

Software Architecture for Developers
Technical leadership by coding, coaching, collaboration,
architecture sketching and just enough up front design

Simon Brown

This book is for sale at http://leanpub.com/software-architecture-for-developers

This version was published on 2015-09-12

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the right
book and build traction once you do.

©2012 - 2015 Simon Brown

http://leanpub.com/software-architecture-for-developers
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Simon Brown by spreading the word about this book on Twitter!

The suggested hashtag for this book is #sa4d.

Find out what other people are saying about the book by clicking on this link to search for
this hashtag on Twitter:

https://twitter.com/search?q=#sa4d

http://twitter.com
https://twitter.com/search?q=%23sa4d
https://twitter.com/search?q=%23sa4d

For Kirstie, Matthew and Oliver

Contents

Preface . i
Software architecture has a bad reputation . i
Agile aspirations . ii
So you think you’re an architect? . ii
The frustrated architect . iii

About the book . iv
Why did I write the book? . iv
A new approach to software development? . v
Five things every developer should know about software architecture vi

About the author . viii

Software architecture training . ix

Acknowledgements . xi

I What is software architecture? 1

1. What is architecture? . 2
As a noun . 3
As a verb . 3

2. Types of architecture . 4
What do they all have in common? . 5

3. What is software architecture? . 6
Application architecture . 6
System architecture . 6

CONTENTS

Software architecture . 7
Enterprise architecture - strategy rather than code 8

4. Architecture vs design . 9
Making a distinction . 9
Understanding significance . 10

5. Is software architecture important? . 12
A lack of software architecture causes problems 12
The benefits of software architecture . 13
Does every software project need software architecture? 13

6. Questions . 14

II The software architecture role 15

7. The software architecture role . 16
1. Architectural Drivers . 16
2. Designing Software . 17
3. Technical Risks . 17
4. Architecture Evolution . 18
5. Coding . 18
6. Quality Assurance . 19
Collaborate or fail . 19
Technical leadership is a role, not a rank . 20
Create your own definition of the role . 20

8. Should software architects code? . 22
Writing code . 22
Building prototypes, frameworks and foundations 23
Performing code reviews . 23
Experimenting and keeping up to date . 23
The tension between software architects and employers 24
You don’t have to give up coding . 24
Don’t code all the time . 25

9. Software architects should be master builders 26
State of the union . 26
Back in time . 26

CONTENTS

Did master builders actually build? . 27
Ivory towers? . 28
Divergence of the master builder role . 29
Achieving the role . 30
Architects need to work with the teams . 31

10. From developer to architect . 32
Experience is a good gauge but you need to look deeper 32
The line is blurred . 33
Crossing the line is our responsibility . 33

11. Broadening the T . 34
Deep technology skills . 34
Breadth of knowledge . 35
Software architects are generalising specialists 35
Software architecture is a technical career . 36

12. Soft skills . 37
Stay positive . 38

13. Software development is not a relay sport . 39
“Solution Architects” . 39
Somebody needs to own the big picture . 40

14. Software architecture introduces control? . 41
Provide guidance, strive for consistency . 41
How much control do you need? . 41
Control varies with culture . 42
A lever, not a button . 42

15. Mind the gap . 43
Developers focus on the low-level detail . 43
Architects dictate from their ivory towers . 43
Reducing the gap . 44
A collaborative approach to software architecture 45

16. Where are the software architects of tomorrow? 46
Coaching, mentoring and apprenticeships . 47
We’re losing our technical mentors . 47
Software teams need downtime . 47

CONTENTS

17. Everybody is an architect, except when they’re not 49
Everybody is an architect . 49
Except when they’re not . 49
Does agile need architecture? . 50

18. Software architecture as a consultant . 52
Domain knowledge . 52
Authority . 53

19. Questions . 54

III Designing software . 55

20. Architectural drivers . 56
1. Functional requirements . 56
2. Quality Attributes . 56
3. Constraints . 56
4. Principles . 57
Understand their influence . 57

21. Quality Attributes (non-functional requirements) 58
Which are important to you? . 61

22. Working with non-functional requirements 62
Capture . 62
Refine . 62
Challenge . 63

23. Constraints . 65
Time and budget constraints . 65
Technology constraints . 65
People constraints . 67
Organisational constraints . 67
Are all constraints bad? . 67
Constraints can be prioritised . 68
Listen to the constraints . 68

24. Principles . 69
Development principles . 69

CONTENTS

Architecture principles . 69
Beware of “best practices” . 71

25. Technology is not an implementation detail 72
1. Do you have complex non-functional requirements? 72
2. Do you have constraints? . 73
3 Do you want consistency? . 73
Deferral vs decoupling . 73
Every decision has trade-offs . 74

26. More layers = more complexity . 75
Non-functional requirements . 76
Time and budget - nothing is free . 76

27. Collaborative design can help and hinder . 78
Experience influences software design . 78

28. Software architecture is a platform for conversation 80
Software development isn’t just about delivering features 80

29. SharePoint projects need software architecture too 82
1. Many SharePoint implementations aren’t just SharePoint 82
2. Non-functional requirements still apply to SharePoint solutions 82
3. SharePoint projects are complex and require technical leadership too 83
4. SharePoint solutions still need to be documented 83
Strong leadership and discipline aren’t just for software development projects . . 83

30. Questions . 84

IV Communicating design . 85

31. We have a failure to communicate . 86
Abandoning UML . 86
Agility requires good communication . 88

32. The need for sketches . 89
Test driven development vs diagrams . 89
Why should people learn how to sketch? . 89
Sketching isn’t art . 90

CONTENTS

Sketches are not comprehensive models . 90
Sketching can be a collaborative activity . 91

33. Ineffective sketches . 92
The shopping list . 92
Boxes and no lines . 93
The “functional view” . 94
The airline route map . 95
Generically true . 96
The “logical view” . 97
Deployment vs execution context . 98
Too many assumptions . 99
Homeless Old C# Object (HOCO) . 101
Choose your own adventure . 102
Stormtroopers . 103
Should have used a whiteboard! . 103
Creating effective sketches . 104

34. C4: context, containers, components and classes 105
A common set of abstractions . 105
Summarising the static view of your software . 107
Common abstractions over a common notation 107
Diagrams should be simple and grounded in reality 108

35. Context diagram . 110
Intent . 110
Structure . 110
Motivation . 112
Audience . 112
Example . 113

36. Container diagram . 115
Intent . 115
Structure . 115
Motivation . 118
Audience . 118
Example . 118

37. Component diagram . 121

CONTENTS

Intent . 121
Structure . 121
Motivation . 123
Audience . 124
Example . 124

38. Shneiderman’s mantra . 126
Overview first (context and container diagrams) 127
Zoom and filter (component diagrams) . 127
Details on demand (class diagrams) . 127
Understanding a large and/or complex software system 127

39. Technology choices included or omitted? . 128
Drawing diagrams during the design process . 128
Drawing diagrams retrospectively . 129
Architecture diagrams should be “conceptual” . 129
Make technology choices explicit . 130

40. Would you code it that way? . 132
Shared components . 132
Layering strategies . 133
Diagrams should reflect reality . 133

41. Software architecture vs code . 134
Abstraction allows us to reduce detail and manage complexity 134
We talk about components but write classes . 135
An architecturally-evident coding style . 135
Package by layer . 136
Package by feature . 137
The model-code gap . 138
Packaging by component . 139
Layers are an implementation detail . 141
Aligning software architecture and code . 141

42. Software architecture as code . 143
Auto-generating software architecture diagrams 143
Why isn’t the architecture in the code? . 145
Auto-generating the software architecture model 147
Creating a software architecture model as code 148

CONTENTS

Visualising the software architecture model . 151
Software architecture as code opens opportunities 154
The road ahead . 154

43. You don’t need a UML tool . 155
There are many types of UML tool . 155
The simplest thing that could possibly work . 156
Uses for UML . 156
There is no silver bullet . 157

44. Effective sketches . 159
Titles . 159
Labels . 159
Shapes . 160
Responsibilities . 160
Lines . 161
Colour . 162
Borders . 162
Layout . 162
Orientation . 163
Keys . 164
Diagram review checklist . 164
Listen for questions . 165

45. C4++ . 166
Enterprise context . 166
User interface mockups and wireframes . 166
Domain model . 167
Sequence and collaboration diagrams . 167
Business process and workflow models . 167
Infrastructure model . 167
Deployment model . 168
And more . 168

46. C4 - FAQ . 169
System names on context diagrams . 169
Should I use actors or boxes for external systems? 169
Mixing levels of abstraction . 169
Shared components . 170

CONTENTS

Utility components . 170

47. Questions . 171

V Documenting software . 172

48. The code doesn’t tell the whole story . 173
The code doesn’t portray the intent of the design 174
Supplementary information . 175

49. Software documentation as a guidebook . 177
1. Maps . 177
2. Sights . 179
3. History and culture . 179
4. Practical information . 180
Keep it short, keep it simple . 180
Beware of the “views” . 181
Product vs project documentation . 182

50. Context . 183
Intent . 183
Structure . 183
Motivation . 183
Audience . 183
Required . 183

51. Functional Overview . 184
Intent . 184
Structure . 184
Motivation . 185
Audience . 185
Required . 185

52. Quality Attributes . 186
Intent . 186
Structure . 186
Motivation . 187
Audience . 187
Required . 188

CONTENTS

53. Constraints . 189
Intent . 189
Structure . 189
Motivation . 190
Audience . 190
Required . 190

54. Principles . 191
Intent . 191
Structure . 191
Motivation . 192
Audience . 192
Required . 192

55. Software Architecture . 193
Intent . 193
Structure . 193
Motivation . 194
Audience . 194
Required . 194

56. External Interfaces . 195
Intent . 195
Structure . 196
Motivation . 196
Audience . 196
Required . 196

57. Code . 197
Intent . 197
Structure . 198
Motivation . 198
Audience . 198
Required . 198

58. Data . 199
Intent . 199
Structure . 199
Motivation . 200

CONTENTS

Audience . 200
Required . 200

59. Infrastructure Architecture . 201
Intent . 201
Structure . 201
Motivation . 202
Audience . 202
Required . 203

60. Deployment . 204
Intent . 204
Structure . 204
Motivation . 205
Audience . 205
Required . 205

61. Operation and Support . 206
Intent . 206
Structure . 206
Motivation . 206
Audience . 207
Required . 207

62. Decision Log . 208
Intent . 208
Structure . 208
Motivation . 208
Audience . 209
Required . 209

63. Questions . 210

VI Agility and the essence of software architec-
ture . 211

64. The conflict between agile and architecture - myth or reality? 212
Conflict 1: Team structure . 212

CONTENTS

Conflict 2: Process and outputs . 213
Software architecture provides boundaries for TDD, BDD, DDD, RDD and clean

code . 213
Separating architecture from ivory towers and big up front design 214

65. Quantifying risk . 216
Probability vs impact . 216
Prioritising risk . 217

66. Risk-storming . 218
Step 1. Draw some architecture diagrams . 218
Step 2. Identify the risks individually . 218
Step 3. Converge the risks on the diagrams . 219
Step 4. Prioritise the risks . 220
Mitigation strategies . 221
When to use risk-storming . 221
Collective ownership . 222

67. Just enough up front design . 223
It comes back to methodology . 223
You need to do “just enough” . 225
How much is “just enough”? . 226
Firm foundations . 227
Contextualising just enough up front design . 228

68. Agility . 230
Understanding “agility” . 230
A good architecture enables agility . 231
Agility as a quality attribute . 233
Creating agile software systems in an agile way 233

69. Introducing software architecture . 235
Software architecture needs to be accessible . 235
Some practical suggestions . 236
Making change happen . 237
The essence of software architecture . 239

70. Questions . 241

CONTENTS

VII Appendix A: Financial Risk System 242

71. Financial Risk System . 243
Background . 243
Functional Requirements . 244
Non-functional Requirements . 244

VIII Appendix B: SoftwareGuidebook for techtribes.je
247

Preface
The IT industry is either taking giant leaps ahead or it’s in deep turmoil. On the one
hand we’re pushing forward, reinventing the way that we build software and striving for
craftsmanship at every turn. On the other though, we’re continually forgetting the good of
the past and software teams are still screwing up on an alarmingly regular basis.

Software architecture plays a pivotal role in the delivery of successful software yet it’s
frustratingly neglected bymany teams.Whether performed by one person or shared amongst
the team, the software architecture role exists on even the most agile of teams yet the balance
of up front and evolutionary thinking often reflects aspiration rather than reality.

Software architecture has a bad reputation

I tend to get one of two responses if I introduce myself as a software architect. Either people
think it’s really cool and want to know more or they give me a look that says “I want to talk
to somebody that actually writes software, not a box drawing hand-waver”. The software
architecture role has a bad reputation within the IT industry and it’s not hard to see where
this has come from.

The thought of “software architecture” conjures up visions of ivory tower architects doing
big design up front and handing over huge UML (Unified Modeling Language) models or
200 page Microsoft Word documents to an unsuspecting development team as if they were
the second leg of a relay race. And that’s assuming the architect actually gets involved
in designing software of course. Many people seem to think that creating a Microsoft
PowerPoint presentation with a slide containing a big box labelled “Enterprise Service Bus”
is software design. Oh, and we mustn’t forget the obligatory narrative about “ROI” (return
on investment) and “TCO” (total cost of ownership) that will undoubtedly accompany the
presentation.

Many organisations have an interesting take on software development as a whole too. For
example, they’ve seen the potential cost savings that offshoring can bring and therefore see
the coding part of the software development process as being something of a commodity.
The result tends to be that local developers are pushed into the “higher value” software
architecture jobs with an expectation that all coding will be undertaken by somebody else. In
many cases this only exaggerates the disconnect between software architecture and software

Preface ii

development, with people often being pushed into a role that they are not prepared for. These
same organisations often tend to see software architecture as a rank rather than a role too.

Agile aspirations

“Agile” might be over ten years old, but it’s still the shiny new kid in town andmany software
teams have aspirations of “becoming agile”. Agile undoubtedly has a number of benefits
but it isn’t necessarily the silver bullet that everybody wants you to believe it is. As with
everything in the IT industry, there’s a large degree of evangelism and hype surrounding
it. Start a new software project today and it’s all about self-organising teams, automated
acceptance testing, continuous delivery, retrospectives, Kanban boards, emergent design and
a whole host of other buzzwords that you’ve probably heard of. This is fantastic but often
teams tend to throw the baby out with the bath water in their haste to adopt all of these cool
practices. “Non-functional requirements” not sounding cool isn’t a reason to neglect them.

What’s all this old-fashioned software architecture stuff anyway? Many software teams
seem to think that they don’t need software architects, throwing around terms like “self-
organising team”, “YAGNI” (you aren’t going to need it), “evolutionary architecture” and
“last responsible moment” instead. If they do need an architect, they’ll probably be on the
lookout for an “agile architect”. I’m not entirely sure what this term actually means, but I
assume that it has something to do with using post-it notes instead of UML or doing TDD
(test-driven development) instead of drawing pictures. That is, assuming they get past the
notion of only using a very high level system metaphor and don’t use “emergent design” as
an excuse for foolishly hoping for the best.

So you think you’re an architect?

It also turns out there are a number of people in the industry claiming to be software
architects whereas they’re actually doing something else entirely. I can forgive people
misrepresenting themselves as an “Enterprise Architect” when they’re actually doing hands-
on software architecture within a large enterprise. The terminology in our industry is often
confusing after all.

But what about those people that tend to exaggerate the truth about the role they play on
software teams? Such irresponsible architects are usually tasked with being the technical
leader yet fail to cover the basics. I’ve seen public facing websites go into a user acceptance
testing environment with a number of basic security problems, a lack of basic performance

Preface iii

testing, basic functionality problems, broken hyperlinks and a complete lack of documenta-
tion. And that was just my external view of the software, who knows what the code looked
like. If you’re undertaking the software architecture role and you’re delivering stuff like this,
you’re doing it wrong. This isn’t software architecture, it’s also foolishly hoping for the best.

The frustrated architect

Admittedly not all software teams are like this but what I’ve presented here isn’t a “straw
man” either. Unfortunately many organisations do actually work this way so the reputation
that software architecture has shouldn’t come as any surprise.

If we really do want to succeed as an industry, we need to get over our fascination with
shiny new things and starting asking some questions. Does agile need architecture or does
architecture actually need agile? Have we forgotten more about good software design than
we’ve learnt in recent years? Is foolishly hoping for the best sufficient for the demanding
software systems we’re building today? Does any of this matter if we’re not fostering the
software architects of tomorrow? How do we move from frustration to serenity?

About the book
This book is a practical, pragmatic and lightweight guide to software architecture for
developers. You’ll learn:

• The essence of software architecture.
• Why the software architecture role should include coding, coaching and collaboration.
• The things that you really need to think about before coding.
• How to visualise your software architecture using simple sketches.
• A lightweight approach to documenting your software.
• Why there is no conflict between agile and architecture.
• What “just enough” up front design means.
• How to identify risks with risk-storming.

This collection of essays knocks down traditional ivory towers, blurring the line between
software development and software architecture in the process. It will teach you about
software architecture, technical leadership and the balance with agility.

Why did I write the book?

Like many people, I started my career as a software developer, taking instruction from my
seniors and working with teams to deliver software systems. Over time, I started designing
smaller pieces of software systems and eventually evolved into a position where I was
performing what I now consider to be the software architecture role.

I’ve worked for IT consulting organisations for the majority of my career, and this means
that most of the projects that I’ve been involved with have resulted in software systems
being built either for or with our customers. In order to scale an IT consulting organisation,
you need more people and more teams. And to create more teams, you need more software
architects. And this leads me to why I wrote this book:

1. Software architecture needs to be more accessible: Despite having some fantastic
mentors, I didn’t find it easy to understand what was expected of me when I was

About the book v

moving into my first software architecture roles. Sure, there are lots of software
architecture books out there, but they seem to be written from a different perspective. I
found most of them very research oriented or academic in nature, yet I was a software
developer looking for real-world advice. I wanted to write the type of book that I would
have found useful at that stage in my career - a book about software architecture aimed
at software developers.

2. All software projects need software architecture: I like agile approaches, I really
do, but the lack of explicit regard for software architecture in many of the approaches
doesn’t sit well with me. Agile approaches don’t say that you shouldn’t do any up front
design, but they often don’t explicitly talk about it either. I’ve found that this causes
people to jump to the wrong conclusion and I’ve seen the consequences that a lack of
any up front thinking can have. I also fully appreciate that big design up front isn’t the
answer either. I’ve always felt that there’s a happy medium to be found where some
up front thinking is done, particularly when working with a team that has a mix of
experiences and backgrounds. I favour a lightweight approach to software architecture
that allows me to put some building blocks in place as early as possible, to stack the
odds of success in my favour.

3. Lightweight software architecture practices: I’ve learnt and evolved a number of
practices over the years, which I’ve always felt have helped me to perform the software
architecture role. These relate to the software design process and identifying technical
risks through to communicating and documenting software architecture. I’ve always
assumed that these practices are just common sense, but I’ve discovered that this isn’t
the case. I’ve taught these practices to thousands of people over the past few years and
I’ve seen the difference they can make. A book helps me to spread these ideas further,
with the hope that other people will find them useful too.

A new approach to software development?

This book isn’t about creating a new approach to software development, but it does seek
to find a happy mid-point between the excessive up front thinking typical of traditional
methods and the lack of any architecture thinking that often happens in software teams who
are new to agile approaches. There is room for up front design and evolutionary architecture
to coexist.

About the book vi

Five things every developer should know about
software architecture

To give you a flavour of what this book is about, here are five things that every developer
should know about software architecture.

1. Software architecture isn’t about big design up front

Software architecture has traditionally been associated with big design up front and water-
fall-style projects, where a team would ensure that every last element of the software design
was considered before any code was written. Software architecture is basically about the
high-level structure of a software system and how you get to an understanding of it. This
is about the significant decisions that influence the shape of a software system rather than
understanding how long every column in the database should be.

2. Every software team needs to consider software architecture

Regardless of the size and complexity of the resulting product, every software team needs
to consider software architecture. Why? Put simply, bad things tend to happen if they don’t!
If software architecture is about structure and vision, not thinking about this tends to lead
to poorly structured, internally inconsistent software systems that are hard to understand,
hard to maintain and potentially don’t satisfy one or more of the important non-functional
requirements such as performance, scalability or security. Explicitly thinking about software
architecture provides you with a way to introduce technical leadership and stacks the odds
of a successful delivery in your favour.

3. The software architecture role is about coding, coaching and
collaboration

The image that many people have of software architects is of traditional “ivory tower”
software architects dictating instructions to an unsuspecting development team. It doesn’t
need to be like this though, with modern software architects preferring an approach that
favours coding, coaching and collaborative design. The software architecture role doesn’t
necessarily need to be undertaken by a single person plus coding is a great way to understand
whether the resulting architecture is actually going to work.

About the book vii

4. You don’t need to use UML

Again, traditional views of software architecture often conjure up images of huge UML
(Unified Modeling Language) models that attempt to capture every last drop of detail. While
creating and communicating a common vision is important, you don’t need to use UML. In
fact, you could argue that UML isn’t a great method for communicating software architecture
anyway. If you keep a few simple guidelines in mind, lightweight “boxes and lines” style
sketches are an effective way to communicate software architecture.

5. A good software architecture enables agility

There’s a common misconception that “architecture” and “agile” are competing forces, there
being a conflict between them. This simply isn’t the case though. On the contrary, a good
software architecture enables agility, helping you embrace and implement change. Good
software architectures aren’t created by themselves though, and some conscious effort is
needed.

About the author
I live in Jersey (the largest of the Channel Islands) and work as an independent consultant,
helping teams to build better software. I’m an award-winning speaker and I provide
consulting/training to software teams around the world. My client list spans over twenty
countries and includes organisations ranging from small technology startups through to
global household names. I still code too.

You can find my website at http://www.simonbrown.je and I can be found on Twitter at
@simonbrown.

https://goo.gl/maps/1O5ww
http://www.codingthearchitecture.com/2013/05/17/saturn_2013.html
http://www.simonbrown.je
https://twitter.com/simonbrown

Software architecture training
I provide one and two-day training courses/workshops that are practical and pragmatic
guides to lightweight software architecture, covering the same content you’ll find in this
book. You’ll learn:

• The essence of software architecture.
• Why the software architecture role should include coding, coaching and collaboration.
• The things that you really need to think about before coding.
• How to visualise your software architecture using simple sketches.
• A lightweight approach to documenting your software.
• Why there is no conflict between agile and architecture.
• What “just enough” up front design means.
• How to identify risks with risk-storming.

I’ll teach you about software architecture, technical leadership and the balance with agility.
The video of my Software Architecture & the balance with agility talk from the Software

http://vimeo.com/user22258446/review/79382531/91467930a4

Software architecture training x

Architect 2013 conference provides a good overview of what the course is all about. My
courses and workshops have been run in more than twenty countries across Europe, the
Middle East and the United States.

There are a number of course configurations and delivery options, which include private
courses at your own offices. See http://www.codingthearchitecture.com/training/ or e-mail
simon.brown@codingthearchitecture.com for further details.

http://www.codingthearchitecture.com/training/
mailto:simon.brown@codingthearchitecture.com

Acknowledgements
Although this book has my name on the front, writing a book is never a solo activity. It’s
really the product of a culmination of ideas that have evolved and discussions that have taken
place over a number of years. For this reason, there are a number of people to thank.

First up are Kevin Seal, Robert Annett and Sam Dalton for lots of stuff; ranging from
blog posts on Coding the Architecture and joint conference talks through to the software
architecture user group that we used to run at Skills Matter (London) and for the many tech
chats over a beer. Kevin also helped put together the first version of the training course that, I
think, we initially ran at the QCon Conference in London, which then morphed into a 2-day
training course that we have today. His classic “sound-bite” icon in the slide deck still gets
people talking today. :-)

I’ve had discussions about software architecture with many great friends and colleagues over
the years, both at the consulting companies where I’ve worked (Synamic, Concise, Evolution
and Detica) and the customers that we’ve built software for. There are too many people to
name, but you know who you are.

I’d also like to thank everybody who has attended one of my talks or workshops over the
past few years, as those discussions also helped shape what you find in the book. You’ve all
helped; from evolving ideas to simply helping me to explain them better.

Thanks also to Junilu Lacar and Pablo Guardiola for providing feedback, spotting typos, etc.

And I should finally thank my family for allowing me to do all of this, especially when a
hectic travel schedule sometimes sees me jumping from one international consulting gig,
workshop or conference to the next. Thank you.

http://www.codingthearchitecture.com

I What is software architecture?

In this part of the book we’ll look at what software architecture is about, the difference
between architecture and design, what it means for an architecture to be agile and why
thinking about software architecture is important.

1. What is architecture?
The word “architecture” means many different things to many different people and there are
many different definitions floating around the Internet. I’ve asked hundreds of people over
the past few years what “architecture” means to them and a summary of their answers is as
follows. In no particular order…

• Modules, connections, dependencies and interfaces
• The big picture
• The things that are expensive to change
• The things that are difficult to change
• Design with the bigger picture in mind
• Interfaces rather than implementation
• Aesthetics (e.g. as an art form, clean code)
• A conceptual model
• Satisfying non-functional requirements/quality attributes
• Everything has an “architecture”
• Ability to communicate (abstractions, language, vocabulary)
• A plan
• A degree of rigidity and solidity
• A blueprint
• Systems, subsystems, interactions and interfaces
• Governance
• The outcome of strategic decisions
• Necessary constraints
• Structure (components and interactions)
• Technical direction
• Strategy and vision
• Building blocks
• The process to achieve a goal
• Standards and guidelines
• The system as a whole

What is architecture? 3

• Tools and methods
• A path from requirements to the end-product
• Guiding principles
• Technical leadership
• The relationship between the elements that make up the product
• Awareness of environmental constraints and restrictions
• Foundations
• An abstract view
• The decomposition of the problem into smaller implementable elements
• The skeleton/backbone of the product

Nowonder it’s hard to find a single definition! Thankfully there are two common themes here
… architecture as a noun and architecture as a verb, with both being applicable regardless of
whether we’re talking about constructing a physical building or a software system.

As a noun

As a noun then, architecture can be summarised as being about structure. It’s about the
decomposition of a product into a collection of components/modules and interactions. This
needs to take into account the whole of the product, including the foundations and infras-
tructure services that deal with cross-cutting concerns such as power/water/air conditioning
(for a building) or security/configuration/error handling (for a piece of software).

As a verb

As a verb, architecture (i.e. the process, architecting) is about understanding what you need
to build, creating a vision for building it and making the appropriate design decisions. All
of this needs to be based upon requirements because requirements drive architecture.
Crucially, it’s also about communicating that vision and introducing technical leadership
so that everybody involved with the construction of the product understands the vision and
is able to contribute in a positive way to its success.

2. Types of architecture
There are many different types of architecture and architects within the IT industry alone.
Here, in no particular order, is a list of those that people most commonly identify when
asked…

• Infrastructure
• Security
• Technical
• Solution
• Network
• Data
• Hardware
• Enterprise
• Application
• System
• Integration
• IT
• Database
• Information
• Process
• Business
• Software

The unfortunate thing about this list is that some of the terms are easier to define than
others, particularly those that refer to or depend upon each other for their definition. For
example, what does “solution architecture” actually mean? For some organisations “solution
architect” is simply a synonym for “software architect” whereas others have a specific role
that focusses on designing an overall “solution” to a problem, but stopping before the level
at which implementation details are discussed. Similarly, “technical architecture” is vague
enough to refer to software, hardware or a combination of the two.

Interestingly, “software architecture” typically appears near the bottom of the list when I
ask people to list the types of IT architecture they’ve come across. Perhaps this reflects the
confusion that surrounds the term.

Types of architecture 5

What do they all have in common?

What do all of these terms have in common then? Well, aside from suffixing each of the
terms with “architecture” or “architect”, all of these types of architecture have structure and
vision in common.

Take “infrastructure architecture” as an example and imagine that you need to create a
network between two offices at different ends of the country. One option is to find the largest
reel of network cable that you can and start heading from one office to the other in a straight
line. Assuming that you had enough cable, this could potentially work, but in reality there are
a number of environmental constraints and non-functional characteristics that you need to
consider in order to actually deliver something that satisfies the original goal. This is where
the process of architecting and having a vision to achieve the goal is important.

One single long piece of cable is an approach, but it’s not a very good one because of
real-world constraints. For this reason, networks are typically much more complex and
require a collection of components collaborating together in order to satisfy the goal. From
an infrastructure perspective then, we can talk about structure in terms of the common
components that you’d expect to see within this domain; things like routers, firewalls, packet
shapers, switches, etc.

Regardless of whether you’re building a software system, a network or a database; a
successful solution requires you to understand the problem and create a vision that can be
communicated to everybody involved with the construction of the end-product. Architec-
ture, regardless of the domain, is about structure and vision.

3. What is software architecture?
At first glance, “software architecture” seems like an easy thing to define. It’s about the
architecture of a piece of software, right? Well, yes, but it’s about more than just software.

Application architecture

Application architecture is what we as software developers are probably most familiar with,
especially if you think of an “application” as typically being written in a single technology
(e.g. a Java web application, a desktop application onWindows, etc). It puts the application in
focus and normally includes things such as decomposing the application into its constituent
classes and components, making sure design patterns are used in the right way, building or
using frameworks, etc. In essence, application architecture is inherently about the lower-level
aspects of software design and is usually only concerned with a single technology stack (e.g.
Java, Microsoft .NET, etc).

The building blocks are predominantly software based and include things like programming
languages and constructs, libraries, frameworks, APIs, etc. It’s described in terms of classes,
components, modules, functions, design patterns, etc. Application architecture is predomi-
nantly about software and the organisation of the code.

System architecture

I like to think of system architecture as one step up in scale from application architecture.
If you look at most software systems, they’re actually composed of multiple applications
across a number of different tiers and technologies. As an example, you might have a
software system comprised of a mobile app communicating via JSON/HTTPS to a Java web
application, which itself consumes data from a MySQL database. Each of these will have
their own internal application architecture.

For the overall software system to function, thought needs to be put into bringing all of
those separate applications together. In other words, you also have the overall structure of
the end-to-end software system at a high-level. Additionally, most software systems don’t
live in isolation, so system architecture also includes the concerns around interoperability
and integration with other systems within the environment.

What is software architecture? 7

The building blocks are a mix of software and hardware, including things like programming
languages and software frameworks through to servers and infrastructure. Compared to
application architecture, system architecture is described in terms of higher levels of
abstraction; from components and services through to sub-systems. Most definitions of
system architecture include references to software and hardware. After all, you can’t have a
successful software systemwithout hardware, even if that hardware is virtualised somewhere
out there on the cloud.

Software architecture

Unlike application and system architecture, which are relatively well understood, the term
“software architecture” has many different meanings to many different people. Rather
than getting tied up in the complexities and nuances of the many definitions of software
architecture, I like to keep the definition as simple as possible. For me, software architecture
is simply the combination of application and system architecture.

In other words, it’s anything and everything related to the significant elements of a software
system; from the structure and foundations of the code through to the successful deployment
of that code into a live environment. When we’re thinking about software development as
software developers, most of our focus is placed on the code. Here, we’re thinking about
things like object oriented principles, classes, interfaces, inversion of control, refactoring,
automated unit testing, clean code and the countless other technical practices that help us
build better software. If your team consists of people who are only thinking about this, then
who is thinking about the other stuff?

• Cross-cutting concerns such as logging and exception handling.
• Security; including authentication, authorisation and confidentiality of sensitive data.
• Performance, scalability, availability and other quality attributes.
• Audit and other regulatory requirements.
• Real-world constraints of the environment.
• Interoperability/integration with other software systems.
• Operational, support and maintenance requirements.
• Consistency of structure and approach to solving problems/implementing features
across the codebase.

• Evaluating that the foundations you’re building will allow you to deliver what you set
out to deliver.

What is software architecture? 8

Sometimes you need to step back, away from the code and away from your development
tools. This doesn’t mean that the lower-level detail isn’t important because working software
is ultimately about delivering working code. No, the detail is equally as important, but the
big picture is about having a holistic view across your software to ensure that your code is
working toward your overall vision rather than against it.

Enterprise architecture - strategy rather than code

Enterprise architecture generally refers to the sort of work that happens centrally and across
an organisation. It looks at how to organise and utilise people, process and technology to
make an organisation work effectively and efficiently. In other words, it’s about how an
enterprise is broken up into groups/departments, how business processes are layered on
top and how technology underpins everything. This is in very stark contrast to software
architecture because it doesn’t necessarily look at technology in any detail. Instead, enterprise
architecture might look at how best to use technology across the organisation without
actually getting into detail about how that technology works.

While some developers and software architects do see enterprise architecture as the next
logical step up the career ladder, most probably don’t. The mindset required to undertake
enterprise architecture is very different to software architecture, taking a very different view
of technology and its application across an organisation. Enterprise architecture requires a
higher level of abstraction. It’s about breadth rather than depth and strategy rather than code.

4. Architecture vs design
If architecture is about structure and vision, then what’s design about? If you’re creating a
solution to solve a problem, isn’t this just design? And if this is the case, what’s the difference
between design and architecture?

Making a distinction

Grady Booch has a well cited definition of the difference between architecture and design
that really helps to answer this question. In On Design, he says that

As a noun, design is the named (although sometimes unnameable) structure or
behavior of a system whose presence resolves or contributes to the resolution of
a force or forces on that system. A design thus represents one point in a potential
decision space.

If you think about any problem that you’ve needed to solve, there are probably a hundred
and one ways in which you could have solved it. Take your current software project for
example. There are probably a number of different technologies, deployment platforms and
design approaches that are also viable options for achieving the same goal. In designing your
software system though, your team chose just one of themany points in the potential decision
space.

Grady then goes on to say that…

All architecture is design but not all design is architecture.

This makes sense because creating a solution is essentially a design exercise. However, for
some reason, there’s a distinction beingmade about not all design being “architecture”, which
he clarifies with the following statement.

Architecture represents the significant design decisions that shape a system,
where significance is measured by cost of change.

http://www.handbookofsoftwarearchitecture.com/index.jsp?page=Blog&part=2006

Architecture vs design 10

Essentially, he’s saying that the significant decisions are “architecture” and that everything
else is “design”. In the real world, the distinction between architecture and design isn’t as
clear-cut, but this definition does provide us with a basis to think about what might be
significant (i.e. “architectural”) in our own software systems. For example, this could include:

• The shape of the system (e.g. client-server, web-based, nativemobile client, distributed,
asynchronous, etc)

• The structure of the software system (e.g. components, layers, interactions, etc)
• The choice of technologies (i.e. programming language, deployment platform, etc)
• The choice of frameworks (e.g. web MVC framework, persistence/ORM framework,
etc)

• The choice of design approach/patterns (e.g. the approach to performance, scalability,
availability, etc)

The architectural decisions are those that you can’t reverse without some degree of effort.
Or, put simply, they’re the things that you’d find hard to refactor in an afternoon.

Understanding significance

It’s often worth taking a step back and considering what’s significant with your own software
system. For example, many teams use a relational database, the choice of which might
be deemed as significant. In order to reduce the amount of rework required in the event
of a change in database technology, many teams use an object-relational mapping (ORM)
framework such as Hibernate or Entity Framework. Introducing this additional ORM layer
allows the database access to be decoupled from other parts of the code and, in theory, the
database can be switched out independently without a large amount of effort.

This decision to introduce additional layers is a classic technique for decoupling distinct parts
of a software system; promoting looser coupling, higher cohesion and a better separation
of concerns. Additionally, with the ORM in place, the choice of database can probably
be switched in an afternoon, so from this perspective it may no longer be deemed as
architecturally significant.

However, while the database may no longer be considered a significant decision, the choice
to decouple through the introduction of an additional layer should be. If you’re wondering
why, have a think about how long it would take you to swap out your current ORM or web
MVC framework and replace it with another. Of course, you could add another layer over
the top of your chosen ORM to further isolate your business logic and provide the ability

Architecture vs design 11

to easily swap out your ORM but, again, you’ve made another significant decision. You’ve
introduced additional layering, complexity and cost.

Although you can’t necessarily make “significant decisions” disappear entirely, you can use
a number of different tactics such as architectural layering to change what those significant
decisions are. Part of the process of architecting a software system is about understanding
what is significant and why.

5. Is software architecture important?
Software architecture then, is it important? The agile and software craftsmanship movements
are helping to push up the quality of the software systems that we build, which is excellent.
Together they are helping us to write better software that better meets the needs of the
business while carefully managing time and budgetary constraints. But there’s still more
we can do because even a small amount of software architecture can help prevent many of
the problems that projects face. Successful software projects aren’t just about good code and
sometimes you need to step away from the code for a few moments to see the bigger picture.

A lack of software architecture causes problems

Since software architecture is about structure and vision, you could say that it exists anyway.
And I agree, it does. Having said that, it’s easy to see how not thinking about software
architecture (and the “bigger picture”) can lead to a number of common problems that
software teams face on a regular basis. Ask yourself the following questions:

• Does your software system have a well defined structure?
• Is everybody on the team implementing features in a consistent way?
• Is there a consistent level of quality across the codebase?
• Is there a shared vision for how the software will be built across the team?
• Does everybody on the team have the necessary amount of technical guidance?
• Is there an appropriate amount of technical leadership?

It is possible to successfully deliver a software project by answering “no” to some of these
questions, but it does require a very good team and a lot of luck. If nobody thinks about
software architecture, the end result is something that typically looks like a big ball of mud.
Sure, it has a structure but it’s not one that you’d want to work with! Other side effects could
include the software system being too slow, insecure, fragile, unstable, hard to deploy, hard
to maintain, hard to change, hard to extend, etc. I’m sure you’ve never seen or worked on
software projects like this, right? No, me neither. ;-)

Since software architecture is inherent in every software system, why don’t we simply
acknowledge this and place some focus on it?

http://www.laputan.org/mud/

Is software architecture important? 13

The benefits of software architecture

What benefits can thinking about software architecture provide then? In summary:

• A clear vision and roadmap for the team to follow, regardless of whether that vision
is owned by a single person or collectively by the whole team.

• Technical leadership and better coordination.
• A stimulus to talk to people in order to answer questions relating to significant
decisions, non-functional requirements, constraints and other cross-cutting concerns.

• A framework for identifying and mitigating risk.
• Consistency of approach and standards, leading to a well structured codebase.
• A set of firm foundations for the product being built.
• A structure with which to communicate the solution at different levels of abstraction
to different audiences.

Does every software project need software
architecture?

Rather than use the typical consulting answer of “it depends”, I’m instead going to say that
the answer is undoubtedly “yes”, with the caveat that every software project should look at
a number of factors in order to assess how much software architecture thinking is necessary.
These include the size of the project/product, the complexity of the project/product, the size
of the team and the experience of the team. The answer to how much is “just enough” will
be explored throughout the rest of this book.

6. Questions
1. Do you knowwhat “architecture” is all about? Does the rest of your team?What about

the rest of your organisation?
2. There are a number of different types of architecture within the IT domain. What do

they all have in common?
3. Do you and your team have a standard definition of what “software architecture”

means? Could you easily explain it to new members of the team? Is this definition
common across your organisation?

4. What does it mean if you describe a software architecture as being “agile”? How do
you design for “agility”?

5. Can you make a list of the architectural decisions on your current software project? Is
it obvious why they were deemed as significant?

6. If you step back from the code, what sort of things are included in your software
system’s “big picture”?

7. What does the technical career path look like in your organisation? Is enterprise
architecture the right path for you?

8. Is software architecture important? Why and what are the benefits? Is there enough
software architecture on your software project? Is there too much?

II The software architecture
role

This part of the book focusses on the software architecture role; including what it is, what
sort of skills you need and why coding, coaching and collaboration are important.

7. The software architecture role
Becoming a software architect isn’t something that simply happens overnight or with a
promotion. It’s a role, not a rank. It’s the result of an evolutionary process where you’ll
gradually gain the experience and confidence that you need to undertake the role. While the
term “software developer” is fairly well understood, “software architect” isn’t. Here are the
things that I consider to make up the software architecture role. Notice that I said “role” here;
it’s something that can be performed by a single person or shared amongst the team.

1. Architectural Drivers

The first part of the role is about understanding the business goals and managing the
architectural drivers, which includes the requirements (both functional and non-functional)
and the constraints of the environment. Software projects often get caught up on asking users
what features they want, but rarely ask them what non-functional requirements (or quality
attributes) that they need. Sometimes the stakeholders will tell us that “the system must be
fast”, but that’s far too subjective. Non-functional requirements and constraints often have

The software architecture role 17

a huge influence on the software architecture, so explicitly including them as a part of the
software architecture role helps to ensure that they are considered and taken into account.

2. Designing Software

It should come as no surprise that the process of designing software is a part of the software
architecture role. This is about understanding how you’re going to solve the problems posed
by the architectural drivers, creating the overall structure of the software system and a vision
for the delivery. Despite how agile you to strive to be, you probably do need some time to
explicitly think about how your architecture is going to solve the problems set out by the
stakeholders because your software system isn’t going to do this itself.

A key part of designing software is technology selection, which is typically a fun exercise but
it does have its fair set of challenges. For example, some organisations have a list of approved
technologies that you are forced to choose from, while others have rules in place that don’t
allow open source technology with a specific licence to be used. Then you have all of the
other factors such as cost, licensing, vendor relationships, technology strategy, compatibility,
interoperability, support, deployment, upgrade policies, end-user environments and so on.
The sum of these factors can often make a simple decision of choosing something like a
rich client technology into a complete nightmare. Somebody needs to take ownership of
the technology selection process and this falls squarely within the remit of the software
architecture role.

3. Technical Risks

What we’ve looked at so far will help you focus on building a good solution, but it doesn’t
guarantee success. Simply throwing together the best designs and the best technologies
doesn’t necessary mean that the overall architecture will be successful. There’s also the
question of whether the technology choices you’ve made will actually work. Many teams
have a “buy over build” strategy and use products (commercial or open source) because of
the potential cost savings on offer. However, many teams also get burnt because they believe
the hype from vendor websites or sales executives in expensive suits. Few people seem to ask
whether the technology actually works the way it is supposed to, and fewer prove that this
is the case.

Technology selection is all about managing risk; reducing risk where there is high complexity
or uncertainty and introducing risk where there are benefits to be had. All technology
decisions need to be made by taking all factors into account, and all technology decisions

The software architecture role 18

need to be reviewed and evaluated. This potentially includes all of the major building blocks
for a software project right down to the libraries and frameworks being introduced during
the development.

The question that you need to ask yourself is whether your architecture “works”. For me,
an architecture works if it satisfies the non-functional requirements, works within the given
environmental constraints, provides the necessary foundations for the rest of the code and
works as the platform for solving the underlying business problem. One of the biggest
problems with software is that it’s complex and abstract. The result being that it’s hard to
visualise the runtime characteristics of a piece of software from diagrams or even the code
itself. Furthermore, I don’t always trust myself to get it right first time. Your mileage may
vary though!

Throughout the software development life cycle, we undertake a number of different types
of testing in order to give us confidence that the system we are building will work when
delivered. So why don’t we do the same for our architecture? If we can test our architecture,
we can prove that it works. And if we can do this as early as possible, we can reduce the
overall risk of project failure. Like good chefs, architects should taste what they are producing.
In a nutshell, this is about proactively identifying, mitigating and owning the high priority
technical risks so that your project doesn’t get cancelled and you don’t get fired.

4. Architecture Evolution

More often than not, software is designed and then the baton is passed over to a development
team, effectively treating software development as a relay sport. This is counterproductive
because the resulting software architecture needs to be taken care of. Somebody needs to
look after it, evolving it throughout the delivery in the face of changing requirements and
feedback from the team. If an architect has created an architecture, why shouldn’t they own
and evolve that architecture throughout the rest of the delivery too? This is about continuous
technical leadership rather than simply being involved at the start of the life cycle and hoping
for the best.

5. Coding

Most of the best software architects I know have a software development background, but
for some reason many organisations don’t see this as a part of the software architecture
role. Being a “hands-on software architect” doesn’t necessarily mean that you need to get
involved in the day-to-day coding tasks, but it does mean that you’re continuously engaged

The software architecture role 19

in the delivery, actively helping to lead and shape it. Having said that, why shouldn’t the
day-to-day coding activities be a part of the software architecture role?

Many software architects are master builders, so it makes sense to keep those skills up to date.
In addition, coding provides a way for the architect(s) to share the software development
experience with the rest of the team, which in turn helps them better understand how the
architecture is viewed from a development perspective. Many companies have policies that
prevent software architects from engaging in coding activities because their architects are
“too valuable to undertake commodity coding work”. Clearly this is the wrong attitude. Why
let your software architects put all that effort into designing software if you’re not going to
let them contribute to its successful delivery?

Of course, there are situations where it’s not practical to get involved at the code level. For
example, a large project generally means a bigger “big picture” to take care of and there may
be times when you just don’t have the time for coding. But, generally speaking, a software
architect who codes is a more effective and happier architect. You shouldn’t necessarily rule
out coding just because “you’re an architect”.

6. Quality Assurance

Even with the best architecture in the world, poor delivery can cause an otherwise successful
software project to fail. Quality assurance should be a part of the software architecture role,
but it’s more than just doing code reviews. You need a baseline to assure against, which could
mean the introduction of standards and working practices such as coding standards, design
principles and tools. Quality assurance also includes ensuring that the architecture is being
implemented consistently across the team. Whether you call this architectural compliance or
conformance is up to you, but the technical vision needs to be followed.

It’s safe to say that most projects don’t do enough quality assurance, and therefore you
need to figure out what’s important and make sure that it’s sufficiently assured. For me,
the important parts of a project are anything that is architecturally significant, business
critical, complex or highly visible. You need to be pragmatic though and realise that you
can’t necessarily assure everything.

Collaborate or fail

It’s unusual for a software system to reside in isolation and there are a number of people
that probably need to contribute to the overall architecture process. This ranges from the

The software architecture role 20

immediate development team who need to understand and buy in to the architecture, right
through to the extended team of those people who will have an interest in the architecture
from a security, database, operations, maintenance or support point of view. If you’re
undertaking the software architecture role, you’ll need to collaborate with such people to
ensure that the resulting software system will successfully integrate with its environment. If
you don’t collaborate, expect to fail.

Technical leadership is a role, not a rank

The software architecture role is basically about introducing technical leadership into a
software team and it’s worth repeating that what I’m talking about here is a role rather
than a rank. Often large organisations use the job title of “Architect” as a reward for long
service or because somebody wants a salary increase. And that’s fine if the person on the
receiving end of the title is capable of undertaking the role but this isn’t always the case.
If you’ve ever subscribed to software architecture discussion groups on LinkedIn or Stack
Overflow, you might have seen questions like this.

Hi, I’ve just been promoted to be a software architect but I’m not sure what I
should be doing. Help! Which books should I read?

Although I can’t stop organisations promoting people to roles above their capability, I can
describe what my view of the software architecture role is. Designing software might be the
fun part of the role, but a successful software project is about much more.

Create your own definition of the role

In my experience, although many software teams do understand the need for the software
architecture role, they often don’t have a defined terms of reference for it. Without this, you
run the risk of the role not being performed in part or in whole.

Most of the roles that we associate with software development teams are relatively well
understood - developers, testers, ScrumMasters, Product Owners, business analysts, project
managers, etc. The software architecture role? Not so much. I regularly ask software teams
whether they have a defined terms of reference for the software architecture role and the
usual answer is along the lines of “no” or “yes, but we don’t use it”. Often people working
for the same team will answer the question differently.

The software architecture role 21

Although the need for thinking about software architecture is usually acknowledged, the
responsibilities of the software architecture role often aren’t clear. In my experience, this
can lead to a situation where there is nobody undertaking the role, or where somebody is
assigned the role but doesn’t really understand how they should undertake it. If the role
isn’t understood, it’s not going to get done and we have little hope of growing the software
architects of tomorrow.

Regardless of what you call it (e.g. Architect, Tech Lead, Principal Designer, etc), my advice
is simple. If you don’t have something that you can point at and say, “this is what we expect
of our software architects”, take some time to create something. Start by agreeing what is
expected of the software architecture role on your team and then move to standardise it
across your organisation if you see benefit in doing so.

8. Should software architects code?
Since I created a website called Coding the Architecture, I guess the answer to this question
shouldn’t really come as a surprise. In my ideal view of the world, software architects should
code. Somebody once told me that the key characteristic of a good architect is the ability to
think in an abstract way. You can also think of it as the ability to not get caught up in the
details all of the time. That’s fine, but those boxes and lines that you’re drawing do need to
be coded at some point.

Writing code

My recommendation is to make coding a part of your role as a software architect. You can do
this by simply being an integral part of the software development team. In other words, you
have a software architecture hat and a coding hat. You don’t need to be the best coder on the
team, but the benefits of being hands-on and engaged in the delivery process are huge. After
all, there’s a difference between “knowing” and “doing”.

Appreciating that you’re going to be contributing to the coding activities often provides
enough incentive to ensure that your designs are grounded in reality. If they aren’t, you’ll
soon experience that pain once you understand the problems from a developer’s perspective.

In addition to the obvious benefits associated with creating a software architecture that can
actually be implemented by real people, contributing to the coding activities helps you build
rapport with the rest of the team, which in turn helps to reduce the gap between architects
and developers that you see on many software teams. To quote Rachel Davies and Liz Sedley
from their Agile Coaching book:

If you know how to program, it’s often tempting to make suggestions about
how developers should write the code. Be careful, because you may be wasting
your time - developers are likely to ignore your coding experience if you’re not
programming on the project. They may also think that you’re overstepping your
role and interfering in how they do their job, so give such advice sparingly.

http://www.codingthearchitecture.com
http://pragprog.com/book/sdcoach/agile-coaching

Should software architects code? 23

Building prototypes, frameworks and foundations

Although the software architecture role is much easier to do if you’re seen to be one of the
development team, sometimes this isn’t possible. One of the problems with being promoted
to or assigned as a software architect is that you might find that you can’t code as much as
you’d like to. This may be down to time pressures because you have a lot of “architecture”
work to do, or it might simply be down to company politics not allowing you to code. I’ve
seen this happen. If this is the case, building prototypes and proof of concepts related to the
software system in question is a great way to be involved. Again, this allows you to build
some rapport with the team and it’s a great way to evaluate that your architecture will work.

As an alternative, you could help to build the frameworks and foundations that the rest of
the team will use. Try to resist the temptation to build these things and then hand them over
to the team because this approach may backfire. Software development is driven by fads and
fashions much more than it really should be, so beware of building something that the rest
of the team might deem to be a worthless pile of old-fashioned crap!

Performing code reviews

There’s obviously no substitute for coding on a real project, and I wouldn’t recommend this
as a long-term strategy, but getting involved with (or doing) the code reviews is one way to at
least keep yourmind freshwith technology and how it’s being used. Again, you could damage
your reputation if you start nitpicking or getting involved in discussions about technologies
that you have no experience with. I remember having to explain my Java code to an architect
who had never written a single line of Java in his life. It wasn’t a fun experience.

Experimenting and keeping up to date

You need to retain a certain level of technical knowledge so that you can competently design
a solution using it. But if you are unable to contribute to the delivery, how do you maintain
your coding skills as an architect?

Often you’ll have more scope outside of work to maintain your coding skills; from contribut-
ing to an open source project through to continuously playingwith the latest language/frame-
work/API that takes your fancy. Books, blogs, podcasts, conferences andmeetups will get you
so far, but sometimes you just have to break out the code. I’ve certainly done this in the past
and one of the upsides of a long commute on public transport is that it does give you time to

Should software architects code? 24

play with technology. Assuming you can keep your eyes open after a hard day at work, of
course!

The tension between software architects and
employers

I’ve been fortunate in that I’ve retained a large hands-on element as a part of my software
architecture roles and I’ve written code on most of the development projects that I’ve been
involved in. I’m a firm believer that you’re in control of creating your own opportunities. The
reason I’ve remained hands-on comes down to expressing that it’s a crucial part of the role.
For me, it’s simple … coding is essential when designing software because I need to keep my
skills up to date and understand that what I’m designing will work. Plus, I’m not ashamed
to admit that coding is fun.

Unfortunately many organisations seem to think that coding is the easy part of the software
development process, which is why they see an opportunity to save some money and let
somebody else do it, often in another country. Such organisations view cutting code as “low
value”. Tension therefore arises because there’s a disconnect between the seniority of the
software architect in the organisation and the value associated with the coding activities.

In my experience, this doesn’t happen in small organisations because everybody usually has
to get involved in whatever is needed. No, it’s those larger organisations where the tension is
greatest. I spent some time working for a medium size consulting firm where my job grade
put me as a peer of the management team, yet I still wrote code. In some ways it was quite an
achievement to be graded as an “Executive Manager” and write code on a daily basis! Yet it
often felt very uncomfortable, as other managers would regularly try to push my name into
boxes on the corporate organisation chart.

Being in this situation is tricky and only you can get yourself out of it. Whether you’re in an
organisation where this is happening or you’re looking to move on, be clear about how you
view the role of a software architect and be prepared to stand your ground.

You don’t have to give up coding

With this in mind, it should come as no surprise that I’m regularly asked whether software
architects can continue to code if they are to climb the corporate career ladder. This is a
shame, particularly if these people really enjoy the technical side of what they do.

Should software architects code? 25

My take on this is yes, absolutely, you can continue to code. For me, it’s quite frustrating to
hear people say, “well, I understand that I’ll have to give up coding to become an architect
or to progress further up the career path”. There are lots of organisations where this is the
expectation and it’s reassuring that I’m not the only person to have been told that coding
doesn’t have a place in the senior ranks of an organisation.

As a software architect, you take on a great deal of responsibility for satisfying the non-
functional requirements, performing technical quality assurance, making sure the software
is fit for purpose, etc. It’s a leadership role and coding (leading by example) is one of the very
best ways to make sure the project is successful. And besides, if software architects don’t
remain technical, who is growing the software architects of tomorrow?

Don’t code all the time

To reiterate my advice, software architects don’t have to give up coding. However you do it,
coding is a great way to keep your technology skills sharp in our ever-changing world. Many
people believe that software architecture is a “post-technical” career choice but it requires
deep technology skills alongside a breadth of experience and more general knowledge. It
requires T-shaped people who are able to answer the question of whether their design will
actually work. Leaving this as an “implementation detail” is not acceptable. Just don’t code
all of the time. If you’re coding all of the time, who is performing the rest of the software
architecture role?

9. Software architects should be
master builders

Applying the building metaphor to software doesn’t necessarily work, although in medieval
times the people that architected buildings were the select few that made it into the exclusive
society of master builders. The clue here is in the name and a master builder really was a
master of their craft. Once elevated to this status though, did the master builder continue
to build or was that task left to those less noble? Fast-forward several hundred years and it
seems we’re asking the same question about the software industry.

State of the union

Software architecture has fallen out of favour over the past decade because of the association
with “big up front design” and “analysis paralysis”. Much of this stems from the desire to
deliver software systems more efficiently, with agile approaches being a major catalyst in
reducing the quantity of up front thinking that is performed by many teams. The net result
is that the role of “an architect” is now often seen as redundant on software teams. Many
teams are striving to be flat and self-organising, which on the face of it negates the need for
a single dedicated point of technical leadership.

The other factor here is that many believe the role of an architect is all about high-level and
abstract thinking. I’m sure you’ve seen the terms “ivory tower” or “PowerPoint” architect
used to refer to people that design a solution without ever considering the detail. If we go
back in time though, this isn’t what the architect role was all about.

Back in time

If you trace the word “architect” back to its roots in Latin (architectus) and Greek (arkhitek-
ton), it basically translates to “chief builder” and, as indicated by the name, these people were
masters of their craft. In medieval times, the term “architect” was used to signify those people
who were “master masons”, where “mason” refers to stonemasons because that’s what the
majority of the buildings were constructed from at the time. This quote summarises the role
well:

http://www.moonshadow.co.uk/?p=66

Software architects should be master builders 27

Amaster mason, then, is a manipulator of stone, an artist in stone and a designer
in stone.

This quote could equally be applied to us as software developers.

Did master builders actually build?

The key question in all of this is whether the master builders actually built anything. If you
do some research into how people achieved the role of “master mason”, you’ll find something
similar to this:

Although a master mason was a respected and usually wealthy individual, he
first had to prove his worth by going through the ranks as a stonemason and
then a supervisor, before being appointed to the highest position in his trade.

The Wikipedia page for architect says the same thing:

Throughout ancient and medieval history, most architectural design and con-
struction was carried out by artisans—such as stone masons and carpenters,
rising to the role of master builder.

Interestingly, there’s no single view on howmuch building these master masons actually did.
For example:

How much contact he actually had with this substance is, however, debatable.
The terminology may differ but, as I understand it, the basic organisation and
role of the medieval master mason is similar to that of the chief architect today
– perhaps a reflection of the immutable fundamentals of constructing buildings.

Only when you look at what the role entailed does this truly make sense. To use another
quote:

Amason whowas at the top of his trade was a master mason. However, a Master
Mason, by title, was the man who had overall charge of a building site and
master masons would work under this person. A Master Mason also had charge
over carpenters, glaziers etc. In fact, everybody who worked on a building site
was under the supervision of the Master Mason.

http://suite101.com/article/the-medieval-stonemason-and-the-master-mason-a65816
http://en.wikipedia.org/wiki/Architect
http://www.moonshadow.co.uk/?p=66
http://www.historylearningsite.co.uk/medieval_masons.htm
http://www.historylearningsite.co.uk/medieval_masons.htm

Software architects should be master builders 28

To add some additional detail:

Themaster mason, then, designed the structural, aesthetic and symbolic features
of what was to be built; organised the logistics that supported the works; and,
moreover, prioritised and decided the order of the work.

Ivory towers?

If this is starting to sound familiar, wait until you hear how the teams used to work:

Every lesser mason followed the directions set by the master and all decisions
with regard to major structural, or aesthetic, problems were his domain.

It’s certainly easy to see the parallels here in the way that many software teams have been
run traditionally, and it’s not surprising that many agile software development teams aspire
to adopt a different approach. Instead of a single dedicated technical leader that stays away
from the detail, manymodern software development teams attempt to share the role between
a number of people. Of course, one of the key reasons that many architects stay away from
the detail is because they simply don’t have the time. This typically leads to a situation where
the architect becomes removed from the real-world day-to-day reality of the team and slowly
becomes detached from them. It turns out that the master masons suffered from this problem
too:

If, as seems likely, this multiplicity of tasks was normal it is hardly surprising
that master masons took little part in the physical work (even had their status
permitted it). Testimony of this supposition is supplied by a sermon given in
1261 by Nicholas de Biard railing against the apparent sloth of the master mason
“who ordains by word alone”.

This quote from Agile Coaching (by Rachel Davies and Liz Sedley) highlights a common
consequence of this in the software industry:

If you know how to program, it’s often tempting to make suggestions about
how developers should write the code. Be careful, because you may be wasting
your time - developers are likely to ignore your coding experience if you’re not
programming on the project. They may also think that you’re overstepping your
role and interfering in how they do their job, so give such advice sparingly.

http://www.moonshadow.co.uk/?p=66
http://www.moonshadow.co.uk/?p=66
http://www.moonshadow.co.uk/?p=66
http://www.moonshadow.co.uk/?p=66
http://pragprog.com/book/sdcoach/agile-coaching

Software architects should be master builders 29

To cap this off, many people see the software architecture role as an elevated position/rank
within their organisation, which further exaggerates the disconnect between developer and
architect. It appears that the same is true of master masons too:

In order to avoid the sort of struggle late Renaissance artists had to be recognised
as more than mere artisans it would seem that master masons perpetuated a
myth (as I see it) of being the descendants of noblemen. Further to this, by
shrouding their knowledge with secrecy they created a mystique that separated
them from other less ‘arcane’ or ‘noble’ professions.

Divergence of the master builder role

Much of this points to the idea that master builders didn’t have much time for building, even
though they possessed the skills to do so. To bring this back to the software industry; should
software architects write code? My short answer is “ideally, yes” and the longer answer can
be found here. Why? Because technology isn’t an implementation detail and you need to
understand the trade-offs of the decisions you are making.

So why don’t modern building architects help with the actual process of hands-on building?
To answer this, we need to look how the role has evolved over the years:

Throughout ancient and medieval history, most architectural design and con-
struction was carried out by artisans—such as stone masons and carpenters,
rising to the role of master builder. Until modern times there was no clear
distinction between architect and engineer. In Europe, the titles architect and
engineer were primarily geographical variations that referred to the same
person, often used interchangeably.

The Wikipedia page for structural engineering provides further information:

Structural engineering has existed since humans first started to construct their
own structures. It became a more defined and formalised profession with
the emergence of the architecture profession as distinct from the engineering
profession during the industrial revolution in the late 19th century. Until then,
the architect and the structural engineer were usually one and the same -
the master builder. Only with the development of specialised knowledge of
structural theories that emerged during the 19th and early 20th centuries did
the professional structural engineer come into existence.

http://www.moonshadow.co.uk/?p=66
http://en.wikipedia.org/wiki/Architect
http://en.wikipedia.org/wiki/Structural_engineering

Software architects should be master builders 30

In essence, the traditional architect role has diverged into two roles. One is the structural
engineer, who ensures that the building doesn’t fall over. And the other is the architect,
who interacts with the client to gather their requirements and design the building from an
aesthetic perspective. Martin Fowler’s bliki has a page that talks about the purpose of and
difference between the roles.

A software architect is seen as a chief designer, someone who pulls together
everything on the project. But this is not what a building architect does. A
building architect concentrates on the interaction with client who wants the
building. He focuses his mind on issues that matter to the client, such as the
building layout and appearance. But there’s more to a building than that.

Building is now seen as an engineering discipline because of the huge body of knowledge
behind it, which includes the laws of physics and being able to model/predict how materials
will behave when they are used to construct buildings. By comparison, the software
development industry is still relatively young andmoves at an alarmingly fast pace. Buildings
today are mostly built using the same materials as they were hundreds of years ago, but it
seems like we’re inventing a new technology every twenty minutes. We live in the era of
“Internet time”. Until our industry reaches the point where software can be built in the same
way as a predictive engineering project, it’s crucial that somebody on the team keeps up to
date with technology and is able to make the right decisions about how to design software. In
other words, software architects still need to play the role of structural engineer and architect.

Achieving the role

The final thing to briefly look at is how people achieved the role of master mason. From the
Wikipedia page about stonemasonry:

Medieval stonemasons’ skills were in high demand, and members of the guild,
gave rise to three classes of stonemasons: apprentices, journeymen, and master
masons. Apprentices were indentured to their masters as the price for their
training, journeymen had a higher level of skill and could go on journeys to
assist their masters, and master masons were considered freemen who could
travel as they wished to work on the projects of the patrons.

This mirrors my own personal experience of moving into a software architecture role. It
was an evolutionary process. Like many people, I started my career writing code under

http://martinfowler.com/bliki/BuildingArchitect.html
http://en.wikipedia.org/wiki/Stonemasonry

Software architects should be master builders 31

the supervision of somebody else and gradually, as I gained more experience, started to
take on larger and larger design tasks. Unlike the medieval building industry though, the
software development industry lacks an explicit way for people to progress from being junior
developers through to software architects. We don’t have a common apprenticeship model.

Architects need to work with the teams

Herein lies the big problem for many organisations though - there aren’t enough architects
to go around. Although the master masons may not have had much time to work with stone
themselves, they didworkwith the teams. I often get asked questions from software architects
who, as a part of their role, are expected to provide assistance to a number of different teams.
Clearly it’s unrealistic to contribute to the hands-on elements of the software delivery if you
are working with a number of different teams. You’re just not going to have the time to write
any code.

Performing a software architecture role across a number of teams is not an effective way to
work though. Typically this situation occurs when there is a centralised group of architects
(e.g. in an “Enterprise Architecture Group”) who are treated as shared resources. From what
I’ve read, the master masons were dedicated to a single building site at any one point in
time and this is exactly the approach that we should adopt within our software development
teams. If you think that this isn’t possible, just take a look at how the medieval building
industry solved the problem:

A mason would have an apprentice working for him. When the mason moved
on to a new job, the apprentice would move with him. When a mason felt that
his apprentice had learned enough about the trade, he would be examined at a
Mason’s Lodge.

Again, it comes back to the strong apprenticeship model in place and this is exactly why
coaching and mentoring should be a part of the modern software architecture role. We need
to grow the software architects of tomorrow and every software development team needs
their own master builder.

http://www.historylearningsite.co.uk/medieval_masons.htm

10. From developer to architect
The line between software development and software architecture is a tricky one. Some
people will tell you that it doesn’t exist and that architecture is simply an extension of
the design process undertaken by developers. Others will make out it’s a massive gaping
chasm that can only be crossed by lofty developers who believe you must always abstract
your abstractions and not get bogged down by those pesky implementation details. As
always, there’s a pragmatic balance somewhere in the middle, but it does raise the interesting
question of how you move from one to the other.

Some of the key factors that are often used to differentiate software architecture from
software design include an increase in scale, an increase in the level of abstraction and an
increase in the significance of making the right design decisions. Software architecture is all
about having a holistic view and seeing the “big picture” to understand how the software
system works as a whole.

While this may help to differentiate software design and architecture, it doesn’t necessarily
help in understanding how a software developer moves into a software architecture role.
Furthermore, it also doesn’t help in identifying who will make a good software architect and
how you go about finding them if you’re hiring.

Experience is a good gauge but you need to look deeper

There are a number of different qualities that you need to look for in a software architect and
their past experience is often a good gauge of their ability to undertake the role. Since the
role of a software architect is varied though, you need to look deeper to understand the level
of involvement, influence, leadership and responsibility that has been demonstrated across a
number of different areas. In conjunctionwithmy definition of the software architecture role,
each of the parts can and should be evaluated independently. After all, the software design
process seems fairly straightforward. All you have to do is figure out what the requirements
are and design a system that satisfies them. But in reality it’s not that simple and the software
architecture role undertaken by somebody can vary wildly. For example:

1. Architectural drivers: capturing and challenging a set of complex non-functional
requirements versus simply assuming their existence.

From developer to architect 33

2. Designing software: designing a software system from scratch versus extending an
existing one.

3. Technical risks: proving that your architecture will work versus hoping for the best.
4. Architecture evolution: being continually engaged and evolving your architecture

versus choosing to hand it off to an “implementation team”.
5. Coding: being involved in the hands-on elements of the delivery versus watching from

the sidelines.
6. Quality assurance: assuring quality and selecting standards versus being reviewed

against them or doing nothing.

Much of this comes down to the difference between taking responsibility for a solution versus
assuming that it’s not your problem.

The line is blurred

Regardless of whether you view the line between software development and architecture as a
mythical one or a gaping chasm, people’s level of experience across the software architecture
role varies considerably. Furthermore, the line between software development and software
architecture is blurred somewhat. Most developers don’t wake up on a Monday morning
and declare themselves to be a software architect. I certainly didn’t and my route into
software architecture was very much an evolutionary process. Having said that, there’s a
high probability that many software developers are already undertaking parts of the software
architecture role, irrespective of their job title.

Crossing the line is our responsibility

There’s a big difference between contributing to the architecture of a software system and
being responsible for it; with a continuum of skills, knowledge and experience needed across
the different areas that make up the software architecture role. Crossing the line between
software developer and software architect is up to us. As individuals we need to understand
the level of our own experience and where we need to focus our efforts to increase it.

11. Broadening the T
Despite what you may hear some people say, software architecture is not a “post-technical”
or “non-technical” career. Drawing a handful of boxes, lines and clouds on a whiteboard and
handing that off as a “software design” is not what the role is all about.

Deep technology skills

“T” is for technology, and this is exactly what good software architects need to know about.
As software developers, we tend to have knowledge about things like programming language
syntax, APIs, frameworks, design patterns, automated unit testing and all of the other low-
level technical stuff that we use on a daily basis. And this is the same basic knowledge that
software architects need too. Why? Because people in the software architecture role need to
understand technology, basically so that they are able to honestly answer the following types
of questions:

• Is this solution going to work?
• Is that how we are going to build it?

However, given the learning curve associated with being productive in different program-
ming languages, it’s common for software professionals to only know one or two technologies
really well. Eventually these people get known for being a “Java developer” or an “Oracle
developer”, for example. I’ve been there and done that myself. I’ve also seen it happen in
many other organisations. If you’ve ever wondered why there are so many religious battles
related to programming languages, you need look no further for how many of these start.

Although we may strive to be open-minded, it’s easy to get siloed into a single technology
stack. While there’s nothing particularly wrong with this, you have to be careful that you do
keep an open mind. As the saying goes, “if all you have is a hammer, everything will look
like a nail”. Gaining experience is an essential part of the learning journey, but that same
experience shouldn’t constrain you. As an example, you don’t need a relational database
for every software system, but often this is the first thing that gets drawn when a team is
sketching out a candidate software architecture.

Broadening the T 35

Breadth of knowledge

And that brings me onto why it’s important for software architects to have a breadth of
technology knowledge too. Sure, they may be specialists in Java or Oracle, but the role
demands more. For example, the people in the software architecture role should be able to
answer the following types of questions too:

• Is the technology that we’ve chosen the most appropriate given the other options
available?

• What are the other options for the design and build of this system?
• Is there a common architectural pattern that we should be using?
• Do we understand the trade-offs of the decisions that we’re making?
• Have we catered for the desired quality attributes?
• How can we prove that this architecture will work?

Software architects are generalising specialists

Most of the best software architects I know have come from a software development
background. This doesn’t mean that they are the best coders on a team, but they are
able to switch between the low-level details and the big picture. They also have a deep
technical specialism backed-up with a breadth of knowledge that they’ve gained from years
of experience in building software. But they can’t (and don’t) always know everything. Plus
it’s rare to find a software system that only uses a single technology stack. Some examples
of systems with heterogeneous technology stacks that I’ve seen during my career include:

• A Microsoft .NET desktop client running against a number of Oracle databases.
• A Microsoft ASP.NET website pulling data from an Oracle database via a collection of
Java EE web services.

• iOS and Android mobile apps pulling data from RESTful services written in Java.
• A micro-service style architecture, where various services were built using Microsoft
.NET or Ruby.

• A Microsoft ASP.NET website pulling data from a Microsoft Dynamics CRM system.
• A Microsoft SharePoint website pulling data from a collection of databases via
Microsoft .NET/Windows Communication Foundation services.

• A Java EE web application integrating with SAP.

Broadening the T 36

• etc

Although general design knowledge, techniques, patterns and approaches often apply to a
number of different technologies, not understanding how to apply them successfully at a
low-level of detail can cause issues. Does this mean that the software architect should be an
expert in all of the technologies that are in use on any give software system? No. Instead
collaboration is key. Find somebody that does understand the things you don’t and work
with them closely. Nothing says that the software architecture role can’t be shared, and often
appreciating the gaps in your own knowledge is the first step to creating a more collaborative
working environment. Pair programming has benefits, so why not pair architecting?

Software architecture is a technical career

Technology knowledge underpins the software architecture role, requiring a combination of
deep technology skills coupled with broader knowledge. If the people designing the software
and drawing the architecture diagrams can’t answer the question of whether the architecture
will work, they are probably the wrong people to be doing that job. Software architecture is
most definitely a technical career but that’s not the end of the story. Good soft skills are vital
too.

12. Soft skills
The majority of the discussion about the software architecture role in this book relates back
to having technical depth and breadth. But this is really only half the story. Since we’re
essentially talking about a leadership role, “soft skills” or “people skills” are vitally important
too.

• Leadership: In it’s simplest form, leadership is the ability to create a shared vision and
to then take people on a journey to satisfy the common goal.

• Communication: You can have the best ideas and vision in the world, but you’re dead
in the water if you’re unable to effectively communicate this to others. This means
people inside and outside of the software development team, using the language and
level of detail that is appropriate to the audience.

• Influencing: This is a key leadership skill and can be done a number of ways,
from overt persuasion through to Neuro-Linguistic Programming or Jedi mind tricks.
Influencing people can also be done through compromise and negotiation. Individuals
may have their own ideas and agendas, which you need to deal with while keeping
everybody “on-side” and motivated to get the result that you need. Good influencing
requires good listening and exploring skills too.

• Confidence: Confidence is important, underpinning effective leadership, influence
and communication. Confidence doesn’t mean arrogance though.

• Collaboration: The software architecture role shouldn’t be done in isolation, and
collaboration (working with others) to come up with a better solution is a skill that is
worth practicing. Thismeans listening, being open-minded and responsive to feedback.

• Coaching: Not everybody will have experience in what you’re trying to do and you’ll
need to coach people on their role, technologies, etc.

• Mentoring: Mentoring is about facilitating somebody’s learning rather than telling
them how to do something. As a leader you may be asked to mentor others on the
team.

• Motivation: This is about keeping the team happy, up-beat and positive. The team also
needs to feel motivated to follow any vision that you create as a software architect.
You will face an uphill battle without the rest of the team’s buy-in.

• Facilitation: There will often be times where you need to step back and facilitate
discussions, particularly where there is conflict within the team. This requires explo-
ration, objectivity and helping the team come up with a solution to build consensus.

http://en.wikipedia.org/wiki/Neuro-linguistic_programming

Soft skills 38

• Political: There are always politics at play in every organisation. My mantra is to steer
clear of getting involved as far as possible, but you should at least understand what’s
going on around you so that you can make more informed decisions.

• Responsibility: You can’t necessarily blame the rest of the software development
team for failure and it’s important that you have a sense of responsibility. It’s your
problem if your software architecture doesn’t satisfy the business goals, deliver the
non-functional requirements or the technical quality is poor.

• Delegation: Delegation is an important part of any leadership role and there’s a fine
line between delegating everything and doing everything yourself. You should learn
to delegate where appropriate but remember that it’s not the responsibility you’re
delegating.

Stay positive

As a software architect, which is a leadership role however you look at it, you’re likely to be
an important role model for a number of people on the development team. The reason for
this? Many of the team are probably aspiring software architects themselves. Although this
is a flattering situation to be in, there are some major downsides if you take your eye off the
ball.

Whether you’ve recognised it or not, you’re in a very influential position and the eyes of
the development team are likely to be watching your every move. For this reason alone, you
have the power to change the whole dynamic of the team, whether you like it or not. If you’re
motivated, the development team is likely to be motivated. If you’re enthusiastic about the
work, the rest of the team is likely to be enthusiastic about the work. If you’re optimistic that
everything will pan out, the development team will be too.

You can almost think of this as a self-supporting loop of positive energy where your
enthusiasm drives the team, and their enthusiasm drives you. This is all fantastic but it’s
not hard to see the damage that can be caused by a slip-up on your behalf. Any degree of
lethargy, apathy or pessimism will rub onto your team quicker than you can say “but we’ll
be okay” and you’ll start spiralling towards a vicious circle of negativity.

We don’t often talk about the softer side of being a software architect but the soft skills
are sometimes more important than being technically strong. A happy team is a team that
delivers. As a leader, it’s your responsibility to keep the team positive and your role in the
overall team dynamics shouldn’t be underplayed.

13. Software development is not a
relay sport

Software teams that are smaller and/or agile tend to be staffed with people who are general-
ising specialists; people that have a core specialism along with more general knowledge and
experience. In an ideal world, these cross-discipline team members would work together to
run and deliver a software project, undertaking everything from requirements capture and
architecture through to coding and deployment. Although many software teams strive to
be self-organising, in the real world they tend to be larger, more chaotic and staffed only
with specialists. Therefore, these teams typically need, and often do have, somebody in the
technical leadership role.

“Solution Architects”

There are a lot of people out there, particularly in larger organisations, calling themselves
“solution architects” or “technical architects”, who design software and document their
solutions before throwing them over the wall to a separate development team. With the
solution “done”, the architect will then move on to do the same somewhere else, often not
even taking a cursory glimpse at how the development team is progressing. When you throw
“not invented here” syndrome into themix, there’s often a tendency for that receiving team to
not take ownership of the solution and the “architecture” initially created becomes detached
from reality.

I’ve met a number of such architects in the past and one particular interview I held epitomises
this approach to software development. After the usual “tell me about your role and recent
projects” conversation, it became clear to me that this particular architect (who worked
for one of the large “blue chip” consulting firms) would create and document a software
architecture for a project before moving on elsewhere to repeat the process. After telling
me that he had little or no involvement in the project after he handed over the “solution”, I
asked him how he knew that his software architecture would work. Puzzled by this question,
he eventually made the statement that this was “an implementation detail”. He confidently
viewed his software architecture as correct and it was the development team’s problem if
they couldn’t get it to work. In my view, this was an outrageous thing to say and it made

Software development is not a relay sport 40

him look like an ass during the interview. His approach was also AaaS … “Architecture as a
Service”!

Somebody needs to own the big picture

The software architecture role is a generalising specialist role, and different to your typical
software developer. It’s certainly about steering the ship at the start of a software project,
which includes things like managing the non-functional requirements and putting together
a software design that is sensitive to the context and environmental factors. But it’s also
about continuously steering the ship because your chosen path might need some adjustment
en-route. After all, agile approaches have shown us that we don’t necessarily have (and need)
all of the information up front.

A successful software project requires the initial vision to be created, communicated and
potentially evolved throughout the entirety of the software development life cycle. For this
reason alone, it doesn’t make sense for one person to create that vision and for another team
to (try to) deliver it. When this does happen, the set of initial design artefacts is essentially a
baton that gets passed between the architect and the development team. This is inefficient,
ineffective and exchange of a document means that much of the decision making context
associated with creating the vision is also lost. Let’s hope that the development team never
needs to ask any questions about the design or its intent!

This problem goes awaywith truly self-organising teams, but most teams haven’t yet reached
this level of maturity. Somebody needs to take ownership of the big picture throughout the
delivery and they also need to take responsibility for ensuring that the software is delivered
successfully. Software development is not a relay sport and successful delivery is not an
“implementation detail”.

14. Software architecture introduces
control?

Software architecture introduces structure and vision into software projects but is it also
about introducing control? And if so, is control a good thing or a bad thing?

Provide guidance, strive for consistency

Many of the practices associated with software architecture are about the introduction of
guidance and consistency into software projects. If you’ve ever seen software systems where
a common problem or cross-cutting concern has been implemented in a number of different
ways, then you’ll appreciate why this is important. A couple of examples spring to mind;
I’ve seen a software system with multiple object-relational mapping (ORM) frameworks in a
single codebase and another where components across the stack were configured in a number
of different ways, ranging from the use of XML files on disk through to tables in a database.
Deployment and maintenance of both systems was challenging to say the least.

Guidance and consistency can only be realised by introducing a degree of control and
restraint, for example, to stop team members going off on tangents. You can’t have people
writing database access code in your web pages if you’ve specifically designed a distributed
software system in order to satisfy some of your key non-functional requirements. Control
can also be about simply ensuring a clear and consistent structure for your codebase;
appropriately organising your code into packages, namespaces, components, layers, etc.

Howmuch control do you need?

The real question to be answered here relates to the amount of control that needs to be
introduced. At one end of the scale you have the dictatorial approach where nobody can
make a decision for themselves versus the other end of the scale where nobody is getting any
guidance whatsoever. I’ve seen both in software projects and I’ve taken over chaotic projects
where everybody on the team was basically left to their own devices. The resulting codebase
was, unsurprisingly, a mess. Introducing control on this sort of project is really hard work
but it needs to be done if the team is to have any chance of delivering a coherent piece of
software that satisfies the original drivers.

Software architecture introduces control? 42

Control varies with culture

I’ve also noticed that different countries and cultures place different values on control. Some
(e.g. the UK) value control and the restraint that it brings whereas others (e.g. Scandinavia)
value empowerment and motivation. As an example of what this means in the real world,
it’s the difference between having full control over all of the technologies used on a software
project (from the programming language right down to the choice of logging library) through
to being happy for anybody in the team make those decisions.

A lever, not a button

I like to think of control as being a control lever rather than something binary that is either
on or off. At one extreme you have the full-throttle dictatorial approach and at the other you
have something much more lightweight. You also have a range of control in between the
extremes allowing you to introduce as much control as is necessary. So how much control do
you introduce? It’s a consulting style answer admittedly, but without knowing your context,
it depends on a number of things:

• Are the team experienced?
• Has the team worked together before?
• How large is the team?
• How large is the project?
• Are the project requirements complex?
• Are there complex non-functional requirements or constraints that need to be taken
into account?

• What sort of discussions are happening on a daily basis?
• Does the team or the resulting codebase seem chaotic already?
• etc

My advice would be to start with some control and listen to the feedback in order to fine-
tune it as you progress. If the team are asking lots of “why?” and “how?” questions, then
perhaps more guidance is needed. If it feels like the team are fighting against you all of the
time, perhaps you’ve pushed that lever too far. There’s no universally correct answer, but
some control is a good thing and it’s therefore worth spending a few minutes looking at how
much is right for your own team.

15. Mind the gap
Our industry has a love-hate relationship with the software architecture role, with many
organisations dismissing it because of their negative experience of architects who dictate
from “ivory towers” and aren’t engaged with the actual task of building working software.
This reputation is damaging the IT industry and inhibiting project success. Things need to
change.

Developers focus on the low-level detail

If you’re working on a software development project at the moment, take a moment to look
around at the rest of the team. How is the team structured? Does everybody have a well
defined role and responsibilities?Who’s looking after the big picture; things like performance,
scalability, availability, security and so on?

We all dream about working on a teamwhere everybody is equally highly experienced and is
able to think about the software at all levels, from the code right through to the architectural
issues. Unfortunately the real world just isn’t like that. Most of the teams that I’ve worked
with are made up of people with different levels of experience, some of who are new to IT and
others who have “been around the block a few times”. As software developers, the code is our
main focus but what happens if you have a team that only focusses on this low-level detail?
Imagine a codebase where all of the latest programming language features are used, the code
is nicely decoupled and testing is completely automated. The codebase can be structured and
formatted to perfection but that’s no use if the system has scalability issues when deployed
into a live environment.

Architects dictate from their ivory towers

The software architecture role is different to a developer role. Some people view it as a
step up from being a developer, and some view it as a step sideways. However you view
it, the architecture role is about looking after “the big picture”. Many teams do understand
the importance of software architecture but will bring in somebody with the prestigious
title of “Architect” only to stick them on a pedestal above the rest of the team. If anything,
this instantly isolates the architect by creating an exaggerated gap between them and the
development team they are supposed to be working with.

Mind the gap 44

Reducing the gap

Unfortunately, many software teams have this unnecessary gap between the development
team and the architect, particularly if the architect is seen to be dictating and laying down
commandments for the team to follow. This leads to several problems.

• The development team doesn’t respect the architect, regardless of whether the archi-
tect’s decisions are right or not.

• The development team becomes demotivated.
• Important decisions fall between the gap because responsibilities aren’t well defined.
• The project eventually suffers because nobody is looking after the big picture.

Fortunately, there are some simple ways to address this problem, from both sides. Software
development is a team activity after all.

If you’re a software architect:

• Be inclusive and collaborate: Get the development team involved in the software
architecture process to help them understand the big picture and buy-in to the
decisions you are making. This can be helped by ensuring that everybody understands
the rationale and intent behind the decisions.

• Get hands-on: If possible, get involved with some of the day-to-day development
activities on the project to improve your understanding of how the architecture is
being delivered. Depending on your role and team size, this might not be possible,
so look at other ways of retaining some low-level understanding of what’s going on
such as assisting with design and code reviews. Having an understanding of how the
software works at a low-level will give you a better insight into how the development
team are feeling about the architecture (e.g. whether they are ignoring it!) and it will
provide you with valuable information that you can use to better shape/influence your
architecture. If the developers are experiencing pain, you need to feel it too.

If you’re a software developer:

• Understand the big picture: Taking some time out to understand the big picture will
help you understand the context in which the architectural decisions are being made
and enhance your understanding of the system as a whole.

Mind the gap 45

• Challenge architectural decisions: With an understanding of the big picture, you
now have the opportunity to challenge the architectural decisions being made. Archi-
tecture should be a collaborative process and not dictated by people that aren’t engaged
in the project day-to-day. If you see something that you don’t understand or don’t like,
challenge it.

• Ask to be involved: Many projects have an architect who is responsible for the
architecture and it’s this person who usually undertakes all of the “architecture work”.
If you’re a developer and you want to get more involved, just ask. You might be doing
the architect a favour!

A collaborative approach to software architecture

What I’ve talked about here is easily applicable to small/medium project teams, but things
do start to get complicated with larger teams. By implication, a larger team means a bigger
project, and a bigger project means a bigger “big picture”. Whatever the size of project
though, ensuring that the big picture isn’t neglected is crucial for success and this typically
falls squarely on the architect’s shoulders. However, most software teams can benefit from
reducing the unnecessary gap between developers and architects, with the gap itself being
reducible from both sides. Developers can increase their architectural awareness, while
architects can improve their collaboration with the rest of the team. Make sure that you
mind the gap and others may follow.

16. Where are the software architects
of tomorrow?

Agile and software craftsmanship are two great examples of how we’re striving to improve
and push the software industry forward. We spend a lot of time talking about writing
code, automated testing, automated deployment, tools, technologies and all of the associated
processes. And that makes a lot of sense because the end-goal here is delivering benefit to
people through software, and working software is key. But we shouldn’t forget that there
are some other aspects of the software development process that few people genuinely have
experience with. Think about how you would answer the following questions.

1. When did you last code?
• Earlier today, I’m a software developer so it’s part of the job.

2. When did you last refactor?
• I’m always looking to make my code the best I can, and that includes refactoring
if necessary. Extract method, rename, pull up, push down … I know all that stuff.

3. When did you last test your code?
• We test continuously by writing automated tests either before, during or after
we write any production code. We use a mix of unit, integration and acceptance
testing.

4. When did you last design something?
• I do it all the time, it’s a part of my job as a software developer. I need to think
about how something will work before coding it, whether that’s by sketching out
a diagram or using TDD.

5. When did you last design a software system from scratch? I mean, take a set of vague
requirements and genuinely create something from nothing?

• Well, there’s not much opportunity on my current project, but I have an open
source project that I work on in my spare time. It’s only for my own use though.

6. When did you last design a software system from scratch that would be implemented
by a team of people.

• Umm, that’s not something I get to do.

Let’s face it, most software developers don’t get to take a blank sheet of paper and design
software from scratch all that frequently, regardless of whether that design is up front or
evolutionary and whether it’s a solo or collaborative exercise.

Where are the software architects of tomorrow? 47

Coaching, mentoring and apprenticeships

Coaching and mentoring is an overlooked activity on most software development projects,
with many team members not getting the support that they need. While technical leadership
is about guiding the project as a whole, there are times when individuals need assistance.
In addition to this, coaching and mentoring provides a way to enhance people’s skills and
to help them improve their own careers. Sometimes this assistance is of a technical nature,
and sometimes it’s more about the softer skills. From a technical perspective though, why
shouldn’t the people undertaking the software architecture role help out with the coaching
and mentoring? Most architects that I know have got to where they are because they have
a great deal of experience in one or more technical areas. If this is the case, why shouldn’t
those architects share some of their experience to help others out? An apprenticeship model
is exactly how the master builders of times past kept their craft alive.

We’re losing our technical mentors

The sad thing about our industry is that many developers are being forced into non-technical
management positions in order to progress their careers up the corporate ladder. Ironically,
it’s often the best and most senior technical people who are forced away, robbing software
teams of their most valued technical leads, architects and mentors. Filling this gap tomorrow
are the developers of today.

Software teams need downtime

Many teams have already lost their most senior technical people, adding more work to
the remainder of the team who are already struggling to balance all of the usual project
constraints along with the pressures introduced by whatever is currently fashionable in the
IT industry … agile, craftsmanship, cloud, rich Internet UIs, functional programming, etc.
Many teams appreciate that they should be striving for improvement, but lack the time or
the incentive to do it.

To improve, software teams need some time away from the daily grind to reflect, but they
also need to retain a focus on all aspects of the software development process. It’s really
easy to get caught up in the hype of the industry, but it’s worth asking whether this is more
important than ensuring you have a good pragmatic grounding.

Experience of coding is easy to pick up and there are plenty of ways to practice this skill.
Designing something from scratch that will be implemented by a team isn’t something

Where are the software architects of tomorrow? 48

that you find many teams teaching or practicing though. With many technical mentors
disappearing thanks to the typical corporate career ladder, where do developers gain this
experience? Where are the software architects of tomorrow going to come from?

17. Everybody is an architect, except
when they’re not

Many software teams strive to be agile and self-organising yet it’s not immediately obvious
how the software architecture role fits into this description of modern software development
teams.

Everybody is an architect

In “Extreme Programming Annealed”, Glenn Vanderburg discusses the level at which the
Extreme Programming practices work, where he highlights the link between architecture
and collective ownership. When we talk about collective ownership, we’re usually referring
to collectively owning the code so that anybody on the team is empowered to make changes.
In order for this to work, there’s an implication that everybody on the team has at least some
basic understanding of the “big picture”. Think about your current project; could you jump
into any part of the codebase and understand what was going on?

Imagine if you did have a team of experienced software developers that were all able to
switch in and out of the big picture. A team of genuinely hands-on architects. That team
would be amazing and all of the elements you usually associate with software architecture
(non-functional requirements, constraints, etc) would all get dealt with and nothing would
slip through the gaps. From a technical perspective, this is a self-organising team.

Except when they’re not

My big problemwith the self-organising team idea is that we talk about it a lot in industry, yet
I rarely see it in practice. This could be a side-effect of working in a consulting environment
becausemy team always changes from project to project plus I don’t tend to spend more than
a few months with any particular customer. Or, as I suspect, true self-organising teams are
very few and far between. Striving to be self-organising is admirable but, for many software
teams, this is like running before you can walk.

In “Notes to a software team leader”, Roy Osherove describes his concept of “Elastic
Leadership” where the leadership style needs to vary in relation to the maturity of the team.

http://www.vanderburg.org/Writing/xpannealed.pdf
http://www.extremeprogramming.org/rules/collective.html
http://leanpub.com/teamleader

Everybody is an architect, except when they’re not 50

Roy categorises the maturity of teams using a simple model, with each level requiring a
different style of leadership.

1. Survivalmodel (chaos): requires amore direct, command and control leadership style.
2. Learning: requires a coaching leadership style.
3. Self-organising: requires facilitation to ensure the balance remains intact.

As I said, a team where everybody is an experienced software developer and architect would
be amazing but this isn’t something I’ve seen happen. Most projects don’t have anybody on
the team with experience of the “big picture” stuff and this is evidenced by codebases that
don’t make sense (big balls of mud), designs that are unclear, systems that are slow and so on.
This type of situation is the one I see the most and, from a technical perspective, I recommend
that one person on the team takes responsibility for the software architecture role.

Roy uses the ScrumMaster role as an example. Teams in the initial stages of their maturity
will benefit from a single person undertaking the ScrumMaster role to help drive them in
the right direction. Self-organising teams, on the other hand, don’t need to be told what to
do. The clue is in the name; they are self-organising by definition and can take the role upon
themselves. I would say that the same is true of the software architecture, and therefore
technical leadership, role.

Does agile need architecture?

Unfortunately, many teams view the “big picture” technical skills as an unnecessary evil
rather than an essential complement, probably because they’ve been burnt by big design up
front in the past. Some are also so focussed on the desire to be “agile” that other aspects of
the software development process get neglected. Chaos rather than self-organisation ensues
yet such teams challenge the need for a more direct leadership approach. After all, they’re
striving to be agile and having a single point of responsibility for the technical aspects of the
project conflicts with their view of what an agile team should look like. This conflict tends
to cause people to think that agile and architecture are opposing forces - you can have one or
the other but not both. It’s not architecture that’s the opposing force though, it’s big design
up front.

Agile software projects still need architecture because all those tricky concerns around
complex non-functional requirements and constraints don’t go away. It’s just the execution
of the architecture role that differs.

Everybody is an architect, except when they’re not 51

With collective code ownership, everybody needs to be able to work at the architecture level
and so everybody is an architect to some degree. Teams that aren’t at the self-organising
stage will struggle if they try to run too fast though. Despite people’s aspirations to be agile,
collective code ownership and a distribution of the architecture role are likely to hinder
chaotic teams rather than help them. Chaotic teams need a more direct leadership approach
and they will benefit from a single point of responsibility for the technical aspects of the
software project. In other words, they will benefit from a single person looking after the
software architecture role. Ideally this person will coach others so that they too can help
with this role.

One software architect or many? Single point of responsibility or shared amongst the team?
Agile or not, the software architecture role exists. Only the context will tell you the right
answer.

18. Software architecture as a
consultant

Most of my career has been spent working for IT consulting companies, where I’ve
either built software systems for our customers under an outsourcing arrangement or with
our customers as a part of a mixed customer-supplier team (this is often called “body-
shopping”). Although undertaking the software architecture role within a consulting context
is fundamentally the same as undertaking the role in any other context, there are some
potential gotchas to be aware of.

Domain knowledge

A good working knowledge of the business domain is essential. If you’re working within
the finance industry, you should know something about how your particular part of the
finance industry works (e.g. funds management, investment banking, retail banking, etc).
Most business domains are more complex than they really should be and even seemingly
simple domains can surprise you. I remember the first time that I saw the ferry and hotel
domains, which surprisingly aren’t simply about booking seats on boats or rooms in hotels.
Having an appreciation of the business domain helps you to better understand the goals and
create successful software products.

And this raises an interesting question. A deep knowledge of the business domain only comes
from working within that domain for an extended period of time but most consultants move
between different customers, teams and business domains on a regular basis. Is it therefore
fair to expect consultants to possess deep domain knowledge?

There are a couple of approaches that I’ve seen people take. The first is to restrict yourself
to working within a single business domain as a consultant so that you do gain a deep
working knowledge of the business domain. As an example, a number of the IT consulting
organisations that I’ve worked for have specialised in the investment banking industry, with
consultants moving from bank to bank within that industry. This is certainly an effective way
to ensure that consultants do understand the business domain, but it’s not an approach that
I particularly like. Some of the consultants who I’ve worked with in the past have actually
taken offence when offered a consulting role outside of investment banking. These people

Software architecture as a consultant 53

usually saw their deep business domain knowledge as a key differentiator or unique selling
point when compared to other consultants.

A look at my bookshelf will reveal that my interests lie far more with technology than any
business domain. If I wanted to work for a bank, I’d work for a bank rather than a consulting
organisation. As a result, I’m happy to regularly switch between business domains and this
provides a degree of variety that you can’t necessarily get from working in a single domain. I
also find it interesting to see how other industries solve similar problems, and this itself leads
to a number of opportunities for the cross-pollination of ideas. The downside, of course, is
that my domain knowledge of any particular domain isn’t as deep as somebody who works
full-time in that business domain.

To prevent this being an issue, I believe that there’s a skill in being able to understand enough
about a new business domain to become proficient quickly. And that’s really my approach.
If you’re a undertaking the software architecture role on a consulting basis, you need razor
sharp analysis skills to understand the key parts of the business domain without getting
trapped in a cycle of analysis paralysis.

Authority

The degree of control that the software architecture role needs to introduce depends on the
type of software development team that you work with. Often the team can present another
set of challenges though, especially if you’re working as a consultant software architect with
a team of your customer’s in-house developers.

If you’re responsible for the software architecture and technical delivery of a software system,
you must have the authority to make decisions. If you have the responsibility but not the
authority, and are therefore continually seeking permission to make decisions, you could be
in for a bumpy ride.

The software architecture role is about technical leadership and part of this means that you
need to get the whole team heading in the same direction. Dictating instructions to a team
of software developers isn’t likely to be very effective if you’re not their immediate line
manager, which is often the case if you’re supplementing a customer team. This is where the
soft skills come into play, particularly those related to building relationships, creating trust
and motivating the team. I’ve found that being a hands-on, coding architect goes a long way
to getting a successful outcome too.

19. Questions
1. What’s the difference between the software architecture and software developer roles?
2. What does the software architecture role entail? Is this definition based upon your

current or ideal team? If it’s the latter, what can be done to change your team?
3. Why is it important for anybody undertaking the software architecture role to

understand the technologies that they are using? Would you hire a software architect
who didn’t understand technology?

4. If you’re the software architect on your project, how much coding are you doing? Is
this too much or too little?

5. If, as a software architect, you’re unable to code, how else can you stay engaged in the
low-level aspects of the project. And how else can you keep your skills up to date?

6. Why is having a breadth and depth of technical knowledge as important?
7. Do you think you have all of the required soft skills to undertake the software

architecture role? If not, which would you improve, why and how?
8. Does your current software project have enough guidance and control from a software

architecture perspective? Does it have too much?
9. Why is collaboration an important part of the software architecture role? Does your

team do enough? If not, why?
10. Is there enough coaching and mentoring happening on your team? Are you providing

or receiving it?
11. How does the software architecture role fit into agile projects and self-organising

teams?
12. What pitfalls have you fallen into as somebody new to the software architecture role?
13. Is there a well-defined “terms of reference” for the software architecture in your team

or organisation? If so, does everybody understand it? If not, is there value in creating
one to make an architect’s role and responsibilities explicit?

III Designing software

This part of the book is about the overall process of designing software, specifically looking
at the things that you should really think about before coding.

20. Architectural drivers
Regardless of the process that you follow (traditional and plan-driven vs lightweight and
adaptive), there’s a set of common things that really drive, influence and shape the resulting
software architecture.

1. Functional requirements

In order to design software, you need to know something about the goals that it needs to
satisfy. If this sounds obvious, it’s because it is. Having said that, I have seen teams designing
software (and even building it) without a high-level understanding of the features that the
software should provide to the end-users. Somemight call this being agile, but I call it foolish.
Even a rough, short list of features or user stories (e.g. a Scrum product backlog) is essential.
Requirements drive architecture.

2. Quality Attributes

Quality attributes are represented by the non-functional requirements and reflect levels of
service such as performance, scalability, availability, security, etc. These are mostly technical
in nature and can have a huge influence over the resulting architecture, particularly if
you’re building “high performance” systems or you have desires to operate at “Google scale”.
The technical solutions to implementing non-functional requirements are usually cross-
cutting and therefore need to be baked into the foundations of the system you’re building.
Retrofitting high performance, scalability, security, availability, etc into an existing codebase
is usually incredibly difficult and time-consuming.

3. Constraints

We live in the real world and the real world has constraints. For example, the organisation
that you work for probably has a raft of constraints detailing what you can and can’t do with
respect to technology choice, deployment platform, etc.

http://en.wikipedia.org/wiki/Scrum_%28software_development%29#Product_backlog

Architectural drivers 57

4. Principles

Where constraints are typically imposed upon you, principles are the things that you want to
adopt in order to introduce consistency and clarity into the resulting codebase. These may be
development principles (e.g. code conventions, use of automated testing, etc) or architecture
principles (e.g. layering strategies, architecture patterns, etc).

Understand their influence

Understanding the requirements, constraints and principles at a high-level is essential
whenever you start working on a new software system or extend one that exists already.
Why? Put simply, this is the basic level of knowledge that you need in order to start making
design choices.

First of all, understanding these things can help in reducing the number of options that
are open to you, particularly if you find that the drivers include complex non-functional
requirements or major constraints such as restrictions over the deployment platform. In the
words of T.S.Eliot:

When forced to work within a strict framework the imagination is taxed to its
utmost - and will produce its richest ideas. Given total freedom the work is likely
to sprawl.

Secondly, and perhapsmost importantly, it’s about making “informed” design decisions given
your particular set of goals and context. If you started designing a solution to the financial
risk system without understanding the requirements related to performance (e.g. calculation
complexity), scalability (e.g. data volumes), security and audit, you could potentially design
a solution that doesn’t meet the goals.

Software architecture is about the significant design decisions, where significance is mea-
sured by cost of change. A high-level understanding of the requirements, constraints and
principles is a starting point for those significant decisions that will ultimately shape the
resulting software architecture. Understanding them early will help to avoid costly rework
in the future.

21. Quality Attributes (non-functional
requirements)

When you’re gathering requirements, people will happily give you a wish-list of what
they want a software system to do and there are well established ways of capturing this
information as user stories, use cases, traditional requirements specifications, acceptance
criteria and so on. What about those pesky “non-functional requirements” though?

Non-functional requirements are often thought of as the “-ilities” and are primarily about
quality of service. Alternative, arguably better yet less commonly used names for non-
functional requirements include “system characteristics” or “quality attributes”. A non-
exhaustive list of the common quality attributes is as follows.

Performance

Performance is about how fast something is, usually in terms of response time or latency.

• Response time: the time it takes between a request being sent and a response being
received, such as a user clicking a hyperlink on a web page or a button on a desktop
application.

• Latency: the time it takes for a message to move through your system, from point A
to point B.

Even if you’re not building “high performance” software systems, performance is applicable
to pretty much every software system that you’ll ever build, regardless of whether they are
web applications, desktop applications, service-oriented architectures, messaging systems,
etc. If you’ve ever been told that your software is “too slow” by your users, you’ll appreciate
why some notion of performance is important.

Scalability

Scalability is basically about the ability for your software to deal with more users, requests,
data, messages, etc. Scalability is inherently about concurrency and therefore dealing with
more stuff in the same period of time (e.g. requests per second).

Quality Attributes (non-functional requirements) 59

Availability

Availability is about the degree to which your software is operational and, for example,
available to service requests. You’ll usually see availability measured or referred to in terms
of “nines”, such as 99.99% (“four nines”) or 99.999% (“five nines”). These numbers refer to the
uptime in terms of a percentage. The flip side of this coin is the amount of downtime that
can be tolerated. An uptime of 99.9% (“three nines”) provides you with a downtime window
of just over 1 minute per day for scheduled maintenance, upgrades and unexpected failure.

Security

Security covers everything from authentication and authorisation through to the confiden-
tiality of data in transit and storage. As with performance, there’s a high probability that
security is important to you at some level. Security should be considered for even the most
basic of web applications that are deployed onto the Internet. The Open Web Application
Security Project (OWASP) is a great starting point for learning about security.

Disaster Recovery

What would happen if you lost a hard disk, server or data centre that your software was
running on? This is what disaster recovery is all about. If your software system is mission
critical, you’ll often hear people talking about business continuity processes too, which state
what should happen in the event of a disaster in order to retain continued operation.

Accessibility

Accessibility usually refers to things like the W3C accessibility standards, which talk about
how your software is accessible to people with disabilities such as visual impairments.

Monitoring

Some organisations have specific requirements related to how software systems should be
monitored to ensure that they are running and able to service requests. This could include
integrating your software with platform specific monitoring capabilities (e.g. JMX on the
Java platform) or sending alerts to a centralised monitoring dashboard (e.g. via SNMP) in the
event of a failure.

https://www.owasp.org
https://www.owasp.org
http://www.w3.org/standards/webdesign/accessibility

Quality Attributes (non-functional requirements) 60

Management

Monitoring typically provides a read-only view of a software system and sometimes there
will be runtime management requirements too. For example, it might be necessary to expose
functionality that will allow operational staff to modify the runtime topology of a system,
modify configuration elements, refresh read-only caches, etc.

Audit

There’s often a need to keep a log of events (i.e. an audit log) that led to a change in data or
behaviour of a software system, particularly where money is involved. Typically such logs
need to capture information related to who made the change, when the change was made
and why the change was made. Often there is a need retain the change itself too (i.e. before
and after values).

Flexibility

Flexibility is a somewhat overused and vague term referring to the “flexibility” of your
software to perform more than a single task, or to do that single task in a number of different
ways. A good example of a flexibility requirement would be the ability for non-technical
people to modify the business rules used within the software.

Extensibility

Extensibility is also overused and vague, but it relates to the ability to extend the software to
do something it doesn’t do now, perhaps using plugins and APIs. Some off-the-shelf products
(e.g. Microsoft Dynamics CRM) allow non-technical end-users to extend the data stored and
change how other users interact with that data.

Maintainability

Maintainability is often cited as a requirement but what does this actually mean? As software
developers we usually strive to build “maintainable” software but it’s worth thinking about
who will be maintaining the codebase in the future. Maintainability is hard to quantify, so
I’d rather think about the architecture and development principles that we’ll be following
instead because they are drivers for writing maintainable code.

Quality Attributes (non-functional requirements) 61

Legal, Regulatory and Compliance

Some industries are strictly governed by local laws or regulatory bodies, and this can lead
to additional requirements related to things like data retention or audit logs. As an example,
most finance organisations (investment banks, retail banks, trust companies, etc) must adhere
to a number of regulations (e.g. anti-money laundering) in order to retain their ability to
operate in the market.

Internationalisation (i18n)

Many software systems, particularly those deployed on the Internet, are no longer delivered
in a single language. Internationalisation refers to the ability to have user-facing elements of
the software delivered in multiple languages. This is seemingly simple until you try to retrofit
it to an existing piece of software and realise that some languages are written right-to-left.

Localisation (L10n)

Related to internationalisation is localisation, which is about presenting things like numbers,
currencies, dates, etc in the conventions that make sense to the culture of the end-user.
Sometimes internationalisation and localisation are bundled up together under the heading
of “globalisation”.

Which are important to you?

There are many quality attributes that we could specify for our software systems but they
don’t all have equal weighting. Some are more applicable than others, depending on the
environment that you work in and the type of software systems that you build. A web-
based system in the finance industry will likely have a different set of quality attributes to
an internal system used within the telco industry. My advice is to learn about the quality
attributes common within your domain and focus on those first when you start building a
new system or modifying an existing system.

22. Working with non-functional
requirements

Regardless of what you call them, you’ll often need to put some effort into getting the list of
non-functional requirements applicable to the software system that you’re building.

Capture

I’ve spent most of my 15+ year career in software development working in a consulting
environment where we’ve been asked to build software for our customers. In that time, I
can probably count on one hand the number of times a customer has explicitly given us
information about the non-functional requirements. I’ve certainly received a large number
of requirements specifications or functional wish-lists, but rarely do these include any
information about performance, scalability, security, etc. In this case, you need to be proactive
and capture them yourself.

And herein lies the challenge. If you ask a business sponsor what level of system availability
they want, you’ll probably get an answer similar to “100%”, “24 by 7 by 365” or “yes please,
we want all of it”.

Refine

Once you’ve started asking those tricky questions related to non-functional requirements, or
you’ve been fortunate enough to receive some information about them, you’ll probably need
to refine them.

On the few occasions that I’ve received a functional requirements specification that did in-
clude some information about non-functional requirements, they’ve usually been unhelpfully
vague. As an example, I once received a 125 page document from a potential customer that
detailed the requirements of the software system. The majority of the pages covered the
functional requirements in quite some detail and the last half page was reserved for the non-
functional requirements. It said things like:

• Performance: The system must be fast.

Working with non-functional requirements 63

• Security: The system must be secure.
• Availability: The system should be running 100% of the time.

Although this isn’t very useful, at least we have a starting point for some discussions. Rather
than asking howmuch availability is needed and getting the inevitable “24 by 7” answer, you
can vary the questions depending on who you are talking to. For example:

• “How much system downtime can you tolerate?”
• “What happens if the core of the system fails during our normal working hours of 9am
until 6pm?”

• “What happens if the core of the system fails outside of normal working hours?”

What you’re trying to do is explore the requirements and get to the point where you
understand what the driving forces are. Why does the system need to be available? When we
talk about “high security”, what is it that we’re protecting? The goal here is to get to a specific
set of non-functional requirements, ideally that we can explicitly quantify. For example:

• How many concurrent users should the system support on average? What about peak
times?

• What response time is deemed as acceptable? Is this the same across all parts of the
system or just specific features?

• How exactly do we need to secure the system? Do we really need to encrypt the data
or is restricted access sufficient?

If you can associate some quantity to the non-functional requirements (e.g. number of users,
data volumes, maximum response times, etc), you can can write some acceptance criteria
and objectively test them.

Challenge

With this in mind, we all know what response we’ll get if we ask people whether they need
something. They’ll undoubtedly say, “yes”. This is why prioritising functional requirements,
user stories, etc is hard. Regardless of the prioritisation scale that you use (MoSCoW,
High/Medium/Low, etc), everything will end up as a “must have” on the first attempt at
prioritisation. You could create a “super-must have” category, but we know that everything
will just migrate there.

https://en.wikipedia.org/wiki/MoSCoW_Method

Working with non-functional requirements 64

A different approach is needed and presenting the cost implications can help focus the mind.
For example:

• Architect: “You need a system with 100% uptime. Building that requires lots of
redundancy to remove single points of failure and we would need two of everything
plus a lot of engineering work for all of the automatic failover. It will cost in the region
of $1,000,000. Alternatively we can build you something simpler, with the caveat that
some components would need to be monitored and restarted manually in the event of
a failure. This could cost in the region of $100,000. Which one do you need now?”

• Sponsor: “Oh, if that’s the case, I need the cheaper solution.”

Anything is possible but everything has a trade-off. Explaining those trade-offs can help find
the best solution for the given context.

23. Constraints
Everything that we create as software developers lives in the real world, and the real
world has constraints. Like quality attributes, constraints can drive, shape and influence the
architecture of a software system. They’re typically imposed upon you too, either by the
organisation that you work for or the environment that you work within. Constraints come
in many different shapes and sizes.

Time and budget constraints

Time and budget are probably the constraints that most software developers are familiar
with, often because there’s not enough of either.

Technology constraints

There are a number of technology related constraints that we often come up against when
building software, particularly in large organisations:

• Approved technology lists: Many large organisations have a list of the technologies
they permit software systems to be built with. The purpose of this list is to restrict
the number of different technologies that the organisation has to support, operate,
maintain and buy licenses for. Often there is a lengthy exceptions process that you
need to formally apply for if you want to use anything “off list”. I’ve still seen teams
use Groovy or Scala on Java projects through the sneaky inclusion of an additional
JAR file though!

• Existing systems and interoperability: Most organisations have existing systems that
you need to integrate your software with and you’re often very limited in the number
of ways that you can achieve this. At other times, it’s those other systems that need
to integrate with whatever you’re building. If this is the case, you may find that there
are organisation-wide constraints dictating the protocols and technologies you can
use for the integration points. A number of the investment banks I’ve worked with
have had their own internal XML schemas for the exchange of trading information
between software systems. “Concise” and “easy to use” weren’t adjectives that we used
to describe them!

Constraints 66

• Target deployment platform: The target deployment platform is usually one of
the major factors that influences the technology decisions you make when building
a greenfield software system. This includes embedded devices, the availability of
Microsoft Windows or Linux servers and the cloud. Yes, even this magical thing that
we call the cloud has constraints. As an example, every “platform as a service” (PaaS)
offering is different, and most have restrictions on what your software can and can’t
do with things like local disk access. If you don’t understand these constraints, there’s a
huge danger that you’ll be left with some anxious rework when it comes to deployment
time.

• Technology maturity: Some organisations are happy to take risks with bleeding edge
technology, embracing the risks that such advancements bring. Other organisations
are much more conservative in nature.

• Open source: Likewise, some organisations still don’t like using open source unless it
has a name such as IBM or Microsoft associated with it. I once worked on a project
for a high-street bank who refused to use open source, yet they were happy to use a
web server from a very well-known technology brand. The web server was the open
source Apacheweb server in disguise. Such organisations simply like having somebody
to shout at when things stop working. Confusion around open source licenses also
prevents some organisations from fully adopting open source too. You may have
witnessed this if you’re ever tried to explain the difference between GPL and LGPL.

• Vendor “relationships”: As with many things in life, it’s not what you know, it’s
who you know. Many partnerships are still forged on the golf course by vendors
who wine and dine Chief Technology Officers. If you’ve ever worked for a large
organisation and wondered why your team was forced to use something that was
obviously substandard, this might be the reason!

• Past failures: Somewhere around the year 2000, I walked into a bank with a proposal
to build them a solution using Java RMI - a technology to allow remote method calls
across Java virtual machines. This was met with great resistance because the bank had
“tried it before and it doesn’t work”. That was the end of that design and no amount
of discussion would change their mind. Java RMI was banned in this environment due
to a past failure. We ended up building a framework that would send serialized Java
objects over HTTP to a bunch of Java Servlets instead (a workaround to reinvent the
same wheel).

• Internal intellectual property: When you need to find a library or framework to solve
some problem that you’re facing, there’s a high probability that there’s an open source
or commercial product out there that suits your needs. This isn’t good enough for some
people though and it’s not uncommon to find organisations with their own internal
logging libraries, persistence frameworks or messaging infrastructures that you must

Constraints 67

use, despite whether they actually work properly. I recently heard of one organisation
that built their own CORBA implementation.

People constraints

More often than not, the people around you will constrain the technologies and approaches
that are viable to use when developing software. For example:

• How large is your development team?
• What skills do they have?
• How quickly can you scale your development team if needed?
• Are you able to procure training, consulting and specialists if needed?
• If you’re handing over your software after delivery, will the maintenance team have
the same skills as your development team?

There will be an overhead if you ask a Java team to build a Microsoft .NET solution, so you
do need to take people into account whenever you’re architecting a software system.

Organisational constraints

There are sometimes other constraints that you’ll need to be aware of, including:

• Is the software system part of a tactical or strategic implementation? The answer to
this question can either add or remove constraints.

• Organisational politics can sometimes prevent you from implementing the solution
that you really want to.

Are all constraints bad?

Constraints usually seem “bad” at the time that they’re being imposed, but they’re often
imposed for a good reason. For example, large organisations don’t want to support and
maintain every technology under the sun, so they try to restrict what ends up in production.
On the one hand this can reduce creativity but, on the other, it takes away a large number
of potential options that would have been open to you otherwise. Software architecture is
about introducing constraints too. How many logging or persistence libraries do you really
want in a single codebase?

Constraints 68

Constraints can be prioritised

As a final note, it’s worth bearing in mind that constraints can be prioritised. Just like
functional requirements, some constraints are more important than others and you can often
use this to your advantage. The financial risk system that I use as a case study in my training
is based upon a real project that I worked on for a consulting company in London. One of
the investment banks approached us with their need for a financial risk system and the basic
premise behind this requirement was that, for regulatory reasons, the bank needed to have
a risk system in place so that they could enter a new market segment.

After a few pre-sales meetings and workshops, we had a relatively good idea of their
requirements plus the constraints that we needed to work within. One of the major
constraints was an approved list of technologies that included your typical heavyweight Java
EE stack. The other was a strict timescale constraint.

When we prepared our financial proposal, we basically said something along the lines of,
“yes, we’re confident that we can deliver this system to meet the deadline, but we’ll be using
some technologies that aren’t on your approved technology list, to accelerate the project”.
Our proposal was accepted. In this situation, the timescale constraint was seen as much more
important than using only the technologies on the approved technology list and, in effect,
we prioritised one constraint over the other. Constraints are usually obstacles that you need
to work around, but sometimes you can trade the off against one another.

Listen to the constraints

Every software system will be subject to one or more constraints, and part of the software
architecture role is to seek these out, understand why they are being imposed and let them
help you shape the software architecture. Failing to do this may lead to some nasty surprises.

24. Principles
While constraints are imposed upon you, principles are the things that you want to adopt
in order to introduce standard approaches, and therefore consistency, into the way that you
build software. There are a number of common principles, some related to development and
others related to architecture.

Development principles

The principles that many software developers instantly think of relate to the way in which
software should be developed. For example:

• Coding standards and conventions: “We will adopt our in-house coding conventions
for [Java|C#|etc], which can be found on our corporate wiki.”

• Automated unit testing: “Our goal is to achieve 80% code coverage for automated
unit tests across the core library, regardless of whether that code is developed using a
test-first or test-last approach.”

• Static analysis tools: “All production and test code must pass the rules defined in
[Checkstyle|FxCop|etc] before being committed to source code control.”

• etc

Architecture principles

There are also some principles that relate to how the software should be structured. For
example:

• Layering strategy: A layered architecture usually results in a software system that
has a high degree of flexibility because each layer is isolated from those around it.
For example, you may decompose your software system into a UI layer, a business
layer and a data access layer. Making the business layer completely independent
of the data access layer means that you can (typically) switch out the data access
implementationwithout affecting the business or UI layers. You can do this because the

Principles 70

data access layer presents an abstraction to the business layer rather than the business
layer directly dealing with the data storage mechanism itself. If you want to structure
your software this way, you should ensure that everybody on the development team
understands the principle. “No data access logic in the UI components or domain
objects” is a concrete example of this principle in action.

• Placement of business logic: Sometimes you want to ensure that business logic
always resides in a single place for reasons related to performance or maintainability.
In the case of Internet-connected mobile apps, you might want to ensure that as much
processing as possible happens on the server. Or if you’re integrating with a legacy
back-end system that already contains a large amount of business logic, you might
want to ensure that nobody on the team attempts to duplicate it.

• High cohesion, low coupling, SOLID, etc: There are many principles related to the
separation of concerns, focussing on building small highly cohesive building blocks
that don’t require too many dependencies in order to do their job.

• Stateless components: If you’re building software that needs to be very scalable, then
designing components to be as stateless as possible is one way to ensure that you
can horizontally scale-out your system by replicating components to share the load. If
this is your scalability strategy, everybody needs to understand that they must build
components using the same pattern. This will help to avoid any nasty surprises and
scalability bottlenecks in the future.

• Stored procedures: Stored procedures in relational databases are like Marmite - you
either love them or you hate them. There are advantages and disadvantages to using
or not using stored procedures, but I do prefer it when teams just pick one approach
for data access and stick to it. There are exceptions to every principle though.

• Domain model - rich vs anaemic: Some teams like having a very rich domain model
in their code, building systems that are very object-oriented in nature. Others prefer a
more anaemic domain model where objects are simply data structures that are used by
coarse-grained components and services. Again, consistency of approach goes a long
way.

• Use of the HTTP session: If you’re building a website, you may or may not want to
use the HTTP session for storing temporary information between requests. This can
often depend on a number of things including what your scaling strategy is, where
session-backed objects are actually stored, what happens in the event of a server failure,
whether you’re using sticky sessions, the overhead of session replication, etc. Again,
everybody on the development team should understand the desired approach and stick
to it.

• Always consistent vs eventually consistent: Many teams have discovered that they
often need to make trade-offs in order to meet complex non-functional requirements.

http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
http://en.wikipedia.org/wiki/Marmite

Principles 71

For example, some teams trade-off data consistency for increased performance and/or
scalability. Provided that we do see all Facebook status updates, does it really matter
if we all don’t see them immediately? Your context will dictate whether immediate or
delayed consistency is appropriate, but a consistent approach is important.

Beware of “best practices”

If you regularly build large enterprise software systems, you might consider most of the
principles that I’ve just listed to be “best practices”. But beware. Even the most well-
intentioned principles can sometimes have unintended negative side-effects. That complex
layering strategy you want to adopt to ensure a complete separation of concerns can suck up
a large percentage of your time if you’re only building a quick, tactical solution. Principles
are usually introduced for a good reason, but that doesn’t make them good all of the time.

The size and complexity of the software you’re building, plus the constraints of your
environment, will help you decide which principles to adopt. Context, as always, is key.
Having an explicit list of principles can help to ensure that everybody on the team is working
in the same way but you do need to make sure these principles are helping rather then
hindering. Listening to the feedback from the teammembers will help you to decide whether
your principles are working or not.

25. Technology is not an
implementation detail

I regularly run training classes where I ask small groups of people to design a simple financial
risk system. In most cases, the resulting software architecture diagrams don’t show any
technology decisions. Here are some of the typical responses to the question of why this
is the case:

• “the [risk system] solution is simple and can be built with any technology”.
• “we don’t want to force a solution on developers”.
• “it’s an implementation detail”.
• “we follow the ‘last responsible moment’ principle”.

I firmly believe that technology choices should be included on architecture diagrams but
there’s a separate question here about why people don’t feel comfortable making technology
decisions. Saying that “it can be built with any technology” doesn’t mean that it should.
Here’s why.

1. Do you have complex non-functional requirements?

True, most software systems can be built with pretty much any technology; be it Java, .NET,
Ruby, Python, PHP, etc. If you look at the data storage requirements for most software
systems, again, pretty much any relational database is likely to be able to do the job. Most
software systems are fairly undemanding in terms of the non-functional characteristics, so
any mainstream technology is likely to suffice.

But what happens if you do have complex non-functional requirements such as high
performance and/or scalability? Potentially things start to get a little trickier and you should
really understand whether your technology (and architecture) choices are going to work.
If you don’t consider your non-functional requirements, there’s a risk that your software
system won’t satisfy its goals.

Technology is not an implementation detail 73

2. Do you have constraints?

Many organisations have constraints related to the technologies that can be used and the
skills (people) that are available to build software. Some even dictate that software should be
bought and/or customised rather than built. Constraints can (and will) influence the software
architecture that you come up with. Challenge them by all means, but ignore them and you
risk delivering a software system that doesn’t integrate with your organisation’s existing IT
environment.

3 Do you want consistency?

Imagine you’re building a software system that stores data in a relational database. Does
it matter how individual members of the development team retrieve data from and store
data to the database when implementing features? I’ve seen a Java system where there were
multiple data access techniques/frameworks adopted in the same codebase. And I’ve seen a
SharePoint system where various components were configured in different ways. Sometimes
this happens because codebases evolve over time and approaches change, but often it’s simply
a side-effect of everybody on the development team having free rein to choose whatever
technology/framework/approach they are most familiar with.

People often ask me questions like, “does it really matter which logging framework we
choose?”. If you want everybody on the development team to use the same one, then yes,
it does. Some people are happy to allow anybody on the development team to download and
use any open source library that they want to. Others realise this can lead to problems if
left unchecked. I’m not saying that you should stifle innovation, but you should really only
have a single logging, dependency injection or object-relational mapping framework in a
codebase.

A lack of a consistent approach can lead to a codebase that is hard to understand, maintain
and enhance. Increasing the number of unique moving parts can complicate the deployment,
operation and support too.

Deferral vs decoupling

It’s worth briefly talking about deferring technology decisions and waiting until “the last
responsible moment” to make a decision. Let’s imagine that you’re designing a software sys-
tem where there aren’t any particularly taxing non-functional requirements or constraints.

Technology is not an implementation detail 74

Does it matter which technologies you choose? And shouldn’t a good architecture let you
change your mind at a later date anyway?

Many people will say, for example, that it really doesn’t matter which relational database
you use, especially if you decouple the code that you write from a specific database imple-
mentation using an object-relational mapping layer such as Hibernate, Entity Framework or
ActiveRecord. If you don’t have any significant non-functional requirements or constraints,
and you truly believe that all relational databases are equal, then it probably doesn’t matter
which you use. So yes, you can decouple the database from your code and defer the
technology decision. But don’t forget, while your choice of database is no longer a significant
decision, your choice of ORM is. You can decouple your code from your ORM by introducing
another abstraction layer, but again you’ve made a significant decision here in terms of the
structure of your software system.

Decoupling is a great approach for a number of reasons plus it enables technology decisions
to be deferred. Of course, this doesn’t mean that you should defer decisions though, especially
for reasons related to the presence of non-functional requirements and constraints.

Every decision has trade-offs

Much of this comes back to the fact that every technology has it’s own set of advantages
and disadvantages, with different options not necessarily being swappable commodities. Re-
lational database and web application frameworks are two typical examples of a technology
space that is often seen as commoditised. Likewise with many cloud providers, but even these
have their trade-offs related to deployment, monitoring, management, cost, persistent access
to disk and so on.

At the end of the day, every technology choice you make will have a trade-off whether
that’s related to performance, scalability, maintainability, the ability to find people with the
right experience, etc. Understanding the technology choices can also assist with high-level
estimating and planning, which is useful if you need to understand whether you can achieve
your goal given a limited budget.

If you don’t understand the trade-offs that you’re making by choosing technology X over
Y, you shouldn’t be making those decisions. It’s crucial that the people designing software
systems understand technology. This is why software architects should be master builders.

Technology isn’t just an “implementation detail” and the technology decisions that you make
are as important as the way that you decompose, structure and design your software system.
Defer technology decisions at your peril.

26. More layers = more complexity
One of the key functional requirements of the financial risk system case study that we run
through on the training course is that the solution should be able to distribute data to a subset
of users on a corporate LAN. Clearly there are 101 different ways to solve this problem, with
one of the simplest being to allow the users to access the data via an internal web application.
Since only a subset of the users within the organisation should be able to see the data, any
solution would need some sort of authentication and authorisation on the data.

Given the buzz around Web 2.0 and Rich Internet Applications in recent times, one of the
groups on a training course decided that it would be nice to allow the data to be accessed
via a Microsoft Silverlight application. They’d already thought about building an ASP.NET
application but liked the additional possibilities offered by Silverlight, such as the ability to
slice and dice the data interactively. Another driving factor for their decision was that the
Silverlight client could be delivered “for free” in that it would take “just as long to build as
an ASP.NET application”. “For free” is a pretty bold claim, especially considering that they
were effectively adding an extra architectural layer into their software system. I sketched up
the following summary of their design to illustrate the added complexity.

More layers = more complexity 76

While I don’t disagree that Silverlight applications aren’t hard to build, the vital question
the group hadn’t addressed was where the data was going to come from. As always, there
are options; from accessing the database directly through to exposing some data services in
a middle-tier. The group had already considered deploying some Windows Communication
Foundation (WCF) services into the IIS web server as the mechanism for exposing the data,
but this led to yet further questions.

1. What operations do you need to expose to the Silverlight client?
2. Which technology binding and protocol would you use?
3. How do you ensure that people can’t plug in their own bespoke WCF client and

consume the services?
4. How do you deploy and test it?
5. etc

Non-functional requirements

In the context of the case study, the third question is important. The data should only be
accessible by a small number of people and we really don’t want to expose a web service
that anybody with access to a development tool could consume.

Most security conscious organisations have their self-hosted public facing web servers
firewalled away in a DMZ, yet I’ve seen some software systems where those same secured
web servers subsequently access unsecured web services residing on servers within the
regular corporate LAN. Assuming that I can connect a laptop to the corporate LAN, there’s
usually nothing to stop me firing up a development tool such as Microsoft Visual Studio,
locating the service definition (e.g. a WSDL file) and consuming the web service for my own
misuse. In this case, thought needs to be given to authentication and authorisation of the
data service as well as the Silverlight client. A holistic view of security needs to be taken.

Time and budget - nothing is free

Coming back to the claim that building a Silverlight client won’t take longer than building
an ASP.NET application; this isn’t true because of the additional data services that need to
be developed to support the Silverlight client. In this situation, the benefits introduced by the
additional rich client layer need to be considered on the basis that additional complexity is
also being introduced. All architecture decisions involve trade-offs.Moremoving partsmeans

More layers = more complexity 77

more work designing, developing, testing and deploying. Despite what vendor marketing
hype might say, nothing is ever free and you need to evaluate the pros and cons of
adding additional layers into a design, particularly if they result in additional inter-process
communication.

27. Collaborative design can help and
hinder

Let’s imagine that you’ve been tasked with building a 3-tier web application and you
have a small team that includes people with specialisms in web technology, server-side
programming and databases. From a resourcing point of view this is excellent because
collectively you have experience across the entire stack. You shouldn’t have any problems
then, right?

The effectiveness of the overall team comes down to a number of factors, one of them being
people’s willingness to leave their egos at the door and focus on delivering the best solution
given the context. Sometimes though, individual specialisms can work against a team; simply
through a lack of experience in working as a team or because ego gets in the way of the
common goal. If there’s a requirement to provide a way for a user to view and manipulate
data on our 3-tier web application, you’ll probably get a different possible approach from
each of your specialists.

• Web developer: Just give me the data as JSON and we can do anything we want with
it on the web-tier. We can even throw in some JQuery to dynamically manipulate the
dataset in the browser.

• Server-side developer: We should reuse and extend some of the existing business
logic in the middle-tier service layer. This increases reuse, is more secure than sending
all of the data to the web-tier and we can write automated unit tests around it all.

• Database developer: You’re both idiots. It’s waymore efficient for me to write a stored
procedure that will provide you with exactly the data that you need. :-)

Experience influences software design

Our own knowledge, experience and preferences tend to influence how we design software,
particularly if it’s being done as a solo activity. In the absence of communication, we tend to
make assumptions about where components will sit and how features will work based upon
our own mental model of how the sofware should be designed. Getting these assumptions
out into the open as early as possible can really help you avoid some nasty surprises before

Collaborative design can help and hinder 79

it’s too late. One of the key reasons I prefer using a whiteboard to design software is because
it encourages a more collaborative approach than somebody sitting on their own in front of
their favourite modelling tool on a laptop. If you’re collaborating, you’re also communicating
and challenging each other.

Like pair programming, collaborating is an effective way to approach the software design
process, particularly if it’s done in a lightweight way. Collaboration increases quality plus it
allows us to discuss and challenge some of the common assumptions that we make based our
own knowledge, experience and preferences. It also paves the way for collective ownership
of the code, which again helps to break down the silos that often form within software
development teams. Everybody on the team will have different ideas and those different
ideas need to meet.

28. Software architecture is a
platform for conversation

If you’re writing software as a part of your day-to-day job, then it’s likely that your
software isn’t going to live in isolation. We tend to feel safe in our little project teams,
particularly when everybody knows each other and team spirits are high. We’ve even
built up development processes around helping us communicate better, prioritise better and
ultimately deliver better software. However, many software projects are still developed in
isolation by teams that are locked away from their users and their operational environments.

The success of agile methods has shown us that we need to have regular communication
with the end-users or their representatives so we can be sure we’re building software that
will meet their needs. But what about all of those other stakeholders? Project teams might
have a clear vision about what the software should do but often you’ll hear phrases like this,
often late in the delivery cycle.

• “Nobody told us you needed a production database created on this server.”
• “We can’t upgrade to [Java 7|.NET 4] on that server until system X is compatible.”
• “We don’t have spare production licenses.”
• “Sorry, that contravenes our security policy.”
• “Sorry, we’ll need to undertake some operational acceptance testing before we promote
your application into the production environment.”

• “How exactly are we supposed to support this application?”
• “I don’t care if you have a completely automated release process … I’m not giving you
the production database credentials for your configuration files.”

• “We need to run this past the risk and compliance team.”
• “There’s no way your system is going on the public cloud.”

Software development isn’t just about delivering
features

The people who use your software are just one type of stakeholder. There are usually many
others including:

Software architecture is a platform for conversation 81

• Current development team: The current team need to understand the architecture
and be aware of the drivers so that they produce a solution that is architecturally
consistent and “works”.

• Future development team: Any future development/maintenance teams need to have
the same information to hand so that they understand how the solution works and are
able to modify it in a consistent way.

• Other teams: Often your software needs to integrate with other systems within the
environment, from bespoke software systems through to off-the-shelf vendor products,
so it’s crucial that everybody agrees on how this will work.

• Database administrators: Some organisations have separate database teams that need
to understand how your solution uses their database services (e.g. from design and
optimisation through to capacity planning and archiving).

• Operations/support staff : Operational staff typically need to understand how to run
and support your system (e.g. configuration and deployment through to monitoring
and problem diagnostics).

• Compliance, risk and audit: Some organisations have strict regulations that they need
to follow and people in your organisation may need to certify that you’re following
them too.

• Security team: Likewise with security; some organisations have dedicated security
teams that need to review systems before they are permitted into production environ-
ments.

These are just some of the stakeholders that may have an interest in your architecture, but
there are probably others depending on your organisation and the way that it works. If you
think you can put together a software architecture in an ivory tower on your own, you’re
probably doing it wrong. Software architectures don’t live in isolation and the software
design process is a platform for conversation. A five minute conversation now could help
capture those often implied architectural drivers and improve your chance of a successful
delivery.

29. SharePoint projects need software
architecture too

Although the majority of my commercial experience relates to the development of bespoke
software systems, I’ve seen a number of SharePoint and other product/platform implementa-
tions where the basic tenets of software architecture have been forgotten or neglected. Here’s
a summary of why software architecture is important for SharePoint projects.

1. Many SharePoint implementations aren’t just
SharePoint

Many of the SharePoint solutions I’ve seen are not just simple implementations of the
SharePoint product where end-users can create lists, share documents and collaborate. As
with most software systems, they’re a mix of new and legacy technologies, usually with
complex integration points into other parts of the enterprise via web services and other
integration techniques. Often, bespoke .NET code is also a part of the overall solution, either
running inside or outside of SharePoint. If you don’t take the “big picture” into account
by understanding the environment and its constraints, there’s a chance that you’ll end up
building the wrong thing or building something that doesn’t work.

2. Non-functional requirements still apply to
SharePoint solutions

Even if you’re not writing any bespoke code as a part of your SharePoint solution, that
doesn’t mean you can ignore non-functional requirements. Performance, scalability, security,
availability, disaster recovery, audit, monitoring, etc are all potentially applicable. I’ve
seen SharePoint projects where the team has neglected to think about key non-functional
requirements, even on public Internet-facing websites. As expected, the result was a solution
that exhibited poor response times and/or severe security flaws (e.g. cross-site scripting).
Such issues were identified at a late stage in the project lifecycle.

SharePoint projects need software architecture too 83

3. SharePoint projects are complex and require
technical leadership too

Like any programming language, SharePoint is a complex platform and there are usually
a number of different ways to solve a single problem. In order to get some consistency
of approach and avoid chaos, SharePoint projects need strong technical leadership. The
software architecture role is applicable regardless of whether you’re implementing a platform
or writing a software system from scratch. If you’ve ever seen SharePoint projects where a
seemingly chaotic team has eventually delivered a poor quality solution, you’ll appreciate
why this is important.

4. SharePoint solutions still need to be documented

With all of this complexity in place, I’m continually amazed to see SharePoint solutions that
have no documentation. I’m not talking about hefty 200+ page documents here, but there
should be at least some lightweight documentation to provide an overview of the solution.
Some diagrams to show how the SharePoint solution works at a high-level are also useful.
My C4 approach works well for SharePoint too and some lightweight documentation can be
a great starting point for future support, maintenance and enhancement work; particularly
if the project team changes or if the project is delivered under an outsourcing agreement.

Strong leadership and discipline aren’t just for
software development projects

If you’re delivering software solutions then you need to make sure that you have at least
one person undertaking the technical leadership role. If not, you’re doing it wrong. As an
aside, all of this applies to other platform products such as SAP and Microsoft Dynamics
CRM, especially if you’re “just tacking on an Internet-facing ASP.NET website to expose
some data via the Internet”.

I’ve mentioned this to SharePoint teams in the past and some have replied “but SharePoint
isn’t software development”. Regardless of whether it is or isn’t software development,
successful SharePoint projects need strong technical leadership and discipline. SharePoint
projects need software architecture too.

30. Questions
1. What are the major factors that influence the resulting architecture of a software

system? Can you list those that are relevant to the software system that you are
working on?

2. What are non-functional requirements and why are they important?When should you
think about non-functional requirements?

3. Time and budget are the constraints that most people instantly relate to, but can you
identify more?

4. Is your software development team working with a well-known set of architectural
principles? What are they? Are they clearly understood by everybody on the team?

5. How do you approach the software design process? Does your team approach it in
the same way? Can it be clearly articulated? Can you help others follow the same
approach?

IV Communicating design

This part of the book is about visualising software architecture using a collection of
lightweight, yet effective, sketches.

31. We have a failure to communicate
If you’re working in an agile software development team at the moment, take a look around
at your environment. Whether it’s physical or virtual, there’s likely to be a story wall or
Kanban board visualising the work yet to be started, in progress and done.

Why? Put simply, visualising your software development process is a fantastic way to
introduce transparency because anybody can see, at a glance, a high-level snapshot of the
current progress. Couple this with techniques like value streammapping and you can start to
design some complex Kanban boards to reflect the way that your teamworks. As an industry,
we’ve become pretty adept at visualising our software development process.

However, it seems we’ve forgotten how to visualise the actual software that we’re building.
I’m not just referring to post-project documentation, this also includes communication
during the software development process.

Understanding software architecture is not the same as being able to communicate it. Those
architecture diagrams that you have on the wall of your office; do they reflect the system that
is actually being built or are they conceptual abstractions that bear no resemblance to the
structure of the code. Having run architecture katas with thousands of people over a number
of years, I can say with complete confidence that visualising the architecture of a software
system is a skill that very few people have. People can draw diagrams, but those diagrams
often leave much to the imagination. Almost nobody uses a formal diagramming notation
to describe their solutions too, which is in stark contrast to my experience of working with
software teams a decade ago.

Abandoning UML

If you cast your mind back in time, structured processes provided a reference point for both
the software design process and how to communicate the resulting designs. Somewell-known
examples include the Rational Unified Process (RUP) and Structured Systems Analysis And
Design Method (SSADM). Although the software development industry has moved on in
many ways, we seem to have forgotten some of the good things that these prior approaches
gave us.

As an industry, we do have the Unified Modelling Language (UML), which is a formal
standardised notation for communicating the design of software systems. However, while

http://en.wikipedia.org/wiki/Value_stream_mapping

We have a failure to communicate 87

you can argue about whether UML offers an effective way to communicate software designs
or not, that’s often irrelevant because many teams have already thrown out UML or simply
don’t know it. Such teams typically favour informal boxes and lines style sketches instead
but often these diagrams don’t make much sense unless they are accompanied by a detailed
narrative, which ultimately slows the team down. Next time somebody presents a software
design to you focussed around one or more informal sketches, ask yourself whether they
are presenting what’s on the sketches or whether they are presenting what’s in their head
instead.

Boxes and lines sketches can work very well, but there are many pitfalls associated with communicating
software architecture in this way

Abandoning UML is all very well but, in the race for agility, many software development
teams have lost the ability to communicate visually. The example software architecture
sketches (pictured) illustrate a number of typical approaches to communicating software
architecture and they suffer from the following types of problems:

• Colour coding is usually not explained or is often inconsistent.
• The purpose of diagram elements (i.e. different styles of boxes and lines) is often not
explained.

• Key relationships between diagram elements are sometimes missing or ambiguous.
• Generic terms such as “business logic” are often used.

We have a failure to communicate 88

• Technology choices (or options) are usually omitted.
• Levels of abstraction are often mixed.
• Diagrams often try to show too much detail.
• Diagrams often lack context or a logical starting point.

Boxes and lines sketches can work very well, but there are many pitfalls associated with
communicating software architecture in this way.My approach is to use a collection of simple
diagrams each showing a different part of the same overall story, paying close attention to
the diagram elements if I’m not using UML.

Agility requires good communication

Why is this important? In today’s world of agile delivery and lean startups, many software
teams have lost the ability to communicate what it is they are building and it’s no surprise
that these same teams often seem to lack technical leadership, direction and consistency. If
you want to ensure that everybody is contributing to the same end-goal, you need to be able
to effectively communicate the vision of what it is you’re building. And if you want agility
and the ability to move fast, you need to be able to communicate that vision efficiently too.

32. The need for sketches
I usually get a response of disbelief or amusement when I tell people that I travel around to
teach people about software architecture and how to draw pictures. To be fair, it’s not hard to
see why. Software architecture already has a poor reputation and the mention of “pictures”
tends to bring back memories of analysis paralysis and a stack of UML diagrams that few
people truly understand. After all, the software development industry has come a long way
over the past decade, particularly given the influence of the agile manifesto and the wide
range of techniques it’s been responsible for spawning.

Test driven development vs diagrams

Test-driven development (TDD) is an example and it’s one of those techniques that you either
love or hate. Without getting into the debate of whether TDD is the “best way” to design
software or not, there are many people out there that do use TDD as a way to design software.
It’s not for everybody though and there’s nothing wrong with sketching out some designs on
a whiteboard with a view to writing tests after you’ve written some production code. Despite
what the evangelists say, TDD isn’t a silver bullet.

I’m very much a visual person myself and fall into latter camp. I like being able to visualise
a problem before trying to find a solution. Describe a business process to me and I’ll sketch
up a summary of it. Talk to me about a business problem and I’m likely to draw a high-
level domain model. Visualising the problem is a way for me to ask questions and figure out
whether I’ve understood what you’re saying. I also like sketching out solutions to problems,
again because it’s a great way to get everything out into the open in a way that other people
can understand quickly.

Why should people learn how to sketch?

Why is this a good skill for people to learn? Put simply, agility (and therefore moving
fast) requires good communication. Sketching is a fantastic way to communicate a lot of
information in a relatively short amount of time yet it’s a skill that we don’t often talk about
in the software industry any more. There are several reasons for this:

The need for sketches 90

1. Many teams instantly think of UML but they’ve dropped it as a communicationmethod
or never understood it in the first place. After all, apparently UML “isn’t cool”.

2. Many teams don’t do class design in a visual way anymore because they prefer TDD
instead.

Sketching isn’t art

When I say “sketching”, I mean exactly that. At the age of 12 I was told that I would fail if I
was to take Art as a subject at GCSE (high school) level, so ironically I can’t draw. But it’s not
the ability to create a work of art that’s important. Rather, it’s the ability to get to bottom of
something quickly and to summarise the salient points in a way that others can understand.
It’s about communicating in a simple yet effective and efficient way.

Sketches are not comprehensive models

Just to be clear, I’m not talking about detailed modelling, comprehensive UML models
or model-driven development. This is about effectively and efficiently communicating the
software architecture of the software that you’re building through one or more simple
sketches. This allows you to:

• Help everybody understand the “big picture” of what is being built.
• Create shared vision of what you’re building within the development team.
• Provide a focal point for the development team (e.g. by keeping the sketches on
the wall) so that everybody in the development team remains focussed on what the
software is and how it is being built.

• Provide a point of focus for those technical conversations about how new features
should be implemented.

• Provide a map that can be used by software developers to navigate the source code.
• Help people understand how what they are building fits into the “bigger picture”.
• Help you to explain what you’re building to people outside of the development team
(e.g. operations and support staff, non-technical stakeholders, etc).

• Fast-track the on-boarding of new software developers to the team.
• Provide a starting point for techniques such as risk-storming.

Rather than detailed class design, my goal for software architecture sketches is to ensure that
the high-level structure is understood. It’s about creating a vision that everybody on the team
can understand and commit to. Context, containers and components diagrams are usually
sufficient.

The need for sketches 91

Sketching can be a collaborative activity

As a final point, sketching can be a collaborative activity, particularly if done using a
whiteboard or flip chart rather than a modelling tool. This fits much more with the concept
of collaborative self-organising teams that many of us are striving towards but it does require
that everybody on the team understands how to sketch.

Unfortunately, drawing diagrams seems to have fallen out of favour with many software
development teams but it’s a skill that should be in every software developer’s toolbox
because it paves the way for collaborative software design and makes collective code
ownership easier. Every software development team can benefit from a few high-level
sketches.

33. Ineffective sketches
Over the past few years, I’ve found that many software development teams struggle to
visualise and communicate the software architecture of the systems they build. I see three
major reasons for this.

1. In their haste to adopt agile approaches, many software teams have thrown out the
baby with the bath water - modelling and documentation have been thrown out
alongside traditional plan-driven processes and methodologies.

2. Teams that did see the value in documents and diagrams have typically abandoned
the Unified Modeling Language (UML) (assuming that they used it in the first place, of
course) in favour of an approach that is more lightweight and pragmatic. My anecdotal
evidence, based upon meeting and speaking to thousands of software developers,
suggests that as many as nine out of ten software developers don’t use UML.

3. There are very few people out there who teach software teams how to effectively
visualise, model and communicate software architecture. And, based upon running
workshops for some computer science students, this includes universities.

If you look around the offices of most software development teams for long enough, you’re
sure to find some sketches, either on whiteboards or scraps of paper sitting on desks. Sketches
are a great way to capture and present software architecture but they usually lack the
formality and rigour of UML diagrams. This isn’t necessarily a bad thing, but the diagrams
do need to be comprehensible and this is where things start to get tricky. Having run software
architecture sketching workshops for thousands of people over the past few years, I can say
without doubt that the majority of people do find this a very hard thing to do. The small
selection of photos that follow are taken from these workshops, where groups of people have
tried to communicate their software solution to the financial risk system case study. Have a
look at each in turn and ask yourself whether they communicate the software architecture
of the solution in an effective way. Some of the diagrams make use of colour, so apologies if
you’re reading this on a black and white e-book reader.

The shopping list

Regardless of whether this is the software architecture diagram or one of a collection of
software architecture diagrams, this diagram doesn’t tell you much about the solution.

Ineffective sketches 93

Essentially it’s just a shopping list of technologies.

There’s a Unix box and aWindows box, with some additional product selections that include
JBoss (a Java EE application server) and Microsoft SQL Server. The problem is, I don’t know
what those products are doing and there seems to be a connection missing between the Unix
box and theWindows box. Since responsibilities and interactions are not shown, this diagram
probably would have been better presented as a bulleted list.

Boxes and no lines

When people talk about software architecture, they often refer to “boxes and lines”. This next
diagram has boxes, but no lines.

Ineffective sketches 94

This is a three-tier solution (I think) that uses the Microsoft technology stack. There’s an
ASP.NET web thing at the top, which I assume is being used for some sort of user interaction,
although that’s not shown on the diagram. The bottom section is labelled “SQL Server” and
there are lots of separate “database cans”. To be honest though, I’m left wondering whether
these are separate database servers, schemas or tables.

Finally, in the middle, is a collection of boxes, which I assume are things like components,
services, modules, etc. From one perspective, it’s great to see how the middle-tier of the
overall solution has been decomposed into smaller chunks and these are certainly the types
of components/services/modules that I would expect to see for such a solution. But again,
there are no responsibilities and no interactions. Software architecture is about structure,
which is about things (boxes) and how they interact (lines). This diagram has one, but not
the other. It’s telling a story, but not the whole story.

The “functional view”

This is similar to the previous diagram and is very common, particularly in large organisa-
tions for some reason.

Ineffective sketches 95

Essentially the group that produced this diagram has simply documented their functional
decomposition of the solution into things, which I again assume are components, services,
modules, etc but I could be wrong. Imagine a building architect drawing you a diagram of
your new house that simply had a collection of boxes labelled “Cooking”, “Eating”, “Sleeping”,
“Relaxing”, etc.

This diagram suffers from the same problem as the previous diagram (no responsibilities and
no interactions) plus we additionally have a colour coding to decipher. Can you work out
what the colour coding means? Is it related to input vs output functions? Or perhaps it’s
business vs infrastructure? Existing vs new? Buy vs build? Or maybe different people simply
had different colour pens! Who knows. I often get asked why the central “Risk Assessment
Processor” box has a noticeably thicker border than the other boxes. I honestly don’t know,
but I suspect it’s simply because the marker pen was held at a different angle.

The airline route map

This is one of my all-time favourites. It was also the one and only diagram that this particular
group used to present their solution.

Ineffective sketches 96

The central spine of this diagram is great because it shows how data comes in from the
source data systems (TDS and RDS) and then flows through a series of steps to import the
data, perform calculations, generate reports and finally distribute them. It’s a super-simple
activity diagram that provides a nice high-level overview of what the system is doing. But
then it all goes wrong.

I think the green circle on the right of the diagram is important because everything is pointing
to it, but I’m not sure why. And there’s also a clock, which I assume means that something
is scheduled to happen at a specific time. Let’s hope it’s not a time-bomb!

The left of the diagram is equally confusing, with various lines of differing colours and styles
zipping across one another. If you look carefully you’ll see the letters “UI” upside-down.
Perhaps this diagram makes more sense if you fold it like an Origami challenge?

Generically true

This is another very common style of diagram. Next time somebody asks you to produce a
software architecture diagram of a system, present them this photo and you’re done!

Ineffective sketches 97

It’s a very “Software Architecture 101” style of diagram where most of the content is generic.
Ignoring the source data systems at the top of the diagram (TDS and RDS), we have boxes
generically labelled transport, archive, audit, report generation, error handling and arrows
labelled error and action. Oh and look at the box in the centre - it’s labelled “business logic”.
Do you ever build software that implements “business logic”?

There are a number of ways in which this diagram can be made more effective, but simply
replacing the “business logic” box with “financial risk calculator” at least highlights the
business domain in which we are operating. In Screaming Architecture, Uncle Bob Martin
says that the organisation of a codebase should scream something about the business domain.
The same is true of software architecture diagrams.

The “logical view”

This diagram is also relatively common. It shows the overall shape of the software architec-
ture (including responsibilities, which I really like) but the technology choices are left to your
imagination.

http://blog.8thlight.com/uncle-bob/2011/09/30/Screaming-Architecture.html

Ineffective sketches 98

There’s a common misconception that “software architecture” diagrams should be “logical”
in nature rather than include technology choices, especially before any code is written. After
all, I’m often told that the financial risk system “is a simple solution that can be built with
any technology”, so it doesn’t really matter anyway. I disagree this is the case and the issue
of including or omitting technology choices is covered in more detail elsewhere in the book.

Deployment vs execution context

This next one is a Java solution consisting of a web application and a bunch of server-side
components. Although it provides a simple high-level overview of the solution, it’s missing
some information and you need to make some educated guesses to fill in the blanks.

Ineffective sketches 99

If you look at the Unix box in the centre of the diagram, you’ll see two smaller boxes labelled
“Risk Analysis System” and “Data Import Service”. If you look closely, you’ll see that both
boxes are annotated “JAR”, which is the deploymentmechanism for Java code (JavaARchive).
Basically this is a ZIP file containing compiled Java bytecode. The equivalent in the .NET
world is a DLL.

And herein lies the ambiguity. What happens if you put a JAR file on a Unix box? Well,
the answer is not very much other than it takes up some disk space. And cron (the Unix
scheduler) doesn’t execute JAR files unless they are really standalone console applications,
the sort that have a “public static void main” method as a program entry point. By deduction
then, I think both of those JAR files are actually standalone applications and that’s what I’d
like to see on the diagram. Rather than the deployment mechanism, I want to understand the
execution context.

Too many assumptions

This next diagram tells us that the solution is an n-tier Java EE system, but it omits some
important details.

Ineffective sketches 100

The lines between the web server and the application server have no information about how
this communication occurs. Is it SOAP? RESTful services? XML over HTTP? Remote method
invocation? Windows Communication Foundation? Asynchronous messaging? It’s not clear
and this concerns me for three reasons:

1. Constraints: If you’re working in an environment with existing constraints, the
technology choices may have be made for you already. For example, perhaps you have
standards about inter-process communication or firewalls that only permit certain
types of traffic through them.

2. Non-functional requirements: The choice of technology and protocol may have an
impact on whether you meet your non-functional requirements, particularly if you are
dealing with high performance, scalability or security.

3. Complexity: I’ve worked with software teams who have never created an n-tier
architecture before and they are often under the illusion that this style of architecture
can be created “for free”. In the real world, more layers means more complexity.

Granted there are many options and often teams don’t like committing early without putting
together some prototypes. No problem, just annotate those lines on the diagram with the list
of potential options instead so we can at least have a better conversation.

Ineffective sketches 101

Homeless Old C# Object (HOCO)

If you’ve heard of “Plain Old C# Objects” (POCOs) or “Plain Old Java Objects” (POJOs), this
is the homeless edition. This diagram mixes up a number of different levels of detail.

In the bottom left of the diagram is a SQL Server database, and at the top left of the diagram is
a box labelled “Application”. Notice how that same box is also annotated (in green) “Console-
C#”. Basically, this system seems to be made up of a C# console application and a database.
But what about the other boxes?

Well, most of them seem to be C# components, services, modules or objects and they’re
much like what we’ve seen on some of the other diagrams. There’s also a “data access” box
and a “logger” box, which could be frameworks or architectural layers. Do all of these boxes
represent the same level of granularity as the console application and the database? Or are
they actually part of the application? I suspect the latter, but the lack of boundaries makes
this diagram confusing. I’d like to draw a big box around most of the boxes to say “all of
these things live inside the console application”. I want to give those boxes a home. Again, I
do want to understand how the system has been decomposed into smaller components, but
I also want to know about the execution context too.

Ineffective sketches 102

Choose your own adventure

This is the middle part of a more complex diagram.

It’s a little like those “choose your own adventure” books that I used to read as a kid.
You would start reading at page 1 and eventually arrive at a fork in the story where you
decide what should happen next. If you want to attack the big scary creature you’ve just
encountered, you turn to page 47. If you want to run away like a coward, it’s page 205 for
you. You keep making similar choices and eventually, and annoyingly, your character ends
up dying and you have to start over again.

This diagram is the same. You start at the top and weave your way downwards through what
is a complex asynchronous and event-driven style of architecture. You often get to make a
choice - should you follow the “fail event” or the “complete event”? As with the books, all
paths eventually lead to the (SNMP) trap on the left of the diagram.

The diagram is complex, it’s trying to show everything and the single colour being used
doesn’t help. Removing some information and/or using colour coding to highlight the
different paths through the architecture would help tremendously.

Ineffective sketches 103

Stormtroopers

To pick up on something you may have noticed from previous sketches, I regularly see
diagrams that include unlabelled users/actors. Essentially they are faceless clones.

Should have used a whiteboard!

The final diagram is a great example of why whiteboards are such useful bits of kit!

Ineffective sketches 104

Creating effective sketches

These example diagrams typify what I see when I initially work with software teams to help
them better communicate software architectures visually. Oh, and don’t think that using
Microsoft Visio will help! It often makes things worse because now people have the tool
to struggle with too. A quick Google image search will uncover a plethora of similar block
diagrams that suffer from many of the same problems we’ve seen already. I’m sure you will
have seen diagrams like this within your own organisations too.

Using UML would avoid many of these pitfalls but it’s not something that many people seem
enthusiastic about learning these days. Simple and effective software architecture sketches
are well within the reach of everybody though. All it takes is some simple advice and a
common set of abstractions.

https://www.google.com/search?q=software+architecture+diagrams&tbm=isch

34. C4: context, containers,
components and classes

The code for any software system is where most of the focus remains for the majority of
the software development life cycle, and this makes sense because the code is the ultimate
deliverable. But if you had to explain to somebody how that system worked, would you start
with the code?

Unfortunately the code doesn’t tell the whole story and, in the absence of documentation,
people will typically start drawing boxes and lines on a whiteboard or piece of paper to
explain what the major building blocks are and how they are connected. When describing
software through pictures, we have a tendency to create a single uber-diagram that includes
as much detail as possible at every level of abstraction simultaneously. This may be because
we’re anticipating questions or because we’re a little too focussed on the specifics of how the
system works at a code level. Such diagrams are typically cluttered, complex and confusing.
Picking up a tool such as Microsoft Visio, Rational Software Architect or Sparx Enterprise
Architect usually adds to the complexity rather than making life easier.

A better approach is to create a number of diagrams at varying levels of abstraction. A
number of simpler diagrams can describe software in a much more effective way than a
single complex diagram that tries to describe everything.

A common set of abstractions

If software architecture is about the structure of a software system, it’s worth understanding
what the major building blocks are and how they fit together at differing levels of abstraction.

C4: context, containers, components and classes 106

A simple model of architectural constructs

Assuming an OO programming language, the way that I like to think about structure is as
follows … a software system is made up of a number of containers, which themselves are
made up of a number of components, which in turn are implemented by one or more classes.
It’s a simple hierarchy of logical building blocks that can be used to model most software
systems.

• Classes: for most of us in an OO world, classes are the smallest building blocks of our
software systems.

• Components: a component can be thought of as a logical grouping of one or more
classes. For example, an audit component or an authentication service that is used
by other components to determine whether access is permitted to a specific resource.
Components are typically made up of a number of collaborating classes, all sitting
behind a higher level contract.

• Containers: a container represents something in which components are executed or
where data resides. This could be anything from a web or application server through
to a rich client application or database. Containers are typically executables that are
started as a part of the overall system, but they don’t have to be separate processes in
their own right. For example, I treat each Java EE web application or .NET website as
a separate container regardless of whether they are running in the same physical web
server process. The key thing about understanding a software system from a containers

C4: context, containers, components and classes 107

perspective is that any inter-container communication is likely to require a remote
interface such as a SOAP web service, RESTful interface, Java RMI, Microsoft WCF,
messaging, etc.

• Systems: a system is the highest level of abstraction and represents something that
delivers value to somebody. A system is made up of a number of separate containers.
Examples include a financial risk management system, an Internet banking system, a
website and so on.

It’s easy to see howwe could take this further, by putting some very precise definitions behind
each of the types of building block and by modelling the specifics of how they’re related. But
I’m not sure that’s particularly useful because it would constrain and complicate what it is
we’re trying to achieve here, which is to simply understand the structure of a software system
and create a simple set of abstractions with which to describe it.

Summarising the static view of your software

Visualising this hierarchy is then done by creating a collection of system context, container,
component and (optionally) class diagrams to summarise the static structure of a software
system:

1. Context: A high-level diagram that sets the scene; including key system dependencies
and actors.

2. Container: A container diagram shows the high-level technology choices, how
responsibilities are distributed across them and how the containers communicate.

3. Component: For each container, a component diagram lets you see the key logical
components and their relationships.

4. Classes: This is an optional level of detail and I will draw a small number of high-level
UML class diagrams if I want to explain how a particular pattern or component will
be (or has been) implemented. The factors that prompt me to draw class diagrams for
parts of the software system include the complexity of the software plus the size and
experience of the team. Any UML diagrams that I do draw tend to be sketches rather
than comprehensive models.

Common abstractions over a common notation

This simple sketching approach works for me and many of the software teams that I work
with, but it’s about providing some organisational ideas and guidelines rather than creating

C4: context, containers, components and classes 108

a prescriptive standard. The goal here is to help teams communicate their software designs
in an effective and efficient way rather than creating another comprehensive modelling
notation.

UML provides both a common set of abstractions and a common notation to describe them,
but I rarely find teams who use either effectively. I’d rather see teams able to discuss their
software systems with a common set of abstractions in mind rather than struggling to
understand what the various notational elements are trying to show. For me, a common
set of abstractions is more important than a common notation.

Most maps are a great example of this principle in action. They all tend to show roads,
rivers, lakes, forests, towns, churches, etc but they often use different notation in terms of
colour-coding, line styles, iconography, etc. The key to understanding them is exactly that
- a key/legend tucked away in a corner somewhere. We can do the same with our software
architecture diagrams.

It’s worth reiterating that informal boxes and lines sketches provide flexibility at the expense
of diagram consistency because you’re creating your own notation rather than using a
standard like UML. My advice here is to be conscious of colour-coding, line style, shapes,
etc and let a consistent notation evolve naturally within your team. Including a simple
key/legend on each diagram to explain the notation will help. Oh, and if naming really is
the hardest thing in software development, try to avoid a diagram that is simply a collection
of labelled boxes. Annotating those boxeswith responsibilities helps to avoid ambiguitywhile
providing a nice “at a glance” view.

Diagrams should be simple and grounded in reality

There seems to be a commonmisconception that “architecture diagrams” must only present a
high-level conceptual view of the world, so it’s not surprising that software developers often
regard them as pointless. Software architecture diagrams should be grounded in reality, in
the same way that the software architecture process should be about coding, coaching and
collaboration rather than ivory towers. Including technology choices (or options) is usually
a step in the right direction and will help prevent diagrams looking like an ivory tower
architecture where a bunch of conceptual components magically collaborate to form an end-
to-end software system.

A single diagram can quickly become cluttered and confused, but a collection of simple
diagrams allows you to effectively present the software from a number of different levels
of abstraction. This means that illustrating your software can be a quick and easy task that

C4: context, containers, components and classes 109

requires little ongoing effort to keep those diagrams up to date. You never know, people might
even understand them too.

35. Context diagram
A context diagram can be a useful starting point for diagramming and documenting a
software system, allowing you to step back and look at the big picture.

Intent

A context diagram helps you to answer the following questions.

1. What is the software system that we are building (or have built)?
2. Who is using it?
3. How does it fit in with the existing IT environment?

Structure

Draw a simple block diagram showing your system as a box in the centre, surrounded by its
users and the other systems that it interfaces with. For example, if you were diagramming
a solution to the financial risk system, you would draw the following sort of diagram.
Detail isn’t important here as it’s your wide angle view showing a big picture of the system
landscape. The focus should be on people and systems rather than technologies and protocols.

Context diagram 111

Example context diagrams for the financial risk system (see appendix)

These example diagrams show the risk system sitting in the centre, surrounded by its users
and the other IT systems that the risk system has a dependency on.

Users, actors, roles, personas, etc

These are the users of the system. There are two main types of user for the risk system:

• Business user (can view the risk reports that are generated)
• Admin user (can modify the parameters used in the risk calculation process)

IT systems

Depending on the environment and chosen solution, the other IT systems you might want
to show on a context diagram for the risk system include:

• Trade Data System (the source of the financial trade data)
• Reference Data System (the source of the reference data)
• Central Monitoring System (where alerts are sent to)
• Active Directory or LDAP (for authenticating and authorising users)

Context diagram 112

• Microsoft SharePoint or another content/document management system (for distribut-
ing the reports)

• Microsoft Exchange (for sending e-mails to users)

Interactions

It’s useful to annotate the interactions (user <-> system, system <-> system, etc) with some
information about the purpose rather than simply having a diagramwith a collection of boxes
and ambiguous lines connecting everything together. For example, when I’m annotating user
to system interactions, I’ll often include a short bulleted list of the important use cases/user
stories to summarise how that particular type of user interacts with the system.

Motivation

You might ask what the point of such a simple diagram is. Here’s why it’s useful:

• It makes the context explicit so that there are no assumptions.
• It shows what is being added (from a high-level) to an existing IT environment.
• It’s a high-level diagram that technical and non-technical people can use as a starting
point for discussions.

• It provides a starting point for identifying who you potentially need to go and talk to
as far as understanding inter-system interfaces is concerned.

A context diagram doesn’t showmuch detail but it does help to set the scene and is a starting
point for other diagrams. Finally, a context diagram should only take a couple of minutes to
draw, so there really is no excuse not to do it.

Audience

• Technical and non-technical people, inside and outside of the immediate software
development team.

Context diagram 113

Example

Let’s look at an example. The techtribes.je website provides a way to find people, tribes
(businesses, communities, interest groups, etc) and content related to the tech, IT and digital
sector in Jersey and Guernsey, the two largest of the Channel Islands. At the most basic level,
it’s a content aggregator for local tweets, news, blog posts, events, talks, jobs andmore. Here’s
a context diagram that provides a visual summary of this.

Again, detail isn’t important here as this is your zoomed out view. The focus should be on

http://techtribes.je

Context diagram 114

people (actors, roles, personas, etc) and software systems rather than technologies, protocols
and other low-level details.

36. Container diagram
Once you understand how your system fits in to the overall IT environment with a context
diagram, a really useful next step can be to illustrate the high-level technology choices with
a container diagram.

Intent

A container diagram helps you answer the following questions.

1. What is the overall shape of the software system?
2. What are the high-level technology decisions?
3. How are responsibilities distributed across the system?
4. How do containers communicate with one another?
5. As a developer, where do I need to write code in order to implement features?

Structure

Draw a simple block diagram showing your key technology choices. For example, if you were
diagramming a solution to the financial risk system, depending on your solution, you would
draw the following sort of diagram.

Container diagram 116

Example container diagrams for the financial risk system (see appendix)

These example diagrams show the various web servers, application servers, standalone
applications, databases, file systems, etc that make up the risk system. To enrich the diagram,
often it’s useful to include some of the concepts from the context diagram diagram, such as
users and the other IT systems that the risk system has a dependency on.

Containers

By “containers”, I mean the logical executables, applications or processes that make up your
software system; such as:

• Web servers and applications¹ (e.g. Apache HTTP Server, Apache Tomcat, Microsoft
IIS, WEBrick, etc)

• Application servers (e.g. IBM WebSphere, BEA/Oracle WebLogic, JBoss AS, etc)
• Enterprise service buses and business process orchestration engines (e.g. Oracle Fusion
middleware, etc)

• SQL databases (e.g. Oracle, Sybase, Microsoft SQL Server, MySQL, PostgreSQL, etc)
• NoSQL databases (e.g. MongoDB, CouchDB, RavenDB, Redis, Neo4j, etc)

¹If multiple Java EE web applications or .NET websites are part of the same software system, they are usually executed
in separate classloaders or AppDomains so I show them as separate containers because they are independent and require
inter-process communication (e.g. remote method invocation, SOAP, REST, etc) to collaborate.

Container diagram 117

• Other storage systems (e.g. Amazon S3, etc)
• File systems (especially if you are reading/writing data outside of a database)
• Windows services
• Standalone/console applications (i.e. “public static void main” style applications)
• Web browsers and plugins
• cron and other scheduled job containers

For each container drawn on the diagram, you could specify:

• Name: The logical name of the container (e.g. “Internet-facing web server”, “Database”,
etc)

• Technology: The technology choice for the container (e.g. Apache Tomcat 7, Oracle
11g, etc)

• Responsibilities: A very high-level statement or list of the container’s responsibilities.
You could alternatively show a small diagram of the key components that reside in each
container, but I find that this usually clutters the diagram.

If you’re struggling to understand whether to include a box on a containers diagram, simply
ask yourself whether that box will be (or can be) deployed on a separate piece of physical or
virtual hardware. Everything that you show on a containers diagram should be deployable
separately. This doesn’t mean that you must deploy them on separate infrastructure, but they
should be able to be deployed separately.

Interactions

Typically, inter-container communication is inter-process communication. It’s very useful to
explicitly identify this and summarise how these interfaces will work. As with any diagram,
it’s useful to annotate the interactions rather than simply having a diagram with a collection
of boxes and ambiguous lines connecting everything together. Useful information to add
includes:

• The purpose of the interaction (e.g. “reads/writes data from”, “sends reports to”, etc).
• Communication method (e.g. Web Services, REST, Java Remote Method Invocation,
Windows Communication Foundation, Java Message Service).

• Communication style (e.g. synchronous, asynchronous, batched, two-phase commit,
etc)

• Protocols and port numbers (e.g. HTTP, HTTPS, SOAP/HTTP, SMTP, FTP, RMI/IIOP,
etc).

Container diagram 118

System boundary

If you do choose to include users and IT systems that are outside the scope of what you’re
building, it can be a good idea to draw a box around the appropriate containers to explicitly
demarcate the system boundary. The system boundary corresponds to the single box that
would appear on a context diagram (e.g. “Risk System”).

Motivation

Where a context diagram shows your software system as a single box, a container diagram
opens this box up to show what’s inside it. This is useful because:

• It makes the high-level technology choices explicit.
• It showswhere there are relationships between containers and how they communicate.
• It provides a framework in which to place components (i.e. so that all components have
a home).

• It provides the often missing link between a very high-level context diagram and (what
is usually) a very cluttered component diagram showing all of the logical components
that make up the entire software system.

As with a context diagram, this should only take a couple of minutes to draw, so there really
is no excuse not to do it either.

Audience

• Technical people inside and outside of the immediate software development team;
including everybody from software developers through to operational and support
staff.

Example

The following diagram shows the logical containers that make up the techtribes.je website.

Container diagram 119

Put simply, techtribes.je is made up of an Apache Tomcat web server that provides users with
information, and that information is kept up to date by a standalone content updater process.
All data is stored either in a MySQL database, a MongoDB database or the file system. It’s
worth pointing out that this diagram says nothing about the number of physical instances
of each container. For example, there could be a farm of web servers running against a
MongoDB cluster, but this diagram doesn’t show that level of information. Instead, I show
physical instances, failover, clustering, etc on a separate deployment diagram. The containers
diagram shows the high-level shape of the software architecture and how responsibilities are

Container diagram 120

distributed across it. It also shows the major technology choices and how the containers
communicate with one another. It’s a simple, high-level technology focussed diagram that is
useful for software developers and support/operations staff alike.

37. Component diagram
Following on from a container diagram showing the high-level technology decisions, I’ll then
start to zoom in and decompose each container further. How you decompose your system is
up to you, but I tend to identify the major logical components and their interactions. This
is about partitioning the functionality implemented by a software system into a number of
distinct components, services, subsystems, layers, workflows, etc. If you’re following a “pure
Object Oriented” or Domain-Driven Design approach, then this may or may not work for
you.

Intent

A component diagram helps you answer the following questions.

1. What components/services is the system made up of?
2. It is clear how the system works at a high-level?
3. Do all components/services have a home (i.e. reside in a container)?

Structure

Whenever people are asked to draw “architecture diagrams”, they usually end up drawing
diagrams that show the logical components that make up their software system. That is
basically what this diagram is about, except we only want to see the components that reside
within a single container at a time. Here are some examples of component diagrams if you
were designing a solution to the financial risk system.

Component diagram 122

Example component diagrams for the financial risk system (see appendix)

Whenever I draw a component diagram, it typically only shows the components that reside
within a single container. This is by no means a rule though and, for small software systems,
often you can show all of the components across all of the containers on a single diagram. If
that diagram starts to become too cluttered, maybe it’s time to break it apart.

Components

If you were designing a solution to the financial risk system, you might include components
like:

• Trade data system importer
• Reference data system importer
• Risk calculator
• Authentication service
• System driver/orchestrator
• Audit component
• Notification component (e.g. e-mail)
• Monitoring service
• etc

Component diagram 123

These components are the coarse-grained building blocks of your system and you should
be able to understand how a use case/user story/feature can be implemented across one or
more of these components. If you can do this, then you’ve most likely captured everything.
If, for example, you have a requirement to audit system access but you don’t have an audit
component or responsibilities, then perhaps you’ve missed something.

For each of the components drawn on the diagram, you could specify:

• Name: The name of the component (e.g. “Risk calculator”, “Audit component”, etc).
• Technology: The technology choice for the component (e.g. PlainOld [Java|C#|Ruby|etc]
Object, Enterprise JavaBean, Windows Communication Foundation service, etc).

• Responsibilities: A very high-level statement of the component’s responsibilities (e.g.
either important operation names or a brief sentence describing the responsibilities).

Interactions

To reiterate the same advice given for other types of diagram, it’s useful to annotate the
interactions between components rather than simply having a diagram with a collection
of boxes and ambiguous lines connecting them all together. Useful information to add the
diagram includes:

• The purpose of the interaction (e.g. “uses”, “persists trade data through”, etc)
• Communication style (e.g. synchronous, asynchronous, batched, two-phase commit,
etc)

Motivation

Decomposing your software system into a number of components is software design at a
slightly higher level of abstraction than classes and the code itself. An audit component might
be implemented using a single class backing onto a logging framework (e.g. log4j, log4net,
etc) but treating it as a distinct component lets you also see it for what it is, which is a key
building block of your architecture. Working at this level is an excellent way to understand
how your system will be internally structured, where reuse opportunities can be realised,
where you have dependencies between components, where you have dependencies between
components and containers, and so on. Breaking down the overall problem into a number of
separate parts also provides you with a basis to get started with some high-level estimation,
which is great if you’ve ever been asked for ballpark estimates for a new project.

Component diagram 124

A component diagram shows the logical components that reside inside each of the containers.
This is useful because:

• It shows the high-level decomposition of your software system into components with
distinct responsibilities.

• It shows where there are relationships and dependencies between components.
• It provides a framework for high-level software development estimates and how the
delivery can be broken down.

Designing a software system at this level of abstraction is something that can be done in a
number of hours or days rather thanweeks ormonths. It also sets you up for designing/coding
at the class and interface level without worrying about the overall high-level structure.

Audience

• Technical people within the software development team.

Example

As illustrated by the container diagram, techtribes.je includes a standalone process that pulls
in content from Twitter, GitHub and blogs. The following diagram shows the high-level
internal structure of the content updater in terms of components.

Component diagram 125

This diagram shows how the content updater is divided into components, what each of those
components are, their responsibilities and the technology/implementation details.

The Logging Component is used by everything, but I didn’t want to draw the lines to it from
every component because the resulting diagram looks very cluttered. Instead, I’ve used an
asterisk to denote this.

38. Shneiderman’s mantra
Shneiderman’s mantra is something that I’ve been introduced to recently, particularly in the
context of big data. In essence, it’s a simple concept for understanding and visualising large
quantities of data.

Overview first, zoom and filter, then details-on-demand

Leaving aside the thorny issue of how teams structure their software systems as code, one
of the major problems I see teams having with software architecture is how to think about
their systems. There are various ways to do this, including a number of view catalogs (e.g.
logical view, design view, development view, etc) and I have my C4 model that focuses on
the static structure of a software system. If you inherit an existing codebase and are asked to
create a software architecture model though, where do you start? And how to people start
understanding the model as quickly as possible so they can get on with their job?

Shneiderman’s mantra fits really nicely with the C4 model because it’s hierarchical.

http://www.ifp.illinois.edu/nabhcs/abstracts/shneiderman.html

Shneiderman’s mantra 127

Overview first (context and container diagrams)

My starting point for understanding any software system is to draw a system context
diagram. This helps me to understand the scope of the system, who is using it and what
the key system dependencies are. It’s usually quick to draw and quick to understand.

Next I’ll open up the system and draw a diagram showing the containers (web applications,
mobile apps, standalone applications, databases, file systems, message buses, etc) that make
up the system. This shows the overall shape of the software system, how responsibilities have
been distributed and the key technology choices that have been made.

Zoom and filter (component diagrams)

As developers, we often need more detail, so I’ll then zoom into each (interesting) container
in turn and show the “components” inside it. This is where I show how each application has
been decomposed into components, services, modules, layers, etc, along with a brief note
about key responsibilities and technology choices. If you’re hand-drawing the diagrams, this
part can get a little tedious, which is why I’m looking at how to create a software architecture
model as code, and automating as much of this as possible.

Details on demand (class diagrams)

Assuming that I’m using an object-oriented programming language like Java or C#, I might
optionally progress deeper into the hierarchy to show the classes that make up a particular
component, service, module, layer, etc. Ultimately though, this detail resides in the code and,
as software developers, we can get that on demand.

Understanding a large and/or complex software system

Next time you’re asked to create a software architecture model, understand an existing
system, present an system overview, do some software archaeology, etc, my advice is to
keep Shneiderman’s mantra in mind. Start at the top and work into the detail, creating a
story that gets deeper into the detail as it progresses.

http://www.structurizr.com
http://www.structurizr.com

39. Technology choices included or
omitted?

Think back to the last software architecture diagram that you saw. What did it look like?
What level of detail did it show? Were technology choices included or omitted? In my expe-
rience, the majority of architecture diagrams omit any information about technology, instead
focussing on illustrating the functional decomposition and major conceptual elements. Why
is this?

Drawing diagrams during the design process

One of the main reasons for drawing software architecture diagrams is to communicate ideas
during the process of designing software, much like you’d see blueprints drawn-up during
the early stages of a building project.

I regularly run training classes where I ask small groups of people to design a simple financial
risk system and here’s a photo of an architecture diagram produced during one of those
classes. Solution aside, the diagram itself is fairly typical of what I see. It shows a conceptual
design rather than technical details.

Technology choices included or omitted? 129

Asking people why their diagrams don’t show any technology decisions results in a number
of different responses:

• “the [financial risk system] solution is simple and can be built with any technology”.
• “we don’t want to force a solution on developers”.
• “it’s an implementation detail”.
• “we follow the ‘last responsible moment’ principle”.

Drawing diagrams retrospectively

If you’re drawing software architecture diagrams retrospectively, for documentation after the
software has been built, there’s really no reason for omitting technology decisions. However,
others don’t necessarily share this view and I often hear the following comments:

• “the technology decisions will clutter the diagrams”.
• “but everybody knows that we only use ASP.NET against an Oracle database”.

Architecture diagrams should be “conceptual”

It seems that regardless of whether diagrams are being drawn before, during or after the
software has been built, there’s a common misconception that architecture diagrams should

Technology choices included or omitted? 130

be conceptual in nature.

One of the reasons that software architecture has a bad reputation is because of the stereotype
of ivory tower architects drawing very high-level pictures to describe their grandiose visions.
I’m sure you’ve seen examples of diagrams with a big box labelled “Enterprise Service
Bus” connected to a cloud, or perhaps diagrams showing a functional decomposition with
absolutely no consideration as to whether the vision is implementable. If you truly believe
that software architecture diagrams should be fluffy and conceptual in nature, my advice is
to hire people that don’t know about technology. That should do the trick.

Back to the real world, I like to see software architecture have a grounding in reality and
technology choice shouldn’t be an implementation detail. One way to ensure that technology
is considered is to simply show the technology choices by including them on software
architecture diagrams.

Make technology choices explicit

Including technology choices on software architecture diagrams removes ambiguity, even
if you’re working in an environment where all software is built using a standard set of
technologies and patterns. Imagine that you’re designing a software system. Are you really
doing this without thinking about how you’re actually going to implement it? Are you really
thinking in terms of conceptual boxes and functional decomposition? If the answer to these
questions is “not really”, then why not add this additional layer of information onto the
diagrams. Doing so provides a better starting point for conversations, particularly if you
have a choice of technologies to use. Forcing people to include technology choices on their
software architecture diagrams also tends to lead to much richer and deeper conversations
that are grounded in the real-world. A fluffy conceptual diagram tends to make a lot of
assumptions, but factoring in technology forces the following types of questions to be asked:

• “how does this component communicate with that component if it’s running in
separate process?”

• “how does this component get initiated, and where does that responsibility sit?”
• “why does this process need to communicate with that process?”
• “why is this component going to be implemented in technology X rather than
technology Y”

• etc

Technology choices included or omitted? 131

As for technology decisions cluttering the diagrams, there are a number of strategies for
dealing with this concern, including the use of a container diagram to separately show the
major technology decisions.

Technology choices can help bring an otherwise ideal and conceptual software design back
down to earth so that it is grounded in reality once again, while communicating the entirety
of the big picture rather than just a part of it. Oh, and of course, the other side effect of
adding technology choices to diagrams, particularly during the software design process, is
that it helps to ensure the right people are drawing them.

40. Would you code it that way?
It’s a common misconception that software architecture diagrams need to be stuck in the
clouds, showing high-level concepts and abstractions that present the logical rather than the
physical. But it doesn’t have to be this way and bringing them back down to earth often
makes diagrams easier to explain and understand. It can also make diagrams easier to draw
too.

To illustrate why thinking about the implementation can help the diagramming process, here
are a couple of scenarios that I regularly hear in my training classes.

Shared components

Imagine that you’re designing a 3-tier software system that makes use of a web server, an
application server and a database. While thinking about the high-level components that
reside in each of these containers, it’s not uncommon to hear a conversation like this:

• Attendee: “Should we draw the logging component outside of the web server and the
application server, since it’s used by both?”

• Me: “Would you code it that way? Will the logging component be running outside of
both the web server and application server? For example, will it really be a separate
standalone process?”

• Attendee: “Well … no, it would probably be a shared component in a [JAR file|DLL|etc]
that we would deploy to both servers.”

• Me: “Great, then let’s draw it like that too. Include the logging component inside
of each server and label it as a shared component with an annotation, stereotype or
symbol.”

If you’re going to implement something like a shared logging component that will be
deployed to a number of different servers, make sure that your diagram reflects this rather
than potentially confusing people by including something that might be mistaken for a
separate centralised logging server. If in doubt, always ask yourself how you would code
it.

Would you code it that way? 133

Layering strategies

Imagine you’re designing aweb application that is internally split up into a UI layer, a services
layer and a data access layer.

• Attendee: “Should we show that all communication to the database from the UI goes
through the services layer?”

• Me: “Is that how you’re going to implement it? Or will the UI access the database
directly?”

• Attendee: “We were thinking of perhaps adopting the CQRS pattern, so the UI could
bypass the services layer and use the data access layer directly.”

• Me: “In that case, draw the diagram as you’ve just explained, with lines from the UI to
both the services and data access layers. Annotate the lines to indicate the intent and
rationale.”

Again, the simple way to answer this type of question is to understand how you would code
it.

Diagrams should reflect reality

If you’re drawing diagrams to retrospectively communicate a software system then the
question becomes “is that how we coded it?”. The principle is the same though. Diagrams
should present abstractions that reflect reality rather than provide conceptual representations
that don’t exist. You should be able to see how the diagram elements are reflected in the
codebase and vice versa. If you can understand how you would code it, you can understand
how to visualise it.

http://martinfowler.com/bliki/CQRS.html

41. Software architecture vs code
Software architecture and coding are often seen as mutually exclusive disciplines, despite us
referring to higher level abstractions when we talk about our code. You’ve probably heard
others on your team talking about components, services and layers rather than objects or
classes when they’re having architecture discussions. Take a look at the codebase though. Can
you clearly see these abstractions or does the code reflect some other structure? If so, why
is there no clear mapping between the architecture and the code? Why do those architecture
diagrams that you have on the wall say one thing whereas your code says another?

Abstraction allows us to reduce detail and manage
complexity

Let’s imagine that you’ve inherited an undocumented existing codebase, which is somewhere
in the region of two million lines of Java code, perhaps broken up into almost one hundred
thousand Java classes. And let’s say that you’ve been given the task of creating some software
architecture diagrams to help describe the system to the rest of the team.Where do you start?

If you have enough time and patience, drawing a class diagram of the codebase is certainly
an option. Although by the time you’ve finished drawing the diagram, it’s likely to be out of
date. Automating this process with a static analysis or diagramming tool isn’t likely to help
matters either. The problem here is there’s too much information to comprehend.

Instead, what we tend to do is look for related groups of classes and instead draw a
diagram showing those. These related groups of classes are usually referred to as modules,
components, services, layers, packages, namespaces, subsystems, etc.

The same can be said when you’re doing some up front design for a new software system.
Although you could start by sketching out class diagrams, this is probably diving into the
detail too quickly. My approach is to perform an initial level of decomposition by designing
down to the level of components (or services, modules, etc) that each has a specific set of
responsibilities.

There are a number of benefits to thinking about a software system in terms of components,
but essentially it allows us to think and talk about the software as a small number of high-
level abstractions rather than the hundreds and thousands of individual classes that make up

Software architecture vs code 135

most enterprise object-oriented systems. Abstractions help us to reason about a big and/or
complex software system.

We talk about components but write classes

Although we might refer to things like components when we’re describing a software
system, and indeed many of us consider our software systems to be built from a number
of collaborating components, that structure isn’t usually reflected in the code. This is one of
the reasons why there is a disconnect between software architecture and coding as disciplines
- the architecture diagrams on the wall say one thing, but the code says another.

When you open up a codebase, it will often reflect some other structure due to the
organisation of the code. The mapping between the architectural view of a software system
and the code are often very different. This is sometimes why you’ll see people ignore
architecture diagrams and say, “the code is the only single point of truth”. George Fairbanks
names this the “Model-code gap” in his book titled Just Enough Software Architecture.

The premise is that while we think about our software systems as being constructed of
components, modules, services, etc, we don’t have these same concepts in the programming
languages that we use. For example, does Java have a “component”, “module” or “layer”
keyword? No, our Java systems are built from a collection of classes and interfaces, typically
organised into a number of packages. It’s this mismatch between architectural concepts and
the code that can hinder our understanding.

An architecturally-evident coding style

George’s answer to this is simple - we should just use an architecturally-evident coding
style. In other words, we should drop hints into our codebase so that the code reflects the
architectural intent. In concrete terms, this could be achieved by:

• Naming conventions: If you’re implementing something that you think of as a com-
ponent, ensure that the name of something (i.e. class, interface, package, namespace,
etc) includes the word “component”.

• Packaging conventions: In addition, perhaps you group everything related to a single
component into a single package/namespace.

• Metadata: Alternatively, why not include metadata in the code so that parts of it can
be traced back to the architectural vision. In real terms, you could use Java Annotations
or C# Attributes to signify classes as being architecturally important.

http://rhinoresearch.com/book

Software architecture vs code 136

This all sounds very sensible and relatively easy to do but, in my experience, I rarely see
teams doing this. Instead we do something different.

Package by layer

Let’s assume that we’re building a web application based upon the Web-MVC pattern.
There are a number of ways that we can organise our source code. Packaging code by
layer is typically the default approach because, after all, that’s what the books, tutorials and
framework samples tell us to do. If you do a search on the web for tutorials related to Spring
MVC or ASP.NET MVC, for example, you’ll likely see this in the example code used. I spent
most of my career building software systems in Java and I too used the same packaging
approach for the majority of the codebases that I worked on.

Here we’re organising code by grouping things of the same type. In other words, you’ll have
a package for domain classes, one for web controllers/views, one for “business services”, one
for data access, another for integration points and so on. I’m using the Java terminology of
a “package” here, but the same is applicable to namespaces in C#, etc.

Layers are the primary organisation mechanism for the code. Terms such as “separation of
concerns” are thrown around to justify this approach and layered architectures are generally
thought of as a “good thing”. Need to switch out the data access mechanism? No problem,
everything is in one place. Each layer can also be tested in isolation to the others around

Software architecture vs code 137

it, using appropriate mocking techniques, etc. The problem with layered architectures is that
they often turn into a big ball of mud because, in Java anyway, you need to mark your classes
as public for much of this to work. And once you mark classes as public, without discipline,
code in any other layer of your architecture can use them.

Organising a codebase by layer makes it easy to see the overall structure of the software but
there are trade-offs. For example, you need to delve inside multiple layers (e.g. packages,
namespaces, etc) in order to make a change to a feature or user story. Also, many codebases
end up looking eerily similar given the fairly standard approach to layering within enterprise
systems. In Screaming Architecture, Uncle Bob Martin says that if you’re looking at a
codebase, it should scream something about the business domain. I think the same should be
said for a software architecture diagram.

Package by feature

Packaging by layer isn’t the only answer though and, instead of organising code by horizontal
slice, “package by feature” seeks to do the opposite by organising code by vertical slice.

Now everything related to a single feature (or feature set) resides in a single place. You can
still have a layered architecture, but the layers reside inside the feature packages. In other
words, layering is the secondary organisation mechanism. The often cited benefit to package

http://blog.8thlight.com/uncle-bob/2011/09/30/Screaming-Architecture.html

Software architecture vs code 138

by feature is that it’s “easier to navigate the codebase when you want to make a change to a
feature”, but this is a minor thing given the power of modern IDEs.

What you can do now though is hide feature specific classes and keep them out of sight from
the rest of the codebase by marking them as package protected. The big question though
is what happens when that new feature set C needs to access data from features A and B?
Again, in Java, you’ll need to start making classes publicly accessible from outside of the
packages and the big ball of mud will likely again emerge.

The model-code gap

Although there’s nothing particularly wrong with packaging code using either of these
approaches, this code structure often never quite reflects the abstractions that we think about
whenwe view the system from an architecture perspective. If you’re using an object-oriented
programming language, do you talk about “objects” when you’re having architecture
discussions? Inmy experience, the answer is “no”. I typically hear people referring to concepts
such as components and services instead. But what are these components and services? And
where are they in the code?

Often, a “component” that we see on an architecture diagram is actually implemented by a
combination of classes across a number of different layers. To use an example, my component
diagram for the techtribes.je Content Updater shows a “Tweet Component” that provides
a way to store and access tweets in a MongoDB store. The diagram suggests that it’s a
single black box component, but my initial implementation was very different. The following
diagram illustrates why.

Software architecture vs code 139

For my initial implementation, I’d taken a “package by layer” approach and broken my tweet
component down into a separate service and data access object. This is a great example
of where the code doesn’t quite reflect the architecture - the tweet component is a single
box on an architecture diagram but implemented as a collection of classes across a layered
architecture when you look at the code. Imagine having a large, complex codebase where
the architecture diagrams tell a different story from the code. The easy way to fix this is to
simply redraw the component diagram to show that it’s really a layered architecture made
up of services collaborating with data access objects. The result is a much more complex
diagram but it also feels like that diagram is starting to show too much detail.

Packaging by component

The other option is to change the code to match the architectural vision and intent. And
that’s what I did. I reorganised the code to be packaged by component rather than packaged
by layer. In essence, I merged the services and data access objects together into a single
package so that I was left with a public interface and a package protected implementation.
This is a hybrid approach with increased modularity and an architecturally-evident coding
style as the primary goals.

Software architecture vs code 140

The basic premise here is that I want my codebase to be made up of a number of coarse-
grained components, with some sort of presentation layer (web UI, desktop UI, API,
standalone app, etc) built on top. A “component” in this sense is a combination of the business
and data access logic related to a specific thing (e.g. domain concept, bounded context or
aggregate from Domain-Driven Design, etc).

If a new feature set C needs to access data related to A and B, it is forced to go through the
public interface of components A and B. No direct access to the data access layer is allowed,
and you can enforce this if you use Java’s access modifiers properly. Again, “architectural
layering” is a secondary organisation mechanism. For this to work, you have to stop using
the public keyword by default.

Here’s what the restructured TweetComponent looks like.

https://github.com/techtribesje/techtribesje/tree/master/techtribes-core/src/je/techtribes/component/tweet

Software architecture vs code 141

Each sub-package of je.techtribes.component houses a separate component, complete with
its own internal layering and configuration. As far as possible, all of the internals are package
scoped. You could potentially pull each component out and put it in its own project or source
code repository to be versioned separately. This approach will likely seem familiar to you
if you’re building something that has a very explicit loosely coupled architecture such as a
distributed system made up of distinct components or microservices.

Layers are an implementation detail

I’m fairly confident that most people are still building something more monolithic in nature
though, despite thinking about their system in terms of components. I’ve certainly packaged
parts of monolithic codebases using a similar approach in the past but it’s tended to be fairly
ad hoc. Let’s be honest, organising code into packages isn’t something that gets a lot of brain-
time, particularly given the refactoring tools that we have at our disposal. Organising code
by component lets you explicitly reflect the concept of “a component” from the architecture
into the codebase.

With a package by component approach, the components are the architecturally significant
structural building blocks and layers are now a component implementation detail rather than
being the primary organisation mechanism.

Aligning software architecture and code

There’s often very little mapping from the architecture into the code and back again.
Effectively and efficiently visualising a software architecture can help to create a good shared
vision within the team, which can help it go faster. Having a simple and explicit mapping

https://github.com/techtribesje/techtribesje/tree/master/techtribes-core/src/je/techtribes/component

Software architecture vs code 142

from the architecture to the code can help even further, particularly when you start looking
at collaborative design and collective code ownership. Furthermore, it helps bring software
architecture firmly back into the domain of the development team, which is ultimately where
it belongs. Don’t forget though, the style of architecture you’re using needs to be reflected
on your software architecture diagrams; whether that’s layers, components, microservices or
something else entirely.

Designing a software system based around components isn’t “the one true way” but if you
are building monolithic software systems and think of them as being made up of a number
of smaller components, ensure that your codebase reflects this. Consider organising your
code by component (rather than by layer or feature) to make the mapping between software
architecture and code explicit. If it’s hard to explain the structure of your software system,
change it.

42. Software architecture as code
This book is about distilling software architecture down to its essence, in the hope that it will
help organisations to adopt a lightweight style of software architecture that complements
agile approaches. Much of this is focussed around my C4 model and some lightweight
sketches to communicate that vision to the team, either during an initial design phase or
retrospectively to describe an existing codebase.

But, with so much technology at our disposal, we’re still manually drawing software
architecture diagrams in tools like Microsoft Visio. Furthermore, these diagrams often don’t
reflect the implementation in code because of themodel-code gap and the mismatch between
architectural constructs with those you find in the code. If this gap is bridged though,
by adopting an architecturally-evident coding style for example, it should be possible to
automatically generate diagrams from the code. But it’s not that simple.

Auto-generating software architecture diagrams

If you’ve ever tried to use a static analysis, modelling or diagramming tool to automatically
generate meaningful diagrams of your codebase, you will have probably been left frustrated.
After all, the resulting diagrams tend to include too much information by default and they
usually show you code-level elements rather than those youwould expect to see on a software
architecture diagram. Let’s look at a quick example.

The “Spring PetClinic” application is a sample codebase used to illustrate how to use the
Spring framework to build web applications in Java. It’s a typical layered architecture
consisting of a number of web controllers, a service and some repositories, along with some
domain and util classes too. If you download a copy of the GitHub repository, open it in
your IDE of choice and visualise it by drawing a UML class diagram of the code, you’ll get
something like this.

https://github.com/spring-projects/spring-petclinic/

Software architecture as code 144

This diagram shows all of the classes/interfaces and all of the relationships between them. The
properties andmethods are hidden from view because they add toomuch noise to the picture.
This isn’t a complex codebase by any stretch of the imagination, but the diagram is showing
too much detail. Let’s remove those classes that aren’t relevant to having an “architecture”
discussion about the system. In other words, let’s only try to show those classes that have
some structural significance. In concrete terms, this means excluding the model (domain)
and util classes.

Software architecture as code 145

After a little rearranging, this diagram is much better and we now have a simpler diagram
withwhich to reason about the software architecture.We can also see the architectural layers.
However, in order to show the true picture of the dependencies, I’ve needed to show the
interface and implementation classes for the service and repositories. What I would like to be
able to do here is treat the ClinicService and each of the *Repository things as a “component”,
by collapsing the interface and implementation classes together on the diagram.

This isn’t what most diagramming tools do though and it shouldn’t really come as a surprise,
since those diagramming tools also suffer from the model-code gap. Like us, those tools see
classes and interfaces in packages/namespaces when looking at the code. Some tools can be
given rules to recognise architectural constructs (e.g. layers) in order to perform structural
validation, but this shouldn’t be necessary. Ideally, everything we need to understand the
software system from an architectural perspective should be in the code.

Why isn’t the architecture in the code?

And this raises an interesting question. If the code is often cited as the “single point of truth”,
why isn’t a description of the architecture in the code? Let’s look at this in the context of my
C4 model.

Software architecture as code 146

1. System context

My starting point for describing a software system is to draw a system context diagram. This
shows the system in question along with the key types of user (e.g. actors, roles, personas, etc)
and system dependencies. Is it possible to get this information from the code? The answer is,
“not really”.

• Users: I should be able to get a list of user roles from the code. For example, many
software systems will have some security configuration that describes the various
user roles, Active Directory groups, etc and the parts of the system that such users
have access too. The implementation details will differ from codebase to codebase and
technology to technology, but in theory this information is available somewhere in
the absence of an explicit list of user types.

• System dependencies: The list of system dependencies is a little harder to extract from
a codebase. Again, we can scrape security configuration to identify links to systems
such as LDAP and Active Directory. We could also search the codebase for links to
known libraries, APIs and service endpoints (e.g. URLs), and make the assumption
that these are system dependencies. But what about those system interactions that
are done by copying a file to a network share? I know this sounds archaic, but it still
happens. Understanding inbound dependencies is also tricky.

2. Containers

The next level in my C4 model is a container diagram that shows the various web
applications, mobile apps, databases, file systems, standalone applications, etc and how they
interact to form the overall software system. Again, some of this information will be present,
in one form or another, in the codebase. For example, you could scrape this information from:

• IDE project files: Information about executable artifacts (and therefore containers)
could in theory be extracted from IntelliJ IDEA project files, Microsoft Visual Studio
solution files, Eclipse workspaces, etc.

• Build scripts: Automated build scripts (e.g. Ant, Maven, Gradle, MSBuild, etc)
typically generate executable artifacts or have module definitions that can again be
used to identify containers.

• Infrastructure provisioning and deployment scripts: Infrastructure provisioning
and deployment scripts (e.g. Puppet, Chef, Vagrant, Docker, etc) will probably result
in deployable units, which can again be identified and this information used to create
the containers model.

Software architecture as code 147

Extracting information from such sources is useful if you have a microservices architecture
with hundreds of separate containers but, if you simply have a web application talking to a
database, it may be easier to explicitly define this rather than going to the effort of scraping
it from the code.

3. Components

The third level of the C4model is a component diagram. Since even a relatively small software
system may consist of a large number of components, this is a level that we certainly want to
automate. But it turns out that even this is tricky. Usually there’s a lack of an architecturally-
evident coding style, whichmeans you get a conflict between the software architecturemodel
and the code. This is particularly true in older systems where the codebase lacks modularity
and looks like a sea of thousands of classes interacting with one another. Assuming that there
is some structure to the code, “components” can be extracted using a number of different
approaches, depending on the codebase and the degree to which an architecturally-evident
coding style has been adopted:

• Metadata: The simplest approach is to annotate the architecturally significant ele-
ments in the codebase and extract them automatically. Examples include finding Java
classes with specific annotations or C# classes with specific attributes. These could
be your own annotations or those provided by a framework such as Spring (e.g.
@Controller, @Service, @Repository, etc), Java EE (e.g. @EJB, @MessageDriven, etc)
and so on.

• Naming conventions: If nometadata is present in the code, often a naming convention
will have been consciously or unconsciously adopted that can assist with finding those
architecturally significant code elements. For example, finding all classes where the
name matches “xxxService” or “xxxRepository” may do the trick.

• Packaging conventions: Alternatively, perhaps each sub-package or sub-namespace
(e.g. com.mycompany.myapp.components.xxx) represents a component.

• Module systems: If a module system is being used (e.g. OSGi), perhaps each of the
module bundles represents a component.

• Build scripts: Similarly, build scripts often create separate modules/JARs/DLLs from
a single codebase and perhaps each of these represents a component.

Auto-generating the software architecture model

Ultimately, I’d like to auto-generate as much of the software architecture model as possible
from the code, but this isn’t currently realistic because most codebases don’t include enough

Software architecture as code 148

information about the software architecture to be able to do this effectively. This is true both
at the “big picture” level (context and containers) and the lower level (components). One
solution to this problem is to enrich the information that we can get from the code, with that
which we can’t get from the code.

There have been a number of attempts to create Architecture Definition Languages (ADLs)
that can be used to formally define the architecture of a software system, although my
experience suggests these are rarely used in real-world projects. There are a number of
reasons for this, ranging from typical real-world time and budget pressures through to the
lack of perceived benefit from creating an academic description of a software system that
isn’t reflective of the source code. Unless you’re building software in a safety critical or
regulated environment, the Agile Manifesto statement of valuing working software over
comprehensive documentation holds true.

In my own attempt to solve this problem, I’ve created something that I call Structurizr. Put
simply, it’s a way to create a software architecture model as code, and then have that model
visualised by some simple tooling. The goal is to allow people to create simple, versionable,
up-to-date and scalable software architecture models.

Creating a software architecture model as code

Structurizr is a tool of two halves. First is an open source library that can be used to create
a software architecture model using code. In essence, it’s a Java-based implementation of
the C4 model. Let’s see how we might define a software architecture model for the Spring
PetClinic system. If I was going to draw a context diagram, it would simply consist of a single
type of user using the Spring PetClinic system. We can represent this in code as follows.

1 Workspace workspace = new Workspace("Spring PetClinic");

2 Model model = workspace.getModel();

3

4 SoftwareSystem petclinic = model.addSoftwareSystem("Spring PetClinic");

5 Person user = model.addPerson("User");

6

7 user.uses(petclinic, "Uses");

Stepping down a level of abstraction to the containers diagram, the Spring PetClinic system is
made up of a Java web application that uses a database to store data. Again, we can represent
this in code as follows. I’ve made some assumptions about the technology stack the system
is deployed on here.

http://en.wikipedia.org/wiki/Architecture_description_language
https://www.structurizr.com
https://github.com/structurizr/java

Software architecture as code 149

1 Container webApplication = petclinic.addContainer(

2 "Web Application", "Apache Tomcat");

3 Container relationalDatabase = petclinic.addContainer(

4 "Relational Database", "HSQLDB");

5

6 user.uses(webApplication, "Uses");

7 webApplication.uses(relationalDatabase, "Reads from and writes to");

At the next level of abstraction, we need to open up theweb application to see the components
inside it. Although we couldn’t really get the two previous levels of abstraction from the
codebase easily, we can get the components. All we need to do is understand what a
“component” means in the context of this codebase. We can then use this information to
help us find and extract them in order to populate the software architecture model.

SpringMVC uses Java annotations (@Controller,@Service and@Repository) tomark classes
as being web controllers, services and repositories respectively. Assuming that we consider
these to be our architecturally significant code elements, it’s then a simple job of extracting
these annotated classes (Spring Beans) from the codebase.

1 ComponentFinder componentFinder = new ComponentFinder(

2 webApplication,

3 "org.springframework.samples.petclinic",

4 new SpringComponentFinderStrategy()

5);

6 componentFinder.findComponents();

Built-in to the SpringComponentFinderStrategy are some rules that automatically collapse
the interface and implementation of a Spring Bean, so the controllers, services and reposito-
ries are treated as “components” rather than a number of separate interfaces and classes.

The final thing we need to do is connect the user to the web controllers, and the repositories
to the database. This is easy to do since the software architecture model is represented in
code.

Software architecture as code 150

1 webApplication.getComponents().stream()

2 .filter(c -> c.getTechnology().equals("Spring Controller"))

3 .forEach(c -> user.uses(c, "Uses"));

4

5 webApplication.getComponents().stream()

6 .filter(c -> c.getTechnology().equals("Spring Repository"))

7 .forEach(c -> c.uses(relationalDatabase, "Reads from and writes to"));

With the software architecture model in place, we now need to create some views with which
to visualise the model. Again, we can do this using code. First the context diagram, which
includes all people and all software systems.

1 ViewSet viewSet = workspace.getViews();

2

3 SystemContextView contextView = viewSet.createContextView(petclinic);

4 contextView.addAllSoftwareSystems();

5 contextView.addAllPeople();

Next is the container diagram.

1 ContainerView containerView = viewSet.createContainerView(petclinic);

2 containerView.addAllPeople();

3 containerView.addAllContainers();

And finally is the component diagram.

1 ComponentView componentView = viewSet.createComponentView(webApplication);

2 componentView.addAllComponents();

3 componentView.addAllPeople();

4 componentView.add(relationalDatabase);

There are a few minor details omitted here for brevity, but that’s essentially all the code you
need to create a software architecture model and views for this sample codebase. The full
source code for this example can be found on the Structurizr for Java repository.

https://github.com/structurizr/java/blob/master/structurizr-examples/src/com/structurizr/example/spring/petclinic/SpringPetClinic.java

Software architecture as code 151

Visualising the software architecture model

The code we’ve just seen simply creates an in-memory representation of the software
architecture model, in this case as a collection of Java classes. The open source Structurizr
library also contains a way to export this model to an intermediate JSON representation,
which can then be imported into some tooling that is able to visualise it.

structurizr.com is the other half of the story. It’s a web application that takes a software
architecture model (via an API) and provides a way to visualise it.

1 StructurizrClient client = new StructurizrClient(

2 "https://api.structurizr.com", "key", "secret");

3 client.putWorkspace(workspace);

Aside from changing the colour, size and position of the boxes, the graphical representation is
relatively fixed. This in turn frees you up from messing around with creating static diagrams
in drawing tools. The result of visualising the Spring PetClinic model, after moving the boxes
around, is something like the following. Here’s the context diagram.

https://www.structurizr.com

Software architecture as code 152

Next is the container diagram.

And finally is the component diagram for the web application.

Software architecture as code 153

The live version of the diagrams can be found at structurizr.com and they allow you to
double-click a component on the component diagram in order to navigate directly to the
code that is hosted on GitHub.

It’s worth pointing out that structurizr.com is my vision of what I want from a simple
software architecture diagramming tool, but you’re free to take the output from the open
source library and create your own tooling to visualise the model. This could include
exporting it to DOT format (for importing into something like Graphviz), XMI format (for

https://www.structurizr.com/public/1

Software architecture as code 154

importing into UML tools), a desktop app, IDE plugins, etc.

Software architecture as code opens opportunities

Having the software architecture model as code opens a number of opportunities for creating
the model (e.g. extracting components automatically from a codebase) and communicating
it (e.g. you can slice and dice the model to produce a number of different views as necessary).
For example, showing all components for a large system will result in a very cluttered
diagram. Instead, you can simply write some code to programmatically create a number
of smaller, simpler diagrams, perhaps one per vertical slice, web controller, user story, etc.
You can also opt to include or exclude any elements as necessary. For example, I typically
exclude logging components because they tend to be used by every other component and
serve no purpose other than to clutter the diagram.

Since the models are code, they are also versionable alongside your codebase and can be
integrated with your automated build system to keep your models up to date. This provides
accurate, up-to-date, living software architecture diagrams that actually reflect the code.

The road ahead

In order to adopt this approach, you do need to consider how your software architecture
reflects your code and vice versa. The model-code gap needs to be as small as possible
so that meaningful diagrams can be automatically generated from the code. And it’s here
that we face two key challenges. First of all, we need to get people thinking about software
architecture once again so that they are able to think about, describe and discuss the various
structures needed to reason about a large and/or complex software system. And secondly,
we need to find a way to get these structures into the codebase using architecturally-evident
coding styles to ensure that the model-code gap is minimised. As an industry, I think we still
have a long way to go but, in time, I hope that the thought of using something like Microsoft
Visio for drawing software architecture diagrams will seem ridiculous.

43. You don’t need a UML tool
When tasked with the job of designing a new software system, one of the first questions some
people ask relates to the tooling that they should use. Such discussions usually focus around
the Unified Modelling Language (UML) and whether their organisation has any licenses for
some of the more well-known UML tools.

There are many types of UML tool

Unfortunately this isn’t an easy question to answer because there are lots of commercial and
open source tools that can help you to do software architecture and design, all tending to
approach the problem from a different perspective. At a high-level, they can be categorised
as follows.

1. Diagrams only: There are many standalone UML tools and plug-ins for major IDEs
that let you sketch simple UML diagrams. These are really useful if you want to be in
control of your diagrams and what they portray but it’s easy for such diagrams to get
out of date with reality over time. Microsoft Visio or OmniGraffle with UML templates
installed are good starting points if you have access to them.

2. Reverse engineering: There are standalone UML tools and IDE plug-ins that allow
you to create UML diagrams from code. This is great because you can quickly get the
code and diagrams in sync, but often these diagrams become cluttered quickly because
they typically include all of the detail (e.g. every property, method and relationship)
by default.

3. Round-trip engineering: Many reverse engineering tools also allow you to do round-
trip engineering, where changes made to the model are reflected in the code and vice
versa. Again, this helps keeps code and diagrams in sync.

4. Model-driven: There are a few model-driven architecture (MDA) tools that let you
drive the implementation of a software system from the model itself, usually by
annotating the diagrams with desired characteristics and behaviours using languages
such as Executable UML (xUML) or Object Constraint Language (OCL). These tools
can offer a full end-to-end solution but you do need to follow a different and often
rigid development process in order to benefit from them.

You don’t need a UML tool 156

The simplest thing that could possibly work

Even this short summary of the categories of tools available makes for an overwhelming
number of options. Rational Software Architect? Visio? PowerPoint? OmniGraffle? WebSe-
quenceDiagrams.com? Which do you pick?!

The thing is though, you don’t need a UML tool in order to architect and design software.
I’ve conducted a number of informal polls during my conference talks over the past few years
and only 10-20% of the audience said that they regularly used UML in their day to day work.
Often a blank sheet of paper, flip chart or whiteboard together with a set of sticky notes
or index cards is all you need, particularly when you have a group of people who want to
undertake the design process in a collaborative way. Have you ever tried to get three or four
people collaborating around a laptop screen?

Agile methods have been using this low-tech approach for capturing user stories, story walls
and Kanban boards for a while now. In many cases, it’s the simplest thing that could possibly
work but nothing beats the pure visibility of having lots of stuff stuck to a whiteboard in the
middle of your office. Unlike a Microsoft Project plan, nobody can resist walking past and
having a look at all those sticky notes still in the “To do” column.

From a software design perspective, using a similarly low-tech approach frees you from
worrying about the complexities of using the tooling and bending formal notation, instead
letting you focus on the creative task of designing software. Simply start by sketching out
the big picture and work down to lower levels of detail where necessary. Just remember
that you need to explicitly think about things like traceability between levels of abstraction,
conventions and consistency if you don’t use a tool. For example, UML arrows have meaning
and without a key it might not be obvious whether your freehand arrows are pointing
towards dependencies or showing the direction that data flows. You can always record your
designs in a more formal way using a UML tool later if you need to do so.

Uses for UML

The main reason for using informal boxes and lines diagrams over UML to visualise software
architecture is that, inmy opinion, UML isn’t often a good fit for what I want to communicate.
The information presented on my context, container and component diagrams can be
achieved with a mix of use case, component and deployment diagrams but I personally don’t
find that the resulting diagrams are as easy to interpret given the notation. My C4 approach
for visualising software architectures might not make use of UML then, but I still do use it
on the software projects that I work on.

You don’t need a UML tool 157

The tools surrounding UML allow it to be used in a number of ways, including fully fledged
comprehensivemodels with their associated repositories through to diagrams that are reverse
engineered from existing code. UML can also be used as a simple diagramming notation,
either sketched on a whiteboard or within tools such as Microsoft Visio or OmniGraffle that
have installable UML templates. Here’s a summary of what I use UML for:

• Processes andworkflows: If I’m building software that automates a process or is very
workflow based, I’ll often draw a simple UML activity diagram to represent it. UML
activity diagrams seem to be ignored by many people but I find that the simple flow
chart style of notation works well for a broad range of audiences.

• Runtime behaviour: My C4 approach is really only focussed on visualising the static
structure of a software system, but often it’s useful to present the system from a
runtime perspective. UML sequence and collaboration diagrams are usually used to
show how a number of classes collaborate at runtime to implement a particular user
story, use case, feature, etc. These diagrams are still very useful even if you’re not
doing design down to the class level. Instead of showing a collection of collaborating
classes, you can show collaborating containers or components instead.

• Domain model: I’ll use a UML class diagram if I want to visualise a domain model,
with the resulting diagrams typically only showing the most important attributes and
relationships. I usually hide the method compartment of all classes on such diagrams.

• Patterns and principles: I’ll often need to explain how patterns or principles are
implemented within the codebase (e.g. in the Code section of a software guidebook),
and a UML class diagram is the obvious way to do this. My advice here is keep the
diagram simple and don’t feel pressured into showing every last tiny piece of detail.

• State charts: UML state diagrams are a great way to visualise a state machine and the
notation is fairly straightforward. Again, I find that people tend to forget UML state
diagrams exist.

• Deployment: A UML deployment diagram can be a useful way to show how your
containers or components are deployed. Often such a diagram is better presented as
an informal boxes and lines diagram, but the option is there.

There is no silver bullet

Forget expensive tools. More often than not; a blank sheet of paper, flip chart or whiteboard is
all you need, particularly when you have a group of people that want to undertake the design
process in a collaborative way. Unfortunately there’s no silver bullet when it comes to design
tools though because everybody and every organisation works in a different way. Once

You don’t need a UML tool 158

you’re confident that you understand how to approach software architecture and design,
only then is it time to start looking at software tools to help improve the design process.

The use of UML doesn’t need to be an “adopt all or nothing” choice. A few well placed UML
diagrams can really help you to present themore complex and detailed elements of a software
system. If you’re unfamiliar with UML, perhaps now is a good opportunity to make yourself
aware of the various diagrams that are available. You don’t need UML tools to do architecture
and design, but they do have their uses. You don’t need to use every type of diagram though!

44. Effective sketches
The Unified Modelling Language (UML) is a formal, standardised notation for commu-
nicating the design of software systems although many people favour boxes and lines
style sketches instead. There’s absolutely nothing wrong with this but you do trade-off
diagram consistency for flexibility. The result is that many of these informal sketches use
diagramming elements inconsistently and often need a narrative to accompany them.

If you are going to use “NoUML” diagrams (i.e. anything that isn’t UML), here are some
things to think about, both when you’re drawing sketches on a whiteboard and if you decide
to formalise them in something like Microsoft Visio afterwards.

Titles

The first thing that can really help people to understand a diagram is including a title. If you’re
using UML, the diagram elements will provide some information as to what the context of
the diagram is, but that doesn’t really help if you have a collection of diagrams that are all
just boxes and lines. Try to make the titles short and meaningful. If the diagrams should be
read in a specific order, make sure this is clear by numbering them.

Labels

You’re likely to have a number of labels on your diagrams; including names of software
systems, components, etc. Where possible, avoid using acronyms and if you do need to use
acronyms for brevity, ensure that they are documented in a project glossary or with a key
somewhere on the diagram. While the regular project teammembers might have an intimate
understanding of common project acronyms, people outside or new to the project probably
won’t.

The exceptions here are acronyms used to describe technology choices, particularly if they are
used widely across the industry. Examples include things like JMS (Java Message Service),
POJO (plain old Java object) and WCF (Windows Communication Foundation). Let your
specific context guide whether you need to explain these acronyms and if in doubt, play it
safe and use the full name or include a key.

Effective sketches 160

Shapes

Most boxes and lines style sketches that I’ve seen aren’t just boxes and lines, with teams using
a variety of shapes to represent elements within their software architecture. For example,
you’ll often see cylinders on a diagram and many people will interpret them to be a database
of some description. Make sure that you include an explanation to confirm whether this is
the case or not.

Responsibilities

If naming is one of the hardest things in software development, resist the temptation to have a
diagram full of boxes that only contain names. A really simple way to add an additional layer
of information to, and remove any ambiguity from, an architecture diagram is to annotate
things like systems and components with a very short statement of what their responsibilities
are. A bulleted list (7 ± 2 items) or a short sentence work well. Provided it’s kept short (and
using a smaller font for this information can help too), adding responsibilities onto diagrams
can help provide a really useful “at a glance” view of what the software system does and how
it’s been structured. Take a look at the following diagrams - which do you prefer?

http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

Effective sketches 161

Adding responsibilities to diagram elements can remove ambiguity

Lines

Lines are an important part of most architecture sketches, acting as the glue that holds all
of the boxes (systems, containers, components, etc) together. The big problem with lines
is exactly this though, they tend to be thought of as the things that hold the other, more
significant elements of the diagram together and don’t get much focus themselves. Whenever
you’re drawing lines on sketches, ensure you use them consistently and that they have a clear
purpose. For example:

• Line style (solid, dotted, dashed, etc): Is the line style relevant and, if so, what does it
mean?

• Arrows: Do arrows point in the direction of dependencies (e.g. like UML “uses”
relationships) or do they indicate the direction in which data normally flows?

Effective sketches 162

Often annotations on the lines (e.g. “uses”, “sends data to”, “downloads report from”, etc) can
help to clarify the direction in which arrows are pointing, but watch out for any lines that
have arrows on both ends!

Colour

Software architecture diagrams don’t have to be black and white. Colour can be used to
provide differentiation between diagram elements or to ensure that emphasis is/isn’t placed
on them. If you’re going to use colour, and I recommend that you should, particularly when
sketching, make sure that it’s obvious what your colour coding scheme is by including a
reference to those colours in a key. Colour can make a world of difference. All you need are
some different coloured whiteboard/marker pens and a little imagination.

Borders

Adding borders (e.g. double lines, coloured lines, dashed lines, etc) around diagram elements
can be a great way to add emphasis or to group related elements together. If you do this, make
sure that it’s obvious what the border means, either by labelling the border or by including
an explanation in the diagram key.

Layout

Using electronic drawing tools such as Microsoft Visio or OmniGraffle makes laying out
diagram elements easier since you can move them around as much as you want. Many
people prefer to design software while stood in front of a whiteboard or flip chart though,
particularly because it provides a better environment for collaboration. The trade-off here is
that you have to think more about the layout of diagram elements because it can become a
pain if you’re having to constantly draw, erase and redraw elements of your diagrams when
you run out of space.

Effective sketches 163

Examples of where sticky notes and index cards have been used instead of drawing boxes

Sticky notes and index cards can help to give you some flexibility if you use them as a
substitute for drawing boxes. And if you’re using a Class-Responsibility-Collaboration style
technique to identify candidate classes/components/services, you can use the resulting cards
as a way to start creating your diagrams.

Need to move some elements? No problem, just move them. Need to remove some elements?
No problem, just take them off the diagram and throw them away. Sticky notes and index
cards can be a great way to get started with software architecture sketches, but I do tend to
find that the resulting diagrams look cluttered. Oh, and sticky notes often don’t stick well to
whiteboards, so have some blu-tack handy!

Orientation

Imagine you’re designing a 3-tier web application that consists of a web-tier, a middle-tier
and a database. If you’re drawing a container diagram, which way up do you draw it? Users
and web-tier at the top with the database at the bottom? The other way up? Or perhaps you
lay out the elements from left to right?

Most of the architecture diagrams that I see have the users and web-tier at the top, but this
isn’t always the case. Sometimes those same diagramswill be presented upside-down or back-
to-front, perhaps illustrating the author’s (potentially subconscious) view that the database

http://en.wikipedia.org/wiki/Class-Responsibility-Collaboration_card
http://en.wikipedia.org/wiki/Blu-Tack

Effective sketches 164

is the centre of their universe. Although there is no “correct” orientation, drawing diagrams
“upside-down” from what we might consider the norm can either be confusing or used to
great effect. The choice is yours.

Keys

One of the advantages of using UML is that it provides a standardised set of diagram elements
for each type of diagram. In theory, if somebody is familiar with these elements, they should
be able to understand your diagram. In the real world this isn’t always the case, but this
certainly isn’t the case with boxes and lines sketches where the people drawing the diagrams
are inventing the notation as they go along. Again, there’s nothing wrong with this but make
sure that you give everybody an equal chance of understanding your creations by including
a small key somewhere on or nearby the diagram. Here are the sort of things that you might
want to include explanations of:

• Shapes
• Lines
• Colours
• Borders
• Acronyms

You can sometimes interpret the use of diagram elements without a key (e.g. “the grey boxes
seem to be the existing systems and red is the new stuff”) but I would recommend playing
it safe and adding a key. Even the seemingly obvious can be misinterpreted by people with
different backgrounds and experience.

Diagram review checklist

The software architecture process is about introducing structure and vision into software
projects, so when reviewing architecture diagrams, here are a number of things that you
might want to assert to ensure that this is the case. This checklist is applicable for diagrams
produced during the initial architecture process, as well as those produced to retrospectively
document an existing software system.

1. I can see and understand the solution from multiple levels of abstraction.

Effective sketches 165

2. I understand the big picture; including who is going to use the system (e.g. roles,
personas, etc) and what the dependencies are on the existing IT environment (e.g.
existing systems).

3. I understand the logical containers and the high-level technology choices that have
been made (e.g. web servers, databases, etc).

4. I understand what the major components are and how they are used to satisfy the
important user stories/use cases/features/etc.

5. I understand what all of the components are, what their responsibilities are and can
see that all components have a home.

6. I understand the notation, conventions, colour coding, etc used on the diagrams.
7. I can see the traceability between diagrams and diagramming elements have been used

consistently.
8. I understand what the business domain is and can see a high-level view of the

functionality that the software system provides.
9. I understand the implementation strategy (frameworks, libraries, APIs, etc) and can

almost visualise how the system will be or has been implemented.

Listen for questions

As a final note, keep an ear open for any questions raised or clarifications being made
while diagrams are being drawn. If you find yourself saying things like, “just to be clear,
these arrows represent data flows”, make sure that this information ends up on a key/legend
somewhere.

45. C4++
The C4 model focusses on describing and communicating the static structure of a software
system; from the big picture down to the components and the classes that implement them.
Although this is often sufficient to describe a software system, sometimes it can be useful to
draw some additional diagrams to highlight different aspects.

Enterprise context

The C4 model provides a static view of a single software system but, in the real-world,
software systems never live in isolation. For this reason, and particularly if you manage
a collection of software systems, it’s often useful to understand how all of these software
systems fit together within the bounds of an enterprise. To do this, I’ll simply add another
diagram that sits on top of the C4 diagrams, to show the enterprise context from an IT
perspective. C4 therefore becomes C5, with this extra enterprise context diagram showing:

• The organisational boundary.
• Internal and external users.
• Internal and external systems (including a high-level summary of their responsibilities
and data owned).

Essentially this becomes a high-level map of the software systems at the enterprise level,
with a C4 drill-down for each software system of interest. As a caveat, I do appreciate
that enterprise architecture isn’t simply about technology but, in my experience, many
organisations don’t have an enterprise architecture view of their IT landscape. In fact, it
shocks me how often I come across organisations of all sizes that lack such a holistic view,
especially considering IT is usually a key part of the way they implement business processes
and service customers. Sketching out the enterprise context from a technology perspective
at least provides a way to think outside of the typical silos that form around IT systems.

User interface mockups and wireframes

Mocking up user interfaces with tools such as Balsamiq is a fantastic way to understand
what is needed from a software system and to prototype ideas. Such sketches, mockups and
wireframes will provide a view of the software system that is impossible with the C4 model.

https://balsamiq.com

C4++ 167

Domain model

Most real-world software systems represent business domains that are non-trivial and, if
this is the case, a diagram summarising the key domain concepts can be a useful addition.
The format I use for these is a UML class diagram where each UML class represents an
entity in the domain. For each entity, I’ll typically include important attributes/properties
and the relationships between entities. A domainmodel is useful regardless of whether you’re
following a Domain-driven design approach or not.

Sequence and collaboration diagrams

The C4 model only describes the static structure of a software system and, of course, running
software isn’t static. For this reason, often it’s useful to create diagrams to illustrate what
happens at runtime for important use cases, user stories or scenarios. To do this, I simply
take the concept of sequence and collaboration diagrams from UML and apply them to the
static elements in the C4 model.

For example, you could illustrate how a use case is implemented by drawing a sequence
diagram of how components interact at runtime. Or you could show the interaction between
containers if you have more of a microservices style of architecture, where every service is
deployed in a separate container. Either way, a runtime view of the software can be useful
to describe complex interactions or interactions that are not evident from reading the code
alone (e.g. the send/receipt of asynchronous messages).

Business process and workflow models

Related to sequence and collaboration diagrams are process models. Sometimes I want to
summarise a particular business process or user workflow that a software system implements,
without getting into the technicalities of how it’s implemented. A UML activity diagram or
traditional flowchart is a great way to do this.

Infrastructure model

A map of your infrastructure can be a useful thing to capture because of the obvious
relationship between software and infrastructure. There are a number of ways to describe
infrastructure, ranging from infrastructure diagrams inMicrosoft Visio through to automated
scripts that manage and provision infrastructure on a cloud provider.

http://en.wikipedia.org/wiki/Domain-driven_design

C4++ 168

Deployment model

It’s often useful to describe the mapping between containers and infrastructure. For example,
a database-driven website could be deployed onto a single server or across hundreds of them,
depending on the need to support scalability, resilience, security, etc. Again, the deployment
model could be described as a bunch of automated scripts or a simple deployment diagram.

And more

The diagrams from the C4 model plus those I’ve listed here are usually enough for me to
adequately describe how a software system is designed, built and works. I try to keep the
number of diagrams I use to do this to a minimum and I advise you to do the same. Some
diagrams can be automatically generated (e.g. an entity relationship diagram for a database
schema) but if you need an A0 sheet of paper to display it, you should consider whether the
diagram is actually useful. Do add more diagrams if you need to describe something that
isn’t listed here and if a particular diagram doesn’t add any value, simply discard it.

Philippe Kruchten’s 4+1 architectural view model and Software Systems Architecture by
Eoin Woods and Nick Rozanski are my recommended starting points for information about
the views you may want to consider in addition to those provided by the C4 model.

http://en.wikipedia.org/wiki/4%2B1_architectural_view_model
http://www.viewpoints-and-perspectives.info

46. C4 - FAQ
Here are some of the questions I frequently get asked by people when they are drawing
architecture diagrams based upon my C4 approach.

System names on context diagrams

Question: “You say that context diagrams should include as few technology details as
necessary. But what about system names, should they be included?”

Answer: If you need to include a software system and everybody knows it by a particular
name, then yes, I would include that name on the diagram. What I might also be tempted to
do, just to avoid any confusion, is to add a brief statement of responsibilities to make it clear
what that system does.

Should I use actors or boxes for external systems?

Question: Back in the days of the Unified Modelling Language (UML) and the Rational
Unified Process (RUP), we used to represent external systems as actors. These were drawn on
diagrams as stick figures. Why don’t you do this? Why do you use boxes in your diagrams
instead of stick figures?

Answer: I used to do the same; I would draw UML use case diagrams to summarise the
context of a software system and I represented external systems as actors. I once represented
time as an actor too, based upon the conclusion that time initiated some functionality in our
system, so therefore it was essentially an actor. This resulted in some interesting questions
along the lines of “why have you drawn that system as a person?”. This is difficult to explain
to non-technical people, so now I represent external systems as simple boxes. Feel free to use
the actor (stick figure) notation if you wish though!

Mixing levels of abstraction

Question: “Since the container diagram for my system looks very simple, would you
recommend mixing the container and component diagrams together? In other words, could
I show all of the components inside all of the containers, on a single diagram?”

C4 - FAQ 170

Answer: For simple systems, yes, that’s an option that you can experiment with. I tend to find
that, even on small systems, a single diagram showing containers and their components gets
too cluttered. My personal preference is to keep the container diagram as simple as possible,
and to annotate each of the containers you show on the diagram with a short list of the
responsibilities rather than show all of the components. Not only will this result in a clean
and simple diagram, but it will also provide a nice high-level technology diagram that you
can show to people like operations and support staff.

Shared components

Question: “My system is made up of a web server and a standalone application, and both
use a shared database access layer. How should I show this on the diagrams?”

Answer: I would draw the shared database access components on each of the appropriate
component diagrams and simply annotate them with a note that says something like “this
is shared component”. If in doubt, always ask yourself how you would actually code and
deploy the system. If your shared components will be deployed alongside all of the other
components inside a container, just draw the diagram to reflect this.

Utility components

Question: “If I have something like a logging component that is used by all of the other
components, how should I show this on the diagrams?”

Answer: You have a couple of options, although one tends to lead to much cleaner diagrams.
Option 1 is to draw the logging component somewhere central on the diagram and show
connections from every other component to it. While this is accurate, your diagram will
become cluttered very quickly. Option 2 is to draw the logging component somewhere out
of the way and simply annotate it with a note that says something like “this is a utility
component that is used by all other components”.

47. Questions
1. Are you able to explain how your software system works at various levels of

abstraction? What concepts and levels of abstraction would you use to do this?
2. Do you use UML to visualise the design of your software? If so, is it effective? If not,

what notation do you use?
3. Are you able to visualise the software system that you’re working on? Would

everybody on the team understand the notation that you use and the diagrams that
you draw?

4. Should technology choices be included or omitted from “architecture” diagrams?
5. Do you understand the software architecture diagrams for your software system (e.g.

on the office wall, a wiki, etc)? If not, what could make them more effective?
6. Do the software architecture diagrams that you have for your software system reflect

the abstractions that are present in the codebase? If not, why not? How can you change
this?

V Documenting software

This part of the book is about that essential topic we love to hate - writing documentation!

48. The code doesn’t tell the whole
story

We all know that writing good code is important and refactoring forces us to think
about making methods smaller, more reusable and self-documenting. Some people say that
comments are bad and that self-commenting code is what we should strive for. However you
do it, everybody should strive for good code that’s easy to read, understand and maintain.
But the code doesn’t tell the whole story.

Let’s imagine that you’ve started work on a new software project that’s already underway.
The major building blocks are in place and some of the functionality has already been
delivered. You start up your development machine, download the code from the source code
control system and load it up into your development environment. What do you do next and
how do you start being productive?

Where do you start?

If nobody has the time to walk you through the codebase, you can start to make your own
assumptions based upon the limited knowledge you have about the project, the business

The code doesn’t tell the whole story 174

domain, your expectations of how the team builds software and your knowledge of the
technologies in use.

For example, you might be able to determine something about the overall architecture of the
software system through how the codebase has been broken up into sub-projects, directories,
packages, namespaces, etc. Perhaps there are some naming conventions in use. Even from
the previous static screenshot of Microsoft Visual Studio, we can determine a number of
characteristics about the software, which in this case is an (anonymised) Internet banking
system.

• The system has been written in C# on the Microsoft .NET platform.
• The overall .NET solution has been broken down into a number of Visual Studio
projects and there’s a .NET web application called “ib.web”, which you’d expect since
this is an Internet banking system (“ib” = “Internet Banking”).

• The system appears to be made up of a number of architectural tiers. There’s “ib.web”
and “ib.middletier”, but I don’t know if these are physical or logical tiers.

• There looks to be a naming convention for projects. For example, “ib.middletier.authentication.lib”,
“ib.middletier.messaging.lib” and “ib.middletier.bankingsystem.lib” are class libraries
that seem to relate to the middle-tier. Are these simply a logical grouping for classes
or something more significant such as higher level components and services?

• With some knowledge of the technology, I can see a “Service References” folder lurking
underneath the “ib.web” project. These are Windows Communication Foundation
(WCF) service references that, in the case of this example, are essentially web service
clients. The naming of them seems to correspond to the class libraries within the
middle-tier, so I think we actually have a distributed system with a middle-tier that
exposes a number of well-defined services.

The code doesn’t portray the intent of the design

A further deep-dive through the code will help to prove your initial assumptions right or
wrong, but it’s also likely to leave youwith awhole host of questions. Perhaps you understand
what the system does at a high level, but you don’t understand things like:

• How the software system fits into the existing system landscape.
• Why the technologies in use were chosen.
• The overall structure of the software system.
• Where the various components are deployed at runtime and how they communicate.

The code doesn’t tell the whole story 175

• How the web-tier “knows” where to find the middle-tier.
• What approach to logging/configuration/error handling/etc has been adopted and
whether it is consistent across the codebase.

• Whether any common patterns and principles are in use across the codebase.
• How and where to add new functionality.
• How security has been implemented across the stack.
• How scalability is achieved.
• How the interfaces with other systems work.
• etc

I’ve been asked to review and work on systems where there has been no documentation. You
can certainly gauge the answers to most of these questions from the code but it can be hard
work. Reading the code will get you so far but you’ll probably need to ask questions to the
rest of the team at some point. And if you don’t ask the right questions, you won’t get the
right answers - you don’t know what you don’t know.

Supplementary information

With any software system, there’s another layer of information sitting above the code that
provides answers to these types of questions and more.

The code doesn’t tell the whole story 176

There’s an additional layer of information above the code

This type of information is complementary to the code and should be captured somewhere,
for example in lightweight supplementary documentation to describe what the code itself
doesn’t. The code tells a story, but it doesn’t tell the whole story.

49. Software documentation as a
guidebook

“Working software over comprehensive documentation” is what the Manifesto for Agile
Software Development says and it’s incredible to see how many software teams have
interpreted those five words as “don’t write any documentation”. The underlying principle
here is that real working software is much more valuable to end-users than a stack of
comprehensive documentation but many teams use this line in the agile manifesto as an
excuse to not write any documentation at all. Unfortunately the code doesn’t tell the whole
story and not having a source of supplementary information about a complex software
system can slow a team down as they struggle to navigate the codebase.

I’m also a firm believer that many software teams have a duty to deliver some supplementary
documentation along with the codebase, especially those that are building the software
under an outsourcing and/or offshoring contract. I’ve seen IT consulting organisations
deliver highly complex software systems to their customers without a single piece of
supporting documentation, often because the team doesn’t have any documentation. If the
original software developers leave the consulting organisation, will the new team be able to
understand what the software is all about, how it’s been built and how to enhance it in a
way that is sympathetic to the original architecture? And what about the poor customer? Is
it right that they should only be delivered a working codebase?

The problem is that when software teams think about documentation, they usually think
of huge Microsoft Word documents based upon a software architecture document template
from the 1990’s that includes sections where they need to draw Unified Modeling Language
(UML) class diagrams for every use case that their software supports. Few people enjoy
reading this type of document, let alone writing it! A different approach is needed. We should
think about supplementary documentation as an ever-changing travel guidebook rather than
a comprehensive static piece of history. But what goes into a such a guidebook?

1. Maps

Let’s imagine that I teleported you away from where you are now and dropped you in a
quiet, leafy country lane somewhere in the world (picture 1). Where are you and how do

http://agilemanifesto.org
http://agilemanifesto.org

Software documentation as a guidebook 178

you figure out the answer to this question? You could shout for help, but this will only
work if there are other people in the vicinity. Or you could simply start walking until you
recognised something or encountered some civilisation, who you could then ask for help. As
geeks though, we would probably fire up the maps application on our smartphone and use
the GPS to pinpoint our location (picture 2).

From the detail to the big picture

The problem with picture 2 is that although it may show our location, we’re a little too
“zoomed in” to potentially make sense of it. If we zoom out further, eventually we’ll get to
see that I teleported you to a country lane in Jersey (picture 3).

The next issue is that the satellite imagery is showing a lot of detail, which makes it hard to
see where we are relative to some of the significant features of the island, such as the major
roads and places. To counter this, we can remove the satellite imagery (picture 4). Although
not as detailed, this abstraction allows us to see some of the major structural elements of the
island along with some of the place names, which were perviously getting obscured by the
detail. With our simplified view of the island, we can zoom out further until we get to a big
picture showing exactly where Jersey is in Europe (pictures 5, 6 and 7). All of these images
show the same location from different levels of abstraction, each of which can help you to
answer different questions.

If I were to open up the codebase of a complex software system and highlight a random line
of code, exploring is fun but it would take a while for you to understand where you were

Software documentation as a guidebook 179

and how the code fitted into the software system as a whole. Most integrated development
environments have a way to navigate the code by namespace, package or folder but often
the physical structure of the codebase is different to the logical structure. For example, you
may have many classes that make up a single component, and many of those components
may make up a single deployable unit.

Diagrams can act as maps to help people navigate a complex codebase and this is one of the
most important parts of supplementary software documentation. Ideally there should be a
small number of simple diagrams, each showing a different part of the software system or
level of abstraction. My C4 approach is how I summarise the static structure of a software
system but there are others including the use of UML.

2. Sights

If you ever visit Jersey, and you should because it’s beautiful, you’ll probably want a map.
There are visitor maps available at the ports and these present a simplified view of what
Jersey looks like. Essentially the visitor maps are detailed sketches of the island and, rather
than showing every single building, they show an abstract view. Although Jersey is small,
once unfolded, these maps can look daunting if you’ve not visited before, so what you ideally
need is a list of the major points of interest and sights to see. This is one of the main reasons
that people take a travel guidebook on holiday with them. Regardless of whether it’s physical
or virtual (e.g. an e-book on your smartphone), the guidebook will undoubtedly list out the
top sights that you should make a visit to.

A codebase is no different. Althoughwe could spend a long time diagramming and describing
every single piece of code, there’s really little value in doing that. What we really need
is something that lists out the points of interest so that we can focus our energy on
understanding the major elements of the software without getting bogged down in all of
the detail. Many web applications, for example, are actually fairly boring and rather than
understanding how each of the 200+ pages work, I’d rather see the points of interest. These
may include things like the patterns that are used to implement web pages and data access
strategies along with how security and scalability are handled.

3. History and culture

If you do ever visit Jersey, and you really should because it is beautiful, you may see some
things that look out of kilter with their surroundings. For example, we have a lovely granite
stone castle on the south coast of the island called Elizabeth Castle that was built in the

http://www.jersey.com
http://www.jersey.com
http://www.jersey.com/English/sightsandactivities/attractions/attractions/Pages/elizabethcastle.aspx

Software documentation as a guidebook 180

16th century. As you walk around admiring the architecture, eventually you’ll reach the
top where it looks like somebody has dumped a large concrete cylinder, which is not in
keeping with the intricate granite stonework generally seen elsewhere around the castle. As
you explore further, you’ll see signs explaining that the castle was refortified during the
German occupation in the second world war. Here, the history helps explain why the castle
is the way that it is.

Again, a codebase is no different and some knowledge of the history, culture and rationale
can go a long way in helping you understand why a software system has been designed in
the way it was. This is particularly useful for people who are new to an existing team.

4. Practical information

The final thing that travel guidebooks tend to include is practical information. You know, all
the useful bits and pieces about currency, electricity supplies, immigration, local laws, local
customs, how to get around, etc.

If we think about a software system, the practical informationmight includewhere the source
code can be found, how to build it, how to deploy it, the principles that the team follow, etc.
It’s all of the stuff that can help the development team do their job effectively.

Keep it short, keep it simple

Exploring is great fun but ultimately it takes time, which we often don’t have. Since the
code doesn’t tell the whole story, some supplementary documentation can be very useful,
especially if you’re handing over the software to somebody else or people are leaving
and joining the team on a regular basis. My advice is to think about this supplementary
documentation as a guidebook, which should give people enough information to get started
and help them accelerate the exploration process. Do resist the temptation to go into too
much technical detail though because the technical people that will understand that level of
detail will know how to find it in the codebase anyway. As with everything, there’s a happy
mid-point somewhere.

The following headings describe what you might want to include in a software guidebook:

1. Context
2. Functional Overview
3. Quality Attributes

Software documentation as a guidebook 181

4. Constraints
5. Principles
6. Software Architecture
7. External Interfaces
8. Code
9. Data
10. Infrastructure Architecture
11. Deployment
12. Operation and Support
13. Decision Log

Beware of the “views”

Many typical software architecture document templates aren’t actually too bad as a starting
point for supplementary documentation, but often the names of the various sections confuse
people. If you glance over the list of section headings that I’ve just presented, you might be
wondering where the typical software architecture “views” are.

If you’ve not seen these before, there are a number of different ways to look at a software
system. Examples include IEEE 1471, ISO/IEC/IEEE 42010, Philippe Kruchten’s 4+1 model,
etc. What they have in common is that they all provide different “views” onto a software
system to describe different aspects of it. For example, there’s often a “logical view”, a
“physical view”, a “development view” and so on.

The big problem I’ve found with many of these approaches is that it starts to get confusing
very quickly if people aren’t versed in the terminology used. For example, I’ve heard people
argue about what the difference between a “conceptual view” and a “logical view” is. And
let’s not even start asking questions about whether technology is permitted in a logical view!
Perspective is important too. If I’m a software developer, is the “development view” about
the code, or is that the “implementation view”? But what about the “physical view”? I mean,
code is the physical output, right? But then “physical view” means something different to
infrastructure architects. But what if the target deployment environment is virtual rather
than physical?

My advice is, however you write documentation, just be clear on what it is you’re trying to
communicate and name the section accordingly. One option to resolve the terminology issue
is to ensure that everybody on the team can point to a clear definition of what the various
architectural views are. Software Systems Architecture by Eoin Woods and Nick Rozanski

http://en.wikipedia.org/wiki/IEEE_1471
http://en.wikipedia.org/wiki/ISO/IEC_42010
http://en.wikipedia.org/wiki/4%2B1_architectural_view_model
http://www.viewpoints-and-perspectives.info

Software documentation as a guidebook 182

comes highly recommended in this regard. Another approach is to simply rename the sections
to remove any ambiguity.

Product vs project documentation

As a final note, the style of documentation that I’m referring to here is related to the product
being built rather than the project that is creating/changing the product. A number of
organisations I’ve worked with have software systems approaching twenty years old and,
although they have varying amounts of project-level documentation, there’s often nothing
that tells the story of how the product works and how it’s evolved. Often these organisations
have a single product (software system) and every major change is managed as a separate
project. This results in a huge amount of change over the course of twenty years and a
considerable amount of project documentation to digest in order to understand the current
state of the software. New joiners in such environments are often expected to simply read
the code and fill in the blanks by tracking down documentation produced by various project
teams, which is time-consuming to say the least!

I recommend that software teams create a single software guidebook for every software
system that they build. This doesn’t mean that teams shouldn’t create project-level docu-
mentation, but there should be a single place where somebody can find information about
how the product works and how it’s evolved over time. Once a single software guidebook
is in place, every project/change-stream/timebox to change that system is exactly that - a
small delta. A single software guidebook per product makes it much easier to understand the
current state and provides a great starting point for future exploration.

50. Context
A context section should be one of the first sections of the software guidebook and simply
used to set the scene for the remainder of the document.

Intent

A context section should answer the following types of questions:

• What is this software project/product/system all about?
• What is it that’s being built?
• How does it fit into the existing environment? (e.g. systems, business processes, etc)
• Who is using it? (users, roles, actors, personas, etc)

Structure

The context section doesn’t need to be long; a page or two is sufficient and a context diagram
is a great way to tell most of the story.

Motivation

I’ve seen software architecture documents that don’t start by setting the scene and, 30 pages
in, you’re still none the wiser as to why the software exists and where it fits into the existing
IT environment. A context section doesn’t take long to create but can be immensely useful,
especially for those outside of the team.

Audience

Technical and non-technical people, inside and outside of the immediate software develop-
ment team.

Required

Yes, all software guidebooks should include an initial context section to set the scene.

51. Functional Overview
Even though the purpose of a software guidebook isn’t to explain what the software does in
detail, it can be useful to expand on the context and summarise what the major functions of
the software are.

Intent

This section allows you to summarise what the key functions of the system are. It also allows
you to make an explicit link between the functional aspects of the system (use cases, user
stories, etc) and, if they are significant to the architecture, to explain why. A functional
overview should answer the following types of questions:

• Is it clear what the system actually does?
• Is it clear which features, functions, use cases, user stories, etc are significant to the
architecture and why?

• Is it clear who the important users are (roles, actors, personas, etc) and how the system
caters for their needs?

• It is clear that the above has been used to shape and define the architecture?

Alternatively, if your software automates a business process or workflow, a functional view
should answer questions like the following:

• Is it clear what the system does from a process perspective?
• What are the major processes and flows of information through the system?

Structure

By all means refer to existing documentation if it’s available; and by this I mean functional
specifications, use case documents or even lists of user stories. However, it’s often useful
to summarise the business domain and the functionality provided by the system. Again,
diagrams can help, and you could use a UML use case diagram or a collection of simple

Functional Overview 185

wireframes showing the important parts of the user interface. Either way, remember that the
purpose of this section is to provide an overview.

Alternatively, if your software automates a business process or workflow, you could use
a flow chart or UML activity diagram to show the smaller steps within the process and
how they fit together. This is particularly useful to highlight aspects such as parallelism,
concurrency, where processes fork or join, etc.

Motivation

This doesn’t necessarily need to be a long section, with diagrams being used to provide
an overview. Where a context section summarises how the software fits into the existing
environment, this section describes what the system actually does. Again, this is about
providing a summary and setting the scene rather than comprehensively describing every
user/system interaction.

Audience

Technical and non-technical people, inside and outside of the immediate software develop-
ment team.

Required

Yes, all software guidebooks should include a summary of the functionality provided by the
software.

52. Quality Attributes
With the functional overview section summarising the functionality, it’s also worth including
a separate section to summarise the quality attributes/non-functional requirements.

Intent

This section is about summarising the key quality attributes and should answer the following
types of questions:

• Is there a clear understanding of the quality attributes that the architecture must
satisfy?

• Are the quality attributes SMART (specific, measurable, achievable, relevant and
timely)?

• Have quality attributes that are usually taken for granted been explicitly marked as out
of scope if they are not needed? (e.g. “user interface elements will only be presented
in English” to indicate that multi-language support is not explicitly catered for)

• Are any of the quality attributes unrealistic? (e.g. true 24x7 availability is typically
very costly to implement inside many organisations)

In addition, if any of the quality attributes are deemed as “architecturally significant” and
therefore influence the architecture, why not make a note of them so that you can refer back
to them later in the document.

Structure

Simply listing out each of the quality attributes is a good starting point. Examples include:

• Performance (e.g. latency and throughput)
• Scalability (e.g. data and traffic volumes)
• Availability (e.g. uptime, downtime, scheduled maintenance, 24x7, 99.9%, etc)
• Security (e.g. authentication, authorisation, data confidentiality, etc)

Quality Attributes 187

• Extensibility
• Flexibility
• Auditing
• Monitoring and management
• Reliability
• Failover/disaster recovery targets (e.g. manual vs automatic, how long will this take?)
• Business continuity
• Interoperability
• Legal, compliance and regulatory requirements (e.g. data protection act)
• Internationalisation (i18n) and localisation (L10n)
• Accessibility
• Usability
• …

Each quality attribute should be precise, leaving no interpretation to the reader. Examples
where this isn’t the case include:

• “the request must be serviced quickly”
• “there should be no overhead”
• “as fast as possible”
• “as small as possible”
• “as many customers as possible”
• …

Motivation

If you’ve been a good software architecture citizen and have proactively considered the
quality attributes, why not write them down too? Typically, quality attributes are not given
to you on a plate and an amount of exploration and refinement is usually needed to come up
with a list of them. Put simply, writing down the quality attributes removes any ambiguity
both now and during maintenance/enhancement work in the future.

Audience

Since quality attributes are mostly technical in nature, this section is really targeted at
technical people in the software development team.

Quality Attributes 188

Required

Yes, all software guidebooks should include a summary of the quality attributes/non-
functional requirements as they usually shape the resulting software architecture in some
way.

53. Constraints
Software lives within the context of the real-world, and the real-world has constraints. This
section allows you to state these constraints so it’s clear that you are working within them
and obvious how they affect your architecture decisions.

Intent

Constraints are typically imposed upon you but they aren’t necessarily “bad”, as reducing
the number of available options often makes your job designing software easier. This section
allows you to explicitly summarise the constraints that you’re working within and the
decisions that have already been made for you.

Structure

As with the quality attributes, simply listing the known constraints and briefly summarising
them will work. Example constraints include:

• Time, budget and resources.
• Approved technology lists and technology constraints.
• Target deployment platform.
• Existing systems and integration standards.
• Local standards (e.g. development, coding, etc).
• Public standards (e.g. HTTP, SOAP, XML, XML Schema, WSDL, etc).
• Standard protocols.
• Standard message formats.
• Size of the software development team.
• Skill profile of the software development team.
• Nature of the software being built (e.g. tactical or strategic).
• Political constraints.
• Use of internal intellectual property.
• etc

Constraints 190

If constraints do have an impact, it’s worth summarising them (e.g. what they are, why they
are being imposed and who is imposing them) and stating how they are significant to your
architecture.

Motivation

Constraints have the power to massively influence the architecture, particularly if they limit
the technology that can be used to build the solution. Documenting them prevents you having
to answer questions in the future about why you’ve seemingly made some odd decisions.

Audience

The audience for this section includes everybody involved with the software development
process, since some constraints are technical and some aren’t.

Required

Yes, all software guidebooks should include a summary of the constraints as they usually
shape the resulting software architecture in some way. It’s worth making these constraints
explicit at all times, even in environments that have a very well known set of constraints (e.g.
“all of our software is ASP.NET against a SQL Server database”) because constraints have a
habit of changing over time.

54. Principles
The principles section allows you to summarise those principles that have been used (or you
are using) to design and build the software.

Intent

The purpose of this section is to simply make it explicit which principles you are following.
These could have been explicitly asked for by a stakeholder or they could be principles that
you (i.e. the software development team) want to adopt and follow.

Structure

If you have an existing set of software development principles (e.g. on a development wiki),
by all means simply reference it. Otherwise, list out the principles that you are following and
accompany each with a short explanation or link to further information. Example principles
include:

• Architectural layering strategy.
• No business logic in views.
• No database access in views.
• Use of interfaces.
• Always use an ORM.
• Dependency injection.
• The Hollywood principle (don’t call us, we’ll call you).
• High cohesion, low coupling.
• Follow SOLID (Single responsibility principle, Open/closed principle, Liskov substitu-
tion principle, Interface segregation principle, Dependency inversion principle).

• DRY (don’t repeat yourself).
• Ensure all components are stateless (e.g. to ease scaling).
• Prefer a rich domain model.
• Prefer an anaemic domain model.

http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

Principles 192

• Always prefer stored procedures.
• Never use stored procedures.
• Don’t reinvent the wheel.
• Common approaches for error handling, logging, etc.
• Buy rather than build.
• etc

Motivation

The motivation for writing down the list of principles is to make them explicit so that
everybody involved with the software development understands what they are. Why? Put
simply, principles help to introduce consistency into a codebase by ensuring that common
problems are approached in the same way.

Audience

The audience for this section is predominantly the technical people in the software develop-
ment team.

Required

Yes, all software guidebooks should include a summary of the principles that have been or
are being used to develop the software.

55. Software Architecture
The software architecture section is your “big picture” view and allows you to present the
structure of the software. Traditional software architecture documents typically refer to this
as a “conceptual view” or “logical view”, and there is often confusion about whether such
views should refer to implementation details such as technology choices.

Intent

The purpose of this section is to summarise the software architecture of your software system
so that the following questions can be answered:

• What does the “big picture” look like?
• Is there are clear structure?
• Is it clear how the system works from the “30,000 foot view”?
• Does it show the major containers and technology choices?
• Does it show the major components and their interactions?
• What are the key internal interfaces? (e.g. a web service between your web and
business tiers)

Structure

I use the container and component diagrams as the main focus for this section, accompanied
by a short narrative explaining what the diagram is showing plus a summary of each
container/component.

Sometimes UML sequence or collaboration diagrams showing component interactions can be
a useful way to illustrate how the software satisfies the major use cases/user stories/etc. Only
do this if it adds value though and resist the temptation to describe how every use case/user
story works!

Software Architecture 194

Motivation

The motivation for writing this section is that it provides the maps that people can use to get
an overview of the software and help developers navigate the codebase.

Audience

The audience for this section is predominantly the technical people in the software develop-
ment team.

Required

Yes, all software guidebooks should include a software architecture section because it’s essen-
tial that the overall software structure is well understood by everybody on the development
team.

56. External Interfaces
Interfaces, particularly those that are external to your software system, are one of the riskiest
parts of any software system so it’s very useful to summarise what the interfaces are and how
they work.

Intent

The purpose of this section is to answer the following types of questions:

• What are the key external interfaces?
– e.g. between your system and other systems (whether they are internal or
external to your environment)

– e.g. any APIs that you are exposing for consumption
– e.g. any files that your are exporting from your system

• Has each interface been thought about from a technical perspective?
– What is the technical definition of the interface?
– If messaging is being used, which queues (point-to-point) and topics (pub-sub)
are components using to communicate?

– What format are the messages (e.g. plain text or XML defined by a DT-
D/Schema)?

– Are they synchronous or asynchronous?
– Are asynchronous messaging links guaranteed?
– Are subscribers durable where necessary?
– Can messages be received out of order and is this a problem?
– Are interfaces idempotent?
– Is the interface always available or do you, for example, need to cache data
locally?

– How is performance/scalability/security/etc catered for?
• Has each interface been thought about from a non-technical perspective?

– Who has ownership of the interface?
– How often does the interface change and how is versioning handled?
– Are there any service-level agreements in place?

External Interfaces 196

Structure

I tend to simply list out the interfaces (in the form “From X to Y”) along with a short narrative
that describes the characteristics of the interface. To put the interfaces in context, I may
include a simplified version of the container or component diagrams that emphasise the
interfaces.

Motivation

The motivation for writing this section is to ensure that the interfaces have been considered
and are understood because they’re typically risky and easy to ignore. If interface details
haven’t been captured, this section can then act as a checklist and be a source of work items
for the team to undertake.

Audience

The audience for this section is predominantly the technical people in the software develop-
ment team.

Required

No, I only include this section if I’m building something that has one or more complex
interfaces. For example, I wouldn’t include it for a standard “web server -> database” style
of software system, but I would include this section if that web application needed to
communicate with an external system where it was consuming information via an API.

57. Code
Although other sections of the software guidebook describe the overall architecture of the
software, often you’ll want to present lower level details to explain how things work. This is
what the code section is for. Some software architecture documentation templates call this
the “implementation view” or the “development view”.

Intent

The purpose of the code section is to describe the implementation details for parts of the
software system that are important, complex, significant, etc. For example, I’ve written about
the following for software projects that I’ve been involved in:

• Generating/rendering HTML: a short description of an in-house framework that was
created for generating HTML, including the major classes and concepts.

• Data binding: our approach to updating business objects as the result of HTTP POST
requests.

• Multi-page data collection: a short description of an in-house framework we used for
building forms that spanned multiple web pages.

• Web MVC: an example usage of the web MVC framework that was being used.
• Security: our approach to usingWindows Identity Foundation (WIF) for authentication
and authorisation.

• Domain model: an overview of the important parts of the domain model.
• Component framework: a short description of the framework that we built to allow
components to be reconfigured at runtime.

• Configuration: a short description of the standard component configuration mecha-
nism in use across the codebase.

• Architectural layering: an overview of the layering strategy and the patterns in use to
implement it.

• Exceptions and logging: a summary of our approach to exception handling and logging
across the various architectural layers.

• Patterns and principles: an explanation of how patterns and principles are imple-
mented.

• etc

Code 198

Structure

Keep it simple, with a short section for each element that you want to describe and include
diagrams if they help the reader. For example, a high-level UML class and/or sequence
diagram can be useful to help explain how a bespoke in-house framework works. Resist the
temptation to include all of the detail though, and don’t feel that your diagrams need to show
everything. I prefer to spend a fewminutes sketching out a high-level UML class diagram that
shows selected (important) attributes and methods rather than using the complex diagrams
that can be generated automatically from your codebase with UML tools or IDE plugins.
Keeping any diagrams at a high-level of detail means that they’re less volatile and remain up
to date for longer because they can tolerate small changes to the code and yet remain valid.

Motivation

The motivation for writing this section is to ensure that everybody understands how the
important/significant/complex parts of the software system work so that they can maintain,
enhance and extend them in a consistent and coherent manner. This section also helps new
members of the team get up to speed quickly.

Audience

The audience for this section is predominantly the technical people in the software develop-
ment team.

Required

No, but I usually include this section for anything other than a trivial software system.

58. Data
The data associated with a software system is usually not the primary point of focus yet it’s
arguably more important than the software itself, so often it’s useful to document something
about it.

Intent

The purpose of the data section is to record anything that is important from a data
perspective, answering the following types of questions:

• What does the data model look like?
• Where is data stored?
• Who owns the data?
• How much storage space is needed for the data? (e.g. especially if you’re dealing with
“big data”)

• What are the archiving and back-up strategies?
• Are there any regulatory requirements for the long term archival of business data?
• Likewise for log files and audit trails?
• Are flat files being used for storage? If so, what format is being used?

Structure

Keep it simple, with a short section for each element that you want to describe and include
domain models or entity relationship diagrams if they help the reader. As with my advice for
including class diagrams in the code section, keep any diagrams at a high level of abstraction
rather than including every field and property. If people need this type of information, they
can find it in the code or database (for example).

Data 200

Motivation

The motivation for writing this section is that the data in most software systems tends to
outlive the software. This section can help anybody that needs to maintain and support the
data on an ongoing basis, plus anybody that needs to extract reports or undertake business
intelligence activities on the data. This section can also serve as a starting point for when the
software system is inevitably rewritten in the future.

Audience

The audience for this section is predominantly the technical people in the software develop-
ment team along with others that may help deploy, support and operate the software system.

Required

No, but I usually include this section for anything other than a trivial software system.

59. Infrastructure Architecture
While most of the software guidebook is focussed on the software itself, we do also
need to consider the infrastructure because software architecture is about software and
infrastructure.

Intent

This section is used to describe the physical/virtual hardware and networks on which the
software will be deployed. Although, as a software architect, you may not be involved in
designing the infrastructure, you do need to understand that it’s sufficient to enable you to
satisfy your goals. The purpose of this section is to answer the following types of questions:

• Is there a clear physical architecture?
• What hardware (virtual or physical) does this include across all tiers?
• Does it cater for redundancy, failover and disaster recovery if applicable?
• Is it clear how the chosen hardware components have been sized and selected?
• If multiple servers and sites are used, what are the network links between them?
• Who is responsible for support and maintenance of the infrastructure?
• Are there central teams to look after common infrastructure (e.g. databases, message
buses, application servers, networks, routers, switches, load balancers, reverse proxies,
internet connections, etc)?

• Who owns the resources?
• Are there sufficient environments for development, testing, acceptance, pre-produc-
tion, production, etc?

Structure

The main focus for this section is usually an infrastructure/network diagram showing the
various hardware/network components and how they fit together, with a short narrative to
accompany the diagram.

Infrastructure Architecture 202

Example infrastructure diagrams, typically created in Microsoft Visio

If I’m working in a large organisation, there are usually infrastructure architects who look
after the infrastructure architecture and create these diagrams for me. Sometimes this isn’t
the case though and I will draw them myself.

Motivation

The motivation for writing this section is to force me (the software architect) to step outside
of my comfort zone and think about the infrastructure architecture. If I don’t understand it,
there’s a chance that the software architecture I’m creating won’t work or that the existing
infrastructure won’t support what I’m trying to do.

Audience

The audience for this section is predominantly the technical people in the software develop-
ment team along with others that may help deploy, support and operate the software system.

Infrastructure Architecture 203

Required

Yes, an infrastructure architecture section should be included in all software guidebooks
because it illustrates that the infrastructure is understood and has been considered.

60. Deployment
The deployment section is simply the mapping between the software and the infrastructure.

Intent

This section is used to describe the mapping between the software (e.g. containers) and
the infrastructure. Sometimes this will be a simple one-to-one mapping (e.g. deploy a web
application to a single web server) and at other times it will be more complex (e.g. deploy
a web application across a number of servers in a server farm). This section answers the
following types of questions:

• How and where is the software installed and configured?
• Is it clear how the software will be deployed across the infrastructure elements
described in the infrastructure architecture section? (e.g. one-to-onemapping, multiple
containers per server, etc)

• If this is still to be decided, what are the options and have they been documented?
• Is it understood how memory and CPU will be partitioned between the processes
running on a single piece of infrastructure?

• Are any containers and/or components running in an active-active, active-passive,
hot-standby, cold-standby, etc formation?

• Has the deployment and rollback strategy been defined?
• What happens in the event of a software or infrastructure failure?
• Is it clear how data is replicated across sites?

Structure

There are a few ways to structure this section:

1. Tables: simple textual tables that show the mapping between software containers
and/or components with the infrastructure they will be deployed on.

Deployment 205

2. Diagrams: UML deployment diagrams or modified versions of the diagrams from the
infrastructure architecture section showing where software will be running.

In both cases, I may use colour coding the designate the runtime status of software and
infrastructure (e.g. active, passive, hot-standby, warm-standby, cold-standby, etc).

Motivation

The motivation for writing this section is to ensure that I understand how the software is
going to work once it gets out of the development environment and also to document the
often complex deployment of enterprise software systems.

This section can provide a useful overview, even for those teams that have adopted
continuous delivery and have all of their deployment scripted using tools such as Puppet
or Chef.

Audience

The audience for this section is predominantly the technical people in the software develop-
ment team along with others that may help deploy, support and operate the software system.

Required

Yes, a deployment section should be included in all software guidebooks because it can help
to solve the often mysterious question of where the software will be, or has been, deployed.

http://continuousdelivery.com

61. Operation and Support
The operations and support section allows you to describe how people will run, monitor and
manage your software.

Intent

Most systems will be subject to support and operational requirements, particularly around
how they are monitored, managed and administered. Including a dedicated section in the
software guidebook lets you be explicit about how your software will or does support those
requirements. This section should address the following types of questions:

• Is it clear how the software provides the ability for operation/support teams to monitor
and manage the system?

• How is this achieved across all tiers of the architecture?
• How can operational staff diagnose problems?
• Where are errors and information logged? (e.g. log files, Windows Event Log, SMNP,
JMX, WMI, custom diagnostics, etc)

• Do configuration changes require a restart?
• Are there anymanual housekeeping tasks that need to be performed on a regular basis?
• Does old data need to be periodically archived?

Structure

This section is usually fairly narrative in nature, with a heading for each related set of
information (e.g. monitoring, diagnostics, configuration, etc).

Motivation

I’ve undertaken audits of existing software systems in the past and we’ve had to spend time
hunting for basic information such as log file locations. Times change and team members
move on, so recording this information can help prevent those situations in the future where
nobody understands how to operate the software.

Operation and Support 207

Audience

The audience for this section is predominantly the technical people in the software develop-
ment team along with others that may help deploy, support and operate the software system.

Required

Yes, an operations and support section should be included in all software guidebooks, unless
you like throwing software into a black hole and hoping for the best!

62. Decision Log
The final thing you might consider including in a software guidebook is a log of the decisions
that have been made during the development of the software system.

Intent

The purpose of this section is to simply record the major decisions that have been made,
including both the technology choices (e.g. products, frameworks, etc) and the overall
architecture (e.g. the structure of the software, architectural style, decomposition, patterns,
etc). For example:

• Why did you choose technology or framework “X” over “Y” and “Z”?
• How did you do this? Product evaluation or proof of concept?
• Were you forced into making a decision about “X” based upon corporate policy or
enterprise architecture strategies?

• Why did you choose the selected software architecture? What other options did you
consider?

• How do you know that the solution satisfies the major non-functional requirements?
• etc

Structure

Again, keep it simple, with a short paragraph describing each decision that you want to
record. Do refer to other resources such as proof of concepts, performance testing results or
product evaluations if you have them.

Motivation

The motivation for recording the significant decisions is that this section can act as a point of
reference in the future. All decisions aremade given a specific context and usually have trade-
offs. There is usually never a perfect solution to a given problem. Articulating the decision

Decision Log 209

making process after the event is often complex, particularly if you’re explaining the decision
to people who are joining the team or you’re in an environment where the context changes
on a regular basis.

Although “nobody ever gets fired for buying IBM”, perhaps writing down the fact that
corporate policy forced you into using IBM WebSphere over Apache Tomcat will save you
some tricky conversations in the future.

Audience

The audience for this section is predominantly the technical people in the software develop-
ment team along with others that may help deploy, support and operate the software system.

Required

No, but I usually include this section if we (the team) spendmore than a fewminutes thinking
about something significant such as a technology choice or an architectural style. If in
doubt, spend a couple of minutes writing it down, especially if you work for a consulting
organisation who is building a software system under an outsourcing agreement for a
customer.

63. Questions
1. We should all strive for self-documenting code, but does this tell the whole story? If

not, what is missing?
2. Do you document your software systems? If so, why? If not, why not?
3. If you have lots of project-level documentation but very little product-level documen-

tation, how do new joiners to your team understand your software system(s)? What
could make their job easier?

4. What would you consider to be a minimum level of supplementary software docu-
mentation within your own environment?

5. Where do you store your supplementary documentation? (e.g. source control system,
network file share, SharePoint, wiki, etc). Is this the best solution given your intended
audience?

VI Agility and the essence of
software architecture

This, the final part of the book, is about how everything else covered in the book fits into
the day-to-day world of software development. We’ll also answer the question of how much
software architecture (and therefore, up front design) you should do and how to create firm
foundations.

64. The conflict between agile and
architecture - myth or reality?

The words “agile” and “architecture” are often seen as mutually exclusive but the real world
often tells a different story. Some software teams see architecture as an unnecessary evil
whereas others have reached the conclusion that they do need to think about architecture
once again.

Architecture can be summarised as being about structure and vision, with a key part of the
process focussed on understanding the significant design decisions. Unless you’re running the
leanest of startups and you genuinely don’t knowwhich direction you’re heading in, even the
most agile of software projects will have some architectural concerns and these things really
should be thought about up front. Agile software projects therefore do need “architecture”,
but this seems to contradict with how agile has been evangelised for the past 10+ years.
Put simply, there is no conflict between agile and architecture because agile projects need
architecture. So, where is the conflict then?

Conflict 1: Team structure

The first conflict between architecture and agile software development approaches is
related to team structure. Traditional approaches to software architecture usually result in
a dedicated software architect, triggering thoughts of ivory tower dictators who are a long
way removed from the process of building software. This unfortunate stereotype of “solution
architects” delivering large design documents to the development team before running away
to cause havoc elsewhere has resulted in a backlash against having a dedicated architect on
a software development team.

One of the things that agile software development teams strive towards is reducing the
amount of overhead associated with communication via document hand-offs. It’s rightly
about increasing collaboration and reducing waste, with organisations often preferring to
create small teams of generalising specialists who can turn their hand to almost any task.
Indeed, because of the way in which agile approaches have been evangelised, there is often
a perception that agile teams must consist of cross-discipline team members and simply left
to self-organise. The result? Many agile teams will tell you that they “don’t need no stinkin’
architects”!

The conflict between agile and architecture - myth or reality? 213

Conflict 2: Process and outputs

The second conflict is between the process and the desired outputs of agile versus those of
big up front design, which is what people usually refer to when they talk about architecture.
One of the key goals of agile approaches is to deliver customer value, frequently and in
small chunks. It’s about moving fast, getting feedback and embracing change. The goal of
big design up front is to settle on an understanding of everything that needs to be delivered
before putting a blueprint (and usually a plan) in place.

The agile manifesto values “responding to change” over “following a plan”, but of course this
doesn’t mean you shouldn’t do any planning and it seems that some agile teams are afraid of
doing any “analysis” at all. The result is that in trying to avoid big up front design, agile teams
often do not design up front and instead use terms like “emergent design” or “evolutionary
architecture” to justify their approach. I’ve even heard teams claim that their adoption of
test-driven development (TDD) negates the need for “architecture”, but these are often the
same teams that get trapped in a constant refactoring cycle at some point in the future.

Software architecture provides boundaries for TDD,
BDD, DDD, RDD and clean code

One of the recurring questions I get asked whenever I talk to teams about software
architecture is how it relates to techniques such as TDD, BDD, DDD, RDD, etc. The question
really relates to whether xDD is a substitute for “software architecture”, particularly within
“agile environments”. The short answer is no. The slightly longer answer is that the process of
thinking about software architecture is really about putting some boundaries in place, inside
which you can build your software using whatever xDD and agile practices you like.

For me, the “why?” is simple - you need to think about the architectural drivers (the things
that play a huge part in influencing the resulting software architecture), including:

• Functional requirements: Requirements drive architecture. You need to know vaguely
what you’re building, irrespective of how you capture and record those requirements
(i.e. user stories, use cases, requirements specifications, acceptance tests, etc).

• Quality attributes: The non-functional requirements (e.g. performance, scalability,
security, etc) are usually technical in nature and are hard to retrofit. They ideally
need to be baked into the initial design and ignoring these qualities will lead you to a
software system that is either over- or under-engineered.

http://agilemanifesto.org
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Behavior-driven_development
http://en.wikipedia.org/wiki/Domain-driven_design
http://en.wikipedia.org/wiki/Responsibility-driven_design

The conflict between agile and architecture - myth or reality? 214

• Constraints: The real-world usually has constraints; ranging from approved technol-
ogy lists, prescribed integration standards, target deployment environment, size of
team, etc. Again, not considering these could cause you to deliver a software system
that doesn’t complement your environment, adding unnecessary friction.

• Principles: These are the things that you want to adopt in an attempt to provide
consistency and clarity to the software. From a design perspective, this includes
things like your decomposition strategy (e.g. layers vs components vs micro-services),
separation of concerns, architectural patterns, etc. Explicitly outlining a starting set of
principles is essential so that the team building the software starts out heading in the
same direction.

Separating architecture from ivory towers and big up
front design

These conflicts, in many cases, lead to chaotic teams that lack an appropriate amount of
technical leadership. The result? Software systems that look like big balls of mud and/or
don’t satisfy key architectural drivers such as non-functional requirements.

Architecture is about the stuff that’s hard or costly to change. It’s about the big or “significant”
decisions, the sort of decisions that you can’t easily refactor in an afternoon. This includes,
for example, the core technology choices, the overall high-level structure (the big picture)
and an understanding of how you’re going to solve any complex/risky/significant problems.
Software architecture is important.

Big up front design typically covers these architectural concerns but it also tends to go much
further, often unnecessarily so. The trick here is to differentiate what’s important fromwhat’s
not. Defining a high-level structure to put a vision in place is important. Drawing a countless
number of detailed class diagrams before writing the code most likely isn’t. Understanding
how you’re going to solve a tricky performance requirement is important, understanding the
length of every database column most likely isn’t.

Agile and architecture aren’t in conflict. Rather than blindly following what others say,
software teams need to cut through the hype and understand the technical leadership style
and quantity of up front design that they need given their own unique context.

Considering the architectural drivers needn’t take very long and can provide you with a
starting point for the rest of the software design activities. Of course, this doesn’t mean that
the architecture shouldn’t be changed, especially when you start writing code and getting
feedback. The point is that you now have a framework and some boundaries to work within,

The conflict between agile and architecture - myth or reality? 215

which provide some often needed vision and guidance for the team. My experience suggests
that a little direction can go a long way.

65. Quantifying risk
Identifying risks is a crucial part of doing “just enough up front design” and, put simply, a
risk is something bad that may happen in the future, such as a chosen technology not being
able to fulfil the promises that the vendor makes. Not all risks are created equal though, with
some being more important than others. For example, a risk that may make your software
project fail should be treated as a higher priority than something that may cause the team
some general discomfort.

Assuming that you have a list of risks (and risk-storming is a great technique for doing
this), how do you quantify each of those risks and assess their relative priorities? There are
a number of well established approaches to quantifying risk; including assigning a value of
low, medium or high or even a simple numeric value between 1 and 10, with higher numbers
representing higher levels of risk.

Probability vs impact

A good way to think about risk is to separate out the probability of that risk happening from
the negative impact of it happening.

• Probability: How likely is it that the risk will happen? Do you think that the chance
is remote or would you be willing to bet cash on it?

• Impact: What is the negative impact if the risk does occur? Is there general discomfort
for the team or is it back to the drawing board? Or will it cause your software project
to fail?

Both probability and impact can be quantified as low, medium, high or simply as a numeric
value. If you think about probability and impact separately, you can then plot the overall
score on a matrix by multiplying the scores together as illustrated in the following diagram.

Quantifying risk 217

A probability/impact matrix for quantifying risk

Prioritising risk

Prioritising risks is then as simple as ranking them according to their score. A risk with a low
probability and a low impact can be treated as a low priority risk. Conversely, a risk with
a high probability and a high impact needs to be given a high priority. As indicated by the
colour coding…

• Green: a score of 1 or 2; the risk is low priority.
• Amber: a score of 3 or 4; the risk is medium priority.
• Red: a score of 6 or 9; the risk is high priority.

It’s often difficult to prioritise which risks you should take care of and if you get it wrong,
you’ll put the risk mitigation effort in the wrong place. Quantifying risks provides you with
a way to focus on those risks that are most likely to cause your software project to fail or you
to be fired.

66. Risk-storming
Risk identification is a crucial part of doing “just enough up front design” but it’s something
that many software teams shy away from because it’s often seen as a boring chore. Risk-
storming is a quick, fun, collaborative and visual technique for identifying risk that the whole
team can take part in. There are 4 steps.

Step 1. Draw some architecture diagrams

The first step is to draw some architecture diagrams on whiteboards or large sheets of flip
chart paper. C4 is a good starting point because it provides a way to have a collection of
diagrams at different levels of abstraction, some of which will allow you to highlight different
risks across your architecture. Large diagrams are better.

Step 2. Identify the risks individually

Risks can be subjective, so ask everybody on the team (architects, developers, project man-
agers, operational staff, etc) to stand in front of the architecture diagrams and individually
write down the risks that they can identify, one per sticky note. Additionally, ask people to
quantify each risk based upon probability and impact. Ideally, use different colours of sticky
note to represent the different risk priorities. You can timebox this part of the exercise to
5-10 minutes to ensure that it doesn’t drag on and this step should be done in silence, with
everybody keeping their sticky notes hidden. Here are some examples of the risks to look for:

• Data formats from third-party systems change unexpectedly.
• External systems become unavailable.
• Components run too slowly.
• Components don’t scale.
• Key components crash.
• Single points of failure.
• Data becomes corrupted.
• Infrastructure fails.

Risk-storming 219

• Disks fill up.
• New technology doesn’t work as expected.
• New technology is too complex to work with.
• etc

As with software development estimates, people’s perceptions of risk can be subjective based
upon their experience. If you’re planning on using a new technology, hopefully somebody on
the team will identify that there is a risk associated with doing this. Also, somebody might
quantify the risk of using new technology relatively highly whereas others might not feel
the same if they’ve used that same technology before. Identifying risks individually allows
everybody to contribute to the risk identification process and you’ll gain a better view of the
risks perceived by the team rather than only from those designing the software or leading
the team.

Step 3. Converge the risks on the diagrams

Next, ask everybody to place their sticky notes onto the architecture diagrams, sticking them
in close proximity to the area where the risk has been identified. For example, if you identify
a risk that one of your components will run too slowly, put the sticky note over the top of
that component on the architecture diagram.

Risk-storming 220

Converge the risks on the diagrams

This part of the technique is visual and, once complete, lets you see at a glance where the
highest areas of risk are. If several people have identified similar risks you’ll get a clustering
of sticky notes on top of the diagrams as people’s ideas converge.

Step 4. Prioritise the risks

Now you can take each sticky note (or cluster of sticky notes) and agree on how you will
collectively quantify the risk that has been identified.

• Individual sticky notes: Ask the person who identified the risk what their reason was
and collectively agree on the probability and impact. After discussion, if either the
probability or impact turns out to be “none”, take the sticky note off of the architecture
diagram but don’t throw it away just yet.

• Clusters of sticky notes: If the probability and impact are the same on each sticky
note, you’re done. If they aren’t, you’ll need to collectively agree on how to quantify
the risk in the same way that you agree upon estimates during a Planning Poker or
Wideband Delphi session. Look at the outliers and understand the rationale behind
people quantifying the risk accordingly.

http://planningpoker.com
http://en.wikipedia.org/wiki/Wideband_delphi

Risk-storming 221

Mitigation strategies

Identifying the risks associated with your software architecture is an essential exercise
but you also need to come up with mitigation strategies, either to prevent the risks from
happening in the first place or to take corrective action if the risk does happen. Since the
risks are now prioritised, you can focus on the highest priority ones first.

There are a number of mitigation strategies the are applicable depending upon the type of
risk, including:

1. Education: Training the team, restructuring it or hiring new team members in areas
where you lack experience (e.g. with new technology).

2. Prototypes: Creating prototypes where they are needed to mitigate technical risks by
proving that something does or doesn’t work. Since risk-storming is a visual technique,
it lets you easily see the stripes through your software system that you should perhaps
look at in more detail with prototypes.

3. Rework: Changing your software architecture to remove or reduce the probability/im-
pact of identified risks (e.g. removing single points of failure, adding a cache to protect
from third-party system outages, etc). If you do decide to change your architecture,
you can re-run the risk-storming exercise to check whether the change has had the
desired effect.

When to use risk-storming

Risk-storming is a quick, fun technique that provides a collaborative way to identify and
visualise risks. As an aside, this technique can be used for anything that you can visualise;
from enterprise architectures through to business processes and workflows. It can be used at
the start of a software development project (when you’re coming up with the initial software
architecture) or throughout, during iteration planning sessions or retrospectives.

Just make sure that you keep a log of the risks that are identified, including those that you
later agree have a probability or impact of “none”. Additionally, why not keep the architecture
diagrams with the sticky notes on the wall of your project room so that everybody can see
this additional layer of information. Identifying risks is essential in preventing project failure
and it doesn’t need to be a chore if you get the whole team involved.

Risk-storming 222

Collective ownership

As a final point related to risks, who owns the risks on most software projects anyway? From
my experience, the “risk register” (if there is one) is usually owned by the lone non-technical
project manager. Does this make sense? Do they understand the technical risks? Do they
really care about the technical risks?

A better approach is to assign ownership of technical risks to the software architecture role.
By all means keep a central risk register, but just ensure that somebody on the team is actively
looking after the technical risks, particularly those that will cause your project to be cancelled
or you to be fired. And, of course, sharing the software architecture role amongst the team
paves the way for collective ownership of the risks too.

67. Just enough up front design
One of the major points of disagreement about software relates to how much up front design
to do. People are very polarised as to when they should do design and howmuch they should
do. Frommy experience of working with software teams, the views basically break down like
this.

• “We need to do all of the software architecture up front, before we start coding.”
• “Software architecture doesn’t need to be done up front; we’ll evolve it as we progress.”
• “Meh, we don’t need to do software architecture, we have an excellent team.”

These different views do raise an interesting question, how much architecture do you need
to do up front?

It comes back to methodology

One of the key reasons for the disagreement can be found in how teamswork, and specifically
what sort of development methodology they are following. If you compare the common
software development approaches on account of how much up front design they advocate,
you’d have something like the following diagram.

Just enough up front design 224

At one end of the scale you have waterfall that, in it’s typical form, suggests big design up
front where everything must be decided, reviewed and signed-off before a line of code is
written. And at the other end you have the agile approaches that, on the face of it, shy away
from doing architecture.

At this point it’s worth saying that this isn’t actually true. Agile methods don’t say “don’t
do architecture”, just as they don’t say “don’t produce any documentation”. Agile is about
sufficiency, moving fast, embracing change, feedback and delivering value. But since agile
approaches and their evangelists don’t put much emphasis on the architectural aspects of
software development, many people have misinterpreted this to mean “agile says don’t do
any architecture”. More commonly, agile teams choose to spread the design work out across
the project rather than doing it all up front. There are several names for this, including
“evolutionary architecture” and “emergent design”. Depending on the size and complexity
of the software system along with the experience and maturity of the team, this could
unfortunately end up as “foolishly hoping for the best”.

Sitting between the ends of the scale are methods like the Rational Unified Process (RUP),
Disciplined Agile Delivery (DAD) and DSDM Atern. These are flexible process frameworks
that can be implemented by taking all or part of them. Although many RUP implementations
have typically been heavyweight monsters that have more in common with waterfall
approaches, it can be scaled down to exhibit a combination of characteristics that lets it
take the centre ground on the scale. DAD is basically a trimmed down version of RUP, and
DSDMAtern is a similar iterative and incremental method that is also influenced by the agile

http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process
http://en.wikipedia.org/wiki/Disciplined_Agile_Delivery
http://en.wikipedia.org/wiki/Dynamic_systems_development_method

Just enough up front design 225

movement. All three are risk-driven methodologies that basically say, “gather the majority
of the key requirements at a high level, get the risky stuff out of the way, then iterate and
increment”. DSDM Atern even uses the term “firm foundations” to describe this. Done right,
these methods can lead to a nice balance of up front design and evolutionary architecture.

You need to do “just enough”

My approach to up front architecture and design is that you need to do “just enough”. If you
say this to people they either think it’s an inspirational breath of fresh air that fits in with
all of their existing beliefs or they think it’s a complete cop out! “Just enough” works as a
guideline but it’s vague and doesn’t do much to help people assess how much is enough.
Based upon my definition of architecture, you could say that you need to do just enough up
front design to give you structure and vision. In other words, do enough so that you know
what your goal is and how you’re going to achieve it. This is a better guideline, but it still
doesn’t provide any concrete advice.

It turns out that while “just enough” up front design is hard to quantify, many people have
strong opinions on “too little” or “too much” based upon their past experience. Here’s a
summary of those thoughts from software developers I’ve met over the past few years.

Howmuch up front design is too little?

• No understanding of what and where the system boundary is.
• No common understanding of “the big picture” within the team.
• Inability to communicate the overall vision.
• Team members aren’t clear or comfortable with what they need to do.
• No thought about non-functional requirements/quality attributes.
• No thought about how the constraints of the (real-world) environment affect the
software (e.g. deployment environment).

• No thoughts on key areas of risk; such as non-functional requirements, external
interfaces, etc.

• The significant problems and/or their answers haven’t been identified.
• No thought on separation of concerns, appropriate levels of abstraction, layering,
modifiability, flex points, etc.

• No common understanding of the role that the architect(s) will play.
• Inconsistent approaches to solving problems.
• A lack of control and guidance for the team.

Just enough up front design 226

• Significant change to the architecture during the project lifecycle that could have been
anticipated.

• Too many design alternatives and options, often with team members disagreeing on
the solution or way forward.

• Uncertainty over whether the design will work (e.g. no prototyping was performed as
a part of the design process).

• A lack of technology choices (i.e. unnecessary deferral).

Howmuch up front design is too much?

• Too much information (i.e. long documents and/or information overload).
• A design that is too detailed at too many levels of abstraction.
• Too many diagrams.
• Writing code or pseudo-code in documentation.
• An architecture that is too rigid with no flexibility.
• All decisions at all levels of abstraction have been made.
• Class level design with numerous sequence diagrams showing all possible interactions.
• Detailed entity relationship models and database designs (e.g. tables, views, stored
procedures and indexes).

• Analysis paralysis and a team that is stuck focussing on minor details.
• Coding becomes a simple transformation of design artefacts to code, which is boring
and demotivating for the team.

• An unbounded “design phase” (i.e. time and/or budget).
• The deadline has been reached without any coding.

Howmuch is “just enough”?

It’s easy to identify with many of the answers above but “just enough” sits in that grey area
somewhere between the two extremes. The key is that architecture represents the significant
decisions, where significance is measured by cost of change. In other words, it’s the stuff
that’s really expensive to modify and the stuff that you really do need to get right as early
as possible. For example, qualities such as high performance, high scalability, high security
and high availability generally need to be baked into the foundations early on because they
are hard to retrofit into an existing codebase. The significant decisions also include the stuff
that you can’t easily refactor in an afternoon; such as the overall structure, core technology
choices, “architectural” patterns, core frameworks and so on.

Just enough up front design 227

Back to RUP for a second, and it uses the term “architecturally significant”, advising that you
should figure out what might be significant to your architecture. What might be significant?
Well, it’s anything that’s costly to change, is complex (e.g. tricky non-functional requirements
or constraints) or is new. In reality, these are the things with a higher than normal risk of
consequences if you don’t get them right. It’s worth bearing in mind that the significant
elements are often subjective too and can vary depending on the experience of the team.

Firm foundations

What you have here then is an approach to software development that lets you focus on
what’s risky in order to build sufficient foundations to move forward with. The identification
of architecturally significant elements and their corresponding risks is something that should
be applied to all software projects, regardless of methodology. Some agile projects already
do this by introducing a “sprint zero”, although some agile evangelists will say that “you’re
doing it wrong” if you need to introduce an architecture sprint. I say that you need to do
whatever works for you based upon your own context.

Although all of this provides some guidance, the answer to “how much is just enough?”
needs one of those “it depends” type answers because all software teams are different. Some
teams will be more experienced, some teams will need more guidance, some teams will
continually work together, some teams will rotate and change frequently, some software
systems will have a large amount of essential complexity, etc. How much architecture do
you need to do then? I say that you need to do “just enough” in order to do the following,
which applies whether the software architecture role is being performed by a single person
or shared amongst the team.

Just enough up front design 228

1. Structure
• What: Understand the significant structural elements and how they fit together,
based upon the architectural drivers.

• How: Design and decomposition down to containers and components.
2. Vision

• What: Create and communicate a vision for the team to work with.
• How: Context, container and component diagrams.

3. Risks
• What: Identify and mitigate the highest priority risks.
• How: Risk-storming and concrete experiments.

This minimal set of software architecture practices will provide you with firm foundations
that underpin the rest of the software delivery, both in terms of the product being built and
the team that is building it. Some architecture usually does need to be done up front, but
some doesn’t and can naturally evolve. Deciding where the line sits between mandatory and
evolutionary design is the key.

Contextualising just enough up front design

In reality, the “howmuch up front design is enough?” question must be answered by you and
here’s my advice … go and practice architecting a software system. Find or create a small-

http://www.agilemodeling.com/essays/agileArchitecture.htm#ProveIt

Just enough up front design 229

medium size software project scenario and draft a very short set of high-level requirements
(functional and non-functional) to describe it. This could be an existing system that you’ve
worked on or something new and unrelated to your domain such as the financial risk system
that I use on my training course. With this in place, ask two or more groups of 2-3 people
to come up with a solution by choosing some technology, doing some design and drawing
some diagrams to communicate the vision. Timebox the activity (e.g. 90 minutes) and then
hold an open review session where the following types of questions are asked about each of
the solutions:

• Will the architecture work? If not, why not?
• Have all of the key risks been identified?
• Is the architecture too simple? Is it too complex?
• Has the architecture been communicated effectively?
• What do people like about the diagrams? What can be improved?
• Is there too much detail? Is there enough detail?
• Could you give this to your team as a starting point?
• Is there too much control? Is there not enough guidance?
• Are you happywith the level of technology decisions that have beenmade or deferred?

Think of this exercise as an architectural kata except that you perform a review that focusses
additionally on the process youwent through and the outputs rather than just the architecture
itself. Capture your findings and try to distill them into a set of guidelines for how to approach
the software design process in the future. Agree upon and include examples of how much
detail to go down into, agree on diagram notation and include examples of good diagrams,
determine the common constraints within your own environment, etc. If possible, run the
exercise again with the guidelines in mind to see how it changes things. One day is typically
enough time to run through this exercise with a couple of design/communicate/review cycles.

No two software teams are the same. Setting aside a day to practice the software design
process within your own environment will provide you with a consistent starting point for
tackling the process in the future and help you contextualise exactly what “just enough” up
front design means to you and your team. An additional benefit of practicing the software
design process is that it’s a great way to coach and mentor others. Are you striving for a
self-organising team where everybody is able to perform the software architecture role?

http://blogs.tedneward.com/2010/06/17/Architectural+Katas.aspx

68. Agility
In my experience, people tend to use the word “agile” to refer to a couple of things. The first
is when talking about agile approaches to software development; moving fast, embracing
change, releasing often, getting feedback and so on. The second use of the word relates to
the agile mindset and how people work together in agile environments. This is usually about
team dynamics, systems thinking, psychology and other things you might associate with
creating high performing teams.

Leaving the latter “fluffy stuff” aside, for me, labelling a software architecture as being
“agile” means that it can react to change within its environment, adapting to the ever
changing requirements that people throw at it. This isn’t necessarily the same as the software
architecture that an agile team will create. Delivering software in an agile way doesn’t
guarantee that the resulting software architecture will be agile. In fact, in my experience,
the opposite typically happens because teams are more focussed on delivering functionality
rather than looking after their architecture.

Understanding “agility”

To understand howmuch agility you need from your software architecture, it’s worth looking
at what agility means. John Boyd, a fighter pilot in the US Air Force, came up with a concept
that he called the OODA loop - Observe, Orient, Decide and Act. In essence, this loop forms
the basis for the decision making process. Imagine that you are a fighter pilot in a dogfight
with an adversary. In order to outwit your opponent in this situation, you need to observe
what’s happening, orient yourself (e.g. do some analysis), decide what to do and then act. In
the heat of the battle, this loop needs to be executed as fast as possible to avoid being shot
down by your opponent. Boyd then says that you can confuse and disorient your opponent
if you can get inside their OODA loop, by which he means execute it faster than they can. If
you’re more agile than your opponent, you’re the one that will come out on top.

In a paper titled “What Lessons Can the Agile Community Learn from A Maverick Fighter
Pilot?”, Steve Adolph, from the University of British Columbia, takes Boyd’s concept and
applies it to software development. The conclusion drawn is that agility is relative and
time-based. If your software team can’t deliver software and keep pace with changes in the
environment, your team is not agile. If you’re working in a large, slow moving organisation

http://agilemanifesto.org
http://en.wikipedia.org/wiki/OODA_loop
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1667567
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1667567

Agility 231

that rarely changes, you can probably take months to deliver software and still be considered
“agile” by the organisation. In a lean startup, that’s likely to not be the case.

A good architecture enables agility

The driver for having this discussion is that a good software architecture enables agility.
Although Service-Oriented Architecture (SOA) is seen as a dirty term within some organi-
sations due to over-complex, bloated and bodged implementations, there’s a growing trend
of software systems being made up of tiny microservices, where each service only does one
thing but does that thing very well. A microservice may typically be less than one hundred
lines of code. If change is needed, services can be rewritten from scratch, potentially in a
different programming language. This style of architecture provides agility in a number
of ways. Small, loosely coupled components/services can be built, modified and tested in
isolation, or even ripped out and replaced depending on how requirements change. This
style of architecture also lends itself well to a very flexible and adaptable deployment model,
since new components/services can be added and scaled if needed.

However, nothing in life is ever free. Building a software system like this takes time, effort
and discipline. Many people don’t need this level of adaptability and agility either, which is
why you see so many teams building software systems that are much more monolithic in
nature, where everything is bundled together and deployed as a single unit. Although simpler
to build, this style of architecture usually takes more effort to adapt in the face of changing
requirements because functionality is often interwoven across the codebase.

http://en.wikipedia.org/wiki/Service-oriented_architecture
http://www.infoq.com/presentations/Micro-Services

Agility 232

Different software architectures provide differing levels of agility

In my view, both architectural styles have their advantages and disadvantages, with the
decision to build a monolithic system vs one composed of microservices coming back to
the trade-offs that you are willing to make. As with all things in the IT industry, there’s a
middle ground between these extremes. With pragmatism in mind, you can always opt to
build a software system that consists of a number of small well-defined components, yet is
still deployed as a single unit. The Wikipedia page for Component-based development has a
good summary and a “component” might be something like a risk calculator, audit logger,
report generator, data importer, etc. The simplest way to think about a component is that
it’s a set of related behaviours behind an interface, which may be implemented using one or
more collaborating classes (assuming an OO language). Good components share a number
of characteristics with good classes and, of course, good microservices: high cohesion, low
coupling, a well-defined public interface, good encapsulation, etc. Well-defined components
provide a stepping stone to migrate to a microservice architecture more easily at a later date,
if you need the benefits given the additional cost and complexity that such an architectural-
style provides.

http://en.wikipedia.org/wiki/Component-based_software_engineering

Agility 233

Well-defined, in-process components is a stepping stone to out-of-process components (i.e. microservices)

Agility as a quality attribute

Understanding the speed at which your organisation or business changes is important
because it can help you decide upon the style of architecture to adopt; whether that’s a
monolithic architecture, a microservices architecture or something in between. You need
to understand the trade-offs and make your choices accordingly. Treat agility as a quality
attribute. You don’t get agility for free.

Creating agile software systems in an agile way

Finally, and once you understand how much agility you need, is the process of architecting
the solution and this is where just enough up front design and the essence of software
architecture comes into play, at the heart of which is the C4 model.

Agility 234

• Sketches: Simple software architecture sketches, based upon the C4 model, can help
you visualise and communicate those early ideas quickly.

• Ubiquitous language: The C4 model provides a simple ubiquitous language that the
whole team can use to communicate effectively and efficiently.

• Aligning software architecture and code: Aligning the software architecture model
with the code, by adopting an architecturally-evident coding style, allows you to
ensure architectural integrity and enforce modularity. This, in turn, makes your
software easier to explain, understand and adapt.

• Software architecture as code: Representing the C4 model as code provides a way
to keep those software architecture models continously up to date, especially when
architeturally-evident coding constructs are extracted from the code in an automated
way.

• Risk-storming: Risk-storming provides a simple visual and collaborative way to
identify the high-priority risks. The information from this exercise can then go into
determining whether the architecture is fit for purpose and which, if any, concrete
experiments need to be undertaken.

http://www.structurizr.com

69. Introducing software architecture
A little software architecture discipline has a huge potential to improve the success of
software teams, essentially through the introduction of technical leadership. With this in
mind, the final question that we need to address is how to get software teams to adopt a
just enough approach to software architecture, to ensure they build well-structured software
systems that satisfy the goals, particularly with respect to any complex non-functional
requirements and constraints. Often, this question becomes how to we reintroduce software
architecture back into the way that software teams work.

In my view, the big problem that software architecture has as a discipline is that it’s
competing with all of the shiny new things created in the software industry on a seemingly
daily basis. I’ve met thousands of software developers from around the world and, in my
experience, there’s a large number of them that don’t think about software architecture
as much as they should. Despite the volume of educational material out there, teams lack
knowledge about what software architecture really is.

People have limited time and energy for learning but a lack of time isn’t often the reason that
teams don’t understand what software architecture is all about. When I was moving into my
early software architecture roles, I, like others I’ve spoken to, struggled to understand how
much of what I read about in the software architecture books related to what I should doing
on a daily basis. This lack of understanding is made worse because most software developers
don’t get to practice architecting software on a regular basis. How many software systems
have you architected during your own career?

Simply saying that all software teams need to think about software architecture isn’t enough
to make it happen though. So, how do we get software teams to reintroduce software
architecture?

Software architecture needs to be accessible

As experienced practitioners, we have a duty to educate others but we do need to take
it one step at a time. We need to remember that many people are being introduced to
software architecture with potentially no knowledge of the related research that has been
conducted in the past. Think about the terminology that you see and hear in relation to
software architecture. Howwould you explain to a typical software developer what a “logical

Introducing software architecture 236

view” is? When we refer to the “physical view”, is this about the code or the physical
infrastructure? Everybody on the development team needs to understand the essence of
software architecture and the consequences of not thinking about it before we start talking
about things like architecture description languages and evaluation methods. Information
about software architecture needs to be accessible and grounded in reality.

This may seem an odd thing to say, but the people who manage software teams also need to
understand the essence of software architecture and why it’s a necessary discipline. Some of
the teams I’ve worked with over the years have been told by their management to “stop doing
software architecture and get on with the coding”. In many cases, the reason behind this is a
misunderstanding that all up front design activities need to be dropped when adopting agile
approaches. Such software development teams are usually put under immense pressure to
deliver and some up front thinking usually helps rather than hinders.

Some practical suggestions

Here are some practical suggestions for introducing software architecture.

1. Educate people

Simply run some workshops where people can learn about and understand what software
architecture is all about. This can be aimed at developers or non-developers, and it will help
to make sure that everybody is talking the same language. At a minimum, you should look
to cover:

• What software architecture is.
• Why software architecture is important.
• The practices you want to adopt.

2. Talk about architecture in retrospectives

If you have regular retrospectives to reflect on how your team is performing, why not simply
include software architecture on the list of topics that you talk about? If you don’t think
that enough consideration is being given to software architecture, perhaps because you’re
constantly refactoring the architecture of your software or you’re having issues with some
non-functional characteristics, then think about the software architecture practices that you
can adopt to help. On the flip side, if you’re spending too much time thinking about software
architecture or up front design, perhaps it’s time to look at the value of this work and whether
any practices can be dropped or substituted.

http://en.wikipedia.org/wiki/Architecture_description_language
http://www.sei.cmu.edu/architecture/tools/evaluate/

Introducing software architecture 237

3. Definition of done

If you have a “definition of done” for work items, add software architecture to the list.
This will help ensure that you consider architectural implications of the work item and
conformance of the implementation with any desired architectural patterns/rules or non-
functional goals.

4. Allocate the software architecture role to somebody

If you have a software team that doesn’t think about software architecture, simply allocating
the software architecture role to somebody appropriate on the team may kickstart this
because you’re explicitly giving ownership and responsibility for the software architecture
to somebody. Allocating the role to more than one person does work with some teams, but I
find it better that one person takes ownership initially, with a view to sharing it with others
as the team gains more experience. Some teams dislike the term “software architect” and use
the term architecture owner instead. Whatever you call it, coaching and collaboration are
key.

5. Architecture katas

Words alone are not enough and the skeptics need to see that architecture is not about big
design up front. This is why I run short architecture katas where small teams collaboratively
architect a software solution for a simple set of requirements, producing one or more
diagrams to visualise and communicate their solutions to others. This allows people to
experience that up front design doesn’t necessarily mean designing everything to a very low
level of abstraction and it provides a way to practice communicating software architecture.

Making change happen

Here’s a relatively common question from people that understand why software architecture
is good, but don’t know how to introduce it into their projects.

“I understand the need for software architecture but our team just doesn’t have
the time to do it because we’re so busy coding our product. Having said that, we
don’t have consistent approaches to solving problems, etc. Our managers won’t
give us time to do architecture. If we’re doing architecture, we’re not coding.
How do we introduce architecture?”

http://www.agilemodeling.com/essays/architectureOwner.htm

Introducing software architecture 238

It’s worth asking a few questions to understand the need for actively thinking about software
architecture:

1. What problems is the lack of software architecture causing now?
2. What problems is the lack of software architecture likely to cause in the future?
3. Is there a risk that these problems will lead to more serious consequences (e.g. loss of

reputation, business, customers, money, etc)?
4. Has something already gone wrong?

One of the things that I tell people new to the architecture role is that they do need to dedicate
some time to doing architecture work (the big picture stuff) but a balance needs to be struck
between this and the regular day-to-day development activities. If you’re coding all of the
time then that big picture stuff doesn’t get done. On the flip-side, spending too much time
on “software architecture” means that you don’t ever get any coding done, and we all know
that pretty diagrams are no use to end-users!

“How do we introduce software architecture?” is one of those questions that doesn’t have a
straightforward answer because it requires changes to the way that a software team works,
and these can only really be made when you understand the full context of the team. On a
more general note though, there are two ways that teams tend to change the way that they
work.

1. Reactively: The majority of teams will only change the way that they work based
upon bad things happening. In other words, they’ll change if and only if there’s a
catalyst. This could be anything from a continuous string of failed system deployments
or maybe something like a serious system failure. In these cases, the team knows
something is wrong, probably because their management is giving them a hard time,
and they know that something needs to be done to fix the situation. This approach
unfortunately appears to be in the majority across the software industry.

2. Proactively: Some teams proactively seek to improve the way that they work. Nothing
bad might have happened yet, but they can see that there’s room for improvement
to prevent the sort of situations mentioned previously. These teams are, ironically,
usually the better ones that don’t need to change, but they do understand the benefits
associated with striving for continouous improvement.

Back to the original question and in essence the team was asking permission to spend some
time doing the architecture stuff but they weren’t getting buy-in from their management.

Introducing software architecture 239

Perhaps their management didn’t clearly understand the benefits of doing it or the conse-
quences of not doing it. Either way, the team didn’t achieve the desired result. Whenever
I’ve been in this situation myself, I’ve either taken one of two approaches.

1. Present in a very clear and concise way what the current situation is and what the
issues, risks and consequences are if behaviours aren’t changed. Typically this is
something that you present to key decision makers, project sponsors or management.
Once they understand the risks, they can decide whether mitigating those risks is
worth the effort required to change behaviours. This requires influencing skills and
it can be a hard sell sometimes, particularly if you’re new to a team that you think is
dysfunctional!

2. Lead by example by finding a problem and addressing it. This could include, for exam-
ple, a lack of technical documentation, inconsistent approaches to solving problems,
too many architectural layers, inconsistent component configuration, etc. Sometimes
the initial seeds of change need to be put in place before everybody understands the
benefits in return for the effort. A little like the reaction that occurs when most people
see automated unit testing for the first time.

Each approach tends to favour different situations, and again it depends on a number of
factors. Coming back to the original question, it’s possible that the first approach was used
but either the message was weak or the management didn’t think that mitigating the risks
of not having any dedicated “architecture time” was worth the financial outlay. In this
particular case, I would introduce software architecture through being proactive and leading
by example. Simply find a problem (e.g. multiple approaches to dealing with configuration,
no high-level documentation, a confusing component structure, etc) and just start to fix it.
I’m not talking about downing tools and taking a few weeks out because we all know that
trying to sell a three month refactoring effort to your management is a tough proposition.
I’m talking about baby steps where you evolve the situation by breaking the problem down
and addressing it a piece at a time. Take a few minutes out from your day to focus on these
sort of tasks and before you know it you’ve probably started to make a world of difference.
“It’s easier to ask forgiveness than it is to get permission”.

The essence of software architecture

Many software teams are already using agile/lean approaches and more are following in
their footsteps. For this reason, any software architecture practices adopted need to add real
value otherwise the team is simply wasting time and effort. Only you can decide how much

Introducing software architecture 240

software architecture is just enough and only you can decide how best to lead the change
that you want to see in your team. Good luck with your journey!

70. Questions
1. Despite how agile approaches have been evangelised, are “agile” and “architecture”

really in conflict with one another?
2. If you’re currently working on an agile software team, have the architectural concerns

been thought about?
3. Do you feel that you have the right amount of technical leadership in your current

software development team? If so, why? If not, why not?
4. How much up front design is enough? How do you know when you stop? Is this view

understood and shared by the whole team?
5. Many software developers undertake coding katas to hone their skills. How can you

do the same for your software architecture skills? (e.g. take some requirements plus a
blank sheet of paper and come up with the design for a software solution)

6. What is a risk? Are all risks equal?
7. Who identifies the technical risks in your team?
8. Who looks after the technical risks in your team? If it’s the (typically non-technical)

project manager or ScrumMaster, is this a good idea?
9. What happens if you ignore technical risks?
10. How can you proactively deal with technical risks?
11. Do you need to introduce software architecture into the way that your team works? If

so, how might you do this?

VII Appendix A: Financial Risk
System

This is the financial risk system case study that is referred to throughout the book. It is also
used during my training course and workshops.

http://www.codingthearchitecture.com/training/

71. Financial Risk System

Background

A global investment bank based in London, New York and Singapore trades (buys and sells)
financial products with other banks (counterparties). When share prices on the stock markets
move up or down, the bank either makes money or loses it. At the end of the working day,
the bank needs to gain a view of how much risk they are exposed to (e.g. of losing money)
by running some calculations on the data held about their trades. The bank has an existing
Trade Data System (TDS) and Reference Data System (RDS) but need a new Risk System.

Trade Data System

The Trade Data System maintains a store of all trades made by the bank. It is already
configured to generate a file-based XML export of trade data at the close of business (5pm) in
New York. The export includes the following information for every trade made by the bank:

• Trade ID
• Date
• Current trade value in US dollars
• Counterparty ID

Reference Data System

The Reference Data System maintains all of the reference data needed by the bank. This
includes information about counterparties; each of which represents an individual, a bank,
etc. A file-based XML export is also available and includes basic information about each
counterparty. A new organisation-wide reference data system is due for completion in the
next 3 months, with the current system eventually being decommissioned.

Financial Risk System 244

Functional Requirements

The high-level functional requirements for the new Risk System are as follows.

1. Import trade data from the Trade Data System.
2. Import counterparty data from the Reference Data System.
3. Join the two sets of data together, enriching the trade data with information about the

counterparty.
4. For each counterparty, calculate the risk that the bank is exposed to.
5. Generate a report that can be imported into Microsoft Excel containing the risk figures

for all counterparties known by the bank.
6. Distribute the report to the business users before the start of the next trading day (9am)

in Singapore.
7. Provide a way for a subset of the business users to configure and maintain the external

parameters used by the risk calculations.

Non-functional Requirements

The non-functional requirements for the new Risk System are as follows.

Performance

• Risk reports must be generated before 9am the following business day in Singapore.

Scalability

• The system must be able to cope with trade volumes for the next 5 years.
• The Trade Data System export includes approximately 5000 trades now and it is
anticipated that there will be an additional 10 trades per day.

• The Reference Data System counterparty export includes approximately 20,000 coun-
terparties and growth will be negligible.

• There are 40-50 business users around the world that need access to the report.

Availability

• Risk reports should be available to users 24x7, but a small amount of downtime (less
than 30 minutes per day) can be tolerated.

Financial Risk System 245

Failover

• Manual failover is sufficient for all system components, provided that the availability
targets can be met.

Security

• This system must follow bank policy that states system access is restricted to authen-
ticated and authorised users only.

• Reports must only be distributed to authorised users.
• Only a subset of the authorised users are permitted to modify the parameters used in
the risk calculations.

• Although desirable, there are no single sign-on requirements (e.g. integration with
Active Directory, LDAP, etc).

• All access to the system and reports will be within the confines of the bank’s global
network.

Audit

• The following events must be recorded in the system audit logs:
– Report generation.
– Modification of risk calculation parameters.

• It must be possible to understand the input data that was used in calculating risk.

Fault Tolerance and Resilience

• The system should take appropriate steps to recover from an error if possible, but all
errors should be logged.

• Errors preventing a counterparty risk calculation being completed should be logged
and the process should continue.

Internationalization and Localization

• All user interfaces will be presented in English only.
• All reports will be presented in English only.
• All trading values and risk figures will be presented in US dollars only.

Financial Risk System 246

Monitoring and Management

• A Simple Network Management Protocol (SNMP) trap should be sent to the bank’s
Central Monitoring Service in the following circumstances:

– When there is a fatal error with a system component.
– When reports have not been generated before 9am Singapore time.

Data Retention and Archiving

• Input files used in the risk calculation process must be retained for 1 year.

Interoperability

• Interfaces with existing data systems should conform to and use existing data formats.

VIII Appendix B: Software
Guidebook for techtribes.je

techtribes.je is a side-project of mine to provide a focal point for the tech, IT and digital
sector in Jersey, Channel Islands. The code behind the techtribes.je website is open source
and available on GitHub, while the techtribes.je - Software Guidebook can be downloaded
for free from Leanpub.

http://techtribes.je
https://github.com/techtribesje/techtribesje
https://leanpub.com/techtribesje/

	Table of Contents
	Preface
	Software architecture has a bad reputation
	Agile aspirations
	So you think you're an architect?
	The frustrated architect

	About the book
	Why did I write the book?
	A new approach to software development?
	Five things every developer should know about software architecture

	About the author
	Software architecture training
	Acknowledgements
	I What is software architecture?
	What is architecture?
	As a noun
	As a verb

	Types of architecture
	What do they all have in common?

	What is software architecture?
	Application architecture
	System architecture
	Software architecture
	Enterprise architecture - strategy rather than code

	Architecture vs design
	Making a distinction
	Understanding significance

	Is software architecture important?
	A lack of software architecture causes problems
	The benefits of software architecture
	Does every software project need software architecture?

	Questions

	II The software architecture role
	The software architecture role
	1. Architectural Drivers
	2. Designing Software
	3. Technical Risks
	4. Architecture Evolution
	5. Coding
	6. Quality Assurance
	Collaborate or fail
	Technical leadership is a role, not a rank
	Create your own definition of the role

	Should software architects code?
	Writing code
	Building prototypes, frameworks and foundations
	Performing code reviews
	Experimenting and keeping up to date
	The tension between software architects and employers
	You don’t have to give up coding
	Don't code all the time

	Software architects should be master builders
	State of the union
	Back in time
	Did master builders actually build?
	Ivory towers?
	Divergence of the master builder role
	Achieving the role
	Architects need to work with the teams

	From developer to architect
	Experience is a good gauge but you need to look deeper
	The line is blurred
	Crossing the line is our responsibility

	Broadening the T
	Deep technology skills
	Breadth of knowledge
	Software architects are generalising specialists
	Software architecture is a technical career

	Soft skills
	Stay positive

	Software development is not a relay sport
	``Solution Architects''
	Somebody needs to own the big picture

	Software architecture introduces control?
	Provide guidance, strive for consistency
	How much control do you need?
	Control varies with culture
	A lever, not a button

	Mind the gap
	Developers focus on the low-level detail
	Architects dictate from their ivory towers
	Reducing the gap
	A collaborative approach to software architecture

	Where are the software architects of tomorrow?
	Coaching, mentoring and apprenticeships
	We're losing our technical mentors
	Software teams need downtime

	Everybody is an architect, except when they're not
	Everybody is an architect
	Except when they're not
	Does agile need architecture?

	Software architecture as a consultant
	Domain knowledge
	Authority

	Questions

	III Designing software
	Architectural drivers
	1. Functional requirements
	2. Quality Attributes
	3. Constraints
	4. Principles
	Understand their influence

	Quality Attributes (non-functional requirements)
	Which are important to you?

	Working with non-functional requirements
	Capture
	Refine
	Challenge

	Constraints
	Time and budget constraints
	Technology constraints
	People constraints
	Organisational constraints
	Are all constraints bad?
	Constraints can be prioritised
	Listen to the constraints

	Principles
	Development principles
	Architecture principles
	Beware of ``best practices''

	Technology is not an implementation detail
	1. Do you have complex non-functional requirements?
	2. Do you have constraints?
	3 Do you want consistency?
	Deferral vs decoupling
	Every decision has trade-offs

	More layers = more complexity
	Non-functional requirements
	Time and budget - nothing is free

	Collaborative design can help and hinder
	Experience influences software design

	Software architecture is a platform for conversation
	Software development isn't just about delivering features

	SharePoint projects need software architecture too
	1. Many SharePoint implementations aren't just SharePoint
	2. Non-functional requirements still apply to SharePoint solutions
	3. SharePoint projects are complex and require technical leadership too
	4. SharePoint solutions still need to be documented
	Strong leadership and discipline aren't just for software development projects

	Questions

	IV Communicating design
	We have a failure to communicate
	Abandoning UML
	Agility requires good communication

	The need for sketches
	Test driven development vs diagrams
	Why should people learn how to sketch?
	Sketching isn't art
	Sketches are not comprehensive models
	Sketching can be a collaborative activity

	Ineffective sketches
	The shopping list
	Boxes and no lines
	The ``functional view''
	The airline route map
	Generically true
	The ``logical view''
	Deployment vs execution context
	Too many assumptions
	Homeless Old C# Object (HOCO)
	Choose your own adventure
	Stormtroopers
	Should have used a whiteboard!
	Creating effective sketches

	C4: context, containers, components and classes
	A common set of abstractions
	Summarising the static view of your software
	Common abstractions over a common notation
	Diagrams should be simple and grounded in reality

	Context diagram
	Intent
	Structure
	Motivation
	Audience
	Example

	Container diagram
	Intent
	Structure
	Motivation
	Audience
	Example

	Component diagram
	Intent
	Structure
	Motivation
	Audience
	Example

	Shneiderman's mantra
	Overview first (context and container diagrams)
	Zoom and filter (component diagrams)
	Details on demand (class diagrams)
	Understanding a large and/or complex software system

	Technology choices included or omitted?
	Drawing diagrams during the design process
	Drawing diagrams retrospectively
	Architecture diagrams should be ``conceptual''
	Make technology choices explicit

	Would you code it that way?
	Shared components
	Layering strategies
	Diagrams should reflect reality

	Software architecture vs code
	Abstraction allows us to reduce detail and manage complexity
	We talk about components but write classes
	An architecturally-evident coding style
	Package by layer
	Package by feature
	The model-code gap
	Packaging by component
	Layers are an implementation detail
	Aligning software architecture and code

	Software architecture as code
	Auto-generating software architecture diagrams
	Why isn't the architecture in the code?
	Auto-generating the software architecture model
	Creating a software architecture model as code
	Visualising the software architecture model
	Software architecture as code opens opportunities
	The road ahead

	You don't need a UML tool
	There are many types of UML tool
	The simplest thing that could possibly work
	Uses for UML
	There is no silver bullet

	Effective sketches
	Titles
	Labels
	Shapes
	Responsibilities
	Lines
	Colour
	Borders
	Layout
	Orientation
	Keys
	Diagram review checklist
	Listen for questions

	C4++
	Enterprise context
	User interface mockups and wireframes
	Domain model
	Sequence and collaboration diagrams
	Business process and workflow models
	Infrastructure model
	Deployment model
	And more

	C4 - FAQ
	System names on context diagrams
	Should I use actors or boxes for external systems?
	Mixing levels of abstraction
	Shared components
	Utility components

	Questions

	V Documenting software
	The code doesn't tell the whole story
	The code doesn't portray the intent of the design
	Supplementary information

	Software documentation as a guidebook
	1. Maps
	2. Sights
	3. History and culture
	4. Practical information
	Keep it short, keep it simple
	Beware of the ``views''
	Product vs project documentation

	Context
	Intent
	Structure
	Motivation
	Audience
	Required

	Functional Overview
	Intent
	Structure
	Motivation
	Audience
	Required

	Quality Attributes
	Intent
	Structure
	Motivation
	Audience
	Required

	Constraints
	Intent
	Structure
	Motivation
	Audience
	Required

	Principles
	Intent
	Structure
	Motivation
	Audience
	Required

	Software Architecture
	Intent
	Structure
	Motivation
	Audience
	Required

	External Interfaces
	Intent
	Structure
	Motivation
	Audience
	Required

	Code
	Intent
	Structure
	Motivation
	Audience
	Required

	Data
	Intent
	Structure
	Motivation
	Audience
	Required

	Infrastructure Architecture
	Intent
	Structure
	Motivation
	Audience
	Required

	Deployment
	Intent
	Structure
	Motivation
	Audience
	Required

	Operation and Support
	Intent
	Structure
	Motivation
	Audience
	Required

	Decision Log
	Intent
	Structure
	Motivation
	Audience
	Required

	Questions

	VI Agility and the essence of software architecture
	The conflict between agile and architecture - myth or reality?
	Conflict 1: Team structure
	Conflict 2: Process and outputs
	Software architecture provides boundaries for TDD, BDD, DDD, RDD and clean code
	Separating architecture from ivory towers and big up front design

	Quantifying risk
	Probability vs impact
	Prioritising risk

	Risk-storming
	Step 1. Draw some architecture diagrams
	Step 2. Identify the risks individually
	Step 3. Converge the risks on the diagrams
	Step 4. Prioritise the risks
	Mitigation strategies
	When to use risk-storming
	Collective ownership

	Just enough up front design
	It comes back to methodology
	You need to do ``just enough''
	How much is ``just enough''?
	Firm foundations
	Contextualising just enough up front design

	Agility
	Understanding ``agility''
	A good architecture enables agility
	Agility as a quality attribute
	Creating agile software systems in an agile way

	Introducing software architecture
	Software architecture needs to be accessible
	Some practical suggestions
	Making change happen
	The essence of software architecture

	Questions

	VII Appendix A: Financial Risk System
	Financial Risk System
	Background
	Functional Requirements
	Non-functional Requirements

	VIII Appendix B: Software Guidebook for techtribes.je

