss.

Figure 19.9 shows a support node xi (marked by a triangle) and the four links78 that
connect to it. In addition to the forces exerted through the links, an external force,
F i , is applied directory to the node.

The link that connects the node xi to another node, x j , exerts a force of magnitude
Ai jσ(λi j) on the support, where Ai j is that link’s cross-sectional area and λi j is its stretch.
The force vector, which is directed along the link as shown in the figure, is given by

F i j =Ai jσ(λi j)
x j −xi

‖x j −xi‖ . (19.11)

The fraction in the expression above produces the unit vector along the link, directed
from xi to x j . The support’s reaction Ri is equal and opposite the vector sum of all the
forces exerted on it:

Ri =−
*
F i +

∑
links to xi

F i j
+
.

You should be able to write your ownevaluate_reactions()now. Listing 19.14
provides a sketch. Note that in summing the loads on lines 12 and 13 we rely onnode→rx
and node→ry being initially zero, which is the case since these were zeroed in the func-
tion make_node(); see subsection 19.9.4.

Add your implementation of evaluate_reactions() to truss.c.

19.12.5 The function total_energy()

The function total_energy() that appears on line 13 of Listing 19.13 implements
the energy of the truss, � (x0,x1, . . . ,xn−1), defined in (19.9) on page 222. It is shown in
Section 19.5 that a minimizer of � corresponds to an equilibrium position of the truss.

78The choice of four links is for illustration only. The number of the links is immaterial in the following
discussion.

root
2014/7/8
page 244

�

�

�

�

�

�

�

�

244 Chapter 19. Trusses

Listing 19.14: A sketch of the function evaluate_reactions().

1 step through the linked list of nodes
2 if node is not constrained then
3 continue
4 (otherwise) this is a support node; let x1 = node→x, y1 = node→y
5 step through the linked list of links
6 if link→np1 equals this node, then
7 let (x2,y2) be the coordinates of the other end (i.e., np2)
8 else if link→np2 equals this node, then
9 let (x2,y2) be the coordinates of the other end (i.e., np1)

10 else // link does not connect to this node
11 continue
12 node→rx += ... // apply (19.11)
13 node→ry += ... // apply (19.11)
14

15

16 // Done with summing link forces. Add the external load, and then reverse sign.
17 node→rx += node→fx;
18 node→ry += node→fy;
19 node→rx *= -1.0;
20 node→ry *= -1.0;

Our program applies the Nelder–Mead simplex method to find that minimizer. The ob-
jective function, being the energy in this case, is expected to conform to the prototype of
the objective function stipulated in nelder_mead(); see Section 18.4 and Listing 18.1.
Examining the prototype of total_energy() on line 13 of Listing 19.13 we see that it
is designed to have exactly the required form.

There is, however, a subtle issue here. The Nelder–Mead algorithm is designed to min-
imize functions of the type f : Rn → R. Is the energy function � (x0,x1, . . . ,xn−1) of
that type? No! True, it is a function of n variables, but those are not scalar variables since
every point consists of a pair of coordinates xk = (xk , yk). To appease nelder_mead(),
we present � to it not as a function of the n variables x0,x1, . . . ,xn−1 but as a function
of the 2n “flattened” variables x0, y0, x1, y1, . . . , xn−1, yn−1. Thus, the argument x of the
function total_energy() on line 13 receives the flattened vector 〈x0, y0, x1, y1, . . . ,
xn−1, yn−1〉. It is a part of total_energy()’s job to extract the (xk , yk) pairs from that
representation in order to evaluate the formula (19.9).

With that said, the implementation of total_energy(), shown in Listing 19.15,
requires little explanation. Note the reconstruction of the node coordinates from the
flattened vector on lines 7–11. Be sure to understand what it’s doing, and then add it to
your truss.c.

19.12.6 The function solve_truss()

The function solve_truss() that appears on line 14 of Listing 19.13 (page 242) is
the only function with external linkage in the file truss.c. Its purpose is to compute a
local minimum of the energy of the truss that it receives as an argument. It calls upon
nelder_mead() to perform the minimization. The values of the arguments h, tol,
and maxevals which it passes to nelder_mead() determine the precision and stop-
ping criteria. You will have to read Chapter 18 for the details of the meanings of those
parameters.

root
2014/7/8
page 245

�

�

�

�

�

�

�

�

19.12. The file truss.c 245

Listing 19.15: The function total_energy() in the file truss.c evaluates the truss’s total en-
ergy, � (x0,x1, . . . ,xn−1). The argument x is the flattened vector 〈x0, y0, x1, y1, . . . ,
xn−1, yn−1〉.

1 static double total_energy(double *x, int n, void *params)
2 {
3 struct truss *truss = params;
4 conscell *p;
5 double e = 0.0;
6 int j = 0;
7 for (p = truss→nodes_list; p �= NULL; p = p→next) {
8 struct node *node = p→data;
9 node→x = x[j++];

10 node→y = x[j++];
11 }
12 for (p = truss→links_list; p �= NULL; p = p→next) {
13 struct link *link = p→data;
14 e += link→E * link→A * link→L
15 * stored_energy_function(link_stretch(link));
16 }
17 for (p = truss→nodes_list; p �= NULL; p = p→next) {
18 struct node *node = p→data;
19 e -= (node→x - node→X) * node→fx
20 + (node→y - node→Y) * node→fy;
21 }
22 return e;
23 }

The position of the initial simplex is a crucial factor in determining the outcome of
the Nelder–Mead iterations. If the objective function has multiple local minima, as does
a truss’s energy function in general, the algorithm is likely to converge to the local mini-
mum that is closest to the starting point.

Our solver’s default choice for the initial simplex corresponds to the truss’s reference
configuration, but the user may override that default if so desired. To understand this
fully, we need to take a closer look at the role of a node’s coordinates.

Let us recall that thestruct node structure maintains two set of coordinates, (X,Y)
and (x,y), for each node. The (X,Y) coordinates hold the node’s position in the truss’s
reference configuration. These are assigned once and don’t change for the duration of the
program. The (x,y) coordinates are initialized to (X,Y); see subsection 19.9.4. After
the truss is solved, they take on the values of the node’s deformed position.

The program builds the Nelder–Mead initial simplex based on the values of the (low-
ercase) (x,y) coordinates. Since these are initialized to coincide with the (uppercase)
(X,Y), the default initial simplex corresponds to the truss’s reference configuration.
The user has the opportunity to alter the values of (x,y) at will between calls to
read_truss() and solve_truss(), and thereby to set the initial simplex near a
desired target position. See Part 19.4 in this chapter’s Projects section for an example.

Listing 19.16 shows my implementation of solve_truss(). Here I will comment
on some of its more interesting features.

On line 6 the dimension N of the space is set to twice the number of nodes. This is
because the objective function, that is, the energy, is a function of that many variables; see
the discussion about the “flattened” variables in the previous subsection.

root
2014/7/8
page 246

�

�

�

�

�

�

�

�

246 Chapter 19. Trusses

Listing 19.16: The function solve_truss() in the file truss.c.

1 int solve_truss(struct truss *truss, double h, double tol, int maxevals)
2 {
3 double **s;
4 double *x;
5 conscell *p;

6 int N = 2*truss→nnodes; // dimension of the energy space
7 struct nelder_mead NM;
8 int i, j, evalcount;
9 make_vector(x, N);

10 for (j = 0, p = truss→nodes_list; p �= NULL; p = p→next) {
11 struct node *node = p→data;
12 x[j++] = node→x;
13 x[j++] = node→y;
14 }

15 make_matrix(s, N + 1, N); // the simplex matrix
16 for (i = 0; i < N + 1 ; i++)
17 for (j = 0; j < N; j++)
18 s[i][j] = x[j];
19 for (j = 0; j < N; j++)
20 s[j+1][j] += h;

21 // project the simplex over the constraint space
22 for (j = 0, p = truss→nodes_list; p �= NULL; p = p→next) {
23 struct node *node = p→data;
24 if (node→xfixed)
25 for (i = 0; i < N + 1 ; i++)
26 s[i][j] = node→X;
27 j++;
28 if (node→yfixed)
29 for (i = 0; i < N + 1 ; i++)
30 s[i][j] = node→Y;
31 j++;
32 }
33 NM.f = total_energy;
34 NM.n = N;
35 NM.s = s;
36 NM.x = x;
37 NM.h = h;
38 NM.tol = tol;
39 NM.maxevals = maxevals;
40 NM.params = truss;
41 evalcount = nelder_mead(&NM);
42 free_vector(x);
43 free_matrix(s);
44 if (evalcount > maxevals) {
45 fprintf(stderr, "No convergence after %d "
46 "function evaluation\n", evalcount);
47 return 0;
48 } else {
49 fprintf(stderr, "Nelder-Mead converged after %d "
50 "function evaluations\n", evalcount);
51 evaluate_stresses(truss);
52 evaluate_reactions(truss);
53 return 1;
54 }
55 }

root
2014/7/8
page 247

�

�

�

�

�

�

�

�

19.13. The file truss-demo.c 247

Line 7 defines NM as an instance of a struct nelder_mead. This will bundle all
the information required for the minimization and pass that to nelder_mead() for
processing.

The action begins on line 9, where a vector x of length N is created to serve as the
calculation’s independent variable. Recall that N is twice the number of nodes.

The for-loop on lines 10–14 flattens the energy function’s arguments—it traverses
the linked list of the truss’s nodes, reads the coordinates node→x and node→y of each
node, and enters them as consecutive entries in the vector x.

Lines 15–20 create the (N+1) × N simplex matrix and populate its rows with copies
of the vector x first, and then they adjust them according to (18.5) on page 200 to form a
simplex of size h.

The coordinates of some of the truss’s support nodes may be completely fixed (in an
anchor node) or partially fixed (in a rolling node). Therefore, although the energy is a
function of N variables 〈x0, y0, x1, y1, . . . , xn−1, yn−1〉, not all of those variables are free to
change. Thus, the minimization of the energy takes place not on an N-dimensional space,
but on an affine subspace defined by constraints of the form xk =�xk or yk =�xy , for certain
indices k, where�xk and�xy are fixed.

Minimizing functions subject to affine constraints is explained in Section 18.8. The
outcome of that section’s discussion is that if we project an arbitrary initial simplex onto
the constraint subspace, the Nelder–Mead algorithm will ensure that its subsequence
iterates remain within that subspace. Furthermore, Remark 18.9 on page 212 points out
that projecting onto constraint spaces of the form xk = �xk is particularly simple; it’s a
matter of setting every entry in the corresponding column of the simplex matrix equal
to�xk . This is precisely what is done on lines 22–32 of Listing 19.16. Examine that code,
and make sure that you understand its details.

Now all is ready for calling the Nelder–Mead minimizer. On lines 33–40 we set up
the members of the NM structure; then on line 41 we pass the address of that structure
to nelder_mead(). Once nelder_mead() returns, there is no longer a need for the
vector x and matrix s, so we free them on lines 42 and 43.

There is a chance, of course, that Nelder–Mead fails to converge. We have designed
nelder_mead() so that it halts if the number of function evaluations exceeds the maxi-
mum prescribed in maxevals. On line 44 we check the evaluation count against
maxevals. If it is more, then we conclude that the algorithm hasn’t converged, so we
print a message to that effect to stderr and return 0, that is, false, to the caller. Other-
wise, we print an a informative message regarding success (again, tostderr), then we call
the postprocessing functionsevaluate_stresses() andevaluate_reactions()
to compute the stresses in the links and the reaction forces at the supports, and finally we
return 1, that is, true, to the caller.

19.13 The file truss-demo.c
The file truss-demo.c shown in Listing 19.17 provides a driver for demonstrating, and ex-
perimenting with, our truss solver. It is quite short, and much of it is self-explanatory;
nevertheless, I will make a few comments on it.

Line 11. The function read_truss() is invoked to read a TDF from the stdin. If
the call fails, as it will if the TDF contains incomplete or inconsistent data, it returns
NULL, in which case the program exits with an EXIT_FAILURE status. We need
not print a message here since read_truss() prints its own diagnostics. If the

root
2014/7/8
page 248

�

�

�

�

�

�

�

�

248 Chapter 19. Trusses

Listing 19.17: The file truss-demo.c is a demo driver for the truss solver utility.

1 #include <stdlib.h>
2 #include "truss-to-eps.h"
3 #include "truss-io.h"
4 #include "truss.h"
5 int main(void)
6 {
7 double tol = 1.0e-3;
8 double h = 0.1;
9 int maxevals = 50000;

10 struct truss *truss;
11 if ((truss = read_truss(stdin)) == NULL)
12 return EXIT_FAILURE;
13 // write undeformed configuration image to file z1.eps
14 truss_to_eps(truss, "z1.eps", TR_PLOT_WITH_LABELS);
15 if (!solve_truss(truss, h, tol, maxevals)) {
16 free_truss(truss);
17 return EXIT_FAILURE;
18 }
19 write_truss(truss);
20 // write deformed configuration image to file z2.eps
21 truss_to_eps(truss, "z2.eps", TR_PLOT_WITH_NO_LABELS);
22 free_truss(truss);
23 return EXIT_SUCCESS;
24 }

call succeeds, then read_truss() returns a pointer to a struct truss where
it has stored the data fetched from the TDF .

Line 14. The pointer to the truss structure is passed to the function truss_to_eps()
to write an image of the truss’s reference (undeformed) configuration into an EPS
file named z1.eps. (The name of the file is arbitrary; name it anything you wish.)
The argument TR_PLOT_WITH_LABELS requests that the image include node
and link labels. This results in the second of the two images in Figure 19.8 on
page 240.

Line 15. The function solve_truss() is called to solve the truss, that is, to find its
deformed configuration. The arguments h, tol, andmaxevals control the behav-
ior of the Nelder–Mead simplex which is used to minimize the truss’s total energy.
If solve_truss() fails, the program frees the previously allocated memory and
then exits with the EXIT_FAILURE status.

Line 19. The function write_truss() is called to print the details of the solved truss
to the stdout.

Line 21. The function truss_to_eps() is called for a second time to write the
image of the now deformed truss to the EPS file z2.eps. The argument
TR_PLOT_WITH_NO_LABELS requests that the image not include node and link
labels. Figure 19.10 shows the result.

root
2014/7/8
page 249

�

�

�

�

�

�

�

�

19.14. Project Truss 249

-4.60e-02

4.60e-02

co
m

pr
es

si
on

te
ns

io
n

0

Figure 19.10: The truss Cantilever.tdf deformed under the applied loads, as drawn by
truss_to_eps().

Finally the program calls free_truss() to free all allocated memory and then exits
with an EXIT_SUCCESS status.

19.14 Project Truss

Part 19.1. Complete and test the mini-project of Section 19.11.

Part 19.2. Complete the rest of the program described in this chapter, and run tests
with the supplied Cantilever.tdf and Pratt.tdf. Vary the applied loads to see whether the
truss responds as expected. Note that the driver truss-demo.c in Listing 19.17 writes the
truss’s reference configuration to a file named z1.eps and the deformed configurations to
a file named z2.eps. You may wish to change these to more meaningful names.

Part 19.3. Write a TDF that describes the two-link truss shown on page 207. Set the
Young’s modulus, E , and cross-sectional area, A, to 1 for both links, and apply a load
of 〈0,−0.3〉 to the node C . Under these conditions, there is a single stable equilibrium
corresponding to a global minimum D1, as shown in the top-left drawing of Figure 18.2.
Apply the driver truss-demo.c to find the coordinates of D1 and the shape of the deformed
truss.

Answer: D1 : (0.8319642234,−1.250527826).

Part 19.4. Repeat the previous part, but change the load to 〈0,−0.1〉. Under these
conditions, there are two stable equilibria corresponding to the local minima D1 and D2,
as shown in the top-right drawing of Figure 18.2. These are:

D1 : (0.9208762302,−1.092612810), D2 : (1.155467267,0.8776603420).

Verify that applying the driver truss-demo.c finds the minimum at D2. Refer to subsec-
tion 19.12.6 for an explanation of why the default search converges to a configuration
closest to the truss’s undeformed configuration.

Part 19.5. [Optional]We wish to repeat the previous part but pick up the minimum at
D1 instead. To that end, you will have to start the Nelder–Mead simplex near D1. It’s best
to copy the driver truss-demo.c to a new file, let’s call it truss-demo-two-links.c, and modify
it as follows: After calling read_truss() but before solve_truss(), change the

root
2014/7/8
page 250

�

�

�

�

�

�

�

�

250 Chapter 19. Trusses

(lowercase) (x,y) coordinates of the node at vertex C (see the drawing in Figure 18.2)
to something like (0.5,−1.0).

Part 19.6. [Optional] Our program deals with planar (two-dimensional) trusses. Many
trusses in real applications are three-dimensional, e.g., the boom of a construction crane
or a high-voltage power transmission tower. Write a version of the truss solver for three-
dimensional trusses. For that, copy truss-io.[ch] and truss.[ch] to truss3D-io.[ch] and
truss3D.[ch], and then edit the new files to make them handle the extra dimension. You
will find out that the required changes are few and quite trivial. Unfortunately you
will lose the use of truss_to_eps() since that’s strictly for plotting two-dimensional
trusses. Geomview would be a good substitute for the three-dimensional case. You will
have to study its documentation to learn about the format of its graphics files.

root
2014/7/8
page 251

�

�

�

�

�

�

�

�

Chapter 20

Finite difference
schemes for the heat
equation in one
dimension

Prerequisites: Chapters 7, 8

20.1 The basic idea of finite differences
In this chapter we apply a variety of finite difference techniques to approximate the solu-
tions of initial/boundary value problems associated with the heat equation

∂ u
∂ t
=
∂ 2u

∂ x2 . (20.1)

The unknown u = u(x, t) is a function of space x and time t .
The partial differential equation (20.1) arises in a variety of contexts in mathemati-

cal physics, probability theory, digital image processing, chemistry, and financial math-
ematics. Perhaps the most accessible instance is as a model of the temperature in a one-
dimensional heat-conducting rod which is thermally insulated all around except for its
ends, where it interacts with the outside world. If we hold a flame to one end, heat will
propagate through the rod and affect the temperature everywhere. The function u(x, t) is
the temperature at the point x at time t . The partial differential equation (20.1) accounts
for the conservation of thermal energy within the rod.

We obtain a well-posed heat conduction problem if we specify the rod’s temperature
at time zero, that is, u(x, 0), and prescribe the temperatures at its ends at all times, that
is, in u(a, t) and u(b , t). Here I am assuming that the rod coincides with the interval
(a, b) on the x axis. This information, along with (20.1), should suffice to determine the
temperature u(x, t) at all points x ∈ (a, b) and all times t > 0. We state this formally as
the following initial/boundary value problem:

Find u = u(x, t) so that

∂ u

∂ t
=
∂ 2u

∂ x2 , x ∈ (a, b), t > 0, (20.2a)

u(x, 0) = u0(x), x ∈ (a, b), (20.2b)
u(a, t) = uL(t), u(b , t) = uR(t), t > 0. (20.2c)

251

root
2014/7/8
page 252

�

�

�

�

�

�

�

�

252 Chapter 20. Finite difference schemes for the heat equation in one dimension

x

t

a b

u(a, t) = uL(t) u(b , t) = uR(t)

u(x, 0) = u0(x)

u = u(x, t)

Figure 20.1: The initial condition u0(x) and boundary conditions uL(t) and uR(t) de-
termine the solution of the heat equation in the shaded semi-infinite strip.

The initial condition u0(x) and the left and right boundary conditions uL(t) and uR(t)
are prescribed. They serve to define a unique79 solution u(x, t) in the semi-infinite strip
a ≤ x ≤ b and t > 0 in the x-t plane. See Figure 20.1.

In the finite differences worldview, space and time are discrete. The interval a ≤ x ≤ b
is replaced by a collection of n+2 points x0 < x1 < · · ·< xn+1, where x0 = a and xn+1 = b .
We call x0 and xn+1 the boundary points and the remaining n, that is, x1, x2, . . . , xn , the
internal points. We assume, for simplicity’s sake, that the n+ 2 points are evenly spaced,
and thus they partition the interval [a, b] into n + 1 subintervals of length Δx = (b −
a)/(n+ 1) each. Consequently, xj = a+ jΔx, j = 0,1, . . . , n+ 1.

Similarly, the time is discretized into “time-slices” t0 < t1 < t2 · · · , where t0 = 0. We
assume that the time-slices are evenly spaced at a prescribed Δt intervals, and therefore
tk = kΔt , k = 0,1,2,

The discretization of the space and time replaces the shaded strip of Figure 20.1 by a
grid of points (xj , tk), as depicted in Figure 20.2. The task of finding the function u(x, t) is
replaced by the task of computing its values u(xj , tk) at the grid points. For convenience
we introduce the notation uk

j for u(xj , tk) since it is more compact and easier to parse.
I trust that it’s clear that k is a superscript here, not an exponent!

The derivative ∂ u/∂ t at (xj , tk)may be approximated by either of the following two
ways:

∂ u

∂ t

����
(xj ,tk)

≈ uk+1
j − uk

j

Δt
or

∂ u

∂ t

����
(xj ,tk)

≈ uk
j − uk−1

j

Δt
. (20.3)

The first variant is called a forward difference approximation since it looks up the value of
u at a future time. The second variant is called a backward difference approximation since
it looks up the value of u at a previous time. Both have their uses, as we shall see.

To approximate the second derivative ∂ 2u/∂ x2 at (xj , tk), let us look at the Taylor
expansion of u(x, tk) about x = xj :

u(x, tk) = u(xj , tk)+
∂ u

∂ x

����
(xj ,tk)

(x − xj)+
∂ 2u

∂ x2

����
(xj ,tk)

(x − xj)
2+ · · · .

79I am hiding some technical details here. The existence and uniqueness of a solution u depend on the reg-
ularity and integrability of the functions u0, uL , uR; see e.g., Friedman [21]. Those details, however, hardly
matter for the purposes of this chapter.

root
2014/7/8
page 253

�

�

�

�

�

�

�

�

20.2. An explicit scheme for the heat equation 253

x0 x1 · · · · xn xn+1

t0

t1

t2

t3

Δx

Δt

Figure 20.2: The finite difference grid consists of n + 2 points x0, x1, . . . , xn+1 in the x
direction and a sequence of time-slices t0, t1, t2, . . . in the t direction. The
initial condition determines the solution at the squares . The boundary
conditions determine the solution at the diamonds . The finite difference
algorithm determines the solution at the rest of the grid points marked
with the hollow circles .

Evaluating this at x = xj−1 and x = xj+1 we get

u(xj−1, tk) = u(xj , tk)+
∂ u
∂ x

����
(xj ,tk)

(xj−1 − xj)+
∂ 2u

∂ x2

����
(xj ,tk)

(xj−1− xj)
2+ · · · ,

u(xj+1, tk) = u(xj , tk)+
∂ u
∂ x

����
(xj ,tk)

(xj+1 − xj)+
∂ 2u

∂ x2

����
(xj ,tk)

(xj+1+ xj)
2+ · · · .

We then substitute xj+1+ xj =Δx and xj−1+ xj =−Δx, add up the resulting equations,
switch to the compact notation uk

j introduced above, and arrive at

uk
j−1+ uk

j+1 = 2uk
j +

∂ 2u

∂ x2

����
(xj ,tk)

(Δx)2+ · · · ,

whence
∂ 2u

∂ x2

����
(xj ,tk)

≈ uk
j−1− 2uk

j + uk
j+1

(Δx)2
. (20.4)

The approximations in (20.3) and (20.4) are the main tools in the field of finite differ-
ences. They may be applied in a variety of ways to approximate the problem (20.2) with
discrete versions. We will study a few possibilities in the following sections. To learn
more about the subject, you may start with one of [71, 33, 29].

20.2 An explicit scheme for the heat equation
In the heat equation (20.2a), replace the right-hand side by the approximation given in
(20.4) and the left-hand side by the forward difference approximation defined in (20.3).

root
2014/7/8
page 254

�

�

�

�

�

�

�

�

254 Chapter 20. Finite difference schemes for the heat equation in one dimension

We obtain
uk+1

j − uk
j

Δt
=

uk
j−1− 2uk

j + uk
j+1

(Δx)2
, j = 1,2, . . . , n.

We see that the space and time increments, Δx and Δt , enter in the form of the combi-
nationΔt/(Δx)2; therefore it makes sense to introduce the notation

r =
Δt

(Δx)2
(20.5)

and express the equation in terms of r , as in

uk+1
j − uk

j = r (uk
j−1− 2uk

j + uk
j+1), j = 1,2, . . . , n, (20.6)

or the rearranged form

uk+1
j = r uk

j−1+(1− 2r)uk
j + r uk

j+1, j = 1,2, . . . , n. (20.7)

The result is very revealing. It says that uk+1
j , that is, the value of u at the time-slice

k + 1, may be computed from the values of u at the time-slice k. Since the values of
uk

j at the time-slice t = 0 are known—that’s what the initial condition is for—we may
apply (20.7) recursively, one time-slice at a time, to march forward through the time-slices
and determine uk

j at all times. If you mark the formula’s entries on the finite difference
grid, as is done in two instances in Figure 20.3, they arrange themselves in a ⊥-shaped
pattern. That pattern, which is a characteristic of the finite difference scheme (20.7), is
called the scheme’s stencil. If the stencil contacts the left or right boundary, as it has in
one of the instances shown, it picks up the user-supplied boundary condition there. That’s
where equations (20.2c) come in.

The recursion formula (20.7) is called an explicit scheme since it provides the value
of uk+1

j explicitly, with no fuss, in terms of given or previously computed data. In that
sense it is quite trivial to implement it in a program—just put the formula in a for-loop
and compute away. We will do exactly that in our implementation. For the conceptual
understanding and analysis, however, the matrix form of that formula provides a deeper
insight. To obtain the matrix form, it helps to write out several instances of the formula
explicitly,

j = 1 : uk+1
1 = r uk

0 +(1− 2r)uk
1 + r uk

2 ,

j = 2 : uk+1
2 = r uk

1 +(1− 2r)uk
2 + r uk

3 ,

· · · · · ·
j = n : uk+1

n = r uk
n−1+(1− 2r)uk

n + r uk
n+1,

and then, after letting s = 1− 2r , pack the equations into a matrix-vector form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

uk+1
1

uk+1
2

...

uk+1
n−1

uk+1
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

s r

r s r
.

r s r

r s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

uk
1

uk
2

...

uk
n−1

uk
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

r uk
0

0
...

0

r uk
n+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (20.8)

root
2014/7/8
page 255

�

�

�

�

�

�

�

�

20.2. An explicit scheme for the heat equation 255

x0 x1 · · · · xn xn+1

t0

t1

t2

t3

Δx

Δt uk
j−1 uk

j uk
j+1

uk+1
j

Figure 20.3: The explicit finite difference scheme acts on a ⊥-shaped stencil. It deter-
mines the values of uk+1

j at the time-slice k+1 in terms of the three values
of u from the previous time-slice. When the stencil hits the left or right
boundary, its picks up the prescribed boundary value from there.

The matrix is tridiagonal, having s = 1− 2r on its main diagonal and r on its first upper
and lower subdiagonals. All other entries are zeros. We note that the matrix acts on the
grid’s internal nodes at the time-slice k. The additive vector in the equation’s extreme
right imports the prescribed data from the boundary nodes x0 and xn+1. In effect, the
equation defines a transition operator that maps the solution from the time-slice k to the
time-slice k + 1.

The recursion scheme (20.7), or its matrix equivalent (20.8), provides an extremely
quick and simple method for solving the heat equation and its relatives (general parabolic
equations). Of course it is natural to ask the following: Does it produce a good approx-
imation? Does the approximation improve as Δx and Δt go to zero? It turns out that
the answers to both questions are a qualified “yes”. The catch is that you cannot takeΔx
and Δt entirely independently of each other. The method is guaranteed to work only if
r ≤ 1/2, where r is defined in (20.5).

To get a feel for the source of the trouble, consider the special case where the boundary
conditions uL(t) and uR(t) in (20.2c) are zero. Then we expect the rod’s temperature to
go to zero in the long run, regardless of the initial condition, since its ends are being kept
at zero temperature. The finite difference scheme should confirm that. But does it?

When the boundary conditions are zero, the iteration scheme in (20.8) takes the form
uk+1 =Auk , where A is the tridiagonal matrix in that equation, and uk is the vector that
it multiplies. We see that u1 = Au0, u2 =Au1, etc., and consequently uk = Aku0. It can
be shown (see [33], for instance) that the eigenvalues of A are

λ j = 1− 2r cos
jπ

n+ 1
, j = 1,2, . . . , n. (20.9)

Therefore, if r ≤ 1/2, then all eigenvalues are strictly less than 1, and consequently Ak → 0
as k →∞, confirming our expectation. If r > 1/2, however, and n is sufficiently large,

root
2014/7/8
page 256

�

�

�

�

�

�

�

�

256 Chapter 20. Finite difference schemes for the heat equation in one dimension

then it is possible for some of the eigenvalues to be greater than 1; therefore Aku0 will
grow unbounded as k →∞, at least for some choices of u0. That is a totally unreasonable
way for heat to behave; the iteration is producing junk!

An iteration scheme is said to be stable if small perturbations in the problem’s data
result only in small perturbations in the solution. Otherwise it is said to be unstable. The
explicit finite difference scheme defined by (20.7)—or the equivalent (20.8)—is condition-
ally stable: it is stable when r ≤ 1/2.

Why should conditional stability concern us? Even with the most generous choice
of r = 1/2, (20.5) tells us that Δt = 1

2 (Δx)2. This implies that if Δx is small, then Δt
will be uncomfortably small. For instance, if Δx = 1/10, then Δt = 1/200. Thus, to
compute the solution up to time t = 1, we will have to march through 200 time-slices.
If we change Δx to 1/100 to achieve a higher accuracy, then Δt changes to 1/20,000,
forcing us to plod through 20,000(!) time-slices to traverse the time interval 0 to 1. That’s
an inordinate amount of work.

The implicit finite difference scheme, introduced in the next section, removes that
restriction on r .

20.3 An implicit scheme for the heat equation
In the heat equation (20.2a), replace the right-hand side by the approximation given in
(20.4) and the left-hand side by the backward difference approximation defined in (20.3).
We obtain

uk
j − uk−1

j

Δt
=

uk
j−1− 2uk

j + uk
j+1

(Δx)2
, j = 1,2, . . . , n.

For notational consistency with the previous section, shift the superscript k up by one,
and also set r =Δt/(Δx)2, as before, to get

uk+1
j − uk

j = r (uk+1
j−1 − 2uk+1

j + uk+1
j+1), j = 1,2, . . . , n. (20.10)

Then rearrange/group terms to arrive at

− r uk+1
j−1 +(1+ 2r)uk+1

j − r u j+1
j+1 = uk

j , j = 1,2, . . . , n. (20.11)

The formula’s entries form a�-shaped stencil on the finite difference grid. Two instances
of the stencil are shown in Figure 20.4. If the stencil contacts the left or right boundary,
as it has in one of the instances shown, it picks up the user-supplied boundary condition
there.

On the surface, this looks very similar to the previous section’s (20.7). There is, how-
ever, something fundamentally different here. Equation (20.7) expresses u at the time-slice
k + 1 explicitly in terms of the values of u at the previous time-slice. Equation (20.11),
however, does not do that. It expresses a certain combination of the values of u at the
time-slice k + 1 in terms of u at the previous time-slice. It is called an implicit scheme for
that reason.

To grasp fully what the implicit scheme (20.11) represents, let us write it out in detail:

j = 1 : −r uk+1
0 +(1+ 2r)uk+1

1 − r uk+1
2 = uk

1 ,

j = 2 : −r uk+1
1 +(1+ 2r)uk+1

2 − r uk+1
3 = uk

2 ,

· · · · · ·
j = n : −r uk+1

n−1+(1+ 2r)uk+1
n − r uk+1

n+1 = uk
n .

root
2014/7/8
page 257

�

�

�

�

�

�

�

�

20.3. An implicit scheme for the heat equation 257

x0 x1 · · · · xn xn+1

t0

t1

t2

t3

Δx

Δt

uk+1
j−1 uk+1

j uk+1
j+1

uk
j

Figure 20.4: The implicit finite difference scheme acts on a�-shaped stencil. It relates a
linear combination of three values of uk+1

j at the time-slice k+1 to a value
of u from the previous time-slice. When the stencil hits the left or right
boundary, its picks up the prescribed boundary value from there.

Then, after letting80 s = 1+ 2r , pack it into a matrix-vector form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

s −r

−r s −r
.

−r s −r

−r s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

uk+1
1

uk+1
2

...

uk+1
n−1

uk+1
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

uk
1

uk
2

...

uk
n−1

uk
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

r uk+1
0

0
...

0

r uk+1
n+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (20.12)

The matrix is tridiagonal, having s = 1+2r on its main diagonal and−r on its first upper
and lower subdiagonals. All other entries are zeros. As a whole, the equation relates the
state of the solution at the grid’s internal nodes at the time-slice k+1 to those at the time-
slice k. The additive vector in the equation’s extreme right imports the prescribed data
from the boundary nodes x0 and xn+1.

Computing the solution at the time-slice k + 1 calls for solving the system of linear
equations (20.12). The task is quite simple on account of the coefficient matrix being
tridiagonal. We will study the solution algorithm in subsection 20.9.3. For now, let us
look at the scheme’s stability.

As in the previous section, consider the special case where the boundary conditions
uL(t) and uR(t) in (20.2c) are zero. Then the iteration scheme in (20.12) takes the form
Buk+1 = uk , where B is the tridiagonal matrix. We see that Bu1 = u0, Bu2 = u1, etc.,
and consequently Bkuk = u0, and therefore uk = B−ku0.

Considering that s = 1+ 2r in this section while s = 1− 2r in the previous section,
it should be evident that the matrix B here is related to the previous section’s matrix
A through the change of variables r → −r . Therefore B’s eigenvalues are obtained by

80Beware that s = 1+ 2r is different from the previous definition of s .

root
2014/7/8
page 258

�

�

�

�

�

�

�

�

258 Chapter 20. Finite difference schemes for the heat equation in one dimension

changing r to−r in (20.9). Thus, B−1’s eigenvalues are

λ j =
1

1+ 2r cos jπ
n+1

, j = 1,2, . . . , n.

We see that these are all strictly less than 1 regardless of the value of r (we are taking
it for granted that r > 0). It follows that B−k → 0 as k → ∞; therefore the iteration
scheme (20.12) is stable for all r . One expresses this by saying that the scheme is uncondi-
tionally stable.

Unconditional stability is a good thing since it removes the worry about the right
choice of r . But lest you jump to unwarranted conclusions, let me point out that things
are not quite as rosy as you might expect.

Toward the end of the previous section, when discussing the stability of the explicit
scheme, I noted that the requirement r ≤ 1/2 is quite inconvenient since Δt = r (Δx)2
forces exceedingly small time-steps when Δx is somewhat small. The implicit scheme,
however, imposes no restriction on r , so one may be tempted to take arbitrarily large
time-steps Δt , uncoupled from the size of Δx. This, however, does not work as well as
we may wish. It can be shown (see [33], for instance) that the discretization error in the
implicit scheme is of the order of magnitude of Δt + (Δx)2. For best results we want to
keep Δt and (Δx)2 in more or less comparable sizes; otherwise the larger of the two will
dominate the error. This, in effect, limits Δt to something of the order of magnitude of
(Δx)2 even though there is no restriction on r . The implicit scheme, therefore, has not
released us from the bind of small time-steps.

The Crank–Nicolson scheme, introduced in the next section, gets around this dilemma.

20.4 The Crank–Nicolson scheme for the heat equation
The Crank–Nicolson scheme is obtained by summing the explicit and implicit differenc-
ing formulas (20.6) and (20.10),

2(uk+1
j − uk

j) = r
�
uk

j−1 − 2uk
j + uk

j+1 + uk+1
j−1 − 2uk+1

j + uk+1
j+1

,

and regrouping:

− r uk+1
j−1 +2(1+ r)uk+1

j − r uk+1
j+1 = r uk

j−1+2(1− r)uk
j + r uk

j+1, j = 1,2, . . . , n. (20.13)

The formula’s entries form a -shaped stencil on the finite difference grid. Two instances
of the stencil are shown in Figure 20.5. If the stencil contacts the left or right boundary,
as it has in one of the instances shown, it picks up the user-supplied boundary conditions
there.

To fully grasp what the Crank–Nicolson scheme (20.13) represents, let us write it out
in detail:

j = 1 : − r uk+1
0 + 2(1+ r)uk+1

1 − r uk+1
2 = r uk

0 + 2(1− r)uk
1 + r uk

2 ,

j = 2 : − r uk+1
1 + 2(1+ r)uk+1

2 − r uk+1
3 = r uk

1 + 2(1− r)uk
2 + r uk

3 ,

· · · · · ·
j = n : − r uk+1

n−1 + 2(1+ r)uk+1
n − r uk+1

n+1 = r uk
n−1+ 2(1− r)uk

n + r uk
n+1.

root
2014/7/8
page 259

�

�

�

�

�

�

�

�

20.4. The Crank–Nicolson scheme for the heat equation 259

x0 x1 · · · · xn xn+1

t0

t1

t2

t3

Δx

Δt uk
j−1 uk

j uk
j+1

uk+1
j−1 uk+1

j uk+1
j+1

Figure 20.5: The Crank–Nicolson finite difference scheme acts on an -shaped stencil.
It relates a linear combination of three values of u k+1

j at the time-slice k+1
to three values of u from the previous time-slice. When the stencil hits the
left or right boundary, its picks up the prescribed boundary values from
there.

After setting81 s = 2(1+ r) and s ′ = 2(1− r), it takes the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

s −r

−r s −r
.

−r s −r

−r s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

uk+1
1

uk+1
2

...

uk+1
n−1

uk+1
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

s ′ r

r s ′ r
.

r s ′ r

r s ′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

uk
1

uk
2

...

uk
n−1

uk
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

r uk
0 + r uk+1

0

0
...

0

r uk
n+1+ r uk+1

n+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (20.14)

It can be shown that the Crank–Nicolson scheme is unconditionally stable for all r >
0. That’s good news. Even better news is that the discretization error of this scheme is
of the order (Δt)2+ (Δx)2. Unlike the previous section’s implicit scheme, here Δt and
Δx occur in equal powers. This allows taking time-steps of the same order of magnitude
as the space discretization. For this reason, Crank–Nicolson should be your default finite
difference scheme unless other considerations prevail.

81Beware that s = 2(1+ r) is different from the previous definitions of s .

root
2014/7/8
page 260

�

�

�

�

�

�

�

�

260 Chapter 20. Finite difference schemes for the heat equation in one dimension

Computing the solution at the time-slice k + 1 calls for solving the system of linear
equations (20.14), which, as in the case of the previous section’s implicit method, is tridi-
agonal and can be handled with the algorithm suggested in subsection 20.9.3.

20.5 The Seidman sweep scheme for the heat equation
In this section I introduce a lesser known difference scheme developed by Seidman [58]
which has the dual advantages of being both explicit and unconditionally stable. As in the
previous sections, I will explain the scheme in the context of the heat equation (20.2). The
scheme’s unique strength, however, is in the ease with which it may be implemented to
solve nonlinear problems, as we shall see in Chapter 21.

I must add that the theory and analysis in [58] is developed in the context of general
second order parabolic equations in n dimensions on irregular grids. What I present here
is a very special case.

The Seidman sweep, as I shall call it, is very similar to the explicit scheme of Sec-
tion 20.2 in that it approximates the time derivative by a forward difference. However,
it calculates uk+1

j in a sweeping motion, from left to right (forward sweep) or from right
to left (reverse sweep), that is, in increasing or decreasing sequences of j . In the forward
sweep, when processing node j , it takes advantage of the availability of uk+1

j−1 and uses it

instead of uk
j−1. In the reverse sweep it takes advantage of the availability of uk+1

j+1 and uses

it instead of uk
j−1. The idea is reminiscent of the Gauss–Seidel iterative scheme for solving

linear systems of equations.
The algorithm splits the time-stepΔt into two halves. A forward sweep advances time

by (Δt)/2 and calculates uk+1/2
j from uk

j , j = 1,2, . . . , n. That is followed by a reverse

sweep, which advances time by (Δt)/2 and calculates uk+1
j from uk+1/2

j , j = n, . . . , 2,1. If
we consider, for the moment, applying the explicit scheme of Section 20.2 to the forward
and reverse sweeps, (20.6) will take the form

uk+1/2
j − uk

j = r ′(uk
j−1− 2uk

j + uk
j+1), j = 1,2, . . . , n,

uk+1
j − uk+1/2

j = r ′(uk+1/2
j−1 − 2uk+1/2

j + uk+1/2
j+1), j = n, . . . , 2,1,

where

r ′ =
r
2
=

Δt

2(Δx)2
, (20.15)

since we are taking half steps in time now.
I could present the rest of this section using the k + 1/2 superscript notation, but the

formulas become cumbersome and obscure the algorithm’s simplicity. It works much
better with a temporary convention where uj , vj , and wj stand for the uk

j , uk+1/2
j , and

uk+1
j , respectively. With this notation, the pair of formulas shown above takes the form

vj − uj = r ′(uj−1− 2uj + uj+1), j = 1,2, . . . , n,

wj − vj = r ′(vj−1− 2vj + vj+1), j = n, . . . , 2,1,

or equivalently,

vj − uj =−r ′(uj − uj−1)− r ′(uj − uj+1), j = 1,2, . . . , n,

wj − vj =−r ′(vj − vj−1)− r ′(vj − vj+1), j = n, . . . , 2,1.

root
2014/7/8
page 261

�

�

�

�

�

�

�

�

20.5. The Seidman sweep scheme for the heat equation 261

tk

tk+1/2

tk+1

Δx

Δt

vj−1 vj

uj uj+1

forward vj−1 vj

wj wj+1

reverse

Figure 20.6: The Seidman sweep finite difference scheme advances from the time-slice k
to the time-slice k+ 1 via an intermediate time-slice k+ 1/2. The forward
sweep advances by half a time-step from k to k + 1/2. The reverse sweep
advances by half a time-step from k+1/2 to k+1. At any point it uses the
most up-to-date data available. The boundary values at the points marked
by the filled diamonds affect the solution in the interior points. The
boundary values at the points marked by the hollow diamonds don’t.

This is just the explicit scheme up to now. To change it over to the Seidman sweep, we
note that in a forward sweep the value of vj−1 has been calculated prior to arriving at the
node j . We take advantage of that and replace (uj − uj−1) in the first of the two formulas
above by (vj − vj−1). Similarly, in a reverse sweep the value of wj+1 has been calculated
prior to arriving at the node j . Therefore, we replace (vj −vj+1) in the second of the two
formulas above by (wj −wj+1). These result in

vj − uj =−r ′(vj − vj−1)− r ′(uj − uj+1), j = 1,2, . . . , n, (20.16a)

wj − vj =−r ′(vj − vj−1)− r ′(wj −wj+1), j = n, . . . , 2,1, (20.16b)

which we rearrange into

(1+ r ′)vj = r ′vj−1 +(1− r ′)uj + r ′uj+1, j = 1,2, . . . , n, (20.17a)

(1+ r ′)wj = r ′vj−1 +(1− r ′)vj + r ′wj+1, j = n, . . . , 2,1. (20.17b)

The pair of formulas (20.17a) and (20.17b) constitutes the Seidman sweep scheme. It is
an explicit scheme since all values on the right-hand sides are available at the time when the
left-hand sides are evaluated. Figure 20.6 shows the stencils for the forward and reverse
sweeps.

To express the Seidman sweep as a matrix-vector equation, it is best to use the (20.16)
form of the scheme. Upon inspection of that formula we see that

root
2014/7/8
page 262

�

�

�

�

�

�

�

�

262 Chapter 20. Finite difference schemes for the heat equation in one dimension

⎛⎜⎜⎜⎜⎜⎝
v1
v2
...
vn−1
vn

⎞⎟⎟⎟⎟⎟⎠−
⎛⎜⎜⎜⎜⎜⎝

u1
u2
...
un−1
un

⎞⎟⎟⎟⎟⎟⎠=−r ′

⎛⎜⎜⎜⎜⎜⎝
1 0

−1 1 0
...

−1 1 0
−1 1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

v1
v2
...
vn−1
vn

⎞⎟⎟⎟⎟⎟⎠

− r ′

⎛⎜⎜⎜⎜⎜⎝
1 −1
0 1 −1

...
0 1 −1

0 1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

u1
u2
...
un−1
un

⎞⎟⎟⎟⎟⎟⎠+ r ′

⎛⎜⎜⎜⎜⎜⎝
v0
0
...
0
un+1

⎞⎟⎟⎟⎟⎟⎠ .

Writing u, v, and w for the column vectors with the components uj , vj , wj and letting

A=

⎛⎜⎜⎜⎜⎜⎝
1 0

−1 1 0
...

−1 1 0
−1 1

⎞⎟⎟⎟⎟⎟⎠ , a=

⎛⎜⎜⎜⎜⎜⎝
v0
0
...
0
un+1

⎞⎟⎟⎟⎟⎟⎠ , b=

⎛⎜⎜⎜⎜⎜⎝
v0
0
...
0
wn+1

⎞⎟⎟⎟⎟⎟⎠ ,

this takes on the compact form v−u=−r ′Av− r ′AT u+ r ′a, or equivalently,

(I + r ′A)v = (I − r ′AT)u+ r ′a, (20.18a)

where I is the identity matrix and AT is the transpose of A. Similar considerations regard-
ing the reverse sweep in the formula (20.16b) lead to

(I + r ′AT)w = (I − r ′A)v+ r ′b. (20.18b)

The analysis in [58] shows that the iteration scheme expressed in the pair of equa-
tions (20.18a) and (20.18b) is unconditionally stable for all r ′ > 0. I am not aware of a
study of the scheme’s rate of convergence, and I have not analyzed it myself. Numerical
experiments—see the error graphs in Figure 20.7—point to a rate of convergence of the
order (Δx)2+(Δt)2+ (Δt)2

(Δx)2
, like that of the Du Fort–Frankel scheme (see [71]), but that’s

a mere conjecture on my part.

In favor of the Seidman sweep, one may note the following:

1. The Seidman sweep, being an explicit method, is easy to program, as we shall see
later in this chapter.

2. The Seidman sweep handles discontinuities in the initial and boundary conditions
more gracefully than Crank–Nicolson.

3. The Seidman sweep has a definite advantage over implicit schemes in solving non-
linear problems. An implicit scheme, such as Crank–Nicolson, requires solving an
n × n nonlinear tridiagonal system at every step. The Seidman sweep, being an
explicit scheme, needs to solve 2n single (uncoupled) nonlinear equations in every
forward/reverse sweep pair. Chapter 21 applies the Seidman sweep to solve the
highly nonlinear porous medium equation.

root
2014/7/8
page 263

�

�

�

�

�

�

�

�

20.6. Test problems 263

10 5 10 4 10 3

10 6

10 5

10 4

10 3

10 2

10 1

t
er
ro
r

10 2 10 1

10 5

10 4

10 3

x

er
ro
r

Figure 20.7: Experiments with the Seidman sweep and problem heat1 (Section 20.6)
lend support to the conjecture that the scheme’s convergence rate may be
O
�
(Δx)2+(Δt)2+ (Δt)2

(Δx)2

. On the top we have the graph of the errors ver-

sus Δt while Δx = 0.004 is kept fixed. On the bottom we have the graph
of the errors versusΔx whileΔt = 5×10−5 is kept fixed. The dashed lines
have slopes of 2. The upturned tail in the latter graph is characteristic of
the presence of a Δt

Δx term.

20.6 Test problems
Here I introduce four simple initial/boundary value problems for the purpose of testing
and demonstrating the various finite difference discretization schemes that were intro-
duced in the previous sections. The programs which we are going to develop are general
and certainly not limited to these four. You may easily modify those problems or add
new ones of your own. The partial differential equation in all four problems is the heat
equation (20.1) on the interval −1< x < 1. Only the initial and boundary conditions are
different.

The interval −1 < x < 1 is not hard-coded anywhere. The programs are set up to
solve a finite difference problem on an interval a < x < b , where a and b are defined
alongside the rest of the problem’s data. Don’t hesitate to experiment with defining and
solving problems on intervals other than −1< x < 1.

Problems heat1 and heat2 come with exact solutions. Our programs compare these
against the finite difference solutions and print out the discretization errors. These two
problems are constructed according to the following simple “reverse engineering” idea.

Pick any function, let’s say uex(x, t), that satisfies the partial differential equation (20.1)
for all−∞< x <∞ and t > 0. Pose the following initial/boundary value problem whose

root
2014/7/8
page 264

�

�

�

�

�

�

�

�

264 Chapter 20. Finite difference schemes for the heat equation in one dimension

data is defined in terms of uex(x, t):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂ u

∂ t
=
∂ 2u

∂ x2 , x ∈ (a, b), t > 0,

u(x, 0) = uex(x, 0), x ∈ (a, b),
u(a, t) = uex(a, t), t > 0,
u(b , t) = uex(b , t), t > 0.

(20.19)

Clearly u(x, t) = uex(x, t) is a solution of the problem. (Actually, it’s the solution since
such problems have unique solutions.) To test the accuracy of our solvers, we have them
solve (20.19) and then compare the results with uex(x, t).

Problem heat1: You should have no difficulty in verifying that the function

uex(x, t) = e− 1
2π

2 t cos
1

2
πx (20.20)

is a solution of the heat equation (20.1). Check that for yourself! We define the problem
heat1 by plugging (20.20) into the general template (20.19) with a =−1, b = 1.

Problem heat2: The error function, erf, despite its infelicitous appellation, occurs quite
frequently in the study of differential equations, probability, and statistics. It is defined as

erf(x) =
2�
π

∫ x

0
e−t 2

d t .

The domain of erf is the entire real line. It increases monotonically from −1 at x =−∞
to +1 at x =+∞. Figure 20.8 depicts its graph. Since the derivative of erf(x) is 2�

π
e−x2

,
you should be able to verify without much trouble that the function

uex(x, t) = erf
�

x

2
�

t

�
(20.21)

is an exact solution of the heat equation (20.1). We wish to use this finding to “reverse-
engineer” an initial/boundary value problem according to the template (20.19), but we hit
a snag: The second of the equations in (20.1) calls for the value of uex(x, 0). Plugging t = 0
in (20.21) won’t do since that would entail a division by zero on account of the

�
t in the

denominator. We get around this by observing that although the expression uex(x, t) is
undefined at t = 0, its limit as t approaches zero from above does exist:

lim
t→0+

uex(x, t) =
�−1 if x < 0,
+1 if x > 0.

This still leaves out the x = 0 case. There is no way around that since uex(x, t) is ir-
reparably discontinuous there. That’s not a significant obstacle, however, since the heat
equation is good at smearing out discontinuities. Any value assigned to uex(0,0) will fade
away quite fast. In our program we let uex(0,0) = 0. That’s as good a choice as any. Thus,
our uex really looks like this:

uex(x, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
erf

*
x

2
�

t

+
if t > 0,

−1 if t = 0 and x < 0,
+1 if t = 0 and x > 0,
0 if t = 0 and x = 0.

(20.22)

root
2014/7/8
page 265

�

�

�

�

�

�

�

�

20.6. Test problems 265

−4 −2 2 4

−1

−0.5

0.5

1

x

erf(x)

Figure 20.8: The graph of the error function erf(x).

With the continuity issue out of the way, we define the problem heat2 by plugging (20.22)
into the general template (20.19) with a =−1, b = 1.

Remark 20.1. Due to the linearity of the heat equation (20.1), any constant multiple of
a solution is also a solution. In the implementation of problem heat2, I use 0.4× uex(x, t)
since the resulting flattened graph has a more appealing look. There is no deep reason
behind that choice.

Problem heat3: Take the “rectangular bump” function

u0(x) =
�

1, |x|< 0.4,
0 otherwise

for the initial condition, and define the problem heat3 as⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ u

∂ t
=
∂ 2u

∂ x2 , x ∈ (−1,1), t > 0,

u(x, 0) = u0(x), x ∈ (−1,1),
u(−1, t) = u(1, t) = 0, t > 0.

Problem heat4: This problem is defined as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂ u
∂ t
=
∂ 2u

∂ x2 , x ∈ (−1,1), t > 0,

u(x, 0) = 0, x ∈ (−1,1),
u(−1, t) = 0, t > 0,
u(1, t) = 0.8, t > 0.

What does this say about the value of the solution at x = 1, t = 0?. The initial condition
says u(1,0) is 0. The boundary condition says u(1,0) is 0.8. Therefore we expect the
solution u(x, t) to be discontinuous at x = 0, t = 0. The purpose of this problem is to
examine how well the various finite difference schemes handle that discontinuity.

root
2014/7/8
page 266

�

�

�

�

�

�

�

�

266 Chapter 20. Finite difference schemes for the heat equation in one dimension

20.7 The program
The rest of this chapter is devoted to details of the implementations of the four finite
difference schemes introduced in the previous sections. We will write four individual
programs, one for each scheme, encoded in the files heat-explicit.c, heat-implicit.c, heat-
crank-nicolson.c, and heat-seidman-sweep.c. The problems to be solved are defined in a
file named problem-spec.c, which may contain any number of initial/boundary value
problems.

We rely on xmalloc.[ch] from Chapter 7 to allocate memory and the file array.h from
Chapter 8 to construct vectors and matrices. Thus, following the suggestions in Chap-
ters 2 and 6, the contents of the project’s directory will look like this:

$ cd fd1
$ ls -F
Makefile heat-implicit.c xmalloc.c@
array.h@ heat-seidman-sweep.c xmalloc.h@
heat-crank-nicolson.c problem-spec.c
heat-explicit.c problem-spec.h

I have named my directoryfd1 since the programs here deal with finite difference schemes
in a one-dimensional space.

There is a good deal of duplication among the heat-*.c files since the supporting code—
parsing the command-line arguments, computing errors, plotting the solutions—is com-
mon to all four. It is possible to merge the four programs into one and factor out the
common parts, but the logic can get a bit twisty; therefore I will not go down that path.
You are welcome to try it if you wish.

Currently my problem-spec.c contains four boundary value problems named heat1,
heat2, heat3, heat4 that were introduced in the previous section. Each of these can be
solved with any of the four finite difference schemes; therefore we are going to produce a
total of 16 solutions altogether.

Conceptually, each solution is a matrix of the computed uk
j values of the solution at

the finite difference grid points. We may set up the programs to print out those matrices
as tables of numbers, but it is more informative to produce pictures of the graphs of the
solutions u(x, t) as surfaces drawn in three dimensions. Thus, for each solution we write
the grid values to a file in a special format that is suitable for feeding to Geomview (see
page 8) which will render the surface on your computer screen and let you rotate it with
the mouse. The graphs of the various solutions shown in this chapter are snapshots of a
Geomview window.

Here is a transcript of a sample session with the heat-explicit program that implements
the explicit scheme:

$./heat-explicit
Usage: ./heat-explicit T n s

T : solve over 0 ≤ t ≤ T
n : number of grid points a=x[0], x[1], ... , x[n], x[n+1]=b
s : number of time-slices 0=t[0], t[1], ... , t[s]=T

$./heat-explicit 0.2 9 10
problem heat1:
-1 < x < 1, 0 < t < 0.2, dx = 0.2, dt = 0.02, r = dt/dx^2 = 0.5
geomview script written to file ex1.gv
max error at time 0.2 is 0.00506898

root
2014/7/8
page 267

�

�

�

�

�

�

�

�

20.8. The files problem-spec.[ch] 267

problem heat2:
-1 < x < 1, 0 < t < 0.2, dx = 0.2, dt = 0.02, r = dt/dx^2 = 0.5
geomview script written to file ex2.gv
max error at time 0.2 is 0.00999372

problem heat3:
-1 < x < 1, 0 < t < 0.2, dx = 0.2, dt = 0.02, r = dt/dx^2 = 0.5
geomview script written to file ex3.gv

problem heat4:
-1 < x < 1, 0 < t < 0.2, dx = 0.2, dt = 0.02, r = dt/dx^2 = 0.5
geomview script written to file ex4.gv

The meanings of the program’s arguments should be clear from the “Usage” message that
appears above. The programs heat-implicit, heat-crank-nicolson.c, and heat-seidman-sweep.c
may be invoked in the same way. Figures 20.9 and 20.10 shows the results of running the
four programs, each solving the four problems heat1, heat2, heat3, and heat4. The figures’
captions give the command-line arguments with which the programs were invoked.

Since the problems heat1 and heat2 are supplied with exact solutions, the program
computes and prints the error in those two cases. The error is defined by

err= max
0≤ j≤n+1

|uex(xj ,T)− u s
j |, (20.23)

where the superscript s corresponds to the time index at the time T , that is, ts = T .
Let us note that heat-explicit was involved with the command-line arguments, 0.5 10 32.

In words, the problem is solved over the range 0≤ t ≤ 0.5 through 32 time-steps; therefore
Δt = 0.5/32= 1/64. The x domain, which is the interval (−1,1), has 10 internal nodes;
therefore Δx = 2/11. We see that r = (Δt)/(Δx)2 ≈ 0.472656< 0.5, that is, the scheme
is within the threshold of stability; see Section 20.2. In contrast, if we run heat-explicit
with the arguments 0.352 20 20, we will have r = 1.9404> 0.5; therefore the scheme will
be unstable. Figure 20.11 shows the resulting calamity when it’s applied to the problem
heat1.

20.8 The files problem-spec.[ch]
The file problem-spec.h provides a data structure designed to hold the definition of an
initial/boundary value problem. The file problem-spec.c uses that data structure to de-
fine concrete realizations of any number of such problems. The next two subsections
give the details of the contents of these files.

20.8.1 The file problem-spec.h

The file problem-spec.h, shown in it entirety in Listing 20.1, declares a data structure named
“struct problem_spec” for storing definitions of initial/boundary value problems
of the type (20.2) on page 251. The members a andb of that structure hold the coordinates
of the endpoints of the interval a ≤ x ≤ b . The member ic points to a function that
supplies the problem’s initial condition u0(x), while the members bcL and bcR point to
functions uL(t) and uR(t) that supply the left and right boundary conditions. Finally, the
member u_exact points to a function that returns the problem’s exact solution. If such
a function is provided, the program will use it to compute and print the error (at the final
time) in the finite difference scheme. If an exact solution is not available, set that pointer
to NULL.

root
2014/7/8
page 268

�

�

�

�

�

�

�

�

268 Chapter 20. Finite difference schemes for the heat equation in one dimension

heat1 heat2

explicit

implicit

Crank–
Nicolson

Seidman
sweep

Figure 20.9: Graphs of the solutions to the problems heat1 and
heat2 produced by the four schemes invoked as
heat-explicit 0.5 10 32, heat-implicit 0.5 10 20,
heat-crank-nicolson 0.5 20 20,
heat-seidman-sweep 0.5 20 20.

root
2014/7/8
page 269

�

�

�

�

�

�

�

�

20.8. The files problem-spec.[ch] 269

heat3 heat4

explicit

implicit

Crank–
Nicolson

Seidman
sweep

Figure 20.10: Graphs of the solutions to the problems heat3 and
heat4 produced by the four schemes invoked as
heat-explicit 0.5 10 32, heat-implicit 0.5 10 20,
heat-crank-nicolson 0.5 20 20,
heat-seidman-sweep 0.5 20 20.

root
2014/7/8
page 270

�

�

�

�

�

�

�

�

270 Chapter 20. Finite difference schemes for the heat equation in one dimension

x
t

u(x, t)

Figure 20.11: Running heat-explicit with the command-line arguments 0.352 20 20
yields an unstable scheme since r = (Δt)/(Δx)2 ≈ 1.9404> 0.5. Here we
see the solution of the problem heat1 begin to fall apart as we approach
t = 0.352. Beyond this the oscillations grow very large so quickly that
drawing a graph is impractical.

Listing 20.1: The contents of the file problem-spec.h.

1 #ifndef H_PROBLEM_SPEC_H
2 #define H_PROBLEM_SPEC_H
3 struct problem_spec {
4 double a; // left end at x = a
5 double b; // right end at x= b
6 double (*ic)(double x); // initial condition
7 double (*bcL)(double t); // left boundary condition
8 double (*bcR)(double t); // right boundary condition
9 double (*u_exact)(double x, double t); // exact solution, if any

10 };
11 #endif /∗ H_PROBLEM_SPEC_H */

20.8.2 The file problem-spec.c

My problem-spec.c contains the definitions of the four initial/boundary value problems
heat1, heat2, heat3, and heat4 introduced in Section 20.6. You are invited to modify these
or add problems of your own.

Listing 20.2 shows the part of the file problem-spec.c where the problem named heat1
is defined. Following the “reverse-engineering” idea expounded in (20.19), I use the exact
solution given in (20.20) to set the problem’s initial and boundary conditions. Lines 6
through 22 are self-explanatory, so there is no need to elaborate other than note that the
cosine function, cos(), and the exponential function, exp(), are defined in C’s standard
mathematics library; therefore you may need to link it to your program by specifying the
-lm flag at the linking stage. The header file math.h (line 2) provides the prototypes of
those functions.

Lines 23 through 35 define a function named heat1() that sets up and populates
a struct problem_spec with the problem’s data and returns the structure’s address.
The static specifier on line 25 is absolutely essential. A static object is available

root
2014/7/8
page 271

�

�

�

�

�

�

�

�

20.8. The files problem-spec.[ch] 271

Listing 20.2: This is the top of my file problem-spec.c. It shows the requisite #includes, plus all
the components that define the problem heat1. I use the exact solution given in (20.20)
to set the problem’s initial and boundary conditions.

1 #include <stdio.h>
2 #include <math.h>
3 #include "problem-spec.h"
4

5 // heat1(): quite a basic one-dimensional heat equation with exact solution
6 static double heat1_exact(double x, double t)
7 {
8 double Pi = 4*atan(1);
9 return exp(-Pi*Pi/4*t) * cos(Pi/2*x);

10 }
11 static double heat1_ic(double x)
12 {
13 return heat1_exact(x,0);
14 }
15 static double heat1_bcL(double t)
16 {
17 return heat1_exact(-1,t);
18 }
19 static double heat1_bcR(double t)
20 {
21 return heat1_exact(1,t);
22 }
23 struct problem_spec *heat1(void)
24 {
25 static struct problem_spec spec = { // C99-style initialization!
26 .a = -1.0,
27 .b = 1.0,
28 .ic = heat1_ic,
29 .bcL = heat1_bcL,
30 .bcR = heat1_bcR,
31 .u_exact = heat1_exact,
32 };
33 printf("problem heat1:\n");
34 return &spec;
35 }

throughout the duration of the program’s execution. Without the static specifier, the
structure will come into existence when the function is entered and will evaporate when
the function is exited. In that case returning the structure’s address would make no sense
at all since it would be the address of an evaporated entity.82

I am initializing the structure à la C99. The program won’t compile if your compiler
does not recognize the C99 syntax. See the comments under the Initializing structures
heading on page 6 if you wish to change the initialization to the equivalent C89 syntax.

82Listing 20.2 exhibits two completely unrelated meanings of C’s static keyword which should not be
confused. The one on line 25 pertains to the corresponding object’s lifetime, as explained above. All other
occurrences of static in that listing pertain to linkage. The one on line 6, for instance, indicates that the
function heat1_exact() is inaccessible/invisible outside this file. Consult your C reference/manual for a
more detailed explanation.

root
2014/7/8
page 272

�

�

�

�

�

�

�

�

272 Chapter 20. Finite difference schemes for the heat equation in one dimension

Listing 20.3: An outline of the file heat-implicit.c.

1 � #include ...
2 � static void trisolve(int n, double *a, double *d, double *c, double *b,
3 double *x) ...
4 � static double get_error(struct problem_spec *spec,
5 double *u, int n, double T) ...
6 � static void plot_curve(FILE *fp, double *u, int n, int steps, int k) ...
7 � static void heat_implicit(struct problem_spec *spec,
8 double T, int n, int steps, char *gv_filename) ...
9 � static void show_usage(char *progname) ...

10 � int main(int argc, char **argv) ...

The problem heat2 is defined in the same way. We use the exact solution (20.22) to set
the problem’s initial and boundary conditions. I will leave it to you to supply the details.
You will need to know that the error function, erf, is defined in C’s standard mathematics
library and is called erf().

Problems heat3 and heat4 do not come with predefined exact solutions; therefore we
define their initial and boundary conditions from scratch. For example,

1 static double heat3_ic(double x)
2 {
3 return fabs(x) < 0.4 ? 1.0 : 0.0;
4 }

Again, I will leave it to you to supply the remaining details.

20.9 The file heat-implicit.c
In this section I will go through the complete contents of the file heat-implicit.c, which
provides an implementation of the implicit finite difference scheme for solving the heat
equation. I will leave the writing of the files heat-explicit.c, heat-crank-nicolson.c, and heat-
seidman-sweep.c as projects for you.

Listing 20.3 provides an outline of heat-implicit.c. The function main() parses the
command-line arguments and then makes a sequence of calls, one per problem to be
solved, to heat_implicit(), which, in turn, sets up a for-loop to march forward
through the time steps and at each step calls trisolve() to solve the tridiagonal sys-
tem (20.12) and plot_curve() to construct a section of the three-dimensional surface
plots that we see in Figures 20.9 and 20.10. Upon exiting the loop, if an exact solution is
provided, the function get_error() is called to print the discrepancy between the ex-
act and computed solutions. The details of these functions are described in the subsections
below, albeit not in the order that they appear in Listing 20.3.

20.9.1 The function main()

As we saw in the transcript of the interactive session with the program on page 266, the
program is expected to be invoked with three arguments, as in

$./heat-implicit T n s

where T specifies the upper end of the time range 0 ≤ t ≤ T , n is the number of the
internal grid points in the x direction, and s is the number of time-steps. To be precise,

root
2014/7/8
page 273

�

�

�

�

�

�

�

�

20.9. The file heat-implicit.c 273

Listing 20.4: The function main() in the file heat-implicit.c. Lines 3–6 supply the prototypes of
the functions heat1() through heat4(), which are defined in problem-spec.c.

1 int main(int argc, char **argv)
2 {
3 struct problem_spec *heat1(void);
4 struct problem_spec *heat2(void);
5 struct problem_spec *heat3(void);
6 struct problem_spec *heat4(void);
7 char *endptr;
8 double T;
9 int n, steps;

10 if (argc �= 4) {
11 show_usage(argv[0]);
12 return EXIT_FAILURE;
13 }
14 T = strtod(argv[1], &endptr);
15 if (*endptr �= ’\0’ || T ≤ 0.0) {
16 show_usage(argv[0]);
17 return EXIT_FAILURE;
18 }
19 n = strtol(argv[2], &endptr, 10);
20 if (*endptr �= ’\0’ || n < 1) {
21 show_usage(argv[0]);
22 return EXIT_FAILURE;
23 }
24 steps = strtol(argv[3], &endptr, 10);
25 if (*endptr �= ’\0’ || steps < 0) {
26 show_usage(argv[0]);
27 return EXIT_FAILURE;
28 }
29 heat_implicit(heat1(), T, n, steps, "im1.gv");
30 heat_implicit(heat2(), T, n, steps, "im2.gv");
31 heat_implicit(heat3(), T, n, steps, "im3.gv");
32 heat_implicit(heat4(), T, n, steps, "im4.gv");
33 return EXIT_SUCCESS;
34 }

the x coordinates of the grid points are a = x0, x1, . . . , xn , xn+1 = b , and the time-slices
take place at 0= t0, t1, . . . , ts = T . Therefore Δt = T /s andΔx = (b − a)/(n+ 1).

One of the tasks of the function main() that appears on line 10 of Listing 20.3 is to
extract the values of T, n, and s from the command-line. Listing 20.4 gives the details of
its implementations.

Lines 3–6 supply the prototypes of the functions heat1() through heat4(), which
are defined in problem-spec.c. I could have put those prototypes in the file problem-spec.h
but chose not to since I don’t like the idea of a problem-spec.h file which changes with
the addition of every new problem in problem-spec.c. I have placed those prototypes in
main() since that’s the only place where they are needed.

Lines 10–28 extract the values of T , n, and s (the last is called steps in the code) from
the command-line. See Chapter 5 regarding the functions strtod() and strtol().
The next four lines call the function heat_implicit() four times to solve the four
problems heat1, heat2, heat3, and heat4. The arguments heat1(), heat2(), heat3(),

root
2014/7/8
page 274

�

�

�

�

�

�

�

�

274 Chapter 20. Finite difference schemes for the heat equation in one dimension

and heat4() retrieve the “struct problem_spec” for each of the four problems
defined in problem-spec.c. The arguments "im1.gv", etc., are file names to which the
program is to write the computed solutions in the form of Geomview scripts for plotting.
The file names are arbitrary, but it’s a good idea to name them so that they are easy for you
to identify. When solving the problems with the Crank–Nicolson method, for instance,
I would name them "cn1.gv", etc.

20.9.2 The function show_usage()

The function show_usage() that appears on line 9 of Listing 20.3 is responsible for
printing the “Usage” message shown in the transcript of the interactive session on page 266.
It is called in several places in Listing 20.4. Implement the function, and add it to your
heat-implicit.c.

20.9.3 The function trisolve()

The function trisolve() that appears on line 2 of Listing 20.3 is a generic solver of
n× n tridiagonal linear systems of equations of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎝

d0 c0
a0 d1 c1

a1 d2 c2
...

an−3 dn−2 cn−2
an−2 dn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x0
x1
x2
...
xn−2
xn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b0
b1
b2
...
bn−2
bn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

There is no point in storing the full n × n coefficient matrix. We store only the diag-
onal 〈d0, . . . , dn−1〉, the subdiagonal 〈a0, . . . ,an−2〉, and the superdiagonal 〈c0, . . . , cn−2〉 as
ordinary vectors.

We assume that the coefficient matrix is nonsingular. Our code does not check for
that. It can be shown that matrices that arise through finite difference schemes applied to
parabolic problems are nonsingular.

We solve the system through a simple Gaussian elimination without pivoting. To
eliminate a0, we introduce the multiplier m = a0/d0 and then subtract m times the first
equation from the second equation. This (i) reduces the entry in the a0 position to zero;
(ii) changes the entry in the d1 position to d1−mc0; and (iii) changes the entry in the b1
position to b1−mb0. The entry in the c1 position does not change.

We repeat the procedure to eliminate the rest of the subdiagonal, in sequence, from
top to bottom. When operating on row i (i = 1,2, . . . , n − 1) we set m = ai−1/di−1 and
then subtract m times row i−1 from row i . This (i) eliminates the ai−1 entry; (ii) changes
the di entry to di −mci−1; and (iii) changes the bi entry to bi −mbi−1.

Listing 20.5 shows my implementation of trisolve(). In lines 4–8 you will find
the literal encoding of the statements made above.

Remark 20.2. We don’t bother to zero the ai entries in our code since we have no use
for the ai ’s beyond this point. Consequently, the elimination’s overall effect is to change
the di and bi vectors, but the ai and ci vectors remain unchanged! We take advantage of
this when calling trisolve(), as we will see shortly.

root
2014/7/8
page 275

�

�

�

�

�

�

�

�

20.9. The file heat-implicit.c 275

Listing 20.5: The function trisolve() in the file heat-implicit.c.

1 static void trisolve(int n, double *a, double *d, double *c, double *b,
2 double *x)
3 {
4 for (int i = 1; i < n; i++) {
5 double m = a[i-1]/d[i-1];
6 d[i] -= m*c[i-1];
7 b[i] -= m*b[i-1];
8 }
9 x[n-1] = b[n-1]/d[n-1];

10 for (int i = n-2; i ≥ 0; i--)
11 x[i] = (b[i] - c[i]*x[i+1]) / d[i];
12 }

After eliminating the subdiagonal, the system takes the form⎛⎜⎜⎜⎜⎜⎜⎜⎝

d0 c0
d1 c1

d2 c2
... . . .

dn−2 cn−2
dn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x0
x1
x2
...
xn−2
xn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b0
b1
b2
...
bn−2
bn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

The di ’s and bi ’s are different from what they were before, but the ci ’s are the same. The
system’s last equation, that is, dn−1 xn−1 = bn−1, yields xn−1 = bn−1/dn−1. We compute
the rest of the xi ’s through back substitution. To wit, the equation before the last, that
is, dn−2 xn−2 + cn−2xn−1 = bn−2, yields the value of xn−2 since xn−1 is already known.
In general, the equation in row i (i = n − 2, . . . , 0), that is, di xi + ci xi+1 = bi , yields
xi = (bi− ci xi+1)/di in terms of the previously calculated xi+1. Lines 9–11 in Listing 20.5
reflect this finding.

20.9.4 The function plot_curve()

The function plot_curve() that appears on line 6 of Listing 20.3 is responsible for
producing the graphs shown in Figures 20.9 and 20.10 on pages 268 and 269. Well, to be
pedantic, plot_curve() does not literally produce those graphs, Geomview does. What
plot_curve() does is to help write a script which when fed to Geomview produces
those graphs.

To understand the details, we need to know what Geomview expects to see in its input
script. The requirement is quite simple—to plot the graph of a function z = f (x, y) over
an m× n mesh, we supply the graph’s (x, y, z) coordinates at the mesh points, where the
mesh is scanned from left to right in each row and then by rows from top to bottom. We
wrap the resulting sequence of N = mn coordinate triplets (x, y, z) in a minimal code to
make it palatable to Geomview and save it to a file, like this:

the skeleton of a Geomview input file
{ appearance { +edge }
MESH m n
x[1] y[1] z[1]
x[2] y[2] z[2]

root
2014/7/8
page 276

�

�

�

�

�

�

�

�

276 Chapter 20. Finite difference schemes for the heat equation in one dimension

...
x[N] y[N] z[N]
}

The numbers are separated by whitespace.83 One or more consecutive whitespace count
as one whitespace. Line breaks are not required; you may put the 3N numbers all on a
single line if you like. The “appearance { +edge }” at the top of the script tells
Geomview to draw the mesh lines. If you change +edge to -edge, the surface will be
drawn without the mesh lines. The keyword “MESH” should be typed in capital letters,
as shown.

This is exactly how the graphs in Figures 20.9 and 20.10 were produced. Each graph
depicts the solution uk

j on an (n+2)× (s+1) grid, where n+2 and s+1 are the numbers
of grid points in the x and t directions, respectively. As we will see in the next subsection,
the values of uk

j are computed iteratively, one time-slice at a time, as vectors

u= 〈uk
0 , uk

1 , . . . , uk
n , uk

n+1〉 (20.24)

of length n + 2. The function plot_curve() receives the vector u. It calculates the
coordinates xj of the entry uk

j and appends the n+2 triplets (xj , tk , uk
j) to the Geomview

script. Sinceplot_curve() handles only one time-slice of the overall graph, it is named
“plot curve” rather than “plot surface”.

Calculating the coordinates xj is straightforward. The finite difference scheme has n
internal grid points in the x direction; therefore the interval a ≤ x ≤ b is divided into
n + 1 subintervals of length (b − a)/(n+ 1) each. It follows that the j th grid point is at
xj = a+

�
(b − a)/(n+ 1)

�
j , j = 0,1, . . . , n+ 1. Similarly, since we are taking s steps over

the time interval 0≤ t ≤ T , then tk = T k/s , k = 0,1, . . . , s .
A direct implementation of the calculation above, however, can produce disappoint-

ing results. Here is why.
Suppose we solve an initial/boundary value problem over the domain D = {(x, t) :

−1≤ x ≤ 1, 0≤ t ≤ 0.1}, which is a 2×0.1 rectangle. Plotting the solution to the correct
scale over this long and narrow rectangle will produce a pretty useless graph. Since it’s so
narrow, one won’t be able to see any details.

It is preferable to forgo the correct scaling in favor of stretching D into a square for
plotting purposes. That’s quite a natural thing to do, and that is what I have done in all
the graphs shown in this chapter. Had you noticed that before I mentioned it?

So here is the idea: Instead of using the true xj coordinates calculated above, just use
xj = j/(n+1), j = 0,1, . . . , n+1. As j ranges from 0 to n+1, the values of xj range from
0 to 1. Similarly, instead of using the true tk values calculated above, just take tk = k/s .
As k ranges from 0 to s , the values of tk range from 0 to 1. The net result is that the
domain D is replaced by the square [0,1]× [0,1] for plotting purposes.

Remark 20.3. The natural next step is to scale and translate the u values to the range
[0,1] so that the displayed graph lies entirely within the cube [0,1]× [0,1]× [0,1]. I will
defer this to a (not so difficult) project in this chapter’s Projects section. I have posed the
problems heat1 through heat4 so that their u values lie more or less in the [0,1] range to
obviate a need for scaling. To view the solutions to arbitrary problems you will definitely
need to scale.

83It’s safe if you think of “whitespace” as the characters produced by the keyboard’s space-bar or tab or enter
keys. For the precise meaning of “whitespace” see subsection 9.3.2.

root
2014/7/8
page 277

�

�

�

�

�

�

�

�

20.9. The file heat-implicit.c 277

Listing 20.6: The implementation of the function plot_curve() in the file heat-implicit.c.

1 static void plot_curve(FILE *fp, double *u, int n, int steps, int k)
2 {
3 for (int j = 0; j < n+2; j++)
4 fprintf(fp, "%g %g %g\n",
5 (double)k/steps, (double)j/(n+1), u[j]);
6 }

Listing 20.7: The implementation of the function get_error() in the file heat-implicit.c.

1 static double get_error(struct problem_spec *spec, double *u,
2 int n, double T)
3 {
4 double err = 0.0;
5 for (int j = 0; j < n+2; j++) {
6 double x = spec→a + (spec→b - spec→a)/(n+1)*j;
7 double diff = fabs(u[j] - spec→u_exact(x, T));
8 if (diff > err)
9 err = diff;

10 }
11 return err;
12 }

This has been a long narrative, but if you have followed the argument, you should
have no difficulty in understanding how it results in the pleasingly brief implementation
of plot_curve() shown in Listing 20.6.

20.9.5 The function get_error()

The function get_error() that appears on line 4 of Listing 20.3 is called only when
an exact solution, uex(x, t), is supplied with the problem. It receives the vector u (see
(20.24)) corresponding to the final time T and calculates and returns the error calculated
according to (20.23). Examine the implementation in Listing 20.7, and be sure that you
understand its details.

20.9.6 The function heat_implicit()

The function heat_implicit() that appears on line 7 of Listing 20.3 (page 272) con-
tains the core of the implicit finite difference scheme. It advances an iterative loop from a
time-slice tk to the time-slice tk+1, k = 0,1,2, . . ., by solving the system of equations (20.12)
on page 257.

Conceptually, the values uk
j form an (n + 2)× (s + 1) matrix, where n + 2 and s + 1

are the numbers of the grid points in the x and t directions. In our implementation we
do not store that matrix uk

j at all. Instead, we work with two vectors of length n+2 each,
called the current row and the next row, that hold the rows k and k + 1 of that matrix:

current row: u= 〈uk
0 , uk

1 , . . . , uk
n , uk

n+1〉,
next row: v = 〈uk+1

0 , uk+1
1 , . . . , uk+1

n , uk+1
n+1 〉.

root
2014/7/8
page 278

�

�

�

�

�

�

�

�

278 Chapter 20. Finite difference schemes for the heat equation in one dimension

Listing 20.8: The top half of the function heat_implicit() in the file heat-implicit.c.

1 static void heat_implicit(struct problem_spec *spec,
2 double T, int n, int steps, char *gv_filename)
3 {
4 FILE *fp;
5 double *u, *v, *d, *c;
6 double dx = (spec→b - spec→a)/(n+1);
7 double dt = T/steps;
8 double r = dt/(dx*dx);
9 if ((fp = fopen(gv_filename, "w")) == NULL) {

10 fprintf(stderr, "unable to open file ‘%s’ for writing\n",
11 gv_filename);
12 return;
13 }
14 fprintf(fp, "# geomview script written by the function %s()\n",
15 __func__); // begin geomview script
16 fprintf(fp, "{ appearance { +edge }\n");
17 fprintf(fp, "MESH %d %d\n", n+2, steps+1);
18 printf("%g < x < %g, 0 < t < %g, dx = %g, dt = %g, "
19 "r = dt/dx^2 = %g\n",
20 spec→a, spec→b, T, dx, dt, r);
21 make_vector(u, n+2);
22 make_vector(v, n+2);
23 make_vector(d, n);
24 make_vector(c, n-1);
25 for (int j = 0; j < n+2; j++) {
26 double x = spec→a + (spec→b - spec→a)/(n+1)*j;
27 u[j] = spec→ic(x);
28 }
29 plot_curve(fp, u, n, steps, 0);
30 // continued in the next listing

Thus, given the current row, u, that contains the solution at time tk , we apply (20.12)
to calculate the next row, v, which will then contain the solution at time tk+1. Then we
swap the two vectors, whereupon the vector u will contain the solution at time tk+1 and
the vector v will be available to receive the solution at time tk+2. Thus, we march forward
in time until we reach the desired final time destination. Since the vector u is overwritten
at each time-step, we record the result by calling plot_curve() (which appends it to
our Geomview script) before going on to the next step.

The implementation of the function heat_implicit() is shown in Listings 20.8
and 20.9. Let us examine the details.

Line 1. The parameter spec points to a struct problem_spec structure that
contains the specification of the problem to be solved. The parameters T, n, steps
are explained at the beginning of subsection 20.9.1 (page 272). The parameter
gv_filename points to a string indicating a file name to which to write the com-
putation’s results in the form of a Geomview script.

Lines 9–17. We open a file to which to write our Geomview script. We print three lines
to it according to the specification laid out in subsection 20.9.4. The first line, with
the leading #, inserts a comment into the script for documentation purposes. The

root
2014/7/8
page 279

�

�

�

�

�

�

�

�

20.9. The file heat-implicit.c 279

Listing 20.9: The bottom half of the function heat_implicit() in the file heat-implicit.c.

31 // continued from the previous listing
32 for (int j = 0; j < n-1; j++)
33 c[j] = -r;
34 for (int k = 1; k ≤ steps; k++) {
35 double *tmp;
36 double t = T*k/steps;
37 v[0] = spec→bcL(t);
38 v[n+1] = spec→bcR(t);
39 u[1] += r*v[0];
40 u[n] += r*v[n+1];
41 for (int i = 0; i < n; i++)
42 d[i] = 1 + 2*r;
43 trisolve(n, c, d, c, u+1, v+1);
44 tmp = v;
45 v = u;
46 u = tmp;
47 plot_curve(fp, u, n, steps, k);
48 }
49 fprintf(fp, "}\n"); // end geomview script
50 fclose(fp);
51 printf("geomview script written to file %s\n", gv_filename);
52 if (spec→u_exact �= NULL) {
53 double err = get_error(spec, u, n, T);
54 printf("max error at time %g is %g\n", T, err);
55 }
56 free_vector(u);
57 free_vector(v);
58 free_vector(d);
59 free_vector(c);
60 putchar(’\n’);
61 }

comment contains the name of the current function, that is, heat_implicit(),
which is captured by the __func__ identifier. The __func__ identifier84 was
introduced in C99. If you are limited to C89, then remove __func__ and hard-
code the function name instead. You may remove or change that comment, or add
more such comment lines as you see fit; e.g., you may want to add your name and
email address. To add the current date, see the documentation of strftime() in
the standard library.

Line 18. We print a message to the stdout with the problem’s basic data for the user’s
information. The transcript of the interactive session on page 266 shows how it
manifests.

Lines 21–24. We allocate memory for the solver’s working vectors. The vectors u and v
are the current row and the next row vectors introduced earlier in this subsection.
The vector d will hold the diagonal of the n × n tridiagonal matrix in (20.12)

84Since it may be difficult to discern in a typeset document, let me point out that there are two leading and
two trailing underscores in __func__.

root
2014/7/8
page 280

�

�

�

�

�

�

�

�

280 Chapter 20. Finite difference schemes for the heat equation in one dimension

(page 257). The vector cwill hold both the subdiagonal and the superdiagonal since
the two are the same in this case.

Lines 25–29. We initialize the vector u with the problem’s initial condition provided
by the function spec→ic() and then call plot_curve() to insert that initial
time-slice into our geomview script.

Continuing on to Listing 20.9:

Line 32. We initialize the super/subdiagonal vector c in accordance with system (20.12).
As noted in Remark 20.2 (page 274), the vector c does not change during the solving
process.

Lines 34–48. This is where the real action takes place. Given the current row u, it ap-
plies (20.12) to compute the next row v and repeats. Let me point out a few sub-
tleties.

Lines 37–38. The first and last entries of the vector v, that is, v[0] and v[n+1],
fall on the domain’s boundary; therefore their values are read from the sup-
plied boundary conditions.

Lines 39–40. We adjust the vector u by adding the rightmost column of (20.12)
to it.

Line 41. We initialize the diagonal vector d to 1+ 2r , in accordance with (20.12).
Unlike the vectorc, which is not changed bytrisolve(), the vectord does;
therefore it needs to be refreshed upon each iterative pass.

Line 43. Having thus prepared the vectors u, v, c, and d, we pass them to
trisolve() to solve the system (20.12). Although the state vectors u and v
are of length n+2 each, the system (20.12) is only n×n since it updates internal
nodes only! That’s the reason for passing u+1 and v+1 totrisolve(); these
skip the first elements of the two vectors. Their last elements are skipped as
well since trisolve() accesses only the first n entries of the vectors it re-
ceives.

Lines 44–47. We swap the vectors u and v so that u now contains the problem’s
most up-to-date state and then call plot_curve() to plot that time-slice.

The rest of the code is self-explanatory, so I won’t elaborate.

20.10 Project Finite Differences in One Dimension

Part 20.1. Implement, compile, and test heat-implicit.c.

Part 20.2. Copy heat-implicit.c to heat-explicit.c, and modify it to implement the explicit
finite difference scheme of Section 20.2. If r = Δt/(Δx)2 is greater than 0.5, print a
message warning the user of the scheme’s instability, but continue with the computation
nevertheless.

Part 20.3. Copy heat-implicit.c to heat-crank-nicolson.c, and modify it to implement the
Crank–Nicolson finite difference scheme of Section 20.4.

root
2014/7/8
page 281

�

�

�

�

�

�

�

�

20.10. Project Finite Differences in One Dimension 281

Part 20.4. Copy heat-implicit.c to heat-seidman-sweep.c, and modify it to implement the
Seidman sweep finite difference scheme of Section 20.5.

You will find that unlike the previous iteration schemes that required a current row
and a next row (the vectors u and v), you will be working with just one vector. The most
obvious implementation of the Seidman scheme changes that vector in place as you sweep
it from left to right and then from right to left.

Part 20.5. [optional] The function trisolve() computes the components of the vec-
tor d[]; see Listing 20.5, line 6. That vector, however, does not change during the pro-
gram’s execution. Therefore recomputing it upon every invocation of trisolve() is
wasteful. See if you can change your program to compute d[] just once.

Part 20.6. [optional] Implement the suggestion of Remark 20.3.

root
2014/7/8
page 283

�

�

�

�

�

�

�

�

Chapter 21

The porous medium
equation

Prerequisites: Chapters 7, 8, 20

21.1 Introduction
The porous medium equation

∂ u

∂ t
=
∂ 2u m

∂ x2 (m > 1) (21.1)

is a model of diffusion of a substance, typically gas, through a porous medium. The un-
known u(x, t) is the gas density at the point x at time t . The exponent m—which is not
necessarily an integer—is a physical property of the diffusing material. Equation (21.1)
arises in other contexts as well. Have a look at this chapter’s appendix to see how it comes
about as a model in population dynamics. You will find a quite readable treatise on the
subject, along with an extensive bibliography, in Vázquez [77]. One thing you should
know is that if the initial condition u(x, 0) is nonnegative, then the solution u(x, t) is
nonnegative for all t > 0, and therefore the exponentiation makes sense in that case. See
Section 21.3 for a generalization to solutions of varying sign.

The goal in this chapter is to develop a finite difference scheme to solve initial/
boundary value problems corresponding to (21.1). As we will see, the Seidman sweep
scheme introduced in Section 20.5 leads to quite a simple implementation.

21.2 Barenblatt’s solution
When m = 1, (21.1) reduces to the heat equation; cf. (20.1) on page 251. The condition
m > 1, however, makes the porous medium equation a totally different beast compared to
the heat equation. You may intuit a sign of trouble if you express (21.1) in the equivalent
form ∂ u

∂ t =
∂
∂ x

�
mu m−1 ∂ u

∂ x

, which makes it clear that it is a nonlinear diffusion equation,

as in ∂ u
∂ t =

∂
∂ x

�
κ∂ u
∂ x

, whose diffusion coefficient, κ = mu m−1, varies with the density.

Since m > 1, κ tends to zero as density tends to zero. Thus, the diffusion process degen-
erates near zero densities. The porous medium equation is the archetype of the class of
degenerate parabolic equations.

The bulk of the theory of parabolic equations concerns the nondegenerate case. Just
about everything breaks down when degeneracy occurs. One of the striking facts about

283

root
2014/7/8
page 284

�

�

�

�

�

�

�

�

284 Chapter 21. The porous medium equation

the porous medium equation—a consequence of the degeneracy—is that its solutions ex-
hibit a finite speed of propagation into vacuum (i.e., a zero density region). This is very
much in contrast to the heat equation whose solutions spread out at infinite speed. The
finite speed of propagation is evident in the class of self-similar solutions to (21.1) con-
structed by Barenblatt:

u(x, t) =
1

(t +δ)β

�2
c − γ

* x

(t +δ)β

+2
3
+

�α
, −∞< x <∞, t ≥ 0, (21.2)

where

α=
1

m− 1
, β=

1

m+ 1
, γ =

m− 1

2m(m+ 1)
,

and where c ≥ 0 and δ ≥ 0 are arbitrary constants. The notation [·]+ means max(·, 0).
We see that at any time t > 0 the support85 of the solution is

|x|<
√√√ c

γ
(t +δ)β,

which propagates at a finite (but nonconstant) speed, as asserted.
In the special case of m = 3, Barenblatt’s solution takes on a particularly simple form,

u(x, t) =
1

(t +δ)1/4

√√√√c − x2

12(t +δ)1/2
, (21.3)

or equivalently,
x2

12c(t +δ)1/2
+

u2

c(t +δ)−1/2
= 1.

Therefore, the graph of u versus x (for any fixed t) is precisely the upper half of an ellipse

with semimajor and semiminor axes lengths of
�

c(t +δ)−1/2 and
�

12c(t +δ)1/2. The
ellipse flattens and spreads out as t increases. The area under the ellipse, which is pro-
portional to the mass of the diffusing substance, remains constant at

�
3πc . Figure 21.1

shows snapshots of the graphs of u(x, t) for several choices of t .
Barenblatt’s solution is quite handy as a test case for our finite difference solver. We

set up a problem with initial and boundary data derived from Barenblatt’s solution, and
then we expect that the solution produced by our solver will agree with Barenblatt’s.

21.3 Generalizations
Since the exponent m in (21.1) is not necessarily an integer, the expression u m is not well
defined if u is negative. The extension

∂ u

∂ t
=
∂ 2(|u|m−1 u)

∂ x2 (21.4)

of (21.1) admits negative u, is well-posed as a partial differential equation, and reduces
to (21.1) when u is nonnegative. For this reason, most of the literature on the porous

85The support of a function is the closure of the set where it is nonzero.

root
2014/7/8
page 285

�

�

�

�

�

�

�

�

21.4. The finite difference scheme 285

x

u(x, t)

−1 − 2
5

0 2
5

1

1
t0 = 0

t1 = 7/100

t2 = 203/400
t3 = 4

Figure 21.1: These flattening and spreading ellipses are snapshots of Barenblatt’s solu-
tion, (21.3), of the porous medium equation with m = 3 at various times.
The parameters δ = 1/75 and c =

�
3/15 are chosen so that the solution

at time t0 = 0 has amplitude 1 and support [−2/5,2/5]. I will leave it to
you to verify that (a) at time t1 = 7/100 the solution curve takes the form
of a semicircle of radius

4
2/5, and (b) the solution front arrives at x =±1

at time t2 = 203/400. The solution curve at t3 = 4 is also shown to give a
better feel for how the solution spreads out in time.

medium equation addresses (21.4) rather than the special case (21.1). Yet a further gener-
alization of (21.4) is the equation

∂ u

∂ t
=
∂ 2φ(u)

∂ x2 , (21.5)

where φ : R → R is some smooth monotonically increasing function with φ(0) = 0
and φ′(0) = 0. Much of the theory pertaining to the porous medium equation may be
developed in the context of (21.5) with very minimal assumptions onφ. See, for instance,
the articles [2, 9] and the book [77]. Clearly, (21.4) is the special case of (21.5) withφ(u) =
|u|m−1u. I will state and explain this chapter’s algorithm in the context of (21.5) for the
sake of generality but will drop to the simple case of (21.1) for illustrations.

21.4 The finite difference scheme
The porous medium equation’s counterpart of the initial/boundary value problem (20.2)
is the following:

Find u = u(x, t) so that

∂ u
∂ t
=
∂ 2φ(u)

∂ x2 , x ∈ (a, b), t > 0, (21.6a)

u(x, 0) = u0(x), x ∈ (a, b), (21.6b)
u(a, t) = uL(t), u(b , t) = uR(t), t > 0. (21.6c)

As in the case of Chapter 20’s heat equation, the initial condition u0(x) and the left and
right boundary conditions uL(t) and uR(t) serve to define a unique solution u(x, t) in
the semi-infinite strip a ≤ x ≤ b and t > 0 in the x-t plane. Also as before, in a finite

root
2014/7/8
page 286

�

�

�

�

�

�

�

�

286 Chapter 21. The porous medium equation

difference approximation we replace the interval a ≤ x ≤ b with a collection of n + 2
equally spaced points x0 < x1 < · · · < xn+1, where x0 = a and xn+1 = b , and we let
Δx = (b − a)/(n+ 1). Similarly, we discretize the time into “time-slices” t0 < t1 < t2 . . .,
where t0 = 0, and the spacing between the slices is a prescribedΔt . Figure 20.2 on page 253
shows the resulting finite difference grid.

In the rest of this section I will use the notation and ideas introduced in Section 20.5
without further elaboration. The forward and reverse difference formulas (20.16) (on
page 261) now take the form

vj − uj =−r
�
φ(vj)−φ(vj−1)

− r
�
φ(uj)−φ(uj+1)

, j = 1,2, . . . , n, (21.7a)

wj − vj =−r
�
φ(vj)−φ(vj−1)

− r
�
φ(wj)−φ(wj+1)

, j = n, . . . , 2,1, (21.7b)

where

r =
Δt

2(Δx)2
,

as in (20.15). (I have changed the notation from r ′ to r here since there is no chance of
confusion within this chapter.) We rearrange the equations (21.7) into

vj + rφ(vj) = rφ(vj−1)+ uj − rφ(uj)+ rφ(uj+1), j = 1,2, . . . , n, (21.8a)

wj + rφ(wj) = rφ(vj−1)+ vj − rφ(vj)+ rφ(wj+1), j = n, . . . , 2,1. (21.8b)

During the forward sweep, all the terms on the right-hand side of (21.8a) are known.
We solve the nonlinear equation vj + rφ(vj)= “known” to find vj . Similarly, during the
reverse sweep, all the terms on the right-hand side of (21.8b) are known. We solve the non-
linear equation wj + rφ(wj) = “known” to find wj . Thus, in comparison with the heat
equation of Chapter 20, the only extra effort is in solving a nonlinear equation of the
form ξ + rφ(ξ) = c at each step. This may be accomplished through a Newton’s itera-
tion without much trouble by starting with an initial guess ξ0. Sinceφ is expected to be a
monotonically increasing function, any reasonable choice for ξ0 will do. I suggest taking
ξ0 = c and leave its implementation as an instructive project. In the rest of this chapter,
however, I will focus on the special case of φ(u) = u3, which avoids Newton’s iteration
altogether. Here is why.

To solve the cubic equation ξ + rξ 3 = c for ξ , we multiply it through by r 1/2 to get
r 1/2ξ + r 3/2ξ 3 = r 1/2c . Letting η= r 1/2ξ and k = r 1/2c , we arrive at the cubic equation
η+η3 = k. You may verify that the unique real root of η+η3 = k has the explicit form

η=
γ

6
− 2

γ
, where γ =

�
108k + 12

4
12+ 81k2�1/3. (21.9)

Thus, we evaluate η and then set ξ = r−1/2η= η/
�

r .

21.5 The program
The rest of this chapter is devoted to details of the implementations of the Seidman sweep
for solving the initial/boundary value problem (21.6) in the special case whenφ(u) = u3.
The case of a general φ is left as a project.

Our program relies on xmalloc.[ch] from Chapter 7 to allocate memory and the file
array.h from Chapter 8 to construct vectors and matrices. Additionally, we will adapt
the previous chapter’s problem specification file, problem-spec.c, to the case in hand. The
file problem-spec.h remains unchanged, so a symbolic link will do. Thus, following the
suggestions in Chapters 2 and 6, the contents of the project’s directory will look like this:

root
2014/7/8
page 287

�

�

�

�

�

�

�

�

21.5. The program 287

$ cd pme
$ ls -F
Makefile pme-seidman-sweep.c problem-spec.h@ xmalloc.h@
array.h problem-spec.c xmalloc.c@

Here is a transcript of a sample interactive session:

$./pme-seidman-sweep
Usage: ./pme-seidman-sweep T n s

T : solve over 0 ≤ t ≤ T
n : the number of grid points a=x[0], x[1], ... , x[n], x[n+1]=b
s : the number of time slices 0=t[0], t[1], ... , t[s]=T

$./pme-seidman-sweep 1 20 20
problem pme1:
-1 < x < 1; 0 < t < 1, dx = 0.0952381,

dt = 0.05, r = dt/(2*dx^2) = 2.75625
geomview script written to file pme1.gv
max error at time 1 is 0.013731

problem pme2:
-1 < x < 1; 0 < t < 1, dx = 0.0952381,

dt = 0.05, r = dt/(2*dx^2) = 2.75625
geomview script written to file pme2.gv

The program solves two initial/boundary value problems for the porous medium
equation, both with φ(u) = u3. These are the following:

Problem pme1: This produces a finite difference approximation to Barenblatt’s solu-
tion (21.2) of the porous medium equation with m = 3, c =

�
3/15, and δ = 1/75

on the bounded interval −1 ≤ x ≤ 1. The values of c and δ are chosen so that
the initial condition (whose graph is the upper half of an ellipse) has amplitude 1
and is supported on the interval [−2/5,−2/5]. Figure 21.1 shows snapshots of the
solution at a few selected times. Figure 21.2(left) shows the graph of the solution
u(x, t) as a surface in three dimensions.

Implementing the problem involves writing a function to evaluate Barenblatt’s solu-
tion u(x, t) in (21.2) and then extracting its initial and boundary data by evaluating
u(x, 0) and u(±1, t), as explained in the “reverse-engineering” idea in (20.19) on
page 264.

Problem pme2: This solves the initial/boundary value problem (21.6) on the interval
−1≤ x ≤ 1 with the boundary data uL(t) = uR(t)≡ 0 and the initial data

u0(x) =

⎧⎪⎨⎪⎩
1/2 if 0< x < 1/2,
−1/2 if − 1/2< x < 0,
0 otherwise.

In particular, this tests the scheme’s ability to handle initial data of variable sign.
Figure 21.2(right) shows the graph of the solution u(x, t) as a surface in three
dimensions.

root
2014/7/8
page 288

�

�

�

�

�

�

�

�

288 Chapter 21. The porous medium equation

Figure 21.2: Graphs of the solutions u(x, t) of problemspme1 (left) and pme2 (right) as
surfaces in three dimensions computed by our finite difference solver and
rendered in Geomview. Compare the graph of pme1 to the corresponding
snapshots in Figure 21.1.

21.6 The files problem-spec.[ch]
The file problem-spec.h is identical to the file of the same name in the previous chapter, so a
symbolic link will do. The file problem-spec.c, which is shown in an outline in Listing 21.1,
contains the specifications of problems pme1 and pme2. The function barenblatt()
on line 3 implements Barenblatt’s solution (21.2), where m, c , and δ are given as param-
eters. The function pme1_exact(), which is given in its entirety beginning on line 7,
produces a special case of Barenblatt’s solution corresponding to m = 3, c =

�
3/15, and

δ = 1/75. The functions pme1_ic(), pme1_bcL(), and pme1_bcR(), which yield
the problem’s initial and boundary data, simply evaluate pme1_exact() at t = 0 and
x = ±1. The function pme1() on line 15 is identical to the function heat1() given
on lines 23–35 of Listing 20.2 on page 271 except for all occurrences of “heat1” being
replaced by “pme1”.

Similarly, functions pme2_ic(), pme2_ic(), pme2_bcL(), and pme2(), yield
the problem specification of problem pme2 as described at the end of the previous sec-
tion. You should have no problem in filling in the details. No exact solution is available
for pme2.

21.7 The file pme-seidman-sweep.c
The file pme-seidman-sweep.c contains the implementation of the Seidman sweep scheme
for solving the boundary value problem (21.6) assuming φ(u) = u3. The changes relative
to the file heat-seidman-sweep.c of Chapter 20, which I assume that you wrote and tested
earlier, are quite minimal. In effect, we need just one extra function, let’s call it croot(),
to solve the cubic equation η+η3 = k according to the formula (21.9). Here it is:

1 static double croot(double k)
2 {
3 double s = sqrt(12 + 81*k*k);
4 double gamma = pow(108*k + 12*s, 1.0/3);
5 return gamma/6 - 2/gamma;
6 }

root
2014/7/8
page 289

�

�

�

�

�

�

�

�

21.9. Appendix: The porous medium equation as a population dynamics model 289

Listing 21.1: An outline of the file problem-spec.c.

1 #include ...
2 // Barenblatt’s solution
3 � static double barenblatt(double x, double t, double m,
4 double c, double delta) ...
5

6 // pme1: Barenblatt’s solution with m = 3, and special choices of c and δ
7 static double pme1_exact(double x, double t)
8 {
9 double c = sqrt(3)/15, delta = 1.0/75;

10 return barenblatt(x, t, 3, c, delta);
11 }
12 � static double pme1_ic(double x) ...
13 � static double pme1_bcL(double t) ...
14 � static double pme1_bcR(double t) ...
15 � struct problem_spec *pme1(void) ...
16

17 // pme2: initial condition with variable sign
18 � static double pme2_ic(double x) ...
19 � static double pme2_bcL(double t) ...
20 � static double pme2_bcR(double t) ...
21 � struct problem_spec *pme2(void) ...

The for-loops that actually perform the forward or reverse sweeps are only slightly
different from their Chapter 20 counterparts. Calculating vj or wj out of equations (20.17)
(page 261) requires only a division by 1+ r ′. Calculating vj or wj out of equations (21.8)
(page 286) calls for solving a cubic equation. We have croot() to do that. Problem
solved.

21.8 Project Porous Medium

Part 21.1. Copy the files problem-spec.c and heat-seidman-sweep.c from Chapter 20 to
the current project’s directory, and modify them as instructed above to produce a finite
difference solver for the porous medium equation (21.6) with φ(u) = u3.

Part 21.2. [Optional] Modify your program to handle a general φ : R→ R assuming
φ(0) = 0 andφ is monotonically increasing. You will replace the function croot()with
a solver (using Newton’s iteration) for the equation ξ + rφ(ξ) = c .

21.9 Appendix: The porous medium equation as a population
dynamics model
It is not out of place to show how (21.6a) arises out of a simple population model. Al-
though the treatment of this chapter has been limited to a one-dimensional space, the
derivation of the model works more transparently in an n-dimensional setting, and that’s
what I will do. At the very end you may set n = 1 if you like.

Consider a certain hypothetical population that lives in the n-dimensional space Rn .
Assume that there exists a population density function u(x, t) so that the population in any

root
2014/7/8
page 290

�

�

�

�

�

�

�

�

290 Chapter 21. The porous medium equation

arbitrary regionω ⊂Rn at time t is given by
∫
ω

u(x, t)dx. Also assume that there exists
a vector function v(x, t) that gives the velocity of the movement of the individuals at the
point x at time t . For simplicity’s sake, let’s assume that the members of the population
don’t reproduce and don’t die. Then the rate of increase of the population in ω equals
exactly the inflow of the population through its boundary, that is,

d

d t

∫
ω

u dx=−
∫
∂ ω

uv ·nda,

where n is the outward unit normal to the boundary ∂ ω of ω.
We move the time derivative to under the integration sign. That’s permissible since

ω is independent of time. On the right-hand side, we may apply the Divergence Theorem
(see, e.g., the section titled “Curl and Divergence” in Stewart [65]) from multivariable
calculus to change the boundary integral to a volume integral. We get∫

ω

∂ u
∂ t

dx=−
∫
ω

div(uv)da.

Sinceω is arbitrary, we conclude that

∂ u
∂ t
+ div(uv) = 0.

What we have obtained is the equation of conservation of mass. That we derived it in the
context of population dynamics is quite irrelevant. The density u and velocity v could
have been those of the exhaust gases of a rocket, the air flowing around an airplane’s wings,
blood coursing through an animal’s veins, or a vibrating metal plate. The equation of the
conservation of mass links a material’s velocity and density functions, assuming that the
material is neither created nor destroyed.

Returning to the population model, assume that the species are averse to living in high
density areas. More precisely, if the population density is not constant in a particular
individual’s neighborhood, the individual runs to a lower density area; that is, it moves
in the opposite direction of the density gradient,∇u, and the speed of the movement is a
function of the density itself, let’s say v =−ψ(u)∇u. Substituting this in the equation of
conservation of mass results in

∂ u
∂ t
= div

�
uψ(u)∇u

�
.

To connect this to the porous medium equation, introduce a function φ through φ(u) =∫ u
0 σψ(σ)dσ , that is, φ′(u) = uψ(u) andφ(0) = 0. Then the expression inside the square

brackets becomes φ′(u)∇u, that is, ∇φ(u), and we conclude that

∂ u

∂ t
= div∇φ(u) =∇2φ(u).

In the one-dimensional case this reduces to (21.6a).

root
2014/7/8
page 291

�

�

�

�

�

�

�

�

Chapter 22

Gaussian quadrature

Prerequisites: None

22.1 Introduction
The Gaussian quadrature algorithm gives the optimal distribution of integration points
and weights for integrating numerically a function of one variable on an interval. Specif-
ically, an n-point quadrature rule on the interval (−1,1) selects n points {xj }n

j=1, and
weights {wj }n

j=1, so that for all reasonably nice functions f (x) defined on (−1,1) one has∫ 1

−1
f (x)d x ≈

n∑
j=1

wj f (xj). (22.1)

The interval (−1,1) is the natural setting for developing the theory of the Gaussian quadra-
ture, but that does not limit the algorithm’s applicability; integrals on arbitrary intervals
(a, b)may be reduced to integrals on (−1,1) through a change of variables:∫ b

a
f (x)d x =

b − a

2

∫ 1

−1
f
�

b + a

2
+

b − a

2
ξ

�
dξ (22.2a)

=
b − a

2

∫ 1

−1
f
�

a
2
(1− ξ)+ b

2
(1+ ξ)

�
dξ . (22.2b)

The two forms shown are obviously equivalent. Pick whichever you like.
To get a feel for what is meant by the “optimal distribution of integration points and

weights” in this section’s opening paragraph, let us consider the following (very) trivial
thought experiment. Suppose we are interested in integrating constant functions only,
that is, functions f (x) such that f (x) ≡ c for some c , independently of x. In that case∫ 1
−1 f (x)d x = 2c = 2 f (x∗). Any x∗ will do since f is constant. Comparing to (22.1), this

corresponds to a 1-point quadrature (n = 1), with w1 = 2 and x1 = x∗.
There is no question that the formula 2 f (x∗) gives exact results when f is constant.

Also, there is no question that the formula 2 f (x∗)won’t work for nonconstant functions.
Or will it? What if f (x) = c0+ c1 x for some constants c0 and c1? Then we have∫ 1

−1
f (x)d x =

∫ 1

−1
(c0+ c1x)d x =

�
c0x +

1

2
c1x2

������
1

−1

= 2c0 = 2 f (0).

291

root
2014/7/8
page 292

�

�

�

�

�

�

�

�

292 Chapter 22. Gaussian quadrature

Surprise! The one-point quadrature rule with w1 = 2 and x1 = 0 gives exact results for all
functions f (x) = c0+ c1x.

In contrasting the two cases considered so far, we see that the one-point quadrature for-
mula is able to integrate identically constant functions exactly. The choice of the quadra-
ture point x1 = x∗ is immaterial. However, the special choice of x1 = 0 enables it to
produce, as a bonus, the exact integrals of the nonconstant functions f (x) = c0 + c1x as
well. This is the meaning of the “optimal distribution of integration points and weights”
noted earlier. This observation generalizes in the following ways:

1. To any arbitrary choice of n distinct points {xj }n
j=1 in the interval (−1,1), there

corresponds weights {wj }n
j=1 so that

∫ 1

−1
p(x)d x =

n∑
j=1

wj p(xj) for all polynomials p of degree n− 1. (22.3)

2. There exists a special choice of n points {xj }n
j=1 in the interval (−1,1), and weights

{wj }n
j=1, so that

∫ 1

−1
p(x)d x =

n∑
j=1

wj p(xj) for all polynomials p of degree 2n− 1. (22.4)

We will justify these statements in sections 22.2 and 22.4. For now, let us note that the
special choice of quadrature points yields a bonus whereby the quadrature’s applicability
extends from polynomials of degree n − 1 to polynomials of degree 2n − 1. The earlier
examples with f (x)≡ c and f (x) = c0+c1x correspond to the case n = 1 of the statements
above. There, the special choice of x∗ = 0 extended the quadrature’s applicability from
polynomials of degree 0 to polynomials of degree 1.

Gaussian quadrature refers to the special choice of points and weights noted above.
It is the goal of this chapter to explain some of the mathematics behind the Gaussian
quadrature and then produce a C module that yields the lists of points and weights of a
Gaussian quadrature of a desired degree on demand.

Remark 22.1. More often than not, we use Gaussian quadrature to integrate functions
other than polynomials. In that case we obtain an approximation to the true value of the
integral: ∫ 1

−1
f (x)d x ≈

n∑
j=1

wj f (xj).

The accuracy of the result depends on how close the function f is to a degree 2n − 1
polynomial. For detailed error estimates see [4, 28].

22.2 Lagrange interpolation
A generic polynomial p(x) = c0 + c1x + c2x2 + · · · + cn−1 xn−1 of degree n − 1 in x is
determined by its n coefficients {ci}n−1

i=0 . It is within reason then to expect that a set of
coefficients may be found so that yi = p(xi), i = 1,2, . . . , n, where

,
(xi , yi)

-n
i=1 are given,

and the xi ’s are distinct.

root
2014/7/8
page 293

�

�

�

�

�

�

�

�

22.2. Lagrange interpolation 293

−3 −2 −1 1 2 3

−1

1

x

�5(x)

Figure 22.1: The graph of the sixth degree polynomial �5(x), with the property that
�5(x) = 0 for x =−3,−2,−1,0,2,3, and �5(1) = 1.

The brute force method of obtaining the coefficients {ci}n−1
i=0 is by solving the system

of n linear equations yi = p(xi) in the n unknowns ci . The clever way of obtaining the
coefficients is through Lagrange interpolation. To do the latter, consider the product

π j (x) =
n∏

i=1
i �= j

(x − xi) = (x − x1) · · · (x − xj−1)(x − xj+1) · · · (x− xn)

for j = 1,2, . . . , n, and note that π j (x) is a polynomial of degree n−1 in x, andπ j (xi) = 0
for all i except for i = j , when it equals

π j (xj) =
n∏

i=1
i �= j

(xj − xi) = (xj − x1) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn).

It follows that the function

� j (x) =

n∏
i=1
i �= j

(x − xi)

n∏
i=1
i �= j

(xj − xi)
=
(x − x1) · · · (x − xj−1)(x− xj+1) · · · (x− xn)

(xj − x1) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xn)

is polynomial of degree n− 1 in x, and

� j (xi) =
�

0 if i �= j ,
1 if i = j .

(22.5)

For instance, let the coordinates xi be selected as the sequence of the seven values

[−3,−2,−1,0,1,2,3].

Since x5 = 1, we have

�5(x) =
1

48
(x+ 3)(x + 2)(x + 1)x(x − 2)(x − 3) (note: no (x − 1) term!).

Figure 22.1 shows the graph of the sixth degree polynomial �5(x). Note that �5(x) is zero
when x ∈ {−3,−2,−1,0,2,3}, and �5(1) = 1, as expected.

root
2014/7/8
page 294

�

�

�

�

�

�

�

�

294 Chapter 22. Gaussian quadrature

Going back to the problem of determining the polynomial p(x) of degree n − 1 so
that yi = p(xi) for i = 1,2, . . . , n, it’s clear that

p(x) =
n∑

j=1

� j (x)yj (22.6)

fits the bill since it is of degree n− 1, and p(xi) = yi due to (22.5).
The polynomial p(x) constructed above is unique. To see why, suppose that there

is another n − 1 degree polynomial, q(x), such that yi = q(xi) for i = 1,2, . . . , n. Let
r (x) = p(x)− q(x). Then we have r (xi) = 0 for all i = 1,2, . . . , n. Thus, the n− 1 degree
polynomial r has n roots. By the Fundamental Theorem of Algebra that can happen only
if r (x) is identically zero. It follows that p(x)≡ q(x).

Equation (22.6) is called Lagrange’s interpolation formula. It is important to note that
the functions � j (x) do not depend on the yj ’s. The yj ’s appear only as coefficients in (22.6).
Furthermore, since yi = p(xi), it is convenient to express (22.6) in the form

p(x) =
n∑

j=1

� j (x)p(xj), (22.7)

which removes the yj ’s from the picture altogether. Then integrating over the interval
(−1,1) we arrive at∫ 1

−1
p(x)d x =

n∑
j=1

�∫ 1

−1
� j (x)d x

�
p(xj) for all polynomials p of degree n− 1. (22.8)

If we define the constants wj according to

wj =
∫ 1

−1
� j (x)d x, j = 1,2, . . . , n,

then (22.8) exactly agrees with, and therefore proves, the statement (22.3).

22.3 Legendre polynomials
The inner product of two functions f and g over the interval (−1,1) is defined by

(f , g) =
∫ 1

−1
f (x)g (x)d x.

The inner product extends the idea of the dot product of vectors to functions. The func-
tions f and g are said to be orthogonal if (f , g) = 0. For instance, if f (x) ≡ 1, g (x) = x,
and h(x) = x2, then (f , g) =

∫ 1
−1 x d x = 0, and therefore f and g are orthogonal. On the

other hand, (f , h) =
∫ 1
−1 x2 d x = 2

3 �= 0, and therefore f and h are not orthogonal.
Starting with the sequence of monomials 1, x, x2, x3, . . ., we may apply the Gram–

Schmidt orthogonalization procedure—see any textbook on linear algebra—to produce a
sequence of orthogonal functions. The sequence of polynomials thus generated are called
Legendre polynomials, the first few of which are

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2− 1), P3(x) =

1

2
(5x3− 3x),

P4(x) =
1

8
(35x4− 30x2+ 3), P5(x) =

1

8
(635− 70x3+ 15x).

root
2014/7/8
page 295

�

�

�

�

�

�

�

�

22.4. The Gaussian quadrature formula 295

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

Pn(x)

Figure 22.2: The graphs of the Legendre polynomials Pn(x) for n = 0,1,2,3,4.

The orthogonality relationship is

(Pm , Pn) =
∫ 1

−1
Pm(x)Pn(x)d x =

�
0 if m �= n,

2
2n+1 if m = n.

There is a vast literature on the study of orthogonal polynomials, of which the Legen-
dre polynomials are a very special case. If you are interested in learning more about these,
Szegő [73] is a good starting point. You will find simplified presentations of some of the
relevant concepts in the books by Atkinson [4] (particularly, equations (4.4.21), (4.4.26),
and (5.3.28)) and Hildebrand [28] (particularly, equations (7.6.9), (8.5.5), and (8.5.8)). It
turns out that for any n, the Legendre polynomial Pn(x) has n distinct real roots, all of
which lie in the interval (−1,1). Figure 22.2 shows the graphs of the first few Legendre
polynomials.

Furthermore, it is possible to show that the Legendre polynomials and their deriva-
tives satisfy the recursion equations

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), (22.9a)

(x2− 1)P ′n(x) = nxPn(x)− nPn−1(x). (22.9b)

These, together with P0(x)≡ 1 and P1(x) = x, provide a practical way of evaluating Pn(x)
and P ′n(x) for all n and x.

22.4 The Gaussian quadrature formula
Consider a polynomial p(x) of degree 2n − 1 for some integer n ≥ 1. By applying the
Euclidean long division algorithm to the fraction p(x)/Pn (x), we obtain

p(x)
Pn(x)

= q(x)+
r (x)

Pn(x)
,

where the quotient q(x) and the remainder r (x) are polynomials of degree n − 1 each.
Rearranging the terms, we get

p(x) = Pn(x)q(x)+ r (x). (22.10)

root
2014/7/8
page 296

�

�

�

�

�

�

�

�

296 Chapter 22. Gaussian quadrature

Table 22.1: The coordinates xj and weights wj of the 4-point Gaussian quadrature.

j x j wj

1 −0.86113631159405257522 0.34785484513745385737
2 −0.33998104358485626480 0.65214515486254614263
3 0.33998104358485626480 0.65214515486254614263
4 0.86113631159405257522 0.34785484513745385737

Therefore ∫ 1

−1
p(x)d x = (Pn , q)+

∫ 1

−1
r (x)d x.

The inner product (Pn , q) is zero since the nth degree polynomial Pn(x) is orthogonal
to all lower degree polynomials. Thus, the problem of integrating the (2n − 1)-degree
polynomial p(x) reduces to the problem of integrating the (n − 1)-degree polynomial
r (x). The latter problem, however, was thoroughly analyzed in Section 22.2 and led to
the statement (22.8). Thus, we have∫ 1

−1
p(x)d x =

n∑
j=1

�∫ 1

−1
� j (x)d x

�
r (xj). (22.11)

Up to this point, the evaluation points x1, x2, . . . , xn have been arbitrary. Magic hap-
pens when we choose those to be the roots of the nth degree polynomial Pn(x), that is,
Pn(xj) = 0, j = 1,2, . . . , n. Then (22.10) indicates that p(xj) = r (xj) for all j ; there-
fore (22.11) takes the form∫ 1

−1
p(x)d x =

n∑
j=1

�∫ 1

−1
� j (x)d x

�
p(xj) for all polynomials p of degree 2n− 1,

which proves the statement (22.4).
The integral of � j (x), which yields the quadrature’s weights wj , may be evaluated in

terms of the Legendre polynomials and their derivatives:

wj =
∫ 1

−1
� j (x)d x =

−2

(n+ 1)P ′n(xj)Pn+1(xj)
=

2

(1− x2
j)P

′
n(xj)

2 , j = 1,2, . . . , n.

See, e.g., Atkinson [4, page 276, equation (5.3.28)] and Hildebrand [28, page 391, equa-
tions (8.5.5) and (8.5.8)].

As a practical matter, the polynomial Pn(x) and its derivative P ′n(x) may be evalu-
ated through the recursion formulas in (22.9). Then Newton’s method may be applied
to compute the roots xj of Pn(x). This supplies everything that is needed for evaluating
the weights wj from the formulas given above. See Numerical Recipes in C [53] for an
implementation in C. Table 22.1 shows the coordinates xj and weights wj of the 4-point
Gaussian quadrature for illustration.

22.5 The program
As noted above, it is possible to write a C program to compute the Gaussian quadrature
coordinates xj and the corresponding weights wj on demand. However, since the com-
puted data is static/unchanging, it makes better sense to compute them once for all and

root
2014/7/8
page 297

�

�

�

�

�

�

�

�

22.6. The files gauss-quad.[ch] 297

Listing 22.1: An interactive session with the gauss-quad-demo program. The five problems that are
solved here are described in this chapter’s Projects section.

$./gauss-quad-demo
Usage: ./gauss-quad-demo n

n = number of quadrature points

$./gauss-quad-demo 2
integrating a cubic function over (-1, 1)
exact = 2.6666666666666665
computed = 2.6666666666666665

integrating a cubic function over (2, 5)
exact = 204.7500000000000000
computed = 204.7500000000000000

integrating a quadratic function over (-1,1) x (-1,1)
exact = 6.66666666666666696
computed = 6.66666666666666607

integrating a quadratic function over (-1, 2) x (-1, 5)
exact = 208.00000000000000000
computed = 208.00000000000000000

integrating sin(x) over (0, 3.14159)
exact = 2.0000000000000000
computed = 1.9358195746511373

save them for future use. I have done that and have made the data file available at this
book’s website in the files gauss-quad.[ch]. Your job is to write a driver, let’s call it gauss-
quad-demo.c, to demonstrate the use of that data by performing a few integrations. This
project’s directory, therefore, will look like this:

$ cd gauss-quad
$ ls -F
Makefile gauss-quad-demo.c gauss-quad.c gauss-quad.h

My gauss-quad-demo.c contains five demonstrations. They are described in this chapter’s
Projects section. You are encouraged to modify these or add demonstrations of your own.
Listing 22.1 shows a transcript of an interactive session.

22.6 The files gauss-quad.[ch]
I have computed the coordinates and weights of n-point Gaussian quadratures for n =
1, . . . , 15 and placed them in the file gauss-quad.c, which you may download from this
book’s website. I did the calculations in Maple with 40 digits of accuracy and then printed
the results with 20 digits of accuracy, as in "%.20f". The associated header file gauss-
quad.h declares a structure

struct Gauss_qdat {
double p; // point
double w; // weight

};

root
2014/7/8
page 298

�

�

�

�

�

�

�

�

298 Chapter 22. Gaussian quadrature

that holds a point/weight pair. An n-point quadrature table may be stored in an array
of length n of such structures. I do, however, store the table in an array of length n+ 1.
The (n+1)st extra entry is a dummy {0.0, -1.0} point/weight pair which serves as the
table’s terminal sentinel. In scanning the table, we recognize the sentinel by its negative
weight value since the normal Gauss quadrature weights are never negative. The inclu-
sion of sentinel is by no means essential. I have introduced it merely for computational
convenience. You will see its use in the code fragment at the end of this section.

In view of this, Table 22.1’s 4-point quadrature data is then encoded as the C structure:

static struct Gauss_qdat quaddata4[] = { /∗ n = 4 ∗/
{ -0.86113631159405257522, 0.34785484513745385737},
{ -0.33998104358485626480, 0.65214515486254614263},
{ 0.33998104358485626480, 0.65214515486254614263},
{ 0.86113631159405257522, 0.34785484513745385737},
{ 0.0, -1.0},

};

This is one of the 15 quadrature tables defined in gauss-quad.c; they provide quadrature
data for n-point Gaussian quadratures for any n = 1,2, . . . , 15. The tables are named
quaddata1[], quaddata2[], . . . , quaddata15[].

To provide further organization to the data tables, I have defined an array, called
QuadTables[], each of whose entries points to one of the data tables:

static struct Gauss_qdat *QuadTables[] = {
NULL, // no 0-point quadrature
quaddata1,
quaddata2,
...
quaddata15

};

Thus, Gauss_qdat[n] evaluates to a pointer to the n-point quadrature table.
You may observe that the quadrature tables and the QuadTables[] array are all

specified static; therefore they are not directly accessible outside gauss-quad.c. Access
to the data is provided through the front-end function gauss_qdat(), which is defined
in gauss-quad.c as

struct Gauss_qdat *gauss_qdat(int *n)
{

int ntables = (sizeof QuadTables / sizeof QuadTables[0]) - 1;
if (*n < 1)

*n = 1;
else if (*n > ntables)

*n = ntables;
return QuadTables[*n];

}

The function begins with calculating ntables, which is the number of available quadra-
ture tables. (See Remark 4.2 on page 22 for an explanation of that calculation.) We know
that there are 15 tables, but that number is not hard-coded in the function since it may
change in the future.

The parameter n points to an integer n which the caller sets as the number of desired
quadrature points. If the requested number falls outside the 1 ... ntables range,
it is brought into the range first (silently), and then a pointer to an appropriate table is
returned to the caller. Since the value stored in *nmay have to be changed during this call,

root
2014/7/8
page 299

�

�

�

�

�

�

�

�

22.7. Project Gaussian Quadrature 299

the function receives a pointer to an integer rather than an integer in its argument. The
caller may examine the value of *n after the function returns if that value is of concern.

The following code fragment illustrates the use of our quadrature tables in integrating
a function f over the interval [−1,1]:
struct Gauss_qdat *gqdat;
int n = 10; // want a 10-point quadrature
gqdat = gauss_qdat(&n); // get the quadrature table
sum = 0.0;
for (int i = 0; i < n; i++)

sum += gqdat[i].w * f(gqdat[i].p);
printf("integral = %g\n", sum);

Alternatively, we may use the table’s sentinel for the stopping criterion:
struct Gauss_qdat *gqdat;
int n = 10; // want a 10-point quadrature
gqdat = gauss_qdat(&n); // get the quadrature table
sum = 0.0;
while (gqdat→w �= -1) { // watch for the sentinel

sum += gqdat→w * f(gqdat→p);
gqdat++;

}
printf("integral = %g\n", sum);

I (slightly) prefer the second version’s index-free code, but that’s a matter of taste. Do
whichever way that makes better sense to you.

22.7 Project Gaussian Quadrature

Part 22.1. Write a program gauss-quad-demo.c which reads the number n of quadrature
points from the command-line and applies Gaussian quadrature to integrate the cubic
function f (x) = 1+ x + x2 + x3 over the interval [−1,1]. The exact answer is 8/3. Can
you tell, before running your program, the minimal number of quadrature points that
would produce the exact answer within the machine’s floating point accuracy?

Part 22.2. Extend gauss-quad-demo.c to compute, additionally, the integral of the pre-
vious part’s f over the interval [2,5]. You will use one or the other of the change of
variables formulas in (22.2). The exact answer is 819/4= 204.75.

Part 22.3. According to Fubini’s Theorem, the double integral over the square [−1,1]×
[−1,1]may be expressed as nested single integrals:∫ 1

−1

∫ 1

−1
f (x, y)d x d y =

∫ 1

−1

!∫ 1

−1
f (x, y)d x

$
d y.

If we approximate each of the single integrals on the right-hand side through a Gaussian
quadrature, we get∫ 1

−1

∫ 1

−1
f (x, y)d x d y ≈

m∑
i=1

wi

* n∑
j=1

wj f (xj , yi)
+
=

m∑
i=1

n∑
j=1

wi wj f (xj , yi).

Extend gauss-quad-demo.c to apply the Gaussian quadrature with m = n to approximate
the integral of the quadratic function g (x, y) = 1+ x + y + x2 + xy + y2 over the square
[−1,1]× [−1,1]. The exact answer is 20/3.

root
2014/7/8
page 300

�

�

�

�

�

�

�

�

300 Chapter 22. Gaussian quadrature

Part 22.4. Extend gauss-quad-demo.c to integrate the previous part’s g over the rectangle
[−1,2]× [1,5]. The exact answer is 208.

Part 22.5. Extend gauss-quad-demo.c to compute
∫ π

0 sin x d x. The exact answer is 2.
Since the integrand is not a polynomial, a Gaussian quadrature can only produce an ap-
proximate answer. Examine the answer’s accuracy as the number of quadrature points
increases. Note: Don’t hard-code the numerical value of π in your program. Instead, use
4*atan(1).

root
2014/7/8
page 301

�

�

�

�

�

�

�

�

Chapter 23

Triangulation with the
Triangle library

Prerequisites: Chapters 7, 8

23.1 Introduction
Triangulating a planar polygonal domain means dividing the domain into a union of tri-
angles so that

1. every triangle has a nonempty interior;
2. no two triangles have common interior parts; and
3. any side of any triangle is either a part of the domain’s boundary or is the side of

another triangle.

Figure 23.1 shows sample triangulations. We see that a polygonal domain may have a
number of holes. Thus, a “polygonal domain” means a planar region bounded by one or
more nonintersecting polygonal boundaries.

A triangulated domain is also called a triangular mesh. A “mesh” is a more general
concept than triangulation; one may have a mesh consisting of quadrilaterals or hexagons,
for example. In this book we will work with triangular meshes only; therefore when I say
a “mesh”, I mean a triangular mesh.

Triangulated domains are used frequently in the finite element method (FEM) for
solving partial differential equations (PDEs). (More on that in Chapter 25.) Stated very
loosely, the solution to the PDE is approximated by a low degree polynomial on each
triangle. The FEM sees to it that the polynomial patches connect continuously across ad-
jacent edges. The coefficients of the polynomials are adjusted to obtain the best possible
solution.

Producing good triangulations is a complicated matter and an active area of research.
A good triangulation—the technical term is a “quality triangulation”—produces triangles
whose angles are neither too small nor too large. We don’t want needle-like triangles; the
accuracy of the finite element approximation depends on that.

Triangle is a C library written by Jonathan Shewchuk [60, 61] for producing qual-
ity triangulations of planar polygons, possibly with holes. It is available in source form
from <https://www.cs.cmu.edu/~quake/triangle.html>. We will use Triangle for
meshing in this and subsequent chapters. See Section 23.7 on how to install Triangle in
your working environment.

301

root
2014/7/8
page 302

�

�

�

�

�

�

�

�

302 Chapter 23. Triangulation with the Triangle library

Figure 23.1: Sample triangulations. The inner and outer boundaries of the annulus
are 24-sided polygons. In the figure on the right, each hole is a 16-sided
polygon.

In this chapter I will introduce two distinct data structures which may be thought of
as Triangle’s “data before meshing” and “data after meshing”. The “before” data structure,
introduced in Section 23.3, specifies a domain’s geometry. For instance, a square is speci-
fied by its four vertices and the four edges that connect them. The “after” data structure,
introduced in Section 23.5, captures the triangulation’s data, that is, the list of the mesh’s
vertices and the triangle edges that connect them.

Both data structures carry additional information, some of which does not pertain
to the meshing per se but is essential to FEM applications. To explain, let us look at an
elementary boundary value problem for a PDE:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∇ · �η(x, y)∇u(x, y)

+ f (x, y) = 0 in Ω,

u = g on ΓD ,

η
∂ u
∂ n
= h on ΓN .

(23.1)

Here ∇ = 〈∂ /∂ x,∂ /∂ y〉 is the gradient operator, Ω is a planar domain, ΓD and ΓN are
two complementary parts of its boundary, and ∂ u/∂ n is the derivative of u in the out-
ward normal direction at the boundary. Solving the boundary value problem amounts to
finding a function u(x, y) that satisfies the PDE in Ω (first line), the Dirichlet boundary
condition on ΓD (second line), and the Neumann boundary condition on ΓN (third line).
The functions η, f , g , and h are given. The “before” data structure specifies not only the
geometry of Ω, but also the boundary parts ΓD and ΓN , because the triangle edges that
fall on the boundary are to inherit the boundary data from ΓD or ΓN . The functions η,
f , g , and h are not relevant to the domain’s triangulation per se; therefore they will play
no part in this chapter. Nevertheless, we will have placeholders in our data structures for
them so that we won’t have to redo these data structures in the later chapters when we
take on the task of solving the boundary value problem (23.1).

The goal of this chapter is to introduce the “before” and “after” data structures for the
boundary value problem (23.1) and enough details about the Triangle library to enable you
to mesh arbitrary polygonal domains with its help. Solving the boundary value problem
will have to wait for a future chapter.

23.2 The program
This chapter’s programs rely on the xmalloc module (Chapter 7) for managing memory
and the array.h header file (Chapter 8) for creating vectors and matrices. Additionally,

root
2014/7/8
page 303

�

�

�

�

�

�

�

�

23.3. The file problem-spec.h 303

you will need the files triangle.[ch], mesh-to-eps.[ch], and mesh.c from the book’s website.
I will describe their purposes later. Then, following the suggestions in Chapters 2 and 6,
the initial state of this project’s directory will look like

$ cd meshing
$ ls -F
Makefile mesh-to-eps.h problem-spec.h xmalloc.h@
array.h@ mesh.c triangle.o@
mesh-demo.c mesh.h triangle.h@
mesh-to-eps.c problem-spec.c xmalloc.c@

You will write mesh.h, problem-spec.[ch], and mesh-demo.c as you read through this chap-
ter. The symbolic links triangle.[ho] are explained in Section 23.7.

Let us say the program compiles into the executable file mesh-demo. Here is a transcript
of a sample session:

$./mesh-demo
Usage: ./mesh-demo a

a = maximal triangle area

$./mesh-demo 0.02
domain is a square
vertices = 52, edges = 130, elems = 79
PostScript output written to file square.eps

domain is a triangle with hole
vertices = 90, edges = 220, elems = 130
PostScript output written to file triangle-with-hole.eps

domain is an annulus (really a 24-gon) of radii 0.325 and 0.65
vertices = 74, edges = 174, elems = 100
PostScript output written to file annulus.eps

domain is an L-shape with three holes (actually 16-gons
vertices = 141, edges = 349, elems = 206
PostScript output written to file three-holes.eps

In the first attempt, the program is invoked without an argument. It writes a message
saying that it expects an argument a which prescribes the maximal triangle area which
sets an upper bound on the areas of the mesh’s triangles and thus controls the fineness
of the mesh. In the second attempt the program is invoked with an argument of 0.02.
We see in the transcript that it meshes four distinct domains and prints the numbers of
vertices, edges, and elements in each case. An “element” in this context means a triangle;
that’s a harbinger of future uses of this utility for FEM analysis.

Additional information in the transcript indicates that the program writes an image
of each mesh into a PostScript file. These may be viewed with any PostScript viewer.

23.3 The file problem-spec.h
It was noted in Section 23.1 that the program deals with separate “before meshing” and
“after meshing” data structures. In this and the next section I will describe the former. In
Section 23.5 I will describe the latter.

The “before meshing” data structure is called “struct problem_spec” because it
carries a problem specification. It is declared in the file problem-spec.h, which is shown in
its entirety in Listing 23.1. Let us see what we have there:

root
2014/7/8
page 304

�

�

�

�

�

�

�

�

304 Chapter 23. Triangulation with the Triangle library

Listing 23.1: The file problem-spec.h.

1 #ifndef H_PROBLEM_SPEC_H
2 #define H_PROBLEM_SPEC_H
3 #define FEM_BC_DIRICHLET 2
4 #define FEM_BC_NEUMANN 3
5 struct problem_spec_point {
6 int point_no;
7 double x;
8 double y;
9 int bc;

10 };
11 struct problem_spec_segment {
12 int segment_no;
13 int point_no_1;
14 int point_no_2;
15 int bc;
16 };
17 struct problem_spec_hole {
18 double x;
19 double y;
20 };
21 struct problem_spec {
22 struct problem_spec_point *points;
23 struct problem_spec_segment *segments;
24 struct problem_spec_hole *holes;
25 int npoints;
26 int nsegments;
27 int nholes;
28 double (*f)(double x, double y);
29 double (*g)(double x, double y);
30 double (*h)(double x, double y);
31 double (*eta)(double x, double y);
32 double (*u_exact)(double x, double y);
33 };
34 #endif /∗ H_PROBLEM_SPEC_H */

Lines 3 and 4. The two preprocessor macros declared here are used later to label the do-
main’s boundary parts ΓD and ΓN corresponding to the Dirichlet and Neumann
boundary conditions in the boundary value problem (23.1). There is nothing spe-
cial about the numbers 2 and 3 associated with these macros; they could have been
any two distinct integers other than 0 and 1. The exceptions are due to the special
meanings that Triangle attaches to boundary markers with values 0 and 1.

Line 5. The domain’s boundary consists of vertices and the edges that connect them.
Within Triangle these are called points and segments.86 The structure declared on
line 5 is designed to hold a point specification consisting of an index (point_no),
which serves as the point’s label, the point’s x and y coordinates, and its boundary

86Segments are more general than what I am presenting here. Triangle allows for internal segments. These
may be used, for instance, to divide a domain into regions. One may produce a mesh whose fineness varies from
region to region. We will not have a use for that feature in this book.

root
2014/7/8
page 305

�

�

�

�

�

�

�

�

23.4. The file problem-spec.c 305

condition type bc. Indices are consecutive integers beginning with zero, assigned
(by the user) to the domain’s points in no particular order. The boundary condition
type is one of FEM_BC_DIRICHLET or FEM_BC_NEUMANN.

Line 11. The structure declared here is designed to hold a segment specification consist-
ing of an index (segment_no), which serves as the segment’s label, the indices of
the points at the segment’s ends, and the segment’s boundary condition bc. In-
dices are consecutive integers beginning with zero, assigned (by the user) to the
domain’s segments in no particular order. The boundary condition type is one of
FEM_BC_DIRICHLET or FEM_BC_NEUMANN.

Line 17. The structure declared here is designed to hold information about the domain’s
holes (see Figure 23.1 for examples of domains with holes). A hole is identified
through the coordinates (x, y) of an arbitrary point within it. Here is how this
works. Triangle triangulates the entire domain, including the holes, but it’s careful
not to make any triangles that straddle a hole’s boundary. Then, beginning at the
hole’s (x, y) identifier, it “pops” every triangle it encounters until it reaches the
hole’s boundary.

Line 21. The structure declared here is a wrapper around the previous three structures. It
also includes (a) the members npoints, nsegments, and nholes, which hold
the counts of the domain’s points, segments, and holes, respectively; and (b) the
members f, g, h, eta, u_exact, which are pointers to functions of type R2 →R.
The program will set these to point to the functions f , g , h, η, u that enter the
formulation of the boundary value problem (23.1). The final member, u_exact,
requires some explanation. In general, the solution u of (23.1) is not known ahead
of the time; otherwise there is no point in writing a program to compute it. For
testing purposes, however, it is a good idea to solve a few problems whose exact
solutions are known ahead of the time. This provides an opportunity to test the
code for accuracy or find bugs. The u_exact member of the problem_spec
structure points to the exact solution if one is available.

The members f, g, h, c, u_exact do not affect a domain’s triangulation. They
are placeholders for objects which will come into play in later chapters when we
implement the FEM for solving the boundary value problem (23.1).

23.4 The file problem-spec.c
The file problem-spec.c may contain any number of problem specification. My current
problem-spec.c contains four problems. I will describe two in detail, and I will let you
write the other two. Listing 23.2 gives an outline of problem-spec.c.

23.4.1 Triangle with a hole

The domain shown in Figure 23.2 is an isosceles triangle with a rectangular hole. In the
diagram on the left I have labeled the seven vertices, n0 through n6, and the seven edges,
e0 through e6. The enumeration order is immaterial, but the indices should begin at zero
and increase in steps of 1. I have superimposed a rectangular grid over the diagram on
the left to help you read the vertex coordinates. The grid’s lower-left corner is at (−1,0).
The diagonally opposite corner is at (1,2). The diagrams labeled (b) and (c) show the grid

root
2014/7/8
page 306

�

�

�

�

�

�

�

�

306 Chapter 23. Triangulation with the Triangle library

Listing 23.2: An outline of the file problem-spec.c.

1 � #include ...
2 � struct problem_spec *triangle_with_hole(void) ... // see Listing 23.3
3 � struct problem_spec *annulus(int n) ... // see Listing 23.4
4 � void free_annulus(struct problem_spec *spec) ... // see Listing 23.5
5 � struct problem_spec *square(void) ...
6 � struct problem_spec *three_holes(int n) ...
7 � void free_three_holes(struct problem_spec *spec) ...

n0 n1

n2

e0

e1e2

n3 n4

n5n6

e3

e4

e5

e6

(a) (b) (c)

Figure 23.2: (a) Triangle with a hole before meshing; (b) after meshing with the maxi-
mum area parameter set to 0.2; and (c) after meshing with maximum area
parameter set to 0.02. In (a) I have superimposed a rectangular grid to help
you read the vertex coordinates. The grid’s lower-left corner is at (−1,0).
The diagonally opposite corner is at (1,2). The hollow circle at (0,0.75)
marks an arbitrary point within the hole. Triangle relies on this to recog-
nize the inside of a hole.

generated by the program corresponding to setting the maximum area of triangles to 0.2
and 0.02, respectively.

The function triangle_with_hole() that appears on line 2 of Listing 23.2 re-
turns a pointer to a problem_spec structure corresponding to the domain in Figure
23.2(a). Its implementation is shown in Listing 23.3. Let’s examine the details.

Line 3. We define and initialize the array points[] of the following type:
“struct problem_spec_point”. That structure, described in Section 23.3,
holds a point’s index, its x and y coordinates, and its boundary condition type.
Since our domain has seven vertices/points, the array points[] is of length 7.
Lines 5 through 12 define those points.

Thestatic specifier in the declaration of points[]means that the array persists
throughout the program’s lifetime (that is, from when the program is invoked until
when in exits). Thus, a pointer to the structure remains meaningful after the function
triangle_with_hole() returns. In the absence of the static specifier, the
array would have come into existence upon entering the function and would have
vanished upon exiting; therefore the address returned by the function would have
been meaningless.

root
2014/7/8
page 307

�

�

�

�

�

�

�

�

23.4. The file problem-spec.c 307

Listing 23.3: The implementation of the function triangle_with_hole() in the file problem-
spec.c.

1 struct problem_spec *triangle_with_hole(void)
2 {
3 static struct problem_spec_point points[] = { // the points
4 // triangle’s vertices
5 { 0, -1.0, 0.0, FEM_BC_DIRICHLET },
6 { 1, 1.0, 0.0, FEM_BC_DIRICHLET },
7 { 2, 0.0, 2.0, FEM_BC_DIRICHLET },
8 // hole’s vertices
9 { 3, -0.25, 0.25, FEM_BC_DIRICHLET },

10 { 4, +0.25, 0.25, FEM_BC_DIRICHLET },
11 { 5, +0.25, 1.0 , FEM_BC_DIRICHLET },
12 { 6, -0.25, 1.0 , FEM_BC_DIRICHLET },
13 };
14

15 static struct problem_spec_segment segments[] = { // the segments
16 // triangle’s segments
17 { 0, 0, 1, FEM_BC_DIRICHLET },
18 { 1, 1, 2, FEM_BC_DIRICHLET },
19 { 2, 2, 0, FEM_BC_DIRICHLET },
20 // hole’s segments
21 { 3, 3, 4, FEM_BC_DIRICHLET },
22 { 4, 4, 5, FEM_BC_DIRICHLET },
23 { 5, 5, 6, FEM_BC_DIRICHLET },
24 { 6, 6, 3, FEM_BC_DIRICHLET },
25 };
26

27 static struct problem_spec_hole holes[] = { // the hole’s identifier
28 { 0.0, 0.75 }
29 };
30

31 static struct problem_spec spec = { // C99-style initialization!
32 .points = points,
33 .segments = segments,
34 .holes = holes,
35 .npoints = sizeof points / sizeof points[0],
36 .nsegments = sizeof segments / sizeof segments[0],
37 .nholes = sizeof holes / sizeof holes[0],
38 .f = NULL,
39 .g = NULL,
40 .h = NULL,
41 .eta = NULL,
42 .u_exact = NULL,
43 };
44

45 printf("domain is a triangle with hole\n");
46 return &spec;
47 }

root
2014/7/8
page 308

�

�

�

�

�

�

�

�

308 Chapter 23. Triangulation with the Triangle library

Line 15. We define and initialize the array segments[] of the following type:
“struct problem_spec_segment”. That structure, described in Sec-
tion 23.3, holds a segment’s index, the indices of the points at its ends, and its
boundary condition type. Since our domain has seven edges/segments, the array
segments[] is of length 7. Lines 17 through 24 define those segments. The pre-
vious paragraph’s comments on the static specifier apply here as well.

Line 27. We define and initialize the array holes[] of the following type:
“struct problem_spec_hole”. That structure, described in Section 23.3,
holds the x and y coordinates of an arbitrary point inside a hole. Since our do-
main has one hole, holes[] is an array of length 1. I have picked (0,0.75) as this
hole’s identifier point; see Figure 23.2(a). The previous paragraph’s comments on
the static specifier apply here as well. See the next paragraph regarding domains
with no holes.

Line 31. We define and initialize spec, an object of type “struct problem_spec”,
which was described in Section 23.3. Its first three members are the addresses of
the points[], segments[], and holes[] arrays defined earlier. Its next three
members are the lengths of those arrays. I could have entered 7, 7, and 1 for those
lengths, but I didn’t. Instead, I let the program itself calculate the lengths following
the idea noted in Remark 4.2 on page 22. This makes the program more robust
because if I choose to insert or delete a point in the points[] array, I won’t have
to update the entry here. The rest of the structure’s members are pointers to the
various functions that enter the definition of the boundary value problem (23.1).
These are irrelevant to meshing, so I am setting them to NULL for now.

Remark 23.1. If the domain has no holes, then set.holes toNULL and.nholes
to 0.

Line 45. The informational message printed here is by no means essential; however, it
helps make the function a little more user-friendly. Inspect the transcript of the
interactive session in Section 23.2 to see where the message “domain is a triangle
with hole” appears.

23.4.2 An annulus

Figure 23.3 shows an annular domain bounded by two octagons. In the diagram on the
left, I have labeled the domain’s 16 vertices, n0 through n15, and the 16 edges, e0 through
e15. The enumeration order is immaterial, but the indices should begin at zero and in-
crease in steps of 1. The distances of the inner points from the center are 0.325. The
distances of the outer points from the center are twice that. There is no particular reason
for these choices other than the desire to make the area of the annulus to be approxi-
mately 1 so that we may compare its triangulation in a meaningful way to that of a 1× 1
square. On the right, I have shown the mesh produced by invoking the program with the
argument 0.02.

The function annulus() that appears on line 3 of Listing 23.2 on page 306 returns
a pointer to a problem_spec structure corresponding to the domain in Figure 23.3(a).
Its implementation is shown in Listing 23.4. Unlike triangle_with_hole(), which
takes no arguments, annulus() takes one argument, n, and produces n-gons for the
annulus’s inner and outer boundaries. The domain in Figure 23.3 was produced by calling
annulus(8).

root
2014/7/8
page 309

�

�

�

�

�

�

�

�

23.4. The file problem-spec.c 309

n0

n1

n2n3

n4

n5 n6

n7

n8

n9

n10

n11

n12

n13

n14

n15

e0

e1e2

e3

e4

e5 e6

e7

e8

e9e10

e11

e12

e13 e14

e15

(a) (b)

Figure 23.3: (a) An octagonal annulus before meshing; (b) mesh produced by
annulus(8) with maximum area parameter set to 0.02. In (a) I have
shown my labeling of the points and segments.

There is a fundamental difference between the functions triangle_with_hole()
and annulus(). In the former, the geometry is fixed once for all. I took advantage
of that when I combined the declaration and initialization of the points[] array (see
line 3 in Listing 23.3 on page 307). I treated the segments[] and holes[] arrays
(Listing 23.3, lines 15 and 27) in the same way. In contrast, the geometry of the annulus
is unknown ahead of the time since it depends on the argument n. That prevents us from
combining the definitions and initializations of the arrays. Instead, we call xmalloc()
to allocate arrays of appropriate lengths according to n and then populate their entries
one at a time in for-loops. Additionally, we supply a function, free_annulus(),
that the user will call to free the allocated memory when it’s no longer needed. Let us
examine the details.

Line 3. We need the number π to calculate the vertex coordinates. We have tanπ/4= 1,
and thereforeπ= 4 tan−1 1. Here we apply the standard library’s atan() function
to evaluate the inverse tangent.

Line 4. We define the annulus’s inner and outer radii a and b . You may change these
numbers if you wish. Better yet, you may want to modify annulus() so that it
receives a and b as arguments, as in annulus(a,b,n).

The choice of a = 0.325 and b = 2a results in an annulus of area of π(b 2 − a2) ≈
0.995. I wanted to get an area close to 1 to compare its triangulation to that of a
1× 1 square. There is no deep reason for that choice.

Line 5. Here we declare “spec” as a pointer to “struct problem_spec” and at the
same time allocate memory for the structure.

Lines 6–8. We allocate vectors/arrays to hold the domain’s geometry. The first two vec-
tors are of length 2n each because the domain has 2n vertices and 2n edges. The
third vector is of length 1 because there is only one hole.

root
2014/7/8
page 310

�

�

�

�

�

�

�

�

310 Chapter 23. Triangulation with the Triangle library

Listing 23.4: The implementation of the function annulus() in the file problem-spec.c.

1 struct problem_spec *annulus(int n)
2 {
3 double Pi = 4*atan(1);
4 double a = 0.325, b = 2*a;
5 struct problem_spec *spec = xmalloc(sizeof *spec);
6 make_vector(spec→points, 2*n);
7 make_vector(spec→segments, 2*n);
8 make_vector(spec→holes, 1);
9

10 for (int i = 0; i < n; i++) { // define the points
11 double t = 2*i*Pi/n;
12 spec→points[i].point_no = i;
13 spec→points[i].x = a*cos(t);
14 spec→points[i].y = a*sin(t);
15 spec→points[i].bc = FEM_BC_DIRICHLET;
16 spec→points[i+n].point_no = i+n;
17 spec→points[i+n].x = b*cos(t);
18 spec→points[i+n].y = b*sin(t);
19 spec→points[i+n].bc = FEM_BC_DIRICHLET;
20 }
21

22 for (int i = 0; i < n; i++) { // define the segments
23 spec→segments[i].segment_no = i;
24 spec→segments[i].point_no_1 = i;
25 spec→segments[i].point_no_2 = i+1;
26 spec→segments[i].bc = FEM_BC_DIRICHLET;
27 spec→segments[i+n].segment_no = i+n;
28 spec→segments[i+n].point_no_1 = i+n;
29 spec→segments[i+n].point_no_2 = i+n+1;
30 spec→segments[i+n].bc = FEM_BC_DIRICHLET;
31 }
32 spec→segments[n-1].point_no_2 -= n;
33 spec→segments[2*n-1].point_no_2 -= n;
34

35 spec→holes[0].x = spec→holes[0].y = 0.0; // the hole’s identifier
36

37 spec→npoints = 2*n;
38 spec→nsegments = 2*n;
39 spec→nholes = 1;
40 spec→f = spec→g = spec→h = spec→eta = spec→u_exact = NULL;
41 printf("domain is an annulus (really a %d-gon) "
42 "of radii %g and %g\n", n, a, b);
43 return spec;
44 }

root
2014/7/8
page 311

�

�

�

�

�

�

�

�

23.5. The files mesh.h and mesh.c 311

Listing 23.5: The function free_annulus() in the file problem-spec.c.

1 void free_annulus(struct problem_spec *spec)
2 {
3 if (spec �= NULL) {
4 free_vector(spec→points);
5 free_vector(spec→segments);
6 free_vector(spec→holes);
7 free(spec);
8 }
9 }

Line 10. In a for-loop we define the vertex coordinates through⎧⎪⎪⎨⎪⎪⎩
xi = a cos

2πi

n
,

yi = a sin
2πi

n
,

⎧⎪⎪⎨⎪⎪⎩
xn+i = b cos

2πi

n
,

yn+i = b sin
2πi

n
,

i = 0,1, . . . , n− 1.

Thus, the inner vertices are labeled 0 through n − 1, and the outer vertices are la-
beled n through 2n− 1. Figure 23.3(a) illustrates the n = 8 case.

Line 22. The for-loop defines the segment i as connecting vertex i to vertex i + 1 for
i = 0,1, . . . , 2n − 1. This is not quite correct, however, since the segment n − 1
should connect the vertex n − 1 to vertex 0, as the polygon closes onto itself. The
same problem exists with the segment 2n − 1. We fix these in the two lines that
immediately follow the for-loop.

Line 35. Here we define the identifier point of the domain’s hole. I have taken the ob-
vious choice (0,0), but any other point within the hole, e.g. (a/2,0), would have
been just as good.

Line 37. We are done with defining the domain’s components. We assign the spec struc-
ture’s remaining members, print an informative message, and return spec to the
caller.

This completes the details of the function annulus(). In Listing 23.5 we provide
a companion function, free_annulus(), to enable the user to free the memory allo-
cated within annulus(). The function enters on line 4 of Listing 23.2 on page 306.

23.5 The files mesh.h and mesh.c
At this point we have a framework for specifying a domain’s geometry, such as that
shown in Figure 23.3(a). In this section we introduce a companion framework to address
a domain’s triangulation, such as that seen in Figure 23.3(b).

The data structures for holding the triangulation’s data are declared in the file mesh.h
shown in Listing 23.6. Let us examine it.

Line 4. A struct node holds data for a node of the mesh. For the purposes of this
book, you may think of a node as a triangle’s vertex. In more general FEM appli-
cations, nodes may include points other than vertices.

root
2014/7/8
page 312

�

�

�

�

�

�

�

�

312 Chapter 23. Triangulation with the Triangle library

Listing 23.6: The file mesh.h.

1 #ifndef H_MESH_H
2 #define H_MESH_H
3 #include "problem-spec.h"
4 struct node {
5 int nodeno;
6 double x;
7 double y;
8 double z;
9 int bc;

10 };
11 struct edge {
12 int edgeno;
13 struct node *n[2]; // pointers to the edge’s endpoints
14 int bc;
15 };
16 struct elem {
17 int elemno;
18 struct node *n[3]; // pointers to the element’s nodes
19 struct edge *e[3]; // pointers to the element’s edges
20 double ex[3], ey[3]; // x and y components of the edge vectors
21 double area; // element’s area
22 };
23 struct mesh {
24 struct node *nodes; // the array of node structures
25 struct edge *edges; // the array of edge structures
26 struct elem *elems; // the array of elem structures
27 int nnodes;
28 int nedges;
29 int nelems;
30 };
31 struct mesh *make_mesh(struct problem_spec *spec, double a);
32 void free_mesh(struct mesh *mesh);
33 #endif /∗ H_MESH_H */

We see that the node structure has members to hold a node’s index, a boundary
condition type (bc), and the node’s (x, y) coordinates. There is no use for the z
member as far as meshing goes. Later, when we solve PDEs, z will hold the value
of the solution at the point (x, y).

Line 11. A struct edge holds data for an edge of the mesh. An edge is the side of
a triangle. It connects two nodes. The edge structure has members to hold an
edge number, a boundary condition type (bc), and an array, n[2], that holds two
pointers to the node structures corresponding to the edge’s endpoints.

Line 16. A struct elem holds data for an element of the mesh. I use “element” as
a synonym for “triangle” in this context. The element structure has a member
elemno to hold an element’s number; an array n[3] to hold pointers to the node
structures of the element’s vertices; and an array e[3] to hold pointers to the edge
structures of the element’s edges. Furthermore, the arrays ex[3] and ey[3] hold
the x and y components of the element’s edge vectors, which are depicted in Fig-
ure A.1 on page 376. The area member holds the element’s area.

root
2014/7/8
page 313

�

�

�

�

�

�

�

�

23.6. The file mesh-demo.c 313

Remark 23.2. The data stored in the ex[], ey[], and area members are re-
dundant insofar as they can be computed on the fly from the element’s node coor-
dinates which are available through the element structure’s n[] member. We will
find out, however, that the aforementioned data are needed in multiple places in
finite element applications. To avoid the repeated recomputation of the data, we
compute them once for all and store them in the ex[], ey[], and area members
for later use.

Line 23. A struct mesh is a wrapper around the previous three structures. It also
includes additional data consisting of the integers nnodes, nedges, and nelems
that hold the counts of the domain’s nodes, edges, and elements, respectively.

Line 31. The function make_mesh() presents an extremely simple interface to mesh-
ing a domain. It receives a pointer to a “struct problem_spec” that contains
the details of the domain to be meshed. It calls Triangle to mesh the domain and
returns the result as a pointer to a “struct mesh”. (It allocates memory for that
structure as necessary.) The parameter a is taken from the commend-line; see Sec-
tion 23.2. It specifies an upper bound on the areas of the mesh’s triangles. A smaller
a will result in a finer mesh.

Line 32. The function free_mesh() frees all memory allocated by make_mesh().
The user is responsible for calling free_mesh() when those memory resources
are no longer needed.

The function make_mesh() hides a great deal of work behind it. First, it translates
the domain description from a struct problem_spec to a format that Triangle un-
derstands. Next, it calls Triangle to mesh the domain. And finally, it translates Triangle’s
output into a struct mesh. Thus, the meshing activity takes place entirely behind the
scenes. The user of make_mesh() is isolated completely from the internal workings
of Triangle. This is a good thing—it enables one to replace Triangle with an alternative
triangulator without affecting the rest of the program.

The file mesh.c contains the implementation of make_mesh(). Although it is not
very complex, I will refrain from explaining its details here because there is little pedagog-
ical value in it. Instead, I have placed the file in the book’s website for you to download,
compile, and link with your programs. Feel free to examine it if you are curious. It’s
not very long. You will need to know something about Triangle’s own data structures in
order to understand how it works.

23.6 The file mesh-demo.c
The file mesh-demo.c provides a demo of our meshing module. It calls make_mesh()
on the domains defined in problem-spec.c and writes the resulting meshes as EPS images
which may be viewed with any PostScript viewer. The fineness of the mesh is determined
by the user-supplied maximal triangle area on the command-line. Listing 23.7 provides
an outline of mesh-demo.c. Let us look at it, beginning with main():

Lines 16–21. These supply the prototypes of the functions square(), annulus(),
etc., which are defined in problem-spec.c. I could have included those prototypes in
the file problem-spec.h, but I decided against it since adding new functions in problem-
spec.c would necessitate changing problem-spec.h, which would not be pretty. I have

root
2014/7/8
page 314

�

�

�

�

�

�

�

�

314 Chapter 23. Triangulation with the Triangle library

Listing 23.7: An outline of the file mesh-demo.c.

1 � #include ...
2 static void do_demo(struct problem_spec *spec,
3 double a, char *eps_filename)
4 {
5 struct mesh *mesh = make_mesh(spec, a);
6 printf("vertices = %d, edges = %d, elems = %d\n",
7 mesh→nnodes, mesh→nedges, mesh→nelems);
8 mesh_to_eps(mesh, eps_filename);
9 free_mesh(mesh);

10 }
11

12 � static void show_usage(char *progname) ...
13

14 int main(int argc, char **argv)
15 {
16 struct problem_spec *square(void);
17 struct problem_spec *triangle_with_hole(void);
18 struct problem_spec *annulus(int n);
19 void free_annulus(struct problem_spec *spec);
20 struct problem_spec *three_holes(int n);
21 void free_three_holes(struct problem_spec *spec);
22 struct problem_spec *spec;
23 char *endptr;
24 double a;
25

26 � check argc, call show_usage() and exit if other than 2
27 a = strtod(argv[1], &endptr);
28 � check endptr, call show_usage() and exit if bad
29

30 do_demo(triangle_with_hole(), a, "triangle-with-hole.eps");
31 putchar(’\n’);
32

33 spec = annulus(24);
34 do_demo(spec, a, "annulus.eps");
35 free_annulus(spec);
36 putchar(’\n’);
37

38 � also do square()
39 � also do three_holes()
40 return EXIT_SUCCESS;
41 }

chosen to include the prototypes in main() since that’s the only place where they
are needed.

Lines 26–28. The program is to be invoked with exactly one argument, a, which spec-
ifies the mesh’s maximal triangle area. Therefore, we expect argc to be 2. We
apply the standard library’s strtod() function (see Chapter 5) to extract a. Call
show_usage() and exit if the argument is malformed or if it represents a non-
positive number.

root
2014/7/8
page 315

�

�

�

�

�

�

�

�

23.7. Installing Triangle 315

Line 30. To mesh Figure 23.2’s triangular domain, we call triangle_with_hole()
(see section 23.4.1) to retrieve the domain’s problem_spec structure and pass
the result immediately to the function do_demo() (to be described later) for
meshing. We also pass to do_demo() the value of a, which it will need, and
the string “triangle-with-hole.eps”, which is the file name to which it will
write the mesh’s EPS image. The file name is arbitrary; any legitimate file name
will do.

Lines 33–36. We repeat the process with annulus(), which was defined in section
23.4.2. Here I am invoking it as annulus(24), but you should experiment with
varying the argument to get a feel for what it does. Try, for instance, annulus(8).
That will get you the octagonal annulus of Figure 23.3.

Unlike the previous case, I have separated the invocations of annulus() and
do_demo() since I want to capture the pointer spec returned by annulus(),
which I will need to pass to free_annulus() on line 35 to free the structure’s
memory. This was not necessary in the previous case since the data structures there
were not allocated dynamically.

Lines 38 and 39. The contents of these additional demos are the subject of Section 23.8.

Line 12. The function show_usage() is called when the user invokes the program im-
properly. It prints a brief usage instruction to the stderr; see the transcript of
the sample session shown in Section 23.2.

Line 2. The function do_demo() defined here is quite straightforward. It receives a
pointer to a problem_spec structure, which it passes tomake_mesh() to create
a mesh. Then it prints the counts of the nodes, edges, and elements thus obtained
for the user’s information. Next, it passes the mesh structure to mesh_to_eps(),
which writes an image of the mesh in the PostScript format to the file named in its
argument. Finally it calls free_mesh() to free the memory resources associated
with the mesh structure and returns.

The function mesh_to_eps() is declared and implemented in the files mesh-to-
eps.[ch], which you downloaded from the book’s website. Implementing the func-
tion mesh_to_eps() is not a part of this project because that requires some
familiarity with the PostScript language, which I don’t want to make a prerequi-
site for this book. Just compile the downloaded files along with the rest of your
files and use mesh_to_eps() as a “black box”.

23.7 Installing Triangle
To compile this chapter’s programs, you will need a copy of Triangle, which you may
get from its home website noted in Section 23.1. It won’t work out of the box, however,
since it requires setting a few preprocessor options. I suggest that you use the modified
version that I have provided in the book’s website. My modifications amount to setting
the preprocessor options that make it into a C module rather than a stand-alone program.
The triangulation code itself is not touched.

The file triangle.h is the module’s interface. It includes extensive comments on the
module’s use. The file triangle.c (which is over 16,000 lines long!) contains the module’s
implementation (and built-in documentation for the stand-alone version). The code im-
plements a few kludges in the interest of minimizing memory usage; therefore you will

root
2014/7/8
page 316

�

�

�

�

�

�

�

�

316 Chapter 23. Triangulation with the Triangle library

get warnings when you compile it with gcc’s -Wall -pedantic flags. Nevertheless,
the compiled program seems to work on the machines I have tested.

You may drop the files triangle.h and triangle.c into your project’s directory and treat
them like any *.c and *.h file of your own. Although that will work, it’s not a good idea.
First, mixing triangle.h and triangle.c with your own files is ugly. Second, triangle.h and
triangle.c are needed in several other projects. It makes no sense to keep multiple copies
of them. Third, triangle.c is quite large and it takes several seconds to compile even on a
fast machine. It will slow you down if you have to compile it often.

To address these issues, I suggest that you put triangle.h and triangle.c in a directory
of their own, let’s say ../triangle/, relative to your current project’s directory. Go to that
directory, and compile Triangle once for all:

$ cd ../triangle/
$ cc -Wall -pedantic -std=c89 -O2 triangle.c -c

This will produce the object file triangle.o. There will be several warnings due to the
kludges noted above. Ignore the warnings.

Now go to your project’s directory and establish symbolic links to Triangle:

$ cd ../meshing/
$ ln -s ../triangle/triangle.[ho] .

(Don’t overlook the space and the period at the end of that command.) This makes the
files triangle.h and triangle.o available to your project. Compile and link with the rest of
your project’s files as usual.

Remark 23.3. If you know how to make libraries on your operating system, you
may build a true library out of triangle.o and install it, along with triangle.h, in stan-
dard places where the compiler looks for libraries and header files. Then you may link
your program with Triangle simply by giving a -ltriangle flag to the compiler at the
linking stage. There are too many variations and platform dependencies on making and
installing libraries; therefore I cannot afford to go into that subject in any depth. If you
don’t know how, ask someone versed in the use of your platform to show you.

23.8 Project Triangulate
Listing 23.2 on page 306 gives an outline of the file problem-spec.c. Some of its parts have
been explained in the preceding sections. Complete the rest of that file according to the
instructions below.

Part 23.1. The function square() in Listing 23.2 defines a domain in the form of a
simple square (0,1)× (0,1).

1. Add the definition of square() to problem-spec.c.
2. Insert the necessary code in mesh-demo.c (see line 38 of Listing 23.7) that calls

do_demo() to mesh the domain. A sample result is shown in Figure 23.1 on
page 302.

Part 23.2. The function three_holes() in Listing 23.2 defines an L-shaped domain
with three holes removed, as shown in Figure 23.1 on page 302. Each hole is an n-gon,
where n is received as an argument.

root
2014/7/8
page 317

�

�

�

�

�

�

�

�

23.8. Project Triangulate 317

1. Add the definition of three_holes() to problem-spec.c.
2. Insert the necessary code in mesh-demo.c (see line 39 of Listing 23.7) that calls

do_demo() to mesh the domain.

Suggestion: Set the domain’s reentrant vertex at (0,0) and the other vertices at (s , 0), (s , s),
(−s , s), (−s ,−s), and (0,−s). Let r = s/4 be the hole radius. You may pick any number
you wish for s . I used s = 0.64 because that makes the domain’s area approximately equal
to 1.

root
2014/7/8
page 319

�

�

�

�

�

�

�

�

Chapter 24

Integration on triangles

Prerequisites: Chapters 7, 8, 23, and Appendix A

24.1 Introduction
The Gaussian quadrature algorithm of Chapter 22 gives the optimal distribution of quadra-
ture points and weights for integrating numerically a function of one variable on an inter-
val. It identifies the points and weights as simple functions of the roots of certain Legendre
polynomials.

Unfortunately no such definitive procedure exists for integrating a function of two
variables over a triangle. True, one may regard the triangle as the image of a square,
and the square as the product of two intervals, and thus extend the Gaussian quadrature
to a triangle. However, the distribution of the quadrature points obtained this way is
far from optimal, as evidenced by the illustration in Figure 24.1; the quadrature points
crowd into one vertex, requiring many essentially redundant function evaluations there.
An efficient quadrature scheme will distribute the quadrature points more evenly on the
triangle. The purpose of this chapter is to introduce one such quadrature scheme that has
been developed by Taylor, Wingate, and Bos [75, 74].

An n-point quadrature rule on a triangle T selects n points
,
(xi , yi)

-n
i=1, and weights

{wi}n
i=1, so that for all reasonably nice functions f (x, y) defined on T one has

∫
T

f (x, y)d x d y ≈
n∑

i=1

wi f (xi , yi).

Cartesian coordinates, however, do not mesh well with triangles. Barycentric coordi-
nates (see Appendix A) work much better, and that’s what we will use most of time when
dealing with triangles.

A point inside a triangle may be expressed in Cartesian coordinates (x, y) or barycen-
tric coordinates (λ1,λ2,λ3), where 0 ≤ λ1,λ2,λ3 ≤ 1 and λ1 + λ2 + λ3 = 1. There is a
one-to-one correspondence between the Cartesian and barycentric coordinates. There-
fore, to a function f (x, y) expressed in Cartesian coordinates there corresponds a func-
tion f̃ (λ1,λ2,λ3) in barycentric coordinates so that f (x, y) = f̃ (λ1,λ2,λ3), where (x, y)
and (λ1,λ2,λ3) refer to the same point. The n-point quadrature formula shown above

319

root
2014/7/8
page 320

�

�

�

�

�

�

�

�

320 Chapter 24. Integration on triangles

ξ

η

x

y
�

x = (1−η)ξ /2
y = η

Figure 24.1: The diagram shows a mapping of the square (−1,1)× (−1,1) in the (ξ ,η)
plane to a triangle in the (x, y) plane. The (4× 4)-point Gaussian quadra-
ture on the square maps to a certain quadrature scheme on the triangle.
The distribution of the triangle’s quadrature points, however, is far from
optimal—they crowd into one vertex.

may be expressed in the equivalent form∫
T

f (x, y)d x d y ≈
n∑

i=1

wi f̃
�
λ(i)1 ,λ(i)2 ,λ(i)3

,

where
�
λ(i)1 ,λ(i)2 ,λ(i)3

are the barycentric coordinates of the quadrature points.

The benefit of formulating the quadrature in terms of the barycentric coordinates is
that once we determine a good set of quadrature points on one triangle—any triangle will
do—the result extends to all triangles. This is because any triangle may be mapped onto
any another through a linear transformation, and barycentric coordinates are invariant
under linear mappings (subsection A.1.2).

The quadrature weights, however, are proportional to the triangle’s area since the
Jacobian determinant of a linear transformation is constant and measures the ratio of the
areas. The usual practice is to tabulate the weights corresponding to a standard reference
triangle, let’s call it Tstd, and then adjust the quadrature formula for arbitrary triangles by
multiplying by the area ratios. This leads to the quadrature formula∫

T
f (x, y)d x d y ≈ |T |

|Tstd|
n∑

i=1

wi f̃
�
λ(i)1 ,λ(i)2 ,λ(i)3

, (24.1)

where |T | and |Tstd| are the areas of the triangle T and the standard reference triangle Tstd.
Generally a larger n gives a better approximation. The optimal placement of the

quadrature points and their weights depends on n.87 The coarsest approximation is ob-
tained with n = 1, which calls for sampling the function in just one point to estimate the
value of the integral. How good is the formula (24.1) if we pick the sampling point, that
is,
�
λ(1)1 ,λ(1)2 ,λ(1)3

, arbitrarily in T and take w1 = |Tstd|? Certainly not very good but not

entirely useless either. For instance, it will give exact results for constant functions. (Do
you see that?) We can do even better. If we sample the function at the triangle’s centroid,
then it is not hard to see that (24.1) with n = 1 will give exact results not only for con-
stants but also for all first degree polynomials! In that sense, the choice of the quadrature
point (λ1,λ2,λ3) = (1/3,1/3,1/3), which picks up the centroid, and the weight w = |Tstd|
is optimal for a one-point quadrature.

87In that regard I should have written
�
λ(n,i)

1 ,λ(n,i)
2 ,λ(n,i)

3

and w (n)i to make the dependence on n explicit, but

I didn’t want to complicate the notation.

root
2014/7/8
page 321

�

�

�

�

�

�

�

�

24.2. The Taylor, Wingate, and Bos (TWB) quadrature 321

This brings up a question: What is the smallest number of quadrature points, n, for
which the formula (24.1) gives exact answers for all quadratic polynomials? There is no
reason to stop at quadratics. We may ask the question of polynomials of any degree. For
instance, what is the smallest number of quadrature points, n, for which the formula (24.1)
gives exact answers for all polynomials of degree 14?

A general answer to such questions is not known. There are various algorithms for
computing n and the corresponding points and weights, but there is no assurance that
they actually are optimal. For instance, according to Table 2 of [74], three different algo-
rithms in [13], [78], and [74] for exact quadrature of polynomials of degree 14 call for 42,
46, and 45 points, respectively. It is not known if 42 points is the fewest possible.

The goal of this chapter is to learn how to integrate on triangles with the help of the
quadrature data developed by Taylor, Wingate, and Bos [75, 74]. Unlike most other chap-
ters of this book, this chapter’s study does not lead to a self-contained module. The reason
is that in applications such as finite element models, integrations take place at the inner-
most level of multiply nested loops. It is significantly more efficient to insert a customized
integration code directly in the heart of the nested loops rather than pass data back and
forth to a general external module to evaluate the integrals. Consequently, we will use
this chapter’s ideas and techniques, rather than its C code, in future chapters.

24.2 The Taylor, Wingate, and Bos (TWB) quadrature
The article [74] describes the algorithm used by Taylor, Wingate, and Bos to determine
quadrature data (i.e., points and weights) for integration over triangles. The raw data is
available for electronic downloading from arXiv.org ; see [75]. The same data, wrapped
into a C program, is available at this book’s website as files twb-quad.[ch]. In this section
I will describe the organization of the data in those files and explain how to use them
in computations. I call the resulting procedure TWB quadrature after the initials of the
authors. Before we go on, I must add that there are other data sets for quadrature on
triangles. Lyness and Cools [42] provide a survey of the available methods at the time of
its publication in 1994. This was updated later in Cools [13]. Wandzura and Xiao [78]
provide an alternative set of quadrature tables. The article by Xiao and Gimbutas [82]
generalizes the technique to higher-dimensional domains. Also see the references in [74].
My choice of the TWB quadrature for the purposes of this book is mostly due to the easy
availability of their data.

The TWB quadrature data consists of 14 tables, each corresponding to a certain quadra-
ture strength. A quadrature table is said to have a strength of d if it produces exact answers
for all polynomials of degree less than or equal to d . The “exact answer” should be quali-
fied, however, since it is subject to the computer’s floating point roundoff errors, as well
as the numerical precision of the tables themselves. The order of magnitude of the relative
error in a TWB quadrature is roughly around 10−14. Table 5.1 of [75] gives more detailed
error estimates.

Table 24.1 lists the quadrature strengths, d , and the corresponding number of quadra-
ture points, n, of the 14 TWB quadrature tables. Thus, for instance, a polynomial of
degree 5 may be integrated exactly through a 10-point TWB quadrature. Table 24.2 lists
that quadrature’s 10 coordinates and weights. For each quadrature point it gives two of
the three barycentric coordinates (λ1,λ2,λ3). The third may be computed from λ1+λ2+
λ3 = 1. The weights add up to 2, indicating that the area of the standard reference trian-
gle, |Tstd|, is 2. Integrating a function over a triangle is a matter of plugging the numbers
from that table into the formula (24.1). Figure 24.2 shows the distribution of the TWB
quadrature points corresponding to strengths d = 5 and d = 11.

root
2014/7/8
page 322

�

�

�

�

�

�

�

�

322 Chapter 24. Integration on triangles

Table 24.1: Here is the list of the quadrature strengths, d , and the corresponding num-
ber of quadrature points, n, of the 14 TWB quadrature tables. A polyno-
mial of degree 5, for instance, may be integrated exactly through a 10-point
quadrature.

d 2 4 5 7 9 11 13 14 16 18 20 21 23 25
n 3 6 10 15 21 28 36 45 55 66 78 91 105 120

Table 24.2: The TWB data for a quadrature of strength d = 5.

λ1 λ2 w
1 0.0000000000000 1.0000000000000 0.0262712099504
2 1.0000000000000 0.0000000000000 0.0262716612068
3 0.0000000000000 0.0000000000000 0.0274163947600
4 0.2673273531185 0.6728199218710 0.2348383865823
5 0.6728175529461 0.2673288599482 0.2348412238268
6 0.0649236350054 0.6716530111494 0.2480251793114
7 0.6716498539042 0.0649251690029 0.2480304922521
8 0.0654032456800 0.2693789366453 0.2518604605529
8 0.2693767069140 0.0654054874919 0.2518660533658
10 0.3386738503896 0.3386799893027 0.4505789381914

24.3 The files twb-quad.[ch]
I have wrapped the raw TWB quadrature data provided in [75] into C structures and
placed them in the files twb-quad.[ch], which you should download from the book’s web-
site. I will not describe the contents of twb-quad.c—I expect that you will use it as a “black
box”. Feel free to examine its contents if you wish; it’s commented extensively.

What you should really understand is the interface, twb-quad.h, which is shown in
Listing 24.1. I have stripped off the comments in that listing to save space. The actual file
that you will download contains a good deal of comments.

Let us examine the contents of twb-quad.h:

Line 3. The preprocessor macro TWB_STANDARD_AREA defines the area of the stan-
dard reference triangle Tstd, described earlier. Use that macro instead of hard-coding
the number 2.0 in your programs.

Line 4. The structure declared here is designed to hold the data for one TWB quadra-
ture point. That consists of the point’s barycentric coordinates λ1 and λ2 and the
corresponding weight w. The λ3 coordinate is not in the TWB tables; our program
calculates it from λ3 = 1−λ1−λ2. An n-point quadrature table is an array of length
n of such structures. See, however, Example 24.2 below.

Line 10. The function twb_qdat() returns a pointer to the TWB quadrature table of
a requested strength. For instance, to get the quadrature table of strength d = 10,
we do

int d = 10, n;
struct TWB_qdat *qdat = twb_qdat(&d, &n);

Here is how it works. We pass the address, not the value, of the variable d to
twb_qdat(). This allows twb_qdat() to change the value of d if need be. This
flexibility is necessary since the TWB quadrature provides tables for 14 strengths

root
2014/7/8
page 323

�

�

�

�

�

�

�

�

24.3. The files twb-quad.[ch] 323

Figure 24.2: The distributions of the quadrature points in TWB quadratures of
strengths d = 5 (n = 10 points) and d = 11 (n = 28 points). Note the
asymmetric distribution of the points in the latter case. The article [75]
has similar drawings for each of the 14 cases.

Listing 24.1: The file twb-quad.h provides an interface to the TWB quadrature tables.

1 #ifndef H_TWB_QUAD_H
2 #define H_TWB_QUAD_H
3 #define TWB_STANDARD_AREA 2.0
4 struct TWB_qdat {
5 double lambda1;
6 double lambda2;
7 double weight;
8 double lambda3;
9 };

10 struct TWB_qdat *twb_qdat(int *d, int *n);
11 #endif /∗ H_TWB_QUAD_H ∗/

only (see Table 24.1), and therefore requests for arbitrary d cannot be granted. If
the requested strength is not available, the next higher strength is selected. If the
requested strength is greater than the maximum available, the maximum is selected.
If it is smaller than the minimum available, the minimum is selected. In any case,
the value of the variable d is set to the selected strength.

The function’s second argument, n, is set to the number of quadrature points of the
selected strength. For instance, if d = 10, as in the code fragment shown above,
then after twb_qdat() returns, d is set to 11 and n is set to 28.

The function returns the selected quadrature table as a pointer to a (static) array
of “struct TWB_qdat” of length n. Thus, in the code fragment shown above,
the table’s ith entry is produced by qdat[i]. The individual components of that
entry are qdat[i].lambda1, qdat[i].lambda2, qdat[i].lambda3, and
qdat[i].weight.

This completes the description of the details of twb-quad.h. You should be able to access
and use the quadrature data in any way you wish. Let us look at a few examples.

Example 24.1. To print the table of strength d = 10, you may do

int d = 10, n, i;
struct TWB_qdat *qdat = twb_qdat(&d, &n);

root
2014/7/8
page 324

�

�

�

�

�

�

�

�

324 Chapter 24. Integration on triangles

printf("we have d = %d, n = %d\n", d, n);
for (i = 0; i < n; i++)

printf("%3d: %15.12f %15.12f %15.12f %15.12f\n",
i + 1, qdat[i].lambda1, qdat[i].lambda2, qdat[i].lambda3,
qdat[i].weight);

Actually, this prints the table of strength d = 11 since no table of strength d = 10 exists.

Example 24.2. Here I will let you in on a little secret. In twb-quad.c, to each of the 14
quadrature tables I have appended a dummy quadrature point with the dataλ1 = 0, λ2 = 0,
and w = −1 that serves as a sentinel to mark the end of that table. This cannot be con-
fused with a true quadrature point since the weight is negative while the TWB quadrature
weights are all positive. Moreover, the calltwb_qdat(&d,&n) sets n to the true number
of the table’s quadrature points (that is, it does not count the dummy point). We relied
on that in the previous example. However, the presence of the end-marker provides an
alternative way to read the table that can result in a more expressive code. Here is the
previous example done in the new way:

int d = 10, n;
struct TWB_qdat *qdat = twb_qdat(&d, &n);
printf("we have d = %d, n = %d\n", d, n);
while (qdat→weight �= -1) {

printf("%15.12f %15.12f %15.12f %15.12f\n",
qdat→lambda1, qdat→lambda2, qdat→lambda3, qdat→weight);

qdat++;
}

Example 24.3. We saw in Example 24.2 that the scanning of a quadrature table may be
done without a reference to the number n of the quadrature points. If you truly have no
need for n, then you may call twb_qdat() with the second argument set to NULL, as in

int d = 10;
struct TWB_qdat *qdat = twb_qdat(&d, NULL);
printf("we have d = %d\n", d);
while (qdat→weight �= -1) {

printf("%15.12f %15.12f %15.12f %15.12f\n",
qdat→lambda1, qdat→lambda2, qdat→lambda3, qdat→weight);

qdat++;
}

Example 24.4. Listing 24.2 shows the contents of the file twb-quad-minimal.c that pro-
vides a bare-bones demonstration of the TWB quadrature. It integrates the function
f (x, y) = x2+ y2 on the triangle T with vertices at (0,0), (1,0), and (0,1) in the xy plane.
The code is self-explanatory; therefore I will not elaborate on its details other than not-
ing that on line 27 we multiply the sum by the factor |T |/|Tstd|, in accordance with the
formula (24.1). The area of our triangle T is 0.5.

Compile the program, and link with twb-quad.o. The exact value of the integral is
1/6. Since the integrand is a polynomial of degree 2, applying the program with d = 2
should suffice to obtain the result within the accuracy provided by the TWB tables. Here
is what I get:

root
2014/7/8
page 325

�

�

�

�

�

�

�

�

24.3. The files twb-quad.[ch] 325

Listing 24.2: The contents of the file twb-quad-minimal.c. This program integrates the function
f (x, y) = x2+ y2 over the triangle T with vertices at (0,0), (1,0), and (0,1).

1 #include <stdio.h>
2 #include "twb-quad.h"
3

4 double f(double x, double y)
5 {
6 return x*x + y*y;
7 }
8

9 int main(void)
10 {
11 double v1[] = { 0, 0 }; // vertex v1
12 double v2[] = { 1, 0 }; // vertex v2
13 double v3[] = { 0, 1 }; // vertex v3
14 double area = 0.5, sum = 0.0;
15 int d = 2, n, i;
16 struct TWB_qdat *qdat = twb_qdat(&d, &n);
17 printf("integrating with d = %d, n = %d\n", d, n);
18 for (i = 0; i < n; i++) {
19 double lambda1 = qdat[i].lambda1;
20 double lambda2 = qdat[i].lambda2;
21 double lambda3 = qdat[i].lambda3;
22 double w = qdat[i].weight;
23 double x = lambda1*v1[0] + lambda2*v2[0] + lambda3*v3[0];
24 double y = lambda1*v1[1] + lambda2*v2[1] + lambda3*v3[1];
25 sum += w*f(x,y);
26 }
27 sum *= area/TWB_STANDARD_AREA;
28 printf("integral = %.14f\n", sum);
29 return 0;
30 }

$./twb-quad-minimal
integrating with d = 2, n = 3
integral = 0.16666666666666

Remark 24.1. In accordance with the idea suggested in Example 24.2, the for-loop in
twb-quad-minimal.c may be replaced with an index-free loop, as in

while (qdat→weight �= -1) {
double lambda1 = qdat→lambda1;
double lambda2 = qdat→lambda2;
double lambda3 = qdat→lambda3;
double w = qdat→weight;
double x = lambda1*v1[0] + lambda2*v2[0] + lambda3*v3[0];
double y = lambda1*v1[1] + lambda2*v2[1] + lambda3*v3[1];
sum += w*f(x,y);
qdat++;

}

I prefer this this alternative method—it’s a matter of personal taste—therefore that’s what
we will see in most of the TWB applications in the rest of this book.

root
2014/7/8
page 326

�

�

�

�

�

�

�

�

326 Chapter 24. Integration on triangles

Listing 24.3: The transcript of an interactive session with the program twb-quad-demo.

1 $./twb-quad-demo
2 Usage: ./twb-quad-demo d a
3 d = the TWB quadrature strength
4 a = maximal triangle area
5

6 $./twb-quad-demo 4 0.01
7 quadrature strength = 4, number of points = 6
8

9 domain is a triangle with hole
10 vertices = 158, edges = 408, elems = 250
11 geomview output written to file triangle_with_hole.gv
12 integral = -0.068572048611105
13

14 domain is an annulus (really a 12-gon) of radii 0.325 and 0.65
15 vertices = 94, edges = 246, elems = 152
16 geomview output written to file annulus.gv
17 integral = -2.9553796953088e-10
18

19 domain is a square
20 vertices = 96, edges = 254, elems = 159
21 geomview output written to file square.gv
22 integral = 0.9999999999999
23

24 domain is an L-shape with three holes (actually 12-gons
25 vertices = 112, edges = 274, elems = 160
26 geomview output written to file three_holes.gv
27 integral = 0.28554098238704

24.4 The program
With the help of the triangulation tools developed in Chapter 23, we are now in a posi-
tion to integrate a function on any polygonal domain. It’s a matter of triangulating the
domain, integrating over the individual triangles, and adding the results. This capability
is of utmost importance—integrating over arbitrary polygonal domains is at the heart of
the FEM, as we will see in Chapter 25.

In this chapter’s Projects section we write a program to compute
∫∫
Ω

f (x, y)d x d y for
various functions f over the domains Ω that we worked with in Chapter 23. As noted in
Section 24.1, we are not going to encapsulate this chapter’s work in a module since we will
find it more practical to apply the ideas and techniques, rather than the programs, that we
will develop here. Listing 24.3 is the transcript of an interactive session with this chapter’s
program.

As we see, the program is invoked as “./twb-quad-demo 4 0.01”. It integrates
four functions over the domains triangle_with_hole, annulus, square, and three_holes, which
were introduced in Chapter 23, by triangulating the domains with a maximal area param-
eter of 0.01 and integrating over each triangle with a quadrature strength of 4. The inte-
grands vary from case to case—they are specified in problem-spec.c. The integration over
square computes ∫ 1

0

∫ 1

0
36xy(1− x)(1− y)d x d y.

root
2014/7/8
page 327

�

�

�

�

�

�

�

�

24.4. The program 327

The exact value is 1, as it’s trivial to evaluate that integral by hand. The program produces
0.9999999999999, which is within the floating point accuracy of the quadrature tables. An
accurate outcome is expected since the integrand is a polynomial of degree 4 and we are
applying a quadrature of strength 4.

The integration over triangle_with_hole computes∫∫
Ω

2

5
xy(2− x)(2− y)d x d x.

The exact answer −15799/230400 ≈ −0.068572048611111 Again, we see that the
value computed by the program is within the floating point accuracy of the quadrature
tables.

The integration over annulus computes∫∫
Ω

1

5
cos

*
3 tan−1 y

x

+
d x d y,

which is equivalent to integrating 1
5 cos 3t in polar coordinates. The integral’s exact value

is zero due to the symmetries of the domain and the integrand; however, we don’t expect
an exact quadrature since (a) the function being integrated is not a polynomial, and (b) the
domain is bounded by polygons rather than true circles. Nonetheless, the computed result
is quite respectably close to zero, albeit as a result of cancellations due to symmetries rather
than a precise quadrature.

The integrand in the case of three_holes is f (x, y) = x2 + y2. You may change that if
you wish.

Listing 24.4 shows the transcript of a sequence of additional experiments on square
and the same fourth degree polynomial as before. I have set the maximal area parameter
to 1. This produces the coarsest possible triangular mesh—two triangles only. In the three
experiments shown, I reduce the quadrature strength from 4 to 3 to 2.

The result of the experiment on lines 1–6 is within 10−14 of the exact answer, as it
should be, since we are integrating a fourth degree polynomial with quadrature of strength
d = 4.

At first sight the outcome of the experiment on lines 8–13 seems unexpected since
the answer remains unchanged despite the reduction in the quadrature strength. A closer
look reveals, however—see line 9—that the program is applying a quadrature strength of 4
despite the request for a strength of 3. Why? See the list of the 14 available strengths in
Table 24.1. There is no table of strength d = 3. The program detects that and picks up the
next higher strength, which is d = 4.

On the other hand, the request for a quadrature strength of d = 2 on line 15 meets
the program’s approval and it duly produces the answer 0.9722, which shows a signifi-
cant deterioration of accuracy, as may be expected since we are applying a quadrature of
strength 2 to integrate a polynomial of degree 4.

24.4.1 Program files

In addition to the files twb-quad.[ch] discussed earlier, the implementation of the program
depends on the files xmalloc.[ch] from Chapter 7, the file array.h from Chapter 8, and the
files mesh.[ch] from Chapter 23. Furthermore, you will need a copy (not a link since we are
going to modify it) of the file problem-spec.c from Chapter 23. The file problem-spec.h is not
going to change; therefore a symbolic link is fine. Therefore, following the suggestions in

root
2014/7/8
page 328

�

�

�

�

�

�

�

�

328 Chapter 24. Integration on triangles

Listing 24.4: The transcript of a second interactive session with the program twb-quad-demo. We
reduce the quadrature strength from 4 to 3 to 2. The mesh consists of two triangles
only.

1 ./twb-quad-demo 4 1
2 quadrature strength = 4, number of points = 6
3 domain is a square
4 vertices = 4, edges = 5, elems = 2
5 geomview output written to file square.gv
6 integral = 0.999999999999831
7

8 ./twb-quad-demo 3 1
9 quadrature strength = 4, number of points = 6

10 domain is a square
11 vertices = 4, edges = 5, elems = 2
12 geomview output written to file square.gv
13 integral = 0.999999999999831
14

15 ./twb-quad-demo 2 1
16 quadrature strength = 2, number of points = 3
17 domain is a square
18 vertices = 4, edges = 5, elems = 2
19 geomview output written to file square.gv
20 integral = 0.972222222222193

Chapters 2 and 6, your project’s directory initially will look like this:88

$ cd twb-quad
$ ls -F
Makefile plot-with-geomview.c triangle.h@ twb-quad.c
array.h@ plot-with-geomview.h triangle.o@ twb-quad.h
mesh.c@ problem-spec.c twb-quad-demo.c xmalloc.c@
mesh.h@ problem-spec.h@ twb-quad-minimal.c xmalloc.h@

We saw the purpose and contents of twb-quad-minimal.c in Example 24.4 on page 324. In
the following sections I will describe the contents of the files plot-with-geomview.[ch] and
twb-quad-demo.c and delineate the required changes to problem-spec.c.

24.5 The files plot-with-geomview.[ch]
The integral of a function over a domain is just a number, and that’s what we expect an
integration program to produce. Our program, however, does more. In addition to pro-
ducing the numerical value of the integral, it also writes a file—a Geomview script, to be
precise—which may be fed to Geomview (see page 8) to plot a graph of the integrand as a
surface in the three-dimensional space. The graphs in Figure 24.3 (page 335) are screen-
shots of Geomview’s display.

For the purposes of this chapter, plotting graphs is a mere frill and certainly not central
to evaluating integrals. We do it to satisfy our curiosity regarding the shape of the domain

88Just as in Chapter 23, the files triangle.[ho] link to where you keep your Triangle files. If you have installed
Triangle as a library, then these are not needed; just link your program with the -ltriangle flag instead. See
Section 23.7 for more on this subject.

root
2014/7/8
page 329

�

�

�

�

�

�

�

�

24.6. Modifying the file problem-spec.c 329

Listing 24.5: The file plot-with-geomview.h provides the interface to a module for writing Ge-
omview scripts to visualize three-dimensional graphs of function defined on a mesh.

1 #ifndef H_PLOT_WITH_GEOMVIEW_H
2 #define H_PLOT_WITH_GEOMVIEW_H
3 #include "mesh.h"
4 void plot_with_geomview_mono(struct mesh *mesh, char *filename);
5 void plot_with_geomview_zhue(struct mesh *mesh, char *filename);
6 #endif /∗ H_PLOT_WITH_GEOMVIEW_H */

and the integrand’s graph. If you are not interested in seeing the graph, you may safely
remove the couple of lines of code that produce the Geomview script.

Plotting functions will be essential when we turn to FEM applications in Chapter 25.
The only reason for including plotting code in this chapter is to prepare the way for future
applications to the FEM.

The file plot-with-geomview.c contains the implementation of a module for writing
Geomview scripts to plot functions over meshed domains., The module’s interface, plot-
with-geomview.h, is shown in Listing 24.5. The two functions declared on lines 4 and 5
produce monochrome and color graphics, respectively. You may call one or the other, or
both, in any given situation. These functions receive the address of a mesh structure and
a file name. They translate the contents of the structure to a format understandable to
Geomview and write the result to the named file. If the file does not exist, it is created. If
a file by that name exists, it will be overwritten by the new one.

The (x, y, z) coordinates of the graph’s points are read from the mesh’s node struc-
tures; see struct node in Listing 23.6 on page 312. You are responsible for calculating
the z values—by evaluating the function to be plotted at every node—before passing the
mesh structure to plot_with_geomview_*().

Writing plot-with-geomview.[ch] requires some familiarity with Geomview’s syntax;
therefore I am not making it a requirement for this project. Download those files from
the book’s website, and compile them along with the rest of your program.

24.6 Modifying the file problem-spec.c
We are going to modify slightly the file problem-spec.c that you copied here from Chap-
ter 23’s Project Triangulate. The modifications are simple. In that chapter we were con-
cerned with triangulation only; therefore the member f of “struct problem_spec”
was irrelevant and was set to NULL. In this chapter f points to a function that is to be
integrated.

Thus, just before the definition of the function triangle_with_hole() (see List-
ing 23.3 on page 307) add a new function:

static double triangle_f(double x, double y)
{

return 0.4*x*y*(2-x)*(2-y);
}

Then, on line 38 of Listing 23.3, change the NULL to triangle_f. Our program will
integrate this function over the triangle_with_hole domain. The function and its name
are arbitrary. Change them as you wish. Regardless of the name you give, the program
will access that function through the member f of “struct problem_spec”, as in
spec→f(x,y).

root
2014/7/8
page 330

�

�

�

�

�

�

�

�

330 Chapter 24. Integration on triangles

Listing 24.6: An outline of the file twb-quad-demo.c.

1 � #include ...
2 � static void eval_f(struct mesh *mesh,
3 double (*f)(double x, double y)) ...
4 � static double integrate_over_triangle(struct elem *ep,
5 struct TWB_qdat *qdat,
6 double (*f)(double x, double y)) ...
7 � static void do_demo(struct problem_spec *spec, double a,
8 struct TWB_qdat *qdat, char *gv_filename) ...
9 � static void show_usage(const char *progname) ...

10 � int main(int argc, char **argv) ...

Similarly, just before the definition of the function annulus() (see Listing 23.4 on
page 310) add a new function,

static double annulus_f(double x, double y)
{

double t = atan2(y,x); // the polar angle of the point (x, y)
return 0.20*cos(3*t);

}

then detach spec→f from line 40, and set spec→f = annulus_f.

24.7 The file twb-quad-demo.c
The file twb-quad-demo.c demonstrates the TWB quadrature technique by integrating
functions over the various domains defined in problem-spec.c; see Listing 24.3 for a tran-
script of an interactive session. Listing 24.6 gives the file’s outline. I will begin the de-
scription of the contents of the file twb-quad-demo.c at the bottom, that is, at the function
main(), and work my way up.

24.7.1 The function main()

Listing 24.7 gives the contents of the function main(). Let us look at its details.

Lines 3–8. These supply the prototypes of the functions square(), annulus(), etc.,
which are defined in problem-spec.c. I could have included those prototypes in the
file problem-spec.h, but I decided against it since adding new functions in problem-
spec.c would necessitate changing problem-spec.h, which would not be pretty. In-
stead, I have chosen to include the prototypes in main() since that’s the only place
where they are needed.

Line 15. We expect the program to be invoked with two command-line arguments, as in
“./twb-quad-demo d a”, where d is the desired quadrature strength, and a is
an upper bound on the triangle areas in the triangulation. Thus, if argc is other
than 3, we print a usage message and exit the program.

Line 19. We call the C standard library’s strtol() function (see Chapter 5) to extract
the value of d from the command-line parameter argv[1]. If the user has supplied
an illegal value, we print a usage message message and exit the program.

root
2014/7/8
page 331

�

�

�

�

�

�

�

�

24.7. The file twb-quad-demo.c 331

Listing 24.7: The function main() in the file twb-quad-demo.c.

1 int main(int argc, char **argv)
2 {
3 struct problem_spec *square(void);
4 struct problem_spec *triangle_with_hole(void);
5 struct problem_spec *annulus(int n);
6 void free_annulus(struct problem_spec *spec);
7 struct problem_spec *three_holes(int n);
8 void free_three_holes(struct problem_spec *spec);
9 struct problem_spec *spec;

10 struct TWB_qdat *qdat;
11 int d; // the quadrature strength
12 int n; // the number of quadrature points
13 double a; // upper bound on triangle areas
14 char *endptr;
15 if (argc �= 3) {
16 show_usage(argv[0]);
17 return EXIT_FAILURE;
18 }
19 d = strtol(argv[1], &endptr, 10);
20 if (*endptr �= ’\0’) {
21 show_usage(argv[0]);
22 return EXIT_FAILURE;
23 }
24 a = strtod(argv[2], &endptr);
25 if (*endptr �= ’\0’ || a ≤ 0) {
26 show_usage(argv[0]);
27 return EXIT_FAILURE;
28 }
29 qdat = twb_qdat(&d, &n);
30 printf("quadrature strength = %d, number of points = %d\n", d, n);
31 putchar(’\n’);
32

33 do_demo(triangle_with_hole(), a, qdat, "triangle-with-hole.gv");
34 putchar(’\n’);
35

36 spec = annulus(12);
37 do_demo(spec, a, qdat, "annulus.gv");
38 free_annulus(spec);
39 putchar(’\n’);
40 ...

Line 24. We call the C standard library’s strtod() function (see Chapter 5) to extract
the value of a from the command-line parameter argv[2]. If the user has supplied
an illegal value, we print a usage message message and exit the program.

Line 29. We call twb_qdat() to fetch the quadrature table of strength d. The value
of d will be adjusted, if necessary, to conform to one of the 14 possible values; see
Table 24.1 on page 322.

Line 33. We call do_demo() (more on that later) to perform an integration over the do-
main returned by triangle_with_hole() as defined in the file problem-spec.c.

root
2014/7/8
page 332

�

�

�

�

�

�

�

�

332 Chapter 24. Integration on triangles

Listing 24.8: The function do_demo() in the file twb-quad-demo.c.

1 static void do_demo(struct problem_spec *spec, double a,
2 struct TWB_qdat *qdat, char *gv_filename)
3 {
4 double sum = 0.0;
5 struct mesh *mesh = make_mesh(spec, a);
6 printf("vertices = %d, edges = %d, elems = %d\n",
7 mesh→nnodes, mesh→nedges, mesh→nelems);
8 eval_f(mesh, spec→f);
9 plot_with_geomview_mono(mesh, gv_filename);

10 for (int i = 0; i < mesh→nelems; i++)
11 sum += integrate_over_triangle(&mesh→elems[i], qdat, spec→f);
12 printf("integral = %.14g\n", sum);
13 free_mesh(mesh);
14 }

The program will integrate the function associated with the domain and print the
result to the stdout. Additionally, it will write a three-dimensional representa-
tion of the integrand’s graph into a file named in do_demo()’s last argument; it is
"triangle-with-hole.gv" in this case. The name of the file is arbitrary. The
graph may be viewed with Geomview. See Figure 24.3 on page 335 for samples.

Line 36. We integrate over the annulus. In contrast to the previous integration, here we
separate the call to annulus() from the call to do_demo(). This is because we
want to save a pointer, spec, to the structure returned by annulus() so that
we may free the memory later by calling free_annulus(). This was not neces-
sary in the case of triangle_with_hole() since that function does not allocate
memory.

Line 40. I am truncating the listing of main() here. In this chapter’s Projects section
you will receive instructions on adding more demos here.

24.7.2 The function show_usage()

The function show_usage() that appears on line 9 of Listing 24.6 prints a brief usage
message. See the transcript of a sample session in Listing 24.3. Write something similar
for your program. Make the message more detailed if you wish.

24.7.3 The function do_demo()

The function do_demo() that appears on line 7 of Listing 24.6 runs the demo for one in-
tegration problem. It receives the problem specification in the spec argument, a pointer
to the TWB quadrature table in the qdat argument, as well as the maximal area value of
a, and a file name for writing a Geomview script for a three-dimensional rendering of the
integrand’s graph. Listing 24.8 shows the implementation of do_demo(). It is mostly
self-explanatory, but nevertheless, let’s look at some of its details.

Line 5. We pass the problem specification in spec and the value of maximal area parame-
ter a to the function make_mesh() (from Chapter 23) to mesh the domain. After
the function returns, the pointer mesh points to the resulting mesh structure.

root
2014/7/8
page 333

�

�

�

�

�

�

�

�

24.7. The file twb-quad-demo.c 333

Listing 24.9: The function integrate_over_triangle() in the file twb-quad-demo.c.

1 static double integrate_over_triangle(struct elem *ep,
2 struct TWB_qdat *qdat, double (*f)(double x, double y))
3 {
4 double x[3], y[3];
5 double sum = 0.0;
6 for (int i = 0; i < 3; i++) {
7 x[i] = ep→n[i]→x;
8 y[i] = ep→n[i]→y;
9 }

10 while (qdat→weight �= -1) {
11 double lambda[3];
12 lambda[0] = qdat→lambda1;
13 lambda[1] = qdat→lambda2;
14 lambda[2] = qdat→lambda3;
15 double X = lambda[0]*x[0] + lambda[1]*x[1] + lambda[2]*x[2];
16 double Y = lambda[0]*y[0] + lambda[1]*y[1] + lambda[2]*y[2];
17 sum += qdat→weight * f(X,Y);
18 qdat++;
19 }
20 return (ep→area / TWB_STANDARD_AREA) * sum;
21 }

Line 8. The call to eval_f(), explained fully in subsection 24.7.5, evaluates the inte-
grand, that is, spec→f, at every node of the mesh and stores the value in the node
structure’s z member; see line 4 of Listing 23.6 on page 312. This step is not nec-
essary at all for the integration. It is done only for producing a three-dimensional
drawing of the integrand’s graph; see the next step.

Line 9. The function plot_with_geomview_mono() is defined in the file plot-with-
geomview.c, which you downloaded from the book’s website; see Section 24.5. It
reads the mesh data and produces a script which may be fed to Geomview to pro-
duce a three-dimensional monochrome rendering of the integrand. The value of
the integrand at each node is obtained from node structure’s z member, as noted
above. Replace the call with plot_with_geomview_zhue() to obtain a col-
ored graph.

This step is not necessary at all for the integration. If you are not interested in seeing
the integrand’s graph, you may safely remove lines 8 and 9 from do_demo().

Line 10. Here is where the real work is done. The for-loop goes over the mesh’s el-
ements (that is, triangles), calls integrate_over_triangle() (more about
that later) to integrate over individual triangles, and accumulates the results. After-
ward the accumulated value is printed and the memory associated with the mesh is
freed.

24.7.4 The function integrate_over_triangle()

The function integrate_over_triangle() that appears on line 4 of Listing 24.6 is
where the main action takes place. It integrates a function over a triangle through a TWB
quadrature. Its implementation is shown in its entirety in Listing 24.9.

root
2014/7/8
page 334

�

�

�

�

�

�

�

�

334 Chapter 24. Integration on triangles

The function’s first argument, ep, is a pointer to a struct elem (that is, a triangle)
declared in the file mesh.h; see line 16 of Listing 23.6 on page 312. The function’s second
argument is a pointer to a TWB quadrature table, and the third argument is a function of
the type R2 →R. The goal is to integrate that function over the triangle and return the
result. Let us examine the details.

Line 6. The expression ep→n[i] is a pointer to the node at the element’s ith vertex.
Therefore the vertex’s coordinates are ep→n[i]→x and ep→n[i]→y. These
expressions are rather clumsy; therefore we introduce the shorthands x[i] and
y[i] for these.

Line 10. The while-loop goes over the quadrature points. It stops when we reach the
quadrature table’s end-marker, which is a point with weight −1 (see Example 24.2
on page 324). We introduce lambda[i] as a shorthand for the barycentric coordi-
nates qdat→lambda1, etc., and then calculate the Cartesian coordinates (X ,Y)
of the quadrature point in accordance with (A.1) on page 375. Then we evaluate
the function f at the quadrature point, multiply the result by the corresponding
weight, and accumulate the results in the variable sum. In effect, this is the C im-
plementation of the summation in formula (24.1) on page 320.

Line 20. This corresponds to the multiplication by |T |/|Tstd| in formula (24.1).

24.7.5 The function eval_f()

The function eval_f() that appears on line 2 of Listing 24.6 receives pointers to a mesh
and a function. It evaluates the function at every node and places the result in the node
structure’s z member. The computation is quite straightforward, so I will let you write
the code.

24.8 Project TWB Quadrature

Part 24.1. You have all the bits and pieces needed to compile and test the TWB quadra-
ture program. I suggest that you begin with twb-quad-minimal.c presented in Exam-
ple 24.4 to gain some assurance that things work as they should. Then proceed with
the various items below.

Part 24.2. Complete the loose ends. Based on Section 24.6’s narrative, the domain-
specification functions triangle_with_hole() and annulus() and the associated
functions (integrands) triangle_f() andannulus_f() should be ready to go. Com-
pile, link, and execute the program. Compare its output to that shown in the transcript
of the interactive session in Listing 24.3.

Part 24.3. In problem-spec.c you have a function square() that defines a domain in
the form of the unit square [0,1]× [0,1]. Add the associated function square_f() as
f (x.y) = 36xy(1− x)(1− y) whose exact integral over the square is 1. Verify that your
program confirms that. You will need to add code at the bottom of main() in the file
twb-quad-demo.c to activate this demo.

Part 24.4. Change square_f() to f (x, y) = 40
3 x(1− x2)y(1− y3). (Don’t delete the

previous function; just comment it out.) This also integrates to 1 on [0,1]× [0,1]. What
is a good quadrature strength for it?

root
2014/7/8
page 335

�

�

�

�

�

�

�

�

24.8. Project TWB Quadrature 335

(a) (b)

Figure 24.3: The graphs of the integrands of the problem specifications in
triangle_with_hole() and three_holes(), produced by
executing “./twb-quad-demo 4 0.01” and then viewing the
results in Geomview. The color figure on the left is made by
plot_with_geomview_zhue() and then printed in greyscale
on this page, and the monochrome one on the right is made by
plot_with_geomview_mono().

Part 24.5. Try a nonpolynomial for square_f(). The function f (x, y) = π2

4 sinπx sinπy
integrates to 1 over the square. What does your program say?

Part 24.6. In problem-spec.c you have a function three_holes() that defines an
L-shaped domain with three holes; see Figure 23.1 on page 302. Add the associated func-
tion three_holes_f() as f (x, y) = x2+y2, and extend main() to activate the demo.
Compare the result with that shown in Listing 24.3. View the graphics file that the pro-
gram generates. Mine is shown in Figure 24.3(b).

root
2014/7/8
page 337

�

�

�

�

�

�

�

�

Chapter 25

Finite elements

Prerequisites: Chapters 7, 8, 11, 12, 23, 24, and Appendix A

25.1 The Poisson equation
The simplest introduction to the finite element method (FEM) for solving partial differen-
tial equations (PDEs) is through the Poisson equation89 in two dimensions:

∂ 2u

∂ x2 +
∂ 2u

∂ y2 + f = 0, (25.1)

where f = f (x, y) is given, and u = u(x, y) is unknown. You can see right away that a
solution u, if one exists, is not unique. For instance, if u(x, y) is a solution, then u(x, y)+
ax + b y+ c + eαx sinαy + eβx cosβy with arbitrary constants a, b , c , α, and β also is a
solution since those extra terms go away when you differentiate them twice and add. The
slack in determining u(x, y) is much wider than the five extra terms that I have shown.
Any member of the rich class of functions known as harmonic functions is a part of that
slack.

Practical applications supplement the Poisson equation with additional data that help
to single out a unique solution out of the infinitely many candidates. Consider, for exam-
ple, a prescribed domain Ω ∈R2 and a given function f :Ω→R, and pose the following
boundary value problem: Find u :Ω→R such that90

∂ 2u

∂ x2 +
∂ 2u

∂ y2 + f = 0 in Ω,

u = 0 on ∂ Ω.

(25.2)

The boundary value problem (25.2) occurs in innumerable contexts in mathematical
models in physics and engineering. Almost every elementary book on PDEs and every
book in the “mathematical methods in physics/engineering” genre will give the deriva-
tion of the boundary value problem (25.2), or variants thereof, in numerous contexts,

89The equation is named after the French mathematician Siméon Denis Poisson, pronounced pwa-son. The
three-dimensional version of the equation is ∂ 2 u

∂ x2 +
∂ 2 u
∂ y2 +

∂ 2 u
∂ z2 + f = 0, where u and f are functions of x , y,

and z.
90The notation “∂ Ω” is a conventional way of referring to the boundary of Ω. The “∂ ” there has nothing to

do with partial derivatives.

337

root
2014/7/8
page 338

�

�

�

�

�

�

�

�

338 Chapter 25. Finite elements

such as heat conduction, equilibrium of membranes under applied loads, and distribu-
tion of charges on electrically conducting objects. The books [38, 81, 20, 43, 79, 83] are
but a small sample of the titles in this vast area.

It turns out that if (a) the geometry ofΩ is nice, e.g., it is bounded and has a nonempty
interior; (b) ∂ Ω has no severe kinks or weird things like fractals; and (c) the function f is
nice, e.g., it does not have severe discontinuities, then the boundary value problem (25.2)
has a unique solution u. The FEM may be applied to find an approximation to that u
with a desired level of accuracy. It is the goal of this chapter to learn how.

25.2 The weak formulation
25.2.1 Gradient, divergence, and Laplacian

The gradient of a function u : Rn → R is the vector ∇u = 〈 ∂ u
∂ x1

, ∂ u
∂ x2

, . . . , ∂ u
∂ xn
〉, where

x1, x2, . . . , xn are the Cartesian coordinates. Insofar as ∇u is the list of the first order
partial derivatives of u, it does not matter whether you think of it as a row or column
vector. However, when∇u appears in the context of matrix algebra, it is always regarded
as a column vector so that an expression of the sort A∇u, where A is an n × n matrix,
makes sense.

The gradient operator is the symbolic vector ∇ = 〈 ∂∂ x1
, ∂
∂ x2

, . . . , ∂
∂ xn
〉. One thinks of

∇u as the operator∇ acting on the function u. If v is a vector field, that is, v : Rn →Rn ,
then∇ can operate on v as in a dot product:

∇ ·v =
6 ∂

∂ x1
,
∂

∂ x2
, . . . ,

∂

∂ xn

7
· 〈v1, v2, . . . , vn〉=

∂ v1

∂ x1
+
∂ v2

∂ x2
+ · · ·+ ∂ vn

∂ xn
.

The expression∇·v occurs frequently in applications, especially in continuum mechanics
and electromagnetism. It is called the divergence of the vector field v. (The notation divv is
another way of writing∇·v.) In particular, if v is a potential vector field, that is, v =∇u,
where u is a scalar function, then we get

div∇u =∇ ·∇u =∇ ·
6 ∂ u
∂ x1

,
∂ u
∂ x2

, . . . ,
∂ u
∂ xn

7
=
∂ 2u

∂ x2
1

+
∂ 2u

∂ x2
2

+ · · ·+ ∂
2u

∂ x2
n

.

The result, which is really the divergence of the gradient of u, is called the Laplacian of u.
Like the divergence, this too occurs in very many places in applications to mechanics and
physics. Although ∇ · ∇u is a perfectly good notation for the concept, you may see it
written variously as ∇2u (engineers and physicists like that) orΔu (mathematicians like
that). Accordingly, the Poisson equation (25.1) may be written variously as

∇ ·∇u + f = 0 or div∇u + f = 0 or ∇2u + f = 0 or Δu + f = 0.

These are more compact than (25.1), and more general as well, since they are not limited
to two dimensions.

25.2.2 The Divergence Theorem

The Divergence Theorem is an indispensable tool when working with PDEs. A first course
in multivariable calculus is likely to present the Divergence Theorem only for the n = 2

root
2014/7/8
page 339

�

�

�

�

�

�

�

�

25.2. The weak formulation 339

and n = 3 cases. In the n = 2 case it is called Green’s Theorem and is stated as∫∫
Ω

divF (x, y)da =
∫
∂ Ω

F ·nd s ,

where F : Ω ⊂ R2 → R2 is a vector field on the two-dimensional domain Ω and n is
the unit outward normal to the boundary, ∂ Ω (see, e.g., the section titled “Curl and Di-
vergence” in Stewart [65]). In the n = 3 case it is called the Divergence Theorem and is
stated as ∫∫∫

Ω

divF (x, y, z)d v =
∫∫

∂ Ω

F ·nda,

where F :Ω⊂R3 →R3 is a vector field on the three-dimensional domain Ω and n is the
unit outward normal to the boundary, ∂ Ω (see, e.g., the section titled “The Divergence
Theorem” in Stewart [65]).

A more advanced course in multivariable calculus is likely to present the Divergence
Theorem on Rn for any n in the form∫

Ω

divF d x =
∫
∂ Ω

F ·nda, (25.3)

whereF :Ω⊂Rn →Rn is a vector field on the n-dimensional domainΩ and n is the unit
outward normal to the boundary, ∂ Ω. The left-hand side represents an n-tuple integral
over Ω. The right-hand side is a surface integral over Ω’s boundary.

Although the implementations of FEM are limited to two-dimensional domains in
this book, I will use the general form (25.3) of the Divergence Theorem in the discussion
since it is less cumbersome than the others.

A very useful consequence of the Divergence Theorem (25.3) is obtained by setting
F = v∇u, where u and v are arbitrary (scalar) functions on Ω⊂Rn . We have

divF =∇·(v∇u) =
n∑

i=1

∂

∂ xi

�
v
∂ u
∂ xi

�
=

n∑
i=1

∂ v
∂ xi

∂ u
∂ xi
+

n∑
i=1

v
∂ 2u

∂ x2
i

=∇u ·∇v+v∇·∇u;

therefore, the Divergence Theorem implies that∫
Ω

(∇u ·∇v + v∇ ·∇u)d x =
∫
∂ Ω

v∇u ·nda =
∫
∂ Ω

v
∂ u
∂ n

da. (25.4)

This identity, which holds between any two scalar functions u and v on any domain
Ω⊂Rn ,91 is called Green’s identity.

25.2.3 The weak formulation

For convenience, I will reproduce the boundary value problem (25.2) here with the equiv-
alent but more compact notation

∇ ·∇u + f = 0 on Ω,
u = 0 on ∂ Ω.

(25.5)

Let V be the set of (smooth) functions defined on Ω that vanish on ∂ Ω. The solution u
belongs to that set. Pick an arbitrary function v ∈V . Plug v and the solution u of (25.5)

91I am glossing over technical issues such as differentiability and integrability of the functions and the smooth-
ness of the domain.

root
2014/7/8
page 340

�

�

�

�

�

�

�

�

340 Chapter 25. Finite elements

into Green’s identity in (25.4). The boundary integral drops out since v is zero on the
boundary, and we are left with

∫
Ω
(∇u ·∇v − v f)d x = 0, which we rearrange as∫

Ω

∇u ·∇v d x =
∫
Ω

f v d x. (25.6)

We conclude that a solution u of the boundary value problem (25.5) satisfies the iden-
tity (25.6) for every possible function v in V . It can be shown that the converse is also
true: If (25.6) holds for a function u ∈ V and all functions v ∈ V , then u is a solution
of (25.5). In those terms, the boundary value problem (25.5) and the identity (25.6) are
equivalent. The identity (25.6) is called the weak formulation of the boundary value prob-
lem (25.5). In light of this, solving the boundary value problem (25.5) is equivalent to the
following statement:

Find u ∈V such that∫
Ω

∇u ·∇v d x =
∫
Ω

f v d x for all v ∈V . (25.7)

I am being intentionally evasive about the precise nature of the set V . If V is going
to serve as a source of functions for u and v, then we had better impose some constraints
on the types of functions that go into it. For instance, such functions need to be dif-
ferentiable in some sense so that the expressions ∇u and ∇v in (25.7) have meanings.
Additionally, such functions need to be integrable in some sense because otherwise the
integrals in (25.7) won’t have meanings. Furthermore, the set V should be sufficiently
rich; otherwise the weak formulation (25.7) can’t be equivalent to the boundary value
problem (25.5). The precise characterization of V involves the Sobolev space H 1(Ω) and
its subspaces. I will not elaborate on these here. See the references at the end of this chap-
ter for further study. I have strived to present the FEM in this chapter in such a way that it
should remain accessible, at least in a general outline, even if you don’t grasp the technical
details. A lack of knowledge of the Sobolev spaces, for instance, should not hinder the
completion of this chapter’s projects.

Remark 25.1. There is magic in (25.7). The PDE in (25.5) is of second order since u
is being differentiated twice. In the slight of hand that leads to (25.7), the second order
derivatives disappear. That effect has wide-ranging repercussions in the theory of PDEs.

25.3 The Galerkin approximation
Once the vague ideas introduced in the previous section are placed on a firm mathematical
foundation, it emerges that the set V of functions introduced in the previous section is
a linear space, that is, if f and g are in V , then α f + βg is in V for all constants α
andβ. Furthermore, the linear space V is infinite dimensional; there is no finite basis that
spans V . The Galerkin approximation92 amounts to replacing the infinite-dimensional
space V with an m-dimensional subspace, say Vm ⊂V , and then reformulating (25.7) as
follows:

92It is named after the Russian engineer/mathematician Boris Galerkin, the proper romanization of whose
name is Galyorkin, but in English-speaking countries it is generally spelled and pronounced “Galerkin”.

root
2014/7/8
page 341

�

�

�

�

�

�

�

�

25.4. An overview of the FEM 341

Find um ∈Vm such that∫
Ω

∇um ·∇v d x =
∫
Ω

f v d x for all v ∈Vm. (25.8)

One wants Vm to approximate V well enough so that the solution um of (25.8) is near
the solution u of (25.7) if m is large. We will look at the construction of such a Vm
in the next section. For now, suppose that we have succeeded in constructing a basis
�m = {vi}m

i=1 for Vm . Then the condition “for all v ∈ Vm” in (25.8) is equivalent to
“for v = vi , i = 1,2, . . . , m”. Furthermore, any um ∈ Vm may be expressed as a linear
combination of Vm’s basis functions:

um =
m∑

j=1

c j v j . (25.9)

Consequently, the equation in (25.8) takes the form∫
Ω

∇
* m∑

j=1

c j v j

+
·∇vi d x =

∫
Ω

f vi d x, i = 1,2, . . . , m,

which, upon a slight rearrangement of terms, leads us to the following equivalent formu-
lation of Galerkin’s approximation:

Find c j , j = 1,2, . . . , m, such that

m∑
j=1

�∫
Ω

∇vi ·∇vj d x
�

c j =
∫
Ω

f vi d x, i = 1,2, . . . , m. (25.10)

At this point we introduce an m×m matrix K and an m-vector F through

Ki j =
∫
Ω

∇vi ·∇vj d x, Fi =
∫
Ω

f vi d x, (25.11)

and an m-vector c with components c = 〈c1, c2, . . . , cm〉, whereupon Galerkin’s approxi-
mation (25.10) takes the form of a linear system of m equations in m unknowns:

Kc = F . (25.12)

Thus, finding the approximate solution um of the boundary value problem (25.5) has
been reduced to computing the integrals in (25.11), solving the linear system (25.12) for c ,
and then evaluating the sum (25.9).

The m×m matrix K is called the system stiffness matrix and the vector F is called the
system force vector, terminology that dates back to the early years of the FEM and its use
in solving elasticity problems.

25.4 An overview of the FEM
To begin implementing the previous section’s Galerkin approximation idea, we need to
construct a basis �m = {vi }m

i=1 for the subspace Vm and compute the stiffness matrix K
and the force vector F in (25.11). We will see how these are done in the following four
subsections.

root
2014/7/8
page 342

�

�

�

�

�

�

�

�

342 Chapter 25. Finite elements

Figure 25.1: A triangulated square and a few basis functions, shown in perspective (left)
and viewed from above (right). Note the overlap of the supports of the
adjacent basis functions.

25.4.1 Meshing

The FEM’s first step in the construction of the finite-dimensional subspace Vm and its
basis�m is to mesh the domain Ω. In this book we will consider triangular meshes only,
although quadrilateral and hexagonal meshes are also in common use. Figure 25.1 shows
a sample triangulated domainΩwhich happens to be a square in this instance, but the fact
that it is a square has no bearing on what follows. The figure also shows a few pyramids
which are constructed as follows. Pick any vertex, say vertex number i , of the mesh. Iden-
tify all the triangles that have that vertex in common. Construct a pyramid of height 1,
whose apex is situated directly above the selected vertex and whose base consists of the
union of the triangles that you identified. Consider the pyramid as the graph of a function
of two variables. Extend that function by zero to the rest of the domainΩ. Call the result-
ing function vi . Repeat this for every vertex of the mesh other than those vertices that
fall on the domain’s boundary. This produces a collection of functions �m = {vi }m

i=1,
where m is the number of the mesh’s internal vertices. Each function vi ∈�m is defined
over the entire Ω, and has a graph in the form of a pyramid locally, and extended by zero
globally. It should be clear that �m is a linearly independent set—you cannot construct
one vi ∈ �m as a linear combination of the others since vi is 1 at the vertex i while all
others are zero there.

Define the linear space Vm as the span of�m . Since�m is a basis for Vm and�m has
m elements, we have dimVm = m. Refining the mesh increases the number of internal
vertices and hence the dimension of Vm .

Every function in Vm vanishes on the boundary since we skipped the boundary ver-
tices when constructing the functions vi . It takes some quite technical work to show that
Vm is a good approximation to V , and as m goes to infinity, the solution um of (25.8)
approaches the solution u of (25.7). See any of [12, 11, 10, 23, 5] for the details.

25.4.2 Assembling the system

Now that we have constructed the pyramid-shaped basis functions vi , we should be ready
to compute the system stiffness matrix K and the system force vector F through the in-
tegration formulas (25.11). At first sight, computing Ki j seems to be straightforward: for
every pair of vertices i and j , we look at the pyramids centered at i and j , multiply their
gradients, and integrate. The integration takes place on the overlap region of bases of the
pyramid pair since outside the overlap region at least one of the functions vi and vj is

root
2014/7/8
page 343

�

�

�

�

�

�

�

�

25.4. An overview of the FEM 343

zero. This gives an interesting structure to the system stiffness matrix: if the vertices i
and j are not adjacent, then their pyramids do not overlap, and therefore Ki j is zero. In a
fine mesh it’s more likely than not that a randomly picked pair of vertices is not adjacent,
and therefore most of the K matrix consists of zeros; that is, K is a sparse matrix.

The sketch above of the procedure for computing the system stiffness matrix K is
vertex-oriented; in essence, it computes the entries Ki j through a doubly nested for-loop
of the indices i and j which walk over the mesh’s vertices. In principle one may imple-
ment such a computation, although I have never seen it done. The major impediment is
the mess in determining the overlap region of the bases of a pair of pyramids. It’s just not
worth the trouble, especially since a much slicker alternative is available.

The alternative shifts the focus from vertices to triangles—instead of the doubly nested
for-loop that walks over the vertices, we implement a single for-loop that walks over
the mesh’s triangles. Here is how it works.

We have already noted that the entry Ki j of the system stiffness matrix is the sum
of the integrals over the cluster of triangles that forms the overlap region between the
pyramids centered at the vertices i and j . Instead of focusing on such clusters, we com-
pute integrals on every single triangle in the mesh, regardless of any considerations of to
which cluster the triangle may belong. Only retroactively do we figure out where in the
K matrix the result should be inserted. Generally, each Ki j entry receives contributions
from multiple triangles since all triangles in an triangle cluster contribute to it. Thus, in
effect, the entries of K are assembled piecemeal, through cumulative contributions from
integrals over individual triangles, as we walk over the mesh’s triangles. The process of
accumulating the integrals into K is called assembling the system stiffness matrix.

To be more specific, let us say the mesh has N vertices which are numbered from 0
to N − 1. The vertices of any of the mesh’s triangles may be identified in two different
ways. One is through the triangle’s own internal vertex numbers, as in vertex 0, vertex 1,
vertex 2, enumerated in counterclockwise order. We call these the triangle’s local vertex
numbers. The other is through the vertex numbers that the triangle inherits from the
mesh, as in vertex n1, vertex n2, vertex n3, where 0 ≤ n1, n2, n3 < N . We call these the
triangle’s global vertex numbers. In assembling the system stiffness matrix we will need to
determine a vertex’s global index in terms of its local index. The mesh data structure of
Chapter 23 is designed specifically to facilitate that determination.

25.4.3 The element stiffness matrix

Within each triangle T , the slanted faces of the pyramidal basis functions of subsection
25.4.1 appear as flat planes that rise from height 0 at one edge to height 1 at the vertex
opposite that edge; see Figure A.4 on page 378 for an illustration. There are three such
functions on each triangle, let’s call themφ1,φ2, andφ3, whereφi is 1 at vertex i and 0 at
the other two vertices. These are called the element’s93nodal shape functions. The natural
way to express a nodal shape function is through the element’s barycentric coordinates.
Following the notation of Appendix A, we have φi (λ1,λ2,λ3) = λi for i = 1,2,3.

To compute an element’s contributions to the system stiffness matrix K and the force
vector F , we introduce the 3× 3 element stiffness matrix k and the element force vector b
of length 3 through

ki j =
∫

T
∇φi ·∇φ j d x, bi =

∫
T

f φi d x, (25.13)

93Here I have switched from talking about a triangle to talking about an element. In the FEM, an element is a
triangle equipped with shape functions.

root
2014/7/8
page 344

�

�

�

�

�

�

�

�

344 Chapter 25. Finite elements

Listing 25.1: Assembling the system stiffness matrix K and the system force vector F .

initialize the matrix K and the vector F to zero
for each element e in the mesh

compute the 3x1 element force vector b (TWB quadrature)
compute the 3x3 element stiffness matrix k
apply the boundary conditions
for i in 1 2 3

let I be the global vertex number of the element’s vertex i
for j in 1 2 3

let J be the global vertex number of the element’s vertex j
increment K[I][J] by k[i][j]

increment F[I] by b[i]

where i , j = 1,2,3. The first integral is easy to evaluate explicitly since the integrand is a
constant. In fact, in Appendix A it is shown that ∇φi · ∇φ j =

1
4|T |2 ei · e j , where ei and

e j are the element’s edge vectors. It follows that

ki j =
1

4|T |ei ·e j . (25.14)

The second integral may be evaluated by applying the TWB quadrature scheme of Chap-
ter 24. The tricky part is to figure out where in K and F to inject the integral fragments
computed in ki j and bi , that is, how to assemble the system stiffness matrix K and the
system force vector F . I have given a recipe for this purpose in the from of a pseudocode
in Listing 25.1. It’s not hard to figure out why the recipe works if you think about it a bit,
but explaining it in words will make it sound more complicated than it really is. Algorith-
mically, the procedure is quite straightforward. The only part that requires an explanation
is the “apply the boundary conditions”. I will take that up in the next subsection.

25.4.4 Applying the boundary conditions

The boundary condition u = 0 in (25.5) may be applied in at least two different ways that I
know of, and I wouldn’t be surprised if there are more variations. I will give my preferred
version here. It’s quite likely that you will see alternative versions in other people’s codes.

Equation (25.9) gives the Galerkin approximation um as a linear combination of the
m basis functions of the space Vm . What is m? If you track down where it first appeared,
you will see that m is the number of the interior vertices, that is, those vertices that do not
lie on the domain’s boundary. This was necessary to ensure that functions in the space Vm
vanish on the boundary, as required by the weak formulation. The unequal treatment
of the interior and boundary nodes, however, is somewhat unpleasant. We avoid their
segregation through the following trick.

In constructing the basis elements vi of the space Vm , ignore the distinction between
the interior and boundary vertices. Thus, construct a basis function vi for every vertex
in the mesh, including those on the boundary. Let’s say there are m′ vertices altogether.
Clearly m′ > m, and clearly it’s not legitimate to apply (25.8) and (25.9) with m replaced
by m′. However, it is quite easy to restore legitimacy when using the m′ basis functions
provided that

• in (25.10) we discard the equations corresponding to the boundary vertices; and
• in (25.9) we set the coefficients c j of the boundary functions vj to zero.

root
2014/7/8
page 345

�

�

�

�

�

�

�

�

25.5. Error analysis 345

At the element level, the two operations above amount to the following: If the element’s
vertex i falls on the domain’s boundary, then

• replace row i of the element stiffness matrix k by zeros;
• replace column i of the element stiffness matrix k by zeros;
• set kii = 1; and
• set bi = 0.

This is what “apply the boundary conditions” means in Listing 25.1. You will find an
extended explanation in the next chapter.

Remark 25.2. As a consequence of expanding the count of the basis functions from m
to m′, the system stiffness matrix K is no longer m × m. It is m′ × m′. For the same
reason, the system force vector F is of length m′.

25.5 Error analysis
It is reasonable to expect that a finer triangulation improves the quality of the solution
obtained by the FEM. The central problem in the mathematical analysis of the FEM is
to obtain a precise relationship between the fineness of the triangulation and the error in
the FEM approximation. To make meaningful statements in that regard, the concepts of
“fineness” and “error” need to be clarified.

In our program the mesh is produced through the Triangle library, which controls
the mesh’s fineness through the maximal area parameter a that sets an upper bound on
the areas of the triangles. The default triangulation produced by Triangle is quasi-uniform
in that all triangles have more or less equal areas. Furthermore, the triangles are as close
to equilaterals as possible. These two properties taken together make it meaningful to
talk about the “linear size” h of the triangles. Think of h as the length of a typical trian-
gle’s edge. A smaller a produces a smaller h. Since area is proportional to the square of
the linear dimension, then a is roughly proportional to h2, or equivalently, h is roughly
proportional to

�
a.

Let uh be the solution produced by the FEM on a grid of linear size h, and let uex be
the exact solution of the boundary value problem. The error uex− uh may be measured
in several different ways. Some of the most common ways are the following:

the energy norm: ‖uex− uh‖E =
�∫
Ω

���∇uex(x)−∇uh (x)
���2 d x

�1/2

, (25.15a)

the L2 norm: ‖uex− uh‖L2 =
�∫
Ω

���uex(x)− uh (x)
���2 d x

�1/2

, (25.15b)

the L∞ norm: ‖uex− uh‖L∞ = sup
x∈Ω

���uex(x)− uh (x)
���. (25.15c)

All three are meaningful in the context of n-dimensional domains. The symbol x stands
for a generic point in Rn . In two dimensions we write x explicitly as (x, y).

It can be shown (see, e.g., [23, pages 111 and 117], [10, page 93], and [57]) that there
are constants c1, c2, and c3 associated with a two-dimensional polygonal domain Ω such
that when h is small, one has

‖uex− uh‖E ≤ c1h‖uex‖H 2 , (25.16a)

‖uex− uh‖L2 ≤ c2h2‖uex‖H 2 , (25.16b)

‖uex− uh‖L∞ ≤ c3h2| ln h|3/2‖D2uex‖L∞ , (25.16c)

root
2014/7/8
page 346

�

�

�

�

�

�

�

�

346 Chapter 25. Finite elements

Table 25.1: The errors in various norms, as computed by this chapter’s FEM solver, cor-
responding to the square domain problem described on page 350 for which
the exact solution is known. Figure 25.2 is a graphical representation of this
table. The column with the header “nelems” lists the number of elements
in each case.

a nelems ‖uex− uh‖L∞ ‖uex− uh‖L2 ‖uex− uh‖E

0.08 16 0.199408 0.114036 1.0555
0.04 34 0.187421 0.0873139 0.941921
0.02 79 0.0647486 0.0275582 0.521954
0.01 159 0.0526887 0.0154082 0.388679
0.005 318 0.0207487 0.00702712 0.263095
0.0025 642 0.0140025 0.00375021 0.191247
0.00125 1277 0.00524254 0.00181353 0.133232
0.00064 2427 0.00359181 0.000937034 0.0957134
0.00032 4967 0.00155731 0.000462236 0.0671078
0.00016 9946 0.000911879 0.000235085 0.0478856

where ‖uex‖H 2 is a Sobolev norm94 of the solution uex, and D2uex means the list of the
second order partial derivatives of uex. In two dimensions, h is proportional to

�
a, as

noted above; therefore the error in the L2 norm is of order a and the error in the energy
norm is of order

�
a. In particular, if you reduce a by a factor of 1/4, then the error in

the L2 norm will be reduced by a factor of 1/4, while the error in the energy norm will
be reduced by a factor of 1/2.

Table 25.1 shows the errors in various norms, as computed by this chapter’s FEM
solver, corresponding to the square domain problem described on page 350 for which the
exact solution is known. I used d = 10 for the TWB quadrature strength in all cases. Fig-
ure 25.2 is a visual representation of that table, done in log-log plots. The dashed lines
correspond to the functions c1

�
a and c2a for some (irrelevant) choices of constants c1

and c2. For small values of a, the graph corresponding to ‖uex − uh‖E parallels c1
�

a,
and the graph corresponding to ‖uex − uh‖L2 parallels c2a, in agreement with the esti-
mates (25.16).

Computing the norm ‖uex−uh‖L2 is a matter of an integration over the PDE’s domain.
Computing the ‖uex−uh‖E appears to be more complex at first sight since it involves∇uex ,
which is not supplied. It turns out, however, that ‖uex− uh‖E may be computed without
a reference to∇uex, due to the following trick. We have

‖uex− uh‖2
E =

∫
Ω

|∇(uex− uh)|2 d x

=
∫
Ω

|∇uex|2 d x − 2
∫
Ω

∇uex ·∇uh d x +
∫
Ω

|∇uh |2 d x.

The three integrals on the right-hand side may be simplified as follows. The exact solution
uex satisfies the identity (25.7) for all choices of v in V . This has two consequences. First,
by picking v = uex we get

∫
Ω
|∇uex|2 d x =

∫
Ω

f uex d x. Second, by picking v = uh we get

94You don’t need to know about the Sobolev norms to appreciate the significance of these error estimates.
The key part is the way h enters on their right-hand sides. Thus, the first estimate says that the error, measured
in the energy norm, will decrease at least linearly in h as h goes to zero.

root
2014/7/8
page 347

�

�

�

�

�

�

�

�

25.6. The program 347

10−4 10−3 10−2 10−1
10−4

10−3

10−2

10−1

100

a (maximal triangle area)

Er
ro

r
no

rm
‖uex− uh‖E‖uex− uh‖L2

‖uex− uh‖L∞
c1
�

a
c2a

c3a| lna|3/2

Figure 25.2: The errors in various norms, as computed by this chapter’s FEM solver,
corresponding to the square domain problem described on page 350 for
which the exact solution is known. The dashed lines correspond to the
functions c1

�
a, c2a, and a| lna|3/2 for some (irrelevant) choices of constants

c1, c2, and c3. For small values of a, the graph corresponding to ‖uex−uh‖E
parallels c1

�
a, and the graph corresponding to ‖uex−uh‖L2 parallels c2a, in

agreement with the estimates (25.16). Table 25.1 is a tabular representation
of these graphs.

∫
Ω
∇uex · ∇uh d x =

∫
Ω

f uh d x. Moreover, since uh satisfies the identity (25.8) for all v,
we pick v = uh and get

∫
Ω
|∇uh |2 d x =

∫
Ω

f uh d x. In view of these, the expression for
the energy norm simplifies to

‖uex− uh‖2
E =

∫
Ω

(uex− uh) f d x. (25.17)

As you see, no gradients appear in the result; therefore computing the error’s energy norm
is a matter of straightforward integration.

25.6 The program
The goal of this chapter’s project is to implement the FEM algorithm described in the
preceding sections in order to solve the boundary value problem (25.5), or more pre-
cisely, its Galerkin approximation, (25.8). Much of the algorithm’s infrastructure has
been developed in the previous chapters. Specifically, we will need the files xmalloc.[ch]
from Chapter 7 to allocate memory, the file array.h from Chapter 8 to construct vec-
tors and matrices, the files mesh.[ch] from Chapter 23 to triangulate the domain, and the
files twb-quad.[ch] and plot-with-geomview.[ch] from Chapter 24 to integrate over trian-
gles and plot solutions. Additionally, we will need the files problem-spec.[ch] to describe
the problem’s geometry and data. The file problem-spec.h remains unchanged from that
in Project Triangulate of Chapter 23; therefore a symbolic link to that file will do. The

root
2014/7/8
page 348

�

�

�

�

�

�

�

�

348 Chapter 25. Finite elements

file problem-spec.c is a slight variant of that file in Project TWB Quadrature of Chapter 24;
therefore you will want a copy of, not a symbolic link to, that file. Finally, you will make
links to the files triangle.[ho] of the Triangle utility, just as we did in Chapters 23 and 24.
Altogether, following the suggestions in Chapters 2 and 6, the contents of this project’s
directory will look like this:95

$ cd fem1
$ ls -F
Makefile plot-with-geomview.c@ problem-spec.h@ xmalloc.c@
array.h@ plot-with-geomview.h@ triangle.h@ xmalloc.h@
fem-demo.c poisson.c triangle.o@
mesh.c@ poisson.h twb-quad.c@
mesh.h@ problem-spec.c twb-quad.h@

The files poisson.[ch] contain our implementation of the FEM. The file fem-demo.c is a
driver for demonstrating our work. I will explain their contents in the subsequent sec-
tions. The directory is named fem1 since this is the first version of our FEM implemen-
tations. Here is the transcript of an interactive session with the program:

$./fem-demo
Usage: ./fem-demo d a

d = the TWB quadrature strength
a = maximal triangle area

$./fem-demo 10 0.002
domain is a square
nodes = 428, edges = 1217, elems = 790
system stiffness matrix is 428x428 (=183184) has 2862 nonzero entries
errors: L^infty = 0.00995973, L^2 = 0.00289579, energy norm = 0.168067
geomview output written to file square.gv

domain is a triangle with hole
nodes = 719, edges = 2013, elems = 1294
system stiffness matrix is 719x719 (=516961) has 4745 nonzero entries
geomview output written to file triangle-with-hole.gv

domain is an annulus (really a 24-gon) of radii 0.325 and 0.65
nodes = 440, edges = 1208, elems = 768
system stiffness matrix is 440x440 (=193600) has 2856 nonzero entries
geomview output written to file annulus.gv

domain is an L-shape with three holes (actually 12-gons
nodes = 443, edges = 1213, elems = 768
system stiffness matrix is 443x443 (=196249) has 2869 nonzero entries
geomview output written to file three-holes.gv

As you see, the program takes two arguments. The first is the desired strength of the TWB
quadrature. The second is an upper bound on the areas of the triangles. The program
solves a number of Poisson problems specified in the problem-spec.c and writes their solu-
tions in the form of Geomview graphics. Figure 25.3 shows snapshots of the Geomview
window.

95As in Chapter 23, the files triangle.[ho] link to where you keep your Triangle files. If you have installed
Triangle as a library, then these are not needed; just link your program with the -ltriangle flag instead. See
Section 23.7 for more on this.

root
2014/7/8
page 349

�

�

�

�

�

�

�

�

25.7. Changes in problem-spec.c 349

Figure 25.3: The graphs of solutions of four boundary value problems produced
through the command-line ./fem-demo 10 0.002 and rendered in
Geomview.

In the case of the square domain, we supply the program with an exact solution for
comparison with the computed solution. In the transcript shown above, you will observe
that in the block of output concerning the square domain, the program prints the error
in the L∞, L2, and energy norms.

25.7 Changes in problem-spec.c
If you have constructed the problems specification file problem-spec.c from Project TWB
Quadrature according to the instructions of Chapter 24, then it contains four domain
specifications which we named square, triangle with hole, annulus, and three holes. Each do-
main has an associated function, named, respectively, square_f(), triangle_f(),
annulus_f(), and three_holes_f(). These functions served as integrands in our
TWB quadrature demo. In the current project we retain the geometry specifications but
alter the four functions slightly. The new functions will serve the role of f in the Poisson
equation (25.1). There is no particularly deep reason for the changes; it’s just that the
previous functions were more suitable for demonstrating the effectiveness of the TWB
quadrature, while the new functions produce good-looking results for solutions of the
boundary value problems. The file problem-spec.h remains unchanged. Here are my sug-
gestions for the changes:

In the triangle with hole domain: Let triangle_f() be 30xy(2− x)(2− y).

root
2014/7/8
page 350

�

�

�

�

�

�

�

�

350 Chapter 25. Finite elements

Listing 25.2: The file poisson.h is the interface to our Poisson solver module.

1 #ifndef H_POISSON_H
2 #define H_POISSON_H
3 #include "problem-spec.h"
4 #include "mesh.h"
5 struct errors {
6 double Linfty;
7 double L2norm;
8 double energy;
9 };

10 void poisson_solve(struct problem_spec *spec,
11 struct mesh *mesh, int d);
12 struct errors eval_errors(struct problem_spec *spec,
13 struct mesh *mesh, int d);
14 #endif /∗ H_POISSON_H */

In the annulus domain: Let annulus_f() be what we had in Chapter 24, but change
the factor 0.20 to 20.

In the three holes domain: Let three_holes_f() be 100(x2+ y2).

In the square domain: We do things slightly differently here. Consider the function
uex = 16xy(1−x)(1−y) on the square 0≤ x, y ≤ 1. Note that uex = 0 on the bound-
ary. Plugging uex for u into the PDE in (25.2), we get f = 32

�
x(1− x) + y(1− y)

.

Therefore uex is the exact solution of the boundary value problem corresponding
to that f . This is common method of “reverse-engineering” a PDE: we plug in a
function for u that satisfies the boundary conditions and find f . This provides an
excellent way to test the accuracy of our FEM solver.

Thus, in the file problem-spec.c define the functions square_u_exact() and
square_f() to correspond to the functions uex and f given above. Then, in the
function square() in that file change the u_exact member of the spec struc-
ture from the previous NULL to square_u_exact.

In what follows—on line 9 in Listing 25.8, to be precise— we will set up our program
so that when u_exact is non-NULL, it computes and prints the error uex − u in
various norms, where u is the solution obtained by the FEM.

25.8 The file poisson.h
The file poisson.h is the interface to our Poisson solver module. It is shown in its entirety
in Listing 25.2. It declares the prototype of the function poisson_solve(), which
takes a problem specification, a mesh, and a number d, which is the desired strength of
the TWB quadrature over the mesh’s triangles. It applies the FEM algorithm described
earlier in this chapter and ultimately evaluates the values of the coefficients c j of the lin-
ear combination in (25.9). Since there is one c j associated with each vertex of the mesh,
the program stores the value of the c j in the z member of the node structure of the node
number j . These may be passed to the function plot_with_geomview_mono() or
plot_with_geomview_zhue() to visualize the solution in Geomview. The sam-
ples in Figure 25.3 were produced that way. The headers problem-spec.h and mesh.h are

root
2014/7/8
page 351

�

�

�

�

�

�

�

�

25.9. The file poisson.c 351

Listing 25.3: An outline of the file poisson.c.

1 � #include ...
2 � static void error_and_exit(int status, const char *file, int line) ...
3 � static void enforce_zero_dirichlet_bc(struct elem *ep,
4 double k[3][4]) ...
5 � static void compute_element_stiffness(struct elem *ep,
6 struct TWB_qdat *qdat,
7 double (*f)(double x, double y), double k[3][4]) ...
8 � void poisson_solve(struct problem_spec *spec,
9 struct mesh *mesh, int d) ...

10 � static struct errors element_errors(struct problem_spec *spec,
11 struct TWB_qdat *qdat, struct elem *ep) ...
12 � struct errors eval_errors(struct problem_spec *spec,
13 struct mesh *mesh, int d) ...

#included in poisson.h since the declaration of the function poisson_solve() refers
to struct problem_spec and struct mesh.

Additionally, poisson.h declares a struct errors structure which is meant to hold
the L∞, L2, and energy norms of the error uex − u, as described in Section 25.5. The
function eval_errors() declared on line 12 of Listing 25.2 is called only when the
user supplies an exact solution for the purpose of comparison. It computes the various
error norms and returns them in an instance of struct errors.

25.9 The file poisson.c
The file poisson.c contains the implementations of the functions poisson_solve() and
eval_errors() noted in the previous section and several auxiliary functions defined
for internal use. Listing 25.3 gives an outline. I will describe its individual components in
the following subsections. The function error_and_exit(), however, is identical to
that in Project UMFPACK (see Section 12.5 on page 89); therefore I will not go over that
material again. Just copy the code from umfpack-demo2.c to poisson.c.

25.9.1 The function enforce_zero_dirichlet_bc()

The function enforce_zero_dirichlet_bc() that appears on line 3 of Listing 25.3
applies the algorithm described in subsection 25.4.4 which zeros the solution on the do-
main’s boundary. Although the algorithm is quite straightforward, I want to introduce a
perhaps not-so-obvious idea here which will help with streamlining the code.

In subsection 25.4.2 we learned that the system stiffness matrix K is assembled from
the 3× 3 element stiffness matrices k of the mesh’s individual elements. Similarly, the
system force vector F is assembled from the element force vectors b , which are vectors
of length 3 each. Instead of keeping track of a 3× 3 matrix k and a 3-vector b as separate
objects, it is more convenient to paste the two together into a 3× 4 matrix whose fourth
column is the vector b . I may still refer to the augmented matrix as the “element stiff-
ness matrix” or “the matrix k”, but I hope that it will be clear from the context what I
mean.

root
2014/7/8
page 352

�

�

�

�

�

�

�

�

352 Chapter 25. Finite elements

Following subsection 25.4.4’s instructions, if an element’s ith vertex (i = 0,1,2) falls
on the domain’s boundary, we zero row i and column i of k and then set its (i , i) entry
to 1. The following example shows the i = 1 case:

k00 k01 k02 k03

k10 k11 k12 k13

k20 k21 k22 k23

k00 k02 k03

k20 k22 k23

0 1 0 0

0

0

=⇒

You should be able to write the function enforce_zero_dirichlet_bc() now.
As you see in its prototype on line 3 in Listing 25.3, it receives a pointer ep to an element
structure and the address of a 3× 4 array k. You will set up a for-loop to go over the
element’s vertices, as in for (i=0, i<3, i++). At vertex i you may access the node
structure ep→n[i] and then examine the boundary condition there ep→n[i]→bc.
If it equals FEM_BC_DIRICHLET, then the node is on the boundary, and therefore you
will operate on k, as shown in the diagram above.

25.9.2 The function compute_element_stiffness()

The function compute_element_stiffness() that appears on line 5 of Listing 25.3
applies the instructions of subsection 25.4.2 to compute an element’s stiffness matrix k
and force vector b , which, as noted in the previous subsection, are merged into a single
3× 4 matrix, also denoted by k.

The 3× 3 part of the matrix k is computed according to the explicit formula (25.14).
Its fourth column, which is the element’s force vector b , is computed by applying a TWB
quadrature to the expression for b in formula (25.13) on page 343. The function receives
four data items through its arguments. These are a pointer ep to the element structure,
a pointer qdat to the TWB quadrature data, a pointer f to the function f of the Poisson
equation (25.2), and a pointer k to a 3× 4 array where it will store the computed data.

For the most part, the function compute_element_stiffness() duplicates the
function integrate_over_triangle() from Chapter 24; see Listing 24.9 on page
333. Therefore, copy the body of that function here, and modify it as follows. Line
numbers refer to those in Listing 24.9.

Lines 1 through 9 remain the same. Following this, insert code to calculate the 3× 3
part of the matrix k through applying the formula (25.14).

In the old code, lines 10 to the end compute the integral
∫

T f d x over the element T .
These need slight adjustments since here we intend to compute not one but three integrals,∫

T f φi d x, i = 0,1,2. The results are to be stored in k[i][3]. Sinceφi (λ1,λ2,λ3) = λi ,
then it suffices to replace line 17 with

for (i = 0; i < 3; i++)
k[i][3] += qdat→weight * f(X,Y) * lambda[i];

In this connection two precautions are in order. First, since we are accumulating material
in k[i][3], we had better initialize it to zero. This should go somewhere before line 10.
Second, line 20 multiplies the accumulated sum by the factor |T |/|Tstd| and returns the
result. In the modified code, each of the three k[i][3] needs to be multiplied by that
factor. Furthermore, the return type of the new function is void, so there is nothing to
return—the caller will read the computed data by examining the contents of the matrix k.

root
2014/7/8
page 353

�

�

�

�

�

�

�

�

25.9. The file poisson.c 353

25.9.3 The function poisson_solve()

The function poisson_solve() that appears on line 8 of Listing 25.3 is one of the
two externally visible functions in the file poisson.c. (The other is eval_errors().)
I have shown it in its entirety in Listings 25.4 and 25.5. The function is a somewhat
long (perhaps too long) because it performs several loosely related tasks which ultimately
produce the FEM approximation of the solution of the boundary value problem (25.5).
It may be possible to split the function into simpler components, but I don’t see a neat
way for doing that. You may. See what you can do.

The function is invoked with three arguments. These are a pointer spec to a prob-
lem specification structure, a pointer mesh to a precomputed mesh structure, and a num-
ber d which is the desired TWB quadrature strength for integrating over triangles. It
assembles the system stiffness matrix K and the system force vector F , calls UMFPACK
to solve the linear system of equations (25.12), and then places the coefficient c j in the z
member of the node structure of the node number j for each j .

A typical system stiffness matrix K is huge and very sparse. We have no intention
of wasting memory in storing K in its entirety. Rather, we store only its nonzero en-
tries in the compressed column storage (CCS) form as seen in Chapters 11 and 12. More
precisely, we store K ’s nonzero entries in UMFPACK’s triplet form as explained in Sec-
tion 12.6 (page 90) and then convert from the triplet form to the CCS form by applying
UMFPACK’s umfpack_di_triplet_to_col() function. Let’s see how this is done
by examining Listing 25.4:

Line 10. We are going to need the TWB quadrature data for integration over the triangles,
so we might as well retrieve it right now. Following the remark in Example 24.3 on
page 324, we set the second argument of twb_qdat() to NULL since we have no
need for the number of quadrature points in the rest of the code. If you do want to
know the number of quadrature points, then follow Example 24.2 on page 324.

Lines 12–14. The major task of the function poisson_solve() is to implement the
idea shown in the pseudocode in Listing 25.1 on page 344. There, we go over the
mesh’s triangles, and in each triangle we compute the element stiffness matrix k
and then in effect “inject” k into the global stiffness matrix K, that is to say, in-
crement the values of K[I][J] by k[i][j] for i,j=0,1,2. We have no in-
tention, however, of allocating memory to store the massively sparse matrix K. We
merely store the incrementation data, that is, the indices I and J, and the increment
amount k[i][j] into UMFPACK’s triplet vectorsTi, Tj, andTx; see Section 12.6,
page 90.

That is all to come later. What we need to do right now is to determine suitable
lengths for the triplet vectors. They should be long enough to hold all the incre-
mentation data that is handed to them. How may increments are there? The ele-
ment stiffness matrix is 3×3. The mesh has mesh→nelems elements. Therefore,
there will be a total of 3*3*mesh→nelems increments. Ergo, the triplet vectors
should be that long. That’s what we see on lines 12–14.

Lines 16–18. UMFPACK’s triplet vectors are there for the programmer’s convenience.
What we really need are the corresponding CCS vectors Ap, Ai, and Ax. As we
saw in Section 12.6, UMFPACK’s umfpack_di_triplet_to_col() converts
the triplet format to the CCS format. In lines 16–18 we allocate memory for the
CCS vectors.

root
2014/7/8
page 354

�

�

�

�

�

�

�

�

354 Chapter 25. Finite elements

Listing 25.4: The top half of the function poisson_solve() in the file poisson.c.

1 void poisson_solve(struct problem_spec *spec, struct mesh *mesh, int d)
2 {
3 double k[3][4];
4 int *Ti, *Tj, *Ai, *Ap;
5 double *Tx, *Ax, *F, *U;
6 int status;
7 void *Symbolic = NULL;
8 void *Numeric = NULL;
9 int i, j, r, s;

10 struct TWB_qdat *qdat = twb_qdat(&d, NULL);
11

12 make_vector(Ti, 3*3*mesh→nelems);
13 make_vector(Tj, 3*3*mesh→nelems);
14 make_vector(Tx, 3*3*mesh→nelems);
15

16 make_vector(Ap, 1 + mesh→nnodes);
17 make_vector(Ai, 3*3*mesh→nelems);
18 make_vector(Ax, 3*3*mesh→nelems);
19

20 make_vector(F, mesh→nnodes);
21 make_vector(U, mesh→nnodes);
22

23 for (i = 0; i < mesh→nnodes; i++)
24 F[i] = 0.0;
25

26 s = 0;
27 for (r = 0; r < mesh→nelems; r++) {
28 struct elem *ep = &mesh→elems[r];
29 compute_element_stiffness(ep, qdat, spec→f, k);
30 enforce_zero_dirichlet_bc(ep, k);
31 for (i = 0; i < 3; i++) {
32 int I = ep→n[i]→nodeno;
33 for (j = 0; j < 3; j++) {
34 if (k[i][j] �= 0.0) {
35 int J = ep→n[j]→nodeno;
36 Ti[s] = I;
37 Tj[s] = J;
38 Tx[s] = k[i][j];
39 s++;
40 }
41 }
42 F[I] += k[i][3];
43 }
44 }
45 // continued in Listing 25.5

root
2014/7/8
page 355

�

�

�

�

�

�

�

�

25.9. The file poisson.c 355

Listing 25.5: The bottom half of the function poisson_solve() in the file poisson.c.

46 // continued from Listing 25.4
47 status = umfpack_di_triplet_to_col(
48 mesh→nnodes, mesh→nnodes, s,
49 Ti, Tj, Tx, Ap, Ai, Ax, NULL);
50 if (status �= UMFPACK_OK)
51 error_and_exit(status, __FILE__, __LINE__);
52

53 printf("system stiffness matrix is %dx%d (=%d) "
54 "has %d nonzero entries\n",
55 mesh→nnodes, mesh→nnodes,
56 mesh→nnodes * mesh→nnodes,
57 Ap[mesh→nnodes]);
58

59 // symbolic analysis
60 status = umfpack_di_symbolic(
61 mesh→nnodes, mesh→nnodes,
62 Ap, Ai, Ax, &Symbolic, NULL, NULL);
63 if (status �= UMFPACK_OK)
64 error_and_exit(status, __FILE__, __LINE__);
65

66 // numeric analysis
67 status = umfpack_di_numeric(
68 Ap, Ai, Ax, Symbolic, &Numeric, NULL, NULL);
69 if (status �= UMFPACK_OK)
70 error_and_exit(status, __FILE__, __LINE__);
71

72 // solve system
73 status = umfpack_di_solve(UMFPACK_A,
74 Ap, Ai, Ax, U, F, Numeric, NULL, NULL);
75 if (status �= UMFPACK_OK)
76 error_and_exit(status, __FILE__, __LINE__);
77

78 for (i = 0; i < mesh→nnodes; i++)
79 mesh→nodes[i].z = U[i];
80

81 free_vector(Ti);
82 free_vector(Tj);
83 free_vector(Tx);
84 free_vector(Ap);
85 free_vector(Ai);
86 free_vector(Ax);
87 free_vector(F);
88 free_vector(U);
89 umfpack_di_free_symbolic(&Symbolic);
90 umfpack_di_free_numeric(&Numeric);
91 }

root
2014/7/8
page 356

�

�

�

�

�

�

�

�

356 Chapter 25. Finite elements

According to the CCS specifications (see Chapter 11), if the matrix is n × n, then
the length of the vector Ap should be n+1. The n in the case of the system stiffness
matrix is mesh→nnodes. That explains the choice of the size of Ap on line 16.

Again, according to the CCS specifications, the lengths of the vectors Ai and Ax
should be equal to the number of nonzero entries, nz, of the matrix K . Unfor-
tunately the value of nz is not known ahead of the time; therefore we cannot al-
locate vectors of precise length here. However, we know that nz cannot be more
than the lengths of the triplet vectors, that is, 3*3*mesh→nelems, since that’s
the number of items injected into the matrix K. We go with this overestimate and
allocate memory for the vectors Ai and Ax accordingly.

Lines 20–21. We allocate memory for the system force vector F and the solution vector
U of (25.12). I have changed the notation from c to U merely for aesthetic reasons.
You may change it back to c if you want.

Line 23. The system force vector F is going to be constructed by accumulating the ele-
ment force vectors. Here we initialize F to zeros in preparation for that process.

Lines 26–44. This set of lines implements the pseudocode in Listing 25.1 on page 344.
The variable s serves as an index into the triplet vectors Ti, Tj, and Tx. We ini-
tialize it to zero and then increment it with every injection into the system stiffness
matrix.

The for-loop on line 27 walks over the mesh’s triangles. The r th element is
mesh→elems[r]. On line 28 we introduce the notation ep as a shorthand for
the address of that element. (Think of ep as an “element pointer”.) In the subse-
quent two lines we compute ep’s 3× 4 stiffness matrix k and then apply the zero
Dirichlet conditions, as discussed earlier. The rest of the block injects the contents
of the element stiffness matrix into the system stiffness matrix. Refer to the pseu-
docode in Listing 25.1 for explanation.

Line 34 skips over those k[i][j] that are zero. This is not absolutely essential
since adding zero to anything is immaterial. In that respect, the solution is unaf-
fected whether we skip over k[i][j] or not. Inserting a zero, however, does af-
fect the sparseness of the system stiffness matrix. Any entry inserted here, whether
zero or not, becomes a part of the sparse matrix which is eventually handed to
UMFPACK. In skipping the zeros we are making the stiffness matrix sparser, hence
increasing UMFPACK’s efficiency.

Continuing into Listing 25.5:

Lines 47–76. This is a routine application of UMFPACK along the lines described in Sec-
tions 12.5 and 12.6. There is nothing new here. If everything proceeds as expected,
the solution of the system of equations (25.12) will be computed and placed in the
vector U.

Lines 78–90. We copy the entries of the solution vector U into the z member of the node
structure of the corresponding vertices. We free the previously allocated memory,
and we are done.

25.9.4 The function element_errors()

The function element_errors() that appears on line 10 of Listing 25.3 on page 351
measures the error uex − u on a given element, say T , between the user-supplied exact

root
2014/7/8
page 357

�

�

�

�

�

�

�

�

25.9. The file poisson.c 357

solution uex and the FEM’s solution u. Specifically, it computes the values

max
T
|uex− u|,

∫
T
|uex− u|2 d x,

∫
T
(uex− u) f d x, (25.18)

which are fragments of the norms defined in equations (25.15).96 The fragments are put
together in function eval_errors(), which is the subject of the next subsection.

To evaluate the second and third expressions in (25.18), we apply the TWB quadrature
in the usual way. The barycentric coordinates lambda[] and the quadrature points X
andY are calculated as in all other TWB quadrature calculations. The value of the function
uex at a quadrature point is spec→u_exact(X,Y). A new feature is the need for the
value u of the FEM’s solution at the quadrature points. It is given by

3∑
i=1

λi zi ,

where zi are the values of u at the triangle’s vertices, whose values are available in
ep→n[i]→z.

To evaluate the first expression in (25.18), we calculate the maximum of the differ-
ences |uex− u| at the element’s TWB quadrature points. Admittedly, this is not truly the
maximum over the whole triangle since the maximum may occur at a place other than
a quadrature point; however, for smallish elements and moderate quadrature strength, it
should come close. A possible improvement would be to include the triangle’s vertices
among the points where the differences are evaluated. That will require a trivial addition
to the function. Do it if you feel so inclined.

We pack the values of the three expression (25.18) into a struct errors and return
that structure to the caller. Therefore the function’s body will include, in part,

struct errors elem_errors;
elem_errors.Linfty = elem_errors.L2norm = elem_errors.energy = 0.0;
... compute elem_errors.Linfty, etc. ...
return elem_errors;

I will let you implement the function element_errors(). Let me close with a caution
regarding the evaluation of |uex− u|. There are at least two “absolute value” functions in
C. The function abs() computes the absolute values of integers. The function fabs()
computes the absolute values of floating point numbers. Be careful about which one you
use. They are not interchangeable!

25.9.5 The function eval_errors()

The function eval_errors() that appears on line 12 of Listing 25.3 on page 351 is
called only when the user supplies an exact solution, uex. It computes the three error
norms ‖uex− u‖L∞ , ‖uex− u‖L2 , and ‖uex− u‖E (see (25.15)), where u is the FEM’s own
solution. These may be used to analyze, verify, and debug the correctness of the solver.
Listing 25.6 shows the function in its entirety. Let us look at its details.

Line 4. This structure will hold the values of the three error norms noted above. A copy
of the structure will be returned to the caller.

96The third expression is related to the energy norm through the formula (25.17).

root
2014/7/8
page 358

�

�

�

�

�

�

�

�

358 Chapter 25. Finite elements

Listing 25.6: The function eval_errors in the file poisson.c.

1 struct errors eval_errors(struct problem_spec *spec,
2 struct mesh *mesh, int d)
3 {
4 struct errors errors;
5 struct TWB_qdat *qdat = twb_qdat(&d, NULL);
6 errors.Linfty = errors.L2norm = errors.energy = 0.0;
7 for (int i = 0; i < mesh→nelems; i++) {
8 struct elem *ep = &mesh→elems[i];
9 struct errors elem_errors = element_errors(spec, qdat, ep);

10 errors.L2norm += elem_errors.L2norm;
11 errors.energy += elem_errors.energy;
12 if (elem_errors.Linfty > errors.Linfty)
13 errors.Linfty = elem_errors.Linfty;
14 }
15 errors.L2norm = sqrt(errors.L2norm);
16 errors.energy = sqrt(errors.energy);
17 return errors;
18 }

Listing 25.7: An outline of the file fem-demo.c.

1 � #include ...
2 � static void do_demo(struct problem_spec *spec,
3 double a, int d, char *gv_filename) ...
4 � static void show_usage(char *progname) ...
5 � int main(int argc, char **argv) ...

Line 6. The error norms are going to be computed one element at a time. We initialize
the norms to zero in preparation for the accumulation process.

Line 9. The elem_errors is yet another instance of a struct errors. It captures
the element-level errors returned in a call to the function element_errors().
Following that call, we accumulate the returned values in errors.L2norm and
errors.energy. We also adjust errors.Linfty if the element’s error value
exceeds the previous values.

Lines 15 and 16. We take square roots in accordance with the definitions (25.15).

25.10 The file fem-demo.c
The file fem-demo.c is a driver for demonstrating our Poisson solver. Listing 25.7 shows an
outline. The functions show_usage() and main() that appear on lines 4 and 5 of that
listing are essentially identical to those in Project TWB quadrature. The function main()
expects to read two numbers, d and a, from its command-line. The first number is the
strength of the desired TWB quadrature for integrating over the elements. The second
number is an upper bound on the areas of the mesh’s triangles. Thus we expect argc to
be 3. If it’s not, we call show_usage() to print a brief usage message to stderr and
then exit. This is exactly what we did in Project TWB quadrature, so there is no need to
elaborate.

root
2014/7/8
page 359

�

�

�

�

�

�

�

�

25.11. Further reading 359

Listing 25.8: The function do_demo() in the file fem-demo.c.

1 static void do_demo(struct problem_spec *spec,
2 double a, int d, char *gv_filename)
3 {
4 struct mesh *mesh;
5 mesh = make_mesh(spec, a);
6 printf("nodes = %d, edges = %d, elems = %d\n",
7 mesh→nnodes, mesh→nedges, mesh→nelems);
8 poisson_solve(spec, mesh, d);
9 if (spec→u_exact �= NULL) {

10 struct errors errors = eval_errors(spec, mesh, d);
11 printf("errors: L^infty = %g, L^2 = %g, energy norm = %g\n",
12 errors.Linfty, errors.L2norm, errors.energy);
13 }
14 plot_with_geomview_zhue(mesh, gv_filename);
15 free_mesh(mesh);
16 }

The function do_demo() that appears on line 2 of Listing 25.7 runs the demo for a
single problem. It receives the problem specification in the spec argument, the values of
maximal triangle area a, TWB quadrature strength d, and a file name for writing a Ge-
omview script for a three-dimensional rendering of the solution. Listing 25.8 shows the
implementation of do_demo(). It is mostly self-explanatory, so there is no need to elab-
orate other than pointing out that on line 9 we check the value of spec→u_exact. If it
is not NULL, then we surmise that the user has supplied an exact solution, and therefore we
call eval_errors() to compute the error norms and print them to stdout.

25.11 Further reading
For the requisite theory of PDEs you may begin with the books by Renardy and
Rogers [55], Mattheij, Rienstra, and ten Thije Boonkkamp [43], or Ladyzhenskaya [39],
where you will find accessible introductions to the subject. The books by Quarteroni [54]
and Steinbach [64] provide quick overviews of the analysis of PDEs and relate them to
numerical computations and the FEM. None of these makes for a “light reading”, how-
ever; they require a moderate knowledge of mathematical analysis at an advanced under-
graduate or early graduate level. I am afraid there is no easier way.

You will find more detailed (but significantly more advanced) accounts of PDEs in
Evans [19], Gilbarg and Trudinger [22], and (the classic) Lions and Magenes [41]. For
the general theory of Sobolev spaces, a specialist may consult Adams and Fournier [1]
and Rudin [56]. To delve seriously into the FEM, a good understanding of the Sobolev
spaces is indispensable.

All of the above focus on the regularity (that is, the differentiability properties) of
the functions while assuming that the domain’s boundary ∂ Ω is “sufficiently smooth”.
Kozlov, Maz’ya, and Rossmann [37] and Maz’ya and Rossmann [44] introduce a the-
ory of weighted Sobolev spaces that extends the coverage to domains with lesser smooth-
ness requirements. The articles of Soane and Rostamian [63] and Soane, Suri, and Ros-
tamian [62] develop theory and finite element analysis in this setting.

As to books dealing with the analysis and implementation of the FEM, you will find
excellent introductions in Gockenbach [23], Braess [10], Szabó and Babuška [72], Brenner

root
2014/7/8
page 360

�

�

�

�

�

�

�

�

360 Chapter 25. Finite elements

and Scott [11], and Shapira [59]. The classic books by Ciarlet [12] and Axelsson and
Barker [5] provide almost encyclopedic coverage of the analytic aspects of the FEM.

25.12 Project FEM 1
Complete the program, compile, and test. Since we have an exact solution in the case of
a square domain, tabulate the error as a function of the maximal area of the triangles.

root
2014/7/8
page 361

�

�

�

�

�

�

�

�

Chapter 26

Finite elements:
Nonzero boundary data

Prerequisites: Chapters 7, 8, 11, 12, 22, 23, 24, 25, and Appendix A

26.1 The problem
In this chapter we generalize the previous chapter’s program to solve the boundary value
problem

∇ · (η∇u)+ f = 0 in Ω, (26.1a)
u = g on ΓD , (26.1b)

(η∇u) ·n= h on ΓN , (26.1c)

where Ω is a polygonal domain in R2, and ΓD and ΓN are two complementary subsets
of Ω’s boundary ∂ Ω, that is, ΓD ∩ ΓN = " and ΓD ∪ ΓN = ∂ Ω. The functions g and h
are called the problem’s Dirichlet and Neumann boundary data, respectively. Thus, we
refer to ΓD and ΓN as the Dirichlet and Neumann parts of the boundary. The n in (26.1c) is
the outward unit normal vector to the domain’s boundary. The vector −η∇u is called
the flux vector. Figure 26.1 shows a sample domain Ω and the associated boundary parts.
Although the domain depicted there has rounded boundary curves, our program assumes
that the boundaries consist of piecewise-straight line segments.

In the previous chapter the part ΓD was the entire boundary, and ΓN was the empty
set. The other extreme, where ΓN is the entire boundary and ΓD is the empty set, is also
of some interest, but it calls for a certain (not too difficult) special handling which I will
avoid in order to keep the exposition as simple as possible. Therefore, from now on I will
assume that ΓD is not the empty set. (To be more precise, I assume that ΓD has a positive
length.) The case where ΓD is the entire boundary, on the other hand, is not special and
falls within the scope of this chapter.

The coefficient η is not necessarily a constant; it may be any (measurable) function
that takes values in some bounded interval [α,β], where α > 0, that is,

0<α≤ η(x, y)≤β for all (x, y) ∈Ω.

In particular, when η(x, y) ≡ 1, (26.1a) reduces to the Poisson’s equation ∇ ·∇u + f = 0
of Chapter 25.

The objective of this chapter is to extend the previous chapter’s FEM code to solve
the boundary value problem (26.1). Specifically, given a polygonal domain Ω in R2, the

361

root
2014/7/8
page 362

�

�

�

�

�

�

�

�

362 Chapter 26. Finite elements: Nonzero boundary data

n

η∇u

ΓN

ΓD

Ω

Figure 26.1: A sample two-dimensional domain Ω with a hole. The boundary part ΓD ,
drawn in solid lines, consists of two curves. The boundary part ΓN is drawn
in a dashed line. The outward unit normal n and the flux vector η∇u are
shown at an arbitrary point on ΓN . Our FEM implementation assumes
that the domain is polygonal; therefore you should imagine the boundary
curves as piecewise-straight line segments.

boundary parts ΓD and ΓN , and the functions η, f , g , and h, the program will find an ar-
bitrarily close approximation to the function u that satisfies the three equations in (26.1).

Remark 26.1. The Neumann boundary condition (26.1c) is equivalent to η∂ u/∂ n = h,
that is, ∂ u/∂ n = h/η, where ∂ u/∂ n is the directional derivative of u in the direction
of the outward normal n. It is likely that you will see the Neumann boundary condition
expressed in this form in some books and articles.

Remark 26.2. If the boundary value problem models a diffusion process in a material
that occupies the domain Ω, then the coefficient η is the material’s diffusivity. In the case
of heat conduction, η is the material’s conductivity. In general, the physical meaning of η
depends on the application. If η is constant throughout Ω, then the material is said to be
homogeneous; otherwise it is inhomogeneous.

Remark 26.3. This chapter’s theory and implementation may be generalized in quite a
straightforward way to the equation

∇ · (A∇u)+ f = 0, (26.2)

where A =
�
Ai j (x, y)

�
is a 2× 2 matrix at any (x, y) ∈ Ω. Equation (26.1a) is a special

case of (26.2) where A(x, y) = η(x, y)I , where I is the 2× 2 identity matrix. If A(x, y) is a
multiple of identity, the material is said to be isotropic at (x, y); otherwise it is anisotropic.

26.2 The weak formulation
In the weak formulation of the boundary value problem in Chapter 25, I steered away
from technical jargon and couched the statements in a somewhat vague and “soft” termi-
nology. In this chapter I will take the opposite approach: I will present the weak formu-
lation properly in terms of Sobolev spaces. Even if you are not familiar with the theory
of Sobolev spaces, you should be able to read through this material and get the gist of it
to an extent that enables you to proceed with the implementation of the project.

In what follows, H 1(Ω) is the Sobolev space of functions defined onΩwhich are square
integrable and whose first order generalized derivatives are also square integrable. Let ΓD
and ΓN be the boundary parts introduced in the previous section. We write H 1

g ,ΓD
(Ω) for

root
2014/7/8
page 363

�

�

�

�

�

�

�

�

26.2. The weak formulation 363

the subset of functions in H 1(Ω) that take on (in the sense of traces) the value g on the ΓD
part of the boundary and H 1

0,ΓD
(Ω) for the subset of functions in H 1(Ω) that vanish (i.e.,

take on the zero value) on ΓD . Let us note that H 1
g ,ΓD
(Ω) is an affine space in H 1(Ω) if g is

nonzero. On the other hand, H 1
0,ΓD
(Ω) is a proper subspace of H 1(Ω).

Let u ∈ H 1
g ,ΓD
(Ω) be the solution of the boundary value problem (26.1), and let v ∈

H 1
0,ΓD
(Ω) be an arbitrary function. Multiply (26.1a) by v and integrate over Ω,∫

Ω

v div(η∇u)d x +
∫
Ω

f v d x = 0;

then apply Green’s identity ((25.4) on page 339) to the first integral to get∫
∂ Ω

v η∇u ·nda−
∫
Ω

η∇u ·∇v d x +
∫
Ω

f v d x = 0.

Split the boundary integral into the sum of integrals over ΓD and ΓN . The former is zero
since v = 0 on ΓD . The latter may be simplified by applying (26.1c). After rearranging
the terms we get the identity∫

Ω

η∇u ·∇v d x =
∫
Ω

f v d x +
∫
ΓN

hv da,

which holds for all v in H 1
0,ΓD
(Ω). Conversely, if the above holds for a u ∈ H 1

g ,ΓD
(Ω) and all

v in H 1
0,ΓD
(Ω), one may deduce that u is a solution of the original boundary value problem.

(The derivatives should be interpreted as generalized derivatives, but that technical issue
is beyond the scope of this book.) This leads to the following weak formulation of the
boundary value problem:

Find u ∈ H 1
g ,ΓD
(Ω) such that∫

Ω

η∇u ·∇v d x =
∫
Ω

f v d x +
∫
ΓN

hv da for all v ∈H 1
0,ΓD
(Ω). (26.3)

Remark 26.4. In the special case when h is identically zero on ΓN , the weak formula-
tion (26.3) reduces to the following:

Find u ∈ H 1
g ,ΓD
(Ω) such that∫
Ω

η∇u ·∇v d x =
∫
Ω

f v d x for all v ∈ H 1
0,ΓD
(Ω).

You may note that there is no explicit reference to a Neumann boundary condition here.
In a sense, omitting h in the weak formulation is equivalent to taking h as identically zero.
Because of this, a zero Neumann boundary condition is also known as a natural boundary
condition.

root
2014/7/8
page 364

�

�

�

�

�

�

�

�

364 Chapter 26. Finite elements: Nonzero boundary data

26.3 The Galerkin approximation
Following the ideas of Chapter 25, we triangulate Ω with a quasi-uniform mesh whose
fineness is determined by a parameter a that specifies an upper bound on triangle areas.
The number m of the mesh’s nodes will increase as a decreases. Recall the construction,
in Section 25.4, of the function space Vm whose basis consisted of the pyramidal functions
depicted in Figure 25.1 on page 342. The preliminary construction in that section placed
one pyramid at each interior node of the mesh. Boundary nodes were excluded since we
were dealing with zero Dirichlet data. In the present chapter, the space Vm is constructed
in the same way; however, there is a pyramidal basis function at every node, including
the boundary nodes, since we are dealing with general boundary conditions. Of course,
those parts of the pyramids that lie outside the domain Ω are immaterial to our purposes.
It may be shown (see, e.g., [12]) that Vm is a linear subspace of H 1(Ω), and that a function
in H 1(Ω) may be approximated with a function in Vm with any desired accuracy if m is
sufficiently large.

Let us write # = {1,2, . . . , m} for the index set of the triangulation’s nodes, and let us
split # into the disjoint union # = �# ∪#D , where #D is the subset of # corresponding
to the vertices that fall on the part ΓD of the domain’s boundary, and �# is the rest of # .
We will write gi for the values of the Dirichlet data g at the point vi when i ∈ #D .

Here we introduce the finite-dimensional counterparts of the spaces H 1
0,ΓD
(Ω) and

H 1
g ,ΓD
(Ω) that enter the weak formulation (26.3):

V0,m =
�∑

i∈ �#
ci vi : all possible choices of coefficients ci

= span{vi : i ∈ �# },

Vg ,m =
�∑

i∈ �#
ci vi +

∑
i∈#D

gi vi : all possible choices of coefficients ci

.

Then the Galerkin approximation of the weak formulation (26.3) takes the following
form:

Find um ∈Vg ,m such that∫
Ω

η∇um ·∇v d x =
∫
Ω

f v d x +
∫
ΓN

hv da for all v ∈V0,m ,

or equivalently, the following:

Find {c j } j∈ �# such that∫
Ω

η∇
*∑

j∈ �#
c j v j +

∑
j∈#D

gj v j

+
·∇vi d x =

∫
Ω

f vi d x +
∫
ΓN

hvi da for all i ∈ �# .

(26.4)

The formulation (26.4) is a linear system of �m equations in the �m unknowns c j , where

�m is the cardinality of the set �# . In analogy with (25.12) (page 341) let us write this
as �Kc = �b . The system may be assembled and solved, in principle, along the lines de-
veloped for the simpler case of Chapter 25. In practice, however, the following slight
reformulation of (26.4) will help to streamline the program’s algorithm. The purpose of

root
2014/7/8
page 365

�

�

�

�

�

�

�

�

26.3. The Galerkin approximation 365

the reformulation is to remove references to the index sets �# and #D in (26.4) in favor of
the larger but simpler index set # . Toward that end, we express

um =
∑
j∈ �#

c j v j +
∑
j∈#D

gj v j =
∑
j∈#

c j v j , (26.5)

thus extending the count of the unknowns ci from �m to m. At the same time, we append
m− �m equations of the type c j = gj , j ∈ #D , to the previous system, thus arriving at a
system Kc = b of m equations in m unknowns with the following general structure:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k11 k12 · · · k1 j · · · k1m
k21 k22 · · · k2 j · · · k2m
...
0 0 · · · 1 · · · 0
...

km1 km2 · · · km j · · · kmm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
c2
...

c j
...

cm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
b2
...

gj
...

bm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (26.6)

Row j expresses the constraint c j = gj , assuming that the index j is in the set#D . There is
one such row for every vertex that falls on ΓD . We may exploit that row’s simple structure
to eliminate the rest of the entries in column j , as in⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

k11 k12 · · · 0 · · · k1m
k21 k22 · · · 0 · · · k2m
...
0 0 · · · 1 · · · 0
...

km1 km2 · · · 0 · · · kmm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1
c2
...

c j
...

cm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1− gj k1 j
b2− gj k2 j

...
gj
...

bm − gj km j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (26.7)

The elimination that takes (26.6) to (26.7) is by no means essential, but it helps to make
the sparse coefficient matrix K more sparse and thus increase UMFPACK’s efficiency.

In view of the weak formulation in (26.4) and the compact form in (26.5) of um , the
entries Ki j of the system stiffness matrix K are given by

Ki j =
∫
Ω

η∇vi ·∇vj d x d y.

As we saw in Chapter 25, however, there is little use for such a “node-based” formula. The
“element-based” approach is easier to implement. Thus, we introduce the 3× 3 element
stiffness matrix k on the triangle T , given by

ki j =
∫

T
η∇φi ·∇φ j d x d y, i , j = 1,2,3,

where φi (x, y) = λi is the nodal shape function corresponding to the vertex i of the
triangle T . Here (λ1,λ2,λ3) are the barycentric coordinates of the point (x, y).

Since a shape function is a first degree polynomial, then∇φi is a constant vector, and
therefore it may be pulled out of the integration sign. Applying (A.10) (on page 379), the
expression for ki j reduces to

ki j =
�

1

4|T |2 ei ·e j

��∫
T
ηd x d y

�
. (26.8)

root
2014/7/8
page 366

�

�

�

�

�

�

�

�

366 Chapter 26. Finite elements: Nonzero boundary data

In particular, when η≡ 1, the integral equals the area |T | of the triangle; therefore (26.8)
reduces to Chapter 25’s (25.14).

Remark 26.5. Rearranging the expression (26.8) into

ki j =
�

1

4|T |ei ·e j

��
1

|T |
∫

T
ηd x d y

�
(26.9)

we see that the element stiffness matrix is exactly the previous chapter’s element stiffness
matrix multiplied by the average of η over the element. This observation should help you
with adapting your previous code to the current situation.

26.4 The program
The implementation of the FEM solver for the boundary value problem (26.1) amounts
to making small changes to the solver of Chapter 25. I assume that you have read that
chapter and implemented its program. In this chapter I will focus only on the differences.
Here is what my directory looks like:

$ cd fem2
$ ls -F
Makefile mesh.h@ problem-spec.h@
array.h@ plot-with-geomview.c@ twb-quad.c@
fem-demo.c plot-with-geomview.h@ twb-quad.h@
gauss-quad.c@ poisson.c xmalloc.c@
gauss-quad.h@ poisson.h xmalloc.h@
mesh.c@ problem-spec.c

The file problem-spec.h remains unchanged from that in Project Triangulate of Chap-
ter 23; therefore a symbolic link to that file will do. The file problem-spec.c is substantially
different; make a copy from Chapter 25, and edit. In problem-spec.c we define four prob-
lems, called square1(), square2(), square3(), square4(), each corresponding
to a boundary value problem on the unit square Ω= (0,1)× (0,1). Figures 26.2 and 26.3
provide all the necessary details. Problems square1() andsquare2() test your code’s
ability to apply nonzero Dirichlet and Neumann boundary data, respectively. They
share the same forcing function f and exact solution uex. Problem square3() tests
your code’s ability to handle inhomogeneous media, that is, nonconstant η. Problem
square4(), for which no exact solution is available, demonstrates a case where one side
of the square is split into two intervals with different boundary conditions. Listing 26.1
shows the transcript of a sample session.

When an exact solution is available, the program computes and prints the errors in the
L∞ and L2 norms. We don’t compute the error in the energy norm since it requires an
effort beyond the scope of this chapter. The formula (25.17) (page 347) is not applicable
since the zero Dirichlet data was used in an essential way in its derivation.

26.5 The file problem-spec.[ch]
The file problem-spec.h remains unchanged from that in Project Triangulate of Chapter 23;
therefore a symbolic link to that file will do. The file problem-spec.c defines the four
boundary value problems depicted in Figures 26.2 and 26.3. The domain specifications
are minor variations on the previous chapter’s square domain. The novel element here

root
2014/7/8
page 367

�

�

�

�

�

�

�

�

26.5. The file problem-spec.[ch] 367

square1()

η≡ 1

g = 4x(1− x)

g = 0g = 0

g = 0

square2()

η≡ 1

h = 20x(1− x)

g = 0g = 0

g = 0

uex = 4x(1− x)(1− y)(1− 4y)
f =−32x(1− x)+ 8(1− y)(1− 4y)

Figure 26.2: These figures declare two boundary value problems on the domain Ω =
(0,1)× (0,1). The version on the left, square1(), has Dirichlet data all
around. The version on the right, square2(), has Neumann data on the
bottom edge and Dirichlet data on the other three edges. In both cases the
coefficient η is identically equal to 1 throughout, and the forcing function
f and the exact solution uex are as given.

square3()

η= 1+ x2 + y2
g = uexg = uex

g = uex

g = uex

f = 16(x − 1/8)2+ 16(y − 1/8)2+ 15/2

uex = 1− 2(x − 1/2)2− 2(y − 1/2)2

square4()

η≡ 1

g = 1 h = 0

h = 0h = 0

g = 0

f ≡ 0

Figure 26.3: These figures declare two boundary value problems on the domain Ω =
(0,1)× (0,1). The version on the left, square3(), has Dirichlet data all
around which is “inherited” from the exact solution uex. The coefficient η
is nonconstant. The version on the right, square4(), has mixed Dirich-
let and Neumann data on the various parts of the boundary. The coeffi-
cient η is identically equal to 1 throughout, and the forcing function f is
zero.

is the care that goes into specifying the boundary condition types. Listing 26.2 shows
the definition of the domain labeled square2() in Figure 26.2. We see that the bottom
side is given the FEM_BC_NEUMANN attribute, while the other three sides are of the type
FEM_BC_DIRICHLET. All four vertices, however, are of the typeFEM_BC_DIRICHLET
since the boundary values are prescribed on all four.

The functions square_g() and square_h() that appear in that listing may be
defined in a variety of ways. Here is one possibility:

root
2014/7/8
page 368

�

�

�

�

�

�

�

�

368 Chapter 26. Finite elements: Nonzero boundary data

Listing 26.1: The transcript of a sample session with this chapter’s program.

$./fem-demo
Usage: ./fem-demo d a

d = the TWB quadrature strength
a = maximal triangle area

$./fem-demo 10 0.002
domain is square1:
nodes = 428, edges = 1217, elems = 790
system stiffness matrix is 428x428 (=183184) has 2862 nonzero entries
errors: L^infty = 0.00977244, L^2 = 0.0022182
geomview output written to file square1.gv

domain is square2:
nodes = 428, edges = 1217, elems = 790
system stiffness matrix is 428x428 (=183184) has 2862 nonzero entries
errors: L^infty = 0.0111535, L^2 = 0.00219217
geomview output written to file square2.gv

domain is square3:
nodes = 428, edges = 1217, elems = 790
system stiffness matrix is 428x428 (=183184) has 2862 nonzero entries
errors: L^infty = 0.00378925, L^2 = 0.00196628
geomview output written to file square3.gv

domain is square4:
nodes = 433, edges = 1232, elems = 800
system stiffness matrix is 433x433 (=187489) has 2897 nonzero entries
geomview output written to file square4.gv

double square_g(double x, double y)
{

return 0.0
}

We need not be concerned that square_g() returns incorrect values on square2()’s
bottom edge (where the solution is nonzero) since g is never evaluated on that edge; it is
evaluated only on the boundary parts of the FEM_BC_DIRICHLET type.

Another alternative, taking advantage of the availability of the exact solution, would
be

double square_g(double x, double y)
{

return square_u_exact(x, y);
}

since obviously the exact solution satisfies the boundary condition. The second alterna-
tive has a slight advantage over the first one since it applies to both the square1() and
square2() problems of Figure 26.2.

For the same reasons, the function square_h() that produces the Neumann data
for square2() may be given simply as

root
2014/7/8
page 369

�

�

�

�

�

�

�

�

26.6. The file poisson.c 369

Listing 26.2: The specification in the file problem-spec.c of the domain corresponding to the bound-
ary value problem square2() in Figure 26.2.

1 struct problem_spec *square2(void)
2 {
3 static struct problem_spec_point points[] = {
4 { 0, 0.0, 0.0, FEM_BC_DIRICHLET },
5 { 1, 1.0, 0.0, FEM_BC_DIRICHLET },
6 { 2, 1.0, 1.0, FEM_BC_DIRICHLET },
7 { 3, 0.0, 1.0, FEM_BC_DIRICHLET },
8 };
9 static struct problem_spec_segment segments[] = {

10 { 0, 0, 1, FEM_BC_NEUMANN },
11 { 1, 1, 2, FEM_BC_DIRICHLET },
12 { 2, 2, 3, FEM_BC_DIRICHLET },
13 { 3, 3, 0, FEM_BC_DIRICHLET },
14 };
15 static struct problem_spec spec = { // C99-style initialization!
16 .points = points,
17 .npoints = (sizeof points)/(sizeof points[0]),
18 .segments = segments,
19 .nsegments = (sizeof segments)/(sizeof segments[0]),
20 .holes = NULL,
21 .nholes = 0,
22 .f = square_f,
23 .g = square_g,
24 .h = square_h,
25 .eta = one,
26 .u_exact = square_u_exact,
27 };
28 printf("domain is square2:\n");
29 return &spec;
30 }

double square_h(double x, double y)
{

return 20*x*(1-x);
}

Again, we need not be concerned that it does not represent the correct Neumann data on
edges other than the bottom; it is evaluated only on the bottom edge.

The domain specification of the problem square4() in Figure 26.3 is slightly differ-
ent than the others since the bottom edge needs to be split into two distinct zones with
FEM_BC_DIRICHLET and FEM_BC_NEUMANN attributes. To achieve that, define the
square as a polygon with five vertices and five segments—the bottom edge consisting of
two segments—and then specify the boundary types in the usual way.

26.6 The file poisson.c
This chapter’s poisson.c is a slight modification of the previous chapter’s. Listing 26.3
provides an outline. The function error_and_exit() remains unchanged. The func-
tionselement_errors() and eval_errors() are curtailed versions of the previous

root
2014/7/8
page 370

�

�

�

�

�

�

�

�

370 Chapter 26. Finite elements: Nonzero boundary data

Listing 26.3: An outline of the file poisson.c.

1 #include ...
2 � static void error_and_exit(int status,
3 const char *file, int line) ...
4 � static void apply_dirichlet_bc(struct elem *ep,
5 double (*g)(double x, double y), double k[3][4]) ...
6 � static void apply_neumann_bc(struct elem *ep,
7 double (*h)(double x, double y),
8 double k[3][4], struct Gauss_qdat *gqdat) ...
9 � static void compute_element_stiffness(

10 struct elem *ep, struct TWB_qdat *qdat,
11 double (*f)(double x, double y),
12 double (*eta)(double x, double y),
13 double k[3][4]) ...
14 � void poisson_solve(struct problem_spec *spec,
15 struct mesh *mesh, int d) ...
16 � static struct errors element_errors(struct problem_spec *spec,
17 struct TWB_qdat *qdat, struct elem *ep) ...
18 � struct errors eval_errors(struct problem_spec *spec,
19 struct mesh *mesh, int d)

code; they compute the error in the L2 and L∞ norms only. Computing the energy norm
requires extra work, so we will not implement it. We will review the remaining functions
in the following subsections.

26.6.1 The function compute_element_stiffness()

The function compute_element_stiffness() that appears on line 9 of Listing 26.3
requires only small adjustments relative to the previous chapter’s function of the same
name. First, we calculate the 12 entries of the 3× 4 element stiffness matrix exactly as be-
fore. Next, in view of Remark 26.5 on page 366, we multiply the 3× 3 part of the matrix
(i.e., everything other than the rightmost column) by the average of η over the element.
Since compute_element_stiffness() has already set up the TWB quadrature ma-
chinery for computing the fourth column of the element stiffness matrix, we may pig-
gyback on that machinery to compute the integral of η. Very little extra code is needed
here.

26.6.2 Applying the Neumann boundary data

According to the formulation (26.4), the contributions of the problem’s force function, f ,
and the Neumann boundary data, h, appear as the sum

∫
Ω

f vi d x +
∫
ΓN

hvi da. At the
element level, the first integral deposits entries in the fourth column of the 3× 4 element
stiffness matrix, just as it did in the previous chapter’s program. The second integral
deposits additional material in that column. The deposited values accumulate, reflecting
the fact that the two integrals are being added.

To determine the contribution of the second integral at the element level, let us con-
sider an element with vertices vi , v j , vk (in counterclockwise order) whose edge i lies
on the ΓN part of the boundary. Recall that edge i lies opposite the vertex i ; therefore
it extends from the vertex v j to the vertex vk . Figure 26.4 depicts a representative case.

root
2014/7/8
page 371

�

�

�

�

�

�

�

�

26.6. The file poisson.c 371

v j −ei → FEM_BC_NEUMANN vk

−e
j
→

vi← ek−

the basis function vj

the basis function vk

Figure 26.4: The diagram shows an element with vertices vi , v j , vk and edge vectors
ei , e j , ek . The edge ei lies on the domain’s boundary and has a boundary
of type FEM_BC_NEUMANN. Parts of the basis functions vj (centered at
node v j) and vk (centered at node vk) are shown. The trace of the basis
function vj on the edge ei is a linear function that goes from 1 at the vertex
v j to 0 at the vertex vk . Similarly, the trace of the basis function vk on the
edge ei is a linear function that goes from 1 at the vertex vk to 0 at the
vertex v j .

Additionally, the figure shows the fragments of the basis functions (pyramids) vj and vk
centered at the vertices v j and vk . We see in that figure that along the edge ei , the ba-
sis function vj drops linearly from the value 1 at the endpoint vj to the value 0 at the
endpoint vk . To obtain an equation for that function, let us parametrize the edge ei as in

edge ei :
1

2
(1− ξ)v j +

1

2
(1+ ξ)vk , −1≤ ξ ≤ 1.

Thus, ξ = −1 puts us at v j , and ξ = 1 puts us at vk . Then the restriction of the basis
function vj to the edge ei is the function 1

2 (1− ξ) since it takes on the value 1 at the
endpoint vj and the value 0 at the endpoint vk . Consequently, the integral

∫
ΓN

hvj da
along the edge ei takes the form

L
2

∫ 1

−1

1

2
(1− ξ) h

�
1

2
(1− ξ)v j +

1

2
(1+ ξ)vk

�
dξ , (26.10a)

where L is the actual length of the edge ei , that is, L= ‖vk−v j ‖. The L/2 factor accounts
for the change of the domain of integration from the edge ei whose length is L to the
parameter space (−1,1) whose length is 2. (See equations (22.2) on page 291 for a clearer
explanation.) The value of this integral is deposited in (that is, added to) the (j , 3) entry
of the element stiffness matrix since it represents the

∫
ΓN

hvj da integral.
This takes care of half of the required computation. We also need to evaluate the

integral
∫
ΓN

hvk da along the edge ei . You should have no difficulty in seeing that it is

root
2014/7/8
page 372

�

�

�

�

�

�

�

�

372 Chapter 26. Finite elements: Nonzero boundary data

Listing 26.4: An outline of the function apply_neumann_bc() in the file poisson.c.

1 static void apply_neumann_bc(struct elem *ep,
2 double (*h)(double x, double y),
3 double k[3][4], struct Gauss_qdat *gqdat)
4 {
5 for (int i = 0; i < 3; i++) // scan the element’s edges
6 if (ep→e[i]→bc == FEM_BC_NEUMANN) {
7 � let (x1,y1) be the coords of one end of edge i
8 � let (x2,y2) be the coords of the other end of edge i
9 � compute the length L of the edge

10 double sum1 = 0.0; // the integral in (26.10a)
11 double sum2 = 0.0; // the integral in (26.10b)
12 while (gqdat→w �= -1) { // do Gaussian quadrature
13 � ...
14 gqdat++;
15 }
16 k[(i+1)%3][3] += L/2*sum1; // deposit the compted values in
17 k[(i+2)%3][3] += L/2*sum2; // the element stiffness matrix
18 }
19 }

given by

L
2

∫ 1

−1

1

2
(1+ ξ) h

�
1

2
(1− ξ)v j +

1

2
(1+ ξ)vk

�
dξ . (26.10b)

The value of this integral is deposited in (that is, added to) the (k , 3) entry of the element
stiffness matrix since it represents the

∫
ΓN

hvk da integral.
The function apply_neumann_bc() that appears on line 6 of Listing 26.3 is re-

sponsible for evaluating these two integrals via Gaussian quadrature and depositing their
values into the element stiffness matrix. Listing 26.4 gives an outline. Note that the in-
dices of the vertices v j and vk appear as (i+1)%3 and (i+2)%3, as usual.

26.6.3 Applying the Dirichlet boundary data

The function apply_dirichlet_bc() that appears on line 4 in Listing 26.3 gener-
alizes the previous chapter’s enforce_zero_dirichlet_bc() function to nonzero
Dirichlet data. It receives an element’s 3 × 4 stiffness matrix k and modifies it to en-
force the prescribed Dirichlet data in accordance with the algorithm described in formu-
las (26.6) and (26.7). Specifically, if the element’s vertex i (where i is one of 0,1,2) is of type
FEM_BC_DIRICHLET, it zeros the k’s row i , replaces ki3 with the prescribed boundary
value, gi , and sets kii to 1. The middle block of the diagram below illustrates this with
i = 1:

k00 k01 k02 k03

k10 k11 k12 k13

k20 k21 k22 k23

k00 k02 k03

k20 k22 k23

0 1 0 g1

k01

k21

=⇒
k00 k02 k03− g1k01

k20 k22 k23− g1k21

0 1 0 g1

0

0

=⇒

root
2014/7/8
page 373

�

�

�

�

�

�

�

�

26.7. Project FEM 2 373

As was noted in connection with (26.7), we may use the modified row to eliminate the en-
tries in column i through row operations and arrive at the matrix depicted at the right end
of the diagram above. The elimination is not necessary and does not affect the problem’s
solution. However, it results in a sparser system stiffness matrix which is advantageous
in connection with UMFPACK.

26.6.4 The order of the application of the boundary conditions

The rest of the file poisson.c is pretty much the same as Chapter 25’s version. I wish to
point out one subtle issue that you should take into account when making the transition
to this chapter’s version.

Let us look at Listing 25.4 of the function poisson_solve() on page 354.
On line 30 we call enforce_zero_dirichlet_bc() to enforce the bound-
ary conditions. In the current chapter that line will be replaced with a call to
apply_neumann_bc() to process the problem’s Neumann boundary data and then
a call to apply_dirichlet_bc() to process the problem’s Dirichlet boundary data.
The order of the calls is absolutely essential! To see the reason why, consider a boundary
node which is at the transition point between a Dirichlet edge and a Neumann edge. The
application of the Neumann boundary condition adds the integrals (26.10) to that node’s
“force” term in the system stiffness matrix. The application of the Dirichlet boundary
condition resets that force term to the prescribed boundary value. If the boundary condi-
tions were applied, incorrectly, in the reversed order, then the value set by the Dirichlet
data would be overwritten by the integrals of the Neumann data.

26.7 Project FEM 2
Complete the program, compile, and test with the four boundary value problems defined
in Section 26.4. Compare your results to the transcript shown in that section and the
graphs shown in Figure 26.5.

root
2014/7/8
page 374

�

�

�

�

�

�

�

�

374 Chapter 26. Finite elements: Nonzero boundary data

square1(), square2() square3()

square4() (view 1) square4() (view 2)

Figure 26.5: The graphs of the solutions of the four boundary value prob-
lems defined in Section 26.4 as obtained through the command
./fem-demo 10 0.005 and rendered in Geomview. The problems
square1() and square2() have identical solutions. Two views of the
solution of problem square4() are shown.

root
2014/7/8
page 375

�

�

�

�

�

�

�

�

Appendix A

Barycentric coordinates

A.1 Barycentric coordinates
Figure A.1 shows the equilateral triangle% formed by the part of the plane λ1+λ2+λ3 =
1 that lies in the positive octant in the (λ1,λ2,λ3) Cartesian coordinate system. It also
shows a generic triangle with verticesv1, v2, v3 in the (x1, x2)Cartesian coordinate system.
For reasons that will become clear shortly, we assume that the triangle T has a nonempty
interior and that its vertices are enumerated in counterclockwise order. The equation

x= λ1v1+λ2v2+λ3v3 (A.1)

establishes a bijection, i.e., a one-to-one and onto mapping, between the triangle % in
the three-dimensional (λ1,λ2,λ3) space and the triangle T in the two-dimensional (x1, x2)
space. In particular, the vertices (1,0,0), (0,1,0), and (0,0,1) of % map to the vertices
v1, v2, and v3 of T , respectively. The boundary of % maps onto the boundary of T ,
and the interior of % maps onto the interior of T . To every point λ = (λ1,λ2,λ3) ∈ %
there corresponds a unique point x = (x1, x2) ∈ T , and conversely, to every point x =
(x1, x2) ∈ T there corresponds a unique point λ= (λ1,λ2,λ3) ∈ % . The triplet (λ1,λ2,λ3)
associated with the point of x ∈ T is called that point’s barycentric coordinates. Figure A.1
illustrates the geometry.

To explore further, let us introduce the notation

v1 =
�

v11
v12

�
, v2 =

�
v21
v22

�
, v3 =

�
v31
v32

�
,

whereby (A.1) takes the form�
x1
x2

�
=
�

v11 v21 v31
v12 v22 v32

�⎛⎝λ1
λ2
λ3

⎞⎠ , where λ1+λ2+λ3 = 1,

or equivalently, ⎛⎝x1
x2
1

⎞⎠=
⎛⎝v11 v21 v31

v12 v22 v32
1 1 1

⎞⎠⎛⎝λ1
λ2
λ3

⎞⎠ . (A.2)

Equation (A.1), or its expanded form (A.2), carry us from the barycentric coordinates
(λ1,λ2,λ3) to the Cartesian coordinates (x1, x2). The mapping in the reverse direction is

375

root
2014/7/8
page 376

�

�

�

�

�

�

�

�

376 Appendix A. Barycentric coordinates

λ1

λ2

λ3

1
1

1

λ1+λ2+λ3 = 1

%
x1

x2

v1
v2

v3

T

e3

e1
e2

(λ1,λ2,λ3)→ (x1, x2)

Figure A.1: The equilateral triangle % in the λ1-λ2-λ3 coordinate system is mapped to
the triangle T in the x-y coordinate system. The edge vectors e1, e2, e3 are
defined in (A.3).

obtained by inverting the coefficient matrix. The outcome is best expressed in terms of
the triangle T ’s edge vectors

e1 =
�

e11
e12

�
, e2 =

�
e21
e22

�
, e3 =

�
e31
e32

�
,

which are defined through

e1 = v3−v2, e2 = v1−v3, e3 = v2−v1 (A.3)

and shown graphically in Figure A.1. Upon inverting the mapping (A.2) we obtain⎛⎝λ1
λ2
λ3

⎞⎠= 1

e11e22− e21e12

⎛⎝−e12 e11 (v21v32− v31v22)−e22 e21 (v31v12− v11v32)−e32 e31 (v11v22− v21v12)

⎞⎠⎛⎝x1
x2
1

⎞⎠ . (A.4)

Remark A.1. We recognize the expression in the denominator as the sole nonzero com-
ponent of the cross product e1 × e2—here we are thinking of the vectors e1 and e2 as
embedded in the three-dimensional space—therefore it equals the area of the parallelo-
gram formed by those two vectors, that is to say, twice the area of the triangle T . Our
assumptions that the triangle T has nonempty interior and that its vertices are ordered
counterclockwise imply that e11e22− e21e12 is positive.

Since the triangle’s area can be expressed equally well in terms of the cross products
e2×e3 or e3×e1, any of the following expressions may be used to compute the area:

|T |= 1

2
(e11e22− e21e12) =

1

2
(e21e32− e31e22) =

1

2
(e31e12− e11e32). (A.5)

Remark A.2. For future reference, let us note that (A.4) is equivalent to⎛⎝λ1
λ2
λ3

⎞⎠= 1

2|T |

⎛⎝−e12 e11−e22 e21−e32 e31

⎞⎠�x1
x2

�
+

1

2|T |

⎛⎝v21v32− v31v22
v31v12− v11v32
v11v22− v21v12

⎞⎠ . (A.6)

Thus, by letting

B =
1

2|T |

⎛⎝−e12 e11−e22 e21−e32 e31

⎞⎠ , b=
1

2|T |

⎛⎝v21v32− v31v22
v31v12− v11v32
v11v22− v21v12

⎞⎠ , (A.7)

root
2014/7/8
page 377

�

�

�

�

�

�

�

�

A.2. Calculus on a triangle 377

v1 v2

v3

λ
1 =

0.00

λ
1 =

0.25

λ
1 =

0.50

λ
1 =

0.75

λ
1 =

1.00

λ3 = 0.00

λ3 = 0.25

λ3 = 0.50

λ3 = 0.75

λ3 = 1.00

λ 2
=

0.
00

λ 2
=

0.
25

λ 2
=

0.
50

λ 2
=

0.
75

λ 2
=

1.
00

Figure A.2: The barycentric coordinate lines are parallel to the triangle’s sides. The
coordinate lines λi = constant are parallel to the edge opposite the vertex i .

and λ= (λ1,λ2,λ3), (A.6) takes on the compact form

λ= Bx+ b. (A.8)

In conclusion, (A.1) maps from barycentric coordinates to Cartesian, and (A.8) maps
from Cartesian to barycentric.

A.1.1 The barycentric coordinate lines

If you are new to the concept of barycentric coordinates, it would be worthwhile to spend
a few minutes studying the diagram in Figure A.2, which shows the barycentric coordi-
nate lines. Note, for instance, that the lines λi = constant are parallel to the edge opposite
the vertex vi . In particular, the horizontal line marked λ3 = 0.25 is parallel to the trian-
gle’s base. When we move along that line from the triangle’s left edge to the right edge, the
λ2 coordinate varies from 0 to 0.75, and the λ1 coordinate varies from 0.75 to 0. During
that motion, and indeed anywhere in the triangle, we have λ1+λ2+λ3 = 1.

A.1.2 The barycentric coordinates under a linear map

Consider a linear mapping L of the x1-x2 plane into itself. Suppose L takes the triangle T
with vertices v1, v2, v3 to a triangle T ′ with vertices v′1, v′2, v′3, as illustrated in Figure A.3.
Consider a point x ∈ T specified through its barycentric coordinates (λ1,λ2,λ3), that is,
x= λ1v1+λ2v2+λ3v3. Let x′ = Lx ∈ T ′. Then

x′ = Lx= L(λ1v1+λ2v2+λ3v3) = λ1Lv1+λ2Lv2+λ3Lv3

= λ1v
′
1+λ2v

′
2+λ3v

′
3.

We see that the barycentric coordinates of x′ relative to T ′ are also (λ1,λ2,λ3). That
is, barycentric coordinates are preserved under linear maps. This is a crucially important
property in applications to integration on triangles.

A.2 Calculus on a triangle
Consider the triangles % and T shown in Figure A.1. As before, we assume that the
vertices v1, v2, v3 are enumerated in counterclockwise order, and that T has positive

root
2014/7/8
page 378

�

�

�

�

�

�

�

�

378 Appendix A. Barycentric coordinates

x1

x2

v1 v2

v3

xT

v′1

v′2

v′3

x′T ′
L

Figure A.3: The linear transformation L maps the triangle T to T ′. The point x and its
image x′ = Lx have the same barycentric coordinates relative to T and T ′.

x1

x2

x3

v1 v2

v3

height = 1

Figure A.4: The graph of the function f (x) = f̃
�
λ(x)

, where f̃ (λ) = λ1.

area, that is, |T | > 0. We write x as a shorthand for (x1, x2) and λ as a shorthand for
(λ1,λ2,λ3). In light of the one-to-one relationship between the Cartesian coordinates x
and the barycentric coordinates λ, we write x(λ)when we wish to emphasize the depen-
dence of x on λ. Similarly, we write λ(x) to emphasize the dependence of λ on x. The
explicit forms of these dependencies are given in (A.2) and (A.4).

A function f : T →R, through the change of variables x= x(λ), induces a function
f̃ :% →R given by f̃ (λ) = f

�
x(λ)

.

Example A.1. Consider the function f̃ (λ) = λ1, where λ ∈ % . What does the corre-
sponding function f (x) look like on T ? One way of figuring the answer is to observe
that

f̃ (1,0,0) = 1, f̃ (0,1,0) = 0, f̃ (0,0,1) = 0,

and therefore

f (v1) = 1, f (v2) = 0, f (v3) = 0.

Thus, the graph of f is a plane that passes through the vertices v2 and v3 and is sloped so
that it reaches height 1 at vertex v1. Figure A.4 depicts the graph of f (x).

Another way of figuring out the answer is to recall that the curves λ1 = constant
are straight lines parallel to the edge opposite the vertex v1. Therefore the graph of the
function f (x) has level curves parallel to the triangle T ’s v2–v3 edge which rise from
level 0 near that edge to level 1 near the vertex v1 as λ1 goes from 0 to 1. That, too, leads
to Figure A.4.

Let us return to general functions of the form f : T → R, and f̃ : % → R, where
f (x) = f̃

�
λ(x)

. According to (A.8), the derivative of the linear mapping x &→ λ(x) is

root
2014/7/8
page 379

�

�

�

�

�

�

�

�

A.2. Calculus on a triangle 379

the matrix B . Therefore the derivatives D f and D f̃ are related through the chain rule:

D f
���
x
= D f̃

���
λ(x)

B . (A.9)

Remark A.3. For the purposes of the chain rule, the derivatives D f and D f̃ are viewed
as single-row matrices:

D f =
�
∂ f
∂ x1

,
∂ f
∂ x2

�
, D f̃ =

�
∂ f̃
∂ λ1

,
∂ f̃
∂ λ2

,
∂ f̃
∂ λ3

�
.

As a consistency check, let us note that in (A.9) D f is 1×2, D f̃ is 1×3, and B is 3×2. In
this connection let us also note that the gradient of a function is usually deemed a column
vector, that is, ∇ f = (D f)T .

Example A.2. Consider the function f̃ (λ) = λ1, and let f (x) = f̃
�
λ(x)

. The graph of

f is shown in Figure A.4. We have D f̃ = (1,0,0), and therefore from (A.9) we get

D f
���
x
=
�
1 0 0

⎡⎣ 1

2|T |

⎛⎝−e12 e11−e22 e21−e32 e31

⎞⎠⎤⎦= 1

2|T |
�−e12 e11

,

whence

∇ f =
1

2|T |
�−e12

e11

�
.

Note that the gradient vector is perpendicular to the edge vector e1 = (
e11
e12
), as it should

be, since f ’s level curves are parallel to e1.

Example A.3. Generalizing the previous example, let φ̃i (λ) = λi for i = 1,2,3, and let
φi (x) = φ̃i (λ(x)). Then

∇φi =
1

2|T |
�−ei2

ei1

�
,

and therefore

∇φi ·∇φ j =
1

4|T |2
�−ei2

ei1

�
·
�−e j2

e j1

�
=

1

4|T |2 (ei1e j1+ ei2e j2) =
1

4|T |2 ei ·e j . (A.10)

This result plays a crucial role in the calculation of element stiffness matrices in Chap-
ters 25 and 26.

root
2014/7/8
page 381

�

�

�

�

�

�

�

�

Bibliography

[1] Robert A. Adams and John J. F. Fournier. Sobolev spaces, volume 140 of Pure and Applied
Mathematics. Elsevier/Academic Press, Amsterdam, second edition, 2003. (Cited on p. 359)

[2] Nicholas D. Alikakos and Rouben Rostamian. Lower bound estimates and separable solutions
for homogeneous equations of evolution in Banach space. Journal of Differential Equations,
43(3):323–344, 1982. (Cited on p. 285)

[3] Grégoire Allaire. Shape optimization by the homogenization method, volume 146 of Applied
Mathematical Sciences. Springer-Verlag, New York, 2002. (Cited on p. 215)

[4] Kendall E. Atkinson. An Introduction to Numerical Analysis. Wiley, New York, second edi-
tion, 1989. (Cited on pp. 137, 292, 295, 296)

[5] O. Axelsson and V. A. Barker. Finite element solution of boundary value problems, volume 35
of Classics in Applied Mathematics. SIAM, Philadelphia, 2001. Theory and Computation,
Reprint of the 1984 original. (Cited on pp. 342, 360)

[6] R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods. SIAM, Philadelphia, 1993. (Cited on p. 79)

[7] Conrad Barski. Land of Lisp: Learn to Program in Lisp, One Game at a Time! No Starch Press,
San Francisco, CA, 2011. (Cited on p. 161)

[8] Martin P. Bendsøe and Carlos A. Mota Soares, editors. Topology design of structures, volume
227 of NATO Advanced Science Institutes Series E: Applied Sciences. Kluwer Academic Publish-
ers Group, Dordrecht, The Netherlands, 1993. (Cited on p. 215)

[9] M. Bertsch and R. Rostamian. The principle of linearized stability for a class of degenerate
diffusion equations. Journal of Differential Equations, 57(3):373–405, 1985. (Cited on p. 285)

[10] Dietrich Braess. Finite Elements. Cambridge University Press, Cambridge, UK, third edition,
2007. Theory, fast solvers, and applications in elasticity theory, Translated from the German
by Larry L. Schumaker. (Cited on pp. 342, 345, 359)

[11] Susanne C. Brenner and L. Ridgway Scott. The mathematical theory of finite element methods,
volume 15 of Texts in Applied Mathematics. Springer, New York, third edition, 2008. (Cited
on pp. 342, 360)

[12] Philippe G. Ciarlet. The finite element method for elliptic problems, volume 40 of Classics in
Applied Mathematics. SIAM, Philadelphia, 2002. Reprint of the 1978 original. (Cited on
pp. 342, 360, 364)

[13] Ronald Cools. An encyclopaedia of cubature formulas. Journal of Complexity, 19(3):445–453,
2003. (Cited on p. 321)

381

root
2014/7/8
page 382

�

�

�

�

�

�

�

�

382 Bibliography

[14] T. A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal
method. ACM Transactions on Mathematical Software, 30(2):165–195, 2004. (Cited on p. 85)

[15] T. A. Davis and I. S. Duff. A combined unifrontal/multifrontal method for unsymmetric
sparse matrices. ACM Transactions on Mathematical Software, 25(1):1–19, 1999. (Cited on
p. 85)

[16] Timothy A. Davis. Direct methods for sparse linear systems, volume 2 of Fundamentals of Algo-
rithms. SIAM, Philadelphia, 2006. (Cited on pp. 80, 85)

[17] A. K. Dewdney. Simulated Evolution: Wherein bugs learn to hunt bacteria. Scientific Ameri-
can, 260(5):138–141, 1989. (Cited on p. 161)

[18] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for sparse matrices. Monographs on
Numerical Analysis. The Clarendon Press, Oxford University Press, New York, 1986. (Cited
on pp. 79, 80)

[19] Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathemat-
ics. American Mathematical Society, Providence, RI, second edition, 2010. (Cited on p. 359)

[20] Stanley J. Farlow. Partial Differential Equations for Scientists and Engineers. Dover Publications
Inc., New York, 1993. Revised reprint of the 1982 original. (Cited on p. 338)

[21] Avner Friedman. Partial Differential Equations of Parabolic Type. Prentice–Hall, Englewood
Cliffs, NJ, 1964. (Cited on p. 252)

[22] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order.
Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. (Cited on
p. 359)

[23] Mark S. Gockenbach. Understanding and Implementing the Finite Element Method. SIAM,
Philadelphia, 2006. (Cited on pp. 342, 345, 359)

[24] Alfred Haar. Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen,
69:331–371, 1910. (Cited on pp. 93, 94, 382)

[25] Alfred Haar. On the theory of orthogonal function systems. In Christopher Heil and David F.
Walnut, editors, Fundamental Papers in Wavelet Theory, pages 155–188. Princeton University
Press, Princeton, NJ, 2006. (English translation of [24]; Georg Zimmermann, translator).
(Cited on p. 93)

[26] David R. Hanson. C Interfaces and Implementations: Techniques for Creating Reusable Software.
Addison–Wesley, Boston, MA, 1997. (Cited on pp. 11, 152)

[27] Richard Heathfield, Lawrence Kirby, et al. C Unleashed. Sams Publishing, Indianapolis, IN,
2000. (Cited on p. 48)

[28] F. B. Hildebrand. Introduction to Numerical Analysis. McGraw–Hill, New York, second
edition, 1974. (Cited on pp. 292, 295, 296)

[29] Eugene Isaacson and Herbert Bishop Keller. Analysis of Numerical Methods. Dover Publica-
tions Inc., New York, 1994. Corrected reprint of the 1966 original. (Cited on p. 253)

[30] C. T. Kelley. Detection and remediation of stagnation in the Nelder–Mead algorithm using
a sufficient decrease condition. SIAM Journal on Optimization, 10(1):43–55, 1999. (Cited on
p. 197)

[31] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice–Hall,
Englewood Cliffs, NJ, first edition, 1978. (Cited on p. 4)

root
2014/7/8
page 383

�

�

�

�

�

�

�

�

Bibliography 383

[32] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice–Hall,
Englewood Cliffs, NJ, second edition, 1988. (Cited on pp. 4, 7)

[33] David Kincaid and Ward Cheney. Numerical Analysis: Mathematics of Scientific Computing.
American Mathematical Society, Providence, RI, third edition, 2002. (Cited on pp. 137, 253,
255, 258)

[34] Donald E. Knuth. The Art of Computer Programming: Sorting and Searching. Addison–Wesley,
Reading, MA, second edition, 1998. (Cited on p. 155)

[35] Stephen G. Kochan. Programming in C. Sams Publishing, Indianapolis, IN, third edition,
2005. (Cited on pp. xv, 7)

[36] Tamara G. Kolda, Robert Michael Lewis, and Virginia Torczon. Optimization by direct
search: New perspectives on some classical and modern methods. SIAM Review, 45(3):385–
482, 2003. (Cited on p. 197)

[37] V. A. Kozlov, V. G. Maz’ya, and J. Rossmann. Elliptic boundary value problems in domains
with point singularities, volume 52 of Mathematical Surveys and Monographs. American Math-
ematical Society, Providence, RI, 1997. (Cited on p. 359)

[38] Erwin Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons Inc., New York,
tenth edition, 2011. (Cited on p. 338)

[39] O. A. Ladyzhenskaya. The boundary value problems of mathematical physics, volume 49 of
Applied Mathematical Sciences. Springer-Verlag, New York, 1985. Translated from the Russian
by Jack Lohwater. (Cited on p. 359)

[40] Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E. Wright. Convergence
properties of the Nelder–Mead simplex method in low dimensions. SIAM Journal on Opti-
mization, 9(1):112–147, 1998. (Cited on pp. 194, 197)

[41] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications. Vol-
umes I–III. Springer-Verlag, New York, 1972. Translated from the French by P. Kenneth, Die
Grundlehren der mathematischen Wissenschaften, Band 181. (Cited on p. 359)

[42] J. N. Lyness and Ronald Cools. A survey of numerical cubature over triangles. In Mathemat-
ics of Computation 1943–1993: A half-century of computational mathematics (Vancouver, BC,
1993), volume 48 of Proceedings of Symposia in Applied Mathematics, pages 127–150. American
Mathematical Society, Providence, RI, 1994. (Cited on p. 321)

[43] R. M. M. Mattheij, S. W. Rienstra, and J. H. M. ten Thije Boonkkamp. Partial differential equa-
tions. SIAM Monographs on Mathematical Modeling and Computation. SIAM, Philadelphia,
2005. Modeling, analysis, computation. (Cited on pp. 338, 359)

[44] Vladimir Maz’ya and Jürgen Rossmann. Elliptic equations in polyhedral domains, volume 162
of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI,
2010. (Cited on p. 359)

[45] K. I. M. McKinnon. Convergence of the Nelder–Mead simplex method to a nonstationary
point. SIAM Journal on Optimization, 9(1):148–158, 1998. (Cited on p. 197)

[46] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, 2000. (Cited
on p. 213)

[47] Lee Middleton and Jayanthi Sivaswamy. Hexagonal Image Processing: A Practical Approach.
Springer-Verlag, London, 2005. (Cited on p. 113)

root
2014/7/8
page 384

�

�

�

�

�

�

�

�

384 Bibliography

[48] Arch W. Naylor and George R. Sell. Linear operator theory in engineering and science, vol-
ume 40 of Applied Mathematical Sciences. Springer-Verlag, New York, 1982. (Cited on p. 94)

[49] J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer
Journal, 7(4):308–313, 1965. (Cited on pp. 193, 196, 211, 212)

[50] J. A. Nelder and R. Mead. A simplex method for function minimization: Errata. The Com-
puter Journal, 8(1):27, 1965. (Cited on p. 193)

[51] Yves Nievergelt. Wavelets Made Easy. Birkhäuser, Boston, MA, 2001. 2nd printing with
corrections. (Cited on pp. 93, 102)

[52] Ján Plesník. Finding the orthogonal projection of a point onto an affine subspace. Linear
Algebra and Its Applications, 422(2-3):455–470, 2007. (Cited on p. 213)

[53] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
Recipes in C. Cambridge University Press, Cambridge, UK, second edition, 1992. (Cited on
pp. 73, 93, 193, 196, 197, 296)

[54] Alfio Quarteroni. Numerical models for differential problems, volume 2 of MS&A. Modeling,
Simulation and Applications. Springer-Verlag Italia, Milan, 2009. Translated from the 4th
(2008) Italian edition by Silvia Quarteroni. (Cited on p. 359)

[55] Michael Renardy and Robert C. Rogers. An introduction to partial differential equations, vol-
ume 13 of Text in Applied Mathematics. Springer, New York, 1993. (Cited on p. 359)

[56] Walter Rudin. Functional analysis. International Series in Pure and Applied Mathematics.
McGraw–Hill, New York, second edition, 1991. (Cited on p. 359)

[57] Ridgeway Scott. Optimal L∞ estimates for the finite element method on irregular meshes.
Mathematics of Computation, 30(136):681–697, 1976. (Cited on p. 345)

[58] Thomas I. Seidman. On the stability of certain difference schemes. Numerische Mathematik,
5:201–210, 1963. (Cited on pp. 260, 262)

[59] Yair Shapira. Solving PDEs in C++, volume 9 of Computational Science & Engineering. SIAM,
Philadelphia, second edition, 2012. Numerical Methods in a Unified Object-Oriented Ap-
proach. (Cited on p. 360)

[60] Jonathan Richard Shewchuk. Triangle: Engineering a 2D quality mesh generator and De-
launay triangulator. In Ming C. Lin and Dinesh Manocha, editors, Applied Computational
Geometry: Towards Geometric Engineering, volume 1148 of Lecture Notes in Computer Sci-
ence, pages 203–222. Springer-Verlag, Berlin, May 1996. (From the First ACM Workshop on
Applied Computational Geometry). (Cited on p. 301)

[61] Jonathan Richard Shewchuk. Delaunay refinement algorithms for triangular mesh generation.
Computational Geometry: Theory and Applications, 22(1–3):21–74, 2002. (Cited on p. 301)

[62] Ana Maia Soane, Manil Suri, and Rouben Rostamian. The optimal convergence rate of a
C 1 finite element method for non-smooth domains. Journal of Computational and Applied
Mathematics, 233(10):2711–2723, 2010. (Cited on p. 359)

[63] Ana Maria Soane and Rouben Rostamian. Variational problems in weighted Sobolev spaces
on non-smooth domains. Quarterly of Applied Mathematics, 68(3):439–458, 2010. (Cited on
p. 359)

[64] Olaf Steinbach. Numerical Approximation Methods for Elliptic Boundary Value Problems.
Springer, New York, 2008. Finite and Boundary Elements. (Cited on p. 359)

root
2014/7/8
page 385

�

�

�

�

�

�

�

�

Bibliography 385

[65] James Stewart. Multivariable Calculus. Brooks/Cole, Belmont, CA, 2008. (Cited on pp. 290,
339)

[66] Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin. Wavelets for computer graphics:
A primer, part 1. IEEE Computer Graphics and Applications, 15(3):76–84, 1995. (Cited on
p. 93)

[67] Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin. Wavelets for computer graphics:
A primer, part 2. IEEE Computer Graphics and Applications, 15(4):75–85, 1995. (Cited on
p. 93)

[68] Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin. Wavelets for Computer Graphics:
Theory and Applications. Morgan Kaufmann Publishers, San Francisco, CA, 1996. (Cited on
pp. 93, 102)

[69] Gilbert Strang. Wavelets and dilation equations: A brief introduction. SIAM Review, 31:614–
627, 1989. (Cited on p. 93)

[70] Gilbert Strang. Wavelets. American Scientist, 82:250–255, 1994. (Cited on p. 93)

[71] John C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. SIAM,
Philadelphia, second edition, 2004. (Cited on pp. 253, 262)

[72] Barna Szabó and Ivo Babuška. Finite Element Analysis. John Wiley & Sons Inc., New York,
1991. (Cited on p. 359)

[73] Gábor Szegő. Orthogonal Polynomials. American Mathematical Society, Providence, RI,
fourth edition, 1975. American Mathematical Society, Colloquium Publications, Vol. XXIII.
(Cited on p. 295)

[74] Mark A. Taylor, Beth A. Wingate, and Len P. Bos. A cardinal function algorithm for comput-
ing multivariate quadrature points. SIAM Journal on Numerical Analysis, 45(1):193–205, 2007.
See [75] for the full-length article. (Cited on pp. 319, 321, 385)

[75] Mark. A. Taylor, Beth A. Wingate, and Len P. Bos. Several new quadrature formulas for
polynomial integration in the triangle. arXiv,

<http://arxiv.org/abs/math/0501496v2>,
February 2007, pages 1–14. Quadrature data tables, bundled with the article’s LATEX source,
are available electronically from this site. An abbreviated version of this article appeared
in [74]. (Cited on pp. 319, 321, 322, 323, 385)

[76] Virginia Torczon. On the convergence of pattern search algorithms. SIAM Journal on Opti-
mization, 7(1):1–25, 1997. (Cited on p. 197)

[77] Juan Luis Vázquez. The porous medium equation. Oxford Mathematical Monographs. The
Clarendon Press, Oxford University Press, Oxford, UK, 2007. Mathematical theory. (Cited
on pp. 283, 285)

[78] S. Wandzura and H. Xiao. Symmetric quadrature rules on a triangle. Computers & Mathematics
with Applications, 45(12):1829–1840, 2003. (Cited on p. 321)

[79] H. F. Weinberger. A first course in partial differential equations with complex variables and
transform methods. Dover Publications Inc., New York, 1995. Corrected reprint of the 1965
original. (Cited on p. 338)

[80] Margaret H. Wright. Direct search methods: Once scorned, now respectable. In F. Griffiths,
D and G. A. Watson, editors, Proceedings of the 1995 Dundee Biennial Conference in Numerical
Analysis, Numerical Analysis 1995, pages 191–208. Longman, Harlow, UK. (Cited on p. 196)

http://arxiv.org/abs/math/0501496v2

root
2014/7/8
page 386

�

�

�

�

�

�

�

�

386 Bibliography

[81] C. Ray Wylie and Louis C. Barrett. Advanced Engineering Mathematics. McGraw–Hill, New
York, sixth edition, 1995. (Cited on p. 338)

[82] Hong Xiao and Zydrunas Gimbutas. A numerical algorithm for the construction of efficient
quadrature rules in two and higher dimensions. Computers & Mathematics with Applications,
59(2):663–676, 2010. (Cited on p. 321)

[83] E. C. Zachmanoglou and Dale W. Thoe. Introduction to Partial Differential Equations with
Applications. Dover Publications Inc., New York, second edition, 1986. Reprint of the 1976
original. (Cited on p. 338)

[84] A. Zygmund. Trigonometric Series, volume I. Cambridge University Press, New York, second
edition, 1959. (Cited on p. 93)

root
2014/7/8
page 387

�

�

�

�

�

�

�

�

Index

$ (the Unix shell prompt), 13
& (the “address-of” operator), 19
* (dereferencing operator), 20
< (redirect stream), 16
>> (append to file), 16
> (redirect stream), 16
@ (Unix symlink decoration), 14
\0 (ASCII NUL character), 24, 66
\ (Unix command-line continuation),

31
\ (line continuation in make), 34
| (pipe stream), 16
�= (same as !=), 11
→ (same as ->), 11
≤ (same as <=), 11
≥ (same as >=), 11
#include guards, 11, 51

leading underscores in, 51

abs(), 140
absolute error, 137
add_plants(), 184
affine constraints, 211, 247
affine space, 211
affine-preserving, 211
animal, 164
animal death, 164
animal direction, 164
animal energy spent, 164
animal reproduction, 164
animal turning, 164
animate (image animator), 190
anisotropic material, 362
annulus(), 308, 315, 332
annulus_f(), 330, 350
apply_dirichlet_bc(), 370,

372
apply_neumann_bc(), 370, 372
area of triangle, 376
argc, 25
argv, 25

array, 21
length of, 22
name decays to pointer, 22, 25

ASCII NUL character, 24, 66
assembling (in FEM), 343, 344
atof(), 29
atoi(), 29
atol(), 29
atoll(), 29

back substitution, 275
Barenblatt, see porous medium equation
barycentric coordinates, 343, 375
bisection algorithm, 137, 140
bitmap images, 73
boundary value problem, 302, 337, 339, 361
buffer, 63

C
C11, 5
C89, 4
C99, 4
compilers, 7
extent of, in this book, 5
infringements into C99, 5

cantilever truss, 222
chromosome, 161, 164
clip_matrix(), 138, 141
clone(), 187
color image, 117
command-line arguments, 25
comparison function, 153
complete orthonormal basis, 94
Compressed Column Storage (CCS), 79–81, 85,

353
compute_element_stiffness(), 352, 370
conductivity, 362
cons cell, 148
conscell data type, 148
convert (image conversion program), 190
Crank–Nicolson, 258

387

root
2014/7/8
page 388

�

�

�

�

�

�

�

�

388 Index

cubic equation
explicit solution, 286
implementation, 288

Cygwin, 7

dead_or_alive(), 182
deformed configuration, 215
degenerate parabolic equation, 283
dereferencing, 20
diffusion process, 362
diffusivity, 362
dimension (of a linear space), 94, 95
Dirichlet boundary condition, 302
Dirichlet boundary data, 361
display (image viewer), 190
divergence, 338
divergence theorem, 338
do_demo(), 315, 331, 332
done(), 204
driver, 9

Eden, 162, 163
center cell formula, 164
height and width, 166
location, 163, 166
location formula, 164

edge vector(s), 312, 376
elasticity, one-dimensional, 217
element_errors(), 356, 358, 369, 370
enforce_zero_dirichlet_bc(), 351
error function (erf()), 264, 272
error_and_exit(), 351, 369, 370
eval_errors(), 351, 357, 359, 369, 370
eval_f(), 333, 334
evaluate_reactions(), 243, 247
evaluate_stresses(), 242, 247
evince (PS, EPS, and PDF viewer), 190
evolution, 161

command-line, 166
long run behavior, 165
snapshots, 162, 167

evolve(), 188
evolve_with_figs(), 188
EXIT_FAILURE, 46
EXIT_SUCCESS, 48
explicit scheme, 253, 254, 260

fabs(), 140
feed(), 186
feh (image viewer), 190
FEM_BC_DIRICHLET, 305, 352, 367–369, 372
FEM_BC_NEUMANN, 305, 367, 369, 371, 372
fetch-line module, 63
fetch_line(), 169, 170
fetch_line_aux(), 170

fgetc(), 15
fgets(), 15, 63
__FILE__, 46, 50
file organization, 13
fill ratio, 74
filter (a linked list), 157
finite difference, 251, 283

backward difference, 252
conditionally stable, 256
Crank–Nicolson, 258
explicit scheme, 253, 254, 260
forward difference, 252
get_error(), 277
heat1(), 270
heat_implicit(), 272, 277
implicit scheme, 256
plot_curve(), 275
Seidman sweep, 260
stable, 256
stencil, 254
test problems, 263
trisolve(), 274, 280
unconditionally stable, 258–260, 262
unstable, 256

Finite Element Method (FEM), 337, 361
boundary conditions, 344
element, 343
element force vector, 343
element stiffness matrix, 343, 365–366
error analysis, 345
error in energy norm, 347
error norms, 345
global vertex numbers, 343
h (mesh size), 345
local vertex numbers, 343
nodal shape functions, 343
system stiffness matrix, 341, 365

finite speed of propagation, 284
flux vector, 361
food, 164

in the Eden, 164
in the world, 164

for-loop initialization, 5
Fourier series, 93

generalized, 94
pointwise convergence, 93
uniform convergence, 93

fprintf(), 15
fputc(), 15
fputs(), 15
free(), 47
free_annulus(), 311, 315, 332
free_dmatrix(), 57
free_herd(), 182

root
2014/7/8
page 389

�

�

�

�

�

�

�

�

Index 389

free_image(), 129
free_links_list(), 237
free_matrix(), 58
free_mesh(), 313, 315
free_nodes_list(), 237
free_truss(), 231, 239, 249
free_vector(), 55
fscanf(), 15
__func__, 279

Galerkin approximation, 340, 364
Garden of Eden, 162
gauss_qdat(), 298
Gaussian elimination, 86
Gaussian quadrature, 291, 372

table sentinel, 298, 299
weights, 296

gcc, 8, 31
gcc flags

-MM, 33, 36
-O2, 8
-Wall, 8
-std=c89, 8
-std=c99, 8

gene, 161, 164
activation, 161, 164
dominant, 161, 162, 164
probability of selection, 164

gene_to_activate(), 184
generalized Fourier series, 94
Geomview, 7, 8, 266, 275, 287, 332, 333, 350, 366
get_animal_specs(), 170
get_centroid(), 202
get_eden_dimens(), 170
get_error(), 277
get_links(), 232, 237
get_loads(), 232, 238
get_nodes(), 231, 234
get_plant_energy(), 170
get_reproduction_threshold_energy(),

170
get_world_dimens(), 169
getchar(), 15
gradient, 338
Gram–Schmidt orthogonalization, 294
grayscale image, 116
Green’s identity, 339
Green’s Theorem, 339
gv (PS and EPS viewer), 190

Haar scaling functions, 96
Haar wavelet basis, 100
Haar wavelet coefficients, 100
Haar wavelet transform, 102
Haar wavelets, 93, 96

haar_transform_matrix(), 105
haar_transform_matrix_forward(), 107
haar_transform_matrix_reverse(), 109
haar_transform_vector(), 105
haar_transform_vector_forward(), 105
haar_transform_vector_reverse(), 107
header guards, see #include guards
heat conduction, 362
heat equation, 251
heat_implicit(), 272, 277
hexadecimal notation, 19
Hilbert matrix, 57, 58
homogeneous material, 362

image
viewing EPS, 9
viewing PGM and PPM, 9

image analysis with wavelets, 135
image header, 120
image I/O, 113
image-io module, 121, 124
image-io-test-0.c, 129
ImageMagick, 190
implementation, 10
implicit scheme, 256
include guards, see #include guards
infinitesimal strain, 220
inhomogeneous material, 362
initialize_plants(), 183
inline declaration specifier, 72
inline function specifier, 7
inner product, 93, 294
integrate_over_triangle(), 333
integration on triangles, 319
interface, 10
inverse Haar wavelet transform, 102
isomorphism, 98
isotropic material, 362
isspace(), 66

kitchen analogy, 10

L2(0,1), 93
Lagrange interpolation, 292
Laplacian, 338
leak memory, 47
Legendre polynomials, 294

recursion formulas, 295
less (Unix pager), 17
libnetpbm library, 9, 118
__LINE__, 46, 50
link_stretch(), 242
linked list, 147

traversing, 147
linking, 32

root
2014/7/8
page 390

�

�

�

�

�

�

�

�

390 Index

ll_append(), 160
ll_filter(), 157, 159, 182
ll_free(), 151, 182, 237
ll_length(), 159
ll_map(), 160
ll_pop(), 150
ll_push(), 148, 174, 187
ll_reverse(), 152, 233
ll_sort(), 153, 181, 183
ln (make a symlink in Unix), 13
lrint(), 141
ls (list files in Unix), 13
ls -F (list files in Unix), 13
LU factorization, 86

magic number, 73, 115, 116
main() (declaration), 25
make, 31

(comment character), 37
$(CC), 37
$(CFLAGS), 35
$@, 37
$^, 37
\ (line continuation), 34
clean, 39
tab preceding a command, 34
link with libraries, 40

make_3array(), 61
make_4array(), 61
make_dmatrix(), 56
make_dvector(), 54
make_ivector(), 54
make_link(), 238
make_matrix(), 58
make_matrix_loop_counter, 58
make_mesh(), 313, 332
make_node(), 236
make_vector(), 54
mkdir (make directory in Unix), 13
malloc(), 45

allocating zero bytes, 52
malloc_or_exit(), 49
man pages in Unix, 140
matrix, row-wise vs. column-wise sweep,

202
maximal triangle area, 303, 313
memory leak, 47
menu analogy, 10
mesh_to_eps(), 315
meshing, 301, 342
metric, 94
module, 9
move(), 185
multidimensional arrays, 23

mutate(), 187
mutation, 165

natural boundary condition, 363
nearer_the_eden(), 181, 182
neighboring cells, 162
Nelder–Mead simplex algorithm, 193

ambiguities, 194
centroid, 194, 202
constrained, 211, 212, 247
constrained to unconstrained, 212
evaluation count, 197
expand simplex, 195
four cases, 194
in one dimension, 194, 201
inner contraction of simplex, 196
length scale, 197, 200
maxevals, 198
outer contraction of simplex, 196
problems/issues, 197
reflect simplex, 194
return value, 198
shrink simplex, 196, 203
stopping criterion, 196, 200, 204
tolerance, 197
unconstrained, 207

nelder_mead(), 204, 247
Netpbm library, 114
netpbm library and tools, 9
Neumann boundary condition, 302
Neumann boundary data, 361
Newton’s iteration, 286
node (in a linked list), 147
nonlinear diffusion, 283
norm, 93
NUL character, see also ASCII NUL character, 66

versus C’s NULL pointer, 64
null terminator (in a string), 24

objective function, 193
with parameters, 198, 200

orthogonal functions, 294
orthogonal matrix, 86, 98
orthogonal projection, 211, 213
orthonormal basis, 94, 95

PAM_STRUCT_SIZE, 120, 124
paraview, 8
PBM_FORMAT, 119
permutation matrix, 86
PGM_FORMAT, 119
pipe (Unix pipe), 16
pixel, 113
plain image storage format, 114
plainformat in libnetpbm, 119, 121

root
2014/7/8
page 391

�

�

�

�

�

�

�

�

Index 391

PlantEnergy, 164
plot_curve(), 275
plot_with_geomview_mono(), 329, 333, 350
plot_with_geomview_zhue(), 329, 333, 350
pm_close(), 119
pm_init(), 119
pm_openr(), 119
pm_openw(), 119
pnm_allocpamrow(), 120
pnm_freepamrow(), 120
pnm_readpaminit(), 120
pnm_readpamrow(), 120
pnm_writepaminit(), 120
pnm_writepamrow(), 120
pointer, 19
pointer arithmetic, 19
pointer to pointer, 56
pointer to void, 20
pointer vector, 56
Poisson equation, 337
poisson_solve(), 353, 370
population dynamics, see porous medium equation
porous medium equation, 283

Barenblatt’s solution, 283
finite difference scheme, 285
generalized, 284, 285
population dynamics model, 289

Portable Bitmap (PBM), 73, 113, 114
Portable Graymap (PGM), 113, 116
Portable Pixmap (PPM), 114, 117
PPM_FORMAT, 119
print_animal(), 174
print_herd(), 174
print_matrix(), 60
print_vector(), 60
print_vector_loop_counter, 60
printf(), 15
process_link_line(), 238
process_load_line(), 238
process_node_line(), 235
projection operator, 211, 213
prune_matrix(), 140
putchar(), 15

qsort(), 21
quicksort, 155

rand(), 71
RAND_MAX, 71
random(), 72, 182, 184
random number generation, 71
rank-vertices-test.c, 201
rank_vertices(), 200
raw image storage format, 114
read_image(), 124

read_pgm_pixel_data(), 126
read_truss(), 231, 241, 247
read_wdf(), 169, 171
realloc(), 50, 69
redirection (Unix redirection), 16
reduce_pgm_image(), 142
reduce_ppm_image(), 142
reference configuration, 215
relative error, 137
remove_the_dead(), 182
replace_row(), 203
reproduce(), 187
reproduction, 164
ReproductionThreshold, 164
RGB color image, 117
rounding to nearest integer, 141
RPBM_FORMAT, 119
RPGM_FORMAT, 119
RPPM_FORMAT, 119

scanf(), 15
segmentation fault, 23
Seidman sweep, 260

heat equation, 260
porous medium equation, 286

implementation, 286, 288
sentinel, 56, 57
shell, the Unix shell, 15
shrink(), 203
simplex, 193

best vertex, 193
degenerate, 193, 212
next to worst vertex, 194
program-generated, 199, 200
user-prescribed, 199
worst vertex, 194

Sobolev space, 340
solve_truss(), 230, 242, 244, 248
sparse_pack(), 81, 87
sparse_unpack(), 81
speciation, 162, 163
species, 161
square(), 316, 334, 350
square1(), 366
square2(), 366, 367
square3(), 366
square4(), 366, 369
square_f(), 334, 350
square_g(), 367
square_h(), 367
square_u_exact(), 350
srand(), 71
static declaration specifier

for functions, 9

root
2014/7/8
page 392

�

�

�

�

�

�

�

�

392 Index

stderr, 15, 17
stdin, 15
stdout, 15, 17
stencil, 254
stored energy function, 219
stored_energy_function(), 242
strain, 219
stream, 15

stderr, 15, 17
stdin, 15
stdout, 15, 17

stress, 218
stress_function(), 242, 243
stretch, 218
string joke, 24
string literal, 25
strings, 24
strlen(), 25, 70
strtod(), 27
strtof(), 28
strtol(), 28
strtold(), 28
strtoll(), 28
strtoul(), 28
strtoull(), 28
structure initialization, 6
support (of a function), 95, 284
symbolic link, 13
symlink, see symbolic link
system force vector, 341

Taylor, Wingate, and Bos (TWB) quadrature, 319
strength, 321
table sentinel, 324

three_holes(), 316, 335
three_holes_f(), 335, 350
total energy (of a truss), 222, 243
total_energy(), 243
transform(), 202
Triangle library, 8, 301, 313, 315
triangle_f(), 329, 349
triangle_with_hole(), 306, 315, 329, 331
triangular mesh, 301
triangulation, 301, 342
tridiagonal, 257, 260, 274
triplet form (in UMFPACK), 91–92, 353
trisolve(), 274, 280
truss, 215

deformed configuration, 215
evaluate_reactions(), 243, 247
evaluate_stresses(), 242, 247
free_links_list(), 237
free_nodes_list(), 237
free_truss(), 231, 239, 249

geometric nonlinearity, 217
get_links(), 232, 237
get_loads(), 232, 238
get_nodes(), 231, 234
joint, 215
link, 215
link_stretch(), 242
make_link(), 238
make_node(), 236
mechanical nonlinearity, 217
member, 215
minimum energy, 224
node, 215
node coordinates, 227, 245
process_link_line(), 238
process_load_line(), 238
process_node_line(), 235
read_truss(), 231, 241, 247
reference configuration, 215
rx and ry, 227, 237, 239, 243
small deformation, 217
solve_truss(), 230, 242, 244, 248
solving, 216
stored_energy_function(), 242
stress, 239, 242
stress_function(), 242, 243
support, 216
support reaction, 216, 239, 243
topology design, 215
total energy, 222, 243
total_energy(), 243
Truss Description File (TDF), 224
truss_to_eps(), 240, 248
write_truss(), 231, 239, 241, 248
xfixed and yfixed, 227

truss_to_eps(), 240, 248
turn(), 185
twb_qdat(), 322, 331
TWB_STANDARD_AREA, 322

UMFPACK libary, 8, 85, 353
numeric analysis, 86
symbolic analysis, 85
triplet form, 91–92, 353

umfpack-demo1.c, 87
umfpack-demo2.c, 89
umfpack-demo3.c, 90
umfpack_di_free_numeric(), 89
umfpack_di_free_symbolic(), 89
umfpack_di_numeric(), 86
umfpack_di_solve(), 86
umfpack_di_symbolic(), 85
umfpack_di_triplet_to_col(), 91, 353
UMFPACK_ERROR_out_of_memory, 89

root
2014/7/8
page 393

�

�

�

�

�

�

�

�

Index 393

UMFPACK_OK, 89
UMFPACK_WARNING_singular_matrix , 89
ungetc(), 15
update_world(), 187, 188

valgrind, 47
variable-length arrays, 23
void pointer, see pointer to void

wavelet decomposition, 100
wavelets in image analysis, 135
weak formulation of a BVP, 340, 362–363
whitespace, see also isspace(), 66
world, 162

center cell, 162

center cell formula, 163
height and width, 166
neighboring cells, 162
torus (toroidal), 162, 186

World Definition File (WDF), 165
world_to_eps(), 175
write_image(), 126
write_pgm_pixel_data(), 128
write_truss(), 231, 239, 241, 248
write_wdf(), 174

xmalloc(), 50
xmalloc module, 45

Young’s modulus, 220, 243

	cover
	Binder1
	1. Front Matter
	2. Chapter 1 Introduction
	3. Chapter 2 File organization
	4. Chapter 3 Streams and the Unix shell
	5. Chapter 4 Pointers and arrays
	6. Chapter 5 From strings to numbers
	7. Chapter 6 Make
	8. Chapter 7 Allocating memory xmalloc ()
	9. Chapter 8 Dynamic memory allocation for vectors and matrices array.h
	10. Chapter 9 Reading lines fetch_line()
	11. Chapter 10 Generating random numbers
	12. Chapter 11 Storing sparse matrices
	13. Chapter 12 Sparse systems The Umfpack library
	14. Chapter 13 Haar wavelets
	15. Chapter 14 Image I_O
	16. Chapter 15 Image analysis
	17. Chapter 16 Linked lists
	18. Chapter 17 The evolution of species
	19. Chapter 18 The Nelder–Mead downhill simplex
	20. Chapter 19 Trusses
	21. Chapter 20 Finite difference schemes for the heat equation in one dimension
	22. Chapter 21 The porous medium equation
	23. Chapter 22 Gaussian quadrature
	24. Chapter 23 Triangulation with the Triangle library
	25. Chapter 24 Integration on triangles
	26. Chapter 25 Finite elements
	27. Chapter 26 Finite elements_ Nonzero boundary data
	28. Appendix A Barycentric coordinates
	29. Back Matter

