

Copyright

Python	Programming	by	Example

Agus	Kurniawan

1st	Edition,	2015

Copyright	©	2015	Agus	Kurniawan

*	Cover	photo	is	credit	to	Fajar	Ramadhany,	Bataviasoft,	http://bataviasoft.com/.

http://bataviasoft.com/

Table	of	Contents
Copyright

Preface

1.	Development	Environment

1.1	Installation

1.2	Development	Tools

1.3	Python	Shell

1.4	Running	Python	Application	from	Files

2.	Python	Programming	Language

2.1	Common	Rule

2.2	Variables

2.3	Comment

2.4	Arithmetic	Operations

2.5	Mathematical	Functions

2.6	Increment	and	Decrement

2.7	Getting	Input	from	Keyboard

2.8	Python	Operators

2.8.1	Comparison	Operators

2.8.2	Logical	Operators

2.8.3	Bitwise	Opeators

2.8.4	Testing	All

2.9	Decision	Control

2.10	Iteration	-	for	and	while

2.11	break,	continue	and	pass

2.12	Date	&	Time

3.	Lists,	Tuples	and	Dictionary

3.1	Lists

3.2	Tuples

3.3	Dictionary

4.	Functions

4.1	Creating	A	Simple	Function

4.2	Function	with	Parameters	and	Returning	Value

4.3	Function	with	Multiple	Returning	Values

4.4	Recursion	Function

4.5	Testing

5.	Python	Object	Oriented

5.1	Creating	Classes

5.2	Class	Attributes

5.3	Built-In	Class	Attributes

5.4	Destroying	Class	Object

5.5	Write	them	All

5.6	Inheritance

5.7	Overriding	Methods

5.8	Overloading	Operators

6.	Python	Modules	and	Packages

6.1	Python	Modules

6.2	import	Statement

6.3	from…import	*	Statement

6.4	Installing	External	Python	Package

7.	String	Operations

7.1	Getting	Started

7.2	Concatenating	Strings

7.3	String	To	Numeric

7.4	Numeric	to	String

7.5	String	Parser

7.6	Check	String	Data	Length

7.7	Copy	Data

7.8	Upper	and	Lower	Case	Characters

7.9	Testing	A	Program

8.	File	Operations

8.1	Getting	Started

8.2	Writing	Data	Into	A	File

8.2.1	Creating	a	File

8.2.2	Writing	Data

8.2.3	Closing	a	File

8.2.4	Demo

8.3	Reading	Data	From	A	File

9.	Error	Handling

9.1	Error	Handling

9.2	Catching	All	Errors

9.3	Raising	Exceptions

9.4	Custom	Exception

10.	Building	Own	Python	Module

10.1	Creating	Simple	Module

10.2	Building	Own	Python	Package

11.	Concurrency

11.1	Getting	Started

11.2	Threading

11.3	Synchronizing	Threads

11.3.1	Mutex	Locks

11.3.2	Event

11.4	Queue

11.5	Multiprocessing

11.5.1	Process

11.5.2	Synchronizing	Processes

11.6	Parallel	Tasks

11.6.1	ThreadPoolExecutor

11.6.2	ProcessPoolExecutor

12.	Encoding

12.1	Getting	Started

12.2	Encoding	Base64

12.3	Hexadecimal

12.4	JSON

12.5	XML

12.6	CSV

13.	Hashing	and	Cryptography

13.1	Getting	Started

13.2	Hashing

13.2.1	Hashing	with	MD5

13.2.2	Hashing	with	SHA1	and	SHA256

13.2.3	Hashing	with	Key	Using	HMAC

13.2.4	Write	them	All

13.3	Cryptography

13.3.1	Symmetric	Cryptography

13.3.2	Asymmetric	Cryptography

14.	Database	Programming

14.1	Database	for	Python

14.2	MySQL	Driver	for	Python

14.3	Testing	Connection

14.4	CRUD	(Create,	Read,	Update	and	Delete)	Operations

14.4.1	Create	Data

14.4.2	Read	Data

14.4.3	Update	Data

14.4.4	Delete	Data

14.4.5	Write	them	All

15.	Socket	Programming

15.1	Socket	Module

15.2	Hello	World

15.3	Client/Server	Socket

15.3.1	Server	Socket

15.3.2	Client	Socket

15.3.3	Testing

16.	Python	Regular	Expressions

16.1	Getting	Started

16.2	Demo

17.	Python	GUI	Programming

17.1	Getting	Started

17.2	Hello	Python	GUI

17.3	Working	with	Input	Form

17.4	Working	with	Common	Dialogs

18.	Python	Unit	Testing

18.1	Getting	Started

18.2	Demo

Source	Code

Contact

Preface
	

	

	

This	book	is	a	brief	reference	to	the	Python	programming	language.	It	describes	all	the
elements	of	the	language	and	illustrates	their	use	with	code	examples.

	

Agus	Kurniawan

Depok,	November	2015

1.	Development	Environment
	

	

1.1	Installation

Python	is	a	widely	used	general-purpose,	high-level	programming	language.	Installation
of	Python	application	is	easy.	For	Windows,	Linux	and	Mac	Platform,	you	download	setup
file	from	Python	website,	https://www.python.org/downloads/.	Download	and	run	it.
Follow	installation	commands.

If	you’re	working	on	Windows	platform,	you	can	run	setup	file	and	follow	instruction.

https://www.python.org/downloads/

1.2	Development	Tools

Basically,	you	can	use	any	text	editor	to	write	Python	code.	The	following	is	a	list	of	text
editor:

vim
nano
PyCharm,	https://www.jetbrains.com/pycharm/
Intellij	IDEA,	https://www.jetbrains.com/idea/	
Sublime	text,	http://www.sublimetext.com/	
Visual	Studio,	https://www.visualstudio.com

In	this	book,	I	use	PyCharm	for	development	tool.	Jetbrains	provides	community	and
Education	licenses	for	PyCharm.

https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/idea/
http://www.sublimetext.com/
https://www.visualstudio.com

1.3	Python	Shell

After	installed	Python,	you	obtain	Python	shell	on	your	platform.	You	can	type	this
command	on	Terminal	or	Command	Prompt	for	Windows	Platform.

python

This	is	Python	2.x.	Then,	you	get	Python	shell,	shown	in	Figure	below.

If	you	installed	Python	3.x,	you	can	Python	shell	by	typing	this	command.
python3

This	is	Python	3.x.	Then,	you	get	Python	shell,	shown	in	Figure	below.

Output	program	on	Windows	platform.

After	you	call	Python	shell,	you	obtain	the	shell.	It	shows	>>>	on	Terminal.

Try	to	do	the	following	command.
>>>	a	=	3

>>>	b	=	5

>>>	print	a

>>>	c	=	a	*	b

>>>	print	c

In	Python	3.x,	print	a	is	replaced	by	print(a).

The	following	is	a	sample	output	of	program.

A	sample	output	for	Windows	platform.

1.4	Running	Python	Application	from	Files

You	can	run	your	program	by	writing	them	on	a	file.	For	instance,	you	create	a	file,	called
ch01_01.py,	and	write	this	script.

print('hello	world	from	python')

To	run	the	program,	you	can	type	this	command	on	Terminal.
python	ch01_01.py

If	you	want	to	run	the	program	under	Python	3.x,	type	this	command	on	Terminal.
python3	ch01_01.py

Program	output:

2.	Python	Programming	Language

This	chapter	explains	the	basic	of	Python	programming	language.

2.1	Common	Rule

Python	language	doesn’t	write	“;”	at	the	end	of	syntax	like	you	do	it	on	C/C++	languages.
Here	is	the	syntax	rule	of	Python:

syntax_code1

syntax_code2

syntax_code3

2.2	Variables

In	this	section,	we	explore	how	to	define	a	variable	and	assign	its	value.	By	default,	we
define	variables	on	Python	with	assigning	value	.

#	declare	variables

num	=	2

area	=	58.7

city	=	'Berlin'

country	=	"Germany"

z	=	10	+	5j		#	complex	number

If	you	want	to	declare	variables	without	assigning	values,	you	can	set	it	using	None.
#	declare	variable	without	initializing	value

counter	=	None

index	=	None

Write	these	codes	for	testing.
#	declare	variables

num	=	2

area	=	58.7

city	=	'Berlin'

country	=	"Germany"

z	=	10	+	5j		#	complex	number

#	declare	variable	without	initializing	value

counter	=	None

index	=	None

global	var_global

var_global	=	10

print(num)

print(area)

print(city)

print(country)

print(z)

print(z.real)

print(z.imag)

print(var_global)

Save	these	scripts	into	a	file,	called	ch02_01.py.

Now	you	can	type	this	file	using	Python	3.x.
$	python3	ch02_01.py

A	sample	of	program	output	can	seen	in	Figure	below.

2.3	Comment

You	may	explain	how	to	work	on	your	code	with	writing	comments.	To	do	it,	you	can	use
#	and	”””	syntax.	Here	is	sample	code:

#	this	a	comment

"""

These	are	long	comments

These	are	long	comments

These	are	long	comments

"""

2.4	Arithmetic	Operations

Python	supports	the	same	four	basic	arithmetic	operations	such	as	addition,	subtraction,
multiplication,	and	division.	For	testing,	create	a	file,	called	ch02_02.py.

The	following	is	the	code	illustration	for	basic	arithmetic	in	ch02_02.py:
a	=	2.3

b	=	8

c	=	a	+	b

print(c)

c	=	a	-	b

print(c)

c	=	a	*	b

print(c)

c	=	a	/	b

print(c)

Save	and	run	this	program.
python3	ch02_02.py	

A	sample	of	program	output:

2.5	Mathematical	Functions

Python	provides	math	library.	If	you’re	working	with	Python	2.x,	you	can	read	this	library
on	https://docs.python.org/2/library/math.html	.	For	Python	3.x,	you	can	read	math	library
on	https://docs.python.org/3/library/math.html	.

Create	a	file,	called	ch02_03.py.	Write	the	following	code.
from	math	import	*

a	=	1.8

b	=	2.5

c	=	pow(a,	b)

print(c)

c	=	sqrt(b)

print(c)

c	=	sin(a)

print(c)

print(pi)

Save	and	run	the	program.
python3	ch02_03.py	

A	sample	of	program	output:

https://docs.python.org/2/library/math.html
https://docs.python.org/3/library/math.html

2.6	Increment	and	Decrement

Python	doesn’t	has	special	syntax	for	increment	and	decrement.	We	can	define	increment
and	decrement	as	follows.

++	syntax	for	increment.	a++	can	be	defined	as	a	=	a	+	1
—	syntax	for	decrement.	a—	can	be	defined	as	a	=	a	-	1

For	testing,	create	a	file,	called	ch02_04.py.	Write	the	following	script.
a	=	4

print(a)

#	increment

a	=	a	+	1

print(a)

a	+=	10

print(a)

#	decrement

a	=	a	-	2

print(a)

a	-=	7

print(a)

Then,	save	and	run	the	program.
python3	ch02_04.py	

A	sample	of	program	output:

2.7	Getting	Input	from	Keyboard

To	get	input	from	keyboard,	we	can	use	input()	for	Python	3.x	and	raw_input()	for	Python
2.x.

For	testing,	create	a	file,	called	ch02_05.py,	and	write	this	script.
#	getting	input	from	keyboard	using	input()

name	=	input('What	is	your	name?')

print('Hello,'	+	name	+	'!!')

user_id	=	input('What	is	your	ID?')

print('Id	is	'	+	str(user_id))

#	getting	input	from	keyboard	using	raw_input()

product	=	raw_input('Product	name?')

print('Product='	+	product)

product_id	=	raw_input('Product	ID?')

print('Product	id=	'	+	str(product_id))

Save	and	run	the	program.
python3	ch02_05.py	

A	sample	of	program	output:

2.8	Python	Operators

In	this	section,	we	learn	several	Python	operators	such	as	comparison,	logical	and	bitwise
operators.

2.8.1	Comparison	Operators

You	may	determine	equality	or	difference	among	variables	or	values.	Here	is	the	list	of
comparison	operators:

==							is	equal	to

!=							is	not	equal

>								is	greater	than

<								is	less	than

>=							is	greater	than	or	equal	to

<=							is	less	than	or	equal	to

2.8.2	Logical	Operators

These	operators	can	be	used	to	determine	the	logic	between	variables	or	values.
&&						and

||						or

!								not

2.8.3	Bitwise	Opeators

Bitwise	operators	in	Python	can	be	defined	as	follows
&					AND

|			OR

^			Exclusive	OR

>>				Shift	right

<<				Shift	left

~			Not	(Inversion)

2.8.4	Testing	All

Now	we	test	how	to	use	comparison,	logical	and	bitwise	operators	in	code.	Create	a	file,
called	ch02_06.py,	and	write	these	scripts.	

#	comparison	operators

a	=	3

b	=	8

print(a	==	b)

print(a	!=	b)

print(a	>	b)

print(a	>=	b)

print(a	<	b)

print(a	<=	b)

#	logical	operators

print((a	==	b)	and	(a	!=	b))

print((a	<=	b)	or	(a	>	b))

print(not	(a	>=	b))

#	bitwise	operators

#	declare	binary	variables

m	=	0b01010011

n	=	0b11111001

print(m)

print(n)

print(bin(m	&	n))

print(bin(m	|	n))

print(bin(m	^	n))

print(bin(~m))

print(bin(b	<<	3))

print(bin(b	>>	2))

Save	this	file	and	run	the	program.
python	ch02_06.py	

A	sample	of	program	output:

2.9	Decision	Control

Syntax	model	for	if..else	can	be	formulated	as	below:
if	(conditional):

		#	do	something

else:

	#	do	something

#########

if	(conditional):

		#	do	something

elif	(conditional):

	#	do	something

else:

	#	do	something

For	testing,	create	a	file,	called	ch02_07.py	and	write	these	scripts.
#	if-else

a	=	10

b	=	30

print('demo	if-elif-else')

if	(a	>	10)	or	(b	>	10):

				#	do	something

				print('(a	>	10)	or	(b	>	10)')

elif	(a	!=	5)	and	(b	<=	7):

				#	do	something

				print('(a	!=	5)	and	(b	<=	7)')

else:

				#	do	something

				print('else')

#	nested	if

if	(a	==	0)	or	(b	>	20):

				if	b	<	50:

								print('nested-if')

				else:

								print('else-nested-if')

else:

				print('if-else')

Save	and	run	the	program.
python3	ch02_07.py	

A	sample	of	program	output:

2.10	Iteration	-	for	and	while

Iteration	operation	is	useful	when	we	do	repetitive	activities.	The	following	is	for	syntax.
for	(iteration):

	#	do	something

while	(conditional):

		#	do	something

For	testing,	create	a	file,	called	ch02_08.py	and	write	these	scripts.
#	iteration	-	for

print('demo	-	iteration	for')

for	i	in	range(1,	5):

				print(i)

#	nested	-	for

print('demo	-	nested	for')

for	i	in	range(1,	3):

				for	j	in	range(5,	10):

								print(str(i)	+	'-'	+	str(j))

#	iteration	-	while

print('demo	-	iteration	while')

i	=	0

while	i	<	10:

				print(i)

				i	+=	1

Save	and	run	the	program
python3	ch02_08.py	

A	sample	of	program	output:

2.11	break,	continue	and	pass

break	can	be	used	to	stop	on	the	code	point.	Otherwise,	continue	can	be	used	to	skip	some
scripts.	For	illustration,	we	have	a	looping.	The	looping	will	be	stopped	using	break	if
value	=	7.	Another	sample,	we	can	skip	the	iteration	with	value	=	4	using	continue	syntax.

Write	these	scripts.
print('demo	-	break,	continue	and	pass')

for	i	in	range(1,	10):

				if	i	==	4:

								continue

				if	i	==	7:

								break

				print(i)

pass		#	do	nothing

print('This	is	the	end	of	program')

Save	these	scripts	into	a	file,	called	ch02_09.py.

Run	the	program.
python3	ch02_09.py	

A	sample	of	program	output:

2.12	Date	&	Time

We	can	work	with	Data	and	time	in	Python	using	time	library.	We	must	import	this	library.

For	testing,	write	these	scripts.
import	time

#	get	current	time

now	=	time.time()		#	utc

print(now)

#	display	readable	current	time

print(time.strftime("%b	%d	%Y	%H:%M:%S",	time.gmtime(now)))

print(time.timezone)

Save	the	program	into	a	file,	called	ch02_10.py.

Run	the	program.
python3	ch02_10.py	

A	sample	of	program	output:

3.	Lists,	Tuples	and	Dictionary

This	chapter	explains	how	to	work	with	Python	collection.

3.1	Lists

Python	provides	a	list	for	collection	manipulation.	We	define	a	list	as	[].

For	illustration,	we	show	you	how	to	use	a	list	in	Python	program.	The	program
implements	

declaring
printing
getting	a	list	length
adding
getting	a	specific	item	from	a	list
sorting
removing

Write	these	scripts.
#	declare	lists

print('----declare	lists')

numbers	=	[]

a	=	[2,	7,	10,	8]

cities	=	['Berlin',	'Seattle',	'Tokyo',	'Moscow']

b	=	[10,	3,	'Apple',	6,	'Strawberry']

c	=	range(1,	10,	2)

#	print(lists

print('----print(lists')

print(a)

for	city	in	cities:

				print(city)

print(b)

print(c)

#	get	length	of	lists

print('----get	length	of	lists')

print(len(a))

print(len(cities))

#	add	item	into	list

print('----add	item')

numbers.append(10)

numbers.append(5)

cities.append('London')

for	i	in	numbers:

				print(i)

for	city	in	cities:

				print(city)

#	get	specific	item

print('----get	item')

print(cities[2])

print(a[3])

#	sorting

print(a.sort())

#	edit	item

print('----edit	item')

cities[2]	=	'new	city'

for	city	in	cities:

				print(city)

#	remove	item

print('----remove	item')

a.remove(8)			#	by	value

del	cities[2]			#	by	index

for	city	in	cities:

				print(city)

Save	thses	scripts	into	a	file,	called	ch03_01.py.

Run	the	program.
python3	ch03_01.py	

A	sample	of	program	output:

3.2	Tuples

We	can	define	a	tuple	using	()	in	Python.	A	tuple	can	be	append	a	new	item.

For	testing,	we	build	a	program	into	a	file,	called	ch03_02.py.	Write	these	scripts.
#	declare	tuples

a	=	()

b	=	(3,	5,	7)

c	=	('Ford',	'BMW',	'Toyota')

d	=	(3,	(5,	'London'),	12)

#	print

print(a)

print(b)

print(c)

print(d)

#	get	length	of	tuples

print(len(a))

print(len(b))

print(len(c))

print(len(d))

#	get	item

print(b[2])

print(c[1])

#	get	index

print(b.index(7))

print(c.index('Toyota'))

Save	and	run	the	program.
python3	ch03_02.py	

A	sample	of	program	output:

3.3	Dictionary

We	can	create	an	array	with	key-value	or	dictionary.	Python	uses	{}	to	implement	key-
value	array.

For	illustration,	we	create	a	program,	ch03_03.py.	Write	these	scripts.
#	declare

a	=	{}

b	=	{2:	'Sea',	3:	'River',	8:	'Mountain'}

c	=	{2:	{4:	'abcd',	5:	'hjkl'},	3:	'vbnm'}

d	=	dict(name='elena',	age=30,	roles=('manager',	'consultant'))

#	print

print(a)

print(b)

print(c)

print(d)

#	keys	values

print(b.keys())

print(b.values())

print(b.items())

#	add	item

a.setdefault(2,	'car')

a.setdefault(5,	'train')

a.setdefault(7,	'plane')

print(a)

#	check	key

print(3	in	b)

print(5	in	b)

Save	these	scripts	and	run	the	program.
python3	ch03_03.py	

A	sample	of	program	output:

4.	Functions

This	chapter	explains	how	to	create	function	using	Python.

4.1	Creating	A	Simple	Function

Declaring	function	in	Python	has	format	as	follows.
def	foo():

				print('foo()')

You	can	call	this	function	foo()	on	your	program.

4.2	Function	with	Parameters	and	Returning	Value

Sometimes	you	want	to	create	a	function	with	a	parameter.	You	can	implement	it	as
follows.

def	calculate(val_a,	val_b):

				val	=	val_a	*	val_b

				return	val

4.3	Function	with	Multiple	Returning	Values

A	function	can	return	multiple	returning	values	in	Python.	For	instance,	we	return	three
values	in	Python	function.	A	sample	code	can	be	written	as	below.

def	perform(num):

				d	=	num	*	5

				return	d,	d	+	5,	d	-	2

4.4	Recursion	Function

Recursion	function	is	a	function	where	the	solution	to	a	problem	depends	on	solutions	to
smaller	instances	of	the	same	problem	(as	opposed	to	iteration).	For	illustration,	we	can
implement	Fibonacci	problem	using	Python.	

The	following	is	a	sample	code	for	Fibonacci	solution	in	Python.
def	fibonacci(n):

				if	n	==	0:

								return	0

				elif	n	==	1:

								return	1

				else:

								return	fibonacci(n-1)	+	fibonacci(n-2)

4.5	Testing

We	can	write	code	again	from	section	4.1	to	4.4	and	use	them	in	on	ch04_01.py	file.
def	foo():

				print('foo()')

def	calculate(val_a,	val_b):

				val	=	val_a	*	val_b

				return	val

def	perform(num):

				d	=	num	*	5

				return	d,	d	+	5,	d	-	2

def	fibonacci(n):

				if	n	==	0:

								return	0

				elif	n	==	1:

								return	1

				else:

								return	fibonacci(n-1)	+	fibonacci(n-2)

foo()

m	=	calculate(10,	5)

print(m)

a,	b,	c	=	perform(5)

print(a)

print(b)

print(c)

res	=	fibonacci(10)

print(res)

Save	and	run	the	program.
python3	ch04_01.py	

A	sample	of	program	output:

5.	Python	Object	Oriented

This	chapter	we	explore	how	to	work	with	Object-Oriented	programming	in	Python.

5.1	Creating	Classes

Object-oriented	programming	(OOP)	is	a	programming	language	model	organized	around
objects.	In	this	chapter,	I	don’t	explain	in	detail	about	OOP.	I	recommend	you	to	read
textbooks	related	to	OOP.

In	OOP,	a	class	is	a	template	definition	of	the	method	s	and	variable	s	in	a	particular	kind
of	object.	You	can	declare	a	class	in	Python	as	follows.

from	math	import	*

class	City:

				#	class	data

				city_count	=	0

				city_id	=	0

			###	do	something

Note:	You	can	work	with	OOP	using	Python	3.x.

After	declared	a	class,	we	can	use	it.
a	=	City()

b	=	City()

5.2	Class	Attributes

We	can	declare	class	attributes	to	store	the	data	or	to	communicate	to	other	object.

For	instance,	we	declare	city_count	and	city_id.	We	also	define	methods:	move_to()	and
distance().

class	City:

				#	class	data

				city_count	=	0

				city_id	=	0

				

				#	class	attributes

				def	move_to(self,	x=0,	y=0):

								self.x	+=	x

								self.y	+=	y

				def	distance(self,	other_city):

								xi	=	pow(other_city.x	-	self.x,	2)

								yi	=	pow(other_city.y	-	self.y,	2)

								return	sqrt(xi	+	yi)

5.3	Built-In	Class	Attributes

Basically,	Python	has	built-in	class	attributes,	such	as	__init__()	is	used	as	class	contructor
and	__str__()	to	generate	information	about	the	class.

class	City:

				#	class	data

				city_count	=	0

				city_id	=	0

				#	constructor

				def	__init__(self,	name='',	x=0,	y=0):

								self.name	=	name

								self.x	=	x

								self.y	=	y

								City.city_count	+=	1		#	access	all	City	classes

								self.city_id	=	City.city_count

				def	__str__(self):

								return	'City:	'	+	self.name	+	',id='	+	str(self.city_id)	+	',x='

5.4	Destroying	Class	Object

In	a	class,	we	can	define	destructor	to	clear	all	usage	resouces.	We	can	use	__del__()	in
Python	to	do	that.

class	City:

				

				def	__del__(self):

								#	get	class	name

								class_name	=	self.__class__.__name__

								print('class	',	class_name,	'	destroyed')

5.5	Write	them	All

Let’s	try	to	write	the	code	in	implementation.	Create	a	file,	called	ch05_01.py,	and	write
these	scripts.

from	math	import	*

class	City:

				#	class	data

				city_count	=	0

				city_id	=	0

				#	constructor

				def	__init__(self,	name='',	x=0,	y=0):

								self.name	=	name

								self.x	=	x

								self.y	=	y

								City.city_count	+=	1		#	access	all	City	classes

								self.city_id	=	City.city_count

				def	__str__(self):

								return	'City:	'	+	self.name	+	',id='	+	str(self.city_id)	+	',x='

				#	class	attributes

				def	move_to(self,	x=0,	y=0):

								self.x	+=	x

								self.y	+=	y

				def	distance(self,	other_city):

								xi	=	pow(other_city.x	-	self.x,	2)

								yi	=	pow(other_city.y	-	self.y,	2)

								return	sqrt(xi	+	yi)

				def	__del__(self):

								#	get	class	name

								class_name	=	self.__class__.__name__

								print('class	',	class_name,	'	destroyed')

a	=	City('Hamburg',	10,	5)

b	=	City('Berlin',	3,	10)

print(a)

print(b)

print(City.city_count)

a.move_to(4,	3)

b.move_to(7,	12)

print(a)

print(b)

distance	=	a.distance(b)

print(distance)

Now	you	can	run	the	program.
$	python3	ch05_01.py

A	sample	of	program	output:

5.6	Inheritance

Inheritance,	encapsulation,	abstraction,	and	polymorphism	are	four	fundamental	concepts
of	object-oriented	programming.	In	this	section,	we	implement	inheritance	in	Python.

Inheritance	enables	new	objects	to	take	on	the	properties	of	existing	objects.	A	class	that	is
used	as	the	basis	for	inheritance	is	called	a	superclass	or	base	class.	In	Python,	we	can
declare	inheritance	as	follows.

import	math

class	shape:

				def	__init__(self):

								print('call	__init__	from	shape	class')

				def	foo(self):

								print('calling	foo()	from	shape	class')

class	circle(shape):

				def	__init__(self,	r):

								print('call	__init__	from	circle	class')

								self.r	=	r

				def	calculate_area_circle(self):

								return	math.pi	*	self.r	*	self.r

class	rectangle(shape):

				def	__init__(self,	l,	w):

								print('call	__init__	from	rectangle	class')

								self.l	=	l

								self.w	=	w

				def	calculate_area_rectangle(self):

								return	self.l	*	self.w

a	=	shape()

a.foo()

b	=	circle(5)

b.foo()

area	=	b.calculate_area_circle()

print('area:',	area)

c	=	rectangle(2,	3)

c.foo()

area	=	c.calculate_area_rectangle()

print('area:',	area)

Save	these	scripts	into	a	file,	called	ch05_02.py.

Now	run	this	file.
$	python3	ch05_02.py

Program	output:

5.7	Overriding	Methods

We	can	override	class	methods	in	OOP.	For	instance,	we	have	a	class,	shape,	which	has
calculate_area().	We	override	this	method	from	derived	class	by	our	own	implementation.

Write	these	scripts	for	sample.
import	math

class	shape:

				def	__init__(self):

								print('call	__init__	from	shape	class')

				def	calculate_area(self):

								print('calling	calculate_area()	from	shape	class')

								return	0

class	circle(shape):

				def	__init__(self,	r):

								print('call	__init__	from	circle	class')

								self.r	=	r

				def	calculate_area(self):

								print('calling	calculate_area()	from	circle	class')

								return	math.pi	*	self.r	*	self.r

class	rectangle(shape):

				def	__init__(self,	l,	w):

								print('call	__init__	from	rectangle	class')

								self.l	=	l

								self.w	=	w

				def	calculate_area(self):

								print('calling	calculate_area()	from	rectangle	class')

								return	self.l	*	self.w

a	=	shape()

area	=	a.calculate_area()

print('area:',	area)

b	=	circle(5)

area	=	b.calculate_area()

print('area:',	area)

c	=	rectangle(2,	3)

area	=	c.calculate_area()

print('area:',	area)

Save	and	run	the	program.
$	python3	ch05_03.py

A	sample	of	program	output:

5.8	Overloading	Operators

We	can	define	our	overloading	operators	in	Python	using	__add__()	for	instance.

For	completed,	write	these	scripts.
class	Point:

				def	__init__(self,	x,	y):

								self.x	=	x

								self.y	=	y

				def	__add__(self,	other):

								return	Point(self.x	+	other.x,	self.y	+	other.y)

				def	__sub__(self,	other):

								return	Point(self.x	-	other.x,	self.y	-	other.y)

				def	__mul__(self,	other):

								return	Point(self.x	*	other.x,	self.y	*	other.y)

				def	__str__(self):

								return	'x'	+	str(self.x)	+	',	y:'	+	str(self.y)

a	=	Point(10,	3)

b	=	Point(2,	7)

c	=	Point(8,	1)

print(a)

print(a	+	b)

print(c	-	b)

print(a	*	c)

Save	these	scripts	into	a	file,	called	ch05_04.py.
$	python3	ch05_04.py

A	program	output:

6.	Python	Modules	and	Packages

This	chapter	explains	how	to	work	Python	modules	and	packages.

6.1	Python	Modules

In	this	chapter,	we	learn	how	to	access	Python	modules.	A	list	of	Python	package	can	be
found	this	website,	https://pypi.python.org/pypi?%3Aaction=index	.

https://pypi.python.org/pypi?%3Aaction=index

6.2	import	Statement

You	can	access	Python	module	using	import.	Try	to	write	these	scripts.
import	math

a	=	math.sin(0.3)

print(a)

b	=	math.sqrt(math.sin(0.5)	*	math.pow(5,	3))

print(b)

Save	into	a	file,	called	ch06_01.py.	Run	the	program.
$	python3	ch06_01.py

Program	output:

6.3	from…import	*	Statement

On	previous	section,	we	use	import	to	use	Python	module.	To	use	it,	you	should	module
name.	You	can	ignore	it	using	from…import	statement.

Write	these	scripts.
from	math	import	*

a	=	sin(0.3)

print(a)

b	=	sqrt(sin(0.5)	*	pow(5,	3))

print(b)

You	can	see	we	don’t	need	to	call	math.sin().	We	just	call	sin().

Save	and	ryn	the	program.
$	python3	ch06_02.py

Program	output:

6.4	Installing	External	Python	Package

If	you	want	to	use	external	Python	Package,	for	instance,
Colorama,	https://pypi.python.org/pypi/colorama	.	We	can	install	itu	via	pip.

Type	this	command	on	Terminal.
pip	install	colorama

If	you	want	to	install	it	for	Python	3.x,	you	should	pip3.
pip3	install	colorama

Now	let’s	write	the	demo.
import	colorama

from	colorama	import	Fore,	Back,	Style

colorama.init()

message	=	"hello	world	from	python"

print(message)

print(Fore.RED	+	message)

print(Fore.GREEN	+	message)

print(Fore.BLUE	+	message)

print(Fore.RED	+	Back.YELLOW	+	message	+	Style.RESET_ALL)

Save	into	a	file,	called	ch06_03.py.
$	python3	ch06_03.py

Program	output:

https://pypi.python.org/pypi/colorama

7.	String	Operations

This	chapter	explains	how	to	work	with	String	operation	in	Python.

7.1	Getting	Started

We	already	use	string	as	data	type,	https://docs.python.org/3/library/string.html	.	In	this
section,	we	explore	some	operations	in	string.

The	next	step	is	to	explore	how	to	work	with	string.

https://docs.python.org/3/library/string.html

7.2	Concatenating	Strings

If	you	have	a	list	of	string,	you	can	concatenate	into	one	string.	You	can	use	+	operator
and	format()	function.	Here	is	a	sample	code

#	Concatenating

print(str1	+	"	"	+	str2)

print(str1,	str2)

print("%s	%s"	%	(str1,	str2))

print("{}	{}".format(str1,	str2))

7.3	String	To	Numeric

Sometime	you	want	to	do	math	operations	but	input	data	has	string	type.	To	convert	string
type	into	numeric,	you	can	use	int()	for	String	to	Integer	and	float()	for	string	to	Float.

The	following	is	a	sample	code	to	implement	string	to	numeric	conversion.
#	string	to	numeric

a	=	"2"

b	=	"6.8"

num1	=	int(a)

num2	=	float(b)

print(num1)

print(num2)

7.4	Numeric	to	String

It	is	easy	to	convert	numeric	to	String	type,	you	can	use	str().	You	can	get	string	type
automatically.

#	numeric	to	string

a	=	6

b	=	8.56

str1	=	str(a)

str2	=	str(b)

print(str1)

print(str2)

7.5	String	Parser

The	simple	solution	to	parsing	String	uses	split()	with	delimiter	parameter.	For	example,
you	have	String	data	with	;	delimiter	and	want	to	parse	it.	Here	is	sample	code

#	parsing

msg	=	'Berlin;Amsterdam;London;Tokyo'

cities	=	msg.split(';')

for	city	in	cities:

				print(city)

7.6	Check	String	Data	Length

You	can	use	len()	to	get	the	length	of	data.
msg	=	'Hello	world,	Python!'

#	get	a	length	of	string

length	=	len(msg)

print(length)

7.7	Copy	Data

You	may	copy	some	characters	from	String	data.	To	do	it,	you	can	use	[start:end]	syntax.
Here	is	syntax	format:

msg	=	'Hello	world,	Python!'

#	copy

print(msg[5:])

print(msg[:5])

print(msg[-3:])

print(msg[:-3])

print(msg[2:6])

print(msg[5:8])

7.8	Upper	and	Lower	Case	Characters

In	some	situation,	you	want	to	get	all	string	data	in	upper	or	lower	case	characters.	This
feature	is	built	in	String	object.	upper()	function	is	used	to	make	whole	string	in	upper
case	and	lower()	is	used	to	make	whole	string	in	lower	case.

The	following	is	a	sample	code	to	get	upper	and	lower	case	characters.
msg	=	'Hello	world,	Python!'

#	upper	&	lower

print(msg.upper())

print(msg.lower())

7.9	Testing	A	Program

We	can	write	our	code	in	ch17_01.py	completely	as	follows.
str1	=	"hello	world"

str2	=	"python"

#	Concatenating

print(str1	+	"	"	+	str2)

print(str1,	str2)

print("%s	%s"	%	(str1,	str2))

print("{}	{}".format(str1,	str2))

#	string	to	numeric

a	=	"2"

b	=	"6.8"

num1	=	int(a)

num2	=	float(b)

print(num1)

print(num2)

#	numeric	to	string

a	=	6

b	=	8.56

str1	=	str(a)

str2	=	str(b)

print(str1)

print(str2)

#	parsing

msg	=	'Berlin;Amsterdam;London;Tokyo'

cities	=	msg.split(';')

for	city	in	cities:

				print(city)

#	string	operations

msg	=	'Hello	world,	Python!'

#	upper	&	lower

print(msg.upper())

print(msg.lower())

#	copy

print(msg[5:])

print(msg[:5])

print(msg[-3:])

print(msg[:-3])

print(msg[2:6])

print(msg[5:8])

#	get	a	length	of	string

length	=	len(msg)

print(length)

Save	the	script	and	run	the	program.
$	python3	ch07_01.py

Program	output:

8.	File	Operations

This	chapter	explains	how	to	work	with	file	operations	using	Python.

8.1	Getting	Started

We	can	work	with	I/O	file	using	io	package,	https://docs.python.org/3/library/io.html	.

The	next	step	is	to	build	Python	application	to	write	and	read	a	file.

https://docs.python.org/3/library/io.html

8.2	Writing	Data	Into	A	File

To	write	and	read	a	file,	we	can	use	io	package.	In	this	section,	we	try	to	write	data	into	a
file.

8.2.1	Creating	a	File

We	can	create	a	file	using	open()	function	with	parameter	“w”.	If	file	is	exist,	it	will
recreate	a	file.

If	you	want	to	use	the	existing	file,	you	can	pass	“a”.	Parameter	“b”	is	used	for	binary	file.
#	create	a	file.

#	If	file	is	existing,	it	erases	and	creates	a	new	one

f1	=	open('mydoc1',	'w')

#	create	a	file.

#	If	file	is	existing,	it	appends.	Otherwise,	it	creates

f2	=	open('mydoc2',	'a')

#	binary	files

bf1	=	open('mydoc3',	'wb')

bf2	=	open('mydoc4',	'ab')

8.2.2	Writing	Data

Write	data	into	a	file,	we	can	use	write()	function.
for	index	in	range(1,	12):

				data	=	''

				name	=	'user	'	+	str(index-1)

				email	=	'user'	+	str(index-1)	+	'@email.com'

				if	index	==	1:

								data	=	'{0:3s}	{1:10s}	{2:15s}\n'.format('No',	'Name',	'Email')

				else:

								data	=	'{0:3s}	{1:10s}	{2:15s}\n'.format(str(index-1),	name,	email)

				f1.write(data)

				f2.write(data)

				bf1.write(data)

				bf2.write(data)

8.2.3	Closing	a	File

If	file	operations	done,	you	should	call	close()	to	close	file.
f1.close()

f2.close()

bf1.close()

bf2.close()

8.2.4	Demo

Let’s	write	these	scripts	for	demo.
#####################################

print('creating	files…')

#	create	a	file.

#	If	file	is	existing,	it	erases	and	creates	a	new	one

f1	=	open('mydoc1',	'w')

#	create	a	file.

#	If	file	is	existing,	it	appends.	Otherwise,	it	creates

f2	=	open('mydoc2',	'a')

#	binary	files

bf1	=	open('mydoc3',	'wb')

bf2	=	open('mydoc4',	'ab')

#####################################

#	writing	data

print('writing	data	into	files…')

for	index	in	range(1,	12):

				data	=	''

				name	=	'user	'	+	str(index-1)

				email	=	'user'	+	str(index-1)	+	'@email.com'

				if	index	==	1:

								data	=	'{0:3s}	{1:10s}	{2:15s}\n'.format('No',	'Name',	'Email')

				else:

								data	=	'{0:3s}	{1:10s}	{2:15s}\n'.format(str(index-1),	name,	email)

				f1.write(data)

				f2.write(data)

				bf1.write(data)

				bf2.write(data)

#####################################

#	close	all

print('close	files…')

f1.close()

f2.close()

bf1.close()

bf2.close()

Save	into	a	file,	called	ch08_01.py.	Then,	run	the	program.
$	python3	ch08_01.py

Program	output:

If	success,	you	can	open	all	files	to	see	the	content.

A	sample	of	content	from	mydoc1	file	can	be	seen	in	Figure	below.

A	sample	of	content	from	mydoc3	file	can	be	seen	in	Figure	below.

8.3	Reading	Data	From	A	File

To	read	data	per	line	from	a	file,	we	use	readline()	function.

Write	these	scripts	for	demo.
import	sys

#####################################

print('opening	files…')

f1	=	open('mydoc1',	'r')

f2	=	open('mydoc2',	'r')

bf1	=	open('mydoc3',	'rb')

bf2	=	open('mydoc4',	'rb')

#####################################

#	reading	data

def	reading_data(f):

				while	True:

								data	=	f.readline()

								if	(data	==	'')	or	(data	==	None):

												break

								sys.stdout.write(data)

print('for	mydoc1>>>>>')

reading_data(f1)

print('>>>>>>>>>>>>>>>')

print('for	mydoc2>>>>>')

reading_data(f2)

print('>>>>>>>>>>>>>>>')

print('for	mydoc3>>>>>')

reading_data(bf1)

print('>>>>>>>>>>>>>>>')

print('for	mydoc4>>>>>')

reading_data(bf1)

print('>>>>>>>>>>>>>>>')

#####################################

#	close	all

print('close	files…')

f1.close()

f2.close()

bf1.close()

bf2.close()

Save	into	a	file,	called	ch08_02.py.	Then,	run	the	program.
$	python3	ch08_02.py

Program	output:

9.	Error	Handling

This	chapter	explains	how	to	handle	errors	and	exceptions	that	occur	in	Python
application.

9.1	Error	Handling

Basically	when	we	write	a	program	and	occur	error	on	running,	Python	will	catch	program
error.	

Try	to	write	these	scripts	and	run	this	program.
a	=	18

b	=	0

c	=	a	/	b

$	python3	ch09_01.py

You	should	get	error,	shown	in	Figure	below.

Now	we	can	catch	error	using	try..except.	You	can	read	how	to	use	it
on	https://docs.python.org/3/tutorial/errors.html	.

Write	these	scripts.
try:

				a	=	18

				b	=	0

				c	=	a	/	b

				print('result:',	str(c))

except	ZeroDivisionError	as	e:

				print('Error:	division	by	zero')

				print(e)

finally:

https://docs.python.org/3/tutorial/errors.html

				print('Done')

print('exit	from	program')

Save	into	a	file,	ch09_02.py.	Then,	run	the	file.
$	python3	ch09_02.py

You	can	see	the	program	can	handle	the	error.

9.2	Catching	All	Errors

On	previous	section,	we	catch	error	for	“division	by	error”.	We	can	catch	all	errors	using
Exception	object.	Write	these	scripts	for	demo.

try:

				a	=	18

				b	=	0

				c	=	a	/	b

				print('result:',	str(c))

except	Exception	as	e:

				print(e)

finally:

				print('Done')

print('exit	from	program')

Save	into	a	file,	called	ch09_03.py.	Run	the	program.
$	python3	ch09_03.py

Program	output:

9.3	Raising	Exceptions

We	can	raise	error	from	our	program	using	raise.

For	demo,	write	these	scripts.
try:

				a	=	18

				b	=	0

				c	=	a	/	b

				print('result:',	str(c))

except	Exception	as	e:

				raise

finally:

				print('Done')

#	this	code	is	never	called

print('exit	from	program')

Save	into	a	file,	called	ch09_04.py.	Then,	run	the	program.
$	python3	ch09_04.py

You	should	the	program	raise	the	error	so	we	don’t	words	“exit	from	program”.

9.4	Custom	Exception

We	can	build	own	error	with	implementing	inheritance	Exception.

For	instance,	we	create	a	class,	MySimpleError,	with	inheritance	from	Exception.
class	MySimpleError(Exception):

				def	__init__(self,	code,	message):

								self.code	=	code

								self.message	=	message

				def	__str__(self):

								return	repr(str(self.code)	+	":"	+	self.message)

				def	save_to_database(self):

								print('save	this	error	into	database..')

#	how	to	use	custom	error

try:

				print('demo	custom	error')

				print('raise	error	now')

				raise	MySimpleError(100,'This	is	custom	error')

except	MySimpleError	as	e:

				print(e)

				e.save_to_database()

Save	the	program	into	a	file,	called	ch09_05.py.	

Run	this	program.
$	python3	ch09_05.py

Program	output:

10.	Building	Own	Python	Module

This	chapter	explains	how	to	build	own	Python	module.

10.1	Creating	Simple	Module

In	this	section,	we	create	a	simple	module.	We	will	call	functions	from	external	file	(*.py)
in	the	same	package,	main	package.

Firstly,	create	a	file,	simplemodule.py,	and	write	these	scripts.
def	perform(a,	b):

				return	a	*	2.5	+	b

def	calculate(a,b):

				return	a	+	b	*	5

You	also	can	create	a	class	on	Python	file,	for	instance	simpleadvmodule.py	and	write
these	scripts.

from	math	import	*

class	City:

				#	class	data

				city_count	=	0

				city_id	=	0

				#	constructor

				def	__init__(self,	name='',	x=0,	y=0):

								self.name	=	name

								self.x	=	x

								self.y	=	y

								City.city_count	+=	1		#	access	all	City	classes

								self.city_id	=	City.city_count

				def	__str__(self):

								return	'City:	'	+	self.name	+	',id='	+	str(self.city_id)	+	',x='

				#	class	attributes

				def	move_to(self,	x=0,	y=0):

								self.x	+=	x

								self.y	+=	y

				def	distance(self,	other_city):

								xi	=	pow(other_city.x	-	self.x,	2)

								yi	=	pow(other_city.y	-	self.y,	2)

								return	sqrt(xi	+	yi)

				def	__del__(self):

								#	get	class	name

								class_name	=	self.__class__.__name__

								print('class	',	class_name,	'	destroyed')

Now	you	access	functions	from	simplemodule.py	and	simpleadvmodule.py	files	using
import	statement.

Write	these	scripts.
#	access	our	modules

import	simplemodule

import	simpleadvmodule

#	use	simplemodule

num1	=	simplemodule.perform(10,	5)

print(num1)

num1	=	simplemodule.calculate(4,	3)

print(num1)

#	use	simpleadvmodule

city_a	=	simpleadvmodule.City('Hamburg',	8,	12)

city_b	=	simpleadvmodule.City('Berlin',	5,	7)

print(city_a)

print(city_b)

city_a.move_to(4,	3)

city_b.move_to(7,	12)

print(city_a)

print(city_b)

Save	into	a	file,	called	ch10_01.py.	Run	the	program.
$	python3	ch10_01.py

Program	output:

10.2	Building	Own	Python	Package

In	previous	program,	we	create	a	module	in	Python	package.	We	create	a	package	and
then	use	it	in	our	program.	

You	can	create	a	package,	called	Learning,	by	creating	folder.	Inside	Learning	folder,	you
create	folders:	Algebra	and	Arithmetic.

The	following	is	our	package	structure.

Now	we	add	several	files	in	each	folder

Learning	folder:	__init__.py,	common.py,	Computer.py	and	foo.py
Learning/Algebra	folder:	__init__.py	and	add.py
Learning/Arithmetic	folder:	__init__.py	and	calculate.py

The	following	is	script	implementation	for	each	file.

common.py
def	do_something():

				print('call	do_something()')

Computer.py
class	Computer:

				#	constructor

				def	__init__(self,	name=''):

								self.name	=	name

				def	__str__(self):

								return	'Computer:	'	+	self.name

				def	say_hello(self):

								print("I'm	computer,	called",	self.name)

foo.py
def	foo():

				print('call	foo()')

__init__.py	from	Learning	folder.
from	common	import	do_something

from	Computer	import	Computer

from	foo	import	foo

add.py
def	add(a,	b):

				return	a	+	b

__init__.py	from	Learning/Algebra	folder.
from	Learning.Algebra.add	import	add

calculate.py
def	calculate(a,	b):

				return	a	+	b	*	2.8

__init__.py	from	Learning/Arithmetic	folder.
from	Learning.Arithmetic.calculate	import	calculate

Now	we	can	access	our	package.	Create	a	file,	called	ch10_02.py,	and	write	these	scripts.
import	sys

sys.path.append('./Learning')

import	Learning

Learning.foo()

Learning.do_something()

a	=	Learning.Computer('myPC')

a.say_hello()

import	Learning.Algebra	as	algebra

b	=	algebra.add(10,	5)

print(b)

import	Learning.Arithmetic	as	arith

c	=	arith.calculate(5,	8)

print(c)

Save	and	run	the	program.
$	python3	ch10_02.py

Program	output:

11.	Concurrency

This	chapter	explains	how	to	create	concurrency	in	Python

11.1	Getting	Started

We	can	run	a	program	or	a	function	in	background	using	Python.	In	this	chapter,	we
explore	several	scenarios	to	build	concurrency	application.	In	Python,	you	can	read
concurrency	on	this	website,	https://docs.python.org/3/library/concurrency.html	.

https://docs.python.org/3/library/concurrency.html

11.2	Threading

Basically,	we	can	implement	threading	using	Thread	with	passing	the	function.	You	can
call	start()	to	run	a	thread.

import	time

import	threading

global	running

def	perform():

				global	running

				counter	=	0

				running	=	True

				while	running:

								print('counter:',	str(counter))

								time.sleep(2)

								counter	+=	1

my_thread	=	threading.Thread(target=perform)

my_thread.setDaemon(True)

my_thread.start()

#	python	3

input("Press	Enter	to	stop…")

#	python	2

#raw_input("Press	Enter	to	stop…")

running	=	False

my_thread.join(2)

To	exit	from	a	thread,	we	can	call	join()	with	timeout	value.

Save	into	a	file,	called	ch11_01.py.	

Run	the	program.
$	python3	ch11_01.py

When	Thread.start()	is	called,	it	executes	perform()	function.

A	sample	of	program	output	can	be	seen	in	Figure	below.

Thread	object	can	be	implemented	by	a	derived	class	from	threading.Thread.	For	instance,
we	create	a	class,	MyThread.	It	has	inheritance	from	threading.Thread	and	implement
run()	function.

Write	these	scripts.
import	time

import	threading

class	MyThread(threading.Thread):

				def	__init__(self):

								threading.Thread.__init__(self)

								self.running	=	False

				def	run(self):

								counter	=	0

								self.running	=	True

								while	self.running:

												print('counter:',	str(counter))

												time.sleep(2)

												counter	+=	1

				def	stop(self):

								print('stopping	thread…')

								self.running	=	False

								self.join(2)

my_thread	=	MyThread()

my_thread.setDaemon(True)

my_thread.start()

#	python	3

input("Press	Enter	to	stop…")

#	python	2

#raw_input("Press	Enter	to	stop…")

my_thread.stop()

Save	these	scripts	into	a	file,	called	ch11_02.py.	You	can	see	our	object,	my_thread,	call
start()	then,	it	call	run().	We	call	stop()	function	to	stop	our	thread.	Basically,	MyThread
will	call	join()	while	called	stop()	function.

Now	you	can	run	the	program.
$	python3	ch11_02.py

A	sample	of	program	output:

11.3	Synchronizing	Threads

We	can	synchronize	among	background	codes	in	Python.	In	this	section,	we	use	mutex
lock	and	event	for	thread	synchronization.

Let’s	start.

11.3.1	Mutex	Locks

The	idea	is	a	simple.	When	we	access	a	resource,	we	call	acquire().	If	done,	you	call
release()	from	Lock	object.	

For	testing,	we	define	a	shared	resource,	such	as	a	variable	called	value.	This	variable	will
be	access	by	two	threads.	Only	one	thread	can	access	this	variable.

Ok,	write	these	scripts.
import	time

import	threading

class	MyThread(threading.Thread):

				def	__init__(self,	name,	o_lock):

								threading.Thread.__init__(self)

								self.name	=	name

								self.running	=	False

								self.value_lock	=	o_lock

				def	run(self):

								global	value

								self.running	=	True

								while	self.running:

												self.value_lock.acquire()

												value	+=	1

												print('value:',	str(value),'	from	',	self.name)

												self.value_lock.release()

												time.sleep(2)

				def	stop(self):

								print('stopping	',	self.name)

								self.running	=	False

								self.join(2)

global	value

value	=	0

value_lock	=	threading.Lock()

my_thread1	=	MyThread('Thread	1',value_lock)

my_thread1.setDaemon(True)

my_thread2	=	MyThread('Thread	2',value_lock)

my_thread2.setDaemon(True)

my_thread1.start()

my_thread2.start()

#	python	3

input("Press	Enter	to	stop…")

#	python	2

#raw_input("Press	Enter	to	stop…")

my_thread1.stop()

my_thread2.stop()

Save	into	a	file,	called	ch11_03.py.

Now	you	can	run	the	program.
$	python3	ch11_03.py

Program	output:

11.3.2	Event

Another	option	to	synch	threading,	we	can	use	Event	object.	Call	wait()	to	block
operation.	It	means	the	program	can’t	execute	codes	after	wait().	Then,	call	set()	to	release
the	blocking	process.

For	illustration,	we	create	three	worker	threads.	These	threads	will	perform	something

after	calling	set()	from	event.		This	is	useful	for	initialization	state	process.

Write	these	scripts.
import	time

import	threading

class	Worker(threading.Thread):

				def	__init__(self,	name,	signal):

								threading.Thread.__init__(self)

								self.name	=	name

								self.signal	=	signal

				def	run(self):

								print('waiting	from	',	self.name)

								self.signal.wait()

								print('processing	from	',	self.name)

								time.sleep(2)

								print('done	from	',	self.name)

signal_event	=	threading.Event()

my_thread1	=	Worker('Thread	1',	signal_event)

my_thread1.setDaemon(True)

my_thread2	=	Worker('Thread	2',	signal_event)

my_thread2.setDaemon(True)

my_thread3	=	Worker('Thread	3',	signal_event)

my_thread3.setDaemon(True)

my_thread1.start()

my_thread2.start()

my_thread3.start()

#	waiting	for	10	seconds

time.sleep(10)

#	start	process

print('Send	a	signal	to	start	processing')

signal_event.set()

#	python	3

input("Press	Enter	to	stop…")

#	python	2

#raw_input("Press	Enter	to	stop…")

print('Done	all')

Save	into	a	file,	called	ch11_04.py.	Then,	run	the	program.
$	python3	ch11_04.py

Program	output:

11.4	Queue

In	this	section,	we	learn	about	Queue	object	from
Python,	https://docs.python.org/3/library/queue.html	.

For	testing,	we	add	some	jobs	into	Queue.	Then,	some	worker	threads	will	peak	the	job
and	run	it.

Let’s	write	these	scripts.
import	time

import	threading

import	queue

class	Worker(threading.Thread):

				def	__init__(self,	name,	q):

								threading.Thread.__init__(self)

								self.name	=	name

								self.q	=	q

				def	run(self):

								while	True:

												if	self.q.empty():

																print('thread	stopped')

																break

												job	=	self.q.get()

												print('run	job',	str(job),	'	from',	self.name)

												time.sleep(1)

												self.q.task_done()

q	=	queue.Queue()

#	generate	jobs

print('populate	jobs')

for	i	in	range(15):

				q.put(i)

my_thread1	=	Worker('Thread	1',	q)

my_thread1.setDaemon(True)

my_thread2	=	Worker('Thread	2',	q)

my_thread2.setDaemon(True)

my_thread3	=	Worker('Thread	3',	q)

my_thread3.setDaemon(True)

my_thread1.start()

my_thread2.start()

my_thread3.start()

my_thread1.join()

my_thread2.join()

my_thread3.join()

https://docs.python.org/3/library/queue.html

#	python	3

input("Press	Enter	to	stop…")

#	python	2

#raw_input("Press	Enter	to	stop…")

print('Done	all')

Save	into	a	file,	called	ch11_05.py.	

Now	you	can	run	the	program.
$	python3	ch11_05.py

Program	output:

11.5	Multiprocessing

We	can	implement	concurrency	in	Python	using	multiprocessing.	You	can	read	the
information	about	this	on	this	site,	https://docs.python.org/3/library/multiprocessing.html	.

11.5.1	Process

We	can	use	Process	object	to	implement	multiprocessing	in	Python.	For	instance,	we	build
a	counter	from	a	process.

Write	these	scripts.
import	time

import	multiprocessing

class	MyProcess(multiprocessing.Process):

				def	__init__(self):

								multiprocessing.	Process.__init__(self)

								self.running	=	False

				def	run(self):

								counter	=	0

								self.running	=	True

								while	self.running:

												print('counter:',	str(counter))

												time.sleep(2)

												counter	+=	1

				def	stop(self):

								print('stopping	process…')

								self.running	=	False

								self.join(1)

my_process	=	MyProcess()

my_process.daemon	=	True

my_process.start()

#	python	3

input("Press	Enter	to	stop…")

#	python	2

#raw_input("Press	Enter	to	stop…")

my_process.stop()

https://docs.python.org/3/library/multiprocessing.html

Save	into	a	file,	called	ch11_06.py,	and	run	it.
$	python3	ch11_06.py

Program	output:

11.5.2	Synchronizing	Processes

We	can	synch	among	processes	using	multiprocessing.Value.	This	object	implement
synchronizing	process.

For	testing,	we	define	a	shared	resource	via	multiprocessing.Value.	Write	these	scripts.
import	time

import	multiprocessing

class	MyProcess(multiprocessing.Process):

				def	__init__(self,	name,	shared_dt):

								multiprocessing.	Process.__init__(self)

								self.name	=	name

								self.running	=	False

								self.shared_data	=	shared_dt

				def	run(self):

								self.running	=	True

								while	self.running:

												time.sleep(1)

												with	self.shared_data.get_lock():

																self.shared_data.value	+=	1

																print('value:',	str(self.shared_data.value),	'	from	',	self

				def	stop(self):

								print('stopping	',	self.name)

								self.running	=	False

								self.join(1)

shared_data	=	multiprocessing.Value('i',	0,	lock=True)

my_process1	=	MyProcess('Process	1',	shared_data)

my_process1.daemon	=	True

my_process2	=	MyProcess('Process	2',	shared_data)

my_process2.daemon	=	True

my_process1.start()

my_process2.start()

#	python	3

input("Press	Enter	to	stop…")

#	python	2

#raw_input("Press	Enter	to	stop…")

my_process1.stop()

my_process2.stop()

Save	the	program	into	a	file,	called	ch11_07.py.

Now	you	can	run	the	program.
$	python3	ch11_07.py

Program	output:

11.6	Parallel	Tasks

The	last	section	is	to	implement	parallel	tasks	using	concurrent.futures.	There	are	two
options	to	implement	this:	ThreadPoolExecutor	and	ProcessPoolExecutor.

11.6.1	ThreadPoolExecutor

ThreadPoolExecutor	uses	thread	to	do	parallel	tasks.

A	sample	of	script	for	parallel	tasks	can	be	written	the	following	script.
import	queue

import	concurrent.futures

import	random

import	time

import	datetime

def	perform(q,	a,	b,	c):

				rand_val	=	random.uniform(0,	2)

				res	=	a	*	b	*	10	-	c	*	2

				time.sleep(rand_val)

				q.put(res)

t1	=	datetime.datetime.now()

q	=	queue.Queue()

with	concurrent.futures.ThreadPoolExecutor(max_workers=3)	as	executor:

				for	i	in	range(1,	15):

								val_a	=	random.randint(1,	10)

								val_b	=	random.randint(1,	10)

								val_c	=	random.randint(1,	10)

								executor.submit(perform,	q,	val_a,	val_b,	val_c)

print('Print	results')

t2	=	datetime.datetime.now()

while	not	q.empty():

				print(q.get())

t	=	t2	-	t1

print('total	time:',	str(t.total_seconds()),	'seconds')

Save	into	a	file,	called	ch11_08.py.
$	python3	ch11_08.py

Program	output:

11.6.2	ProcessPoolExecutor

ProcessPoolExecutor	uses	process	to	do	parallel	tasks.

We	implement	the	same	scenario	from	previous	section.
import	multiprocessing

import	concurrent.futures

import	random

import	time

import	datetime

def	perform(q,	a,	b,	c):

				rand_val	=	random.uniform(0,	2)

				res	=	a	*	b	*	10	-	c	*	2

				time.sleep(rand_val)

				q.put(res)

t1	=	datetime.datetime.now()

m	=	multiprocessing.Manager()

q	=	m.Queue()

with	concurrent.futures.ProcessPoolExecutor(max_workers=3)	as	executor:

				for	i	in	range(1,	15):

								val_a	=	random.randint(1,	10)

								val_b	=	random.randint(1,	10)

								val_c	=	random.randint(1,	10)

								executor.submit(perform,	q,	val_a,	val_b,	val_c)

print('Print	results')

t2	=	datetime.datetime.now()

while	not	q.empty():

				print(q.get())

t	=	t2	-	t1

print('total	time:',	str(t.total_seconds()),	'seconds')

Save	these	scripts	into	a	file,	called	ch11_09.py.
$	python3	ch11_09.py

Program	output:

12.	Encoding

This	chapter	explains	how	to	work	with	encoding	in	Python.

12.1	Getting	Started

In	this	chapter,	we	explore	encoding	package	from	Python.	The	following	is	a	list	of	our
demo	to	illustrate	how	to	use	encoding	package:

Base64
Hexadecimal
JSON
XML
CSV

Let’s	start	to	implement	these	encoding.

12.2	Encoding	Base64

The	first	demo	is	to	work	with	base64	encoding.	We	can	use	base64
package,	https://docs.python.org/3/library/base64.html	.	To	encode	string	to	base64	string,
we	can	use	b64encode().	Otherwise,	we	can	decode	it	using	b64decode()	function.

For	testing,	we	encode	a	string	message	to	base64.	Then,	we	decode	base64	message	to
original	message.	Write	these	scripts.

import	base64

plaintext	=	'Hello	world	from	Python'

s_bytes	=	plaintext.encode()

enc1	=	base64.b64encode(s_bytes)

dec1	=	base64.b64decode(enc1)

s_dec1	=	dec1.decode()

print('Plaintext:',	plaintext)

print('Base64:',	enc1)

print('Decoded:',	s_dec1)

Save	into	a	file,	called	ch12_01.py.

Now	you	can	test	to	build	and	run	the	program.
$	python3	ch12_01.py

A	sample	output	can	be	seen	in	Figure	below.

https://docs.python.org/3/library/base64.html

12.3	Hexadecimal

The	second	demo	is	to	encode	and	decode	string	to	Hexadecimal.	We	can	use	encode	and
decode	from	Python	3.x,	to	implement	our	demo.

Create	a	file,	called	ch12_02.py.	The	following	is	implementation	of	encoding/decoding
Hexadecimal.

from	codecs	import	encode,	decode

#	declare	hex	data

num	=	0x64

print(num,	'-->',	chr(num))

num_s	=	"\x64"

print(num_s)

#	display	hex	from	string	data

s	=	'Hello	world	from	Python'

s_bytes	=	s.encode()

s_hex	=	encode(s_bytes,'hex')

s_decoded	=	decode(s_hex,	'hex')

s_plaintext	=	s_decoded.decode()

print('plaintext:',	s)

print('hex:',	s_hex)

print('decoded:',	s_plaintext)

#	samples	for	displaying	hex	data

print('display	hex	format')

for	c	in	s:

				print(c,'-->',	encode(c.encode(),'hex'))

hex2	=	":".join("{:02x}".format(c)	for	c	in	s_bytes)

print(hex2)

Save	this	code.	Now	you	can	build	and	run	this	program.

$	python3	ch12_02.py

A	sample	output	can	be	seen	in	Figure	below.

12.4	JSON

The	third	demo	is	to	construct	and	parse	JSON	data.	In	Python,	we	can	use	json
package,	https://docs.python.org/3/library/json.html	.	

For	demo,	create	a	file,	called	ch12_02.py	and	write	this	code.
import	json

import	time

#	construct	json

data	=	{

				'name':	'anna',

				'sex':	'woman',

				'age':	20,

				'country':	'germany'

}

blog	=	{

				'title':	'my	blog',

				'created':	time.time(),

				'comments':	[

								{'name':'user	1',	'comment':	'this	is	comment	1'},

								{'name':'user	2',	'comment':	'this	is	comment	2'},

								{'name':'user	3',	'comment':	'this	is	comment	3'}

]

}

#	json	object	to	json	string

json_data	=	json.dumps(data)

json_data2	=	json.dumps(blog)

print(json_data)

print(json_data2)

#	decode	json	string	to	json	object

#	you	define	json	string	or	load	json	string	from	file

json_o1	=	json.loads(json_data)

json_o2	=	json.loads(json_data2)

#	iteration	json	values

print('----json_o1---')

print(json_o1['name'])

print(json_o1['sex'])

print(json_o1['age'])

print(json_o1['country'])

print('----json_o2---')

print(json_o2['title'])

created_s	=	time.strftime("%b	%d	%Y	%H:%M:%S",	time.gmtime(json_o2['created'

print(created_s)

print('comments:')

for	comment	in	json_o2['comments']:

				print('---',comment['name'],':',comment['comment'])

https://docs.python.org/3/library/json.html

Save	this	code.	Now	you	can	build	and	run	this	program.
$	python3	ch12_03.py

A	sample	output	can	be	seen	in	Figure	below.

12.5	XML

The	fourth	demo	is	to	read	and	write	XML	data.	We	can	use	xml
package,	https://docs.python.org/3/library/xml.html	.	In	this	demo,	we	use
xml.etree.ElementTree	to	process	XML	data.	In	this	demo,	we	read	xml	file	and	create	a
new	xml	file.

Firstly,	we	create	xml	file	for	testing,	called	products.xml	and	write	this	data.
<?xml	version="1.0"?>

<products>

				<product	name="product	1">

								<code>1001</code>

								<year>2015</year>

								<model	color="red"	category="food">12E</model>

				</product>

				<product	name="product	2">

								<code>1002</code>

								<year>2015</year>

								<model	color="green"	category="beverage">15C</model>

				</product>

				<product	name="product	3">

								<code>1003</code>

								<year>2015</year>

								<model	color="blue"	category="electronics">19A</model>

				</product>

</products>

Now	we	read	xml	file	and	display	it	into	Terminal.
import	xml.etree.ElementTree	as	Et

#	load	xml	file	and	iterate

xml_tree	=	Et.parse('products.xml')

products	=	xml_tree.getroot()

print(products.tag)

for	product	in	products:

				print('	',product.tag,	'	name=',product.get('name'))

				for	product_item	in	product:

								print('			',product_item.tag,	'=',product_item.text)

#	finding	specific	data

print('----------')

for	code	in	products.iter('code'):

				print(code.text)

#	construct	xml	and	save	into	a	file

print('construct	xml	file')

users	=	Et.Element('users')

for	i	in	range(1,	5):

				user	=	Et.SubElement(users,	'user')

https://docs.python.org/3/library/xml.html

				user.set('name',	"User	"	+	str(i))

				user_item	=	Et.SubElement(user,	'age')

				user_item.text	=	str(i	*	3)

				user_item2	=	Et.SubElement(user,	'id')

				user_item2.text	=	"1203"	+	str(i)

print('write	into	xml	file')

tree	=	Et.ElementTree(users)

tree.write("users.xml")

Save	this	code	into	a	fiile,	called	ch12_04.py.	Now	you	can	run	this	program.
$	python3	ch12_04.py

	

If	success,	you	see	users.xml	file	and	you	should	see	the	content	as	follows.
<users>

<user	name="User	1"><age>3</age><id>12031</id></user>

<user	name="User	2"><age>6</age><id>12032</id></user>

<user	name="User	3"><age>9</age><id>12033</id></user>

<user	name="User	4"><age>12</age><id>12034</id></user>

</users>

A	sample	of	program	output	can	be	seen	in	Figure	below.

12.6	CSV

The	last	demo	is	to	read	and	write	data	CSV	which	is	a	collection	of	comma-separated
data.	We	can	access	CSV	file	using	csv	package,
	https://docs.python.org/3/library/csv.html	.	Now	we	build	a	program	to	read	csv	file	and
write	data	into	csv	file.

For	testing,	we	create	a	CSV	file,	customers.csv,	with	the	following	content.
id,full_name,age,country

12,James	Butt,23,US

13,Josephine	Darakjy,40,UK

14,Art	Venere,35,US

15,Lenna	Paprocki,34,DE

16,Donette	Foller,27,NL

The	following	is	implementation	of	reading/writing	CSV	file.
import	csv

#	reading	csv	file

with	open('customers.csv',	newline='')	as	csv_file:

				customers	=	csv.reader(csv_file,	delimiter=',')

				for	row	in	customers:

								print(',	'.join(row))

csv_file.close()

print('------------')

#	reading	csv	file	with	handling	header

with	open('customers.csv')	as	csv_file:

				reader	=	csv.DictReader(csv_file)

				for	row	in	reader:

								print(row['id'],	row['full_name'],	row['age'],	row['country'])

csv_file.close()

#	writing	csv	file

print('----------------')

print('writing	csv	file')

with	open('cities.csv',	'w')	as	csv_file:

				fieldnames	=	['id',	'name',	'country']

				writer	=	csv.DictWriter(csv_file,	fieldnames=fieldnames,	delimiter=';'

				writer.writeheader()

				for	i	in	range(1,10):

								writer.writerow({'id':	i,	'name':	"city	"	+	str(i),	'country':	"country	"

csv_file.close()

print('done')

https://docs.python.org/3/library/csv.html

Note:	You	can	change	CSV	file	path.

Save	this	code	into	a	file,	called	ch12_05.py.	Now	you	can	run	this	program.
$	python3	ch12_05.py

A	sample	output	can	be	seen	in	Figure	below.

The	program	also	generate	cities.csv	file.

If	you	open	cities.csv,	you	get	a	content	of	cities	data	like	a	content	of	customers.csv	file.

13.	Hashing	and	Cryptography

This	chapter	explains	how	to	work	with	hashing	and	cryptography	in	Python.

13.1	Getting	Started

Hashing	is	generating	a	value	or	values	from	a	string	of	text	using	a	mathematical
function.	Cryptography	is	the	practice	and	study	of	techniques	for	secure	communication
in	the	presence	of	third	parties	(called	adversaries),
http://en.wikipedia.org/wiki/Cryptography	.	In	this	chapter,	I	don’t	explain	mathematical
hashing	and	Cryptography.	You	can	read	those	materials	on	textbooks.

In	this	chapter,	we	explore	how	to	work	with	hashing	implementation	using	Python.	The
following	is	hashing	algorithms	which	we	use	in	this	book:

MD5
SHA1	and	SHA256
Hashing	with	Key	(HMAC)

The	next	topic	is	to	implement	Cryptography	using	Python.	We	explore	symmetric	and
asymmetric	Cryptography.

http://en.wikipedia.org/wiki/Cryptography

13.2	Hashing

Basically,	you	can	explore	how	to	implement	hashing	or	hash	function	using	Python
via	https://docs.python.org/3/library/hashlib.html.	We	also	use	open	source	library,	called
pycrypto,	https://pypi.python.org/pypi/pycrypto	.	We	implement	both	in	our	case.

In	this	section,	we	explore	several	hashing	algorithms,	for	instance,	MD5,	SHA1,	SHA256
and	HMAC.

13.2.1	Hashing	with	MD5

We	can	use	MD5	using	md5	package,		https://docs.python.org/3/library/hashlib.html.	To
calculate	a	hash	value	from	a	text	,	we	can	call	digest()	function.	

For	illustration,	we	do	hashing	a	plaintext.
import	hashlib

import	binascii

plaintext	=	'hello	world	from	python'

#	md5

md5	=	hashlib.md5()

md5.update(plaintext.encode())

hash_md5	=	md5.digest()

hex_hash_md5	=	md5.hexdigest()

print('hash	md5:',	hash_md5)

print('hex	hash	md5:',	hex_hash_md5)

digest()	is	used	to	calculate	a	hash	value.	hexdigest()	is	to	calculate	hex	hash.

13.2.2	Hashing	with	SHA1	and	SHA256

The	second	demo	is	to	implement	hash	function	using	sha1	and	sha256.

For	illustration,	write	these	script	for	hashing	SHA1	and	SHA256.
import	hashlib

import	binascii

plaintext	=	'hello	world	from	python'

#	sha1

sha1	=	hashlib.sha1()

https://docs.python.org/3/library/hashlib.html
https://pypi.python.org/pypi/pycrypto
https://docs.python.org/3/library/hashlib.html

sha1.update(plaintext.encode())

hash_sha1	=	sha1.digest()

hex_hash_sha1	=	sha1.hexdigest()

print('hash	sha1:',	hash_sha1)

print('hex	hash	sha1:',	hex_hash_sha1)

#	sha256

sha256	=	hashlib.sha256()

sha256.update(plaintext.encode())

hash_sha256	=	sha256.digest()

hex_hash_sha256	=	sha256.hexdigest()

print('hash	sha256:',	hash_sha256)

print('hex	hash	sha256:',	hex_hash_sha256)

13.2.3	Hashing	with	Key	Using	HMAC

A	keyed-hash	message	authentication	code	(HMAC)	is	a	specific	construction	for
calculating	a	message	authentication	code	(MAC)	involving	a	cryptographic	hash	function
in	combination	with	a	secret	cryptographic	key,	http://en.wikipedia.org/wiki/Hash-
based_message_authentication_code	.	In	Python,	we	use	pbkdf2_hmac()	object.

For	illustration,	we	do	hashing	a	plaintext	with	key.
import	hashlib

import	binascii

plaintext	=	'hello	world	from	python'

#	hash	with	key

#	hmac

key	=	'p4ssw0rd'

hmac	=	hashlib.pbkdf2_hmac('sha256',	key.encode(),	plaintext.encode(),	100000

hex_hash_hmac	=	binascii.hexlify(hmac)

print('hex	hash	hmac:',	hex_hash_hmac)

13.2.4	Write	them	All

Save	all	code	for	our	demo	on	this	section.	Write	this	code	and	save	into	a	file,	called
ch13_01.py.

import	hashlib

import	binascii

plaintext	=	'hello	world	from	python'

#	md5

http://en.wikipedia.org/wiki/Hash-based_message_authentication_code

md5	=	hashlib.md5()

md5.update(plaintext.encode())

hash_md5	=	md5.digest()

hex_hash_md5	=	md5.hexdigest()

print('hash	md5:',	hash_md5)

print('hex	hash	md5:',	hex_hash_md5)

#	sha1

sha1	=	hashlib.sha1()

sha1.update(plaintext.encode())

hash_sha1	=	sha1.digest()

hex_hash_sha1	=	sha1.hexdigest()

print('hash	sha1:',	hash_sha1)

print('hex	hash	sha1:',	hex_hash_sha1)

#	sha256

sha256	=	hashlib.sha256()

sha256.update(plaintext.encode())

hash_sha256	=	sha256.digest()

hex_hash_sha256	=	sha256.hexdigest()

print('hash	sha256:',	hash_sha256)

print('hex	hash	sha256:',	hex_hash_sha256)

#	hash	with	key

#	hmac

key	=	'p4ssw0rd'

hmac	=	hashlib.pbkdf2_hmac('sha256',	key.encode(),	plaintext.encode(),	100000

hex_hash_hmac	=	binascii.hexlify(hmac)

print('hex	hash	hmac:',	hex_hash_hmac)

Save	all.

Now	you	can	test	to	build	and	run	the	program.
$	python3	ch13_01.py

A	sample	output	can	be	seen	in	Figure	below.

13.3	Cryptography

In	this	section,	we	focus	Symmetric	and	Asymmetric	Cryptography.	In	Symmetric
Cryptography,	we	use	the	same	key	to	encrypt	and	decrypt.	Otherwise,	Asymmetric
Cryptography	uses	different	key	to	encrypt	and	decrypt.

We	use	pycrypto,	https://github.com/dlitz/pycrypto	.	You	can	install	it	via	pip.	A	sample	of
command	to	install	pycrypto	for	Python	3.x.

$	pip3	install	pycrypto

For	illustration,	we	hash	a	plaintext	using	SHA256.	Write	these	scripts	and	save	into	a	file,
called	ch13_02.py.

from	Crypto.Hash	import	SHA256

plaintext	=	'hello	world	from	python'

sha256	=	SHA256.new()

sha256.update(plaintext.encode())

hash_sha256	=	sha256.digest()

hex_hash_sha256	=	sha256.hexdigest()

print('hash	sha256:',	hash_sha256)

print('hex	hash	sha256:',	hex_hash_sha256)

Save	and	run	the	program.
$	python3	ch13_02.py

https://github.com/dlitz/pycrypto

Program	output:

13.3.1	Symmetric	Cryptography

There	are	many	algorithms	to	implement	Symmetric	Cryptography.	In	this	section,	we	use
AES	algorithm.	The	Advanced	Encryption	Standard	(AES)	is	a	specification	for	the
encryption	of	electronic	data	established	by	the	U.S.	National	Institute	of	Standards	and
Technology	(NIST)	in	2001,
	http://en.wikipedia.org/wiki/Advanced_Encryption_Standard.	

We	can	do	symmetric	Cryptography	using	pycrypto	by	writing	these	scripts	into	a	file,
called	ch13_03.py

from	Crypto	import	Random

from	Crypto.Cipher	import	AES

message	=	'hello	world	from	python'

#	AES	key	must	be	either	16,	24,	or	32	bytes	long

key	=	'p4ssw0rdp4ssw0rd'

print('message:',	message)

#	encrypt

iv_aes	=	Random.new().read(AES.block_size)

cipher_aes	=	AES.new(key.encode(),	AES.MODE_CFB,	iv_aes)

encrypted_aes	=	cipher_aes.encrypt(message.encode())

print('encrypted	AES:',	encrypted_aes)

#	decrypted

dec_iv_aes	=	Random.new().read(AES.block_size)

dec_cipher_aes	=	AES.new(key.encode(),	AES.MODE_CFB,	iv_aes)

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

decrypted_aes	=	dec_cipher_aes.decrypt(encrypted_aes)

print('decrypted	AES:',	decrypted_aes)

Explanation:

The	following	is	the	steps	for	encryption

Define	a	key.	It	should	be	16,	24,	or	32	key	length
Calculate	IV	value	for	AES	using	Random.read()	with	AES.block_size	parameter
Instantiate	AES	using	AES.new()	with	passing	key	and	IV	value
Encrypt	message	by	calling	encrypt()
The	result	is	array	of	byte

The	following	is	the	steps	for	encryption

Define	a	key.	It	should	be	16,	24,	or	32	key	length
Calculate	IV	value	for	AES	using	Random.read()	with	AES.block_size	parameter
Instantiate	AES	using	AES.new()	with	passing	key	and	IV	value
Decrypt	cipher	by	calling	decrypt()
The	result	is	be	string	in	array	of	byte

Save	and	run	the	program.
$	python3	ch13_03.py

Program	output:

13.3.2	Asymmetric	Cryptography

The	common	algorithm	to	implement	Asymmetric	Cryptography	is	RSA	which	is	widely
used	for	secure	data	transmission.	You	read	a	brief	description	in
Wikipedia,	http://en.wikipedia.org/wiki/RSA_(cryptosystem)	.

pycrypto	library	has	library	for	RSA	implementation.	In	this	section,	we	try	to	implement
RSA	using	pycrypto	.	The	following	is	our	scenario:

Generate	RSA	keys	(public	and	private	keys)
Save	these	keys	to	two	files	(public	and	private	key	files)
For	encryption,	we	use	public	key	file
For	decryption,	we	use	private	key	file

We	store	public	and	private	keys	into	a	file	in	PEM	data	encoding.	

To	generate	public	and	private	keys	for	RSA,	we	use	RSA.generate().	We	extract	private
and	public	key	values.	Then,	save	them	into	file.	encrypt()	and	decrypt()	from	RSAKey
are	used	to	encrypt	and	decrypt.

The	following	is	implementation	for	our	RSA	scenario.
from	Crypto.PublicKey	import	RSA

from	Crypto	import	Random

#	generate	private	and	public	keys

#	Then,	save	them	into	files

print('generating	private	and	public	keys…')

key	=	RSA.generate(2048)

f	=	open('my_rsa_private_key.pem',	'wb')

f.write(key.exportKey('PEM'))

f.close()

f	=	open('my_rsa_public_key.pem',	'wb')

f.write(key.publickey().exportKey('PEM'))

f.close()

print('done')

message	=	'hello	world	from	python'

print('plaintext:',	message)

#	encrypt	data	using	public	key

f	=	open('my_rsa_public_key.pem','r')

RSAkey	=	RSA.importKey(f.read())

f.close()

k	=	Random.new().read(8)

encrypted_msg	=	RSAkey.encrypt(message.encode(),	k)

ciphertext	=	encrypted_msg[0]

print('encrypted:',	ciphertext)

http://en.wikipedia.org/wiki/RSA_(cryptosystem)

#	decrypt	data	using	private	key

f	=	open('my_rsa_private_key.pem','r')

RSAkey	=	RSA.importKey(f.read())

f.close()

decrypted_msg	=	RSAkey.decrypt(ciphertext)

print('decrypted:',	decrypted_msg.decode("utf-8"))

Save	these	scripts	into	a	file,	called	ch13_04.py.

Now	you	can	build	and	run	it.	A	sample	output	can	be	seen	in	Figure	below.
$	python3	ch13_04.py

Program	output:

14.	Database	Programming

This	chapter	explains	how	to	build	database	application	using	Python.

14.1	Database	for	Python

Python	can	communicate	with	database	server	through	database	driver.	We	can	use
MySQL	driver	fro	Python.	In	this	chapter,	I	only	focus	on	MySQL	scenario.

14.2	MySQL	Driver	for	Python

We	use	MySQL	driver		for	Python.	Further	information	about	this	driver,	please	visit
on	https://dev.mysql.com/downloads/connector/python/2.1.html	to	download	and	install.

You	also	can	install	MySQL	driver	for	Python	via	pip3	(Python	3.x).
$	sudo	pip3	install	--allow-external	mysql-connector-python	mysql-connector-python

https://dev.mysql.com/downloads/connector/python/2.1.html

14.3	Testing	Connection

In	this	section,	we	try	to	connect	MySQL	database.	We	can	use	connect()	from
mysql.connector	object.

import	mysql.connector

print('connecting	to	mysql	server…')

cnx	=	mysql.connector.connect(user='pyuser',

																														password='password123',

																														host='127.0.0.1',

																														database='pydb')

print('connected')

You	should	pass	username,	password,	database	server	and	database	name.

14.4	CRUD	(Create,	Read,	Update	and	Delete)	Operations

In	this	section,	we	try	to	create,	read,	update	and	delete	data	on	MySQL.	Firstly,	we	create
database	and	its	table.

The	following	is	our	table	scheme	on	MySQL.
CREATE	DATABASE	`pydb`;

CREATE	TABLE	`pydb`.`product`	(

		`idproduct`	INT	NOT	NULL	AUTO_INCREMENT,

		`name`	VARCHAR(30)	NOT	NULL,

		`code`	VARCHAR(10)	NOT	NULL,

		`price`	DECIMAL	NOT	NULL,

		`quantity`	INT	NULL,

		`created`	DATETIME	NULL,

		PRIMARY	KEY	(`idproduct`));

File:	pydb.sql

Run	these	SQL	scripts	into	your	MySQL.

14.4.1	Create	Data

To	create	data,	we	use	SQL	statement,	INSERT	INTO,	which	pass	to	execute()	function.
def	create_data(conn):

				cursor	=	conn.cursor()

				print('inserting	data…')

				for	i	in	range(1,5):

								insert_product	=	("INSERT	INTO	product	"

																			"(name,	code,	price,	quantity,	created)	"

																			"VALUES	(%s,	%s,	%s,	%s,	%s)")

								data_product	=	("product	"	+	str(i),	"F029"	+	str(i),	i*0.21,	i,	datetime

								cursor.execute(insert_product,	data_product)

								product_id	=	cursor.lastrowid

								print('inserted	with	id=',product_id)

				conn.commit()

				cursor.close()

				print('done')

To	obtain	the	last	inserted	id,	we	can	use	lastrowid	from	cursor	object.

14.4.2	Read	Data

To	read	data,	you	can	use	SELECT…FROM	query	on	your	Python	scripts.
def	read_data(conn):

				print('reading	data….')

				selected_id	=	0

				cursor	=	conn.cursor()

				query	=	"SELECT	idproduct,	name,	code,	price,	quantity,	created	FROM	product"

				cursor.execute(query)

				for	(id,	name,	code,	price,	quantity,	created)	in	cursor:

								print("{},	{},	{},	{},	{},	{:%d	%b	%Y	%H:%M:%S}".format(

																id,	name,	code,	price,	quantity,	created))

								if	selected_id	<=	0:

												selected_id	=	id

				cursor.close()

				print('done')

				return	selected_id

14.4.3	Update	Data

To	update	data,	you	can	use	UPDATE….SET	query	on	your	Python	scripts.
def	update_data(conn,	id):

				print('updating	data	with	idproduct=',	id,	'...')

				cursor	=	conn.cursor()

				query	=	"UPDATE	product	SET	name=%s,	code=%s,	price=%s,	quantity=%s,	created=

				name	=	'updated-name'

				code	=	'F9999'

				price	=	0.99

				quantity	=	10

				created	=	datetime.now()

				cursor.execute(query,	(name,	code,	price,	quantity,	created,	id))

				conn.commit()

				cursor.close()

				print('done')

Don’t	forget	to	call	commit()	after	changed	the	data.

14.4.4	Delete	Data

To	update	data,	you	can	use	DELETE	FROM	query	on	your	Python	scripts.

def	delete_data(conn,	id):

				print('deleting	data	on	idproduct=',	id,	'...')

				cursor	=	conn.cursor()

				query	=	"DELETE	FROM	product	where	idproduct	=	%s	"

				cursor.execute(query,	(id,))

				conn.commit()

				cursor.close()

				print('done')

def	delete_all(conn):

				print('deleting	all	data….')

				cursor	=	conn.cursor()

				query	=	"DELETE	FROM	product"

				cursor.execute(query)

				conn.commit()

				cursor.close()

				print('done')

Don’t	forget	to	call	commit()	after	changed	the	data.

14.4.5	Write	them	All

Now	we	can	write	our	scripts	about	CRUD.

Write	these	scripts.
import	mysql.connector

from	datetime	import	datetime

def	create_data(conn):

				cursor	=	conn.cursor()

				print('inserting	data…')

				for	i	in	range(1,5):

								insert_product	=	("INSERT	INTO	product	"

																			"(name,	code,	price,	quantity,	created)	"

																			"VALUES	(%s,	%s,	%s,	%s,	%s)")

								data_product	=	("product	"	+	str(i),	"F029"	+	str(i),	i*0.21,	i,	datetime

								cursor.execute(insert_product,	data_product)

								product_id	=	cursor.lastrowid

								print('inserted	with	id=',product_id)

				conn.commit()

				cursor.close()

				print('done')

def	read_data(conn):

				print('reading	data….')

				selected_id	=	0

				cursor	=	conn.cursor()

				query	=	"SELECT	idproduct,	name,	code,	price,	quantity,	created	FROM	product"

				cursor.execute(query)

				for	(id,	name,	code,	price,	quantity,	created)	in	cursor:

								print("{},	{},	{},	{},	{},	{:%d	%b	%Y	%H:%M:%S}".format(

																id,	name,	code,	price,	quantity,	created))

								if	selected_id	<=	0:

												selected_id	=	id

				cursor.close()

				print('done')

				return	selected_id

def	update_data(conn,	id):

				print('updating	data	with	idproduct=',	id,	'...')

				cursor	=	conn.cursor()

				query	=	"UPDATE	product	SET	name=%s,	code=%s,	price=%s,	quantity=%s,	created=

				name	=	'updated-name'

				code	=	'F9999'

				price	=	0.99

				quantity	=	10

				created	=	datetime.now()

				cursor.execute(query,	(name,	code,	price,	quantity,	created,	id))

				conn.commit()

				cursor.close()

				print('done')

def	delete_data(conn,	id):

				print('deleting	data	on	idproduct=',	id,	'...')

				cursor	=	conn.cursor()

				query	=	"DELETE	FROM	product	where	idproduct	=	%s	"

				cursor.execute(query,	(id,))

				conn.commit()

				cursor.close()

				print('done')

def	delete_all(conn):

				print('deleting	all	data….')

				cursor	=	conn.cursor()

				query	=	"DELETE	FROM	product"

				cursor.execute(query)

				conn.commit()

				cursor.close()

				print('done')

print('connecting	to	mysql	server…')

cnx	=	mysql.connector.connect(user='pyuser',

																														password='password123',

																														host='127.0.0.1',

																														database='pydb')

print('connected')

create_data(cnx)

selected_id	=	read_data(cnx)

update_data(cnx,	selected_id)

read_data(cnx)

delete_data(cnx,	selected_id)

read_data(cnx)

delete_all(cnx)

cnx.close()

print('closed	connection')

Save	this	program.	Then,	you	can	run	it.
$	python3	ch14_01.py

Program	output:

15.	Socket	Programming

This	chapter	explains	how	to	create	socket	application	using	Python.

15.1	Socket	Module

We	can	create	application	based	on	socket	stack	using	net	package.	You	can	find	it	for
further	information	on	https://docs.python.org/3/library/socket.html	.	I	recommend	you	to
read	some	books	or	websites	about	the	concept	of	socket.

https://docs.python.org/3/library/socket.html

15.2	Hello	World

To	get	started,	we	create	a	simple	application	to	get	a	list	of	IP	Address	in	local	computer.
We	can	use	gethostname()	and	gethostbyname()	from	socket	object.

In	this	section,	we	try	to	get	local	IP	Address.	Firstly,	we	can	create	a	new	file,	called
ch15_01.py.

import	socket

hostname	=	socket.gethostname()

ip	=	socket.gethostbyname(hostname)

print('hostname:',	hostname)

print('ip	address:',	ip)

Save	this	code.	Try	to	build	and	run	it.
$	python3	ch15_01.py

You	should	see	your	local	IP	address	from	your	computer.

15.3	Client/Server	Socket

Now	we	create	a	client/server	socket	using	Python.	We	will	use	socket	package	to	build
client/server	application.	For	illustration,	we	create	server	and	client.

15.3.1	Server	Socket

How	to	create	server	socket?	It	is	easy.	The	following	is	a	simple	algorithm	how	to	build
server	socket

create	server	socket
listen	incoming	client	on	the	specific	port
if	client	connected,	server	sends	data	and	then	disconnect	from	client

In	this	section,	we	build	server	app.	Firstly,	we	can	create	a	new	file,	called	ch15_02.py.
Then,	write	these	scripts.

import	socket

#	create	tcp/ip	socket

server	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

host	=	socket.gethostname()

port	=	8091

#	bind	to	the	port

server.bind((host,	port))

#	queue	up	to	10	clients

server.listen(10)

counter	=	0

print('waiting	connection	from	clients…')

while	True:

				#	establish	a	connection

				client,	address	=	server.accept()

				counter	+=	1

				print('a	new	connection	from',str(address))

				message	=	"welcome,	your	id="	+	str(counter)	+	"\r\n"

				client.send(message.encode('ascii'))

				client.close()

It	uses	port	8091.	You	can	change	it.

15.3.2	Client	Socket

Client	socket	is	client	application	that	connects	to	server	and	then	sends/receives	data
from/to	server.	We	should	know	about	IP	address	and	port	from	target	server.	We	can	call
connect()	to	connect	to	server	and	call	recv()	to	receive	incoming	data.

In	this	section,	we	build	client	app.	Firstly,	we	can	create	a	new	file,	called	ch15_03.py.
Then,	write	these	scripts.

import	socket

#	create	a	socket	object

client	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

#	ip/hostname	of	server

#	change	this	ip	address

host	=	'192.168.0.10'

port	=	8091

print('connecting	to	server…')

client.connect((host,	port))

print('connected')

recv	=	client.recv(1024)

print('received:',	recv.decode('ascii'))

client.close()

print('closed')

You	should	change	host	for	IP	address	of	server.

15.3.3	Testing

Now	we	can	test	our	client/server	application.	Firstly,	we	run	server	application	and	then
execute	client	application.

$	python3	ch15_02.py

Then,	run	client	app.
$	python3	ch15_03.py

Here	is	sample	of	program	output	for	server	application:

Here	is	sample	of	program	output	for	client	application:

This	is	program	output	for	the	second	client.

16.	Python	Regular	Expressions

This	chapter	explains	how	to	work	with	regular	expressions	in	Python.

16.1	Getting	Started

Regular	expressions	are	a	powerful	language	for	matching	text	patterns.	The	Python	“re”
module	provides	regular	expression	support.	This	library	can	be	read
on	https://docs.python.org/3/library/re.html	.

You	also	obtain	regular	expression	patterns	from	this	site,	http://www.regxlib.com	.

https://docs.python.org/3/library/re.html
http://www.regxlib.com

16.2	Demo

In	this	demo,	we	create	three	scenario:

Validate	number	data
Search	data
Search	and	replace	data

We	can	use	match()	from	re	object	to	validate	the	matching	of	defined	pattern.	To	search,
you	can	use	search()	function	and	use	pub()	to	replace	data.

Let’s	create	a	file,	called	ch16_01.py,	and	write	these	scripts.
import	re

#	pattern	for	numbers

p	=	re.compile('^[0-9]+$')

print(p.match('19023'))

print(p.match('0000'))

print(p.match('12.789'))

print(p.match('12b23'))

#	search

message	=	'Anna	William	<anna@email.com>'

match	=	re.search(r'[\w.-]+@[\w.-]+',	message)

if	match:

				print(match.group())

#	search	and	replase

message	=	'aaa	:	asasasw	::	sasas:::'

p	=	re.compile('(:|::|:::)')

resutl	=	p.sub('<>',	message)

print(resutl)

Save	and	run	the	program.
$	python3	ch16_01.py

Program	output:

17.	Python	GUI	Programming

This	chapter	explains	how	to	work	with	GUI	in	Python.

17.1	Getting	Started

There	are	many	modules	to	implement	GUI	in	Python.		In	this	chapter,	we	learn	tkinter	to
build	Python	GUI.	This	library	can	be	read	on	this
site,	https://docs.python.org/3/library/tk.html	.	This	library	has	installed	on	Python	3.x.

Let’s	start	to	build	Python	app	with	tkinter	library.

https://docs.python.org/3/library/tk.html

17.2	Hello	Python	GUI

The	first	demo	is	to	build	Python	GUI	Hello	World.	We	use	Tk	object	to	build	a	form.

Write	these	scripts.
import	tkinter	as	tk

dialog	=	tk.Tk()

dialog.title('Simple	Form')

dialog.mainloop()

Save	these	scripts	into	a	file,	called	ch17_01.py.	Then,	run	the	program.
$	python3	ch17_01.py

You	should	see	a	form	dialog	with	title	“Simple	Form”.

17.3	Working	with	Input	Form

Now	we	can	extend	our	Tk	object	into	an	input	form.	In	this	scenario,	we	put	two	Textbox
and	a	button.	If	we	click	a	button,	we	read	Textbox	values.

Let’s	write	these	scripts	for	demo.
import	tkinter	as	tk

class	InputForm(object):

				def	__init__(self):

								self.root	=	tk.Tk()

								self.root.title('Input	Form')

								self.num_a	=	''

								self.num_b	=	''

								self.frame	=	tk.Frame(self.root)

								self.frame2	=	tk.Frame(self.root)

								self.frame.pack()

								self.frame2.pack()

								self.initialization()

				def	initialization(self):

								r	=	self.frame

								k_a	=	tk.Label(r,text='Number	A')

								k_a.grid(row=0,	column=0)

								self.e_a	=	tk.Entry(r,	text='NumA')

								self.e_a.grid(row=0,	column=1)

								self.e_a.focus_set()

								k_b	=	tk.Label(r,text='Number	B')

								k_b.grid(row=1,	column=0)

								self.e_b	=	tk.Entry(r,	text='NumB')

								self.e_b.grid(row=1,	column=1)

								self.e_b.focus_set()

								r2	=	self.frame2

								b	=	tk.Button(r2,text='Save',command=self.get_inputs)

								b.pack(side='left')

				def	get_inputs(self):

								self.num_a	=	self.e_a.get()

								self.num_b	=	self.e_b.get()

								self.root.destroy()

				def	get_values(self):

								return	self.num_a,	self.num_b

				def	wait_for_input(self):

								self.root.mainloop()

dialog	=	InputForm()

dialog.wait_for_input()

num_a,	num_b	=	dialog.get_values()

print('num	a:',	num_a)

print('num	b:',	num_b)

Save	the	program	into	a	file,	called	ch17_02.py.	

Run	the	program.
$	python3	ch17_02.py

You	should	see	the	input	form	dialog.

Fill	values	on	Textbox.	Then,	click	Save	button.

After	clicked,	the	program	will	read	input	values	and	shows	them	on	Terminal.

17.4	Working	with	Common	Dialogs

tkinter	library	also	provides	common	dialogs	such	Messagebox,	filedialog	and
colorchooser.

For	illustration,	write	these	scripts.
import	tkinter	as	tk

from	tkinter	import	messagebox,	filedialog

from	tkinter.colorchooser	import	*

#	messagebox

print('demo	messagebox')

messagebox.showinfo('Information',	'This	is	message')

messagebox.showerror('Error',	'This	is	error	message')

messagebox.showwarning('Warning',	'This	is	warning	message')

#	filedialog

dir	=	filedialog.askdirectory()

print('selected	directory:',	dir)

file	=	filedialog.askopenfile(mode="r")

print('selected	file:',	file.name)

new_file_name	=	filedialog.asksaveasfilename()

print('save	as	file:',	new_file_name)

#	colorchooser

def	get_color():

				color	=	askcolor()

				print('selected	color:',	color)

dialog	=	tk.Tk()

tk.Button(dialog,	text='Select	Color',	command=get_color).pack()

dialog.title('Simple	Form')

dialog.mainloop()

Save	the	program	into	a	file,	called	ch17_03.py.	Then,	run	the	program.
$	python3	ch17_03.py

The	following	is	output	forms	for	information,	error	and	warning.

Output	form	for	selecting	a	directory.

Output	form	for	selecting	a	file.

Output	form	for	saving	a	file.

Output	form	for	selecting	a	color.	Click	Select	Color	button	to	show	Colors	dialog.

The	following	is	program	output	in	Terminal.

18.	Python	Unit	Testing

This	chapter	explains	how	to	build	unit	testing	in	Python.

18.1	Getting	Started

Unit	testing	is	a	software	development	process	in	which	the	smallest	testable	parts	of	an
application,	called	units,	are	individually	and	independently	scrutinized	for	proper
operation.	Unit	testing	can	be	used	to	minimize	bugs	on	the	application.

In	Python,	we	can	use	unittest	framework,	https://docs.python.org/3/library/unittest.html	.
Please	read	it	to	obtain	more	information.

https://docs.python.org/3/library/unittest.html

18.2	Demo

For	testing,	we	create	a	class	and	do	unit	testing	for	this	class.

Write	a	file,	called	mathu.py	and	write	these	scripts.
class	Mathu:

				def	__init__(self):

								print('call	__init__	from	Mathu	class')

				def	add(self,	num_a,	num_b):

								return	num_a	+	num_b

				def	div(self,	num_a,	num_b):

								try:

												result	=	num_a	/	num_b

								except	ZeroDivisionError	as	e:

												raise	e

								return	result

				def	check_even(self,	number):

								return	number	%	2	==	0

Now	we	want	to	test	this	class	by	the	following	scenario:

testing	add()
testin	div()
testing	check_even()
testing	for	exception	error

You	can	write	these	scripts.
import	unittest

import	mathu

class	TestMathu(unittest.TestCase):

				def	test_add(self):

								res	=	mathu.Mathu().add(5,	8)

								self.assertEqual(res,	13)

				def	test_div(self):

								res	=	mathu.Mathu().div(10,	8)

								self.assertGreater(res,	1)

				def	test_check_even(self):

								res	=	mathu.Mathu().check_even(4)

								self.assertTrue(res)

				def	test_error(self):

								self.assertRaises(ZeroDivisionError,	lambda:mathu.Mathu().div(5,	

if	__name__	==	'__main__':

				unittest.main()

Save	into	a	file,	called	ch18_01.py.

Now	you	can	run	the	program.
$	python3	ch18_01.py

Program	output:

Source	Code

You	can	download	source	code	on
http://www.aguskurniawan.net/book/python2120151.zip	.

http://www.aguskurniawan.net/book/python2120151.zip

Contact

If	you	have	question	related	to	this	book,	please	contact	me	at	aguskur@hotmail.com	.	My
blog:	http://blog.aguskurniawan.net

http://blog.aguskurniawan.net

	Copyright
	Preface
	1. Development Environment
	1.1 Installation
	1.2 Development Tools
	1.3 Python Shell
	1.4 Running Python Application from Files

	2. Python Programming Language
	2.1 Common Rule
	2.2 Variables
	2.3 Comment
	2.4 Arithmetic Operations
	2.5 Mathematical Functions
	2.6 Increment and Decrement
	2.7 Getting Input from Keyboard
	2.8 Python Operators
	2.8.1 Comparison Operators
	2.8.2 Logical Operators
	2.8.3 Bitwise Opeators
	2.8.4 Testing All

	2.9 Decision Control
	2.10 Iteration - for and while
	2.11 break, continue and pass
	2.12 Date & Time

	3. Lists, Tuples and Dictionary
	3.1 Lists
	3.2 Tuples
	3.3 Dictionary

	4. Functions
	4.1 Creating A Simple Function
	4.2 Function with Parameters and Returning Value
	4.3 Function with Multiple Returning Values
	4.4 Recursion Function
	4.5 Testing

	5. Python Object Oriented
	5.1 Creating Classes
	5.2 Class Attributes
	5.3 Built-In Class Attributes
	5.4 Destroying Class Object
	5.5 Write them All
	5.6 Inheritance
	5.7 Overriding Methods
	5.8 Overloading Operators

	6. Python Modules and Packages
	6.1 Python Modules
	6.2 import Statement
	6.3 from...import * Statement
	6.4 Installing External Python Package

	7. String Operations
	7.1 Getting Started
	7.2 Concatenating Strings
	7.3 String To Numeric
	7.4 Numeric to String
	7.5 String Parser
	7.6 Check String Data Length
	7.7 Copy Data
	7.8 Upper and Lower Case Characters
	7.9 Testing A Program

	8. File Operations
	8.1 Getting Started
	8.2 Writing Data Into A File
	8.2.1 Creating a File
	8.2.2 Writing Data
	8.2.3 Closing a File
	8.2.4 Demo

	8.3 Reading Data From A File

	9. Error Handling
	9.1 Error Handling
	9.2 Catching All Errors
	9.3 Raising Exceptions
	9.4 Custom Exception

	10. Building Own Python Module
	10.1 Creating Simple Module
	10.2 Building Own Python Package

	11. Concurrency
	11.1 Getting Started
	11.2 Threading
	11.3 Synchronizing Threads
	11.3.1 Mutex Locks
	11.3.2 Event

	11.4 Queue
	11.5 Multiprocessing
	11.5.1 Process
	11.5.2 Synchronizing Processes

	11.6 Parallel Tasks
	11.6.1 ThreadPoolExecutor
	11.6.2 ProcessPoolExecutor

	12. Encoding
	12.1 Getting Started
	12.2 Encoding Base64
	12.3 Hexadecimal
	12.4 JSON
	12.5 XML
	12.6 CSV

	13. Hashing and Cryptography
	13.1 Getting Started
	13.2 Hashing
	13.2.1 Hashing with MD5
	13.2.2 Hashing with SHA1 and SHA256
	13.2.3 Hashing with Key Using HMAC
	13.2.4 Write them All

	13.3 Cryptography
	13.3.1 Symmetric Cryptography
	13.3.2 Asymmetric Cryptography

	14. Database Programming
	14.1 Database for Python
	14.2 MySQL Driver for Python
	14.3 Testing Connection
	14.4 CRUD (Create, Read, Update and Delete) Operations
	14.4.1 Create Data
	14.4.2 Read Data
	14.4.3 Update Data
	14.4.4 Delete Data
	14.4.5 Write them All

	15. Socket Programming
	15.1 Socket Module
	15.2 Hello World
	15.3 Client/Server Socket
	15.3.1 Server Socket
	15.3.2 Client Socket
	15.3.3 Testing

	16. Python Regular Expressions
	16.1 Getting Started
	16.2 Demo

	17. Python GUI Programming
	17.1 Getting Started
	17.2 Hello Python GUI
	17.3 Working with Input Form
	17.4 Working with Common Dialogs

	18. Python Unit Testing
	18.1 Getting Started
	18.2 Demo

	Source Code
	Contact

