for Absolute Beginners

SECOND EDITION

Gary Bennett | Brad Lees

Apress:

Swift 2 for Absolute
Beginners

Gary Bennett
Brad Lees

Apress’

Swift 2 for Absolute Beginners
Copyright © 2015 by Gary Bennett and Brad Lees

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1489-3
ISBN-13 (electronic): 978-1-4842-1488-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Michelle Lowman

Development Editor: Douglas Pundick

Technical Reviewer: Stefan Kaczmarek

Editorial Board: Steve Anglin, Louise Corrigan, James DeWolf, Jonathan Gennick, Robert Hutchinson,
Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editors: Kevin Walter and Mark Powers

Copy Editor: Kezia Endsley

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,

6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springexr-sbm. com,
or visit www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress. com, or visit www. apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers
atwww.apress.com/9781484214893 or http://forum.xcelme.com. For detailed information about how to
locate your book’s source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484214893
http://forum.xcelme.com
www.apress.com/source-code/

Gary would like to dedicate this book to wife Stefanie and children, Michael, Danielle,
Michelle, and Emily, for always supporing him.

Brad would like to dedicate this book to his wife Natalie, for always supporting him.
He couldn’t do it without her.

Contents at a Glance

About the AUthors.........cm s ————————— XV
About the Technical ReVIEWETcsssssssssssssmsmssssssmsssssssssssssssssssssssssssssnsssassnsnsnnns xvii
Acknowledgments........cccciuiissssmmmnmmmmmmmssssssssssnsnmmessssssssssssnsneesssssssssnnnnnnnsessssssnnnnnnns Xix
INtroducCtionccuiieemmssnnnmsssnnmsssnnmsssnnssssnnsssannssssnnsssannssssnnnsssnnssssnnnsssnnsnssnnnsssnnnnssnnnsss Xxi
Chapter 1: Becoming a Great i0S Developerccueummmsssssnnmsssssnssmssssssssssssssnssssans 1
Chapter 2: Programming BaSiCS.....cccurusssmnnsrssssnnnsssssssnnsssssssnssssssssnssssssssnnssssssnnnnss 11
Chapter 3: It’s All About the Data............ccccvniemmminieme s —————— 25
Chapter 4: Making Decisions, Program Flow, and App Design........ccuseemmmssssannnns 41
Chapter 5: Object-Oriented Programming with Swift.........cccccnnmmnnnssennnnnsssnnnn 65
Chapter 6: Learning Swift and Xcodeccssssummmsssnsmsssnsssssnsssssnsssssnsssssanssssnnssssns 83
Chapter 7: Swift Classes, Objects, and Methodscccccmmmririnsssssssssnnnnneessssnns 105
Chapter 8: Programming Basics in SWiftcccccuvmmmnnnsemnmnnnsssnmmssssnmmsssns 131
Chapter 9: Comparing Datacccenmnmmmmmmmssssnmmmsssnmmsssssnmmssssnmssssssnsssnnn 157
Chapter 10: Creating User Interfacesc..ccvusmmmssamsmsssssmssssssssssssssssssssssnssssansss 173
Chapter 11: Storing Information............cccinninemmnnnnsennmnnsssnmsss—————————— 199
Chapter 12: Protocols and Delegatescccusemmmmssssmmnmmssssnnnmmsssssnssssssssnnssssssnnnns 231

vi

Contents at a Glance

Chapter 13: Introducing the Xcode Debuggerccccnsmmmnmmssssnnnmmssssnnsssssssnnns 247
Chapter 14: A Swift iPhone Appccccirvrrrmmmsssssssnmmmmmmssssssssssnssesssssssssssssssessssnns 263
Chapter 15: Apple Watch and watchKit...........ccccnnemmnnnnnsmnnnnnssssnnnnssssnemsssnnns 281
Chapter 16: A Swift HealthKit iPhone App......cccciiseemmmmnssssnmmmssssssmssssssssssssnnn 305

Contents

About the AUtROIS.........uicesmiimsmnsm s ————— XV
About the Technical REVIEWETcuscussssanssssanssssansssssnsssssnsssssnsssssnsssssnsssssnsssssnnssss Xvii
Acknowledgments..........cccuusmmmmsnnmmmsnsmmssnsmmsnsmmssssssn s ————- Xix
INtroducCtionccuiieemmssnnnmsssnnmsssnnmsssnnssssnnsssannssssnnsssannssssnnnsssnnssssnnnsssnnsnssnnnsssnnnnssnnnsss Xxi
Chapter 1: Becoming a Great i0S Developerccueummmsssssnnmsssssnssmssssssssssssssnssssans 1
ThinKing LiKe @ DEVEIOPETcceevrerererresnnsessessssessssessessssssssssssesssssssssssssssssssssssssssssssssens 2
Completing the Development CYCIEccoovcereeercresncrrc e 5
Introducing Object-Oriented Programmingccccoeeeeerececesess s see s sns s e 6
Working with the Playground Interface..........cccvvvvrvervrrennen s sesens 9
SUMMAIY ...t e e e s e s A e Re e e ae e s Re e e e ene e nanan 10
WhAE'S NEXL ... s s 10
(] (1] 10
Chapter 2: Programming BaSiCS......ccuuuurrrmssssssssnsnnssssssssssssssssnsssssssssssssssssssssssssssss 11
TOUMING XCOUB....cuerererererer sttt sttt sttt e e e e e e sn s e e sn e e sn e n e nnennenn 11
Exploring the WOrkSpace WiNGOWc.coceceeeererereresesesesesesesesesesesesese e sesesesesesessssssssssssssssssssssssssaens 12
Navigating YOUr WOIKSPACEcceeeruerererererrerereesersesersesessessesessssessessssessssessssessssssssssssessssessesesssnssassanaens 14
Editing YOUT ProJECE FIlESccueoereerererererercrte et reererseres e saesessssessesessesassesaesessssessssessesassessesesssnesasanaens 14

vii

viii Contents

Creating Your First Swift Playground Program..........ccceceeeverenesssesssssssssssessssssssssssnses 15
Installing and LAaunChing XCOUE 7ccoeurrrierererrrecrersesesessssesessssssssessssssssessssssssessssssssssssssssssssssnssaes 16
USING XCOUE 7 ... s s s s s st e s et e s Re e e e s s e e e e nsnnn s 19

Xcode Playground IDE: Editor and ReSults Areascocvververversersersessessessessessessssssnsenns 20

SUMMEAIY ...t a e s e e e s R e s e e Re e ne e s Re e e e nnennnens 22

o (C] (o1 PP 23

Chapter 3: It’s All About the Data...........ccccirnnemmnnnnesnmmn i ——————— 25

Numbering Systems Used in Programmingcccvcvernernnsensinsesssssesses s s sessessessssens 25
BILS vuuvvvvssseessssnessssseesssseessssesssssenesssseesss s s s s e RRR A RRRER A RE A RR A RRRRRRRR e RR e RR R 25
53T (T OSSP SPSTP 28
HEXAUBCIMAL ...t s e e e s e e e e npn s 29
0T o TSR SPS TSP 30

DaAta TYPES ... eeireeriree et r e n e ne e ne e nennean 31

Declaring Constants and Variables.........cc.ccueenirenniennnnnsssscss s ssesessens 32

001104 PSSR 33

Using Variables in Playgroundsccoccveverenerssessessesssns 34

BT 111 1= SRR 39

(e (01T PP 39

Chapter 4: Making Decisions, Program Flow, and App DesSign........cccusemrmssnnnnanas 41

BOOICAN LOGIC.......couirreerreresrsesise e sn s sn s ss s s s s sn s 41
TRULR TADIES ...ttt s s b e s e p e e e nnns 43
COMPArISON OPEIATOIS......ccceererreerererreiesesesreese s e se s e s s se e se e e e s s e e e e s ae e e e s s e e e e nsnnnas 44

DESIGNING APPS. . eiererirerrerserse sttt sttt e s e se e e e e e e e e e e e e e e e naen e e s 45
LT o T o N 45
Optionals and FOrced UNWIapPINGccoceeerrererererererseressersesersesessesessessssessesessssssssssssessssessesessssessesasaens 48
L1011 1 - T o R 50
Designing and Flowcharting an EXample APPcococeeeceererererereseseseseseseseseseseseesesesesesesesssssssssesssssssssnens 50
QLA o] I3 =1 T 51

Using Loops to Repeat Program Statements..........cccvccveverereresererereresseree s sersesesesassessesessssesassenaens 52

Contents ix

Coding the Example APp in SWifl ... 54
Nested if Statements and else if Statements ... 57
RemoVing EXtra CRAraCerSccoveerererieercrisisee s se s nessnsnns 57
Improving the Code Through Refactoring.........ccceceeeerecncnernsescsrseeses s sssses 57
RUNNING ThE APP oot e s e e e np e 58
DeSign REQUITEMENTS ..ot e s e pn s 59

1111 P 2SS 62

o] (0 63

Chapter 5: Object-Oriented Programming with Swift.........cccccuscemnrnisennsnnsssannnnns 69

LTI 0 T2 PSR S 65
What IS @ ClaSS?......cceceeeierresisierissisesisse s ss s s s sn s s sns s snssssnsnas 66
Planning ClaSSEScccurrerrerrersersersersessessessessessessessessessnns 67
Planning PrOPEIESccceurereererererertreresesse s e e raeseraesassesaesessssessesasaesassesassessssssassessesassessssesssnesaeanaens 67
Planning MEthOTS.........cccovererererire sttt s e re s rae s se e s e sesaesa s sae e sae e sae e saesae e saesesaenenanananns 69
Implementing the CIaSSES ... 71
INNEIIEANCE ...t ————————— 78
WHY USE DOP?......oeeerererer ettt e sn s sn s nn e p e sn s sn e n e nnennnnn 79
OOP IS EVEIYWREIE ...t s s s s ss s ss s sessssnsnsnsnas 79
Eliminate Redundant Code ... 80
EQSE Of DEDUGGING.covrrireerererreesiresseesesesssssesesssss e s ssss e e s e s e as s sessssa e e sssss s e ssssessssssssassssssssnnenes 80
Ease Of REPIACEMENL ..o enp s 80
AAVANCEU TOPICS..eeevereereerreerersserersseseesssssesssessssssesssessesssessssssessssssssssssssssssssesesssssnsssesas 80
INEEITACE ..vuceer s ————————————— 80
0§10 03T R 81
SUMMEAIY ...t ee e s R e s AR e e ae e s Re e e e enenrnnens 81

o] Y= 82

X

Contents
Chapter 6: Learning Swift and Xcodeccccuusemmmmnsssennnmmssssssnssssssssssssssssssssssssnnns 83
A NBWCOMETcueeeeeeersersessessessessessessessessessessessessessessesssssessessesssssessnssssssssnssessessnssnssnssnssnns 83
Understanding the Language Symbols..........ccccoeeeeeeececcse e 84
Implementing ObJEcts iN SWift ..o 85
Writing Another Program in XCOUEc.ccveereerrersessessessesssssssssssesssssssssssssssssnssssssssssssnnnnns 87
L0 L TR () (0 O 88
1111 11T SRS 104
EXBICISES ...veveueireresersesesesss e sseses s e e s ss s se s s s a s sae e n e e n e sne e e n e e s ae e n e e 104
Chapter 7: Swift Classes, Objects, and Methodscccccemmmrrrnnssssssssnnnnnnsesssnes 105
Creating @ SWiIft ClasSccurevererrerererersesseseesse e ssesaessesssssssassssssssassassassassassasssssasssnns 105
INSTANCE VAMIADIES ... e e 106
IVIBENOUS ...vvorvveseeesseressseessessssessssesssssessssesssssnssssnessssessssesssssessssesssssnssssesssssessssesssssnssssmsssssnssssnsssssessssnnees 107
USING YOUr NEW ClaSS......cccceieerrerresirerise e sss s sss s s sne e ssssesnesssse s 109
Creating YOUT PrOJECT........cvcverererererere st rereseraeserss e sassessesassesa s e sassessesessssassesassesassessssessssassesassesssnenes 109
T [0 T4 10 03T 112
WHEING The ClASS ...coveereerereerereresereeseraesesseses e ses e ssesessesessesassessssessssesassassssassesassesssssssessssessssesssnessssnses 115
Creating the USEr INTEITACE..........ccvevererererer et ree s sse s ss e e ssesesse e ssesassesas e sassesassesassassesassesassenes 116
HOOKING UP the COUEoveueceriicccrtre et e sn s s e s p e e sa e nas 122
RUNNING The PrOQIaM.......ccvecccecececene e sr e e e e s sa e s sa e s sa e e e sa e a e b e e e sa e sa e nn e naenn e s 126
Taking Class Methods t0 the NEXE LEVEL........ccccevevererererereneresreres v sesesesessssessesessessssessssessssessesenaes 127
Accessing the Xcode Documentation...........cccceeeeereerenesesese e 127
1111 P2 2SS 129

(o = 129

Contents xi

Chapter 8: Programming Basics in Swiftccccnnmnnnenmnnsssnnmnsssssnnnssene 131

USING [BL VS, VAI......coeeccceeceererresreesessessessessessessessessessesnessssaessssssssssssssesnssnnssnsssssnssnssnnsnns 131
Understanding COIECHIONScoceueeeeererererecre e sne e snesn e snesnanns 132
UL T A U 132
Using the DIctionary Classcerevererereesssssssesssssessassasssnns 134
Creating the BookStore AppliCation...........cccceeeeeeeeresesese e see s e snssns e sneenns 135
Creating YOUR ClaSS......ccccuecerererueeriresseeesessse e sessss e st e s se s ss e sss s e s sss s e sssss s e sssssnsasnnns 140
INtrOAUCING PrOPEITIEScececeeeeeccre st e e e 141
ACCESSING VAITADIES........eceeceeeeeree e 142
Finishing the BoOKSTOre Program...........cccvvrverveniensensinses s sesssssessns s sessssssssssnnns 142
Creating Tthe VIBWcccccereeeeereercree st reres e s as e rae e sas e saesassesas e sassesaesesassasaesassesassesassesassessesansesannenes 142
AdUING PrOPEITIESveeeeeeereerereererereeseraeseraeresesassessesesassessessssessssessesessssasssssssessssesssssssssssessssessssessessaes 145
AT (o Ty To W02] o) T O 147
Creating a Simple Data MOUEl CIASScccerrererrereerererererersersssersesessesessesessesssessssessessssssessesassessesenes 149
Modifying MasterVieWCONIIOIIEKccovvererrereererererererereseres e ree e sesesseressesas e saesesassesassassesassesasnenes 150
Modifying the DetailVieWCONIIOIIEccceeeereerereerere st re e re e sae e e e s e sa s e e s 154
SUMMAIY ...t a e b s ae e e a e e s a e e ae e e e nnn e naens 155
[T (LT 156
Chapter 9: Comparing Datacccccnssemmssmmmsnmssassssnssssnsssasssssssssssssassssnsssassssanssas 157
Revisiting BOO0IEAN LOGICcceeererrerierserersessesses s s sessesses s s e e s snssnssnssnssnssnssnsssssssnsnns 157
Using Relational OPerators..........coocveeerereseneessessesse e ssnns 158
COMPArNG NUMDEIS........corereeereerereerereerereressersesessesesaesessesassessssessssessssesssssssessssessssessssssssassesassesseneres 159
Creating an EXample XCOUE APP...cceeerererererrereerersesersesessersssessssessesessesesssssssessssessesessssssssssssesassessenees 160
Using Boolean EXPreSSIONSccceeererrersessessessessessesssans 165
0] 1 o LT TS (T 166
Using the switch Statement ... 167
COMPANING DALEScoceeeiecerircci et s e se s n e e ne e e 168
ComMDBINING COMPAIISONS........couruiueererrrseereresssssesesssssesessssesesesssssssessnns 170
1111 1P 7SS 171

(o] = 171

xii

Contents
Chapter 10: Creating User INterfacesccuueemmmmsssennmmssssssnmssssssssssssssssssssssnnnns 173
Understanding Interface BUIlErcccoeeeeeeecene e see s e s snnnenns 174
The Model-View-Controller Pattern............cccvervrcrsscnss s 175
Human Interface GUIdEliNES..........ccoveereenseresnncsrse e snse e 176
Creating an Example iPhone App with Interface Buildercccccocevvveenccrenesesenncnn 178
USiNg INTErfaCe BUIIENccueveereecece e sa e sa e sa e sa e a e s s a e a e sn e n e nn e s 183
The DOCUMENT OULIINEveeecicecreri et bbb et e e e n s 184
LTI o USRS 185
Inspector Pane and SEIECLOr Barccvccvevereererereresereresessssersesessesessessssesasessssesssssssssassesassesssnenes 187
Creating the VIBWccceevererercrercree e sesesesessssersssesassessesassessssessssessssesssssssesassssassesssssssssassesassesssnenes 189
USING QULIBTS ..veveereereree s s ree s e rae e s e e s e sae e as e sae e ssesasaesa e e sae e sae e sae e saesa e e sae e sae e sas e naesanserannenes 190
LT T 0] SRS S S SS 192
THE ClASS ..cuvveuererrrirseerirss st a et e e e b e e e e A e R e e A e R e b e R e e A e R e e e A e R e e e e e R e Re e Epens 194
1 11 SR 197
EXBICISES ...veveueieerersersesesesss st sse s s se s sas e s s s e a s ne e r e s e e nne e e a e e s R e n e 197
Chapter 11: Storing Information...........cccunneemmmmmnnnnmns e ———————— 199
Storage ConsSiderations..........cccvvevrvriersnnes s n s 199
PrefereNCEScocerererir s r e nn e nn e n e nn e nnnn 200
WHItING PreferENCES ... ce ettt a s e e e e e e e e e sa e sa e e e e e e n e e s 200
REAdING PrEfErBINCESccvevveceeriere e a e e b e s a e e b e e e e e e e e e a e e e na e e e s 201
DAtADASESccecerirerire e ————————————————————— 202
Storing Information in @ Database...........cccevvrrrrrrrrrr s ———— 202
Getting Started with Core Data............ccccocveenicrnnnserr e 203
LI LT8R 205
Managed ODJECT CONTEXLcocov it 215
Setting Up the INTEITACE. ..o 215
1111 1P 7SS 229

o o = 229

Contents xili

Chapter 12: Protocols and Delegatescccusemmmmssssmnnmmssssnnnmmsssssnssssssssssssssssnnnns 231
Multiple INNEIILANCEccceeeercererrerer s sr e sn e r e snesnnnnennnnans 231
Understanding ProtoCOIS..........coeeeeeeererese e see e sse s snesnesassne s snssnssnesnenns 233
(01 (0o 0] S T 1 VSR 233
DElgationccceeererirer s —————————————————— 234
Protocol and Delegation EXampleccccoerervercrsensrcs s sne e 234
GEttiNg STANTEdcoe e ——————— 236
HOW [EWOTKS ...t 244
31T TSP RN 244
(] (1] 245
Chapter 13: Introducing the Xcode Debuggerccccusummmmmssssnnsmsssssnnnssssssnnns 247
Getting Started with DEbDUGQINGcocevererrrrrere e sae e 248
Setting Bre@KPOINTSc.cecueeeerereeeeereresesesess s s s s s sssssssssssssssssssssssssssssssssssssssassns 249
Using the Breakpoint Navigator............ccocvccverererereesresreresersssersesessesessesessessssessssessssessssessesassesssnenes 250
DEDUGGING BASICS.....ueovreererererereerereerererersesassersesessesesaesessesassesassessesessesessssssaessssessesesssnsssssassesassessenerns 252
Working with the Debugger CONTIOIS.........ccvverererererererererereesersesersesersesasesassessssessesessessssessesesseesaes 254
Using the Step Controls..........ccoveeeciernirc e 254
Looking at the Thread Window and Call STACKccceevrereriererrerereresereseseressessesessssessssessesessessesenes 256
Debugging VariabIEs........cccviiiiiierenenenene e s sa e e sa e s e e e e e p e p e n e a e e n e na e 256
Dealing with Code Errors and Warnings..........cccueversrsensssessessessesssssessessessssssssssssssenns 258
4 (0] £ TSR 258
L L 1T TP 259
1111 1P 7SS 261
Chapter 14: A Swift iPhone Appccccvrrmmnssssssssmmmmmmmsssssssssssssessssssssssssssssesssnns 263
Let’'s Get STarted.........oocoeereirrccrre s 263
ADD SUMMAIY ...t s s ae s sa e s n s ae e nne e nns 279

] (T3 279

xiv Contents

Chapter 15: Apple Watch and watchKit..........cccciinnnnnmnnmnmssnnnnnmmmmmsssssssnmmn. 281
Considerations When Creating a watChOS ApPpccccevvrernnerssensersssese e sessens 281
Creating an Apple WatCh AP ...cocceeeeerere e seessessesnesnesnssnesnesnssnssnesnenns 282
Adding More FUNCLIONAIILYccceerererercreeree s sse s sse s s s s snesas e sassassae s 299
SUMMAIY ...t e s e e a e s e s s ae bR e s a e e ae e s e nennan s 304
o (C] (0TS 304
Chapter 16: A Swift HealthKit iPhone App......ccccvnseemmmmssssssmmssssssssssssssssssssssnnns 305
Introduction to Core BIUEtOOth ... s 306

Central and Peripheral DEVICEScococeererurnenererrsenesiseseese s sese s s ses s sessssssssesasssssssnens 306

Peripheral AQVEITISINGcccoruieeerereieeririree et e s ne s e e 307

Peripheral Data SIrUCIUIE...........ccoceereieccreree et 307
Let’s Get Started and Build the APP......ccccvverrirreerienrererre s seree s sse s sssesesssesssessenns 308
ADD SUMMAIY ...ttt e s s s s s ae s a e s nn s e ne e nnn e nas 321
LT i [323
(] (1] 324

About the Authors

Gary Bennett is president of xcelMe. com, which provides iOS
programming courses online. By day, Gary develops iOS apps
professionally, and by night, he teaches iOS programming.

For more than six years, Gary has taught thousands of
students how to develop iPhone/iPad apps and has several
popular apps in the iTunes App Store. Gary has a bachelor’s
degree in computer science and has worked for 25 years in
the technology and defense industries. He served 10 years

in the U.S. Navy as a nuclear engineer aboard two nuclear
submarines. After leaving the Navy, Gary worked for several
companies as a software developer, ClO, and president. As CIO,
he helped take VistaCare public in 2002. Gary also coauthored
two editions of Objective-C for Absolute Beginners and iPhone
Cool Projects for Apress. He lives in Scottsdale, Arizona, with
his wife Stefanie and their four children.

Brad Lees has more than 16 years of experience in application
development and server management. He has specialized in
creating and initiating software programs in financial institutions,
credit card processing, point-of-sale systems, and real estate
development.

His professional career highlights have been lead iOS developer
at Apriva, owner of Innovativeware, product development
manager for Smarsh, and vice president of application
development for iNation. Brad also coauthored two editions of
Objective-C for Absolute Beginners.

A graduate of Arizona State University, Brad resides in Phoenix
with his wife Natalie with their five children.

http://xcelMe.com

About the Technical
Reviewer

Stefan Kaczmarek has more than 15 years of software
development experience specializing in mobile applications,
large-scale software systems, project management, network
protocols, encryption algorithms, and audio/video codecs. As
chief software architect and cofounder of SKJM, LLC, Stefan
developed a number of successful mobile applications including
iCam (which has been featured on CNN, Good Morning
America, and The Today Show, and which was chosen by
Apple to be featured in the “Dog Lover” iPhone 3GS television
commercial) and iSpy Cameras (which held the #1 Paid iPhone
App ranking in a number of countries around the world including
the United Kingdom, Ireland, Italy, Sweden, and South Korea).
Stefan resides in Phoenix, Arizona with his wife Veronica and
their two children.

xvii

Acknowledgments

We would like to thank Apress for all their help in making this book possible. Specifically,
we would like to thank Kevin Walter, our coordinating editor, and Michelle Lowman, our
acquisitions editor, for helping us stay focused and overcoming many obstacles. Without
Kevin and Michelle, this book would not have been possible.

Special thanks to Douglas Pundick, our development editor, for all his suggestions during
the editorial review process to help make this a great book. Thanks to Kezia Endsley, the
copy editor, who made the book look great.

Xix

Introduction

Over the past three years, we’ve heard the following countless times:

“I've never programmed before, but | have a great idea for an iPhone/
iPad app.”

“Can | really learn to program the iPhone or iPad?”

To the latter we answer, “Yes, but you have to believe you can.” Only you are going to tell
yourself you can’t do it.

For the Newbie

This book assumes you have never programmed before. The book is also written for
someone who may have programmed before but never using object-oriented programming
(OOP) languages. There are several Swift books out there, but all of these books assume you
have programmed before and know OOP and computer logic. We wanted to write a book
that takes readers from knowing little or nothing about computer programming and logic

to being able to program in Swift. After all, Swift is a native programming language for the
iPhone, iPad, and Mac.

Over the past six years, we have taught thousands of students at xcelMe.com to be iPhone/
iPad (i0OS) developers. Many of our students have developed some of the most successful
iOS apps in their category in the iTunes App Store. We have incorporated what we have
learned in our first two courses—Introduction to Object-Oriented Programming and Logic
and Swift for iPhone/iPad Developers—into this book.

For the More Experienced

Many developers who programmed years ago or programmed in a non-OOP language need
a background in OOP and logic before they dive into Swift. This book is for you. We gently
walk you through OOP and how it is used in iOS development to help make you a successful
iOS developer.

http://xcelMe.com

xxii Introduction

How This Book Is Organized

You'll notice that we are all about successes in this book. We introduce the OOP and logic
concepts in playgrounds and then move those concepts to Xcode and Swift. Many students
are visual learners or learn by doing. We use both techniques. We’ll walk you through topics
and concepts with visual examples and then take you through step-by-step examples that
reinforce the concepts.

We often repeat topics in different chapters to reinforce what you have learned and apply
these skills in new ways. This enables new programmers to reapply development skills
and feel a sense of accomplishment as they progress. Don’t worry if you feel you haven’t
mastered a topic. Keep moving forward!

The Formula for Success

Learning to program is an interactive process between your program and you. Just like
learning to play an instrument, you have to practice. You must work through the examples
and exercises in this book. Understanding the concept doesn’t mean you know how to apply
it and use it.

You will learn a lot from this book. You will learn a lot from working through the exercises

in this book. However, you will really learn when you debug your programs. Spending time
walking through your code and trying to find out why it is not working the way you want is
an unparalleled learning process. The downside of debugging is that a new developer can
find it frustrating. If you have never wanted to throw your computer out the window, you will.
You will question why you are doing this and whether you are smart enough to solve the
problem. Programming is humbling, even for the most experienced developer.

Like a musician, the more you practice, the better you get. By practicing, we mean
programming! You can do some amazing things as a programmer. The world is your oyster.
Seeing your app in the iTunes App Store is one of the most satisfying accomplishments.
However, there is a price, and that price is time spent coding and learning.

Having taught many students to become iOS developers, we have put together a formula for
what makes students successful. Here is our formula for success:

Believe you can do it. You'll be the only one who says you can’t do this.
So, don’t tell yourself that.

Work through all the examples and exercises in this book.
Code, code, and keep coding. The more you code, the better you’ll get.

Be patient with yourself. If you were fortunate enough to have been a
4.0 student who could memorize material just by reading it, this will not
happen with Swift coding. You are going to have to spend time coding.

You learn by reading this book. You really learn by debugging your code.

Introduction xxifi

Use the free xcelMe.com webinars and YouTube videos mentioned at the
end of this introduction. The free live and recorded training videos will be
invaluable in quickly becoming a successful iOS developer.

Don’t give up!

The Development Technology Stack

We will walk you through the development process for your iOS apps and what technology
you need. However, briefly looking at all the technology pieces together is helpful. These are
the key iOS development technologies you will need to know in order to build a successful
app and get it on the App Store:

Apple’s developer web site

iTunes Connect

Xcode

Swift

Object-oriented programming and logic
Debugging

Performance tuning

We know this is a lot of technology. Don’t worry, we will go through it, and you will become
comfortable using it.

Required Software, Materials, and Equipment

One of the great things about developing iOS apps is that everything you need to develop
your app is free.

Xcode

Swift (included with Xcode)

OSX 10.10 Yosemite or 10.11 El Capitan
Integrated development environment
iPhone and iPad simulators

All you need to get started is a Mac and knowledge of where to download everything. We
will cover this.

http://xcelMe.com

Xxiv Introduction

Operating System and IDE

When developing iOS apps, you have to use Xcode and Mac OS X. You can download both
of these for free from the Mac App Store.

hes * BE B % ©

Foatured Top Charts Colegories Purchases Updates Clos x yosemite 1

Sort By Featured

05 X Server
Lnises
ook T TR
stamiy)
iLite Sort By: Featured
% Photo iMovie
Protography Video
-.‘ | ARd T 1009 Ratings / A AR E 35 Ratngs
{1 - [P cemm
Work SortBy: Featured
Yy Pages 2 Numbers v Keynote
ﬂ Productivity Productivity Productiity
R W 2R . ll I W W 167 Ratnge ki VT4 Rategs
Corie) Corenie) b, o=

Sort By Featured

Maotian Compressor Logic Pro X
@ ek kA 35 Rating *A ok 23 Rt HA R 232 Rating
) — R (s B s

MainStage 3
Music
v o R 6 Rt

Pro Apps
Aperture
ek A 3 Rings a
(srasale) L —

SortBy: Featured

Apple Remote Deskiop Apple Configurator

Uiitios Utifies

31999 0w KRR S Rangs
-]

¥ Books Author FaceTime
Productivy Social Metw

ek ek T 27 Ratings \ * ok
= o= mn

Introduction

Software Development Kits

You will need to register as an iOS developer. You can do this for free at
http://developer.apple.com/iphone.

When you are ready to upload your app to the iTunes App Store, you will need to pay
$99 per year in order to access iTunes Connect and upload your apps to the App Store.

‘ DeVeIOpel' Technologies Resources Programs Support Member Center
i0S Dev Center i0S Dev Center
Hi, Guest Register Log In
Access additional resources in the iOS Dev Center. @I
Sign in with the Apple ID you used to register as an Apple Developer, or register for free today.
Development Resources i0S Developer Program
Documentation and Videos Featured Content App Review
Prepare your apps for the

ii iO5 Developer Library W 05 8 for Developers review process.

:T;we ::I: Ilgtse;t. documentation and sample ¥ 05 Design Resources Learn more »

W Xcode Continuous Integration Guide

» Getting Started » Sample Code W Start Developing i05 Apps Today App Store Resource Center

+ Guides « Technical Notes Get information on

= Reference = Technical Q&As W App Distribution Guide distributing your app on

* Release Notes W Developing Apps for iPad the App Store. Sign in »

W 05 App Programming Guide

W i05 Human Interface Guidelines N
- jews and Updates
Development Videos pd

« 1057 Tech Talks » WWDC 2014 & Programming with Objective-C Stay ip-1o-date with the A

latest Apple developer news
and updates. Learn more »

W Programming with Swift

Downloads

Xcode 6
Download the complete developer toolset for building Mac, iPhone, and iPad apps, including the
Xcode IDE, performance analysis tools, i0S Simulator, and the latest OS X and 105 SDKs.

Custom B2B Apps Swift Programming Language Apps We Can't Live Without Promote Your Apps

have changed Use the Aj dg:

Download on the

[S App Store

http://developer.apple.com/iphone

xxvi Introduction

Dual Monitors

We recommend developers have a second monitor connected to their computers. It is great
to step through your code and watch your output window and iOS simulator at the same
time on dual independent monitors.

Apple hardware makes this easy. Just plug your second monitor into the display port of any
Mac, with the correct Mini DisplayPort adapter, and you have two monitors working
independently of one another. Note that dual monitors are not required. You will just have to
organize your open windows to fit on your screen if you don't.

000 < s ASUS VS247 (2) [a] o)

Display JUehleEutiigy Color

To rearrange the displays, drag them to the desired position.
To relocate the menu bar, drag it to a different display.

| Mirror Displays

AirPlay Display: No Devices Detected >

Show mirroring options in the menu bar when available Gather Windows ?

Introduction xxvii

FREE LIVE WEBINARS, Q&A, AND YOUTUBE VIDEOS

Every Monday night at 5:30 p.m. Pacific time, we have live webinars and discuss a topic from the book or a timely
item of interest. These webinars are free, and you can register for them at www.xcelme.com/latest-videos/.

@ xcelme.com
HOME COURSES SCHEDULE CONSULTING ABOUT FAQ FREE VIDEOS
xcelMe ’
XCEL DIFFEREN
LATEST VIDEOS

Free Swift iOS Webinars

YouTube channel

ar, click HERE

Upcoming Live Swift Tutorials

At the end of the webinars, we do a Q&A. You can ask a question on the topic discussed or on any topic in
the book.

Additionally, all these webinars are recorded and available on YouTube. Make sure you subscribe to the YouTube
channel so you are notified when new recordings are uploaded.

www.xcelme.com/latest-videos/

xxviii Introduction

Free Book Forum

We have developed an online forum for this book at http://forum.xcelme.com, where you can ask

questions while you are learning Swift and get answers from the authors. Also, Apple makes frequent changes
to the programming language and SDK. We try our best to make sure any changes affecting the book are

updated on the forum along with any significant text or code changes.

You can download the source code from the chapters on this forum too.

o0e < m 0] forum. xcelme.com

Latest Videos | Xcolme

xcelMe.com

xcelMe Training Center And Interactive Developer Forum.

s Board index
FDuser Control Panel » View your posts

It is currently Mon Dec 15, 2014 2:18 pm
[Moderator Control Panel |

View unanswered posts « { SEARCH_UNREAD } = View new posts » View active topics

FORUM TOPICS

How To Access Your Course Webinars And How To Use The Forum

MNew students need to download the attached pdf and follow instructions to register for your webinars after you purchase the class. 3
9 Additionally, there are directions and updates on how to access your course and forum, post questions, navigete the messege board, watch

training videos, etc.

Mo . —
< L— Book -> Swift for Absolute Beginners: iPhone and Mac Programming Made Easy >

This forum contains all the questions readers may have for each chapter and and chapter or code changes.

Moderator: gary.bennett
Book == Ubfective-c-for-Absaluta Regi (20d Edition) (Bhosne-and-MecPrOgTSmming Made Easy

This forum contains all the assignments and questions readers may have for each chapter.
Moderator: gary.bennett

20

224

Free Live for iPhone Ds P 1
This forum lists the schedule for upcoming live webinars for iPhone developers. Webinars are live and have limited seats. Current and =
former students get first notifications. Seats for all others is first-come-first serve.

The sessions are recorded and will be made available to current and former students on this forum.

Moderator: gary.bennett

o Current Student & Alumni Recorded Webinars and More
@ This Forum is for current and former students
Moderator: gary.bennett

Applications that xcelme instructors and students have successfully posted on iTunes AppStore. 38

e Student/Instructor AppStore Applications
Moderator: gary.bennett

61

Swift Course 1 - Intro to OOP and Logic
Swift Course 1 - Intro to OOP and Logic 11
Moderator: gary.bennett

Swift Course 2 - Swift for i05 Developers
Swift Course 2 - Swift for iOS Developers
Moderator: gary.bennett

Swift Course 3 - Cocoa Touch for {05 Developers
9 Swift Course 3 - Cocoa Touch for I0S Developers 6
Moderator: gary.bennett

Swift Course 4 - iPhone and iPad Programming Part 1
9 Swift Course 4 - iPhone and iPad Programming Part 1

http://forum.xcelme.com

Chapter

Becoming a Great i0S
Developer

Now that you’re ready to become a software developer and have read the introduction of
this book, you need to become familiar with several key concepts. Your computer program
will do exactly what you tell it to do—no more and no less. It will follow the programming
rules that were defined by the operating system and the Swift programming language. Your
program doesn’t care if you are having a bad day or how many times you ask it to perform
something. Often, what you think you've told your program to do and what it actually does
are two different things.

Key To Success If you haven't already, take a few minutes to read the introduction of this book.
The introduction shows you where to go to access the free webinars, forums, and YouTube videos
that go with each chapter. Also, you'll better understand why this book uses the Swift playground

programming environment and how to be successful in developing your i0S apps.

Depending on your background, working with something absolutely black and white may be
frustrating. Many times, programming students have lamented, “That’s not what | wanted it
to do!” As you begin to gain experience and confidence in programming, you’ll begin to think
like a programmer. You will understand software design and logic, and you will experience
having your programs perform exactly as you want and the satisfaction associated with this.

2 CHAPTER 1: Becoming a Great i0S Developer

Thinking Like a Developer

Software development involves writing a computer program and then having a computer
execute that program. A computer program is the set of instructions that you want the
computer to perform. Before beginning to write a computer program, it is helpful to list the
steps that you want your program to perform in the order you want them accomplished. This
step-by-step process is called an algorithm.

If you want to write a computer program to toast a piece of bread, you would first write an
algorithm. This algorithm might look something like this:

1. Take the bread out of the bag.
Place the bread in the toaster.
Press the toast button.

Wait for the toast to pop up.

o ~ w0 D

Remove the toast from the toaster.

At first glance, this algorithm seems to solve the problem. However, the algorithm leaves out
many details and makes many assumptions. Here are some examples:

What kind of toast does the user want? Does the user want white bread,
wheat bread, or some other kind of bread?

How does the user want the bread toasted? Light or dark?

What does the user want on the bread after it is toasted: butter,
margarine, honey, or strawberry jam?

Does this algorithm work for all users in their cultures and languages?
Some cultures may have another word for toast or not know what toast is.

Now, you might be thinking this is getting too detailed for making a simple toast program.
Over the years, software development has gained a reputation of taking too long, costing
too much, and not being what the user wants. This reputation came to be because computer
programmers often start writing their programs before they have actually thought through
their algorithms.

The key ingredients to making successful applications are design requirements. Design
requirements can be formal and detailed or simple like a list on a piece of paper. Design
requirements are important because they help the developer flesh out what the application
should do and not do when complete. Design requirements should not be completed in

a programmer’s vacuum, but should be produced as the result of collaboration between
developers, users, and customers.

Another key ingredient to your successful app is the user interface (Ul) design. Apple
recommends you spend more than 50 percent of the entire development process focusing
on the Ul design. The design can be done using simple pencil and paper or using Xcode’s
storyboard feature to lay out your screen elements. Many software developers start with the
Ul design, and after laying out all the screen elements and having many users look at paper
mock-ups, they then write the design requirements from their screen layouts.

CHAPTER 1: Becoming a Great i0S Developer 3

Note If you take anything away from this chapter, take away the importance of considering
design requirements and user interface design before starting software development. This is the
most effective (and least expensive) use of time in the software development cycle. Using a pencil
and eraser is a lot easier and faster than making changes to code because you didn’t have others
look at the designs before starting to program.

After you have done your best to flesh out all the design requirements, laid out all the user
interface screens, and had the clients or potential customers look at your design and give
you feedback, you can begin coding. Once coding begins, design requirements and user
interface screens can change, but the changes are typically minor and easily accommodated
by the development process. See Figures 1-1 and 1-2.

-2l ATET =

Balances Transfer Money Pay Bills

Business Accounts vailable Balance $1234.21)

. Present Balance $2123.22
Business Checking (xx4327)
Available Balance $2100.22 7

Present Balance $4201.35 IRA (xx177) e
Available Balance $1234.21 7
Present Balance $2123.22

Business Savings (xx1234)
Available Balance $1234.21

"

Car Loan (xx172)

Ras Penrs el Outstanding Principle $1234.21
Next Payment Amount $2123.22
Personal Accounts Due Date 08/17/2009
Last Pay Amount $452.99
Checking (xx3423) Last Pay Date 07/17/2009

Available Balance $2100.2
Present Balance

H Locations Contact Us FAQ Log Out
R I e Home Equity Loan (xx7672)

Outstanding Principle $12,34.21
Next Payment Amount $2123.22
Due Date 08/17/2009
O Last Pay Amount $452.99
Last Pay Date 07/17/2009

Figure 1-1. This is a Ul mock-up of the account balance screen for an iPhone mobile banking app before development
begins on the original iPhone in 2010. This Ul design mock-up was completed using OmniGraffle

4 CHAPTER 1: Becoming a Great i0S Developer

Accounts Log Off

Checking & Savings

Checking (...1175)
Current Balance: $9,103.29
Available Balance: $9,103.29

Checking (...3859)
Current Balance: $21.87
Available Balance: $21.87

Checking (...4982)
Current Balance: $1.74
Available Balance: $11.74

Checking (...5884)
Current Balance: $78,709.76
Available Balance: $78,563.71

Savings (...5114)

Current Balance: $1.08
Available Balance: $1.08
N EX =

] $

Figure 1-2. This is a completed iPhone mobile banking application as it appeared on the App Store after several
revisions in 2015. This app is called Woodforest Mobile Banking

Figure 1-1 shows a mock-up of a mobile banking app screen prior to development.
Developing mock-up screens along with design requirements forces developers to think
through many of the application’s usability issues before coding begins. This enables the
application development time to be shortened and makes for a better user experience and
better reviews on the App Store. Figure 1-2 shows how the view for the mobile banking app
appears when completed.

CHAPTER 1: Becoming a Great i0S Developer 5

Completing the Development Cycle

Now that you have the design requirements and user interface designs and have written
your program, what’s next? After programming, you need to make sure your program
matches the design requirements and user interface design and ensure that there are no
errors. In programming vernacular, errors are called bugs. Bugs are undesired results of your
programming and must be fixed before the app is released to the App Store. The process of
finding bugs in programs and making sure the program meets the design requirements is
called testing. Typically, someone who is experienced in software testing methodology and
who didn’t write the app performs this testing. Software testing is commonly referred to as
quality assurance (QA).

Note When an application is ready to be submitted to the App Store, Xcode gives the file an .app
or .ipa extension, for example, appName.app. That is why iPhone, iPad, and Mac applications are
called apps. This book uses program, application, and app to mean the same thing.

During the testing phase, the developer will need to work with the QA staff to determine
why the application is not working as designed. The process is called debugging. It requires
the developer to step through the program to find out why the application is not working as
designed. Figure 1-3 shows the complete software development cycle.

g

Figure 1-3. The typical software development cycle

Frequently during testing and debugging, changes to the requirements (design) must occur
to make the application more usable for the customers. After the design requirements and
user interface changes are made, the process starts again.

6 CHAPTER 1: Becoming a Great i0S Developer

At some point, the application that everyone has been working so hard on must be shipped
to the App Store. Many considerations are taken into account as to when in the cycle this
happens:

Cost of development
Budget

Stability of the application
Return on investment

There is always the give and take between developers and management. Developers want the
app to be perfect, and management wants to start realizing revenue from the investment as
soon as possible. If the release date were left up to the developers, the app would likely never
ship to the App Store. Developers would continue to tweak the app forever, making it faster,
more efficient, and more usable. At some point, however, the code needs to be pried from the
developers’ hands and uploaded to the App Store so it can do what it was meant to do.

Introducing Object-Oriented Programming

As discussed in detail in the introduction, playgrounds enable you to focus on object-oriented
programming (OOP) without having to cover all the Swift programming syntax and complex
Xcode development environment in one big step. Instead, you can focus on learning the
basic principles of OOP and using those principles quickly to write your first programs.

For decades, developers have been trying to figure out a better way to develop code

that is reusable, manageable, and easily maintained over the life of a project. OOP was
designed to help achieve code reuse and maintainability while reducing the cost of software
development.

OOP can be viewed as a collection of objects in a program. Actions are performed on these
objects to accomplish the design requirements.

An object is anything that can be acted on. For example, an airplane, person, or screen/view
on the iPad can all be objects. You may want to act on the plane by making the plane bank.
You may want the person to walk or to change the color of the screen of an app on the iPad.

Playgrounds execute your code as you complete each line, such as the one shown in

Figure 1-4. When you run your playground applications, the user can apply actions to the
objects in your application. Xcode is an integrated development environment (IDE) that
enables you to run your application from within your programming environment. You can test
your applications on your computer first before running them on your iOS devices by running
the apps in Xcode’s simulator, as shown in Figure 1-5.

CHAPTER 1: Becoming a Great i0S Developer 7

raySeventh “May 7, 2015, 500 AM*

2016-05-07 12:00:00 +0000

% let image = timeline[maySeventh] w2561 256 ®
Bk Bk i o TN G fratac COMAER (35 0,177 ;. VA S Gont s, Ecem 5 1, it 2]} Uview
¢ for [position, image} in enmmetll
. let imageView = UT Tnageviel frame: CCRect{x: pesition = 75, yi 8, widths 15, height: 751} 114 timos)
imagoView. image = image 77 Ullsagelnased: "Nolsage.]ps™) (14 times]
view. addSubview] imageView 114 times]
2t}
- Ui @

Refining the Index

The timekne collaction sufficiently implements the symactic, semantic, and performance requirements of the Collect ionType protocol. However, we've missed
out on some easy performance enhancements and additional functionality. By continually refining the Datelndex structure, we can drastically improve

and opt in to sdditional functicnality.
The first of these refinements is the Bidirect ionalIndexType protocol. The BidirectionalIndexType protocol inherits from the ForwardIndexType
protocol and adds ane method, predecessor (). The predecessor method mirrors the successar method-including the semantic and performance
requiremants-and decremants e index by one. Uising the same constant time NSCalendar method, the extensicn below adopts BidirectionallndexType
and implemants the predecessor method.
ion gains access to th ion of reversel), which provides an

By adopting the Bid irect ionallndexType protocol, the timel
efficient reverse view into the collection.

extension Date: dire dexType {
func gmceuern - {
[.Day, value: -1, teDate: date, optiems: [11!
'I:tur-| Date = previousbay)

Figure 1-4. There are multiple objects in this playground view

Carrier T T:48 PM -

€ Toys Done
o
© [| iPadAir
@ | | Thunderbolt Display

©®@ [| MacPro

Delete List

Figure 1-5. This sample iPhone app contains a table object to organize a list of tech toys. Actions such as “rotate left”
or “user did select row 3” can be applied to this object

8 CHAPTER 1: Becoming a Great i0S Developer

Actions that are performed on objects are called methods. Methods manipulate objects to
accomplish what you want your app to do. For example, for a jet object, you might have the
following methods:

goUp

goDown

bankLeft
turnOnAfterburners
lowerLandingGear

The table object in Figure 1-5 is actually called UITableView when you use it in a program,
and it could have the following methods:

numberOfRowsInSection
cellForRowAtIndexPath
canEditRowAtIndexPath
commitEditingStyle
didSelectRowAtIndexPath

Most objects have data that describes those objects. This data is defined as properties.
Each property describes the associated object in a specific way. For example, the jet
object’s properties might be as follows:

altitude = 10,000 feet
heading = North

speed = 500 knots

pitch = 10 degrees

yaw = 20 degrees
latitude = 33.575776
longitude = -111.875766

For the UITableView object in Figure 1-5, the following might be the properties:
backGroundColor = Red

selectedRow = 3
animateView = No

An object’s properties can be changed at any time when your program is running, when the
user interacts with the app, or when the programmer designs the app to accomplish the
design requirements. The values stored in the properties of an object at a specific time are
collectively called the state of an object.

State is an important concept in computer programming. When teaching students about
state, we ask them to go over to a window and find an airplane in the sky. We then ask them
to snap their fingers and make up some of the values that the plane’s properties might have
at that specific time. Those values might be as follows:

altitude = 10,000 feet
latitude = 33.575776
longitude = -111.875766

CHAPTER 1: Becoming a Great i0S Developer 9

Those values represent the state of the object at the specific time that they snapped their fingers.

After waiting a couple minutes, we ask the students to find that same plane, snap their
fingers again, and record the plane’s possible state at that specific point in time.

The values of the properties might then be something like the following:

altitude = 10,500 feet
latitude = 33.575665
longitude = -111.875777

Notice how the state of the object changes over time.

Working with the Playground Interface

Playgrounds offer a great approach in using the concepts just discussed without all the
complexity of learning Xcode and the Swift language at the same time. It takes only a few
minutes to familiarize yourself with the playground interface and begin writing a program.

Technically speaking, the playground interface is not a true IDE like you will be using to write
your iOS apps, but it is pretty close and much easier to learn in. A true IDE combines code
development, user interface layout, debugging tools, documentation, and simulator/console
launching for a single application; see Figure 1-6. However, playgrounds offer a similar look,
feel, and features to the Xcode IDE you develop apps with.

< AppOuiegete. swif Import WIKLE (] Oranges
¥ [View Cernriiens import ListerKit
4 ListDocuman... crtrilior swift Milk
+ MawlistDocu, . ontroler. swift class ListDocumentsViewControlle gate,
UIDocumentMenuDelegate, UL

+ UstViewControter swift
e Bread

0 Views
* [Supparting Files

truct MainStoryboard {
struct ViewControllerIde
tat et listViewl
et listvied @ troller"

ruct TableViewCelllder
tatic let listDocuf

ruct Segueldentifiers
tat et newListDe
let showlistl

let showlistl romUserActivity”

Navigation Controlier - &
€ convoter trar marages ravgatin
throgh a hrrchy of vews
var listController:
didset {

} controlier that marages & tatle viem

b

ar pendingUserActiy

ride func viewDidLoad{) {
super, viewDidLoad()

Figure 1-6. The Xcode IDE with the iPhone simulator

In the next chapter, you will go through the playground interface and write your first program.

10 CHAPTER 1: Becoming a Great i0S Developer

Summary

Congratulations, you have finished the first chapter of this book. It is important that you have
an understanding of the following terms because they will be reinforced throughout this book:

Computer program
Algorithm

Design requirements
User interface

Bug

Quiality assurance (QA)
Debugging
Object-oriented programming (OOP)
Object

Property

Method

State of an object

Integrated development environment (IDE)

What’s Next

The next 15 chapters provide the information you need to learn Swift and write iOS
applications. Terms and concepts are introduced and reinforced over and over so you will
begin to get more comfortable with them. Keep going and be patient with yourself.

Exercises

Answer the following questions:
Why is it so important to spend time on your user requirements?
What is the difference between design requirements and an algorithm?
What is the difference between a method and a property?
What is a bug?
What is state?

Write an algorithm for how a soda machine works from the time a coin is
inserted until a soda is dispensed. Assume the price of a soda is 80 cents.

Write the design requirements for an app that will run the soda machine.

Chapter

Programming Basics

This chapter focuses on the building blocks that are necessary to become a great Swift
programmer. This chapter covers how to use the playground user interface, how to write your
first Swift program, and how to use the Xcode integrated development environment (IDE).

Note We will introduce you to using playgrounds, which will enable you to program right away
without worrying about the complexities of Xcode. We have used this approach for the last six
years, teaching Objective-C and Swift, and know that it helps you learn the concepts quickly,
without discouragement, and gives you a great foundation to build upon.

Touring Xcode

Xcode and playgrounds make writing Swift code incredibly simple and fun. Type a line of
code, and the result appears immediately. If your code runs over time, for instance through
a loop, you can watch its progress in the timeline area. When you’ve perfected your code in
the playground, simply move that code into your Swift iOS project. With Xcode playgrounds,
you can do the following:

Design a new algorithm, watching its results every step of the way

Create new tests, verifying that they work before promoting them into
your test suite

Experiment with new APIs to hone your Swift coding skills

First you’ll need to learn a little more about the Xcode user interface. When you open an
Xcode iOS project, you are presented with a screen that looks like Figure 2-1.

1

12 CHAPTER 2: Programming Basics

if let oldButton =
oldButton, Layer. bar

sender, Laye

sender, |

savelsender: AmyObject) {
st = List()

foFarList(List, withiase:

missViewControlle e, completion: mil)

ACt cancelisender: ject) {
dismissVienControllerhninated(true, cospletion: mil)

hesBegani Louch
gani towches,

et possibleTouch » towches.

et touch = possibleTouch { PR

ne textField(textField: UI

UITextField, shouldChangeCharactersinRange range: NSRange, replacesentString string: String) == Bool {
text = textField.t else { return false }

Figure 2-1. Xcode Integrated Developer Enviroment with a Swift project

The Xcode user interface is set up to help you efficiently write your Swift applications. The
user interface for playgrounds is similar to the user interface for an iOS application. You will
now explore the major sections of Xcode’s IDE workspace and playgrounds.

Exploring the Workspace Window

The workspace window, shown in Figure 2-2, enables you to open and close files, set
your application preferences, develop and edit an app, and view the text output and error
console.

CHAPTER 2: Programming Basics 13

Ravigator selector bar] Tookar 1 dump bars
. J |, 1 1 - Inspecior selectar bar
(] -
[Mavigator | " Editor) TR Inspector pane
. | _ Area | | Area |
z Uibrary
| salecton bar
v
Litwary
- pane
(Debug b
\ Area
\
Filtar b Db bar

Figure 2-2. Xcode’s workspace window

The workspace window is your primary interface for creating and managing projects. The
workspace window automatically adapts itself to the task at hand, and you can further
configure the window to fit your work style. You can open as many workspace windows as
you need.

The workspace window has four main areas: Editor, Navigator, Debug, and Utilities.

When you select a project file, its contents appear in the Editor area, where Xcode opens the
file in the appropriate editor.

You hide or show the other three areas by using buttons in the view selector in the toolbar.

] Clicking this button shows or hides the Navigator area. This is where you view and
maneuver through files and other facets of your project.

icking this button shows or hides the Debug area. This is where you control program
= Clicki his b h hides the Deb This is wh I
execution and debug code.

L1 Clicking this button shows or hides the Utilities area. You use the Utilities area for
several purposes, most commonly to view and modify attributes of a file and to add
ready-made resources to your project.

14 CHAPTER 2: Programming Basics

Navigating Your Workspace

You can access files, symbols, unit tests, diagnostics, and other facets of your project
from the Navigator area. In the navigator selector bar, you choose the navigator suited to
your task. The content area of each navigator gives you access to relevant portions of your
project, and each navigator’s filter bar allows you to restrict the content that is displayed.

Choose from these options in the navigator selector bar:

= Project navigator. Add, delete, group, and otherwise manage files in
your project, or choose a file to view or edit its contents in the editor area.

E Symbol navigator. Browse the class hierarchy of the symbols in your
project.

Q Find navigator. Use search options and filters to quickly find any
string within your project.

Issue navigator. View issues such as diagnostics, warnings, and
errors found when opening, analyzing, and building your project.

&

== Debug navigator. Examine the running threads and associated stack
information at a specified point of time during program execution.

Test navigator. Create, manage, run, and review unit tests.

o Breakpoint navigator. Fine-tune breakpoints by specifying
characteristics such as triggering conditions.

@ Report navigator. View the history of your builds, app console output,
continuous integration, and source control tasks.

Editing Your Project Files

Most development work in Xcode occurs in the Editor area, which is the main area that is always
visible within the workspace window. The editors you will use most often are as follows:

Source editor: Write and edit Swift source code.

Interface Builder: Graphically create and edit user interface files
(see Figure 2-3).

Project editor: View and edit how your apps should be built, such by
specifying build options, target architectures, and app entitlements.

CHAPTER 2: Programming Basics 15

Figure 2-3. Xcode’s Interface Builder showing a storyboard file

When you select a file, Xcode opens the file in an appropriate editor. In Figure 2-3, the file
Main.storyboard is selected in the Project navigator, and the file is open in Interface Builder.

The editor offers three controls:

Clicking this button opens the Standard editor. You will see a single editor pane with
the contents of the selected file.

‘D Clicking this button opens the Assistant editor. You will see a separate editor pane with
content logically related to that in the Standard editor pane.

” Clicking this button opens the Version editor. You will see the differences between the
selected file in one pane and another version of that same file in a second pane.

Creating Your First Swift Playground Program

Now that you have learned a little about Xcode, it’s time to write your first Swift playground
program and begin to understand the Swift language, Xcode, and some syntax. First you
have to install Xcode.

16 CHAPTER 2: Programming Basics

Installing and Launching Xcode 7

Xcode 7 is available for download from the Mac App Store for free, as shown in Figure 2-4,
and from the Apple Developer Center, as shown in Figure 2-5.

Xcode

| open ~|

Xcode

Xcode includes everything developears need to create great applications for Mac, iPhone, IPad, and Apple Watch. Xcode provides developers a unified workfiow for user
interface design, coding, testing, and debugging. The Xcode IDE combined with the Cocoa frameworks and Swift programming language make developing apps easier and
more fun than ever before.

...More

What's New in Version 7.0
Xcode 7 includes Swift 2 and SDKs for i0S 9, watchOS 2, and OS X 10.11 El Capitan,

...More

& Xeode Fle Ddh View Find Mevigste [iStor Proguct Debug Source Comtrol Window Help P F QK
T — R

808 p B Eremieennae Trives | B v Suptmeded | ooy o 641 P00 oo

BmRE [N U S E——

© Damanre gt it
| G Detegs

Play Trivia with Your

| Dacmeardcactes et @ Startanew game

[T e e e
Lt e e e) 8
4 syt ragad]

| € sonout

(5] R —] BB o

OUFa@B@rOrOeRO®®™ WY

B

Figure 2-4. Xcode 7 is available for download from the Mac App Store for free

http://developer.apple.com/

CHAPTER 2: Programming Basics

[Developer Technologies Resources Programs Support Member Center Q

Apple Developer Program Whats Incuded How It orks (SN

Figure 2-5. The Apple Developer Program

Note This package has everything you need to write i0S apps. To develop iOS apps, you will need

to apply for the Apple Developer Program and pay $99 when you're ready to submit to the App
Store. See http://developer.apple.com.In 2015, Apple combined the i0S, watchOS, Mac 0S
X, and Safari developer programs into one program called the Apple Developer Program.

17

http://developer.apple.com/

18 CHAPTER 2: Programming Basics

Now that you have installed Xcode, let’s begin writing a Swift playground.

Launch Xcode and click “Get started with a playground,” as shown in Figure 2-6.

Welcome to Xcode

Version 7.0 (7/A220)

Get started with a playground
: Explore new ideas quickly and easily.

—\B Create a new Xcode project
»| Start building a new iPhone, iPad or Mac application.

)(3 Check out an existing project
Start working on something from an SCM repository.

Show this window when Xcode launches

Figure 2-6. Creating your first Swift playground

CHAPTER 2: Programming Basics 19

Using Xcode 7

After launching Xcode, follow these steps:

1. Let’s name the playground HelloWorld and select iOS as the
platform, as shown in Figure 2-7. Then click Next and save your app
in the folder of your choice.

Choose options for your new playground:

@ Helloworld)
o 108 I —

Cancel Previous " Next

Figure 2-7. Name your playground HelloWorld and select iOS as the platform

Xcode does a lot of work for you and creates a playground file with code ready for you to
use. It also opens your playground file in your Xcode editor so you can start, as shown
in Figure 2-8.

20 CHAPTER 2: Programming Basics

-}
// Playground - noun: a place where people can play

import UIKit

var str = "Hello, playground" "Hello, playground
r = "Hello World" "Hello World"
Hello World
print(str) "Hello World\n'

Figure 2-8. The playground window

You now need to become familiar with the Xcode playground IDE. Let’s look at two of the
most often used features.

The Editor area

The Results area

Xcode Playground IDE: Editor and Results Areas

The Editor area is the business end of the Xcode playground IDE—where your dreams are
turned into reality. It is where you write your code. As you write your code, you will notice it
change color. Sometimes, Xcode will even try to autocomplete words for you. The colors
have meanings that will become apparent as you use the IDE. The Editor area is also where
you debug your apps.

Note Even if we've mentioned it already, it is worth saying again: you will learn Swift
programming by reading this book, but you will really learn Swift by debugging your apps.
Debugging is where developers learn and become great developers.

CHAPTER 2: Programming Basics 21

Let’s add a line of code to see the power of Swift playgrounds. Add line 6 shown in Figure 2-8.
As soon as you enter the line of code, Xcode automatically executes the line and shows the
result, “Hello World.”

When you write Swift code, everything is important—commas, capitalization, and
parentheses. The collection of rules that enable the compiler to compile your code to an
executable app is called syntax.

Line 5 creates a string variable called str and assigns “Hello, playground” to the variable str.
Line 6 reassigns “Hello World” to the variable str.

Let’s create a syntax error by entering line 8 shown in Figure 2-9.

2

// Playground - noun: a place where people can play

import UIKit

var str = "Hello, playground"
tr = "Hello World"

Error lcon —l Hello World

O & print(stz) V
4 3

Editor Results
Area Area

Results
updated as
we type

Error Location

Figure 2-9. The playground with a syntax error caught by the Swift compiler

On line 8, print is a function that will print the contents of its parameters in the Results area.
As you enter code, the Results area automatically updates with the results for each line of
code that you entered.

Now, let’s fix the app by spelling the str variable correctly, as shown in Figure 2-10.

22 CHAPTER 2: Programming Basics

-]

// Playground - noun: a place where people can play
Y9 F peop play

import UIKit

var str = "Hello, playground" Hello, playground
r = "Hello World" Hello World
Hello World
print(str) Hello World\n
Error Fixed

Result Automatically Updated

Figure 2-10. Syntax error fixed

Feel free to play around and change the text that is printed. Have fun!

Summary

In this chapter, you built your first basic Swift playground. We also covered new Xcode
terms that are key to your understanding of Swift.

Key to Success As mentioned in the introduction of the book, you can visit
http://www.xcelme.com/ and click the Free Videos tab to view videos related to this chapter.
The videos will help you understand more about Xcode, IDEs, and playgrounds. Also visit
http://forum.xcelme.com/ to ask questions about these concepts.

http://www.xcelme.com/
http://forum.xcelme.com/

CHAPTER 2: Programming Basics 23

The concepts that you should understand are as follows:
Playground
Editor area

Results area

Exercise

Extend your playground by adding a line of code that prints any text of
your choosing.

Chapter

It’s All About the Data

As you probably know, data is stored as zeros and ones in your computer’s memory.
However, zeros and ones are not very useful to developers or app users, so you need to
know how your program uses data and how to work with the data that is stored.

In this chapter, you look at how data is stored on computers and how you can manipulate
that data. You then use playgrounds to learn more about data storage.

Numbering Systems Used in Programming

Computers work with information differently than humans do. This section covers the
various ways information is stored, tallied, and manipulated by devices such as your iPhone
and iPad.

Bits

A bit is defined as the basic unit of information used by computers to store and manipulate
data. A bit has a value of either 0 or 1. When computers were first introduced, transistors
and microprocessors didn’t exist. Data was manipulated and stored by vacuum tubes being
turned on or off. If the vacuum tube was on, the value of the bit was 1, and if the vacuum
tube was off, the value was 0. The amount of data a computer was able to store and
manipulate was directly related to how many vacuum tubes the computer had.

The first recognized computer was called the Electronic Numerical Integrator and Computer
(ENIAC). It took up more than 136 square meters and had 18,000 vacuum tubes. It was
about as powerful as your handheld calculator.

Today, computers use transistors to store and manipulate data. The power of a computer
processor largely depends on how many transistors are placed on its chip or central
processing unit (CPU). Like the vacuum tube, transistors have an off or on state. When the
transistor is off, its value is 0. When the transistor is on, its value is 1. Apple’s A8 processor,
which was introduced with the iPhone 6, has a dual-core ARM processor with more than

2 billion transistors (see Figure 3-1). This was up from 200 million transistors from the

25

26 CHAPTER 3: It’s All About the Data

A5 processor and up from 149 million transistors on the A4 processor that was in the iPhone 4
and the first iPad.

Figure 3-1. Apple’s proprietary A8 processor (Source: Wikipedia)

Moore’s Law

The number of transistors on your iPhone’s or iPad’s processor is directly related to your
device’s processing speed, graphics performance, memory capacity, and the sensors
(accelerometer, gyroscope) available in the device. The more transistors there are, the more
powerful your device is.

CHAPTER 3: It’s All About the Data

In 1965, the cofounder of Intel, Gordon E. Moore, described the trend of transistors in a
processor. He observed that the number of transistors in a processor doubled every

18 months from 1958 to 1965 and would likely continue “for at least 18 months.” The
observation became famously known as Moore’s law and has proven accurate for more
than 55 years (see Figure 3-2).

Microprocessor Transistor Counts 1971-2011 & Moore's Law

2,600,000,000+
1,000,000,000 +

100,000,000+

10,000,000

1,000,000

Transistor count

100,000 -

10,000

2,300~

Figure 3-2. Moore’s law (Source: Wikipedia)

Booae
049, mea, vam

)
1971

T
1980

T T

1990 2000 20Mm

Date of introduction

Note There is a downside to Moore’s law, and you have probably felt it in your wallet. The
problem with rapidly increasing processing capability is that it renders technology obsolete quickly.
So, when your iPhone’s two-year cell phone contract is up, the new iPhones on the market will be
twice as powerful as the iPhone you had when you signed up. How convenient for everyone!

27

28 CHAPTER 3: It’s All About the Data

Bytes

A byte is another unit used to describe information storage on computers. A byte is
composed of 8 bits and is a convenient power of 2. Whereas a bit can represent up to two
different values, a byte can represent up to 28, or 256, different values. A byte can contain
values from 0 to 255.

Note In Chapter 13, we discuss Base-2, Base-10, and Base-16 number systems in more detail.
However, we will introduce these systems in this chapter so you can understand data types.

The binary number system represents the numerical symbols 0 and 1. To illustrate how the
number 71 would be represented in binary, you can use a simple table of 8 bits (1 byte), with
each bit represented as a power of 2. To convert the byte value 01000111 to decimal, simply
add up the on bits, as shown in Table 3-1.

Table 3-1. The Number 71 Represented as a Byte (64 + 4 +2 + 1)

Power to 2 27 26 25 24 28 22 21 20
Value for “on” bit 128 64 32 16 8 4 2 1
Actual bit 0 1 0 0 0 1 1 1

To represent the number 22 in binary, turn on the bits that add up to 22, or 00010110, as
shown in Table 3-2.

Table 3-2. The Number 22 Represented as a Byte (16 + 4 + 2)

Power to 2 27 26 25 24 238 22 21 20
Value for “on” bit 128 64 32 16 8 4 2 1
Actual bit 0 0 0 1 0 1 1 0

To represent the number 255 in binary, turn on the bits that add up to 255, or 11111111,
as shown in Table 3-3.

Table 3-3. The Number 255 Represented as a Byte (128 + 64 + 32 + 16 + 8+ 4 +2 + 1)

Power to 2 27 26 25 24 28 22 21 20
Value for “on” bit 128 64 32 16 8 4 2 1
Actual bit 1 1 1 1 1 1 1 1

http://dx.doi.org/10.1007/978-1-4842-1488-6_13

CHAPTER 3: It’s All About the Data 29

To represent the number 0 in binary, turn on the bits that add up to 0, or 00000000, as
shown in Table 3-4.

Table 3-4. The Number 0 Represented as a Byte

Power to 2 27 26 25 24 23 22 21 20

Value for “on” bit 128 64 32 16 8 4 2 1

Actual bit 0 0 0 0 0 0 0 0
Hexadecimal

Often, it will be necessary to represent characters in another format that is recognized by
computers, namely, the hexadecimal format. You will encounter hexadecimal numbers when
you are debugging your apps. The hexadecimal system is a base-16 number system. It
uses 16 distinct symbols: 0 to 9 to represent the values 0 to 9 and A to F to represent the
values 10 to 15. For example, the hexadecimal number 2AF3 is equal in decimal to

(2 x16% + (10 x 16%) + (15 x 16") + (3 x 16°), or 10,995. Figure 3-3 shows the ASCII table

of characters. Because 1 byte can represent 256 characters, this works well for Western
characters. For example, hexadecimal 20 represents a space. Hexadecimal 7D represents a
right curly brace (}).

30 CHAPTER 3: It’s All About the Data

Dec HxOQct Dec Hx Qct Himl Chr |Dec Hx Qct Himl Chrl Dec Hx Qct Himl Chr
o o0 {nuall) 32 20 040 Space| 64 40 100 £F64; [| 96 60 140 «#96:
11 {start of heading) 33 21 041 ! ! 65 41 101 «#65; A | 97 61 141 «#97; o
e 2 (start of text) 34 22 042 «#34; " 66 42 102 «#66; E | 95 62 142 «#98; D
3 3 T {end of text) 35 23 043 # § 67 43 103 «#67: C | 99 63 143 «¥99: C
4 4 " {end of transmission) 36 24 044 &F36; ¢ 68 44 104 <#63: D (100 64 144 £#¥1l00; <
5 5 {enquiry) 37 25 045 s#37; 69 45 105 «F69; E |101 65 145 «#l0l; &
& 6 {acknowledge) 38 26 046 <#38; ¢ 70 46 106 «#70; F |102 66 146 «#102; ©
77 {bell) 39 27 047 «#39; ' 71 47 107 «#71; G 103 67 147 «#103; ¢
g 8 {backspace) 40 28 050 &«840; (72 48 110 «#72: H |104 68 150 &#l04: h
5 9 {horizontal tab) 41 29 051 &f4l;) 73 4% 111 «#73; T |105 69 151 «#l05; 1
10 A (NL line feed, new line)| 42 2A 052 «#42; * 74 4A 112 «F74; 1 |106 6A 152 «#l06; 3
11 B (wertical tab) 43 2B 053 &f43; + 75 4B 113 &F75: K |107 6B 153 k: k
1z ¢ (NP form feed, new page)| 44 2C 054 =§44; , 76 4C 114 «#76; L |108 6C 154 «#108; 1
13 D {carriage return) 45 2D 055 «#45; - 77 4D 115 «#77; M 109 6D 155 «#l09; m
14 E {shift out) 46 ZE 056 sfd6; . 78 4E 116 «#78:; N |110 6E 156 «#110; n
15 F (shift in) 47 2F 057 /: / 79 4F 117 «#79: 0 |111 6F 157 «#lll; ©
16 10 E (data link escape) 48 30 060 ƶ 0 80 50 120 «#80: F |112 70 160 &«#l12: P
17 11 {device control 1) 49 31 D61 &f49; 1 81 51 121 «#8L; 0 |113 71 161 «#113; o
18 12 CZ (device control 2) 50 32 D62 «f50; 2 82 52 122 «#82; R [114 72 162 «#114; ¢
19 13 {device control 3) 51 33 063 3 3 83 53 123 S:; 5 |115 73 163 «#115; =
20 14 C4 (device control 4) 52 34 064 «#52; 4 84 54 124 «#84; T |116 74 164 «#ll6; ©
21 15 NAK (negative acknowledge) | 53 35 065 &#S3; 5 85 55 125 «#85; U |117 75 165 «dll7; u
22 16 {synchronous idle) 54 36 066 ¢#54; ¢ 86 56 126 «#86; V 118 76 166 «#ll8; v
23 17 {end of trams. block) 55 37 067 7 7 87 57 127 «#87; W |119 77 167 «#119; w
24 18 {cancel) 56 38 070 «#56; © 88 58 130 &«#88; X [120 78 170 «#L120; x
25 19 (end of medium) 57 39 071 9 3 89 59 131 «#89; T |121 79 171 «#l2l; ¥
26 lh (substitute) 58 3A 072 : : 90 SA 132 «#90: I 122 TA 172 4¥l22: =
27 1B {escape) 59 3B 073 ; : 91 5B 133 «#91: [123 7B 173 «#l123; |
28 1C {file separator) 60 3C 074 «#60; < 92 5C 134 «#92; \ |124 7C 174 «#124; |
29 1D {group separator) 61 3D 075 &«f6l; = 93 5D 135 «#93;] |125 7D 175 «#125; }
30 1E {record separator) 62 3E 076 &«#BZ; > 94 5E 136 «#94; * |126 TE 176 «#l26: -
31 1F (unit separator) 63 3F 077 «#63; 7 95 SF 137 «#95; _ |127 7F 177 «#l27; DEL

Source: www.LookupTables .com

122 ¢ 14 E 161 i 177 0 193 L 209 £ 225 B 241 =
1200 o 145 = 162 & 178 B 194 + 200 26 I 242 =
130 ¢ 146 £ 163 u 179 | 195 F o211 L 227 5z 243 <
131 & 14 & 164 #0180 4 9% - 212 L 228 n 244 [
132 & 148 & 165 181 197 4+ 23 ¢ 229 5 245)

123 & 149 & 166 = 182 198 F 24 230 246 -
134 & 150 o 167 ¢ 183 199 215 4 231 ¢ 247 =
135 151 o 168 , 184 200 L 26 + 232 & 24 ¢

136 ¢ 152 169 185 4 01 g 217 4 23 e 249

137 ¢ 153 0 170 o 18 | 202 L 218 . 234 o 250

138 ¢ 154 0 171 % 187 5 203 5 219 W 235 &5 0 251 4
139 i 156 £ 172 % 188 4 204 | 220 5 236 o 252 _
140 i 157 ¥ 173 189 4 05 = 121 | 37 4§ 253

141 i 158 _ 174 « 190 4 06 4 22 | 238 - 254 m
142 A 1% 5 175 » 191 4 207 L 23 W™ 239 . 255

143 A 160 4 176 i 192 L 208 L 224 o 240 =

Source: www.LookupTables.com

Figure 3-3. ASCII characters

Unicode

Representing characters with a byte worked well for computers until about the 1990s, when
the personal computer became widely adopted in non-Western countries where languages
have more than 256 characters. Instead of a 1-byte character set, Unicode can have up to a
4-byte character set.

To facilitate faster adoption, the first 256 code points are identical to the ASCII character
table. Unicode can have different character encodings. The most common encoding
used for Western text is called UTF-8. As an iPhone developer, you will probably use this
character encoding the most.

CHAPTER 3: It’s All About the Data 31

Data Types

Now that we’ve discussed how computers manipulate data, we will cover an important
concept called data types. Humans can generally just look at data and the context in which
it is being used to determine what type of data it is and how it will be used. Computers need
to be told how to do this. So, the programmer needs to tell the computer the type of data it
is being given. Here’s an example: 2 + 2 = 4.

The computer needs to know you want to add two numbers together. In this example, they

are integers. You might first believe that adding these numbers is obvious to even the most

casual observer, let alone a sophisticated computer. However, it is common for users of iOS
apps to store data as a series of characters, not a calculation. For example, a text message
might read “Everyone knows that 2 + 2 = 4.”

In this case, the example is a series of characters called a string. A data type is simply the
declaration to your program that defines the data you want to store. A variable is used to
store your data and is declared with an associated data type. All data is stored in a variable,
and the variable has to have a variable type. For example, in Swift, the following are variable
declarations with their associated data types:

var x: Int = 10

var y: Int = 2

var z: Int = 0

var submarineName: Int = "USS Nevada SSBN-733"

Data types cannot be mixed with one another. You cannot do the following:
z = X + submarineName

Mixing data types will cause either compiler warnings or compiler errors, and your app will
not run.

Table 3-5 gives examples of the basic data types in Swift.

Table 3-5. Swift Data Types

Type Examples

Int 1, 5,10, 100

Float or Double 1.0, 2.222, 3.14159

Bool true, false

String "Star Wars", "Star Trek"

ClassName UIView, UILabel, and so on

32 CHAPTER 3: It’s All About the Data

Declaring Constants and Variables

Swift constants and variables must be declared before they are used. You declare constants
with the let keyword and variables with the var keyword. Constants never change during
the program, but variables do change during the program.

There are two ways to declare variables: explicit and implicit.

Here is the syntax for explicit variables:

var name: type = value
var firstNumber: Int = 5

However, declaring the type is normally optional, and removing the type shortens the code
and makes it easier, because there is less code to type and maintain.

Here is the syntax for implicit variables:

var name = value
var firstNumber = 5

You can use implicit most of the time because Swift is smart enough to figure out what the
variable is by what you assign to it.

If a variable isn’t going to change, then you should declare it as a constant. Constants never
change. Constants start with the keyword let, as shown here:

let secondNumber = 10
To best understand how variables and constants are declared, here are two examples:

let maximumNumberOfStudents = 30
var currentNumberOfStudents = 5

This code can be read as follows: “Declare a new constant called maximumNumberOfStudents,
and give it a value of 30. Then, declare a new variable called currentNumberOfStudents, and
give it an initial value of 5.”

In this example, the maximum number of students is declared as a constant because the
maximum value never changes. The current number of students is declared as a variable
because this value must be incremented or decremented after the student enroliment
changes.

Most data you will use in your programs can be classified into four different kinds—Booleans,
numbers, strings, and objects. We will discuss how to work with numbers and object data
types in the remainder of this chapter. In Chapter 4, we will talk more about Boolean data
types when you learn how to write apps with decision making.

http://dx.doi.org/10.1007/978-1-4842-1488-6_4
https://developer.apple.com/internationalization/

CHAPTER 3: It’s All About the Data 33

Note Localizing your app is the process of writing your app so users can buy and use it in their
native language. This process is too advanced for this book, but it is a simple one to complete when
you plan from the beginning. Localizing your app greatly expands the total number of potential
customers and revenue for your app without your having to rewrite it for each language. Be sure

to localize your app. It is not hard to do and can easily double or triple the number of people who
buy it. For more information on localizing your app, visit Apple’s “Build Apps for the World” site:
https://developer.apple.com/internationalization/.

Optionals

Swift introduces an important concept called optionals that developers need to understand.
Even for experienced iOS developers, this concept is new. Optionals are not a hard topic to
understand, but they take some time to get used to.

Use optionals when a value may be absent. An optional says the following:
There is a value assigned to a variable or there is no value.

There are times when a constant or variable might not have a value. Listing 3-1 shows an
example of the integer initializer called Int(), which converts a String value to an Int.

Listing 3-1. Converting a string to an integer

1 var myString = "42"
2 let someInteger = Int(myString)
3 // somelnteger is inferred to be of type "Int?", or "optional Int"

The constant someInteger is assigned the integer value 42. somelInteger is also assigned
the type of Int?. The question mark indicates that it is an optional type, meaning that the
variable or constant’s value may be absent. See Listing 3-2.

Listing 3-2. Unable to convert a string to an integer

1 var myString = "Hello World"
2 let someInteger = Int(myString)
3 // somelnteger's value is now absent

Line 2 in Listing 3-2 has a problem. It is not possible to convert “Hello World” from a String
to an Int. So, the value of someInteger is said to be absent or nil, because on line 2,
someInteger is inferred to be an optional Int.

http://dx.doi.org/10.1007/978-1-4842-1488-6_4
https://developer.apple.com/internationalization/

34 CHAPTER 3: It’s All About the Data

Note Objective-C programmers may have used nil to return an object from a method, with

nil meaning “the absence of a valid object.” This works for objects but not well for structures,
basic C types, or enumeration values. Objective-C methods typically return a special value, like
NSNotFound indicating the absence of a valid object. This assumes that the method’s caller knows
the special value to test against. Optionals indicate the absence of a value for any fype at all,
without using special constants.

The Integer Int() initializer might fail to return a value, so the method returns an optional
Int, rather than an Int. Again, the question mark indicates that the value it contains is
optional, meaning that it might contain some Int value, or it may contain no value at all.
The value is either some Int or is nothing at all.

Swift’s nil is not the same as nil in Objective-C. With Objective-C, nil is a pointer to a
nonexistent object. In Swift, nil is not a pointer; it is the absence of a value. Optionals of
any type can be set to nil, not just object types.

In Chapter 4, you will learn how to unwrap optionals and check for the object of a valid object.

Using Variables in Playgrounds

Now that you have learned about data types, let’s write your code in a playground that adds
two numbers and displays the sum.

1. Open Xcode and select “Get started with a playground,” as shown in
Figure 3-4.

http://dx.doi.org/10.1007/978-1-4842-1488-6_4

CHAPTER 3: It’s All About the Data

Welcome to Xcode

Version 7.0 (7TA220)

Get started with a playground
Explore new ideas quickly and easily.

Create a new Xcode project
%] Start building a new iPhone, iPad or Mac application.

Check out an existing project
Start working on something from an SCM repository.

Show this window when Xcode launches

Figure 3-4. Creating a playground

2. Name your playground DataTypes, as shown in Figure 3-5. Press
next and select a directory to save your playground.

35

36 CHAPTER 3: It’s All About the Data

Choose options for your new playground:

Name DataTypes

Platform: i0OS

<>

Cancel Previous Next

Figure 3-5. Naming your playground

3. When your playground is created, two lines of code are already
placed in your code for you, as shown in Figure 3-6.

CHAPTER 3: It’s All About the Data 37

=

//: Playground - noun: a place where people can play
import UIKit

var str = "Hello, playground" "Hello, playground”

Figure 3-6. Two lines of code

4. Enter the code of this playground, as shown in Listing 3-3.

Listing 3-3. Playground adding

// Playground - noun: a place where people can play
import UIKit
var str = "Hello, playground"

var firstNumber = 2
var secondNumber = 3

W oo~NOUVT S WN PR

var totalSum = firstNumber + secondNumber

(RN
(AN

firstNumber = firstNumber + 1
secondNumber = secondNumber + 1

B R R
B wN

38 CHAPTER 3: It’s All About the Data

15 totalSum = firstNumber + secondNumber
16

17

18 print("totalSum = \(totalSum)")

Your playground should look like Figure 3-7.

@ene Ready | Today at 2:14 PM = @ <0 Ed O

DataTypes.playground

B oG A " @ DataTypes
» @ DataTypes 1 // Playground - noun: a place where people
can play

import UIKit

var str = "Hello, playground" 'Hello, playground"”
var firstNumber = 2 2

var secondNumber = 3 3

var totalSum = firstNumber + secondNumber 5

f 3

5S¢ 4

totalSum = firstNumber + secandNumber 7
print{"totalSum = \(totalSum)") "totalSum = 7\n"

5 vHE| | @ i [~

Figure 3-7. Playground displaying the results of your Swift app

One of the neat features of playgrounds is that as you type in your code, Swift executes the
line of code as you enter it so you can immediately view the results.

The // used in Swift programming enables programmers to make comments about their
code. Comments are not compiled by your applications and are used as notes for the
programmer or, more importantly, for programmers who follow the original developer.
Comments help both the original developer and later developers understand how the app
was developed.

Sometimes, it is necessary for comments to span several lines or just part of a line. This can
be accomplished with /* and */. All the text between /* and */ is treated as comments and
is not compiled.

print is a function that can take one parameter and print its contents.

CHAPTER 3: It’s All About the Data 39

Note If your editor doesn’t have the same menus or gutter (the left column that contains the line
numbers of the program) you saw in the previous screenshots, you can turn these settings on in
Xcode preferences. You can open Xcode preferences by clicking the Xcode menu in the menu bar
and then selecting Preferences.

Summary

In this chapter, you learned how data is used by your apps. You saw how to initialize
variables and how to assign data to them. We explained that when variables are declared,
they have a data type associated with them and that only data of the same type can be
assigned to variables. The differences between variables and constants was also discussed,
and we also introduced optionals.

Exercises

Write code within a Swift playground that multiplies two integers and
displays the result.

Write code within a Swift playground that squares a float. Display the
resulting float.

Write code within a Swift playground that subtracts two floats, with the
result being stored as an integer. Note that rounding does not occur.

Chapter

Making Decisions, Program
Flow, and App Design

One of the great things about being an iOS developer is you get to tell your devices
exactly what you want them to do and they do it—your devices will do tasks over and over
again without getting tired. That’s because iOS devices don’t care how hard they worked
yesterday, and they don’t let feelings get in the way. These devices don’t need hugs.

There is a downside to being a developer: you have to think of all the possible outcomes
when it comes to your apps. Many students love having this kind of control. They enjoy
focusing on the many details of their apps; however, it can be frustrating having to handle
so many details. As mentioned in the introduction to this book, there is a price to pay

for developing apps, and that price is time. The more time you spend developing and
debugging, the better you will get with all the details, and the better your apps will perform.
You have to pay this price to become a successful developer.

Computers are black and white; there are no shades of gray. Your devices produce results,
many of which are based on true and false conditions.

In this chapter, you learn about computer logic and controlling the flow of your apps.
Processing information and arriving at results are at the heart of all apps. Your apps need

to process data based on values and conditions. To do this, you need to understand how
computers perform logical operations and execute code based on the information your apps
have acquired.

Boolean Logic

Boolean logic is a system for logical operations. Boolean logic uses binary operators such as
AND and OR and the unary operator NOT to determine whether your conditions have been met.
Binary operators take two operands. Unary operators take one operand.

M

42 CHAPTER 4: Making Decisions, Program Flow, and App Design

We just introduced a couple of new terms that can sound confusing; however, you probably
use Boolean logic every day. Let’s look at a couple of examples of Boolean logic with the
binary operators AND and OR in a conversation parents sometimes have with their teenage
children:

“You can go to the movies tonight if your room is clean AND the dishes are put away.”
“You can go to the movies tonight if your room is clean OR the dishes are put away.”

Boolean operators’ results are either TRUE or FALSE. In Chapter 3, we briefly introduced the
Boolean data type. A variable that is defined as Boolean can contain only the values TRUE
and FALSE.

var seeMovies: Bool = false

In the preceding example, the AND operator takes two operands: one to the left and one to
the right of the AND. Each operand can be evaluated independently with a TRUE or FALSE.

For an AND operation to yield a TRUE result, both sides of the AND have to be TRUE. In the first
example, the teenager has to clean his or her room AND have the dishes done. If either one of
the conditions is FALSE, the result is FALSE—no movies for the teenager.

For an OR operation to yield a TRUE result, only one operand has to be TRUE, or both
conditions can be TRUE to yield a TRUE result. In the second example, just a clean bedroom
would result in the ability to go to the movies.

Note In Objective-C and other programming languages, Boolean variables can hold integer
variables; 0 represents FALSE, and any nonzero value represents TRUE. Swift’s strong type
checking doesn’t allow this. Boolean variables in Swift can be assigned only true or false.

A NOT statement is a unary operator. It takes just one operand to yield a Boolean result.
Here’s an example:

“You can NOT go to the movies.”

This example takes one operand. The NOT operator turns a TRUE operand to a FALSE and a
FALSE operand to a TRUE. Here, the result is a FALSE.

AND, OR, and NOT are three common Boolean operators. Occasionally, you need to use more
complex operators. XOR, NAND, and NOR are common operations for iOS developers.

The Boolean operator XOR means exclusive-or. An easy way to remember how the XOR
operator works is the XOR operator will return a TRUE result if only one argument is TRUE,
not both.

Swift does not have these operators built in, but consider that NAND and NOR mean NOT AND
and NOT OR. After evaluating the AND or OR argument and the results, simply negate the
results.

http://dx.doi.org/10.1007/978-1-4842-1488-6_3

CHAPTER 4: Making Decisions, Program Flow, and App Design 43

Truth Tables

You can use a tool to help you evaluate all the Boolean operators called a truth table, and it
is a mathematical table used in logic to evaluate Boolean operators. They are helpful when
trying to determine all the possibilities of a Boolean operator. Let’s look at some common
truth tables for AND, OR, NOT, XOR, NAND, and NOR.

In an AND truth table, there are four possible combinations of TRUE and FALSE.
TRUE AND TRUE = TRUE
TRUE AND FALSE = FALSE
FALSE AND TRUE = FALSE
FALSE AND FALSE = FALSE

Placing these combinations in a truth table results in Table 4-1.

Table 4-1. An AND Truth Table

A B AAND B
TRUE TRUE TRUE
TRUE FALSE FALSE
FALSE TRUE FALSE

FALSE FALSE FALSE

An AND truth table produces a TRUE result only if both of its operands are TRUE.

Table 4-2 illustrates an OR truth table and all possible operands.

Table 4-2. An OR Truth Table

A B AORB
TRUE TRUE TRUE
TRUE FALSE TRUE

FALSE TRUE TRUE
FALSE FALSE FALSE

An OR truth table produces a TRUE result if one or both of its operands are TRUE.

Table 4-3 illustrates a NOT truth table and all possible operands.

Table 4-3. A NOT Truth Table
A NOTA

TRUE FALSE
FALSE TRUE

44 CHAPTER 4: Making Decisions, Program Flow, and App Design

A NOT flips the bit or negates the original operand’s Boolean value.

Table 4-4 illustrates an XOR (or exclusive-or) truth table and all possible operands.

Table 4-4. An XOR Truth Table

A B AXORB
TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

The operator XOR yields a TRUE result if only one of the operands is TRUE.
Table 4-5 illustrates a NAND truth table and all possible operands.

Table 4-5. A NAND Truth Table

A B ANAND B
TRUE TRUE FALSE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE TRUE

Table 4-6 illustrates a NOR truth table and all possible operands.

Table 4-6. A NOR Truth Table

A B ANORB
TRUE TRUE FALSE
TRUE FALSE FALSE
FALSE TRUE FALSE
FALSE FALSE TRUE

The easiest way to look at the NAND and NOR operators is to simply negate the results from
the AND and OR truth tables, respectively.

Comparison Operators

In software development, you can compare different data items using comparison operators.
These operators produce a logical TRUE or FALSE result. Table 4-7 shows the list of
comparison operators.

CHAPTER 4: Making Decisions, Program Flow, and App Design 45

Table 4-7. Comparison Operators

Operator Definition

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

== Exactly equal to

I= Not equal to

Note If you’re constantly forgetting which way the greater than and less than signs go, use a
crutch we learned in grade school: if the greater than and less than signs represent the mouth of an
alligator, the alligator always eats the bigger value. It may sound silly, but it works.

Designing Apps

Now that we’ve introduced Boolean logic and comparison operators, you can start
designing your apps. Sometimes it's important to express all or parts of your apps to others
without having to write the actual code.

Writing pseudocode helps a developer think out loud and brainstorm with other developers
regarding sections of code that are of concern. This helps to analyze problems and possible
solutions before coding begins.

Pseudocode

Pseudocode refers to writing code that is a high-level description of an algorithm you are
trying to solve. Pseudocode does not contain the necessary programming syntax for coding;
however, it does express the algorithm that is necessary to solve the problem at hand.

Pseudocode can be written by hand on paper (or a whiteboard) or typed on a computer.

Using pseudocode, you can apply what you know about Boolean data types, truth tables,
and comparison operators. Refer to Listing 4-1 for some pseudocode examples.

Listing 4-1. Pseudocode Examples Using Conditional Operators in if-then-else Code

isComplete = TRUE

if x<y
{

// in this example, x is less than 6
do stuff

46 CHAPTER 4: Making Decisions, Program Flow, and App Design

else
{
do other stuff
}
if isComplete == TRUE
{
// in this example, isComplete is equal to TRUE
do stuff
}
else
{
do other stuff
}

// another way to check isComplete == TRUE
if isComplete
{
// in this example, isComplete is TRUE
do stuff

}

// two ways to check if a value is false
if isComplete == FALSE

{
do stuff
}
else
{
// in this example, isComplete is TRUE so the else block will be executed
do other stuff
}

// another way to check isComplete == FALSE
if lisComplete

{

do stuff
}
else
{

// in this example, 1isComplete is TRUE so the else block will be executed

do other stuff

}

Note Pseudocode is for expressing and teaching coding ideas. Pseudocode will not execute!

CHAPTER 4: Making Decisions, Program Flow, and App Design 47

Note that ! switches the value of the Boolean it’s applied to; so, using ! makes a TRUE value
into a FALSE and makes a FALSE value into a TRUE.

Often, it is necessary to combine your comparison tests. A compound relationship test is
one or more simple relationship tests joined by either & or | | (two pipe characters).

8& and | | are verbalized as logical AND and logical OR, respectively. The pseudocode in
Listing 4-2 illustrates logical AND and logical OR operators.

Listing 4-2. Using && and Il Logical Operators Pseudocode

X =15
y==6
isComplete = TRUE

// using the logical AND

if x < y &% isComplete == TRUE

{
// in this example, x is less than 6 and isComplete == TRUE
do stuff

}

if x <y || isComplete == FALSE

// in this example, x is less than 6.

// Only one operand has to be TRUE for an OR to result in a TRUE.
// See Table 4-2 A OR Truth Table

do stuff

}

// another way to test for TRUE
if x <y &&% isComplete

{
// in this example, x is less than 6 and isComplete == TRUE

do stuff
}

// another way to test for FALSE
if x <y && lisComplete
{

}

else

{

do stuff

// isComplete == TRUE
do other stuff

48 CHAPTER 4: Making Decisions, Program Flow, and App Design

Optionals and Forced Unwrapping

Chapter 3 introduced optionals. Optionals are variables that might not contain a value. Since
optionals may not contain a value, you need to check for that before you access them.

You start by using an if statement to determine whether the optional contains a value by
comparing the optional against nil. If the optional has a value, it is considered to be “not
equal to” nil, as shown in Listing 4-3.

Line 4 in Listing 4-3 checks to see whether the optional variable is not equal to nil. In this
example, the someInteger value is absent, and it is equal to nil, so line 8 code is executed.

Listing 4-3. Checking Whether an Optional Has a Value

var myString = "Hello world"

let someInteger = Int(myString)

// somelnteger's value is now absent

if someInteger != nil {

print("someInteger contains an integer value.")

else {
print("someInteger doesn't contain an integer value.")
}

O oo~NOoOUT A~ WN PR
-

Now that you have added a check to make sure your optional does or doesn’t contain

a value, you can access its value by adding an exclamation mark (!) to the end of the
optional’s name. The | means you have checked to ensure the optional variable has a value
and use it. This is called forced unwrapping of the optional’s value. See Listing 4-4.

Listing 4-4. Forced Unwrapping

1 var myString = "42"

2 let someInteger = Int(myString)
3 // somelnteger contains a value
4 if someInteger != nil {

5 print("someInteger contains a value. Here it is: \(someInteger!)")
6}
7 else {
8 print("someInteger doesn't contain an integer value.")
9}

Note Displaying the contents of a variable in a print function is done with \ (youvariable!).

Optional Binding

You can find out whether an optional contains a value and, if so, assign a temporary
constant or variable to that value in a single action. See Listing 4-5. This is called optional
binding. Optional binding can be used with if and while statements to determine whether
an optional has a value and, if so, extract the value to a constant or variable.

http://dx.doi.org/10.1007/978-1-4842-1488-6_3

CHAPTER 4: Making Decisions, Program Flow, and App Design 49

Listing 4-5. Optional Binding Syntax to a Constant

1 let someOptional: String? = "hello world"

2 if let constantName = someOptional {

3 print("constantName contains a value, Here it is: \(constantName)")
4}

If you want to assign the optional to a variable so you can manipulate that variable, you can
assign the optional to a var, as shown in Listing 4-6.

Listing 4-6. Optional Binding Syntax to a Variable

1 let someOptional: String? = "hello world"

2 if var variableName = someOptional {

3 print("variableName contains a value, Here it is: \(variableName)")
4}

Notice in Listings 4-5 and 4-6 you didn’t need to use the !. If the conversion was successful,
the variable or constant was initialized with the value contained within the optional, so the !
was not necessary.

Implicitly Unwrapped Optionals

There are instances after the value is first set when you know that an optional will always
have a value. In these instances, it's useful to remove the need to check and unwrap an
optional every time it needs to be accessed. These kinds of optionals are called implicitly
unwrapped optionals.

Because of the program’s structure, you know that the optional has a value, so you can
give permission for the optional to be safely unwrapped whenever it needs to be accessed.
The ! is not needed every time you use it; instead, you place an ! after the optional’s type
when you declare it. Listing 4-7 shows the comparison between an optional String and an
implicitly unwrapped optional String.

Listing 4-7. Comparison of an Optional String and an Implicitly Unwrapped Optional String

1 var optionalString: String? = "My optional string."
2 var forcedUnWrappedString: String = optionalString! // requires an !

3
4 var nextOptionalString: String! = "An implicitly unwrapped optional."
5 var implicitUnwrappedString: String = nextOptionalString // no need for an !

Note The following will trigger runtime exceptions: trying to access implicitly unwrapped
optionals when they don’t contain a value and attempting to unwrap an optional that does not
contain a value.

50 CHAPTER 4: Making Decisions, Program Flow, and App Design

Flowcharting

After the design requirements are finalized, you can create pseudocode sections of your app
to solve complex development issues. Flowcharting is a common method of diagramming
an algorithm. An algorithm is represented as different types of boxes connected by lines and
arrows. Developers often use flowcharting to express code visually, as shown in Figure 4-1.

Internet
Process _’—’ M

l Yes

n
Yes

Process Disk :>

L1
NI

Process

Figure 4-1. Sample flowchart showing common figures and their associated names

Flowcharts should always have a start and a stop. Branches should never come to an
end without a stop. This helps developers make sure all of the branches in their code are
accounted for and that they cleanly stop execution.

Designing and Flowcharting an Example App

We have covered a lot of information about decision-making and program flow. It’s time to
do what programmers do best: write apps!

The app you have been assigned to write generates a random number between 0 and 100
and asks the user to guess the number. Users have to do this until the number is guessed.
When users guess the correct answer, they will be asked if they want to play again.

CHAPTER 4: Making Decisions, Program Flow, and App Design 51

The App’s Design

Using your design requirements, you can make a flowchart for your app. See Figure 4-2.

Start

——

getRandomiumber
roundRangomNumber
printRangomNumber

b

ASK user 1o guess

number between <ot 2
0-100

e
1

Display quess .|
toohigh [*

Display correct guess. Display guess :
Ask user If they want 100 low J
1o continue playing

Figure 4-2. Flowchart for guessing a random number app

Reviewing Figure 4-2, you’ll notice that as you approach the end of a block of logic in

your flowchart, there are arrows that go back to a previous section and repeat that section
until some condition is met. This is called looping. It enables you to repeat sections of
programming logic —without having to rewrite those sections of code over—until a condition
is met.

52 CHAPTER 4: Making Decisions, Program Flow, and App Design

Using Loops to Repeat Program Statements

A loop is a sequence of program statements that is specified once but can be repeated
several times in succession. A loop can repeat a specified number of times (count-controlled)
or until some condition (condition-controlled) occurs.

In this section, you’ll learn about count-controlled loops and condition-controlled loops.
You will also learn how to control your loops with Boolean logic.

Count-Controlled Loops

A count-controlled loop repeats a specified number of times. In Swift, this is a for loop.
A for loop has a counter variable, which enables the developer to specify the number of
times the loop will be executed. See Listing 4-8.

Listing 4-8. A Count-Controlled Loop
var 1 = 0

for i; i < 10; i++ {
print("The index is: \(i)")
}

//....continue

The loop in Listing 4-8 will loop ten times. The variable i starts at zero and increments at the
end of the } by one. The incrementing is done by the i++ in the for statement; i++ is
equivalenttoi = i + 1. Then i is incremented by one to ten and checked to see whether it
is less than ten. This for loop will exit when i = 10 and the } is reached.

Note It is common for developers to confuse the number of times they think their loops will
repeat. If the loop started at 1 in Listing 4-8, the loop would repeat nine times instead of ten.

In Swift, for loops can have their counter variables declared in the for loop declaration.
See Listing 4-9.

Listing 4-9. Counter Variable Initialized in the for Loop Declaration

for var 1 = 0; i < 10; i++ {
print("The index is: \(i)")
}

//....continue

You use the for-in loop to iterate over collections of items, such as ranges of numbers,
items in an array, or characters in a string.

CHAPTER 4: Making Decisions, Program Flow, and App Design 53

Listing 4-10 prints a few entries in the ten times table.

Listing 4-10. Counter Variable Initialized in the for Loop Declaration

for index in 1...10 {
print("\(index) times 10 is \(index * 10)")

//....continue

Condition-Controlled Loops

Swift has the ability to repeat a loop until some condition changes. You may want to repeat a
section of your code until a false condition is reached with one of your variables. This type of
loop is called awhile loop. A while loop is a control flow statement that repeats based on a
given Boolean condition. You can think of a while loop as a repeating if statement.

See Listing 4-11.

Listing 4-11. A Swift while Loop Repeating

var isTrue = true
while isTrue

{
// do something

isTrue = false // a condition occurs that sometimes sets isTrue to FALSE

}

//....continue

The while loop in Listing 4-11 first checks whether the variable isTrue is true—which it
is—so the {Lloop body} is entered where the code is executed. Eventually, some condition

is reached that causes isTrue to become false. After completing all the code in the loop
body, the condition (isTrue) is checked once more, and the loop is repeated. This process is
repeated until the variable isTrue is set to false.

Infinite Loops

An infinite loop repeats endlessly, either because of the loop not having a condition that
causes termination or because of the loop having a terminating condition that can never
be met.

Generally, infinite loops can cause apps to become unresponsive. They are the result of a
side effect of a bug in either the code or the logic.

Listing 4-12 is an example of an infinite loop caused by a terminating condition that can
never be met. The variable x will be checked with each iteration through the while loop
but will never be equal to 5. The variable x will always be an even number because it was
initialized to zero and incremented by two in the loop. This will cause the loop to repeat
endlessly. See Listing 4-13.

54 CHAPTER 4: Making Decisions, Program Flow, and App Design

Listing 4-12. An Example of an Infinite Loop

var x = 0

while x =5

{
// do something
X =X+ 2

}

//....continue

Listing 4-13. An Example of an Infinite Loop Caused by a Terminating Condition That Can Never Be Met

while true

{
}

//....continue

// do something forever

Coding the Example App in Swift

Using your requirements and what you learned, try writing your random number generator
in Swift.

To program this app, you have to leave the playground and do this as a Mac Console app.
Unfortunately, at this time, a playground doesn’t enable you to interact with a running app,
so you can’t capture keyboard input.

Note You can download the complete random number generator app at
http://forum.xcelme.com. The code is in the topic of Chapter 4.

Your Swift app will run from the command line because it asks the user to guess a random
number.

1. Open Xcode and start a new project. Choose the Command Line
Tool project. See Figure 4-3.

http://forum.xcelme.com/
http://dx.doi.org/10.1007/978-1-4842-1488-6_4

CHAPTER 4: Making Decisions, Program Flow, and App Design

Choose a template for your new project:

i0S % —
Application /\\ : > .I |

Framework & Library

Cocoa Game Command Line
Other Application Tool
0os X
Application

Framework & Library
System Plug-in
Other

Command Line Tool

This template creates a command-line tool.

Cancel Next

Figure 4-3. Starting a new Command Line Tool project

2. Call your project RandomNumber (see Figure 4-4). Ensure that the
Language drop-down is Swift. Save the project anywhere you prefer
on your hard drive.

Choose options for your new project:

Product Name: RandomNumber
Organization Name: Gary Bennett

Organization Identifier: com
Bundle Identifier: com.RandomNumber

Language: Swift

<>

Cancel Previous Next

Figure 4-4. Project options for RandomNumber

55

CHAPTER 4: Making Decisions, Program Flow, and App Design

3. Open the main.swift file. Write the code in Listing 4-14.

Listing 4-14. Source Code for Your Random Number Generator App

W oo~NOUVI B~ WN R

15

16
17
18
19

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38

39
40
4
42
43
44

//
// main.swift
// Guess

import Foundation

var randomNumber = 1
var userGuess:Int? =
var continueGuessing
var keepPlaying = true
var input = ""

1
= true

while (keepPlaying) {
randomNumber = Int(arc4random uniform(101)) //get a random number between 0-100

print("The random number to guess is: \(randomNumber)");
while (continueGuessing) {
print ("Pick a number between 0 and 100. ")
input = NSString(data: NSFileHandle.fileHandleWithStandardInput().availableData,
encoding:NSUTF8StringEncoding)! as String //get keyboard input
input = input.stringByReplacingOccurrencesOfString("\n", withString: "",
options: NSStringCompareOptions.LiteralSearch, range: nil) //strip off the /n
userGuess = Int(input)
if (userGuess == randomNumber) {
continueGuessing = false
print("Correct number!");
}
//nested if statement
else if (userGuess > randomNumber){
//user guessed too high
print("Your guess is too high");

}

else{
// no reason to check if userGuess < randomNumber. It has to be.
print("Your guess is too low");

}

}

print ("Play Again? Y or N");

input = NSString(data: NSFileHandle.fileHandleWithStandardInput().availableData,
encoding:NSUTF8StringEncoding)! as String

input = input.stringByReplacingOccurrencesOfString("\n", withString: "",
options: NSStringCompareOptions.LiteralSearch, range: nil)

if (input == "N" || input == "n"){
keepPlaying = false

continueGuessing = true

CHAPTER 4: Making Decisions, Program Flow, and App Design 57

In Listing 4-14, there is new code that we haven’t discussed before. The first new line of
code (line 15) is as follows:

randomNumber = Int(arc4random_uniform(101))

This line will produce a random number between 0 and 100; arc4random_uniform() is a
function that returns a random number.

The next line of new code is on line 19:

input = NSString(data: NSFileHandle.fileHandleWithStandardInput().availableData,
encoding:NSUTF8StringEncoding)!

This enables you to get keyboard input for the user. We will talk about this syntax in later
chapters.

The next new line of code is on line 21:
userGuess = Int(input)

Int takes a string initializer and converts it to an integer.

Nested if Statements and else if Statements

Sometimes, it is necessary to nest if statements. This means that you need to have if
statements nested inside an existing if statement. Additionally, it is sometimes necessary to
have a comparison as the first step in the else section of the if statement. This is called an
else if statement (recall line 27 in Listing 4-14).

else if (userGuess > randomNumber)

Removing Extra Characters
Line 20 in Listing 4-14 is as follows:

input = input.stringByReplacingOccurrencesOfString("\n", withString:
NSStringCompareOptions.LiteralSearch, range: nil) //strip off the /n

, options:

Reading keyboard input can be difficult. In this case, it leaves a remnant at the end of your
string, \n, and you need to remove it. This is a newline character that is generated when the
users press the Return key on their keyboards.

Improving the Code Through Refactoring

Often, after you get your code to work, you examine the code and find more efficient ways
to write it. The process of rewriting your code to make it more efficient, maintainable, and
readable is called code refactoring.

As you review your code in Swift, you will often notice that you can eliminate some
unnecessary code.

58 CHAPTER 4: Making Decisions, Program Flow, and App Design

Note As developers, we have found that the best line of code is the line that you don’t have to
write—Iless code means less to debug and maintain.

Running the App

To run your app, click the Play button at the top left of your screen in your Swift project. See
Figure 4-5.

soe » B Eacombimaer [My Mac Rardambiomtar | Bl Randombamter Suctesded | Totsy ot 139 PU
ety

R T LSRR YR —

port Foundation

var randosNusber = 1
var userGuess:Int? =
r continueGuessing = true
keepPlaying = true

var input = "%

while [kees) 1
: . ntarcarandon_unifor mlsun

umber 2
r[uatn WSF i LeHand '.cha dledithStandardInput().availabledata, encoding:NSUTF8StringEncoding}! as String //get

ngByReplacingDccurrences0fString(™\n”, withString: "", options: NS55tringComp. s.LiteralSearch, range:
ff the /n

print{"Your g

elsef
f/ no reason to check if us andonhusbi 3
D int("Your g
print ["ln\. A
M55 t andle. fileHandl c'«‘ rS andardInput().availableData, c'!l:M\ﬂq r%. :frr ing)! as String
= ofircurraneashEStrinal"\n" . withGtrinas * . ontiont: NSt o s.LiteralSearch. ranae: nill
-
Optional(1234)
The random nusber to guess is: 65
Pick & number between @ and 100.
64
Your guess is too low
Pick a number between @ and 100.
66
Your guess is too high
Pick a number between @ and 100.
65
Correct number!
Play Again? ¥ or N
Y
The random nusber to guess is: 17
Pick a number between @ and 100.
17
Correct number!
Play Again? ¥ or N
N
Program ended with exit code: @
| dons = - A D 2 oa

Figure 4-5. The console output of the Swift random number generator app

CHAPTER 4: Making Decisions, Program Flow, and App Design 59

Note If you’re not seeing the output console when you run your app, make sure you have selected
the same options at the top-right and bottom-right corners of the editor (choose View » Debug
Area » Activate Console). See Figure 4-5.

Design Requirements

As discussed in Chapter 1, the most expensive process in the software development
lifecycle is writing code. The least expensive process in the software development lifecycle
is gathering the requirements for your application; yet, this latter process is the most
overlooked and least used in software development.

Design requirements usually begin by asking clients, customers, and/or stakeholders how
the application should work and what problems it should solve.

With respect to apps, requirements can include long or short narrative descriptions, screen
mock-ups, and formulas. It is far easier to open your word processor and change the
requirements and screen mock-ups before coding begins than it is to modify an iOS app.
The following is the design requirement for one view of an iPhone mobile banking app:

View: Accounts view.

Description: Displays the list of accounts the user has. The list of
accounts will be in the following sections: Business Accounts, Personal
Accounts and Car Loans, IRA, and Home Equity Loans.

Cells: Each cell will contain the account name, the last four digits of the
account, the available balance, and the present balance.

A picture is worth a thousand words. Screen mock-ups are helpful to developers and users
because they can show how the views will look when they are completed. There are many
tools that can quickly design mock-ups; one of these tools is OmniGraffle. See Figure 4-6 for
an example of a screen mock-up used for design requirements generated by OmniGraffle.

http://dx.doi.org/10.1007/978-1-4842-1488-6_1

60 CHAPTER 4: Making Decisions, Program Flow, and App Design

ij CANVASES - ! . ¥ (N[; I 5
| — R [Ratasa [P Banaaase e PR e e T
To
=1 page 11
Account Pz
Canvas 14 £ nt Page
2 b
M: CONTENTS = e 2 7
- Balances Transfer Mone: v Bil
4 s
& Layer 1 25 a /Bavings (xx1772) .
[® Adjustable Arow Business Accounts fvailasle Balance $123421)
(=" /Present Balance f a k-]
o Group -, Business Checking (xx4327))
Group Avallable Balance s2oc22 2
Presont Balanca S4201.35 IRA (xx177) .
50 Group Available Balance 5123421 2
=10 Group Business Savings (xx1234) Frasen Balance man
Avallablo Balance s123421)
50 Groy Car Loan (xx172)
0 P Presant Balanca $2123.22 Ouistanding Principle Sigsin
4 Text: Personal Accounts - Next Payment Amount 212322
= Personal Accounts Due Date ognieoos)
‘;- Group Last Pay Amount 5452 59
ol Group L Checking (xx3423) I Last Pay Date OTMT2009
C = Avallabio Balance s2i002a)
8 Rectangle Prosent Balanca §4201.36 /
A Text: Modified by: Gary B =
Text: Wed Jul 14 2010 | e Contact Us FAQ Log Ov
A b Home Locations Contact Us FAQ Log Out Home Equity Loan (xx7672)
A Text: Page 14 of 23 - Qutstanding Principhe $123421
: < Noxt Paymaent Amount s12222
:- Text: Business Accounts E o 0an7
5H Group Last Pay Amount $452.09
B Rectangle & Last Pay Dato oIN7r008
A Text: Native i
A Text: Account Page
Rectangle Native
31 Group =
Modified by: Gary Bennett Page 14 of 23 Wed Jul 14 2010

Figure 4-6. Screen mock-up for a mobile banking app using OmniGraffle and the Ultimate iPhone Stencil plug-in. This
mock-up was done for the original Woodforest Banking app in 2010

Many developers believe that design requirements take too long and are unnecessary. There
is a lot of information presented on the Accounts screen in Figure 4-6. Many business rules
can determine how information is displayed to the users, along with all of the error handling
when things go bad. When designing your app, working with all the business stakeholders at
the beginning of the development process is critical to getting it right the first time.

CHAPTER 4: Making Decisions, Program Flow, and App Design

Figure 4-7 is an example of all stakeholders being involved in your app’s development.
Having all stakeholders involved in every view from the beginning will eliminate multiple
rewrites and application bugs.

App Store > Finance > Woodforest Fin

Download -
Rating: 4

LINKS

Prvac 'Ol

Dewvsloper Webaite

O Woodforest Natianal Bank 2013

ancial Group

Woodforest Mobile Banking =
Woodforest Financial Group »
Details

Ratings and Reviews Related

iPhone Screenshots

Transfer

£ Transters

61

4/ WoODFOREST,,
’ 3 Checking (..1175)

Log Off

Chacking & Savings

& Accounts Currant Balance: 50.103.29
Avadable Baance: $9,103.29
-
Transbers.
= Checking {..3859)
P Currun Balance: 52187
Fay Bills Awatable Batance 52187
w Mobile Deposit Checking (..4982)
Curront Balance 174
A Locations Avadablo Baance ST
2 Checking (...5884)
B G Carss Curroni Balance $78,708.78
Avadable Batance: $78.563.71
€. ContactUs
Savings (..5114)
) Frequently Asked Questions Currant Balance: $1.08
Huaiable Baance: $1.08
© 2014 Woodlores! National Bark [
Member FOIC
.1 s s o =] S [+ =

Mobile Deposit

Schedule Account Transher Choose an OpSion

Froen: Checking (..1175) = Make a Doposit
To: Checking | 3850) = Deposil History
Transfor Amount: $200.00
Moma: ‘Weekly Savings
Teanster By: February 13, 2014

Decurs: Weakly

Number Of Times:

Figure 4-7. Woodforest Mobile Banking app as it appeared on the App Store in 2015; compare this with the app
requirements Accounts screen in Figure 4-6

Additionally, Apple recommends that developers spend at least 50 percent of their
development time on the user interface’s design and development.

Balsamiq also has great tools for laying out your iOS app’s look. See Figure 4-8.

62 CHAPTER 4: Making Decisions, Program Flow, and App Design

balsamig.com
Unleash Your Creativity! B
Butt
Balsamig Mockups is a rapid wireframing tool E“n Bar f Tab Bar
that helps you Work Faster & Smarter. It Helo Button

reproduces the experience of sketching on a

Multiline Button
whiteboard, but using a computer. e

Pointy Button [iPhone Button

Making mockups is fast. You'll generate more Radlo Bution

ideas, so you can throw out the bad ones and
discover the best solutions.

Radio Button Group

Quick Add User Interface Library
Build a user interface at the Tons of Ul elements.
speed of thought. Just drag and drop!

Get Honest Feedback

Improve your designs by getting immediate and
meaningful feedback. Sketch-style wireframes
help focus the conversation on content and
interaction, not minute details (those can come

later).

Sketch-Style Controls Clean Wireframes Option
They look like sketches on Need to present your
purpose! It encourages work? Switch to the
brainstorming. clean wireframe skin!

Figure 4-8. Balsamiq.com web site for creating wireframe mock-ups

Summary

This chapter covered a lot of important information on how to control your applications;
program flow and decision making are essential to every iOS app. Make sure you have
completed the Swift example in this chapter. You might review these examples and think you
understand everything without having to write this app. This will be a fatal mistake that will
prevent you from becoming a successful iOS developer. You must spend time coding this
example. Developers learn by doing, not by reading.

The terms in this chapter are important. You should be able to describe the following:

E AND
= OR

B XOR
E NAND
B NOR

CHAPTER 4: Making Decisions, Program Flow, and App Design 63

NOT

Truth tables

Negation

All comparison operators
Application requirement
Logical AND (88)

Logical OR (| |)

Optionals and forced unwrapping
Optional binding

Implicitly unwrapped optionals
Flowchart

Loop

Count-controlled loops

For loop

Condition-controlled loops
Infinite loops

while loops

Nested if statements

Code refactoring

Exercises

Extend the random number generator app to print to the console how
many times the user guessed before guessing the correct random
number.

Extend the random number generator app to print to the console how
many times the user played the app. Print this value to the console
when the user quits the app.

Chapter

Object-Oriented Programming
with Swift

Over the past 15 years, the programming world focused on the development paradigm of
object-oriented programming (OOP). Most modern development environments and languages
implement OOP. Put simply, OOP forms the basis of everything you develop today.

You may be asking yourself why we waited until Chapter 5 to present OOP using Swift if it is
the primary development style of today. The simple answer is that it is not an easy concept
for new developers. This chapter will go into detail about the different aspects of OOP and
how they affect your development.

Implementing OOP into your applications correctly will take some front-end planning, but
you will save yourself a lot of time throughout the life of your projects. OOP has changed
the way development is done. In this chapter, you will learn what OOP is. OOP was initially
discussed in the first chapter of this book, but this chapter will go into more detail about

it. You will revisit what objects are and how they relate to physical objects you find in the
world. You will look into what classes are and how they relate to objects. You will also learn
the steps you need to take when planning your classes and some visual tools you can use
to accomplish these steps. When you have read this chapter and have worked through the
exercises, you will have a better understanding of what OOP is and why it is necessary for
you as a developer.

At first, objects and object-oriented programming may seem difficult to understand, but the
hope is that as you progress through this chapter, they will begin to make sense.

The Object

As discussed in Chapter 1, OOP is based on objects. Some of the discussion about objects
will be a review, but it will also go into more depth. An object is anything that can be acted
upon. To better understand what a programming object is, you will first look at some items
in the physical world around you. A physical object can be anything around you that you

http://dx.doi.org/10.1007/978-1-4842-1488-6_5
http://dx.doi.org/10.1007/978-1-4842-1488-6_1

66 CHAPTER 5: Object-Oriented Programming with Swift

can touch or feel. Take, for example, a television. Some characteristics of a television
include type (plasma, LCD, or CRT), size (40 inches), brand (Sony or Vizio), weight, and cost.
Televisions also have functions. They can be turned on or off. You can change the channel,
adjust the volume, and change the brightness.

Some of these characteristics and functions are unique to televisions, and some are not.

For example, a couch in your house would probably not have the same characteristics as

a television. You would want different information about a couch, such as material type,
seating capability, and color. A couch might have only a few functions, such as converting to
a bed or reclining.

Now let’s talk specifically about objects as they relate to programming. An object is a
specific item. It can describe something physical like a book, or it could be something such
as a window for your application. Objects have properties and methods. Properties describe
certain things about an object such as location, color, or name. Conversely, methods
describe actions the object can perform such as close or recalculate. In this example, a

TV object would have type, size, and brand properties, while a Couch object would have
properties such as color, material, and comfort level. In programming terms, a property
is a variable that is part of an object. For example, a TV would use a string variable to store
the brand and an integer to store the height.

Objects also have commands the programmer can use to control them. The commands are
called methods. Methods are the way that other objects interact with a certain object. For
example, with the television, a method would be any of the buttons on the remote control.
Each of those buttons represents a way you can interact with your television. Methods can
and often are used to change the values of properties, but methods do not store any values
themselves.

As described in Chapter 1, objects have a state, which is basically a snapshot of an object at
any given point in time. A state would be the values of all the properties at a specific time.

In previous chapters, you saw the example of the bookstore. A bookstore contains many
different objects. It contains book objects that have properties such as title, author,
page count, and publisher. It also contains magazines with properties such as title,
issue, genre, and publisher. A bookstore also has some nontangible objects such as a
sale. A sale object would contain information about the books purchased, the customer,
the amount paid, and the payment type. A sale object might also have some methods that
calculate tax, print the receipt, or void the sale. A sale object does not represent a tangible
object, but it is still an object and is necessary for creating an effective bookstore.

Because the object is the basis of OOP, it is important to understand objects and how to
interact with them. You will spend the rest of the chapter learning about objects and some of
their characteristics.

What Is a Class?

We cannot discuss OOP without discussing what a class is. A class defines which properties
and methods an object will have. A class is basically a cookie cutter that can be used to
create objects that have similar characteristics. All objects of a certain class will have the
same properties and the same methods. The values of those properties will change from
object to object.

http://dx.doi.org/10.1007/978-1-4842-1488-6_1

CHAPTER 5: Object-Oriented Programming with Swift 67

A class is similar to a species in the animal world. A species is not an individual animal, but
it does describe many similar characteristics of the animal. To understand classes more,

let’s look at an example of classes in nature. The Dog class has many properties that all dogs
have in common. For example, a dog may have a name, an age, an owner, and a favorite
activity. An object that is of a certain class is called an instance of that class. If you look at
Figure 5-1, you can see the difference between the class and the actual objects that are
instances of the class. For example, Lassie is an instance of the Dog class. In Figure 5-1, you
can see a Dog class that has four properties (Breed, Age, Owner, and Favorite Activity). In
real life, a dog will have many more properties, but these four are for this demonstration.

Class Objects

Lassie

Breed: Collie

Age: 5

Owner: Jeff

Favorite Activity: Helping People

Dog L Spot
Breed Breed: Dalmation
Age = pe----- > Age: 2
Owner I Owner: Fire Department
Favorite Activity s Favorite Activity: Riding in a Fire Truck

Scooby Doo
Breed: Great Dane
Age: 10
Owner: Shaggy
Favorite Activity: Eating Scooby Snacks

Figure 5-1. An example of a class and its individual objects

Planning Classes

Planning your classes is one of the most important steps in your development process.
While it is possible to go back and add properties and methods after the fact (and you will
definitely need to do this), it is important that you know which classes are going to be used
in your application and which basic properties and methods they will have. Spending time
planning your different classes is important at the beginning of the process.

Planning Properties

Let’s look at the bookstore example and some of the classes you need to create. First, it

is important to create a Bookstore class. A Bookstore class contains the blueprint of the
information each Bookstore object stores, such as the bookstore’s name, address, phone
number, and logo (see Figure 5-2). Placing this information in a class rather than hard-
coding it in your application will allow you to easily make changes to this information in the
future. You will learn the reasons for using OOP methodologies later in this chapter. Also, if
your bookstore becomes a huge success and you decide to open another one, you will be
prepared because you can create another object of class Bookstore.

68 CHAPTER 5: Object-Oriented Programming with Swift

Bookstore
Name
Address1
Address2
City
State
Zip
Phone Number
Logo

Figure 5-2. The Bookstore class

Let’s also plan a Customer class (see Figure 5-3). Notice how the name has been broken into
First Name and Last Name. This is important to do. There will be times in your project when
you may want to use only the first name of a customer, and it would be hard to separate

the first name from the last if you didn’t plan ahead. Let’s say you want to send a letter to a
customer letting them know about an upcoming sale. You do not want your greeting to say,
“Dear John Doe.” It would look much more personal to say, “Dear John.”

Customer
First Name
Last Name
Address Line 1
Address Line 2
City
State
Zip
Phone Number
Email Address
Favorite Book Genre

Figure 5-3. The Customer class

You will also notice how the address is broken into its different parts instead of grouping it
all together. The Address Line 1, Address Line 2, City, State, and Zip are separate. This is
important and will be used in your application. Let’s go back to the letter you want to send
to customers about an upcoming sale.

You might not want to send it to all of the customers who live in different states. By
separating the address, you can easily filter out those customers you do not want to include
in your mailings.

We have also added the attribute of Favorite Book Genre to the Customer class. We added
this to show you how you can keep many different types of information in each class. This
field may come in handy if you have a new mystery title coming out and you want to send an
e-mail alerting customers who are especially interested in mysteries. By storing this type of
information, you will be able to specifically target different portions of your customer base.

CHAPTER 5: Object-Oriented Programming with Swift 69

A Book class is also necessary to create the bookstore (see Figure 5-4). You will store
information about the book such as author, publisher, genre, page count, and edition humber
(in case there are multiple editions). The Book class will also have the price for the book.

Book

Author

Publisher

Genre

Year Published
Number of Pages
Edition

Price

Figure 5-4. The Book class

You can add another class called Sale (see Figure 5-5). This class is more abstract than
the other classes discussed because it does not describe a tangible object. You will notice
how we have added a reference to a customer and a book to the Sale class. Because the
Sale class will track sales of books, you need to know which book was sold and to which
customer.

Sale
Customer
Book
Date
Time
Amount
Payment Type

Figure 5-5. The Sale class

Now that you know the properties of the classes, you need to look at some methods that
each of the classes will have.

Planning Methods

You will not add all of the methods now, but the more planning you can do at the beginning,
the easier it will be for you later. Not all of your classes will have many methods. Some may
not have any methods at all.

Note When planning your methods, remember to have them focus on a specific task. The more
specific the method, the more likely it is that it can be reused.

70 CHAPTER 5: Object-Oriented Programming with Swift

For the time being, you will not add any methods to the Book class or the Bookstore class.
You will focus on your other two classes.

For the Customer class, you will add methods to list the purchase history of that client. There
may be other methods that you will need to add in the future, but you will add just that one
for now. Your completed Customer class diagram should look like Figure 5-6. The line near
the bottom separates the properties from the methods.

Customer
First Name
Last Name
Address Line 1
Address Line 2
City
State
Zip
Phone Number
Email Address
Favorite Book Genre
List Purchase History

Figure 5-6. The completed Customer class

For the Sales class, we have added three methods. We added Charge Credit Card, Print
Invoice, and Checkout (see Figure 5-7). For the time being, you do not need to know how to
implement these methods, but you need to know that you are planning on adding them to
your class.

Sale
Customer
Book
Date
Time
Amount
Payment Type
Charge Credit Card
Print Invoice
Checkout

Figure 5-7. The completed Sale class

Now that you have finished mapping out the classes and the methods you are going to add

to them, you have the beginnings of a Unified Modeling Language (UML) diagram. Basically,
this is a diagram used by developers to plan their classes, properties, and methods. Starting
your development process by creating such a diagram will help you significantly in the

CHAPTER 5: Object-Oriented Programming with Swift Al

long run. An in-depth discussion of UML diagrams is beyond the scope of this book. If you
would like more information about this subject, smartdraw.com has a great in-depth overview
of them; see http://www.smartdraw.com/uml-diagram/. Omnigroup (www.omnigroup.com)
provides a great UML diagram program for Mac OS X called Omnigraffle.

Figure 5-8 shows the complete diagram.

Bookstore Sale
Name Customer
Address1 Book
Address2 Date
City Time
State Amount
Zip Payment Type
Phone Number Charge Credit Card

| Logo Print Invoice
Checkout
Book Customer
Author First Name
Publisher Last Name
Genre Address Line 1
Year Published Address Line 2
Number of Pages City
Edition State
Price Zip
Phone Number
Email Address
Favorite Book Genre
List Purchase History

Figure 5-8. The completed UML diagram for the bookstore

Implementing the Classes

Now that you understand the objects you are going to be creating, you need to create your
first object. To do so, you will start with a new project.

1. Launch Xcode. Select File » New >» Project.

2. Select iOS on the left side. On the right side, select Master-Detail
Application. For what you are doing in this chapter, you could have
selected any of the application types (see Figure 5-9). Click Next.

http://www.omnigroup.com/
http://www.smartdraw.com/uml-diagram/
http://www.omnigroup.com/

72 CHAPTER 5: Object-Oriented Programming with Swift

Choose a template for your new project:
i0s
Application - oo 1

Framework & Library

Master-Detail Page-Based Single View

watchOS Application Application Application
Application

Framework & Library

0SS X
Application
Framework & Library
System Plug-in

o ses

Tabbed
Application

Other
Master-Detail Application
This template provides a starting point for a master-detail application. It provides a user
interface configured with a navigation controller to display a list of items and also a split view
on iPad.

Cancel Next

Figure 5-9. Creating a new project

3. Enter a product name for your project. We will use the name

of BookStore. You will also have to enter a company name

and a company identifier. The company identifier is usually

com.companyname (i.e., com.innovativeware). Leave the checkboxes
on this screen as they appear by default. You will not be worrying
about Core Data right now; it’s discussed in Chapter 11. Also, leave
the current language selection set to Swift. Click Next to select a
location to save your project and then save your project. You can use

the name BookStore or any other project name you want.

4. Select the BookStore project from the Project navigator on the left
side of the screen (see Figure 5-10). This is where the majority of

your code will reside.

http://dx.doi.org/10.1007/978-1-4842-1488-6_11

CHAPTER 5: Object-Oriented Programming with Swift 73

e0e » Ay BosicStere | 5 Phone 6 BockStane: Ready | Today at 3:37 Pu @ <IlO R 0O
BRQCASEoc B |B B Bosksrors 0O e
¥ |5 BookSwon D MAsosswns o Capaniitios Resoures Tags Infe Buid Santings Buid Prases Buid Rules Mty snd Type
¥ Bl BookSiore name | BookStore
. ApoDelagate swift v Mentiny
Leeason A
+ MasterviawControlior.swift
" . BosicStore xcodenro
Bunche idantiler | com incy BockSiond Ful Pacn Users/bradwicesySource
’ BosieSiore/
1
Verwom |10 BosiStare scodenrci
buid 1
On Demand Aesource Tags
o piist
* (7] BookStereTests Toam | Nong <]
»] BocicStoreliMasts i o signing isnttiss bound
» [0 Products " = it B
Fix issue Crganization | Brad Lees
Class Prafin
* Deployment info
Tant Sattings
Depicymen Target -] moeen g |_Spaces B
Devices Universs B Waiths. a F1=
i seent
Main interface | Main B & Wrag ines
Davico Oriorsation [Portrait ‘Source Control
Upside Down Aepashory -
B Lsncscspe Latt Tree —
Lancscape Right Currest Beanch -
St Dar Stpe | Detaut B 0O0ea

Vide statias bar
Reguires ful ecroen [C]

Cocos Touch Class - & Cocos
Toueh et

¥ App icons and Launch Images
Teat Cage Class - A class

App lcons Source |_Appicon Be BB ccemeniog s s sear
Lounch images Source | Use Assas Catsieg
U Test Case Class - A class
Launch Sereen File LaunchSereen B @ ImpeTning & U best

¥ Embedded Binaries =

Figure 5-10. Selecting the bookStore folder

5. Select File » New > File.

6. From the pop-up window, select Source under the iOS header
and then click the Swift File on the right side (see Figure 5-11).
Then click Next.

74 CHAPTER 5: Object-Oriented Programming with Swift

Choose a template for your new file:

i0s
Source
User Interface
Core Data Cocoa Touch Test Case Class Ul Test Case Playground
Class Class
Apple Watch
Resource
Other - m h C
watchOS ©TIED | Objective-CFile Header File C File
Source
User Interface
Core Data Ce+ N\
Resource
Other C++ File Metal File
0S X
Source Swift File
User Interface An empty Swift file.
Core Data
Dacmiran
Cancel — et

Figure 5-11. Creating a new Swift file

7. You will now be given the opportunity to name your file (see
Figure 5-12). For this exercise, you will create the Customer class. For
now, name the file Customer. Click Create.

CHAPTER 5: Object-Oriented Programming with Swift

Choose a template for

i0S
Tags:
Source

User Interface Where:
Core Data
Apple Watch Group
Resource

Other
watchOS

Source

User Interface

Core Data

Resource

Other |
0S X

Source Swift File

User Interface

Core Data

Dacauran

Cancel

Figure 5-12. Creating the file

Save As: Customer

An empty Swift file.

Playground

<>

Targets A\, BookStore C
BookStoreTests
BookStoreUlITests C File

Cancel

Previous

Note For ease of use and for understanding your code, remember that class names should
always be capitalized in Swift. Object names should always start lowercase. For example, Book
would be an appropriate name for a class, and book would be a great name for an object based on
the Book class. For a two-word object, such as the book’s author, an appropriate name would be
bookAuthor. This type of capitalization is called lower camel case.

8. Now look in your main project folder; you should have a new file. It is

called Customer.swift.

Note If you had created a class in Objective-C, Customer.h and Customer.m files would have
been created. The . h file is the header file that contains information about your class. The header
file lists all of the properties and methods in your class, but it does actually contain the code related
to them. The .m file is the implementation file, which is where you write the code for your methods.
In Swift, the entire class is contained in a single file.

75

76 CHAPTER 5: Object-Oriented Programming with Swift

9. The Customer.swift file should now be selected, and you will see
the window shown in Figure 5-13. Notice it does not contain a
lot of information currently. The first part, with the double slashes
(/7), consists of comments and is not considered part of the code.
Comments allow you to tell those who might read your code what
each portion of code is meant to accomplish. All you have done this
far in Swift is create a file. You now need to add the code to the file
to actually create a class. In your Swift file, type the following:

class Customer {

}

ace » oy BookSiore) [iPhone & BookStore: Ready | Today at 3:49 FM)
< B BookSrere | . Customerswilt | No Seiection O @
Isanthy and Type

Name | Customer,swift

1-Swnsewee |

Location | Relative b2 Geoup B

Customer.swit
P [Usersbradwices/Source]
BesiStone Customes swilt &

Cocos Touch Class - & Cocos

y Teat Cave Class - A class
| | implemantiog a uniz test

s UNTest Case Class - A class
| | implementieg a unis test

Figure 5-13. Your empty customer class

This is all that is needed to create a Customer class.

Note In Swift, a class does not need to be in its own file. Many classes can be defined in a single
Swift file, but this can be difficult to maintain when your project contains a lot of classes. It is
usually cleaner and more organized to have a separate file for each class.

CHAPTER 5: Object-Oriented Programming with Swift 77

Now let’s transfer the properties from the UML diagram to the actual class.

Tip Properties should always start with a lowercase letter. There can be no spaces in a property
name.

For the first property, First Name, add this line to your file:

var firstName =

This creates an object in your class called firstName. Notice you did not tell Swift what type
of property firstName is. In Swift, you can declare a property and not specify the type, and a
property can be assigned a type based on the value we initially assign it. By giving the
property an initial value of "", you tell the Swift compiler to make firstName a String. In
Swift, all non-optional properties require a default value either when they are declared or in
the class initializer. We will discuss optionals later in this book.

Note In Objective-C, all properties are required to declare a type. For example, to create the same
firstName property, you would use the following code:

NSString *firstName;

This declares an NSString with the name firstName. In Swift, you can declare only a variable
and allow the system to determine the type.

Since all of the properties will be vars, you just need to repeat the same procedure for the
other ones. When that is complete, your Swift file should look like Figure 5-14.

B 2 Q A & = o B 8 ¢ [& Bookstore) i Customer.swift Customer
¥ (5] BookStore 1| //
- g 2 f/ Customer.swift
B Customer.swift 3 // BookStore
/!
v BookStore
// Created by Brad Lees on 6/27/15.
. AppDelegate.swift // Copyright © 2015 Brad Lees. All rights reserved.
»| MasterViewController.swift //
» DetailViewController.swift import Foundation
Main.storyboard class Customer {

| Assets.xcassets 1 var firstName = ""
1 var lastName = ""

LaunchScreen.storyboard var addressLinel

Info.plist 1 var addressLine2
= var city = "
> BookStoreTests . var state
> BookStoreUlTests 1 var zip =
1 var phoneNumber = ""

R cacts var emailAddress = ""
1 var favoriteGenre = ""

Figure 5-14. The Customer class interface with properties

78 CHAPTER 5: Object-Oriented Programming with Swift

Now that the class declaration is complete, you will need to add your method. Methods
should be contained in the same class file and location as the properties. You will add a new
method that returns an array. This code will look as follows:

func listPurchaseHistory() -> [String] {

return ["Purchase 1", "Purchase 2"]

This code might seem a little confusing. The empty parentheses tell the compiler that you
are not passing any parameters to the method. The -> tells the system what you return from
your method. [String] tells you that you are returning an array of strings. In the final version,
you will actually want to return purchase objects, but you are using String for now. This
code will not yet compile because you do not return an array, so you added a return of a
simple array. That is all that needs to be done in the Swift file to create the class. Figure 5-15
shows the final Swift file.

B R Q A © =] o B B8]« [& BookStore) [Customer.swift) [E] Customer
v 5 BookStore /7
- - // Customer.swift
= Customer.swift // BookStore
I/
v BookStore
// Created by Brad Lees on 6/27/15.
| AppDelegate.swift f/ Copyright © 2015 Brad Lees. All rights reserved.
= MasterViewController.swift /"
»| DetailViewController.swift import Foundation

Main.storyboard class Customer {

55| Assets.xcassets var firstName = ""
var lastName = ""

LaunchScreen.storyboard var addressLinel = ™"

Info.plist var addressLine2 = ""
var city = ""
BookStoreTests var state = "
BookStoreUITests var zip = "*
var phoneNumber = ""
> Products var emailAddress = "»

var favoriteGenre =

func listPurchaseHistory() -» [String] {
return ["Purchase 1", "Purchase 2"]
H

Figure 5-15. The finished Customer class Swift file

Inheritance

Another major quality of OOP is inheritance. Inheritance in programming is similar to genetic
inheritance. You might have inherited your eye color from your mother or hair color from your
father, or vice versa. Classes can, in a similar way, inherit properties and methods from their

parent classes, but unlike genetics, you do not inherit the values of those properties. In OOP,
a parent class is called a superclass, and a child class is called a subclass.

CHAPTER 5: Object-Oriented Programming with Swift 79

Note In Swift, there is no superclass unless specifically stated.

You could, for example, create a class of printed materials and use subclasses for books,
magazines, and newspapers. Printed materials can have many things in common, so you
could define properties in the superclass of printed materials and not have to redundantly
define them in each individual class. By doing this, you further reduce the amount of
redundant code that is necessary for you to write and debug.

In Figure 5-16, you will see a layout for the properties of a Printed Material superclass and
how that will affect the subclasses of Book, Magazine, and Newspaper. The properties of the
Printed Material class will be inherited by the subclasses, so there is no need to define
them expilicitly in the class. You will notice that the Book class now has significantly fewer
properties. By using a superclass, you will significantly reduce the amount of redundant
code in your programs.

Book
Author
Genre
Edition
[Printed Material |
Title
Publish Date R ISSUM:S”'“
Page Count o Gonre
Price
Publisher)
Newspaper
Date

Figure 5-16. Properties of the super- and subclasses

Why Use 00P?

Throughout this chapter, we have discussed what OOP is and have even discussed how
to create classes and objects. However, it’s also important to discuss why you want to use
OORP principles in your development.

If you take a look at the popular programming languages of the day, all of them use the
OORP principles to a certain extent. Swift, Objective-C, C++, Visual Basic, C#, and Java all
require the programmer to understand classes and objects to successfully develop in those
languages. In order to become a developer in today’s world, you need to understand OOP.
But why use it?

OOP Is Everywhere

Just about any development you choose to do today will require you to understand object-
oriented principles. On Mac OS X and in iOS, everything you interact with will be an object.
For example, simple windows, buttons, and text boxes are all objects and have properties

and methods. If you want to be a successful programmer, you need to understand OOP.

80 CHAPTER 5: Object-Oriented Programming with Swift

Eliminate Redundant Code

By using objects, you can reduce the amount of code you have to retype. If you write code
to print a receipt when a customer checks out, you will want that same code available when
you need to reprint a receipt. If you placed your code to print the receipt in the Sales

class, you will not have to rewrite this code again. This not only saves you time but often
helps you eliminate mistakes. If you do not use OOP and there is a change to the invoice
(even something as simple as a graphic change), you have to make sure you make the
change in your desktop and mobile applications. If you miss one of them, you run the risk of
having the two interfaces behave differently.

Ease of Debugging

By having all of the code relating to a book in one class, you know where to look when there
is a problem with the book. This may not sound like such a big deal for a little application,
but when your application gets to hundreds of thousands or even millions of lines of code, it
will save you a lot of time.

Ease of Replacement

If you place all of your code in a class, then as things change in your application, you can
change out classes and give your new class completely different functionality. However,

the modified class can still interact with the rest of the application in the same way as your
current class. This is similar to car parts. If you want to replace a muffler on a car, you do not
need to get a new car. If you have code related to your invoice scattered all over the place, it
makes it much more difficult to change items about a class.

Advanced Topics

We have discussed the basics of OOP throughout this chapter, but there are some other
topics that are important to your understanding.

Interface

As discussed in this chapter, the way the other objects interact is with methods. In Swift,
you can set access levels on your methods. Declaring a method private will make it
accessible only to objects derived from it. By default, Swift methods are internal and can be
accessed by any object or method in the current module. This is often called the interface
because it tells other objects how they can interact with your objects. Implementing a
standard interface throughout your application will allow your code to interact with different
objects in similar ways. This will significantly reduce the amount of object-specific code you
need to write.

CHAPTER 5: Object-Oriented Programming with Swift 81

Polymorphism

Polymorphism is the ability of an object of one class to appear and be used as an object of
another class. This is usually done by creating methods and properties that are similar to
those of another class. A great example of polymorphism that you have been using is the
bookstore. In the bookstore, you have three similar classes: Book, Magazine, and Newspaper.
If you wanted to have a big sale for your entire inventory, you could go through all of the
books and mark them down. Then you could go through all of the magazines and mark
them down and then go through all of the newspapers and mark them down. That would
be more work than you would need to do. It would be better to make sure all of the classes
have a markdown method. Then you could call that on all of the objects without needing to
know which class they were as long as they were subclasses of a class that contained the
methods needed. This would save a bunch of time and coding.

As you are planning your classes, look for similarities and for methods that might apply to
more than one type of class. This will save you time and speed up your application in the
long run.

Summary

You’ve finally reached the end of the chapter! Here is a summary of the things that were
covered:

Object-oriented programming (OOP): You learned about the importance
of OOP and the reasons why all modern code should use this
methodology.

Objects: You learned about OOP objects and how they correspond to
real-world objects. You also learned about abstract objects that do not
correspond to real-world objects.

Classes: You learned that a class determines the types of data
(properties) and the methods that each object will have. Every object
needs to have a class. It is the blueprint for the object.

Creating a class: You learned how to map out the properties and
methods of your classes.

Creating a class file: You used Xcode to create a class file.

Editing a file: You edited the Swift file to add your properties and
methods.

82 CHAPTER 5: Object-Oriented Programming with Swift

Exercises

Try creating the class files for the rest of the classes you mapped out.

Map out an Author class. Choose the kind of information you would
need to store about an author.

For the daring and advanced:

Try creating a superclass called PrintedMaterials. Map out the
properties that a class might have.

Create classes for the other types of printed materials a store might
carry.

Chapter

Learning Swift and Xcode

For the most part, all programming languages perform the typical tasks any computer needs
to do—store information, compare information, make decisions about that information, and
perform some action based on those decisions. The Swift language makes these tasks
easier to understand and accomplish. The real trick with Swift (actually, the trick with most
programming languages) is to understand the symbols and keywords used to accomplish
those tasks. This chapter continues the examination of Swift and Xcode so you can become
even more familiar with them.

A Newcomer

As you may know, Swift has not been around for long. Development of the Swift language
began about four years ago by Chris Lattner, and on September 9, 2014, Swift 1.0 was
officially released. Swift borrows many ideas from Objective-C, but it also incorporates many
features used by modern programming languages. Swift was designed from the ground up
to be accessible to the average programmer.

Currently, there are two main types of programming languages. Compiled languages such
as Objective-C and C++ are known for being rigid and requiring certain syntax. Compiled
languages are also significantly faster in execution. Interpreted languages, such as Ruby,
PHP, and Python, are known for being easier to learn and code but slower in their execution.
Swift is a language that bridges the gap between the two. Swift incorporates the flexibility
that makes interpreted languages so popular with the performance required for demanding
applications and games. In fact, Apple claims that Swift applications will perform faster than
those written in Objective-C. In some of Apple’s tests, Swift performed almost four times
faster than Python and 40 percent faster than Objective-C.

83

84 CHAPTER 6: Learning Swift and Xcode

Understanding the Language Symbols

Understanding symbols is a basic part of any programming language. Symbols are
punctuation used to portray specific meanings in source code. Understanding the symbols
of a language is required to be able to use the language. Here are some of the symbols
and language constructs used in Swift, most of which you’ve already encountered in one
way or another:

{: This is the begin brace. It’s used to start what’s commonly referred to
as a block of code. Blocks are used to define and surround a section of
code and define its scope.

}: This is the end brace. It’s used to end a block of code. Wherever there
is a begin brace ({), there must always be an accompanying end brace (}).

[]: These are the open and close brackets. They are used in the
declaration and consumption of arrays.

func methodName() -> String: This is how a Swift function is defined.
The word methodName, of course, can represent any name. The word
String can also change. It represents what type of information the
method returns. In this example, String indicates the method will return a
string, or a group of characters (data types were introduced in Chapter 3
and will be covered in more depth in later chapters). This will be
discussed more later in the chapter.

Figure 6-1 shows an example of Swift code.

) ~ func logMessage() {
let hello = "Hello World!"
println(hello)

Figure 6-1. Example of Swift code

Line 1 represents a Swift function. The empty parentheses, (), indicate that this function
does not receive any variables. The fact that the parentheses are not followed by -> signifies
that this function does not return any type of data and, if invoked, would not return a value
to the caller.

The end of line 1 and line 4 are the braces that define a block of code. This block is what
defines the method. Every method has at least one block.

Line 2 creates a constant named hello. As you learned in previous chapters, a constant is a
value that cannot change or is constant. The value of the constant hello is assigned “Hello
World!” Because you assign hello to a String value, hello becomes a String and can use
any method related to Strings (recall that you first saw strings in Chapter 3). Line 3 could be
rewritten as follows:

let hello: String = "Hello World!"

http://dx.doi.org/10.1007/978-1-4842-1488-6_3
http://dx.doi.org/10.1007/978-1-4842-1488-6_3

CHAPTER 6: Learning Swift and Xcode 85

Line 3 is a call to the println function. You pass the method the object in order to print the
hello String object.

Although it does look a little cryptic to someone who is just learning Swift, the simple and
terse syntax doesn’t take too much time to learn.

Implementing Objects in Swift

Swift was built from the ground up to be object-oriented. It incorporates the best parts of
Objective-C without the constraints of being compatible with C. It also takes some of the
best features of a scripted language. The following are some of the concepts that make
Swift object-oriented. Don’t worry if some of these terms seem unfamiliar; they will be
discussed in later chapters (Chapters 7 and 8 cover the basics).

Pretty much everything is an object.
Objects contain instance variables.
Objects and instance variables have a defined scope.

Classes hide an object’s implementation.

Note As you saw in Chapter 5, the term class is used to represent, generically, the definition or
type of an object. An object is created from the class. For example, an SUV is a class of vehicle.

A class is a blueprint of sorts. A factory builds SUVs. The results are SUV objects that people drive.
You can’t drive a class, but you can drive an object built from a class.

So, how do these concepts translate to Swift? Swift is flexible in the implementation of
classes.

Note Even though in Swift a single file may contain many different classes, a programmer will
want to separate the code into different files to make access easier.

Let’s look at a complete definition of a Swift class called HelloWorld (Figure 6-2).
import Foundation
class HelloWorld {
func logMessage() {

let hello = "Hello World!"
println(hello)

Figure 6-2. HelloWorld class

http://dx.doi.org/10.1007/978-1-4842-1488-6_7
http://dx.doi.org/10.1007/978-1-4842-1488-6_8
http://dx.doi.org/10.1007/978-1-4842-1488-6_5

86 CHAPTER 6: Learning Swift and Xcode

In the preceding example, a class called HelloWorld is being defined. This class has only
one method defined: logMessage. What do all these strange symbols mean? Using the line
numbers as a reference, you can review this code line by line.

Line 1 contains a compiler directive, import Foundation. For this little program to know
about certain other objects, you need to have the compiler read other interface files. In this
case, the Foundation file defines the objects and interfaces to the Foundation framework.
This framework contains the definition of most non-user-interface base classes of the iOS
and Mac OS X systems. You will not be using any Foundation framework-specific objects in
this example, but it is a default part of any new Swift file.

The actual start of the object is on line 4, as follows:
class HelloWorld {

HellolWorld is the class. If you wanted HelloWorld to be a subclass of a logging class you
had created, such as LogFile, you would change the declaration as follows:

class HelloWorld: LogFile {
Line 6 contains a method definition for this object, as follows:
func logMessage() {

When you’re defining a method, you must decide whether you want the method to be a
type or an instance method. In the case of the HelloWorld object, you are using the default
method type, which is an instance. This method can be used after the object is created.

If the word class is added before the func, the method can be used before the object is
created, but you will not have access to variables in the object. If you changed logMessage
to a type method, it would be as follows:

class func logMessage() {
Lines 7 and 8 contain the body of the method. You learned about the details of the
statements earlier in the chapter.

That’s the complete description of class HelloWorld; there’s not a whole lot here. More
complicated objects simply have more methods and more variables.

But wait, there is more. Now that you have a new Swift class defined, how is it used?
Figure 6-3 shows another piece of code that uses the newly created class.

let myHelloWorld = HelloWorld()
myHelloWorld. logMessage()

Figure 6-3. Calling a Swift method

The first line defines a constant called myHelloWorld. It then assigns the constant to an
instance of the HelloWorld class. The second line simply calls the logMessage method of the
myHelloWorld object. Those who have spent time in Objective-C will quickly see how much

shorter and efficient both the class declaration and the object creation are in Swift.

CHAPTER 6: Learning Swift and Xcode

Note |Instantiation makes a class a real object in the computer’s memory. A class by itself is not
really usable until there is an instance of it. Using the SUV example, an SUV means nothing until a
factory builds one (instantiates the class). Only then can the SUV be used.

Method calls can also accept multiple arguments. Consider, for example, myCarObject.
switchRadioBandTo(FM, 104.7).The method here would be switchRadioBandTo. The two
arguments are contained in the parentheses. Being consistent in naming methods is critical.

Writing Another Program in Xcode

When you first open Xcode, you’ll see the screen shown in Figure 6-4.

No Recent Projects

Welcome 1o Xcode

1 Get started with a playground

il Explore new ideas quickly and easily.
[\ create a new Xcode project
|#*%| start building a new iPhone, iPad or Mac application.
/‘o’\ Check out an existing project
L] Start working on something from an SCM repository.
Show this window when Xcode launches Open another project...

Figure 6-4. Xcode opening screen

You should always keep the screen in Figure 6-3 visible at the launch of Xcode. Until you
are more comfortable with Xcode, keep the “Show this window when Xcode launches”
checkbox selected. This window allows you to select the most recently created projects or
create a new project from scratch.

87

88 CHAPTER 6: Learning Swift and Xcode

Creating the Project

You are going to start a new project, so click the “Create a new Xcode project” icon.
Whenever you want to start a new iOS or Mac OS X application, library, or anything else, use
this icon. Once a project has been started and saved, the project will appear in the Recent
list on the right of the display.

For this Xcode project, you will choose something simple. Make sure the iOS Application is
selected. Then select Single View Application, as shown in Figure 6-5. Then simply click the
Next button.

Choose a template for your new project:

i0S
Application - i5G 1 ——
Framework & Library
: Master-Detail Page-Based Single View Tabbed
watchOS Application Application Application Application

Application
Framework & Library e

0S X

LB

Application Game

Framework & Library

System Plug-in

Other
Single View Application
This template provides a starting point for an application that uses a single view. It provides
a view controller to manage the view, and a storyboard or nib file that contains the view.
Cancel e

Figure 6-5. Choosing a new project from a list of templates

There are several types of templates. These templates make it easier to start a project from
scratch in that they provide a starting point by automatically creating simple source files.

CHAPTER 6: Learning Swift and Xcode 89

Once you’ve chosen the template and clicked the Next button, Xcode presents you with a
dialog box asking for the project’s name and some other information, as shown in Figure 6-6.
Type a product name of Chapter 6. The organization identifier needs to have some value, so
we used com.innovativeware. Also make sure the Devices drop-down is set to iPhone.

Choose options for your new project:

Product Name:
Organization Name:

Organization |dentifier:
Bundle Identifier:

Language:

Devices:

Cancel

Chapter6
Developer

com.innovativeware

com.innovativeware.Chapter6

Swift P
iPhone il
Use Core Data
Include Unit Tests
Include Ul Tests
Previous -I.‘ ext i

Figure 6-6. Setting up the product name, company, and type

Once you’ve supplied all the information, click the Next button. Xcode will ask you where to
save the project. You can save it anywhere, but the desktop is a good choice because it’s

always visible.

Once you’ve picked where to save the project, the main Xcode screen will appear

(see Figure 6-7). In the leftmost pane is the list of source files. The right two-thirds of the
screen is dedicated to the context-sensitive editor. Click a source file, and the editor will
show the source code. Clicking a .storyboard file will show the Screen Interface editor.

http://dx.doi.org/10.1007/978-1-4842-1488-6_6

90 CHAPTER 6: Learning Swift and Xcode

Chapter: Ready | Today at 7:25 AM

Chraptert

O & L1 Capabiities Resource Tags Infa Buid Setings

Bundio identifiar com innavathvewany Chaptor
Version 10

Buid 1

Team Nane B

No code signing isentities found

Fix Insue

¥ Deployment info

oo

Idantity and Type
Mame | ChapterS
Location

Chaptert.acodepro]

1 Paih [Usersibradwiees/Dropton
Ageost Swift 2.O/Codel
Chagpters/
Chapterfi.xcodeproj

On Demand Resouree Tags

Projeet Bocument
Project Format | Xcode 3.2-compatinie B

Grganizatien | Developer

- Tear Serviegn
Depleymenn Torgat B
noens Usieg | Spaces B
Devices [Prone B S e e
Main interface Main -] B o =
Wrag ines

Device Origmsstion) P

Seurce Costrel

Reposicey =«

B D

e 1Bt b
Cacoa Touch Class - & Cooo
Recuires ful scroen Touth class
¥ Agp lcons and Launch Images
, TestCase Class - A class
App boons Source | Appioon Be | impemenning a unit tesc
Lounch images Source | Lise Ass

\ Ul Tost Cane Class - A class
1

Launch Sereen Fie | Launen B mprantieg 3 Ut

¥ Embedded Dinaries =

Figure 6-7. The Xcode 7 main screen

The first app is going to be simple. This iPhone app will contain a button. When the button
is clicked, your name will appear on the screen. So, let’s start by first looking more closely
at some of the stub source code that Xcode built for you. The nice thing about Xcode is that
it will create a stub application that will execute without any modification. Before you start
adding code, let’s look at the main toolbar of Xcode, as shown in Figure 6-8.

aoce p» A Cragaens | [iPhone & Chagiters: Ready | Today #1 7:25 AM & | = O

Figure 6-8. The Xcode 7 toolbar

At first glance, there are three distinct areas of the toolbar. The left area is used to run and
debug the application. The middle area displays status as a summary of compiler errors and
warnings. The far-right area contains a series of buttons that customize the editing view.

As shown in Figure 6-9, the left portion of the toolbar contains a Play button that will compile
and run the application. If the application is running, the Stop button will not be grayed out.
Since it’s grayed out, you know the application is not running. The scheme selection can be
left alone for now. Schemas will be discussed in more detail in Chapter 13.

]O.P

Figure 6-9. Close-up of the left portion of the Xcode toolbar

1}% Chapter6) 4§ iPhone 6

http://dx.doi.org/10.1007/978-1-4842-1488-6_13

CHAPTER 6: Learning Swift and Xcode 91

The right side of the Xcode toolbar contains buttons that change the editor. The three
buttons represent the Standard editor (selected), the Assistant editor, and the Version editor.
For now, just click the Standard editor button, as shown in Figure 6-10.

@ &S] B L

(i

Figure 6-10. Close-up of the right portion of the Xcode toolbar

Next to the editor choices are a set of View buttons. These buttons can be toggled on and off.
For example, the one chosen in Figure 6-10 represents the current view shown in Figure 6-7,
a list of the program files on the left third of the screen, the main editor in the middle third,
and the Utilities in the right portion of the screen. Any combination, or none, can be chosen
to help customize the main workspace window. The last button opens the Utilities area.
Chapter 13 discusses this button. For now, let’s get back to your first iPhone app.

Click the ViewController.swift file, as shown in Figure 6-11. The editor shows some Swift
code that defines a ViewController class.

Chaptar: Ready | Todsy st 7:25 AM > <03 0

Chaptert) (1] Crapter | . ViewConsrolier.ewift | Mo Selection

‘‘‘‘‘‘‘‘‘

3 Ui Tost Case Class - & class
Emplemenaing 2wt test

Figure 6-11. Looking at the source code in the Xcode editor

http://dx.doi.org/10.1007/978-1-4842-1488-6_13

92 CHAPTER 6: Learning Swift and Xcode

You will notice two functions in the code. viewDidlLoad is called immediately after a view is
loaded and can be used for setting up the view. This is a good place to put code that sets
up labels, buttons, colors, and so on. didReceiveMemoryWarning is called when your
application is getting low on memory. You can use this function to decrease the amount of
memory required by your application.

Note For now, you’re simply going to add a few lines of code and see what they do. It’s not
expected that you understand what this code means right now. What’s important is simply going
through the motions to become more familiar with Xcode. Chapter 7 goes into more depth about
what makes up a Swift program, and Chapter 10 goes into more depth about building an iPhone
interface.

Next, you’ll add a few lines of code into this file, as shown in Figure 6-12. Line 13 defines
an iPhone label on the screen where you can put some text. Line 15 defines the method
showName. You’ll be calling this method in order to populate the iPhone label. A label is
nothing more than an area on the screen where you can put some text information.

//
2 // ViewController.swift
3 // Chapter6
& [/
5 // Created by Thorn on 6/30/15.
// Copyright © 2015 Developer. ALl rights reserved.
//

9 import UIKit

class ViewController: UIViewController {

13 @IBOutlet weak var nameLabel: UILabel!

15 @IBAction func showName(sender: AnyObject) {
1 nameLabel.text = "My Name is Brad!"

19 override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.

R ORI BRI B R
= s B

override func didReceiveMemoryWarning() {
25 super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

Figure 6-12. Code added to the ViewController.swift file

http://dx.doi.org/10.1007/978-1-4842-1488-6_7
http://dx.doi.org/10.1007/978-1-4842-1488-6_10

CHAPTER 6: Learning Swift and Xcode 93

Caution Type the code exactly as shown in the example, including case. For instance, UILabel
can’t be uilabel or UILABEL. Swift is a case-sensitive language, so UILabel is completely
different from uilabel.

You will notice that the code you added has @IBOutlet and @IBAction in front of them. These
attributes are necessary when connecting objects with the interface designer.

IBOutlet allows you to control an interface object with code. IBAction allows you to
execute code when something happens in the interface such as tapping a button.

Note IBOutlet and IBAction both start with IB, which is an acronym from Interface Builder.
Interface Builder was the tool used by NeXT and then Apple for building user interfaces.

You now have the necessary code in place, but you don’t yet have an interface on the
iPhone. Next, you’re going to edit the interface and add two interface objects to your app.

To edit the iPhone’s interface, you need to click the Main.storyboard file once. The
.storyboard file contains all the information about a single window or view. Xcode 7 also
supports .xib (pronounced zib) files.

Note Each .xib file represents one screen on an iPhone or iPad. Apps that have multiple views
will have multiple . xib files, but many different views can be stored in each storyboard file.

You will use Xcode’s interface editor to connect a Ul object, such as a Label object, to the
code you just created. Connecting is as easy as clicking and dragging.

Click the last view button in the upper-right part of the screen, as shown in Figure 6-13. This
opens the Utilities view for the interface. Among other things, this Utilities view shows you
the various interface objects you can use in your app. You’re going to be concerned with
only the right-most objects: Button and Label. Figure 6-14 shows the Object Library. There
are other libraries available, but for now you will be using only the third one from the left.

94 CHAPTER 6: Learning Swift and Xcode

ece p B oAy Crapters) g iPhone Chapters: Ready | Teday at 7:31 AM E o Sil0OQ O
AR QA © @ o @ B < B crageers | I Cragnens Wain.steeybosen | [l Mainserybosed [Base) | Mo Selection Demo0 e
v [chagtend » [View Controller Seane Idantity and Type
¥ [Chaptert: Name Main storyboard
« AppDelegate swift View Contraller Typt | Detast - Interiace Builder_ [
+ ViewCentralier swift - T e e ——

Base.\proj/Main. stonyboard
[Assers xeassets Pt Pare (Usersforagwises|Drego
LaunehSeren. oryboard Apress Switt 2 0/Codel
R Chagter8(Chaptors]
o.plist
* ChapterETests
» ChapterBUTests On Demand Resourcs Tags

Baze.iproj/Main.soryboard ©

> [Producs

Intertace Bullder Document
oanala | Defat (700 -]
Bulds for | Project Depioyment Targ... [

Virw 38| 05 70 30 Lator B
1B Use Auto Layout
1B Use Size Classes
Use a5 Launch Soreen
Giobal Tt Defoutt B
Lotalization

6 Base
Engish Localizabin Stings ¢

_E; r @ o

Cocos Touch Class - A Cotos
Toueh ciass

Test Case Class - 4 class
emenieg 8 ot 457

Ul Test Case Class - 4 class
ircsemeniog 8 un st

+|& OH| S o whAny ARy EE B ol b =,

Figure 6-13. The iPhone interface you’re going to modify

D 0O O

View Controller - A controller that
manages a view.

Storyboard Reference - Provides a
placehclder for a view controller in an
external storyboard.

. . Navigation Controller - A
< | controller that manages navigation
through a hierarchy of views.

Table View Controller - A
controller that manages a table view.

Figure 6-14. The Object Library

CHAPTER 6: Learning Swift and Xcode 95

The first step is to click the Button object in the Utilities window. Next, drag the object to the
iPhone view, as shown in Figure 6-15. Don’t worry; dragging the object doesn’t remove it
from the list of objects in the Utilities view. Dragging it creates a new copy of that object on
the iPhone interface.

oy Chapeerf | R Phone 6 Chapoert: Ready | Todsy at 7:33 AM [, 2L m = i

Chapterss | [lj Main.storybosrd) [l Main.stor.ard (Base) | [l View Controlier Scene | () View Controlior View | [B] Button Dem ¢ @ &

Idantity anct Type
Namp Msin.ponrRoNd
Type Detaut - ntertace Burcer.. [

+ AppDeuiegate swit » B
. VigwCeneiier swift
Main.storyboard

5 Assets xcassets

Location
Base.proj/Main. storyboard

Ful Pacn fUsers/Drachwiess Dropaa]
Apress Swift 2.0/Codel
Chagtert/Chaptert)
Base.Iproy/Main. storyboans ©

On Demand Resource Tags

Mame|

Lotalization

Bar Butten ltem - toseesents an

BGATONES GBI

Space Bar Button Hem
ten spece o on

Flexibile Space Bar Button ltem
s REQUEBERDS 3 TIEHEIE 12820 e S0 3
LiTeemar cjest

t+ IS SR = [m] Any nAny BB B iof b (=) button o

Figure 6-15. Moving a Button object onto the iPhone view

Next, double-click the Button object that was just added to the iPhone interface. This
allows you to change the title of the button, such as to Name, as shown in Figure 6-16. Many
different interface objects work just like this. Simply double-click, and the title of the object
can be changed. This can also be done in the actual code, but it’s much simpler to do in
Interface Builder.

96 CHAPTER 6: Learning Swift and Xcode

Figure 6-16. Modifying the Button object’s title

Once the title has been changed, drag a Label object to right below the button, as shown in
Figure 6-17.

CHAPTER 6: Learning Swift and Xcode

Identity and Type
Name Main.storyboard

s Location Relative to Group

Chapter6/Chaptert/

On Demand Resource Tags

Interface Bullder Document

Opensin | Default (7.0}

View as iOS 7.0 and Later
Use Auto Layout
Use Size Classes

Global Tint S Default

Localization

DO e

Static text.

] wAny Any

Figure 6-17. Adding a Label object to the iPhone interface

For now, you can leave the label’s text as “Label” since this makes it easy to find on the

ER 1= ol tai| B3 | @ label

Base.lproj/Main.storyboard

Full Path [Users/bradwiees/Dropbox/
Apress Swift 2.0/Code/

Use as Launch Screen

Label Label - A variably sized amount of

97

Type | Default - Interface Builder... a

Base.lproj/Main.storyboard ©

Builds for | Project Deployment Targ... a

interface. If you clear the label’s text, the object will still be there, but there is nothing visible
to click in order to select it. Expand the size of the label by dragging the center white square

to the right, as shown in Figure 6-18.

ame

W: 265.0
H: 21.0

e ae

Label

Figure 6-18. Expanding the label’s size

98 CHAPTER 6: Learning Swift and Xcode

Now that you have a button and the label, you can connect these visual objects to your
program. Start by right-clicking (or Control-clicking) the Button control. This brings up a
connection menu, as shown in Figure 6-19.

action

Outlet Collections
gestureRecognizers
Sent Events

Did End On Exit

Editing Changed

Editing Did Begin

Editing Did End

Primary Action Triggered
Touch Cancel

Touch Down

Touch Down Repeat
Touch Drag Enter

Touch Drag Exit

Touch Drag Inside

Touch Drag Outside
Touch Up Inside

Touch Up Outside

Value Changed
Referencing Outlets
New Referencing Outlet
Referencing Outlet Collections
New Referencing Outlet Collection

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

Figure 6-19. Connection menu for the Button object

CHAPTER 6: Learning Swift and Xcode 99

Next, click and drag from the Touch Up Inside connection circle to the View Controller
icon, as shown in Figure 6-20. Touch Up Inside means the user clicked inside the Button
object. Dragging the connection to the View Controller connects the Touch Up Inside event

to the ViewController object. This causes the object to be notified whenever the Button
object is clicked.

@ Xcode File Edit View Find MNavigate Editor Product Debug Source Control Window Help

=T N Tue7E9AM Q=

& Cragters ¥ [View Contraller Scare Ry -y
v [0 Chapters

(= iew Comtrotie]

- AppDesegate switt

dame Main.storybosed
Type | Defaut - Interface Bulder.. &
Loeasen
Base IprojiMain storyboard
Fisll Pas [Usersybradwises/Dropbon
Apeess Swift 20/Cose!
ChapteriyCraptert
Base.Iproidan steryeoany ©
Sreeybeard Donry Peiot

On Demand Rescurce Tags

tetace Bulldes Documant

e

Opens in | Dwtault (70
Busies for | Project Deployment Tarm,
Viewas | 03 7.0 and Later
7 Use Aute Layout
Use Size Classes
Usa 3t Launch Screen
Olecal Tin: | BN Dedauit

Losalization

Label L2

A sarsibly sizne amount of

= (=] Any rhny H B o ks) label o

Figure 6-20. Connecting the Touch Up Inside event to the object

Once the connection is dropped, a list of methods that can be used in your connection is
displayed, as shown in Figure 6-21. In this example, there is only one method, showName:.
Selecting the showName: method connects the Touch Up Inside event to the object.

100 CHAPTER 6: Learning Swift and Xcode

&9 |&] Chapter6 Chapter6) & N

v View Controller Scene

MR houeme:

| Top Layout Guice
_ Bottom Layout Guide
v || View
Name
L] Label
@ First Responder
[=)] Exit

Storybeard Entry Point

Figure 6-21. Selecting the method to handle the Touch Up Inside event

Once the connection has been made, the details are shown on the button’s connection
menu, as shown in Figure 6-22.

CHAPTER 6: Learning Swift and Xcode

)

¥ Triggered Segues
action

¥ Outlet Collections
gestureRecognizers

¥ Sent Events
Did End On Exit
Editing Changed
Editing Did Begin
Editing Did End
Primary Action Triggered
Touch Cancel
Touch Down
Touch Down Repeat

Touch Drag Enter
Touch Drag Exit

Touch Drag Inside

Touch Drag Outside

Touch Up Inside ® View Controller
showName:

Touch Up Outside

Value Changed

Referencing Outlets

New Referencing Outlet

Referencing Outlet Collections

New Referencing Outlet Collection

2 O 00 @00000000000O0 O O

Figure 6-22. The connection is now complete

Next, you create a connection for the Label object. In this case, you don’t care about the
Label events; instead, you want to connect the ViewController’s namelLabel outlet to the
object on the iPhone interface. This connection basically tells the object that the label you
want to set text on is on the iPhone interface.

Start by right-clicking the Label object on the iPhone interface. This brings up the
connection menu for the Label object, as shown in Figure 6-23. There are not as many
options for a Label object as there were for the Button object.

101

102 CHAPTER 6: Learning Swift and Xcode

& v Outlet Collections
gestureRecognizers
¥ Referencing Outlets

New Referencing Outlet

¥ Referencing Outlet Collections
New Referencing Outlet Collection

Figure 6-23. Connection menu for the Label object

As mentioned, you are not here to connect an event. Instead, you connect what'’s referred to
as a referencing outlet. This connects a screen object to a variable in your ViewController

object. Just like with the button, you should drag the connection to the View Controller icon,
as shown in Figure 6-24.

® Xcode File Edit View Find Mavigate Editor Product Debug Source Control Window Help

22T o TeldAM Q =
| 3

oy Enagi]

5 Craptert ¥ [View Contraller Scare Ry -y

TE s T — > el Attt
« AppDetegate.swit o | O Tyoe Default - Interface Bulder o
- Leeadc
Base Iprei/Main steryecan
Full Pary [Usevs/Dradwiees/Dn f
Apress Switt 2.0/Code *
CrapterBiCrapterti
Base. lproj/Main storytoand ©
>
» On Demand Resource Tags
>
MName i
-
Inertace Bulldes Docurment E
Use a8 Lawnch Screen
Clctal Tint| BN Dedauit
Loesiration
Rabed - A sarably saee amouns of
Label Cicwm
= D Ay - Aevy H B ol ksl =) el o

90007 aBEROEHOOAHN DY

Figure 6-24. Connecting the referencing outlet to the object

Once the connection is dropped on the View Controller icon, a list of outlets in your
ViewController object will be displayed, as shown in Figure 6-25. Of the two choices, you

want to choose namelLabel. This is the name of the variable in the ViewController object you
are using.

CHAPTER 6: Learning Swift and Xcode 103

v [E] View Controller Scene

namelLabel

view
_ Bottom Layout Guide
v | View

Figure 6-25. Selecting the object’s variable to complete the connection

Once you’ve chosen namelLabel, you’re ready to run your program. Click the Run button
(which looks like a Play button) at the top-left corner of the Xcode window (see Figure 6-6).
This will automatically save your files and start the application in the iPhone Simulator, as
shown in Figure 6-26.

[] Smulator - iPhone 6 - iPhone 6 /105 9.0 (13A4280e) [] Simulator - iPhone 6 - iPhone 6 /105 9.0 (13A4280e)
Name Name
Label My Name is Brad!

Figure 6-26. The app running, before and after the button is clicked

By clicking the Name button, the label’s text will change from its default value of “Label” to
“My Name is Brad!” or whatever value you entered. If you want to, go back into the interface
and clear the default label text.

104 CHAPTER 6: Learning Swift and Xcode

Summary

The examples in this chapter were simple, but ideally they’ve whetted your appetite for more
complex applications using Swift and Xcode. In later chapters, you can expect to learn more
about object-oriented programming and more about what Swift can do. Pat yourself on the

back because you’ve learned a lot already. Here is a summary of the topics discussed in this

chapter:
The origins and brief history of the Swift language
Some common language symbols used in Swift
A Swift class example
Using Xcode a bit more, including discussing the HelloWorld. swift
source file
Connecting visual interface objects with methods and variables in your
application object
Exercises

Clear the default text of “Label” in the program and rerun the example.

Change the size of the Label object on the interface to be smaller in
width. How does that affect your text message?

Delete the referencing outlet connection of the label and rerun the
project. What happens?

If you think you have the hang of this, add a new button and label to
the ViewController object and to the interface. Change the label from
displaying your name to displaying something else.

Chapter

Swift Classes, Objects, and
Methods

If you haven’t already read Chapter 6, please do so before reading this one because it provides
a great introduction to some of the basics of Swift. This chapter builds on that foundation. By
the end of this chapter, you can expect to have a greater understanding of the Swift language
and how to use the basics to write simple programs. The best way to learn is to take small
programs and write (or rewrite) them in Swift just to see how the language works.

This chapter covers what composes a Swift class and how to interact with Swift objects via
methods. It uses a simple radio station class as an example of how a Swift class is written.
This will impart an understanding of how to use a Swift class. This chapter also teaches

you how to formulate a design for objects that are needed to solve a problem. The chapter
touches on how to create custom objects, as well as how to use existing objects provided in
the foundation classes.

This chapter expands on Chapter 6’s topics and introduces some of the concepts described
in detail in Chapter 8.

Creating a Swift Class

Classes are simple to create in Swift. Generally a class will be contained in its own file, but a
single file can hold many classes if desired.

Here is a sample of the first line from a class’s declaration:
class RadioStation

Here, the class name is RadioStation. Swift classes, by default, do not inherit from a superclass.
If you want to make your Swift class inherit from another class, you can do this like so:

class RadioStation: Station

105

http://dx.doi.org/10.1007/978-1-4842-1488-6_6
http://dx.doi.org/10.1007/978-1-4842-1488-6_6
http://dx.doi.org/10.1007/978-1-4842-1488-6_8

106 CHAPTER 7: Swift Classes, Objects, and Methods

In this example, RadioStation is now a subclass of Station and will inherit all of the
properties and methods of Station. Listing 7-1 shows the full definition of a class.

Listing 7-1. A Swift class
import UIKit
class RadioStation {

1

2

3

4

5 var name: String
6 var frequency: Double
7

8

9

0

init() {

name = "Default”

1 frequency = 100

11 }

12

13 class func minAMFrequency() -> Double {

14 return 520.0

15 }

16

17 class func maxAMFrequency() -> Double {

18 return 1610.0

19 }

20

21 class func minFMFrequency() -> Double {

22 return 88.3

23 }

24

25 class func maxFMFrequency() -> Double {

26 return 107.9

27 }

28

29 func band() -> Int {

30 if frequency >= RadioStation.minFMFrequency() 8& frequency <= RadioStation.
maxFMFrequency () {

31 return 1 //FM

32 } else {

33 return 0 //AM

34 }

35 }

36

37 }

Instance Variables

Listing 7-1 shows a sample class with two different properties: name and frequency. Line 1
imports the UIKit class definitions (more on that in a bit). Line 3 starts the definition of the
class by defining its name (sometimes called the type). Lines 5 to 6 define the properties for
the RadioStation class.

CHAPTER 7: Swift Classes, Objects, and Methods 107

Whenever the RadioStation class is instantiated, the resulting RadioStation object has
access to these properties, which are only for specific instances. If there are ten RadioStation
objects, each object has its own variables independent of the other objects. This is also
referred to as scope, in that the object’s variables are within the scope of each object.

Methods

Almost every object has methods. In Swift, the common concept to interact with an object is
calling a method on an object, like so:

myStation.band()

The preceding line will call a method name band on an instance of the RadioStation class
methods can also have parameters passed along with them. Why pass parameters?
Parameters are passed for several reasons. First (and most common), the range of
possibilities is too large to write as separate methods. Second, the data you need to store
in your object is variable—like a radio station’s name. In the following example, you will
see that it isn’t practical to write a method for every possible radio frequency; instead, the
frequency is passed as a parameter. The same applies to the station name.

myStation.setFrequency(104.7)

The method name is setFrequency. Method calls can have several parameters, as the
following example illustrates:

myStation = RadioStation.init(name: "KZZP", frequency: 104.7)

In the preceding example, the method call consists of two parameters: the station name
and its frequency. What'’s interesting about Swift relative to other languages is that the
methods are essentially named parameters. If this were a C++ or Java program, the call
would be as follows:

myObject = new RadioStation("KZzP", 104.7);

While a RadioStation object’s parameters might seem obvious, having named parameters can
be a bonus because they more or less state what the parameters are used for or what they do.

Using Class Methods

A class doesn’t always have to be instantiated to be used. In some cases, classes have
methods that can actually perform some simple operations and return values before a class
is instantiated. These methods are called type methods. In Listing 7-1, the method names
that start with class are class methods.

Class methods have limitations. One of their biggest limitations is that none of the instance
variables can be used. Being unable to use instance variables makes sense since you
haven’t instantiated anything. A class method can have its own local variables within the
method itself but can’t use any of the variables defined as instance variables.

108 CHAPTER 7: Swift Classes, Objects, and Methods

A call to a class method would look like this:

RadioStation.minAMFrequency()

Notice that the call is similar to how a method is called on an instantiated object. The big
difference is that instead of an instance variable, the class name is used. Class methods
are used quite extensively in the Mac OS X and iOS frameworks. They are used mostly for
returning some fixed or well-known type of value or to return a new instance of an object.
These types of class methods are referred to as initializers. Here are some initializer method
examples:

1. NSDate.timeIntervalSinceReferenceDate() // Returns a number
2. NSString(format:"http://%@", "1000") // Returns a new NSString object
3. Dictionary<String, String>()//Returns a new Dictionary object.

All of the preceding messages are class methods being called.

Line 1 simply returns a value that represents the number of seconds since January 1, 2001,
which is the reference date.

Line 2 returns a new NSString object that has been formatted and has a value of http://1000.

Line 3 is a form that is commonly used because it actually allocates a new object. Typically,
the line is not used by itself, but in a line like this:

var myDict = Dictionary<String, String>()

So, when would you use a class method? As a general rule, if the method returns
information that is not specific to any particular instance of the class, make the method a
class method. For example, the minAMFrequency in the preceding example would be the
same for all instances of any RadioStation object—this is a great candidate for a class
method. However, the station’s name or its assigned frequency would be different for each
instance of the class. These should not (and indeed could not) be class methods. The reason
for this is that class methods cannot use any of the instance variables defined by the class.

Using Instance Methods

Instance methods (lines 29 to 35 in Listing 7-1) are available only once a class has been
instantiated. Here’s an example:

1 var myStation: RadioStation // This declares a variable to hold the
RadioStation Object.

2 myStation = RadioStation() // This creates a new object.

3 var band = myStation.band() // This method returns the Band of the Station.

Line 3 calls a method on the RadioStation object. The method band returns a 1 for FM and
a 0 for AM. An instance method is any method that does not contain the class declaration
before it.

CHAPTER 7: Swift Classes, Objects, and Methods 109

Using Your New Class

You’ve created a simple RadioStation class, but by itself it doesn’t accomplish a whole lot.
In this section, you will create the Radio class and have it maintain a list of RadioStation
classes.

Creating Your Project

Let’s start Xcode (see Figure 7-1) and create a new project named RadioStations.

No Recent Projects

Welcome to Xcode

? 1 Get started with a playground
" | Explore new ideas quickly and easily.

[".I cCreate a new Xcode project
Start building a new iPhone, iPad or Mac application.

Figure 7-1. Open Xcode so you can create a new project

1. Launch Xcode and select “Create a new Xcode project.”

2. Make sure you choose an iOS application and select the Single View
Application template, as shown in Figure 7-2.

110 CHAPTER 7: Swift Classes, Objects, and Methods

Choose a template for your new project:

i0s
Application
Framework & Library
watchQS
Application
Framework & Library
0s X
Application
Framework & Library
System Plug-in
Other

Cancel

®e00
Master-Detail Page-Based
Application Application
Game

Single View Application

Figure 7-2. Selecting a template in the new project window

1

Single View
Application

3. Once you’ve selected the template, click the Next button.

4. Set the product name (application name) to RadioStations.

* wse

Tabbed
Application

This template provides a starting point for an application that uses a single view. It provides
a view controller to manage the view, and a storyboard or nib file that contains the view.

[Next |

5. Set the company identifier (a pretend company will do) and set the
device family to iPhone (as shown in Figure 7-3). Make sure Swift is
selected in the Language drop-down list.

CHAPTER 7: Swift Classes, Objects, and Methods

Choose options for your new project:

Product Name:
Organization Name:
Organization Identifier:
Bundle Identifier:

Language:

Devices:

Cancel

RadioStations
Innovativeware
com.innovativeware
com.innovativeware.RadioStations
Swift
iPhone

Use Core Data
Include Unit Tests
Include Ul Tests

Figure 7-3. Naming the new iPhone application

6. Click the Next button, and Xcode will ask you where you want to
save your new project. You can save the project on your desktop
or anywhere in your home folder. Once you’ve made your choice,

simply click the Create button.

(ol o

Previous

7. Once you’ve clicked the Create button, the Xcode workspace
window should be visible, as shown in Figure 7-4.

1

112 CHAPTER 7: Swift Classes, Objects, and Methods

eaoe »

BRa4ASS

¥ [5 RassoSttons
¥ |7 RadiaSeationns

- AppOelegate.sw'ht

+| ViewControser. swift

» [Radiase

RadioStationsuiTest

» [0 Prosducts

i RadiaSastions) [l Phone & Radio5tations: Ready | Today at 6:03 AM

B Radiostations

] oy RadioSrations & G Capas tew Patource Tege Infe

¥ Identity

Bundie identifier com.innovativeware. RacicStations

Vergion 10

Buid 1

Toam Mono

Na code signing identities found

Fix isgut

¥ Deployment Infe

Deployment Target
Devices | iProne
Main Iterface | Main

Device Oriensation [Pertrait
Upside Down
B Landscape Lot
B Langscaps Right

St Bar Stye | Detsun

¥ App lcons and Launch Images.

App lcons Source | Applcon
Lounch kmages Source | Use Assse Cansieg

Launch Screen Fie LaunchScrsen

¥ Embedded Binaries

Figure 7-4. The workspace window in Xcode

Adding Objects

Now you can add your new objects.

1. First, create your RadioStation object

oo

0O ®

Identity and Tyge

name RagioSutiens

Location
Auis Stations scodeprn

Full Puth [Users/brachwiesa/Dropbas)
Apress Swift 2.0/Code/
Cragter IRedicStational
fadioStations.codepry] O

©n Damand Resswrce Tags

Project Doacumant

N Innovativewan

Clams Prefis

Text Sattings

nsent Using Spaces

Weshs afs als
s noeet
B Wrag lines
Source Contrel
Regasitory --
i

Fisrant Aranch .

D0O@D

. Right-click the RadioStations
project and select New File (as shown in Figure 7-5).

CHAPTER 7: Swift Classes, Objects, and Methods 113
e » B ¢ RadioStations) [} iPhone & RadioStations: Ready | Today at 6:03 AM
B RE Q& ¢ 5 c B (B [B radioStations
¥ 5 Re Show in Finder) o\ RadioStations & General Capabilities Resource Tags Info Build Settings Build Phases BL
A | Open with External Editor

i
Open As > i Wentiy

Show File Inspector

l Find in Selected Groups...

¥ Deployment Inf
‘ Source Control ” bk

Figure 7-5. Adding a new file

Bundle Identifier

Build

Add Files to "RadioStations".. Nersion
>
»| | NewGroup Team
> _! New Group from Selection
Sort by Name
| Sort by Type

Project Navigator Help > Deployment Target

Devices iPhone

Main Interface Main

None B

No code signing identities found

Fix Issue

Device Orientation Portrait

2. The next screen, shown in Figure 7-6, asks for the new file type.
Simply choose Swift File from the Source group, and then click Next.

Choose a template for your new file:

i0os
Source

User Interface

Core Data Gmgfa::mh V] Tgls; s(;,ase

Apple Watch

Resource _

Other 3 m
watehos Objective-C File

Source

User Interface

Core Data Cr N\

Resource

Other C++ File Metal File
0S X

Source Swift File

User Interface An empty Swift file.

Core Data

Dacauran

Cancel

Figure 7-6. Selecting the new file type

Unit Test Case Playground
Class
Header File C File
MNext

114 CHAPTER 7: Swift Classes, Objects, and Methods

3. The next screen asks you where to create the files and what you want
to name the file. Enter RadioStation for the file name and then simply
click the Create button, since the location in which Xcode chooses to
save the files is within the current project, as shown in Figure 7-7.

Save As: | RadioStation| v
Tags:
Where: [7] RadioStations E

Group | [& RadioStations

(<

Targets @ /A RadioStations
RadioStationsTests
RadioStationsUITests

Cancel

Figure 7-7. Choosing where to create your new files

4. Your project window should now look like Figure 7-8. Click
the RadioStation.swift file. Notice that the stub of your new
RadioStation class is already present. Now, fill in the empty class so
it looks like Listing 7-1, your RadioStation Swift file.

[] [] = «}*Radiosmtions 8 iPhone 6 RadioStations: Ready | Today at 6:04 AM
B g Q A & == o 3 |88 « [RadioStations) [l RadioStation.swift) No Selection
v [B) RadioStations 1/ 3 :
- _ // RadioStation.swift
4 RadioStation.swift // RadioStations
v RadioStations 1
: . f/ Created by Thorn on 7/6/15.
» AppDelegate.swift // Copyright © 2015 Innovativeware. All rights reserved.
» ViewController.swift #
Main.storyboard import Foundation

5| Assets.xcassets
LaunchScreen.storyboard
Info.plist
RadioStationsTests
> RadioStationsUITests
Products

Figure 7-8. Your newly created file in the workspace window

CHAPTER 7: Swift Classes, Objects, and Methods 115

Writing the Class

Now that you have created your project and your new RadioStation.swift file, you are ready
to begin creating your class.

/!
2 1/
3 /S
. f/
f!
/!
'y

1. The class file you’ll use here is the same one you used at the
beginning of this chapter and it will work perfectly for the radio
station application. Click the RadioStation.swift file, and enter the
code in your class, as shown in Figure 7-9.

RadioStation.swift
RadioStations

Created by

Thorn on 7/6/15.

Copyright © 20815 Innovativeware. All rights reserved.

import UIKit

class RadioStation {

var name: String
var frequency: Double

class func
return

class func
return
}

class func
return

class func
return

minAMF requency()
520.@

maxAMF requency ()
1610.9

minFMFrequency()
88.3

maxFMFrequency()
187.9

func band() ->Int {
if frequency >= RadioStation.minFMFrequency() && frequency <= RadioStation.maxFMFrequency() {

return 1 //FM

} else

{

return © //AM

-

-

-

-

Figure 7-9. The RadioStation class file

Double {

Double {

Double {

Double {

We will come back to a few items in Figure 7-9 and explain them further in a moment;
however, with the RadioStation class defined, you can now write the code that will actually

use it.

2. Click the ViewController.swift file. You’ll need to define a few

variables for this class to use, as shown in Figure 7-10.

116 CHAPTER 7: Swift Classes, Objects, and Methods

/7

// ViewController.swift

// RadioStations

//

// Created by Thorn on 7/6/15.

// Copyright © 2015 Innovativeware. All rights reserved.
[/

import UIKit

class ViewController: UIViewController {

/2IB0utlet var stationName: UILabel! e
@IBOutlet var stationFrequency: UILabel!
@IBOutlet var stationBand: UILabel!

var myStation: RadioStation

required init?(coder aDecoder: NSCoder) {
myStation = RadioStation();
myStation.frequency = 102.5
myStation.name = “KNIX"
super.init(coder: aDecoder)

}
_ J
override func viewDidLoad() {

super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

A

Figure 7-10. Adding a RadioStation object to the View Controller

Lines 13 to 15 are going to be used by your iOS interface to show some values on the
screen (more on these later). Line 17 defines the variable myStation of type RadioStation.
Lines 19 to 24 contain the required init method. In Swift, classes do not require an initializer
method, but it is a good place to set the default values of your object. This method sets up
the variables used in that class. Also, don’t forget to include the curly braces ({ ... }).

Creating the User Interface
Next, the main window has to be set up in order to display your station information.

1. Click the Main.storyboard file. This file produces the main iPhone
screen. Click the Object Library icon, as shown in Figure 7-11.

CHAPTER 7: Swift Classes, Objects, and Methods 117

eaoe p W | A RedoSasions) gl Prone 8 Rurning RadieEtations en iPhane & wil=la]
BRQ AT o @ B < B RadiaStations RadoStatons Main.storyboard | [lj Mainstorpbeard (Base) | Mo Seiection Do @m 90 @
¥ [RadieStations + [View Controller Scene Idantity sed Type
- RadiaSttion. swit —_— z Mame | Main. siorybosrd
iew Contrelior
¥ I Racketalong Type | Defout - inertace Buioer_ [
+ AppDeiegate swift -
™ FEEERE Lecation | Relative 1o Grouo B
r -
L {tnrperytoend Pl pare [Users bradwioea/Dropbon]
) Atz enennn Agross Switt 20/Code)
et Sespen aterybased Crapter 7iRadioStations)
ko st RadicStations L)
oy e Do Hmgir [LUsers i wioes Dropben]
S Agress Switt 20/Coae!
» | RadiaStasionsliTests Cragter TRadiaStatens)
» [Prosucts RadioStatons/lase.ioroi/
Main.siorybosed o
Lecatpation
8 Dase
g Localizain String
Tex settings
ndent Using | Spaces B
waihs z 1=
Label - A variatly sizes amsunt o8
Label e
= o Any nAny el — LYY
+® GEl = = 0 0 | 7 ||| Radioseations @ iae| o

Figure 7-11. Adding a Label object to your iPhone screen

2. Drag and drop three Label objects onto the screen, as shown in
Figure 7-12. The labels can be aligned in any manner, or as shown
in Figure 7-12.

118 CHAPTER 7: Swift Classes, Objects, and Methods

: IGGNTITY ANa Iype
i} = Name Main.storyboard
Type Default - Interface Build... B
Location Relative to Group
Base.lproj/
Main.storyboard

Full Path /Users/bradiees/Dropbox/
Station Name: Apress Swift 2.0/Code/
Chapter 7/RadioStations/
RadioStations/Base.|proj/
Main.; o
F(equ ency: ain_storyboard <

On Demand Resource Tags

Band:

Interface Builder Document
Opens in Default (7.0) a
Builds for Project Deployment Tar...
View as |_iOS 7.0 and Later B
Use Auto Layout
Use Size Classes
Use as Launch Screen

Global Tint | NN Defoult B

Localization
Base
English Localizable Strings <

Target Membership
9 RadioStations
("] RadioStationsTests
" RadioStationsUITests
Source Gontrol
Repository --
OO e o

objects and controllers not directly
available in Interface Builder.

Label m;lt;;.umw sized amount of

Button - Intercepts touch events and
Button sends an action message to 2 target
object when it's tappod.
" Segmented Control - Displays
= whny nAny ES B kol el | BB ®

Figure 7-12. All three Label objects on the iPhone screen

3. You're going to need space, however. Once the Label objects are on
the iPhone screen, double-click each Label object in order to change
its text so that the iPhone screen looks something like Figure 7-12.

4. Next, add a Button object to the screen, as shown in Figure 7-13.
This button, when clicked, will cause the screen to be updated with
your radio station information.

w [view Controller Scene
v (£ View Controlier

Top Layout Guide
Bottom Layout Gu'de

¥ [l view
L Swution Name:
L Frequency:
L Band:
B | Bution

30 First Responder

B et

Storyboard Entry Point

Station Name;
Frequency:

Band:

o o o
Buttoo
o oo

CHAPTER 7: Swift Classes, Objects, and Methods 119

identity and Type
Name Main.storyboard
Type Defauit - Interfoce Builder.. [
Location R 1 0 Group
Base.lproj/Main.storyboard
Full Path fUsersfbradwiees/Dropbox)
Apress Swift 2.0/Code/
Chapter 7/RadioStations|
RadoStaticns/Base.lprol
Ma'n.storyboard [+]

On Damand Resource Tags

Interface Bullder Document
Opensin Default (7.0)

Builgs for | Project Deployment Targ...

[al ol &

View a3 i0S 7.0 and Later
8 Use Auto Layout
@3 Use Size Classes
Use as Launch Screen

Giobal Tint | NN Dofoult

o

Localization
8 Base
English Localizabie Strings &

OO ®@O

Button - Intercepis 1ouch events and
Button sencs an sction message to 3 target
cbject when iU's 1pEed.

Bar Button Item - Represents an
Item | item on a UiTeolbar or
UINIVIQATIONTeM Sbpttt.

Fixed Space Bar Button Item -
Fesene] Roprosents a fned space fem on 2
UiTosibar object.

: [n] Any Any EE B tof tal| B @ bution o

Figure 7-13. Adding a Button object to the screen

5. Just like with the Label object, simply double-click the Button
object in order to change its Title to My Station. The button should
automatically resize to fit the new title.

6. Next, you need to add the Label fields that will hold the radio
station information. These fields are situated just after the existing
Label objects, as shown in Figure 7-14. Once the Label object is
placed, it needs to be resized so that it can show more text, as
shown in Figure 7-15.

120

CHAPTER 7: Swift Classes, Objects, and Methods

Station Name: Label
Frequency:

Band:

My Station

Figure 7-14. Adding another Label object

Name Main.storyboard
Type Default - Interface Build...

Location Relative to Group o
Base.lproj/
Main.storyboard

Full Path /Users/oradloes/Dropbox’
Apress Swift 2.0/Code/
Chapter 7/RadioStations/
RadioStations/Base.lproj/
Main.storyboard [+]

| On Demand Resource Tags

| Interface Builder Document

Opens in Default (7.0) n
Builes for Project Deployment Tar...
View as iOS 7.0 and Later

Use Auto Layout
Use Size Classes
Use as Launch Screen

Global Tint EEEE Default B

Localization
Base
g English Localizable Strings &

| Target Membership
|@ A Radiostations
5 RadioStationsTests
RadioStationsUITests
| Source Control
Ropository -
o o0e@o

objects and controllers not directly
"~ available in Interface Builder,

| Label - A variably sized amount of
Label e toxt.

Button - Intercepts touch events and
Button sends an action message to a target
object whon it's tapped.

Pl) Segmented Control - Displays

CHAPTER 7: Swift Classes, Objects, and Methods 121

5]

Station Name:—--—-Labet-—o-
Frequency:

Band:

Figure 7-15. Stretching the Label object

Note Stretching the Label object allows the Label’s text to contain a reasonably long string. If you
didn’t resize the Label object, the text would be cut off (since it wouldn’t fit), or the font size would
get smaller.!

7. Repeat adding and sizing a Label object next to the existing
Frequency and Band Labels, as shown in Figure 7-16. It’s okay to
leave the default text of the label set to “Label” for now.

"By using either code or Interface Builder, you can customize how the Label object reacts to text
that is too large to fit. The behavior described is based on typical defaults for the Label object.

122 CHAPTER 7: Swift Classes, Objects, and Methods

Station Name: Label
Frequency: Label

Band: Label

Figure 7-16. Adding another Label object

Hooking Up the Code

Now that all the user interface objects are in place, you can begin to hook up these
interface elements to the variables in your program. As you saw in Chapter 6, you do this by
connecting the user interface objects with the objects in your program.

1. Start by connecting the Label object by station name to your
variable, as shown in Figure 7-17. Right-click (or Control-click) the
View Controller object and drag it to the Label object next to the
“Station Name” text to bring up the list of outlets.

http://dx.doi.org/10.1007/978-1-4842-1488-6_6

CHAPTER 7: Swift Classes, Objects, and Methods

v [E] View Controller Scene

~ [Top-tayout Guide
Bottom Layout Guide
» [view
i {8 First Responder
=5 Exit

Storyboard Entry Point

Frequency:

Band:

Figure 7-17. Creating a connection

Station Name:

g

“Tiehel

Label

Label

Button

2. When the connection is dropped from the View Controller icon,
another small menu will be shown. Click the instance variable name
that you want to display in this Label object—in this case, you want
the stationName instance variable, as shown in Figure 7-18.

0 s e

Station Name: Label

Qutlets
stationBand

Frequency: La beI stationFrequency

stationName

view

Band: Label

Button

Figure 7-18. Connecting the Label to your stationName variable

123

124 CHAPTER 7: Swift Classes, Objects, and Methods

3. Now, the interface Label object is connected to the stationName
instance variable. Whenever you set the instance variable’s value, the
screen will also be updated. Repeat the previous connection steps
for Frequency and Band.

To hook up your button, you need a method in the ViewController class to handle this.
You could go to the ViewController.swift file and add it there. There is also a shortcut to
adding @IBOutlet methods. In the Xcode toolbar, click the Assistant Editor icon shown in
Figure 7-19 (it looks like two circles).

ane » oy RadiaStations | (@ iPhone & Firished runeing RadiaStaticns ea iPhone & @‘ |

Figure 7-19. The Assistant Editor icon

After clicking the Assistant Editor icon, a second window will pop open showing the
ViewController source. Right-click and drag the button to the code window, as shown in
Figure 7-20.

// Copyright © 2815 lnnovativeware. ALL rights reserved.
I

import UIKit
class ViewController: UIViewController {
@IB0utlet var stationMName: UILabel!

2IB0utlet var stationFrequency: UILabel!
@IB0utlet var stationBand: UILabel!

Station Name: Label

var myStation: RadioStation
it(code r: NSCoder} {
=R n();

5.5

Frequency: Label

2

= = “KNIX"

Band: Label 2 super.init(coder: aDecoder)
}

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.

}
O o o
Bultem override func didReceiveMemoryWarning() {
oo o super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

Insert Outlet, Action, or Outlet Collection

}

Figure 7-20. Using the Assistant editor to create your method

CHAPTER 7: Swift Classes, Objects, and Methods 125

4. When you release the mouse, a little window will pop up, as shown in
Figure 7-21. Make sure to change the Connection type to Action.

Connection | Action

Object View Controller

WO |

Name | buttonClick

Type | AnyObject [~

Event | Touch Up Inside

o6y
-

Arguments | Sender

Cancel Connect

Figure 7-21. Creating the action

Select Action and set the name to buttonClick. Xcode will now create your method for you.

Finish your method by adding the code shown in Figure 7-22.

@IBAction func buttonClick(sender: AnyObject) {
stationName.text = myStation.name
stationFrequency.text = String(format: "%.1f", myStation.frequency)

if myStation.band() == 1 {
stationBand.text = "FM"
} else {
stationBand.text = "AM"
}

Figure 7-22. Finished buttonClick method

Let’s walk through the code you just added. First, on line 37, you’ll notice the IBAction type.
This lets Xcode know that this method can be called as a result of an action. So, when you
go to connect an action to your application, you will see this method.

Lines 38 and 39 both set the text fields to the values found in your RadioStation class.
Line 38 is as follows:

stationName.text = myStation.name

126 CHAPTER 7: Swift Classes, Objects, and Methods

The stationName variable is what you just connected to the user interface Label object, and
myStation.name is used to return the name of the station.

Line 39 effectively does the same thing as line 38, but you have to first convert the double
value (the station’s frequency) to a String. The @"%.1f means that you convert a floating-
point value and should see only one digit after the decimal point.

Lines 41 to 45 make use of both the instance variables and the class methods of the
RadioStation class. Here, you simply call the method band() on the myStation object. If so,
the station is an FM station and band() will return a 1; otherwise, assume it's the AM band.
Lines 42 and 44 show the band value on the screen.

Tip The Button sends the Touch Up Inside event whenever a user touches the inside of the button
and then releases—not until the users lifts their finger is the event actually sent.

Running the Program

Once the connection has been made, you’re ready to run and test your program! To do this,
simply click the Run button at the top left of the Xcode window, as shown in Figure 7-23.

O [%\ RadioStations) §i# iPhone 6

Figure 7-23. Click the Play button to run your program

If there are no compile errors, the iPhone Simulator should come up, and you should see
your application. Simply click the My Station button, and the radio station information will be
displayed, as shown in Figure 7-24.

CHAPTER 7: Swift Classes, Objects, and Methods 127

iPhone 6 - iPhone 6 / i0S 9.0 (13A340)
Carrier = 8:27 AM _—

Station Name: KNIX
Frequency: 102.5

Band: FM

My Station

Figure 7-24. Showing your radio station information

If things don’t quite look or work right, retrace your steps and make sure all the code and
connections described in this chapter are in place.

Taking Class Methods to the Next Level

In your program, you haven’t taken advantage of all the class methods for RadioStation, but
this chapter does describe what a class method is and how it is used. Use that knowledge
to try a few of the exercises mentioned at the end of this chapter. Just play around with this
simple working program by adding or changing class or instance methods to get an idea of
how they work.

Accessing the Xcode Documentation

There is a wealth of information provided in the Xcode developer documentation. When
Xcode is opened, select Help » Documentation and API Reference (see Figure 7-25) to
open the Documentation window.

128

Source Control Window m

CHAPTER 7: Swift Classes, Objects, and Methods

"

ioStations on iPhone 6

Search |

—

E |

Documentation and API Reference {30

B viewController.swift) [} buttont ev

All rights reserved.

Xcode Overview
Release Notes
What's New in Xcode

Agg'p r
AN/

Quick Help for Selected Item

Search Documentation for Selected Text
[T¥TIMpPOTT UIRIT

Figure 7-25. The Xcode Help menu

Once it’s opened, the search window can be used to look up any of the Swift classes you've
used in this chapter, including the String class documentation, as shown in Figure 7-26.

aoe < 0=

Introgucten
Sarings
¥ Creating and Converting String Db,
¥ Creating Sirings
NSString from C Strings and.
Varakle Strings
Sarings ta Present 12 the User
Combinies 3 Extracting Srings
Getting C Strings
Comrian Summary
¥ Fonmatting Siring Otjects
Foregting Baves
Sarinegs and Non-ASCH Charsctons
NSog and NiLogy
¥ Saring Format Soecifiors
Forruat Spec fiers.
Platiorm Depondancies
¥ Reaging Sarings From and Writing...
¥ Reading From Files and URLs
Peading data with 3 known on.
Reading data with an usknos.
Writing to Flles and URLs
Summary
¥ Searching, Comparing, and Sortin.
¥ Search and Comparison Methods
Searching strings
Comparing and sorting strings
Search and Comparison Options
¥ Exampies
Case-Insensitive Search for
Comparing Strings
Sarting strings like Finder
¥ Weeds, Paragragis, and Line Breaks
Word Beuraries
Line anc Paragraph Separaior €.
Separating & String "By Paragra..
Characters and Graphome Clusters
¥ Character Sats
Character Set Basics
Creating Craracter Sets
Perfermunce conyseratons
Creating a character et fike
Samndane Charseter Sets bnd Un

Q- String

Introduction to String Programming Guide for Cocoa

This is a preliminary d for an AP or in Apple is supplying this infarmation to help you plan for the adoption of the technologies
and programming interfaces deseribed herein for use on Apple-branded products. This information is subject to change, and software implemented according to this
docurment should be tested with final operating system software and final documentation. Newer versions of this document may be provided with future betas of the AP or
technology.

String ing Guide for Cocoa describes how to create, search, concatenate, and draw strings. It also describes character sets, which let you search a string for characters
in a group, and scanners, which convert numbers to strings and vice versa.

Who Should Read This Document

You should read this document if you need to wark directly with strings or character sets.

Organization of This Document

This decument contains the following articles:
+ Strings describes the characteristics of string objects in Cocoa.

= Creating and Converting String Objects explains the ways in which NsString and its subclass NEMatableSering create string objects and convert their contents to and from
the varipus character encodings they support.

= Formatting String Objects describes how to format ¥55tring objects,
« String Format Specifiers describes printf-style format specifiers supported by ¥sstring.

= Reading Strings From and Writing Strings To Files and URLs describes how to read strings from and write strings to files and URLs.

Searching, Comparing, and Sorting Strings describes methods for finding characters and substrings within strings and for comparing one string to another.
= Words, Paragraphs, and Line Breaks describes how words, paragraphs, and line breaks are determined.

Characters and Crapheme Clusters describes how you can break strings down into user-perceived characters.

* Character Sets explaing how to use character set objects, and how to use NECharacterset methods to ereate standard and custom character sets.

* Scanners describes ¥5Scanner objects, which interpret and corvert the characters of an ¥sString object into number and string values.

= String Representations of File Paths describes the N5String methods that manipulate strings as file-system paths.

* Drawing Strings discusses the methods of the 285t cing class that support drawing directly in an BEView object.

Figure 7-26. Xcode documentation

There are several different things to discover about the String class shown in Figure 7-26.
Go through the documentation and the various companion guides that Apple provides. This
will give you a more thorough understanding of the various classes and the various methods
supported by them.

CHAPTER 7: Swift Classes, Objects, and Methods 129

Summary

Once again, congratulate yourself for being able to single-handedly stuff your brain with a lot
of information! Here is a summary of what was covered in this chapter:

Swift classes review
Class methods
Instance methods
Creating a class
Limitations of using class methods versus instance methods
Initializing the class and making use of the instance variables
Making use of your new RadioStation object
Building an iPhone app that uses your new object
Connecting interface classes to instance variables

Connecting user interface events to methods in your class

Exercises

Change the code that creates your RadioStation class and make the
station’s name much longer than what can appear on the screen. What
happens?

Change the current button and add a new button. Label the buttons FM
and AM. If the user clicks the FM button, show an FM station. If the user
clicks the AM button, display an AM station. (Hint: you’ll need to add a
second RadioStation object to the ViewController.swift file.)

Clean up the interface a little by making sure that the user doesn’t see
the text “Label” when the iPhone application first starts.

Fix the issue by using the interface tool.
How could you fix this by adding code to the application instead?

Add more validation to the @IBAction func buttonClick(sender:
AnyObject) method. Right now, it validates FM ranges but not AM
ranges. Fix the code so that it also validates an AM range.

If the radio station frequency is out of bounds, use the existing labels to
display some type of error message.

Chapter

Programming Basics in Swift

Swift is an elegant language. It mixes the efficiency of a compiled language with the
flexibility and modern features of many scripting languages.

This chapter introduces some of the more common concepts of Swift, such as properties
and collection classes. It also shows how properties are used from within Xcode when
dealing with user interface elements. This sounds like a lot to accomplish, but Swift, the
Foundation framework, and the Xcode tool provide a wealth of objects and methods and a
way to build applications with ease.

Using let vs. var

If you have spent much time with Swift, you have seen the word var appear before variable
declarations. You may also have seen let before other declarations. The word var is used
to define a variable, while the word let is used to define a constant. This means that if

you declare a value with let, you will not be able to change the value. The following code
defines a constant:

let myName = "Brad"

Once you define a constant, you cannot change the value.

Caution Xcode 7 will now warn you if you declare a variable and never change its value. It will
recommend using let instead of var.

myName = "John"

131

132 CHAPTER 8: Programming Basics in Swift

This will give you an error. It you want to create a mutable or changeable variable, you need
to use var. For example, you can do the following:

var myName = "Brad"
myName = "John"

This will not give you any errors because myName is now a variable. This does not relate to
only Strings and Ints, but it can also be used with collections and other more complex
objects.

Variables give you more flexibility, so why would anyone ever want to use a constant? The
quick answer is performance. If you know that you have a value that will not change, the
compiler can optimize that value as a constant.

Understanding Collections

Understanding collections is a fundamental part of learning Swift. In fact, collection objects
are fundamental constructs of nearly every modern object-oriented language library
(sometimes they are referred to as containers). Simply put, a collection is a type of class that
can hold and manage other objects. The whole purpose of a collection is that it provides a
common way to store and retrieve objects efficiently.

There are several types of collections. While they all fulfill the same purpose of being able
to hold other objects, they differ mostly in the way objects are retrieved. The most common
collections used in Swift are the array and the dictionary.

Both of these collections can be created as constants or regular variables. If you create a
collection as a constant, you must fill it with the objects at the time of creation. It cannot be
modified after that point.

Using Arrays

The Array class is like any other collection, in that it allows the programmer to manage a
group of objects. An array is an ordered collection, which means that objects are entered in
an array in a certain order and retrieved in the same order.

Note There are some methods for working with arrays that allow you to change the order of the
objects or to add an object at a specific location in the array.

The Array class allows an object to be retrieved by its index in the array. An index is the
numeric position that an object would occupy in the array. For example, if there are three
elements in the array, the objects can be referenced with an index from 0 to 2. Like with
most things in Swift and other programming languages, an index starts at 0, not 1. See
Listing 8-1.

CHAPTER 8: Programming Basics in Swift 133

Listing 8-1. Accessing objects in an array

var myArray: [String] = ["One", "Two", "Three"]
print (myArray[o0])
print (myArray[1])
print (myArray[2])

B wWw N R

As you can see, objects in the array can be retrieved via the index. The index starts at 0 and
can’t exceed the size of the array minus 1. You can easily calculate the size of the array by
sending a count message to the Array object, as shown here:

var entries = myArray.count

In fact, every collection type, in other words, Array and Dictionary, will respond to the count
message.

Adding items to the end of an array is simple. You can just call the append method on the
array. See Listing 8-2.

Listing 8-2. Adding objects to an array

var myArray: [String] = ["One", "Two", "Three"]
myArray.append("Four")
myArray.append("Five")
myArray.append("Six")

A wWN PR

Swift provides you with many different methods for adding items to an array. If you want
to add multiple objects to an array, you can use the standard += (often called plus equals)
operator. Listing 8-3 creates an array and then adds three more String objects to the array
on line 2. Notice the new values are in brackets instead of parentheses.

Listing 8-3. Adding multiple objects to an array

1 var myArray: [String] = ["One", "Two", "Three"]
2 myArray += ["Four", "Five", "Six"]

As discussed earlier, an array is actually ordered. The order of the objects in your array is
important. There may be times where you need to add an item at a certain position in the
array. You can accomplish this with the insert(atIndex:) method, as shown in Listing 8-4.

Listing 8-4. Adding a string to the beginning of an array

1 var myArray: [String] = ["Two", "Three"]
2 myArray.insert("One", atIndex: 0)

The array now contains One, Two, Three.

Accessing items in an array is simple. You can use standard square brackets to access an
object at a certain position. For example, myArray[0] would give you the first object in the
array. If you want to loop through each of the items in the array, you can use something
called fast enumeration. Listing 8-5 is an example of fast enumeration.

134 CHAPTER 8: Programming Basics in Swift

Listing 8-5. Fast enumeration

1 var myArray: [String] = ["One", "Two", "Three"]
2 for myString in myArray {

3 print(myString)

4}

The magic happens in line 2 of Listing 8-5. You tell Swift to assign each value of myArray to
a new variable called myString. You can then do whatever you want to do with myString.

In this case, you just print it. It will go through all of the objects in the array without you
having to know the total number of objects. This is a fast and effective way to pull items
out of an array.

Removing objects from an array is simple too. You can use the removeAtIndex method, as
shown in Listing 8-6.

Listing 8-6. Removing an object

1 var myArray: [String] = ["One", "Two", "Three"]
2 myArray.removeAtIndex(1)

3 for myString in myArray {

4 print(myString)

5

The output from Listing 8-6 will be One, Three. This is because you removed the object
with the index of 1. Remember, this is the second object in the array because array indexes
always begin at 0.

You have seen how flexible Swift is in letting you interact with arrays. They are powerful
collections that you will use on a regular basis as a programmer. This section covered the
basics of arrays, but there are many more things arrays can do.

Using the Dictionary Class

The Swift Dictionary class is also a useful type of collection class. It allows the storage

of objects, just like the Array class, but Dictionary is different in that it allows a key to be
associated with the entry. For example, you could create a dictionary that stores a list of
attributes about someone such as a firstName, lastName, and so on. Instead of accessing
the attributes with an index like with an array, the dictionary could use a String like
"firstName". However, all keys must be unique—that is, "firstName" cannot exist more than
once. Depending on your program, finding unique names is normally not a problem.

Here’s an example of how you create a dictionary:
var person: [String: String] = ["firstName": "John", "lastName": "Doe"]

This creates a simple dictionary called person. The next part of the declaration tells the
dictionary what kinds of objects the keys and the values will be. In this case, the keys
are Strings, and the values are Strings. You then add two keys to the dictionary. The

CHAPTER 8: Programming Basics in Swift 135

first key is firstName, and that key has a value of John. The second key is lastName, and
that has a value of Doe. You can access the values in the dictionary by using a similar
notation to arrays.

print(person["firstName"])

This code will print the name Optional("John") since that is the value for the key firstName.
The Optional appears in the previous example because the value of a key in a dictionary is
an optional value. You can use the same style of code to change the values in a dictionary.
Let’s say, for this example, that John now likes to go by Joe instead. You can change the
value in the dictionary with a simple line of code.

person["firstName"] = "Joe"
You can add a new key to a dictionary with the same notation.
person["gender"] = "Male"

If you decide you want to remove a key from a dictionary, such as the gender key you just
added, you can do so by setting the key to nil.

person["gender"] = nil

Now the dictionary will contain only firstName and lastName. Remember that dictionaries are
not ordered. You cannot rely on the order, but there will be times when you need to iterate
over a dictionary. This is done in a manner similar to arrays. The main difference is that in

an array, you assign one variable, while in a dictionary, you need to assign the key and the
value. See Listing 8-7.

Listing 8-7. Iterating over a dictionary

var person: [String: String] = ["firstName": "John", "lastName": "Doe"]
for (myKey, myValue) in person {

print(myKey + ": " + myValue)
}

W N R

This example will print the following:

firstName: John
lastName: Doe

Dictionaries are a great way to organize data that does not need to be ordered. It is also a
great way to look up data based on a certain key. They are very flexible in Swift and should
be used to organize and optimize your code.

Creating the BookStore Application

You are going to create an app that will demonstrate how to use arrays. You will create a
UITableView and use an array to populate the UITableView with data. Let’s start by creating
the base application project. Open Xcode and select a new Master-Detail Application
project, as shown in Figure 8-1. In this project, you will create a few simple objects for what

136 CHAPTER 8: Programming Basics in Swift

is to become your bookstore application: a Book object and the BookStore object. You’ll visit
instance variables again and see how to get and set the value of one during this project.
Lastly, you’ll put the bookstore objects to use, and you’ll learn how to make use of objects
once you’ve created them.

Choose a template for your new project:

i0s
Application
Framework & Library
watchOS
Application
Framework & Library
0s X
Application
Framework & Library
System Plug-in
Other

Cancel

- eCO 1 * wes
Master-Detail Page-Based Single View Tabbed
Application Application Application Application
=
f{t"
Game

Master-Detail Application

This template provides a starting point for a master-detail application, using a split view
controller to display a list of items and a detail view.

Figure 8-1. Creating the initial project based on the Master-Detail Application template

1. Click the Next button and name the project BookStore, as shown in
Figure 8-2. The company name is required—you can use any
company name, real or otherwise. The example uses com.inn, which
is perfectly fine. Make sure the device family is iPhone and that the
Language is set to Swift. Do not check the Use Core Data checkbox.

Note This type of app would be a good candidate for using Core Data, but Core Data is not
introduced until Chapter 11. You will use an array for data storage in this app.

http://dx.doi.org/10.1007/978-1-4842-1488-6_11

CHAPTER 8: Programming Basics in Swift 137

Chnnea antinne far vnur new nroject:
Your new product's bundle identifier |

Product Name: | BookStore|
Organization Name: Inn

Organization Identifier: com.inn

Bundle Identifier: com.inn.BookStore
Language: Swift E
Devices: iPhone B
Use Core Data
Include Unit Tests
Include Ul Tests
Cancel Previous m

Figure 8-2. Selecting the product (application) name and options

2. Once everything is filled out, click the Next button. Xcode will

prompt you to specify a place to save the project. Anywhere you can
remember is fine—the desktop is a good place.

3. Once you decide on a location, click the Create button to create the
new project. This will create the boilerplate BookStore project, as
shown in Figure 8-3.

138 CHAPTER 8: Programming Basics in Swift

eace » oy BockStore | iPhone B BookStors: Ready | Todsy st 636 PM 2« 0O 0 O

& BookStore D n
DO Adockstores Gene Capablities Resowrce Tags info Buid Settings Buld Phases Bube Aules Ak et Tov
are BockSione

v identity
Location
BookSrone xeodtprn]
Ful Patn [Usersibrbdniees Dropot
Apross Swift 2.0/Coce/
Chapstor 8[BoskStore/
BookSs0ne xoodepe;

il Wataier | i dusk BockBuine:

Versite |10

Buid 1
ot Project Docsmant
Tesm | Nomo z —
= Frapes ¥oode 12-compatitie |
b cone signing iconE Tes found o
¥ Conns Prafia
Pt
e Text Sattings
ndemt Usieg _Spaces B
¥ Depleyment Info = -
widing a4z 4l
- a8 saee
Deployment Target B M
Devices iPhane B
Source Control
Main Intertoze bain B Tpsettery -
e Type -
Device Orlantation [Portrait Curttet Beanen
Upsioe Do =
8 Landscape Loft Versien --
8 Landscace Right Stans No ehanges
Status Bar Style | Detauit B D0O®D
Hide status o
finquires full screen
¥ App tcons and Launch Imagos
Apg lcons Source | Appicon Be
Lounca images Source | Lise Assot Cataiog
Launch Screen e LaunchSereen B

¥ Embodded Binaries

Figure 8-3. The source listing of the boilerplate project

4. Click the plus (+) sign at the lower left of the screen in the Navigator
area to add a new object to the project. Choose File. Then choose
Source under the iOS section on the left and choose Swift File on
the right, as shown in Figure 8-4. It’s also possible to right-click (or
Control-click) the Navigation area and then select the New File menu
option. There is no difference between this approach and clicking the
plus sign—do whatever feels more natural.

CHAPTER 8: Programming Basics in Swift 139

Choose a template for your new file:

i0s
Source
User Interface
Core Data
Apple Watch
Resource
Other
watchOS

Source
User Interface
Core Data
Resource
Other

0s X

Source
User Interface

Core Data

(s EXENTTETY

Cancel

@

Cocoa Touch
Class

~A

Cr+

C++ File

Swift File

An empty Swift file.

Figure 8-4. Creating a new Swift file

Ul Test Case Unit Test Case
Class Class

m h

Objective-C File Header File

N\

Metal File

Playground

C File

5. You’re choosing a plain Swift file, which will create a new empty Swift
file that you’re going to use for the Book class. After selecting this,
click the Next button.

6. Xcode will ask you what to name your file. Use the name Book. Xcode

will also ask to which folder it should save the new file. To keep

things simple, choose the BookStore folder in your project. This is
where all the other class files for the project are stored.

7. Double-click the BookStore folder and then click the Create button.
You’'ll see the main edit window for Xcode and the new file, Book.
swift, in the Navigator area, as shown in Figure 8-5.

140 CHAPTER 8: Programming Basics in Swift

eoe » oy BockSteen |) Phone §

Figure 8-5. The empty Swift file

8. Repeat the previous steps and create a second object called
BookStore. This will create a BookStore. swift file. You’'ll be using this
class later in this chapter. For now, you’ll concentrate on the Book class.

9. Click the Book.swift file and let’s start defining your new class!

Creating Your Class

You will notice that Xcode does not give you a new class when you create a Swift file. In
Objective-C, Xcode used to create the .h and .m files for you. Swift is more flexible, and it is not
necessary to have only one class per file. Xcode allows you to add the classes as you want.

Note It is still a good idea to keep your Swift classes in separate files. This makes organizing and
finding classes easier, especially when you're dealing with large projects.

Let’s create the Book class. Type the following code into the Book. swift file:

class Book {

}

CHAPTER 8: Programming Basics in Swift 141

Now you have your class, as shown in Figure 8-6. That is all you need to do to create a
class.

03 | < & BookStore BookStore) [l BookStore.swift Book

// BookStore.swift
// BookStore

// Created by Thorn on 8/8/15.
// Copyright © 2015 Inn. All rights reserved.

import Foundation
class Book {

}

Figure 8-6. The empty Book class

Introducing Properties

The class is simply called Book. True, you have a class, but it doesn’t store anything at this
point. For this class to be useful, it needs to be able to hold some information, which is
done with properties. When an object is used, it has to be instantiated. Once the object is
instantiated, it has access to its properties. These variables are available to the object as
long as the object stays in scope. As you know from Chapter 7, scope defines the context
in which an object exists. In some cases, an object’s scope may be the life of the program.
In other cases, the scope might be just a function or method. It all depends on where the
object is declared and how it’s used. Scope will be discussed more later. For now, let’s add
some properties to the Book class to make it more useful.

Listing 8-8. Adding instance variables to the Book.h file

1 //

2 // Book.swift

3 // myBookStore

4 //

5 // Created by Thorn on 8/8/15.

6 // Copyright (c) 2015 Inn. All rights reserved.
7 //

8

9 import Foundation

10 class Book {

11 var title: String = ""

12 var author: String = ""

13 var description: String = ""
14

http://dx.doi.org/10.1007/978-1-4842-1488-6_7

142 CHAPTER 8: Programming Basics in Swift

Listing 8-8 shows the same Book object from before, but now there are three new properties
placed inside the brackets, on lines 11 to 13. These are all String objects, which means they
can hold text information for the Book object. So, the Book object now has a place to store
title, author, and description information.

Accessing Variables

Now that you have some properties, how can you use them? How are they accessed?.
Unfortunately, simply declaring a property doesn’t necessarily give you access to it. There
are two ways to access these variables.

One way, of course, is within the Book object.

The second way is from outside the object—that is, another part of the
program that uses the Book object.

If you are writing the code for a method within the Book object, accessing its property is
quite simple. For example, you could simply write the following:

title = "Test Title"

From outside the object, you can still access the title variable. This is done through the use
of dot notation.

myBookObject.title = "Test Title"

Finishing the BookStore Program

With the understanding of properties, you are going to now venture forth to create the actual
bookstore program. The idea is simple enough—create a class called BookStore that will be
stocked with a few Book objects.

Creating the View

Let’s start by first getting the view ready. If you need a refresher on how to build an interface
in Xcode, refer to Chapter 6.

1. Click the Main.storyboard file in the Navigator area. You will see five
scenes in the Main.storyboard file. Navigate to the right to find the
detail scene. This will display Xcode’s Interface Builder, as shown in
Figure 8-7.

http://dx.doi.org/10.1007/978-1-4842-1488-6_6

CHAPTER 8: Programming Basics in Swift 143

Detail view content goes here

[n] Any nAny B i ksl

Figure 8-7. Preparing the Bookstore’s Detail View

2. By default, when you create a blank Master-Detail application, Xcode
adds a label with the text “Detail View content goes here.” Select
and delete this Label object because you are going to add your own.
You’re going to add some new fields to display some details about
a selected book. Since you deleted this control, you also need to
remove the code that references it.

a. Inthe DetailViewController.swift file, remove the following line:

@IBOutlet weak var detailDescriptionLabel: UILabel!

b. Inthevar detailltem: AnyObject? method, remove the following line:

self.configureView()

c. Inthe DetailViewController.swift file, in the method named configureView,
remove the following lines:

// Update the user interface for the detail item.
if let detail: AnyObject = self.detailltem {
if let label = self.detailDescriptionlabel {
label.text = detail.valueForKey("timeStamp")!.description
}

}

Your DetailViewController.swift file should now look like Figure 8-8.

144

85| <
1| //
/7

1/

/7

//

/7

£

CHAPTER 8: Programming Basics in Swift

[B BooksStore)| | BookStore) [DetailViewController.swift) [} configureView()

DetailViewController.swift
BookStore

Created by Brad Lees on 8/8/15.
Copyright © 2015 Inn. All rights reserved.

import UIKit

class DetailViewController: UIViewController {

var detailltem: AnyObject? {
didSet {

}
}

func confiqureView() {
}

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.
self.configureView()

]

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

Figure 8-8. Modified DetailViewController

3.

Drag some Label objects from the Object Library onto the Detail
View, as shown in Figure 8-9. Make sure that the lower Label controls
are wider than the default. This is so that they can hold a fairly large
amount of text. The two Label objects with the text “Label” in them
are the ones you’re going to hook up to hold two of the values from
the Book object: Title and Author.

CHAPTER 8: Programming Basics in Swift

Detail

Title:
Label

Author:
d abel 7
o o

ooo

Figure 8-9. Adding some Label objects

Adding Properties

Next, you’ll add some properties to the DetailViewController class. These properties will
correspond to the Detail View’s Label objects.

1. Click the Assistant Editor icon (it looks like two circles) in the
top-right corner of Xcode to open the Assistant editor. Make sure
the DetailViewController.swift file is showing in the editor.

2. Hold the Control key and drag the first blank Label control to the
code on the right side, as shown in Figure 8-10. Name the first one
titlelLabel (see Figure 8-11) and click Connect, and then repeat the
process with the second one, naming it authorLabel. This will add
two variables to your DetailViewController class, as seen in
Listing 8-9, and hook them to the Label controls in the interface.

145

146 CHAPTER 8: Programming Basics in Swift

» [B Master Scene

v [Detail Scene

2 ff DetailViewController.swift

i ff BookStore

m B "
¥ (& Detai
S Top Layout Guide /i
il Bottem Layaut Gulde Detail + import UIKit
¥ |1 View]
L] Title: .
(L] Label e
L | Author: war detailltem: AnyDbject?
Tl Label didSet {
<] Detai Title: — }
(78 First Responder g— = o }
i el o
= et gﬁt“' o o func configureView() {
» [split View Controller Scene }
» [Master Scene Author:
super.viewDidload()
» [& Mavigation Centreller Scene Label
nib.
self.configureViewl)
H
}
%)
Figure 8-10. Creating variables
~
Connection | Outlet v |

Object
Name
Type
Storage
[Cancel |
[]
m|

Figure 8-11. Naming the new variable

5 ff Created by Brad Lees on 8/8/15.

& /f Copyright © 2815 Inn. ALl rights reserved.

1 class DetailWiewController: UIViewController {

Insert Outlet or Outlet Collection

overrige func viewDidlosd() {

/f Do any additional setup after loading the view, typis

override func didReceiveMemorywarning() {
super.didReceiveMemoryWarning()
/f Dispose of any ressurces that can be recreated.

Detail

| titleLabel |

UlLabel

| Weak <)

| Connect |

—d
B
a

Listing 8-9. Modifying the DetailViewController.swift file to include the new labels

1 @IBOutlet weak var titleLabel: UILabel!

2 @IBOutlet weak var authorlLabel:

UILabel!

no
i

fis
15
16
17

I
//

imp¢

cla:

CHAPTER 8: Programming Basics in Swift 147

Adding a Description

Now you need to add the description to the view. The description is a little different in that it
can span multiple lines. For this, you’re going to use the Text View object.

1. Start by adding the “Description:” label to the view, as shown in
Figure 8-12.

Detail

Title:
Label

Author:
Label

Description:

Figure 8-12. Adding a new Label object for the description

2. Next, add the Text View object to the Detail View, as shown in
Figure 8-13. The advantage the Text View object has is that it's easy
to display multiple lines of text. While the Label object can display
multiple lines, it’s not as clean as the Text View object.

148 CHAPTER 8: Programming Basics in Swift

. » Ay BockStore |l Phoce §

BookStore: Ready | Todsy at 6:44 PM

®
B 5 E R | < B pesisrees Bosasasne | [l Mainaerybosrd | [l Malnsteryboard (Base) | B Desadl Seane Datall View Teut View

» [E] Master Sceme

v [H Dotait Scene
v) Dews

5 Assets xcassats

LaunchScreen storyboard

Te

< | Detal
T Pt Bespanare

& et

» [Split View Controller Scona

» [Master Sceme

» [E Navigation Controlier Scane

Detail

Title:
Label

Author:
Label

Description:

o [o
Lorem ipsum dalor sit er el lamet,
consectetaur cillium sdipisicing pecu, sed do
wiusmod tempor incididunt ut labore et dolore

Crnagna aliqua. Ut enim ad minim veniam, guis O
nostrud exercitation ullamco laboris risi ut
aliquip ex ea commodo consequat, Duis aute
irure dolor in reprehenderit in voluptate velit

o o

Any nAny

Taxt View

) Selecabie
asaresses

B2 ol (=) tour o

Figure 8-13. Adding a Text View to the Detail View

Note By default, the Text View control is filled with all kinds of seemingly random text. This text

is called Lorem Ipsum text. If you ever need to fill up a page with text, you can find any number of
Lorem Ipsum generators on the Web. As for the Text View control, the text can stay as it is since
you’ll remove it during runtime. Plus, if it’s cleared, it becomes a little more difficult spotting exactly
where the Text View control is on the screen—it’s white on white!

3. For the program to take advantage of the Text View, you'll need to
create an outlet for it, just like you did for the title and description.
Simply Control-drag the Text View to your DetailViewController file, as
you did earlier. Name this variable descriptionTextView. The finished
variable portion of DetailViewController will look like Listing 8-10.

Listing 8-10. Adding an outlet for the text view to hold a description

import UIKit

class DetailViewController: UIViewController {

@IBOutlet weak var authorlLabel: UILabel!

1
2
3
4
5 @IBOutlet weak var titlelLabel: UILabel!
6
7
8

@IBOutlet weak var descriptionTextView: UITextView!

CHAPTER 8: Programming Basics in Swift 149

4. Notice that the type is UITextView instead of UILabel —this is
important.

Caution As mentioned, it's important to make the descriptionTextView property a
UITextView type. If, for example, it were accidentally made a UILabel object, when trying
to connect the Text View from the screen to the outlet, Xcode wouldn’t be able to find the
descriptionTextView outlet. Why? Xcode knows that the control is a UITextView and is
looking for an outlet that is of type UITextView.

Creating a Simple Data Model Class

For the application to work, it needs to have some data to display. To do this, you’re going
to use the BookStore object you created earlier as the data model class. There’s nothing
different about a data model class except that its whole purpose is to allow an application to
access data via an object.

Modify the BookStore.swift file to look like Listing 8-11.

Listing 8-11. Modifying the BookStore.swift class to include an array

1 //

2 // BookStore.swift

3 // myBookStore

4 /7

5 // Created by Thorn on 8/8/15.

6 // Copyright (c) 2015 mycompany.com. All rights reserved.
7 //

8

9 import Foundation

10

11 class BookStore {

12 var theBookStore: [Book] = []
13 }

On line 12, you add a variable that will hold the list of books; the property is simply named
theBookStore. Note that theBookStore is an array, which will allow you to add a series of
objects, in this case, a set of Book objects.

Next, let’s add the code to the Swift file, BookStore.swift, as shown in Listing 8-12.

Listing 8-12. Implementing the BookStore data object

/7

// BookStore.swift

// myBookStore

//

// Created by Thorn on 8/8/15.

// Copyright (c) 2015 Inn. All rights reserved.
/7

coO~NOYUVT D WN B

150 CHAPTER 8: Programming Basics in Swift

9 import Foundation

10

11 class BookStore {

12 var theBookStore: [Book] = []

13

14 init() {

15 var newBook = Book()

16 newBook.title = "Swift for Absolute Beginners"

17 newBook.author = "Bennett and Lees"

18 newBook.description = "i0S Programming made easy."

19 theBookStore.append (newBook)

20

21 newBook = Book()

22 newBook.title = "A Farewell To Arms"

23 newBook.author = "Ernest Hemingway"

24 newBook.description = "The story of an affair between an English nurse and an
American soldier on the Italian front during World War I."

25

26 theBookStore.append(newBook)

27 }

28 }

In Listing 8-12, lines 14 to 27 define the init method of the object, which is called whenever
the object is first initialized. In this method, you initialize the two books you plan to add to
your bookstore. Line 15 is where the first Book object is allocated and initialized. Lines 16 to
18 add a title, author, and description to your first book. Finally, line 19 adds the new Book
object to the theBookStore array. The important thing to note here is that once the object is
added to the array, the code can forget about it; the array now owns that object. Because of
this, line 21 is not a problem.

Line 21 allocates a new Book object overwriting the old value. This tells the compiler that
you’re no longer interested in using the old value.

Lines 22 to 26 simply initialize and add the second book to the array.

That’s it! That’s all you need to define a simple data model class. Next, you need to modify
MasterViewController to access this class so that it can start displaying some data.

Modifying MasterViewController

The simple application has two view controllers: the main view controller, which is called
MasterViewController, and a secondary one called DetailViewController. View controllers
are objects that simply control the behavior of a view. For the application to start displaying
data from the data model, you need to first modify MasterViewController —this is where the
navigation of the application begins. The following code is already in place in the template
that Xcode has provided. You’re just going to modify it to add your data model.

First you'll need to modify the MasterViewController.swift file. You need to add a variable
to hold the Bookstore object. Listing 8-13 shows that the instance variable is added as a
property on line 15.

CHAPTER 8: Programming Basics in Swift 151

Listing 8-13. Adding the BookStore object

//

// MasterViewController.swift

// Chapter 8.1

//

// Created by Thorn on 8/8/15.

// Copyright (c) 2015 Inn. All rights reserved.
//

import UIKit

W oo~NOUVI B WN R

[
[N

12 class MasterViewController: UITableViewController {
13

14 var objects = [AnyObject]()

15 var myBookStore: BookStore = BookStore()

Now that the BookStore object is initialized, you need to tell MasterViewController how
to display the list of books —not the detail, just the book titles. To do this, you’ll need
to modify a few methods. Fortunately, Xcode has provided a nice template, so the
modifications are small.

MasterViewController is a subclass of what’s called a UITableViewController class, which
displays rows of data to the screen. In this case, these are rows of book titles (well, just two
for this simple program but a list nonetheless).

There are three main methods that control what and how data is displayed in a
UITableViewController.

The first is numberOfSectionsInTableView(:): Since the application has
only one list, or section, this method returns 1.

The second is tableView(:numberOfRowsInSection:): In this program,
you return the number of books in the bookstore array. Since this is the
only section, the code is straightforward.

The third method is tableView(:cellForRowAtIndexPath:): This
method is called for each row that is to be displayed on the screen, and
it’s called one row at a time.

Listing 8-14 details the changes you need to make to get the list of books displaying on the
view. The changes start on line 63 in the source file.

Listing 8-14. Setting up the view to display the books

63 override func numberOfSectionsInTableView(tableView: UITableView) -> Int {
64 return 1

65 }

66

67 override func tableView(tableView: UITableView, numberOfRowsInSection section: Int)
-> Int {

68 return myBookStore.theBookStore.count

69 }

70

http://dx.doi.org/10.1007/978-1-4842-1488-6_8

152 CHAPTER 8: Programming Basics in Swift

71 override func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath:
NSIndexPath) -> UITableViewCell {

72 let cell = tableView.dequeueReusableCellWithIdentifier("Cell", forIndexPath:
indexPath)

73 cell.textLabel!.text = myBookStore.theBookStore[indexPath.row].title

74 cell.accessoryType = UITableViewCellAccessoryType.DisclosureIndicator

75 return cell

76 }

Out of all of this code, you need to modify only a few lines. Everything else can stay the way
it is. This is one of the advantages of using the Xcode templates. Line 68 simply returned 1;
you needed to change it so that it now returns the count of items in the BookStore class.

Line 73 looks a little more complicated. Basically, each line of the UITableView is what is
called a cell (a UITableViewCell to be specific). Line 73 sets the text of the cell to the title of
a book. Let’s look at that code a little more specifically:

cell.textlLabel!.text = myBookStore.theBookStore[indexPath.row].title

First, myBookStore is the BookStore object, which is pretty clear. You’re referencing the array
in the BookStore object called theBookStore. Since theBookStore is an array, you can access
the book you want in brackets in the indexPath.row. The value indexPath.row specifies
which row you’re interested in—indexPath.row will always be less than the total count minus
1. So, calling myBookStore.theBookStore[indexPath.row] returns a Book object. The last
part, .title, accesses the title property from the returned Book object. The following code
is equivalent to what you just did in one line:

1 var book: Book
2 book = myBookStore.theBookStore[indexPath.row]
3 cell.textlabel!.text = book.title

Now, you should be able to build and run the application and see the two books you created
in the data model, as shown in Figure 8-14.

CHAPTER 8: Programming Basics in Swift 153

iPhone 6 - iPhone 6 [0S 9.0 (13A4325c)
Carrier = 7:01 PM -

..+..

Edit Master
Swift for Absolute Beginners

A Farewell to Arms

Figure 8-14. Running the application for the first time

But, you’re not done yet. You need to make the application display the book when you
click one of them. To make this happen, you need to make one last modification to
MasterViewController.

The method tableView(:didSelectRowAtIndexPath:) is called whenever a row is touched
on the screen. Listing 8-15 shows the small changes you need to make in order to hook the
Detail View to the book data.

Listing 8-15. Selecting the book when touched

46 override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {

47 if segue.identifier == "showDetail" {

48 if let indexPath = self.tableView.indexPathForSelectedRow {

49 let selectedBook:Book = myBookStore.theBookStore[indexPath.row]
50 let controller = (segue.destinationViewController as!

UINavigationController).topViewController as! DetailViewController
51 controller.detailltem = selectedBook

154 CHAPTER 8: Programming Basics in Swift

52 controller.navigationItem.leftBarButtonItem = self.splitViewController?.
displayModeButtonItem()

53 controller.navigationItem.leftItemsSupplementBackButton = true

54 }

55 }

56}

If line 49 looks similar to line 73 in Listing 8-14, that’s because it’s basically the same thing.
Based on indexPath.row, you select the specific book from the BookStore object and save it
in a variable called selectedBook.

On line 51, you take selectedBook and store it in a property called detailItem that is
already part of the existing DetailViewController class. That’s all you need to do in
MasterViewController. You’ve basically passed off the book to DetailViewController.
You’re almost done. Now you need to make a few small modifications to the
DetailViewController so that it displays the Book object properly.

Modifying the DetailViewController

Earlier in this chapter, you modified the DetailViewController so that it would display
some detail information about a book. In the code you just finished, you modified the
MasterViewController so that it passes the selected book to the DetailViewController.
Now all that remains is to simply move the information from the Book object in the
DetailViewController to the appropriate fields on the screen. All of this is done in one
method—configureView—as seen in Listing 8-16.

Listing 8-16. Moving the Book object data to the Detail View

24 func configureView() {

25 if let detail: AnyObject = self.detailltem {

26 var myBook = detail as! Book

27 titlelabel.text = myBook.title

28 authorLabel.text = myBook.author

29 descriptionTextView.text = myBook.description
30 }

31 }

The configureView method is one of many convenience methods included in the Xcode
template and is called whenever the DetailViewController is being initialized. This is where
you will move your selected Book object’s information to the fields in the view.

Lines 27 to 29 in the DetailViewController.swift file is where you move the information
from the Book object to the view. If you recall, line 51 in Listing 8-15 set the selected book
into a property on the DetailViewController called detailItem. Lines 25 to 26 pull that item
out into a Book object called myBook.

Lines 36 to 38 simply move each of the Book object’s properties to the view controls you
built earlier in the chapter. That’s all you need to do in this class. If you build and run the
project and click one of the books, you should see something like Figure 8-15.

CHAPTER 8: Programming Basics in Swift 155

iPhone 6 - iPhone 6 /i0S 9.0 (13A4325¢c)

Carrier ¥ 7:06 PM -_—
£ Master Detail
Title:

A Farewell to Arms

Author:

Ernest Hemingway

Description:

The story of an afair between an English nurse
and an American soldier on the Italian front
during World Ward I.

Figure 8-15. Viewing the book details for the first time

Summary

You'’ve reached the end of this chapter! Here is a summary of the topics covered:

Understanding collection classes: Collection classes are a powerful set
of classes that come with Foundation and allow you to store and retrieve
information efficiently.

Using properties: Properties are variables that are accessible once the
class has been instantiated.

Looping with for...1in: This feature offers a new way to iterate through
an enumerated list of items.

Building a Master-Detail application: You used Xcode and the Master-
Detail Application template to build a simple bookstore program to
display books and the details of an individual book.

156

CHAPTER 8: Programming Basics in Swift

Creating a simple data model: Using the collection classes you learned
about, you used an array to construct a BookStore object and used it as
a data source in the bookstore program.

Connecting data to the view: You connected the Book object’s data to
the interface fields using Xcode.

Exercises

Add more books to the bookstore using the original program as a guide.

On the Master Scene, remove the Edit button as we will not be using it
in this app.

Enhance the Book class so it can store another attribute—a price or
ISBN, for example.

Modify the DetailViewController so that the new fields are displayed.
Remember to connect an interface control to an instance variable.

Change the BookStore object so that a separate method is called to
initialize the list of Book objects (instead of putting it all in the init
method).

There is another attribute to a UITableViewCell called the
detailTextLabel. Try to make use of it by setting its text property to
something.

Using Xcode to modify the interface, play with changing the background
color of the DetailViewController in the storyboard file.

For a tougher challenge:

Sort the books in the BookStore object so they appear in ascending
order on the MasterDetailView.

Chapter

Comparing Data

In this chapter, we will discuss one of the most basic and frequent operations you will
perform as you program: comparing data. In the bookstore example, you may need to
compare book titles if your clients are looking for a specific book. You may also need to
compare authors if your clients are interested in purchasing books by a specific author.
Comparing data is a common task performed by developers. Many of the loops you learned
about in the previous chapter will require you to compare data so that you know when your
code should stop looping.

Comparing data in programming is like using a scale. You have one value on one side
and another value on the other side. In the middle, you have an operator. The operator
determines what kind of comparison is being done. Examples of operators are “greater
than,” “less than,” or “equal to.”

The values on either side of the scale are usually variables. You learned about the different
types of variables in Chapter 3. In general, the comparison functions for different variables
will be slightly different. It is imperative that you become familiar with the functions and
syntax to compare data because this will form the basis of your development.

For the purposes of this chapter, we will use an example of a bookstore application. This
application will allow users to log in to the application, search for books, and purchase them.
We will cover the different ways of comparing data to show how they would be used in this
type of application.

Revisiting Boolean Logic

In Chapter 4, we introduced Boolean logic. Because of its prevalence in programming, we
will revisit this subject in this chapter and go into more detail.

157

http://dx.doi.org/10.1007/9781-4-842-1488-6_3
http://dx.doi.org/10.1007/9781-4-842-1488-6_4

158 CHAPTER 9: Comparing Data

The most common comparison that you will program your application to perform is
comparisons using Boolean logic. Boolean logic usually comes in the form of if/then
statements. Boolean logic can have only one of two answers: yes or no. The following are
some good examples of Boolean questions that you will use in your applications:

Is 5 larger than 37
Does now have more than five letters?
Is 6/1/2010 later than today?

Notice that there are only two possible correct answers to these questions: yes and no. If
you are asking a question that could have more than these two answers, that question will
need to be worded differently for programming.

Each of these questions will be represented by an if/then statement (for example, “If 5 is
greater than 3, then print a message to the user”). Each if statement is required to have
some sort of relational operator. A relational operator can be something like “is greater than”
or “is equal to.”

To start using these types of questions in your programs, you will first need to become familiar
with the different relational operators available to you in the Swift language. We will cover them
first. After that, you will learn how different variables can behave with these operators.

Using Relational Operators

Swift uses five standard comparison operators. These are the standard algebraic operators
with only one real change: in the Swift language, as in most other programming languages,
the “equal to” operator is made by two equals signs (==). Table 9-1 describes the operators
available to you as a developer.

Table 9-1. Comparison Operators

Operator Description

Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to
== Equal to

Note A single equals sign (=) is used to assign a value to a variable. Two equals signs (==) are
needed to compare two values. For example, if(x=9) will assign the value of 9 to the variable

x and return yes if 9 is successfully assigned to x, which will be in most, if not all, of the cases.
if(x==9) will do a comparison to see whether x equals 9. Xcode now throws an error if you try to
assign a value to a variable in an if statement.

CHAPTER 9: Gomparing Data 159

Comparing Numbers

One of the difficulties developers have had in the past was dealing with different data types
in comparisons. Earlier in this book, we discussed the different types of variables. You may
remember that 1 is an integer. If you wanted to compare an integer with a float such as 1.2,
this could cause some issues. Thankfully, Swift helps with this. In Swift, you can compare
any two numeric data types without having to typecast. (Typecasting is still sometimes
needed when dealing with other data types, which we cover later in the chapter.) This allows
you to write code without worrying about the data types that need to be compared.

Note Typecasting is the conversion of an object or variable from one type to another.

In the bookstore application, you will need to compare numbers in many ways. For example,
let’s say the bookstore offers a discount for people who spend more than $30 in a single
transaction. You will need to add the total amount the person is spending and then compare
this to $30. If the amount spent is larger than $30, you will need to calculate the discount.
See the following example:

var discountThreshold = 30
var discountPercent = 0
var totalSpent = calculateTotalSpent()

if(totalSpent > discountThreshold) {
discountPercent = 10
}

Let’s walk through the code. First, you declare the variables (discountThreshhold,
discountPercent, and totalSpent) and assign a value to them. Notice you do not need to
specify the type of number for the variables. The type will be assigned when you assign it a
value. You know that discountThreshold and discountPercent will not contain decimals, so
the compiler will create them as Ints. In this example, you can assume you have a function
called calculateTotalSpent, which will calculate the total spent in this current order. You
then simply check to see whether the total spent is larger than the discount threshold; if

it is, you set the discount percent. If we wanted a customer who spent exactly $30 to get
the same discount, we could use a >= instead of a >. Also notice that it was not necessary
to tell the code to convert the data when comparing the different numeric data types. As
mentioned earlier, Swift handles all this.

Another action that requires the comparison of numbers is looping. As discussed in Chapter 4,
looping is a core action in development, and many loop types require some sort of
comparison to determine when to stop. Let’s take a look at a for loop:

var numberOfBooks: Int
numberOfBooks = 50

for var y = 1; y <= numberOfBooks; y++ {
doSomething()
}

http://dx.doi.org/10.1007/9781-4-842-1488-6_4

160 CHAPTER 9: Comparing Data

In this example, you iterate, or loop, through the total number of books in the bookstore. The
for statement is where the interesting stuff starts to happen. Let’s break it down.

The following portion of the code is declaring y as a variable and then assigning it a starting
value of 1:

var y = 1;

The following portion is telling the computer to check to see whether the counting variable y
is less than or equal to the total number of books you have in the store. If y becomes larger
than the number of books, the loop will no longer run.

y <= numberOfBooks;
The following portion of code increases y by 1 every time the loop is run.

y++

Creating an Example Xcode App
Now let’s create an Xcode application so you can start comparing numeric data.

1. Launch Xcode. From the Finder, go to the Applications folder. Drag
the folder to the Dock because you will be using it throughout the
rest of this book. See Figure 9-1.

| NoN ¥ Applications
=v | 88 ELLL ol Ev vl M a 2.)
Favorites Name ~ Date Modified Size Kind
Today, 12:45 PM = Al
£2 Dropbox Maps oday, 12:45 P! Appl
&= Messages 12:45 PM
8 Al My Files B8 Mission Control
< iCloud Drive Notes
& Photo Booth
@) AirD
O L2108 % Photos op
#: Applications = Pixelmator App
=) Desktop =3 Preview App

@ QuickTime Player

(3 pocuments) Reminders

O Downloads @ safari
© skitch
Shared Stickies
[Brad's Mac Pro @ System Preferences
] Lees Retina [TextEdit ;
@ Time Machine App
Tags » B9 Utilities ! == ko
® Red A ViC Apr 14, 2015, APD
~ #! Xcode _May 19, 2015, 9:08 AM -- App

Figure 9-1. Launching Xcode

CHAPTER 9: Gomparing Data 161
2. Click “Create a New Xcode Project” to open a new window. On the
left side of that window, under iOS, select Application. Then select
Single View Application on the right side. Click Next, as shown in
Figure 9-2.
Choose a template for your new project:
ios
Application - T 1 =
Framework & Library
Master-Detail Page-Based Single View Tabbed
Watch OS Application Application Application Application
Application
Framework & Library %
0s X
Application Game
Framework & Library
System Plug-in
Other
Single View Application
This template provides a starting point for an application that uses a single view. It provides
a view controller to manage the view, and a storyboard or nib file that contains the view.
Cancel [Next |

Figure 9-2. Creating a new project

Note The Single View Application template is the most generic and basic of the i0S

application types.

3. On the next page, enter the name of your application. Here we used
Comparison as the name, but you can choose any name you like.
This is also the window where you select which device you would
like to target. Leave it as iPhone for now, as shown in Figure 9-3.

162 CHAPTER 9: Comparing Data

Choose options for your new project:

Product Name: Comparison|
Organization Name: Innovativeware

Organization Identifier: com.innovativeware

Bundle Identifier: com.innovativeware.Comparison
Language: Swift u
Devices: iPhone u

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous | (T O

Figure 9-3. Selecting the project type and name

Note Xcode projects, by default, are saved in the Documents folder in your user home.

4. Once the new project is created, you will see the standard Xcode
window. Select the arrow next to the Comparison folder to expand
it if it is not already expanded. You will see several files. The main
file for your project is called AppDelegate.swift. You will also see a
ViewController.swift file. This file is the source that controls the
single window that is created by default for you in this type of app.
For the purposes of these examples, you will be focusing on the
AppDelegate.swift file.

5. Click the AppDelegate.swift file. You will see the following code:

func application(application: UIApplication, didFinishLaunchingWithOptions
launchOptions: [NSObject: AnyObject]?) -> Bool {
// Override point for customization after application launch.
return true

CHAPTER 9: Gomparing Data 163

The method application: didFinishLaunchingWithOptions is
called after each time the application is launched. At this point, your
application will launch and display a window. You will add a little
Hello World to your application. Before the line return true, you
need to add the following code:

NSLog("Hello World")

This line creates a new String with the contents Hello World and passes it to the NSLog
function that is used for debugging.

Note The NSLog method is available to Objective-C and Swift. It is commonly used for debugging
an application because you can show information easily in the Debug area.

Let’s run the application to see how it works:

1.
2.

E »

Click the Run button in the default toolbar.

The iOS simulator will launch. This will just display a window. Back
in Xcode, a Console window will appear at the bottom of the screen,
as shown in » Figure 9-4. You can always toggle this window by
selecting View » Debug Area » Show/Hide Debug Area.

00 (| <7 Comparison

2015-08-01 14:03:30.528 Comparison[794:17633] Hello World

All Output ¢

Figure 9-4. Debugger window

You will now see a line of text in your debugger. The first part of the line shows the date,
time, and name of the application. The Hello World part was generated by the NSLog line
that you added.

1.
2.

Go back to Xcode and open the AppDelegate.swift file.

Go to the beginning of the line that begins with NSLog. This is the line
that is responsible for printing the Hello World section. You are going
to comment out this line by placing two forward slashes (//) in front
of the line of code. Commenting out code tells Xcode to ignore it
when it builds and runs the application. In other words, code that is
commented out will not run.

164 CHAPTER 9: Comparing Data

3. Once you comment out the line of code, you will no longer see the
line in bold if you run the program because the application is no
longer outputting any line.

4. For the application to output the results of your comparisons, you will
have to add one line, as shown here:

NSLog("The result is %@", (6 > 5 ? "True" : "False"))

Note The previous code, (6>5 ? "True" : "False"),is called a ternary operation. It is
essentially just a simplified way of writing an if/else statement.

5. Place this line in your code. This line is telling your application to
print The result is. Then it will print True if 6 is greater than 5, or it
will print False if 5 is greater than 6.

Because 6 is greater than 5, it will print True.

You can change this line to test any of the examples you have put together thus far in this
chapter or any of the examples you will do later.

Let’s try another example.
var i = §

var y = 6
NSLog("The result is %@", (y > i ? "True" : "False"))

In this example, you create a variable and assign its value to 5. You then create another
variable and assign the value to 6. You then change the NSLog example to compare the
variables i and y instead of using actual numbers. When you run this example, you will get
the result shown in Figure 9-5.

= =» [i 4 Comparison

2015-08-01 14:14:02.646 Comparison[890:21314] The Result is True

Figure 9-5. NSLog output

Note You may get compiler warnings when using this code. The compiler will tell you that the
false portion of the ternary operator will never be executed. The compiler can look at the values
while you are typing the code and know that the comparison will be true.

CHAPTER 9: Gomparing Data 165

You will now explore other kinds of comparisons, and then you will come back to the
application and test some of them.

Using Boolean Expressions

A Boolean expression is the easiest of all comparisons. Boolean expressions are used to
determine whether a value is true or false. Here’s an example:

var j =5

if §>0{
some_code()

}

The if statement will always evaluate to true because the variable j is greater than zero.
Because of that, the program will run the some _code() method.

Note In Swift, if a variable is optional and therefore not assigned a value, you should use a
question mark after the variable declaration. For example, var j becomes var j:Int?.

If you change the value of j, the statement will evaluate to false because j is now 0.
This can be used with Bool and number variables.

var j =0

if >0
some_code()

}

Placing an exclamation point in front of a Boolean expression will change it to the opposite
value (a false becomes a true, and a true becomes a false). This line now asks “If not
j>0,” which, in this case, is true because j is equal to 0. This is an example of using an
integer to act as a Boolean variable. As discussed earlier, Swift also has variables called
Bool that have only two possible values: true or false.

var j =0

if 1(j > 0) {
some_code()

}

Note Swift, like many other programming languages, uses true or false when assigning a
value to a Boolean variable.

166 CHAPTER 9: Comparing Data

Let’s look at an example related to the bookstore. Say you have a frequent buyers’ club that
entitles all members to a 15 percent discount on all books they purchase. This is easy to
check. You simply set the variable clubMember to true if the person is a member and false if
he or she is not. The following code will apply the discount only to club members:

var discountPercent = 0
var clubMember: Bool = false

if(clubMember) {
discountPercent = 15
}

Comparing Strings

Strings are a difficult data type for most C languages. In ANSI C (or standard C), a string is
just an array of characters. Objective-C took the development of the string even further and
made it an object called NSString. Swift has taken the String class even further and made it
easier to work with. Many more properties and methods are available to you when working
with an object. Fortunately for you, String has many methods for comparing data, which
makes your job much easier.

Let’s look at an example. Here, you are comparing passwords to see whether you should
allow a user to log in:

var enteredPassword = "Duck"
var myPassword = "duck"

var continuelogin = false

if enteredPassword == myPassword {
continuelogin = true
}

The first line just declares a String and sets it value to Duck. The next line declares
another string and sets its value to duck. In your actual code, you will need to get the
enteredPassword string from the user.

The next line is the part of the code that actually does the work. You simply ask the strings if
they are equal to each other. The example code will always be false because of the capital
"D" in the enteredPassword versus the lowercase "d" in the myPassword.

There are many other different comparisons you might have to perform on strings. For
example, you may want to check the length of a certain string. This is easy to do.

var enteredPassword = "Duck"

var myPassword = "duck"

var continuelogin = false

if enteredPassword.characters.count > 5 {
continuelogin = true

}

CHAPTER 9: Gomparing Data 167

Note count is a global function that can be used to count strings, arrays, and dictionaries.

This code checks to see whether the entered password is longer than five characters.

There will be other times when you will have to search within a string for some data.
Fortunately, Swift makes this easy to do. String provides a function called range0fString,
which allows you to search within a string for another string. The function rangeOfString
takes only one argument, which is the string for which you are searching.

var searchTitle: String

var bookTitle: String

searchTitle = "Sea"

bookTitle = "2000 Leagues Under the Sea"

if bookTitle.rangeOfString(searchTitle) != nil {
addToResults()
}

This code is similar to other examples you have examined. This example takes a search term
and checks to see whether the book title has that same search term in it. If it does, it adds
the book to the results. This can be adapted to allow users to search for specific terms in
book titles, authors, or even descriptions.

For a complete listing of the methods supported by String, see the Apple documentation
at https://developer.apple.com/library/ios/documentation/Swift/Conceptual/
Swift_Programming_Language/StringsAndCharacters.html.

Using the switch Statement

Up to this point, you’ve seen several examples of comparing data by simply using the if
statement.

if some_value == SOME_CONSTANT {

} eléé.if some_value == SOME_OTHER_CONSTANT {

} eléé.if some_value == YET SOME_OTHER_CONSTANT {

} ces

If you need to compare a variable to several constant values, you can use a different method

that can simplify the comparison code: the switch statement.

Note In Objective-C, you could only use integers to compare in a switch statement. Swift allows
developers more freedom in using the switch statement.

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/StringsAndCharacters.html
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/StringsAndCharacters.html

168 CHAPTER 9: Comparing Data

The switch statement allows you to compare one or more values in an original variable.

var customerType = "Repeat”

switch customerType { // The switch statement followed by a begin brace
case "Repeat": // Equivalent to if (customerType == "Repeat")
// Call functions and put any other statements here after the case.

case "New":

case "Seasonal":
default: // Default is required in Swift
} // End of the switch statement.

The switch statement is powerful, and it simplifies and streamlines comparisons of a
Boolean operator to several different values.

In Swift, the switch statement is a powerful statement that can be used to simplify repeated
if/else statements.

Comparing Dates

Dates are a fairly complicated variable type in any language, and unfortunately, depending
on the type of application you are writing, they are common. Swift does not have its own
native Date type. This means developers have to use the Cocoa date type NSDate. The
NSDate class has a lot of nice methods that make comparing dates easy. We will focus on
the compare function. The compare function returns an NSComparisonResult, which has three
possible values: OrderedSame, OrderedDescending, and OrderedAscending.

// Today's Date
var today: NSDate = NSDate()

// Sale Date = Tomorrow
let timeToAdd: NSTimeInterval = 60*60%*24
var saleDate: NSDate = today.dateByAddingTimeInterval(timeToAdd)

var saleStarted = false
let result: NSComparisonResult = today.compare(saleDate)

switch result {
case NSComparisonResult.OrderedAscending:
// Sale Date is in the future
saleStarted = false
case NSComparisonResult.OrderedDescending:
// Sale Start Date is in the past so sale is on
saleStarted = true
default:
// Sale Start Date is now
saleStarted = true

CHAPTER 9: Gomparing Data 169

This may seem like a lot of work just to compare some dates. Let’s walk through the code
and see whether you can make sense of it.

var today: NSDate = NSDate()
let timeToAdd: NSTimeInterval = 60*60*24
var saleDate: NSDate = today.dateByAddingTimeInterval(timeToAdd)

Here, you declare two different NSDate objects. The first one, named today, is initialized with
the system date or your device date. Before creating the second date, you need to add
some time to the first date. You do this by creating an NSTimeInterval. This is a number in
seconds. To add a day, you add 60*60*24. The second date, named saleDate, is initialized
with a date some time in the future. You will use this date to see whether this sale has
begun. We will not go into detail about the initialization of NSDate objects.

Note In most programming languages, dates are dealt with in a specific pattern. They usually
start with the four-digit year followed by a hyphen, then a two-digit month followed by a hyphen,
and then a two-digit day. If you are using a data format with a time, this data is usually presented
in a similar manner. Times are usually presented with the hour, minute, and second, each separated
by a colon. Swift inherits time zone support from Cocoa.

The results of using the compare function of an NSDate object is an NSComparisonResult. You
have to declare an NSComparisonResult to capture the output from the compare function.

let result: NSComparisonResult = today.compare(saleDate)

This simple line runs the comparison of the two dates. It places the resulting
NSComparisonResult into the variable called result.

switch result {
case NSComparisonResult.OrderedAscending:
// Sale Date is in the future
saleStarted = false
case NSComparisonResult.OrderedDescending:
// Sale Start Date is in the past so sale is on
saleStarted = true
default:
// Sale Start Date is now
saleStarted = true

}

Now you need to find out what value is in the variable result. To accomplish this, you
perform a switch statement that compares the result to the three different options for
NSComparisonResult. The first line finds out whether the sale date is greater than today’s date.
This means that the sale date is in the future, and thus the sale has not started. You then
set the variable saleStarted to false. The next line finds out whether the sale date is less
than today. If it is, then the sale has started, and you set the saleStarted variable to true.
The next line just says default. This captures all other options. You know, though, that the
only other option is OrderedSame. This means the two dates are the same, and thus the sale
is just beginning.

170 CHAPTER 9: Comparing Data

There are other methods that you can use to compare NSDate objects. Each of these
methods will be more efficient at certain tasks. We have chosen the compare method
because it will handle most of your basic date comparison needs.

Note Remember that an NSDate holds both a date and a time. This can affect your comparisons
with dates because it compares not only the date but also the time.

Combining Comparisons

As discussed in Chapter 4, you’ll sometimes need something more complex than a single
comparison. This is where logical operators come in. Logical operators enable you to check
for more than one requirement. For example, if you have a special discount for people who
are members of your book club and who spend more than $30, you can write one statement
to check this.

var totalSpent = 31

var discountThreshhold = 30
var discountPercent = 0
var clubMember = true

if totalSpent > discountThreshhold 8& clubMember {
discountPercent = 15
}

We have combined two of the examples shown earlier. The new comparison line reads as
follows: “If totalSpent is greater than discountThreshold AND clubMember is true, then set
the discountPercent to 15.” For this to return true, both items need to be true. You can use
| | instead of && to signify “or.” You can change the previous line to this:

if totalSpent > discountThreshhold || clubMember {
discountPercent = 15
}

Now this reads as follows: “If totalSpent is greater than discountThreshold OR clubMember
is true, then set the discount percent.” This will return true if either of the options is true.

You can continue to use the logical operations to string as many comparisons together as
you need. In some cases, you may need to group comparisons using parentheses. This can
be more complicated and is beyond the scope of this book.

http://dx.doi.org/10.1007/9781-4-842-1488-6_4

CHAPTER 9: Gomparing Data 17

Summary
You’ve reached the end of the chapter! Here is a summary of the topics that were covered:
Comparisons: Comparing data is an integral part of any application.

Relational operators: You learned about the five standard relational
operators and how each is used.

Numbers: Numbers are the easiest pieces of information to compare.
You learned how to compare numbers in your programs.

Examples: You created a sample application where you could test your
comparisons and make sure that you are correct in your logic. Then,
you learned how to change the application to add different types of
comparisons.

Boolean: You learned how to check Boolean values.

Strings: You learned how strings behave differently from other pieces of
information you have tested.

Dates: You learned how difficult it can be to compare dates and that you
must be careful to make sure you are getting the response you desire.

Exercises

Modify the example application to compare some string information.
This can be in the form of a variable or a constant.

Write a Swift application that determines whether the following years are
leap years: 1800, 1801, 1899, 1900, 2000, 2001, 2003, and 2010. Output
should be written to the console in the following format: The year 2000
is a leap year or The year 2001 is not a leap year. See
http://en.wikipedia.org/wiki/Leap_year for information on
determining whether a year is a leap year.

http://en.wikipedia.org/wiki/Leap_year

Chapter

Creating User Interfaces

Interface Builder enables iOS developers to easily create their user interfaces using a
powerful graphical user interface. It provides the ability to build user interfaces by simply
dragging objects from Interface Builder’s library to the editor.

Interface Builder stores your user interface design in one or more resource files, called
storyboards and XIBs. These resource files contain the interface objects, their properties,
and their relationships.

To build a user interface, simply drag objects from Interface Builder’s Object Library pane
onto your view or scene. Actions and outlets are two key components of Interface Builder
that help you streamline the development process.

Your objects trigger actions in your views, and the actions are connected to your methods
in the app’s code. Outlets are declared in your . swift file and are connected to specific
controls as properties. See Figure 10-1.

173

174 CHAPTER 10: Creating User Interfaces

¥ [H View Controllor Scono
v 3 View Controlier
v [view
B Soed Aa LT
]

» | RandomNumberTosts
» [Products

Generate Random Number

Label

Label Butten

Figure 10-1. Interface Builder

Note Interface Builder was once a stand-alone application that developers used to design their
user interfaces. Starting with Xcode 4.0, Interface Builder has been integrated into Xcode.

Understanding Interface Builder

Interface Builder saves the user interface file as a bundle that contains the interface objects
and relationships used in the application. These bundles previously had the file extension
.nib. Version 3.0 of Interface Builder used a new XML file format, and the file extension
changed to .xib. However, developers still call these files nib files. Later Apple introduced
storyboards. Storyboards enable you to have all of your views in one file with a . storyboard
extension.

Unlike most other graphical user interface applications, XIBs and storyboards are often
referred to as freeze-dried because they contain the archived objects themselves and are
ready to run.

The XML file format is used to facilitate storage with source control systems such as
Subversion and Git.

In the next section, we’ll discuss an app design pattern called Model-View-Controller. This
design pattern enables developers to more easily maintain code and reuse objects over the
life of an app.

CHAPTER 10: Creating User Interfaces 175

The Model-View-Controller Pattern

Model-View-Controller (MVC is the most prevalent design pattern used in iOS development,
and learning about it will make your life as a developer much easier. MVC is used in software
development and is considered an architectural pattern

Architectural patterns describe solutions to software design problems that developers can
use in their code. The MVC pattern is not unique to iOS developers; it is being adopted by
many makers of integrated development environments (IDEs), including those running on
Windows and Linux platforms.

Software development is considered an expensive and risky venture for businesses.
Frequently, apps take longer than expected to write, come in over budget, and don’t work
as promised. Object-oriented programming (OOP) produced a lot of hype and gave the
impression that companies would realize savings if they adopted its methodology, primarily
because of the reusability of objects and easier maintainability of the code. Initially, this
didn’t happen.

When engineers looked at why OOP wasn’t living up to these expectations, they discovered
a key shortcoming with how developers were designing their objects: developers were
frequently mixing objects in such a way that the code became difficult to maintain as the
application matured, the code moved to different platforms, or hardware displays changed.

Objects were often designed so that if any of the following changed, it was difficult to isolate
the objects that were impacted:

Business rules
User interfaces
Client-server or Internet-based communication

Objects can be broken down into three task-related categories. It is the responsibility of the
developer to ensure that each of these categories keeps their objects from drifting across
other categories.

As objects are categorized in these groups, apps can be developed and maintained more
easily over time. The following are examples of objects and their associated MVC category
for an iPhone banking application:

Model
Account balances
User encryption
Account transfers
Account login
View

Account balances table cell

Account login spinner control

176 CHAPTER 10: Creating User Interfaces

Controller
Account balance view controller
Account transfer view controller
Logon view controller

The easiest way to remember and classify your objects in the MVC design pattern is the
following:

Model: Unique business or application rules or code that represent the
real world

View: Unique user interface code

Controller: Anything that controls or communicates with the model or
view objects

Figure 10-2 represents the MVC paradigm.

Controller

Neither Xcode nor Interface Builder forces developers to use the MVC design pattern. It is
up to the developers to organize their objects in such a way to use this design pattern.

Figure 10-2. MVC paradigm

It is worth mentioning that Apple strongly embraces the MVC design pattern, and all of the
frameworks are designed to work in an MVC world. This means that if you also embrace the
MVC design pattern, working with Apple’s classes will be much easier. If you don’t, you’ll be
swimming upstream.

Human Interface Guidelines

Before you get too excited and begin designing dynamic user interfaces for your app, you
need to learn some of the ground rules. Apple has developed one of the most advanced
operating systems in the world with iOS 9. Additionally, Apple’s products are known for
being intuitive and user-friendly. Apple wants users to have the same experience from one
app to the next.

CHAPTER 10: Creating User Interfaces 177

To ensure a consistent user experience, Apple provides developers with guidelines on how
their apps should look and feel. These guidelines, called the Human Interface Guidelines
(HIG), are available for the Mac, iPhone, iPad, and Apple Watch. You can download these
documents at http://developer.apple.com, as shown in Figure 10-3.

i0S Developer Library

i0S Human Interface Guidelines iBooks
On This Page

Ul Design Basics -
—— Designing for iOS
i0S App Anatomy
Adaptivity and Layout iOS embodies the following themes:
Starting and Stopping + Deference. The Ul helps people understand and interact with the content, but never competes with it.
Navigation + Clarity. Text is legible at every size, icons are precise and lucid, adornments are subtle and appropriate,
Modal Contexts and a sharpened focus on functionality motivates the design.
Interactivity and Feedback « Depth. Visual layers and realistic motion impart vitality and heighten people's delight and understanding.
Animation
Branding

Color and Typography
leons and Graphics
Terminology and Wording
Integrating with iOS

Design Strategies

i0S Technologies Wednesday Toda, 81
Now SAM 10AM 11AM 12PM 1
> B > .)
63 63 B4 70

Ul Elements

Thursday 84

Icon and Image Design
Friday 81
Saturday 81
Revision History Sunday 81

Monday a2

Figure 10-3. Apple’s Human Interface Guidelines for iOS devices

Note Apple’s HIG is more than recommendations or suggestions. Apple takes it very seriously.
While the HIG doesn’t describe how to implement your user interface designs in code, it is great for
understanding the proper way to implement your views and controls.

The following are some of the top reasons apps are rejected in Apple’s iTunes App Store:

The app crashes.

B The app violates the HIG.
B The app uses Apple’s private APIs.
B The app doesn’t function as advertised on the iTunes App Store.

http://developer.apple.com/

178 CHAPTER 10: Creating User Interfaces

Many new iOS developers find this out the hard way, but if you follow the HIG from day one,
your iOS development will be a far more pleasurable experience.

Creating an Example iPhone App with Interface Builder

Let’s get started by building an iPhone app that generates and displays a random number,
as shown in Figure 10-4. This app will be similar to the app you created in Chapter 4, but
you’ll see how much more interesting the app becomes with an iOS user interface (Ul).

i0S Simulator - iPhone 5 - iPhone 5/ i0S B.1 {...
Carrier ¥ 9:45 PM -

Seed Random Number Generator

Generate Random Number

67

Figure 10-4. Completed iOS random number generator app

Note You can read, learn, and follow the HIG before you develop your app, or you can read, learn,
and follow the HIG after your app gets rejected by Apple and you have to rewrite part or all of it.
Either way, all i0S developers will end up becoming familiar with the HIG.

http://dx.doi.org/10.1007/978-1-4842-1488-6_4

CHAPTER 10: Creating User Interfaces 179

1. Open Xcode and select Create a New Project. Make sure you
select Single View Application for iOS, then click Next, as shown in
Figure 10-5.

Choose a template for your new project:

Application - s00 1 * see
Framework & Library
Master-Detail Page-Based Single View Tabbed
watchOS Application Application Application Application
Application
. = S _
Framework & Library ‘% Nof T\'%
0s X =
T T Game Cocoa Touch Cocoa Touch
Application e
a Framework Static Library

Framework & Library
System Plug-in
Other

Single View Application

This template provides a starting point for an application that uses a single view. It provides
a view controller to manage the view, and a storyboard or nib file that contains the view.

Figure 10-5. Creating an iPhone app based on the Single View Application template

2. Name your project RandomNumber, select Swift for the language and
iPhone for the Device, click Next, and save your project, as shown
in Figure 10-6.

180 CHAPTER 10: Creating User Interfaces

Choose options for your new project:

Product Name: RandomMNumber
Organization Name: xcelMe

Organization Identifier: com

Bundle Identifier: com.RandomNumber

<>

Language: = Swift

<>

Devices: iPhone

Use Core Data
v Include Unit Tests
v Include Ul Tests

Cancel Previous Next

Figure 10-6. Naming your iPhone project

3. Your project files and settings are created and displayed, as shown in
Figure 10-7.

CHAPTER 10: Creating User Interfaces 181

¥ [Ransembiumissr 0

pROJEET
B R

TARGET!

o Ranceriiuntes

Figure 10-7. Source files

Capaniisie Besoeree Tags itz Duta Settegs
* Wdestity
Bunci Merelar | Gom. Rancambumn
verson 10
Buid 1
Team | Nors
Ceployment iste

Desleyment Targer

Devices | iProre

Status Bar 20

¥ Apw loens and Lisnch imapes

Launch images Sewrce Uise Asaat Canaleg

Laureh Scveen File | LaunchSoreen

* Embedded Sinaries

¥ Winked Frameworks and Libraries.

Butd Bhass

Wemntiry sad Type
vame Saraombhmne
RancomNomier woseDe)
Full Pats. [UsersigmbennettDeskio)
Beta ans e amzer
RanvmNumer stoteprt O

On Demand Ressurce Tags

.

Xzose A2-compativie

Takle View Cantralier - &

Callection View Contratier - 4
e e

Tt Rar Cantraller - & costroiie

Split View Contrelier - &

Page View Controier - Sresens &

Sttt ol v EHABERETS 5
pages.

Although you have only one controller in this project, it’s good programming practice to
make your MVC groups at the beginning of your development. This helps remind you to
keep the MVC paradigm and not put all of your code unnecessarily in your controller.

4. Right-click the RandomNumber folder and then select New Group, as

shown in Figure 10-8.

182 CHAPTER 10: Creating User Interfaces

ene » [————

BRCASHE=s® EC

¥ (3 Ransomtiumber o
Appleiegate wwitt Show in Finder

Open As
Show File Inspector

LanchScrsen sty Mew File...

Into pilst Add Files 1o “RandomNumber~..

Delete

Mew Group from Selection

Sort by Name
Sort by Type

Find In Selected Groups...

Seurce Cantrol

Project Navigator Help

Open with Extermal Editor

RandzmMusber: Resdy | Yestenay st 633 P

Rendombumber. scodeprs)
----- Capavsities Resaurce Tags o Buid Settings
T idemtity
Bunze DeMTe Com e 0EMNARDE
Version |10
e 1

Tean | Moo

¥ Caployment infe
Depiymert Target

Devices #rare
M Irsertace Main

Dovice Oriprastion () Por

T Appkcons aad Launch Images.
Apw beons Souree Appleon
Launcn images Sosrce

Lauren Sereen Py Laurs:

¥ Embedded Dinasies.

¥ Linked Framewois s Libeasies

Figure 10-8. Creating new groups

5. Create a Models group, a Views group, and a Controllers group.

6. Drag the ViewController.swift file to the Controllers group. Drag

Do Prases

Duita Fuies

oasty and Tyve
wars Bacorpinnes
Locadion | Asatve 15 Grove B
R IOM RO -
Ful s SUsersige Dereett Deskiooy
e uivisesn

rerrevnse o

Text Settings
widers Using _Spaces B
i alz e

8 ran iees

e o
Wiw Controlier - A sernssier a1
manages 4 view

Storyhoard Befer: vs
DlacaRckter 1or 8 et costroie e 40
pastampeei sty

< Mavigation Controier - &

e view corucier that
Ianages 13 and FgA v Com.

Page View Controller - Fiesens &
Setuence of v Lt a8

the Main.storyboard and LaunchScreen.storyboard files to the Views

group. Having these groups reminds you to follow the MVC design

pattern as you develop your code and prevents you from placing all

of your code in the controllers, as shown in Figure 10-9.

CHAPTER 10: Creating User Interfaces 183

® @ | 2 #% RandomNumber) i§ iPhcne 6s Plus RandomMumber | Build RandomMNumber: Succeeded | Today at 2:02 PM
Main.storyboard
B 2 Q AN ¢ E o @ 38 | € . RandomMNumb RandomNumb Views Main.storyboard Main.storyboard (Be

¥ & RandomNumber ¥ [¥] view Controller Scene

¥ RandomNumber
v Models

v View Controller
Top Layout Guide

) Views Bottom Layout Guide
LaunchScreen.xib B Seed Random Number Generator
v Controllers B Generate Random Number

L Random Number Label
g . Constraints
T First Responder
[E Exit

= ViewController.swift
+ AppDelegate.swift

Images.xcassets

ki Supporting Files Storyboard Entry Point

Info.plist
> RandomNumberTests

> Products

Figure 10-9. MVC groups with controller and storyboard files organized

Developers have found it helpful to keep their storyboard and XIB files with their controllers
as their projects grow. It is not uncommon to have dozens of controllers and XIB files in your

project. Keeping them together helps keep everything organized. Using storyboards resolves
many of the issues of having lots of XIBs.

7. Click the Main.storyboard file to open Interface Builder.

Using Interface Builder

The most common way to launch Interface Builder and begin working on your view is to
click the storyboard or XIB file related to the view, as shown in Figure 10-10.

184 CHAPTER 10: Creating User Interfaces

<]
(=}

ey oAy

Figure 10-10. Interface Builder in the workspace window

When Interface Builder opens, you can see your scenes displayed on the canvas. You
are now able to design your user interface. First you need to understand some of the
subwindows within Interface Builder.

The Document Outline

The storyboard shows all the objects that your view contains. The following are some
examples of these objects:

B Buttons

Labels

Text fields

Web views

Map views

iAd banner views

Picker views

Table views

CHAPTER 10: Creating User Interfaces 185

Note You can expand the width of the Document Outline to see a detailed list of all your objects,
as shown in Figure 10-11. To get more real estate for the canvas, you can shrink or hide your
file navigator.

eoe » iy Rangemtiumber | B Proe & Rardomblorner: Weady | Today at 4:23 PM el [efi=N=
Main sy
MEQ ACE = 3 am | [Main.storyboard | [Main snoryboars ihase | [H] View Commotier Scans | () View Contrater | [7] view DemoOe
¥ [Rarombiurmiver Iosntsty asd Type
¥ | Randembhmber ame Maie seryboare
v Moss » B Tyse | Detauit - intertuce Buscer_ [
e -
| e storyzosne
Base VoM S10y 000
] 8 P [Users s bennett Deskiony
v Conrelier Fota Randerbhmesr
: ‘ 3 Erry Peien Rarciorharmises Base Jorell
< ViewComItes. st ks A
AppDeiegats suft
5 Adsets. moaisets O Cerand Mesource Tags
oo pat
|| RundemshambeiTeats
I || RangembumbeniTens Irtarthce Bubder Dotumart
b Prosucts B
L -
-]
<]
L]
Vo Controfier - & conmsie
arages 3 vie
Mavigation Controler - 4
B e s
s 8 feericny S bt
Taiblo View Cantrolier - &
SORIITIN TR B3 T
Collsction View Contralier - 4
Eortichcs Ing: ring 8 SobeEnon
Page View Controller - Sresens o
A8 O v OB 85
pages
[=) Asry - ey B el ke

Figure 10-11. The Document Outline:’s width is expanded to show a detailed view of all the objects in your storyboard

The Library

The Library is where you can exploit your creativity. It’s a smorgasbord of objects that you
can drag and drop into the View.

The Library pane can grow and shrink by moving the window splitter in
the middle of the view, as shown in Figure 10-12.

186 CHAPTER 10: Creating User Interfaces

View Controller - A controller that
manages a view.

Storyboard Reference - Provides a
placehclder for a view controller in an
external storyboard.

contreller that manages navigation

< Navigation Controller - A
through a hierarchy of views.

Table View Controller - A
controller that manages a table view.

Collection View Controller - A
contreller that manages a collection
view.

Tab Bar Controller - A controller
that manages a set of view controllers
that represent tab bar items.

Split View Controller - A
composite view contreller that
manages left and right view centroll...

Page View Controller - Presents a
sequence of view controllers as

pages.

00 @ cp
o ™ Se:

Figure 10-12. Expand the Library pane to see more controls and slide the splitter to resize the window with the mouse

For Cocoa Touch objects, the Library contains the following (see Figure 10-13):
Controls

Data views

Gesture recognizers

Objects and controllers

Window and bars

CHAPTER 10: Creating User Interfaces 187

Label

Button & Text =

B 7
(=]+]
Switch between List

= View and Detail View for
_ controls.

Figure 10-13. Various Cocoa Touch objects in the Library pane

Inspector Pane and Selector Bar

The Inspector pane enables you to change the properties of the controls to make your objects
follow your command. The Inspector pane has six tabs across the top, as shown in Figure 10-14.

File inspector
Quick Help inspector

188 CHAPTER 10: Creating User Interfaces

Identity inspector
Attributes inspector
Size inspector
Connections inspector

De@¢0ie

View
Mode = Scale To Fi a
Semantic | Unspecified E
Tag (1]
Interaction @ User Interaction Enabled
Multiple Touch
Alpha 1}l-
Background [White Color _ﬁ
Tint| EEEE Default i
prawing 8 Opaque Hidden
3 Clears Graphics Context
Clip Subviews
Autoresize Subviews
Stretching (1] 0/
X Y
1) v
Width Height
DO e B
< :
Label
Button ni] Text == Z
P [——
O 0
L) A <
O ® ® '.

Figure 10-14. The Identity Inspector and Selector Bar

CHAPTER 10: Creating User Interfaces 189

Creating the View

The random number generator will have three objects in the view: one label and two buttons.
One button will generate the seed, another button will generate the random number, and the
label shows the random number generated by the app.

1. Drag a label from the Library Pane Controls section to the
View window.

2. Drag two buttons from the Library window to the View window.

3. Click the top button and change its title to Seed Random

Number Generator.

4. Click the bottom button and change its title to Generate Random
Number, as shown in Figure 10-15.

B8 |5 RandomMNumber Ran...ber

v [view Controller Scene

v View Controller

View Mai...

B | Seed Random Number Generator
B | Generate Random Number
L | Random Number

70 First Responder

= Exit

Storyboard Entry Point

O

Figure 10-15. Placing objects in the view

Mai...ase)) B Vie..cene

View Controller View | {

'Seed Random Number Generator|

iGenerate Random Number

Label

> Dem i e
Identity and Type
wame Main.storyboard
Type | Default - Interface Builder.., a

Locatien v 3
Base.lproj/Main.storyboard
Full Path fUsersjgwbennett/Dropbox/

Apress Book/Swift 2nd
Edition/Chapter 10/

RandomNumber/
RandomNumber/Base.|proj/
Main.steryboard L+

On Demand Resource Tags

Interface Bullder Document

OO 6o

View Controller - A controlier that
mManages a view.

Storyboard Reference - Provides a
placeholder for a view controlier in an
external storyboard.

controller that Manages navigation

< Havigation Controller - A
through a hierarchy of views.

Table View Controller - &
controlier that manages a table view.

Caollection View Controller - &
controlier that manages a collection
W

Tab Bar Controller - A controlker
that manages a set of view controliers
that reprasont tab bar items.

190 CHAPTER 10: Creating User Interfaces

Now you get to use a great feature of Xcode. You can quickly and easily connect your
outlets and actions to your code. Xcode actually goes one step further; it will create some of
the code for you. All you have to do is drag and drop.

5. Click the Assistant Editor icon at the top right of the screen. This
will display the associated .swift file for the view selected in the
storyboard or the XIB file, as shown in Figure 10-16.

Figure 10-16. Using the Assistant editor to display the .swift file

Note If the correct associated . swift file doesn’t appear when you click the Assistant Editor
icon, make sure you selected and highlighted the view.

Using Outlets
Now you can connect your label to your code by creating an outlet.

1. Control-drag from the label in the view to the top of your class file, as
shown in Figure 10-17.

CHAPTER 10: Creating User Interfaces 191

2 // ViewController.swift
3 // RandomNumber

// Created by Gary Bennett on 7/2/15.
Copyright (c) 2015 xcelMe. All rights reserved.

9 import UIKit

Seed Random Mumber Generator class ViewController: UIViewController {

Dutlet Callection

override func viewDidLoad() { .
super.viewDidLoad(}
18 // Do any additional setup after loading the view, typically from

Generate Random Number

- X a nib.
> g }
#: g Lag-.c:- : § n
7 override func didReceiveMemoryWarning() {
super.,didReceiveMemoryWarning()

// Dispose of any resources that can be recreated.

Figure 10-17. Control-dragging to create the code for the randomNumber outlet

A pop-up window will appear. This enables you to name and specify the type of outlet.

2. Complete the pop-up as shown in Figure 10-18 and click the
Connect button.

2 f/ ViewController.swift
3 // RandomNumber

@
2]
=

5 // Created by Gary Bennett on 7/2/15.
- s f/ Copyright (c) 2015 xcelMe. All rights reserved.

import UIKit

Cennection | Outiet i
Otfect Wiew Contralier |
Wame | racdombiumbariobel |

Seed Randon class ViewController: UIViewController {

Type Ullage - {
i ! override func viewDidLoad()
Genorate_ ' super.viewDidLoad()
Cancst W”f‘ J // Do any additional setup after loading the view, typically from

) a nib.
19 }
7| 2 0

8 Label] 20

override func didReceiveMemoryWarning() {
22 super.didReceiveMemoryWarning()
ek // Dispose of any resources that can be recreated.

Figure 10-18. Pop-up for randomNumber outlet

192 CHAPTER 10: Creating User Interfaces

The code is created for the outlet, and the outlet is now connected to the Label object in
your Main.storyboard file. The shaded circle next to line 15 indicates the outlet is connected
to an object in the Main. storyboard file, as shown in Figure 10-19.

F L

// ViewController.swift

// RandomNumber

'

e /{ Created by Gary Bennett on 7/2/15.

. f// Copyright (c) 2815 xcelMe. All rights reserved.
I

import UIKit

Seed Random Number Generator class ViewController: UIViewController {

@IB0utlet weak var randomNumberLabel: UILabel!

Generate Random Number override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from
= a2 nib.
Label 3 }

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

Figure 10-19. Outlet property code generated and connected to the Label object

There is a declaration that may be new to you called IBOutlet, commonly referred to simply
as an outlet. Outlets signal to your controller that this property is connected to an object in
Interface Builder. IBOutlet will enable Interface Builder to see the outlet and enable you to
connect the property to the object in Interface Builder.

Using the analogy of an electrical wall outlet, these property outlets are connected to
objects. Using Interface Builder, you can connect these properties to the appropriate object.
When you change the properties of a connected outlet, the object that it is connected to will
automatically change.

Using Actions
User interface object events, also known as actions, trigger methods.
Now you need to connect the object actions to the buttons.

1. Control-drag from the Seed Random Number Generator button
to the bottom of your class. Complete the pop-up as indicated in
Figure 10-20 and click the Connect button. Make sure you change
the connection to an action and not an outlet.

CHAPTER 10: Creating User Interfaces 193

1
2
® = 5
]
- -]
8
1

o o a 5
tBeed Random Number Generaton 12
o o a 13

¥
Generate Random Number

> Label] 0
Fil

Cannectica | Action 3] |
oject () View Controlier !

Name | secdAction i

e | UiBution ™

Event | Touch Up Inside |
Arguments | Sender 2l }
Cancel Connect | |
=1

// ViewController.swift
// RandomNumber

// Created by Gary Bennett on 7/2/15.
// Copyright (c) 2015 xcelMe. All rights reserved.
import UIKit

class ViewController: UIViewController {

@IB0utlet weak var randomNumberlLabel: UILabel!

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from
a nib.

}
override func didReceiveMemoryWarning() {

super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

Figure 10-20. Completing the pop-up for the Seed method

2. Repeat the previous steps for the Generate Random Number button

(see Figure 10-21).

Seed Random Number Generator
o o o
cGenerate Random Numben
& o o

Label

// ViewController.swift
/{ RandomNumber

// Created by Gary Bennett on 7/2/15.
// Copyright (c) 2815 xcelMe. All rights reserved.
import UIKit

class ViewController: UIViewController {

@IBO0utlet weak var randomNumberLabel: UILabel!

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from
a nib.
}
override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

@IBAction func seedAction(sender: UIButton) {
}

@IBAction func generateAction(sender: UIButton) {
}

Figure 10-21. Generate and Seed actions connected to their Button objects

194 CHAPTER 10: Creating User Interfaces

The Class

All that is left is to complete the code for your outlet and actions in the .swift file for the
controller.

Open the ViewController.swift file and complete the seed and generate methods, as
shown in Figure 10-22.

b

@IBAction func seedAction(sender: UIButton) {
srandom(CUnsignedInt(time(nil)))
randomNumberLabel.text = "Generator seended"

@IBAction func generateAction(sender: UIButton) {
let generated = (random() % 100) + 1
randomNumberLabel.text = "\(generated)"

Figure 10-22. The seed and generate methods completed

There is some code you should examine a bit further. The following line seeds the random
generator so that you get a random number each time you run the app. There are easier
ways of to do this, but for the purposes of this section, you just want to see how actions and
outlets work.

srandom(CUnsignedInt(time(nil)))

In the following code, the property text sets the UILabel value in your view. The connection you
established in Interface Builder from your outlet to the Label object does all the work for you.

randomNumber . text

There are just two more things you need to do now. Select Main.storyboard and then click
Show the File Inspector in the Inspector Pane toolbar. Deselect Use Auto Layout. A message
box will appear; click Disable Size Classes. This will enable you to easily view your controls
on your iPhone simulator, as shown in Figure 10-23.

CHAPTER 10: Creating User Interfaces

vase)) [view Cc
Enable Size Classes?

Seed R ‘with Xcode 8 of higher.
[Add suggested constraints
3 Cancel
Ger

Label

Figure 10-23. Disabling Auto Layout

Lrsbiing size classes will enabie Auto Layout and
‘convert segues 1o thoir acapiive equivalents.

& ViewControler swilt

aller.swift
per

Documents that use size classes are oely Compatible

y Gary Bennett on 7/2/15.
(c) 2815 xcelMe. All rights reserved.

Enable Size Classes

class ViewController: UIViewController {

@IB0utlet weak var randomMumberLabel: UILabel!

override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from
a nib,

o Seisction + X%

195

Dem o d @
identiny and Type

sara Main.storyboard

Type | Detaun - interface Buider... &
Base.Iproi/Ma‘n storyboard
Full Puth [Usersjgwbennet/Dropibos]

Apress Book/Swift 2nd

Lecatien

Edition/Chapter 10/
RargomNumber|
RargomNumbenBase. ipro/
Main.storyboard ©

On Demand Resource Tags

Intertace Bulses Document

Opeesin | Defouit (2.00 s

Bulids for | Project Deployment Torg... ~

View s | 05 70 and Later .
Use Auto Layout

1 Use S0 Classes
Use a3 Launch Sereen

} Check “Use Size Classes™ —ﬁ
override func didReceiveMemoryWarning() { Tint | .| Defout B

super,didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.
¥

@IBAction func seedAction(sender: UIButton) {
srandom{CUnsignedInt{time(nil)))
randomNumberLabel.text = “"Generator seended”

@IBAction func generateAction(sender: UIButton) {
let generated = (random() % 108) + 1
randomNumberLabel,text = "\(generated)"

Lecalization
8 | sase
Engiah Lecalizavie Sings S

Targat Membershin

.+ Randomiurmber.

D06 o
View Contrallor - A controlies that
arages a view

Storyboard Referance - Siovides 3
plaehakder for 3 view Controiker in an
exsernal storvboded.

Lastly, center your objects in the view and expand your Label object. Also, select the center
alignment property for the label. This will center your text in the Label object, as shown in

Figure 10-24.

v [0 View Contralier S2ene

v [l view

Figure 10-24. Centering your objects

Seed Random Nur

b Random Number

Label

196 CHAPTER 10: Creating User Interfaces

That’s it!
To run your iPhone app in the iPhone simulator, click the Play button. Your app should
launch in the simulator, as shown in Figure 10-25.

Simulator - iPhone 6 - iPhone 6 [i0S 9.0 (13A4280e)
Carrier ¥ 6:09 PM -—

Seed Random Number Generator

Generate Random Number

60

Figure 10-25. The completed random number generator app running in the i0S simulator

To seed the random function, tap the Seed Random Number Generator button. To generate
the random number, tap the Generate Random Number button.

CHAPTER 10: Creating User Interfaces 197

Summary

Great job! Interface Builder saves you a lot of time when creating user interfaces. You have a
powerful set of objects to use in your application and are responsible for a minimal amount
of coding.

Interface Builder handles many of the details you would normally have to deal with.
You should be familiar with the following terms:

Storyboard and XIB files

Model-View-Controller

Architectural patterns

Human Interface Guidelines (HIG)

Outlets

Actions

Exercises

Extend the random number generator app to show a date and time in a
Label object when the app starts.

After showing a date and time label, add a button to update the data
and time label with the new time.

Chapter

Storing Information

As a developer, there will be many different situations when you will need to store data.
Users will expect your application (app) to remember preferences and other information each
time they launch it. Previous chapters discussed the BookStore app. With this app, users

will expect your application to remember all of the books in the bookstore. Your application
will need a way to store this information, retrieve it, and possibly search and sort this data.
Working with data can sometimes be difficult. Fortunately, Apple has provided methods and
frameworks to make this process easier.

This chapter discusses two different formats in which data will need to be stored. It
discusses how to save a preference file for an iOS device and then how to use a SQLite
database in your application to store and retrieve data.

Storage Considerations

There are some major storage differences between the Mac and the iPhone, and these
differences will affect how you work with data. Let’s start by discussing the Mac and how
you will need to develop for it.

On the Mac, by default, applications are stored in the Applications folder. Each user has
their own home folder where preferences and information related to that user are stored.
Not all of the users will have access to write to the Applications folder or to the application
bundle itself.

On the iPhone and iPad, developers do not need to deal with different users. Every person
who uses the iPhone has the same permissions and the same folders. There are some other
factors to consider with the iPhone, though. Every application on an iOS device is in its own
sandbox. This means that files written by an application can be seen and used only by that
individual application. This makes for a more secure environment for the iPhone, but it also
presents some changes in the way you work with data storage.

199

200 CHAPTER 11: Storing Information

Preferences

There are some things to consider when deciding where to store certain kinds of information.
The easiest way to store information is within the preferences file, but this method has some
downsides.

All of the data is both read and written at the same time. If you are going
to be writing often or writing and reading large amounts of data, this
could take time and slow down your application. As a general rule, your
preferences file should never be larger than 100KB. If your preferences
file starts to become larger than 100KB, consider using Core Data as a
way to store your information.

The preferences file does not provide many options when it comes to
searching and ordering information.

The preferences file is really nothing more than a standardized XML file with accompanying
classes and methods to store application-specific information. A preference would be, for
example, the sorting column and direction (ascending/descending) of a list. Anything that is
generally customizable within an app should be stored in a preferences file.

Caution Sensitive data should not be stored in the preference file or in a database without
additional encryption. Luckily, Apple provides a way to store sensitive information. It is called the
keychain. Securing data in the keychain is beyond the scope of this book.

Writing Preferences

Apple has provided developers with the NSUserDefaults class; this class makes it easy to
read and write preferences for iOS and Mac OS X. The great thing is that, in this case, you
can use the same code for iOS and Mac OS X. The only difference between the two
implementations is the location of the preferences file.

Note For Mac OS X, the preferences file is named com. yourcompany.applicationname.plist
and is located in the /Users/username/Library/Preferences folder. On i0S, the preferences
file is located in your application bundle in the /Library/Preferences folder.

All you need to do to write preferences is to create an NSUserDefaults object. This is done
with the following line:

var prefs: NSUserDefaults = NSUserDefaults.standardUserDefaults()

CHAPTER 11: Storing Information 201

This instantiates the prefs object so you can use it to set preference values. Next, you

need to set the preference keys for the values that you want to save. The BookStore app
example will be used to demonstrate specific instructions throughout this chapter. When
running a bookstore, you might want to save a username or password in the preferences.
You also might want to save things such as a default book category or recent searches. The
preferences file is a great place to store this type of information because this is the kind of
information that needs to be read only when the application is launched.

Also, on iOS, it is often necessary to save your current state. If a person is using your
application and then gets a phone call, you want to be able to bring them back to the exact
place they were in your application when they are done with their phone call. This is less
necessary now with the implementation of multitasking, but your users will still appreciate it
if your application remembers what they were doing the next time they launch it.

Once you have instantiated the object, you can just call setObjectforKey to set an object. If
you wanted to save the username of sherlock.holmes, you would call the following line of code:

prefs.setObject("sherlock.holmes", forKey: "username"

You can use setInteger, setDouble, setBool, setFloat, and setURL instead of setObject,
depending on the type of information you are storing in the preferences file. Let’s say you
store the number of books a user wants to see in the list. Here is an example of using
setInteger to store this preference:

prefs.setInteger(10, forKey: "booksInList")

After a certain period of time, your app will automatically write changes to the preferences
file. You can force your app to save the preferences by calling the synchronize function, but
this should only be used if you cannot wait for the next synchronization interval such as if
you app is going to exit. To call the synchronize function, you would write the following line:

prefs.synchronize()

With just three lines of code, you are able to create a preference object, set two preference
values, and write the preferences file. It is an easy and clean process. Here is all of the code:

var prefs: NSUserDefaults = NSUserDefaults.standardUserDefaults()
prefs.setObject("sherlock.holmes", forKey: "username"
prefs.setInteger(10, forKey: "booksInList")

Reading Preferences

Reading preferences is similar to writing preferences. Just like with writing, the first step
is to obtain the NSUserDefaults object. This is done in the same way as it was done in the
writing process:

var prefs: NSUserDefaults = NSUserDefaults.standardUserDefaults()

202 CHAPTER 11: Storing Information

Now that you have the object, you are able to access the preference values that are set.
For writing, you use the setObject syntax; for reading, you use the stringForKey method.
You use the stringForKey method because the value you put in the preference was a
String. In the writing example, you set preferences for the username and for the number
of books in the list to display. You can read those preferences by using the following
simple lines of code:

var username = prefs.stringForKey("username")
var booksInlList = prefs.integerForKey("booksInList")

Pay close attention to what is happening in each of these lines. You start by declaring the
variable username, which is a String. This variable will be used to store the preference
value of the username you stored in the preferences. Then, you just assign it to the value
of the preference username. You will notice that in the read example you do not use the
synchronize function. This is because you have not changed the values of the preferences;
therefore, you do not need to make sure they are written to a disk.

Databases

You have learned how to store some small pieces of information and retrieve them at a
later point. What if you have more information that needs to be stored? What if you need
to conduct a search within this information or put it in some sort of order? These kinds of
situations call for a database.

A database is a tool for storing a significant amount of information in a way that it can be
easily searched or retrieved. When using a database, usually small chunks of the data are
retrieved at a time rather than the entire file. Many applications you use in your daily life are
based on databases of some sort. Your online banking application retrieves your account
activity from a database. Your supermarket uses a database to retrieve prices for different
items. A simple example of a database is a spreadsheet. You may have many columns and
many rows in your spreadsheet. The columns in your spreadsheet represent different types
of information you want to store. In a database, these are considered attributes. The rows in
your spreadsheet would be considered different records in your database.

Storing Information in a Database

Databases are usually an intimidating subject for a developer; most developers associate
databases with enterprise database servers such as Microsoft SQL Server or Oracle.

These applications can take time to set up and require constant management. For most
developers, a database system like Oracle would be too much to handle. Luckily, Apple has
included a small database engine called SQLite in iOS and OS X. This allows you to gain
many of the features of complex database servers without the overhead.

SQLite will provide you with a lot of flexibility in storing information for your application. It
stores the entire database in a single file. It is fast, reliable, and easy to implement in your
application. The best thing about the SQLite database is that there is no need to install any
software; Apple has taken care of that for you.

CHAPTER 11: Storing Information 203

However, SQLite does have some limitations that, as a developer, you should be aware of.

SQLite was designed to be used as a single-user database. You will not
want to use SQLite in an environment where more than one person will
be accessing the same database. This could lead to data loss

or corruption.

In the business world, databases can grow to become very large. It is
not surprising for a database manager to handle databases as large

as half a terabyte, and in some cases databases can become much
larger than that. SQLite should be able to handle smaller databases
without any issues, but you will begin to see performance issues if your
database starts to get too large.

SQLite lacks some of the backup and data restore features of the
enterprise database solutions.

For the purposes of this chapter, you will focus on using SQLite as your database engine.
If any of the mentioned limitations are present in the application you are developing, you
may need to look into an enterprise database solution, which is beyond the scope of
this book.

Note SAQLite (pronounced “sequel-lite”) gets its name from Structured Query Language
(SQL, pronounced “sequel”). SQL is the language used to enter, search, and retrieve data
from a database.

Apple has worked hard to iron out a lot of the challenges of database development. As a
developer, you will not need to become familiar with SQL because Apple has taken care of
the direct database interaction for you through a framework called Core Data that makes
interacting with the database much easier. Core Data has been adapted by Apple from a
NeXT product called Enterprise Object Framework, and working with Core Data is a lot
easier than interfacing directly with the SQLite database. Directly accessing a database via
SQL is beyond the scope of this book.

Getting Started with Core Data

Let’s start by creating a new Core Data project.

1. Open Xcode and select File » New Project. To create an iOS
Core Data project, select Application from the menu on the left.
It is located underneath the iOS header. Then select Single View
Application, as shown in Figure 11-1.

204 CHAPTER 11: Storing Information

Choose a template for your new project:

i0S

Application - P 1 e

Framework & Library

Master-Detail Page-Based Single View Tabbed

watchOS Application Application Application Application

Application

. Tl zx

Framework & Library %
0s X

Application Game

Framework & Library
System Plug-in
Other

Single View Application

This template provides a starting point for an application that uses a single view. It provides
a view controller to manage the view, and a storyboard or nib file that contains the view.

Figure 11-1. Creating a new project

2. Click the Next button when you’re done. The next screen will allow
you to enter the name you want to use. For the purposes of this
chapter, you will use the name BookStore.

3. Near the bottom, you will see the checkbox called Use Core
Data. Make sure this is checked and then click Next, as shown in
Figure 11-2.

CHAPTER 11: Storing Information 205

Choose options for your new project:

Product Name: BookStore
Organization Name: Inn

Organization Identifier: com.inn

Bundle Identifier: com.inn.BookStore
Language: Swift ﬂ
Devices: iPhone a
Use Core Data
% Include Unit Tests
Include Ul Tests
Cancel Previous __i;ia-

Figure 11-2. Using Core Data

Note Core Data can be added to any project at any point. Checking that box when creating a
project will add the Core Data frameworks and a default data model to your application.

4. Select a location to save the project and click Create.

Once you are done with that, your new project will open. It will look similar to a standard
application, except now you will have a BookStore.xcdatamodeld file. This file is called a data
model and will contain the information about the data that you will be storing in Core Data.

The Model

In your BookStore folder on the right, you will see a file called BookStoreCoreData.xcdatamodeld.
This file will contain information about the data you want stored in the database. Click the
model file to open it. You will see a window similar to the one shown in Figure 11-3.

206 CHAPTER 11: Storing Information

= ©. 0.

Qutine Style Ad Entity Add Attribute Editor Style

Figure 11-3. The blank model

The window is divided into four sections. On the left you have your entities. In more common
terms, these are the objects or items that you want to store in the database.

The top-right window contains the entity’s attributes. Attributes are pieces of information
about the entities. For example, a book would be an entity, and the title of the book would
be an attribute of that entity.

Note In database terms, entities are your fables, and the attributes of the entities are called
columns. The objects created from those entities are referred to as rows.

The middle window on the right will show you all the relationships of an entity. A relationship
connects one entity to another. For example, you will create a Book entity and an Author
entity. You will then relate them so that every book can have an author. The bottom-right
portion of the screen will deal with fetched properties. Fetched properties are beyond the
scope of this book, but they allow you to create filters for your data.

Let’s create an entity.

1. Click the plus sign in the bottom-left corner of the window, or select
Editor » Add Entity from the menu, as shown in Figure 11-4.

CHAPTER 11: Storing Information 207

2oe » Ay BovicStere | B Proee & BoskStore: Ready | Today at 1100 AM < 0O 30O
B < [BosiSron) [DockStore) [BookStees scdatamodeid | [l DookStcen sedatamodel) [Entity o @
Msnthy and Type
¥ Attsibutos
B = 1 rame BoskStone sdstamodel

Type | Defaun - Core Data Mocel [

Lecation

BoskStore ecdatamodel
ut P [Users/radwices Drogibas]
+ Apuess Swilt 2.0/Codel
Chagter 11/BoekStorel
§ BogiStore]

* Relationships BoskStore sedatamadold/

BookStore cdatamodel €

On Demand Resource Tags

+ Gore Dats Model
teeriter
" Fetched Properties
Tesls Version
- Miarmm | Autsemats (code 70 B

Targen Msmbeiahip
B Ay Bosistore
BosStoreTests
BosStureUiTests
Souace Cantrol
Hepoutony -«

® o

=: o e a-

Qutine Style Ad Entity Add Muribute Editor Style

Figure 11-4. Adding a new entity

2. On the left side, name the entity Book.

Note You must capitalize your entities’ names.

3. Now let’s add some attributes. Attributes would be considered the
details of a book, so you will store the title, author, price, and year
the book was published. Obviously, in your own applications, you
may want to store more information, such as the publisher, page
count, and genre, but you want to start simple. Click the plus
sign at the bottom right of the window, or select Editor » Add
Attribute, as shown in Figure 11-5. If you do not see the option to
add an attribute, make sure you have selected the Book entity on
the left side.

208 CHAPTER 11: Storing Information

<

ENTITIES
3 Book

|5 BookStore BookStore 7 BookStore.xcdatamodeld bBookSlarc.xcdalamodel @ Book m attribute

¥ Attributes

<0>

[atribute

@ Defauit

A

¥ Relationships

+

¥ Fetched Properties

Figure 11-5. Adding a new attribute

You will be given only two options for your attribute, the name and
the data type. Let’s call this attribute title. Unlike entities, attribute
names must be lowercase.

Now, you will need to select a data type. Selecting the correct data
type is important. It will affect how your data is stored and retrieved
from the database. The list has 12 items in it and can be daunting.
We will discuss the most common options and, as you become more
familiar with Core Data, you can experiment with the other options.
The most common options are String, Integer 32, Decimal, and Date.
For the title of the book, select String.

String: This is the type of attribute used to store text. This should be used
to store any kind of information that is not a number or a date. In this
example, the book title and author will be strings.

Integer 32: There are three different integer values possible for an attribute.
Each of the integer types differ only in the minimum and maximum values
possible. Integer 32 should cover most of your needs when storing an
integer. An integer is a number without a decimal. If you try to save a
decimal in an integer attribute, the decimal portion will be truncated. In this
example, the year published will be an integer.

Decimal: A decimal is a type of attribute that can store numbers with decimals.
A decimal is similar to a double attribute, but they differ in their minimum and
maximum values and precision. A decimal should be able to handle any currency
values. In this example, you will use a decimal to store the price of the book.

CHAPTER 11: Storing Information

Date: A date attribute is exactly what it sounds like. It allows you to store
a date and time and then performs searches and lookups based on these
values. You will not use this type in this example.

6. Let’s create the rest of the attributes for the book. Now, add price.
It should be a decimal. Add the year the book was published. For
two-word attributes, it is standard to make the first word lowercase
and the second word start with a capital letter. For example, an ideal
name for the attribute for the year the book was published would be
yearPublished. Select Integer 32 as the attribute type. Once you
have added all of your attributes, your screen should look
like Figure 11-6.

Note Attribute names cannot contain spaces.

¥ Attributes
te A

I3 Book
R ’ N yearPublished Integer 32

CONFIGURATIONS B price Double e
@ Default B tite String ¢
+ e

¥ Relationships

+

¥ Fetched Properties

Figure 11-6. The finished Book entity

Note If you are used to working with databases, you will notice that you did not add a primary
key. A primary key is a field (usually a number) that is used to uniquely identify each record in a
database. In Core Data databases, there is no need to create primary keys. The Framework will
manage all of that for you.

209

210 CHAPTER 11: Storing Information

Now that you have finished the Book entity, let’'s add an Author entity.
1. Add a new entity and call it Author.

2. To this entity, add lastName and firstName, both of which are
considered strings.

Once this is done, you should have two entities in your relationship window. Now you need
to add the relationships.

1. Click the Book entity, and then click and hold on the plus sign that is
located on the bottom right of the screen. Select Add Relationship,
as shown in Figure 11-7. (You can also click the plus under the
Relationships section of the Core Data model.

ENTITIES

o ¥ Attributes
B Author
& Book -
Sy, 1 . B price Double <
Bt B titie String <
CON ONS B yearPublished Integer 32 ¢
@ Default +

¥ Relationships

B

relationship No Value No Inverse

4+ -

¥ Fetched Properties

= 1B O. O. o

Qutline Style Add Entity Add Relationship Editor Style

Figure 11-7. Adding a new relationship

CHAPTER 11: Storing Information 211

2. You will be given the opportunity to name your relationship. You
usually give a relationship the same name as the entity to which it
derived from. Type in author as the name and select Author from the
Destination drop-down menu.

3. You have created one half of your relationship. To create the other half,
click the Author entity. Click the plus sign located at the bottom right
of the screen and select Add Relationship. You will use the entity name
that you are connecting to as the name of this relationship, so you will
call it books. (You are adding an s to the relationship name because an
author can have many books.) Under Destination, select Book, and
under Inverse, select the relationship you made in the previous step.

In the Utilities window on the right side of the screen, select the Data
Model Inspector. Select To Many for the type of the relationship. Your
model should now look like Figure 11-8.

ENTITIES v
= ¥ Attributes

ﬂ Author

3@ Book Mtribute .

sl LA B firstName String 2
i B 1astName String s
CONFIGURATIONS

@Defau't +

¥ Relationships

0 books Book author

4 -

¥ Fetched Properties

& = (+] o

Outline Style Add Entity Add Relationship Editor Style

Figure 11-8. The final relationship

212 CHAPTER 11: Storing Information

Note Sometimes in Xcode, when working with models, it is necessary to press the Tab key for the
names of entities, attributes, and relationships to update. This little quirk can be traced all the way
back to WebObjects tools.

Now you need to tell your code about your new entity. To do this, hold down Shift and select
the Book entity and the Author entity and then select Editor » Create NSManagedObject
Subclass from the Application menu. Your screen should look like Figure 11-9.

Select the data models with entities you would like to manage

Select Data Mode

b BookStore

- [Next |

Figure 11-9. Adding the managed objects to your project

This screen allows you to select the data model you would like to create managed objects
for. In this case, you have only a single data model. In some complicated applications, you
may have more than one. Managed objects represent instances of an entity from your data
model. Select the BookStore data model and click Next.

You will now be presented with a screen to select the entities to create managed objects, as
seen in Figure 11-10. Select both and click Next.

CHAPTER 11: Storing Information 213

Select the entities you would like to manage

Select Entity
Book

Sence previous | (SN

Figure 11-10. Select the entities to create managed objects

Select the storage location and add it to your project, as seen in Figure 11-11. You need to
select the Options button on the bottom to see more information. Make sure your language
is set to Swift. By default, it is still Objective-C. You should not need to change any other
defaults on this page. Then click Create. You will notice that four files have been added

to your project. Book+CoreDataProperties.swift and Author+CoreDataProperties.swift
contain the information about the book and author entities you just created. Book.swift and
Author.swift will be used for logic relating to your new entities. These files will need to be
used to access the entities and attributes you added to your data model. These files are
fairly simple because Core Data will do most of the work with them. You should also notice
that if you go back to your model and click Book, it will have a new class in the Data Model
Inspector. Instead of an NSManagedObject, it will have a Book class.

214 CHAPTER 11: Storing Information

Gl I E = ' BookStore & th Q
Eavocites B BookStore 204 "1 BookStore o
BookStore.xcodeproj (]
Recenis "9 BookStoreTests o
:‘3 Dropbox | 7 BookStoreUITests o
<7 iCloud Drive
#™: Applications
& Desktop
@ Documents
©) pownloads
Shared
[<] Brad’s Mac Pro
lees
Language Swift -
Options Use scalar properties for primitive data types
Group (& BookStore @
Targets /N BookStore
BookStoreTests
BookStoreUlTests
New Folder Options Cancel Create

Figure 11-11. Select the save location for your new managed objects

Let’s look at some of the contents of Book+CoreDataProperties.swift:

import Foundation
import CoreData

extension Book {

@NSManaged var title: String?
@NSManaged var price: NSDecimalNumber?
@NSManaged var yearPublished: NSNumber?
@NSManaged var author: Author?

CHAPTER 11: Storing Information 215

You will see that the file starts by including the Core Data framework. This allows Core
Data to manage your information. This file contains an extension to the Book class. An
extension allows you to add new properties and functionality to an existing class. By
creating the Book class and the Book+CoreDataProperties.swift file, Xcode allows the
developer to separate the attributes from the basic logic. The superclass for the new
Book object is NSManagedObject. NSManagedObject is an object that handles all of the Core
Data database interaction. It provides the methods and properties you will be using in
this example. Later in the file, you will see the three attributes and the one relationship
you created.

Managed Object Context

You have created a managed object class called Book. The nice thing with Xcode is that it
will generate the necessary code to manage these new data objects. In Core Data, every
managed object should exist within a managed object context. The context is responsible
for tracking changes to objects, carrying out undo operations, and writing the data to the
database. This is helpful because you can now save a bunch of changes at once rather

than saving each individual change. This speeds up the process of saving the records. As a
developer, you do not need to track when an object has been changed. The managed object
context will handle all of that for you.

Setting Up the Interface
The following steps will assist you in setting up your interface:

1. In the BookStore folder in your project, you should have a
Main.storyboard file. Click this file and Xcode will open it in the
editing window, as shown in Figure 11-12.

216 CHAPTER 11: Storing Information

v [E View Controller Scene

» View Controller

o View Controller
.0 First Responder 2

[E exit

Storyboard Entry Point

Figure 11-12. Creating the interface

2. There should be a blank window. To add some functionality to your
window, you need to add some objects from the Object Library.
Type table into the search field on the bottom right of the screen.
This should narrow the objects, and you should see Table View
Controller and Table view. Drag the Table view to the view, as shown
in Figure 11-13.

CHAPTER 11: Storing Information 217

w [view Controller Scene identity and Type
v 9 viaw Controfier ¢ £ + Name Main.storyboard -
=] Top Layout Guide L » B 4 Type _Detault - Intertace Buider... BJ
Bottom Layout Guide - i [Ralativa 10 €
v O] vie
: i Base.iproj/Main.storyboard
able View

’] Full Path [Users/bradwioes/Dropbox/

0 First Responder Apress Swift 2.0/Code/

B ext Chapter 11/BookStore/
Storyboard Entry Point Bm?kswrc:i:::.lpro)

in.storyboan

On Demand Resource Tags

Interface Bulider Document
Opensin Default (7.0)

Bullos for Project Deployment Tang.

ooo

view a5 i05 7.0 and Later
o] 1 B Use Auto Layout
Q
Use Size Classes
Use as Launch Screon

Globel Tint NS Defoult B
Locallzation
@ ! Base
English Localizable Strings &
0 0e@o

Table View Controller - &
contrelier TRt MAnages 3 Table view.

Table View - Cisplays oata in a list
of plain, sectioned, of grouped rows.

o o Ll
Table View Cell - Detires the
attributes and behaviar of cefis (rows)
in a table view.

= (m] whny b Ay B 2 o] ksl B (O bk o

Figure 11-13. Adding the Table view

3. You now have a Table view. You will need to stretch the Table view
to fill your view. To create cells in your Table view, you need to add a
UITableViewCell. Search for cell in your Object Library, and drag a
Table view cell to your table. You now have a table and a cell on your
view, as shown in Figure 11-14.

218 CHAPTER 11: Storing Information

w [view Controller Scene
Set the active scheme ¢
| Top Layout Guide
Bottom Layout Guide
v [view
v Table View
v [£] Table View Cell
» Content View
T First Responder
[E exit

Storyboard Entry Point

Prototype Cells

Title

(]

Figure 11-14. Adding the Table view cell

Table View Cell
s B style Basic B
P B
- Image l
-
entifier
Selection | Default B
o 1 Accessory Mone B
Editing Act. | None <]
Ingentation 0 02
Lovel Width
indent While Editing
Shows Re-order Contrels
Separator | Default Insets B
View
Mode Scale To Fil | <]
Semantic Unspecified ﬁ
Tag 1] s
Interaction B User Interaction Enabled
Multiple Touch
Alpha 1
Backgreund =1 Defau't ﬁ
Tint | NN Defauit B
Drawing B Cpagque Hidden
0ODOe@Oo
Table View Controller - &
controlier that Manages 3 tabie view.
Table View - Dispiays cata in fist
of plain, SECTOREG, OF Groupec fows.
Table View Cell - Detines the
anributes ana benaviar of cells [rows)
in a table view.
wAny hAny B2 B 1ol kad| B (D table o

4. Select the cell, and in the Attributes Inspector on the right side, set
Style to Basic. Also, set the identifier to Cell. The identifier is used
for when your Table view contains multiple styles of cells. You will
need to differentiate them with unique identifiers. For most of your
projects, you can set this to Cell and not worry about it, as

shown in Figure 11-15.

CHAPTER 11: Storing Information

heE ¢ 0§ ©

Table View Cell

Style | Basic E
Image ﬁ
Identifier | Cell

Selection | Default
Accessory None

Editing Acc. None

o g

Indentation 0% 10
Level Width

Indent While Editing
Shows Re-order Controls

(<>

Separator Default Insets

Figure 11-15. Changing the style of the cell

5. When using a Table view, it is usually a good idea to put it in a
Navigation Controller. You will be using the Navigation Controller to
give you space to put an Add button on your Table view. To add a
Navigation Controller, select your View Controller in the Scene box,
which is the window to the left of your storyboard that shows your
View Controllers (your View Controller will have a yellow icon next
to it). From the Application menu, select Editor » Embed In >
Navigation Controller, as shown in Figure 11-16.

219

220 CHAPTER 11: Storing Information

Edit View Find Navigate Gl Product Debug Source Control Window Help

Canvas >

9151 BookStore | i iPhone 6 :
Size Class

126 AM

© = o @ |8 - :
2 8 < { Hide Document Outline
v [view Con Reveal in Document Outline
*roperties.gwift v View C +
H Top Align >
aProperties.swift eay Arrange > [Cells
vl lvies SizetoFit Content #=
% .T. v Snap to Guides
5 8 .
swift ' Guides [
r.owift .
s o
. B exit
s
Storybt et 4
Leioabomy Localization Locking >
v Automatically Refresh Views Navigation Controller
Jatamodeld Tab Bar Controller
s
Resolve Auto Layout Issues >
Refactor to Storyboard...

Figure 11-16. Embedding a Navigation Controller

6. You will now have a navigation bar at the top of your view. You
will now add a button to the bar. This type of button is called a
UIBarButtonItem. Search for bar button in your Object Library and

|7 B Main.storyboard (Base) | [B] View Controlier Scene)

View Controlier

drag a Bar Button item to the top right of your view on the navigation

bar, as shown in Figure 11-17.

CHAPTER 11: Storing Information 221

Bar Button Item

i] = Style Bordered

[— System item = Custom
Tint | =1 | Default

(o] o] o)

Item
Bar item

Prototype Cells

Title Item

Title Image
Tag

€ El

o

Enabled

bDOeB

Bar Button Item - Represents an
Item | item on a UiToolbar or
UiNavigationitem object.

Fixed Space Bar Button Item -
Jresnnnnns] | Represents a fixed space itemon a
UlToolbar object.

Flexible Space Bar Button Item -
L LLLL =+ Represents a fiexible space itemon a
UiTeclbar object.

O wAny hAny B2 1B o Mi_ 88 | (® bar button o
Figure 11-17. Adding a Bar Button item to the navigation bar
7. Select the Bar Button item and change the System item from Custom

to Add. This will change the look of your Bar Button item from the
word /tem to a plus icon, as shown in Figure 11-18.

222 CHAPTER 11: Storing Information

h e =@ U B ©

Bar Button Item
Style Bordered
System Item Add
Tint =1 Default

ofolol

Bar Item
Title

Image

<)w

Tag 0
Enabled

Figure 11-18. Changing the Bar Button item

8. Now you have created the interface, you need to hook it up to your
code. Hold down the Control key and drag your Table view to the
View Controller in the Document Outline, as shown in Figure 11-19.

88| < |2 BooksStore)| | BookStore) [l Mai..card) B Mai...Base)) [B Vie..cene Vie..troller) | < | Navi...Item

v [E] view Controller Scene
(__v (4 View Controller) ® B
7| Top Layout Guide
-\| Bottom Layout Guide

v [Clhview
v [§] Table View
v [E cen Prototype Cells
> Content View
w | ¢ | Navigation item Title

Left Bar Button Items
v Right Bar Button ltems
B Add
P First Responder
[exit
v Navigation Controller Scene
¥ (£ Navigation Controller
Mavigation Bar
P First Responder
& Exit |
Storyboard Entry Point
Relationship "root view controller...

Figure 11-19. Connecting the Table view

Right Bar Button It

CHAPTER 11: Storing Information

9. A pop-up will appear allowing you to select either the data source or
the delegate, as shown in Figure 11-20. You will need to assign both
to the View Controller. The order in which you select the items does
not matter, but you will have to Control-drag the Table view twice.

o2 | <€ [% BookStore)| | BookStore) [Mai...oard) [Mai..Bas

v View Controller Scene

Outlets
dataSource

_delegate

v ||| view
v || Table View
v [E cell Prototype Cells
5 Content View
v | < | Navigation Item Title
Left Bar Button Items
v Right Bar Button Items

{J§) First Responder

[=3 Exit

Figure 11-20. Hooking up the Table view

10. Now your Table view should be ready to go. You need to hook up
your button to make it do something. In the top right of your Xcode
window, click the Assistant Editor button (it looks like two circles).
This will open your code on the right side and your storyboard on the
left side. Now Control-drag your Add button to the View Controller
code on the right, as shown in Figure 11-21.

223

224 CHAPTER 11: Storing Information

BookStore: Ready | Today at 11:32 AM = o <0 0

B B:0x Right B..n Items (= Add | B2 2 Automatic | . ViewControlierswift) No Selection | + X b ® LY I B
[" Bar Button Item
ohroller Scens : #/ ViewController.swift
Controlier i // BookStore Style Bordered B
: "
i Liyoin Suide) // Crested by Brad Lees on B/8/1S. Srseniin| Add B
wtom Layout Guide = & /f Copyright © 2815 Inn. ALl rights reserved. Tint == Default B
aw & y "
Table View import UIKit Bar Item
Cell
1 class Vi : i Titie
b [Contant View class ViewController: UIViewController {
wigation lem override func viewDidLoad() { —r a
Left Bar Button ltems super.viewDidLoad() Tag [14
g /f Do any additional setup after loading the view,
Right Bar Button ltems | \ typically from a nib.) Enabled
~|Add I 1 }
Responder override func didReceiveMemoryWarningl) {
super.didReceiveMemoryWarning()
0 1 f/ Dispose of any resources that can be recreated.

ion Controller Scene 1 %
fation Controller n® Insert Outlet, Action, or Outlet Collection
wigation Bar n } —_—
Responder
board Entry Point
anship “root view controlier”...

Figure 11-21. Adding an action for your Button object

11.

It does not matter where you place the Add button in your code as

long as it is in your class and outside of any methods. It should be
after your class properties just for organization. When you let go,
you will be prompted for the type of connection you are creating. Set
Connection to Action. Then add a name for your new method, such

as addNew, as shown in Figure 11-22.

| |

override func didReceiveM
super.didReceiveMemory

Connection | Action A 20 // Dispose of any resq
r Scene 21 }
- Object View Controller 22
Name |addNew ‘)
Type AnyObject ?
Cancel Connect
oint

iew controller”...

Figure 11-22. Changing the type and name of the connection

CHAPTER 11: Storing Information 225

12. You also need to create an outlet for your Table view. Drag your
Table view from the View Controller scene to the top of the code
(just under the class definition, as seen in Figure 11-23). Make
sure the connection is set to Outlet and name the Table view
myTableView. You will need this outlet later to tell your Table
view to refresh.

¥ [View Controlier Scena Table View

v View Controflar
Top Layout Guide
Bottom Layout Guide

Contert Dynamic Prototypes :

Protatyps Colls 1w

v [Viow Style Plain &

b = Takle View {mport UIKit Separator Default ¢

* ¢ Navigation ltemn - import CoreData 1 Datault a

‘D: P Pralofype Cella class ViewController: UIViewController { Separstorinsst| Dafault o

: Title M - 0t o Ot covecton SR : :

* Navigation Centrolier Scena i Selecticn Single Selection <

var managedObjectContext: NSMa

Edaing No Selection During Editing

v Show Selection on Touch

ne viewDidload() {

super.viewDidload()

appbelegate: AppDele
sharedApplication(}

Inclax Fiow Lima gl
Text 0 Default <

Background 1 Default <
i nagedObjectContext as 1 tex Normai
3 Defautt <

Tracking

nc didReceiveMesoryWarningl) {
idReceiveMemorywWarning()
Dispose of any resources that can be recreated.

Scroll View
Style Default v

Scroll Indicators. ¥ Shows Horizontal Indicator
+ Shows Vertical Indicator

Serolling Scroling Enabled
Pagng Enabled
Direction Lock Enabled

Figure 11-23. Creating an outlet for the Table view

The interface is complete now, but you still need to add the code to make the interface do
something. Go back to the Standard editor (click the list icon to the left of the two circles
icon in the top right of the Xcode toolbar) and select the ViewController.swift file from the
file list on the left side. Because you now have a Table view you have to worry about, you
need to tell your class that it can handle a Table view. Change your class declaration at the
top of your file to the following:

class ViewController: UIViewController, UITableViewDelegate, UITableViewDataSource {

You added UITableViewDelegate and UITableViewDataSouzrce to your declaration. This tells
your controller that it can act as a table view delegate and data source. These are called
protocols. Protocols tell an object that they must implement certain methods to interact with
other objects. For example, to conform to the UITableViewDataSource protocol, you need to
implement the following method:

func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int

226 CHAPTER 11: Storing Information

Without this method, the Table view will not know how many rows to draw.

Before continuing, you need to tell your ViewController.swift file about Core Data. To do
this, you add the following line to the top of the file just under import UIKit:

import CoreData

You also need to add a managed object context to your ViewController class. Add the
following line right after the class ViewController line:

var managedObjectContext: NSManagedObjectContext!

Now that you have a variable to hold your NSManagedObjectContext, you need to instantiate it
so you can add obijects to it. To do this, you need to add the following lines to your override
func viewDidLoad() method:

let appDelegate: AppDelegate = UIApplication.sharedApplication().delegate as! AppDelegate
managedObjectContext = appDelegate.managedObjectContext as NSManagedObjectContext

The first line creates a constant that points to your application delegate. The

second line points your managedObjectContext variable to the application delegate’s
managedObjectContext. It is usually a good idea to use the same managed object context
throughout your app.

The first new method you are going to add is one to query your database records. Call this
method loadBooks.

1 func loadBooks() -> [AnyObject]{
let fetchRequest = NSFetchRequest(entityName: "Book")
var result = [AnyObject]()
do {
result = try managedObjectContext!.executeFetchRequest(fetchRequest)
} catch let error as NSError {
NSLog("My Error: %@", error)
}

return result

Owoo~NOUVT B~ WN

[N

}

This code is a little more complex than what you have seen before, so let’s walk through it.
Line 1 declares a new function called loadBooks, which returns an array of AnyObject. This
means you will receive an array that can contain any type of objects you want. In this case,
the objects will be Book. You then return the array once you have it loaded.

CHAPTER 11: Storing Information 227

You will now need to add the data source methods for your Table view. These methods tell
your Table view how many sections there are, how many rows are in each section, and what
each cell should look like. Add the following code to your ViewController.swift file:

func numberOfSectionsInTableView(tableView: UITableView) -> Int {
return 1
}

1
2
3
4
5
6 func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
7 return loadBooks().count

8 }

9

0

1 func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath)
-> UITableViewCell {

11 let cell = tableView.dequeueReusableCellWithIdentifier("Cell") as UITableViewCell?

12 let book: Book = loadBooks()[indexPath.row] as! Book

13 cell?.textlLabel!.text = book.title

14 return cell!

15 }

In line 2, you tell your Table view that it will contain only a single section. In line 7, you call a
count on your array of Book for the number of rows in your Table view. In lines 11 to 14, you
create your cell and return it. Line 11 creates a cell for you to use. This is standard code for
creating a cell. The identifier allows you to have more than one type of cell in a Table view,
but that is more complex. Line 12 grabs your Book object from your loadBooks() array.

Line 13 assigns the book title to your textLabel in the cell. The textLabel is the default label
in the cell. This is all you need to do to display the results of your loadBooks method in the
Table view. You still have one problem. You do not have any books in your database yet.

To fix this issue, you will add code to the addNew method you created earlier. Add the
following code inside the addNew method you created:

@IBAction func addNew(sender: AnyObject) {
let book: Book = NSEntityDescription.insertNewObjectForEntityForName
("Book", inManagedObjectContext: managedObjectContext) as! Book

book.title = "My Book" + String(loadBooks().count)
do {

try managedObjectContext!.save()
} catch let error as NSError {

NSLog("My Error: %@", error)

N =

myTableView.reloadData()

O VW ooO~NOUV bW

[
[N
—

228 CHAPTER 11: Storing Information

Line 2 creates a new Book object for your book in the database from the Entity name and
inserts that object into the managedObjectContext you created before. Remember that once
the object is inserted into the managed object context, its changes are tracked, and it can
be saved. Line 3 sets the book title to My Book and then sets the number of items in the
array. Obviously, in real life, you would want to set this to a name either given by the user or
from some other list. Lines 4-8 save the managed object context.

In Swift 2.0, error handling has been changed. Now you try and then throw an error when
you perform an operation that might cause an error. Line 9 tells the UITableView to reload
itself to display the newly added Book. Now build and run the application. Click the + button
several times. You will add new Book objects to your object store, as shown in Figure 11-24.
If you quit the app and relaunch it, you will notice that the data is still there.

iPhone 5s - iPhone 5s [i0S 9.0 (13A4...

Carrier 7 12:05 PM -
UL
My Book1
My Book2
My Book3
My Book4

Figure 11-24. The final app

This was a cursory introduction to Core Data for iOS. Core Data is a powerful API, but it can
also take a lot of time to master.

CHAPTER 11: Storing Information 229

Summary

Here is a summary of the topics this chapter covered:

Preferences: You learned to use NSUserDefaults to save and read
preferences from a file, on both iOS and OS X.

Databases: You learned what a database is and why using one can be
preferable to saving information in a preferences file.

Database engine: You learned about the database engine that Apple has
integrated into OS X and iOS and its advantages and limitations.

Core Data: Apple provided a framework for interfacing with the SQLite
database. This framework makes the interface much easier to use.

Bookstore application: You created a simple Core Data application and
used Xcode to create a data model for your bookstore. You also learned
how to create a relationship between two entities. Finally, you used
Xcode to create a simple interface for your Core Data model.

Exercises

Add a new view to the app for allowing the user to enter the
name of a book.

Provide a way to remove a book from the list.

Create an Author object and add it to a Book object.

Chapter

Protocols and Delegates

Congratulations! You are acquiring the skills to become an iOS developer! However, iOS
developers need to understand two additional topics in order to be successful: protocols
and delegates. It is not uncommon for new developers to get overwhelmed by these topics,
which is why we introduced the foundational topics of the Swift language first. After reading
this chapter, you will see that protocols and delegates are really useful and not hard to
understand and implement.

Multiple Inheritance

We discussed object inheritance in Chapter 2. In a nutshell, object inheritance means that a
child can inherit all the characteristics of its parent, as shown in Figure 12-1.

231

http://dx.doi.org/10.1007/978-1-4842-1488-6_2

232 CHAPTER 12: Protocols and Delegates

Object A

Object B

.

Figure 12-1. Typical Swift inheritance

C++, Perl, and Python all have a feature called multiple inheritance, which enables a class to
inherit behaviors and features from more than one parent, as shown in Figure 12-2.

CHAPTER 12: Protocols and Delegates 233

Object A

Object D

Figure 12-2. Multiple inheritance

Problems can arise with multiple inheritance because it allows for ambiguities to occur.
Therefore, Swift does not implement multiple inheritances. Instead, it implements something
called a protocol.

Understanding Protocols

Apple defines a protocol as a list of function declarations, unattached to a class definition.

A protocol is similar to a class with the exception that a protocol doesn’t provide an
implementation for any of the requirements; it describes only what an implementation should
look like.

The protocol can be adopted by a class to provide an actual implementation of those
requirements. Any type that satisfies the requirements of a protocol is said to conform to
that protocol.

Protocol Syntax

Protocols are defined like classes are, as shown in Listing 12-1.

Listing 12-1. Protocol definition

protocol RandomNumberGenerator {

var mustBeSettable: Int { get set }
var doesNotNeedToBeSettable: Int { get }

func random() -> Double9

234 CHAPTER 12: Protocols and Delegates

If a class has a superclass, you list the superclass name before any protocols it adopts,
followed by a comma, as shown in Listing 12-2.

Listing 12-2. Protocol listed after superclass

class MyClass: MySuperclass, RandomNumberGenerator, AnotherProtocol {
// class definition goes here
}

The protocol also specifies whether each property must have a gettable or gettable and
settable implementation. A gettable property is read-only, whereas a gettable and settable
property is not (shown earlier in Listing 12-1).

Properties are always declared as variable properties, prefixed with var. Gettable and
settable properties are indicated by { get set } after their type declaration, and gettable
properties are indicated by { get }.

Delegation

Delegation is a design pattern that enables a class or structure to hand off (or delegate)
some of its responsibilities to an instance of another type. This design pattern is
implemented by defining a protocol that encapsulates the delegated responsibilities.
Delegation can be used to respond to a particular action or to retrieve data from an external
source without needing to know the underlying type of that source.

Listing 12-3 defines two protocols for use with a random number guessing game.

Listing 12-3. Protocol definitions

protocol RandomNumberGame {
var machine: Machine { get }
func play()

protocol RandomNumberGameDelegate {
func gameDidStart(game: RandomNumberGame)
func game(game: RandomNumberGame, didStartNewTurnWithGuess randomGuess: Int)
func gameDidEnd(game: RandomNumberGame)

}

The RandomNumberGame protocol can be adopted by any game that involves random number
generating and guessing. The RandomNumberGameDelegate protocol can be adopted by any
type of class to track the progress of a RandomNumberGame protocol.

Protocol and Delegation Example

This section shows you how to create a more sophisticated random number guessing app
to illustrate how to use protocols and delegation. The app’s home view displays the user’s
guess and whether the guess was high, low, or correct, as shown in Figure 12-3.

CHAPTER 12: Protocols and Delegates 235

iPhane & - iPhane B [0S 5.0 [TIA33 5]

Carrier ¥ 11:15 AM -

The guess was 40
Guess too low

Guess Random Number

Figure 12-3. Guessing game app home view

When the users tap the Guess Random Number link, they are taken to an input screen to
enter their guess, as shown in Figure 12-4.

iPhone 6 - iPhone B /108 0.0 (13A4325¢)

Carrier ¥ 11:18 AM L

< Back Guess

Your previous guess was 40

Save Guess

1 2 3
ABC DEF

4 5 6

GHI JKL MNO

7 8 9

PQRS Tuv WXYZ
0 &

Figure 12-4. Guessing game app user input view

236 CHAPTER 12: Protocols and Delegates

When the users enter their guess, the delegate method passes the guess back to the home
view, and the home view displays the result.

Getting Started

Follow these steps to create the app:

1. Create a new Swift project based on the Single View Application
template, name it RandomNumberDelegate, and save it, as shown in
Figure 12-5.

Choose options for your new project:

Product Name: RandomNumberDelegate
Organization Name: xcelMd
Organization Identifier: com
Bundle Identifier: com.RandomNumberDelegate

Language: Swift <]

Devices: iPhone <]

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous [Next |

Figure 12-5. Creating the project

2. Select the Main.storyboard file, and from the File Inspector, uncheck
the Use Auto Layout option. Then click the Disable Size Classes
button. This will enable you to focus on just one device, the iPhone,
and not worry about Auto Layout, as shown in Figure 12-6.

CHAPTER 12: Protocols and Delegates 237

Figure 12-6. Turning off Auto Layout

3. From the Document Outline, select View Controller. Then select
Editor » Embed In » Navigation Controller. This embeds your
scene in a Navigation Controller and enables you to easily transition
back and forth to new scenes, as shown in Figure 12-7.

Xcode Fde Edit View Find Navigate JITIT@l Procuct Debug Source Control Window Help acee
sce » iy RandomiumberCuiegaes | UGN » RandombbumberDetegates: Resdy | Today at 4:38 PM
Arrange »
Resolve Auto Layout lssues > Mair_storyboad
BRQA O B ® (@ < Fin * ubeiogates) [Main steeyvoard 1 [Main storyboard (Basey » [View Controlier Scene | £ View Contralisr
S LI v
B 2 tarouen, 105 sw 8t 0 o
[Randombumbes Dulogatos v 5 vaw
+ ApDologate. st Lk
« ViewContreler. awift WFist) ocalization Locking » Tab Bar Controller
[Mainstonyboar [ex
56 vmagos xcassets Canvas 3
LaunchSessan xin Simulated Screen > B = e
* [Supperting Files

+ [Randomiumbes Dologatos Tests —
» [Products
Hide Document Cutline
Raveal in Document Outline

+ Automnatically Refresh Views

Figure 12-7. Embedding the View Controller in a Navigation Controller

4. Inthe View Controller, add two Label objects and two Button
objects along with four Outlet objects, which will control the view, as
shown in Figure 12-8 and Listing 12-4.

238 CHAPTER 12: Protocols and Delegates

Figure 12-8. Outlets necessary to control the view

Listing 12-4. IBAction function

47 // event triggered by playAgain Button
48 @IBAction func playAgainAction(sender: AnyObject) {

49 createRandomNumber ()

50 playAgainButtonOutlet.hidden = true // only show the button when the user guessed
the right #

51 guessButtonOutlet.hidden = false // show the button

52 outComelabelOutlet.text = ""

53 userGuessLabelOutlet.text = "New Game"

54 previousGuess = ""

55 }

5. Add the code in Listing 12-5 for the functions to handle when the
user guesses a number and to handle creating a random number.

Listing 12-5. User guess delegate function and createRandomNumber function

57 // function called from the GuessInputViewController when the user taps on the Save
Button button

58 func userDidFinish(controller: GuessInputViewController, guess: String) {
59 userGuessLabelOutlet.text = "The guess was " + guess

60 previousGuess = guess

61 var numberGuess = Int(guess)

62 if (numberGuess > randomNumber){

63 outComeLabelOutlet.text = "Guess too high"

64 }

65 else if (numberGuess < randomNumber) {

66 outComeLabelOutlet.text = "Guess too low"

67 }

68 else {

69 outComelLabelOutlet.text = "Guess is correct”

70 playAgainButtonOutlet.hidden = false // show the play again button
71 guessButtonOutlet.hidden = true // hide the guess again number

72 }

GHAPTER 12: Protocols and Delegates 239

73
74
75
76
77
78
79
80
81

}

// pops the GuessInputViewController off the stack
controller.navigationController?.popViewControllerAnimated(true)

// creates the random number
func createRandomNumber() {

}

6.

randomNumber = Int(arc4random uniform(100)) // get a random number between 0-100
print("The random number is: \(randomNumber)") // lets us cheat
return

Declare and initialize the two variables on lines 13 and 14 in
Listing 12-6.

Listing 12-6. Variable declarations and intializations

11 class ViewController: UIViewController, GuessDelegate {

12
13
14
15
16
17
18
19
20

var previousGuess =

var randomNumber = 0

@IBOutlet weak var userGuesslLabelOutlet: UILabel!
@IBOutlet weak var outComelabelOutlet: UILabel!
@IBOutlet weak var playAgainButtonOutlet: UIButton!
@IBOutlet weak var guessButtonOutlet: UIButton!!

7.

Modify the function viewDidLoad() to handle how the view should
look when it first appears and create the random number to guess,
as shown in Listing 12-7.

Listing 12-7. viewDidLoad function

32 override func viewDidLoad() {

33
34
35
36
37
38
39

super.viewDidLoad()

// Do any additional setup after loading the view, typically from a nib.
self.createRandomNumbex ()

playAgainButtonOutlet.hidden = true

outComeLabelOutlet.text = ""

Now you need to create a view to enable the users to enter their
guesses. In the Storyboard.swift file, drag a new View Controller
next to the home View Controller and create a label, a text field, and
a button. For the Text Field object, in the Placeholder property, type
Number between 0-100, as shown in Figure 12-9.

240 CHAPTER 12: Protocols and Delegates

Figure 12-9. Create the Guess View Controller and objects

9. You need to create a class for the Guess Input View Controller.
Create a Swift file and save it as GuessInputViewController.swift.
Select File » New » File. Then choose iOS » Source » Cocoa
Touch Class and name the class GuessInputViewController. It’s
subclassed from UIViewController, as shown in Figure 12-10.

Choasa options for your new fik:

Class: GuessinputViewController
Subclass of: | LAViewControlier

Also create X1 file

Language: Swift

Figure 12-10. Create the GuessinputViewController.swift file

10. Let’s associate the GuessInputViewController class with the Guess
View Controller created in Step 8. From the Main.storyboard
file, select the Guess Input View Controller, select the Identity
Inspector, and select or type GuessInputViewController in the Class

field, as shown in Figure 12-11.

GHAPTER 12: Protocols and Delegates 241

W IPhone & RandombumberDelegates | Build Succesded | BIIGYIS at 520 AM D <00 B
Main.storyboard
mberDeisgutes | | Msie toeybese | [Maim stoeyeeane (Base) [Gusas Sesne | () Guess <ay DOEC I ®
— Contor Class
tantrolier View Centrolier 0
—_ st | GusssingutviewConetie © [
Ahocls B

Guess

ety

Use Storyboard 1D

No guesses yet Make a guess
User Dafingsd Auntime Atsributes

Label Moy Pamn Type

Figure 12-11. Creating the GuessinputViewController.swift file

Now let’s create and connect the actions and outlets in the GuessInputViewController class,
as shown in Listing 12-8.

Note To see the bound rectangles around your controls in your storyboard, as shown in
Figure 12-11, select Editor » Canvas » Show Bounds Rectangle.

Listing 12-8. Class listing

9 import UIKit

10

11 // protocol used to send data back the home view controller's userDidFinish
12 protocol GuessDelegate {

13 func userDidFinish(controller: GuessInputViewController, guess: String)
14 }

15

16 class GuessInputViewController: UIViewController, UITextFieldDelegate {

17

18 var delegate: GuessDelegate? = nil
19 var previousGuess: String = ""

20

21

22 @IBOutlet weak var guessLabelOutlet: UILabel!
23 @IBOutlet weak var guessTextOutlet: UITextField!

24
25 override func viewDidLoad() {
26 super.viewDidLoad()

27

242 CHAPTER 12: Protocols and Delegates

28 // Do any additional setup after loading the view.

29 if(!previousGuess.isEmpty){

30 guessLabelOutlet.text = "Your previous guess was \(previousGuess)"
31 }

32 guessTextOutlet.becomeFirstResponder()

33 }

34

35 override func didReceiveMemoryWarning() {

36 super.didReceiveMemoryWarning()

37 // Dispose of any resources that can be recreated.

38 }

39

40 @IBAction func saveGuessAction(sender: AnyObject) {

41 if (delegate != nil){

42 delegate!.userDidFinish(self, guess: guessTextOutlet.text!)
43 }

44 }

11. You are almost done. You need to connect the scene with a segue. A
segue enables you to transition from one scene to another. Control-
drag from the Guess Random Number button to the Guess Input
View Controller and select push as the type of Action Segue, as
shown in Figure 12-12.

| Guess

No guesses yet Make a guess
Label

=} O a
Guess Random Nusben
=} O a
Save Guess

Play Again?

Figure 12-12. Creating the segue that transitions scenes when the Guess Random Number button is tapped

CHAPTER 12: Protocols and Delegates 243

12. Now you need to give the segue an identifier. Click the segue arrow,
select the Attributes Inspector, and name the segue MyGuessSegue, as
shown in Figure 12-13.

storyboard (Base) | [View Controlier Scene MyGuessSegue {4 D@ 9 0 &
(;‘c“:: MyGuossSegue o
Sogue Moduly -~
View Controller [| "} Dastination | Currant ﬂ
—-— — B Animates
Mo guesses yet Make a guess
Label
Guess Random Number
Save Guess
Play Again?
(&}]
Figure 12-13. Creating the segue identifier
Note Make sure you press Return when you type the segue identifier. Xcode may not pick up the
property change if you don’t press Return.
Now you need to write the code to handle the segue. In the ViewController class, add the
code in Listing 12-9.
Listing 12-9. prepareForSegue function
24 override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {
25 if segue.identifier == "MyGuessSegue"{
26 let vc = segue.destinationViewController as! GuessInputViewController
27 vc.previousGuess = previousGuess // passes the last guess the previousGuess
property in the GuessInputViewController
28 vc.delegate = self
29 }

30 }

244 CHAPTER 12: Protocols and Delegates

When the user taps the Guess Random Number button, the segue gets called, and the
function prepareForSegue gets called. You first check to see whether it was the MyGuessSegue
segue. You then populate the vc variable with the GuessInputViewController.

Lines 27 and 28 pass the previousGuess number and delegate to the
GuessInputViewController.

13. Finally, if you haven’t added the GuessDelegate delegate to the
ViewController class, do it now, as shown in Listing 12-10.

Listing 12-10. ViewController class with GuessDelegate listed

11 class ViewController: UIViewController, GuessDelegate {

12
13 var previousGuess = ""
14 var randomNumber = 0

How It Works

Here is how the code works:

When the user taps the Guess Random Number link, prepareForSegue is
called. See line 24 in Listing 12-9.

Because the ViewController conforms to the GuessDelegate (see
line 11 in Listing 12-10), you can pass self to the delegate in
GuessInputViewController.

The GuessInputViewController scene is displayed.

When the user guesses a number and taps Save Guess, the
saveGuessAction is called (see line 40 in Listing 12-8).

Since you passed ViewController to the delegate, it can pass the guess
back in the ViewController.swift file (see line 42 in Listing 12-8).

Now you can determine whether the user guessed the correct answer
and pop the GuessInputViewController view from the stack (see line 74
in Listing 12-5).

Summary

This chapter covered why multiple inheritance is not used in Swift and how protocols and
delegates work. When you think of delegates, think of helper classes. When your class
conforms to a protocol, the delegate’s functions help your class.

You should be familiar with the following terms:
Multiple inheritance
Protocols

Delegates

GHAPTER 12: Protocols and Delegates 245

Exercise

Change the random number the computer guesses from 0-100 to 0-50.

In the main scene, display how many guesses the user has made trying
to guess the random number.

In the main scene, display how many games the user has played.

Chapter

Introducing the Xcode
Debugger

Not only is Xcode provided free of charge on Apple’s developer site and the Mac App Store,
but it is a great tool. Aside from being able to use it to create the next great Mac, iPhone,
iPad, and Apple Watch apps, Xcode has a debugger built right into the tool.

What exactly is a debugger? Well, let’s get something straight—programs do exactly what
they are written to do, but sometimes what is written isn’t exactly what the program is

really meant to do. This can mean the program crashes or just doesn’t do something that is
expected. Whatever the case, when a program doesn’t work as planned, the program is said
to have bugs. The process of going through the code and fixing these problems is called
debugging.

There is still some debate as to the real origin of the term bug, but one well-documented
case from 1947 involved the late Rear Admiral Grace Hopper, a Naval reservist and
programmer at the time. Hopper and her team were trying to solve a problem with the
Harvard Mark Il computer. One team member found a moth in the circuitry that was causing
the problem with one of the relays. Hopper was later quoted as saying, “From then on, when
anything went wrong with a computer, we said it had bugs in it.”"

Regardless of the origin, the term stuck, and programmers all over the world use debuggers,
such as the one built into Xcode, to help find bugs in programs. But people are the real
debuggers; debugging tools merely help programmers locate problems. No debugger,
whatever the name might imply, fixes problems on its own.

This chapter highlights some of the more important features of the Xcode debugger and
explains how to use them. Once you are finished with this chapter, you should have a good
enough understanding of the Xcode debugger and of the debugging process in general to
allow you to search for and fix the majority of programming issues.

"Michael Moritz, Alexander L. Taylor lll, and Peter Stoler, “The Wizard Inside the Machine,” Time,
Vol.123, no. 16: pp. 56-63.

247

248 CHAPTER 13: Introducing the Xcode Debugger

Getting Started with Debugging

If you’ve ever watched a movie in slow motion just so you can catch a detail you can’t

see when the movie is played at full speed, you’ve used a tool to do something a little like
debugging. The idea that playing the movie frame by frame will reveal the detail you are
looking for is the same sort of idea you apply when debugging a program. With a program,
sometimes it becomes necessary to slow things down a bit to see what’s happening. The
debugger allows you to do this using two main features: setting a breakpoint and stepping
through the program line by line—more on these two features in a bit. Let’s first look at how
to get to the debugger and what it looks like.

First you need to load an application. The examples in this chapter use the BookStore project
from Chapter 8, so open Xcode and load the BookStore project.

Second, make sure the Debug build configuration is chosen for the Run scheme, as shown
in Figure 13-1. To edit the current scheme, choose Product » Scheme » Edit Scheme
from the main menu. Debug is the default selection, so you probably won’t have to change
this. This step is important because if the configuration is set to Release, debugging will not
work at all.

v/\. BookStore | i iPhone 6

a B‘_"”d , nfo Arguments Options Diagnostics
Run
y o Tost Executable | s BookStore.app o
2 Debug executable
> Profile
eleas Debug Process As
> E Analyze
Launch Automaticall
> p Archive 5 O A »
¥ rele Wait for executable to be launched
Duplicate Scheme Manage Schemes... Shared " Close |

Figure 13-1. Selecting the Debug configuration

While this book won’t discuss Xcode schemes, just know that by default Xcode provides
both a Release configuration and a Debug configuration for any Mac OS X or iOS project
you create. The main difference as it pertains to this chapter is that a Release configuration
doesn’t add any program information that is necessary for debugging an application,
whereas the Debug configuration does.

http://dx.doi.org/10.1007/978-1-4842-1488-6_8

CHAPTER 13: Introducing the Xcode Debugger 249

Setting Breakpoints

To see what’s going on in a program, you need to make the program pause at certain points
that you as a programmer are interested in. A breakpoint allows you to do this. In

Figure 13-2, there is a breakpoint on line 24 of the program. To set this, simply place the
cursor over the line number (not the program text, but the number 24 to the left of the
program text) and click once. You will see a small blue arrow behind the line number. This
lets you know that a breakpoint is set.

sne p iy DosicStorn |) Phoe & DookStere | Duld Bockdtore: Succeeded | Todsy 31 7204 PM » <SI0 20

[-] 3 i BookSuees | (1] BocaStons | . MasterViewContotierswitt | (8 MaseniewControser

Figure 13-2. Your first breakpoint

If line numbers are not being displayed, simply choose Xcode » Preferences from the main
menu, click the Text Editing tab, and select the Line Numbers checkbox.

You can also remove the breakpoint by dragging the breakpoint to the left or right of the line
number column and then dropping it. In Figure 13-3, the breakpoint has been dragged to the
left of the column. During the drag-and-drop process, the breakpoint will turn into a puff of
smoke. You can also right-click (or Control-click) the breakpoint, and you will be given the
option to delete or disable a breakpoint. Disabling a breakpoint is convenient if you think you
might need it again in the future.

250 CHAPTER 13: Introducing the Xcode Debugger

self.navigationItem.leftBarButtonItem = self.editButtonItem()

let addButton = UIBarButtonItem{barButtonSystemItem: .Add, target: self, action: "insertNewObject:")

'- s s tBarButtonItem = addButton
Edit Breakpoint... tViewController {
Disable Breakpoint Lit.viewControllers
sller = (controllers[controllers.count-1] as! UINavigationController).topVie

Delete Breakpoint

Reveal in Breakpoint Navigator (animated: Bool) {
sr serrsrtesrssetectronunvaewWil lAppear = self.splitViewController!.collapsed
super.viewWillAppear({animated)

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

Figure 13-3. Right-clicking a breakpoint

Setting and deleting breakpoints are pretty straightforward tasks.

Using the Breakpoint Navigator

With small projects, knowing where all the breakpoints are isn’t necessarily difficult.
However, once a project gets larger than, say, your small BookStore application, managing all
the breakpoints could be a little more difficult. Fortunately, Xcode provides a simple method
to list all the breakpoints in an application; it’s called the Breakpoint Navigator. Just click the
Breakpoint Navigator icon in the navigation selector bar, as shown in Figure 13-4.

[] e)r A BookStore | i iPhone & BookStore | Build BookStore: Succeeded | Today at 7:04 PM 1
B2 Q A © E @ = Bl < & BookStore BookStore) . DetailViewController.swift | No Selection
¥ [BookStore b .
o £/ DetailViewController. swift
¥ . MasterViewController.swift // BookStore
(@ viewDidLoad() ot // Created by Brad Lees on 8/8/15.
[viewWillAppear(_:) line 32 = // Copyright © 2015 Inn. ALl rights reserved.
¥ . DetaiiViewControlier.swift "
£ configureview() line 27 [] import UIKLt
(] viewDidLoad() fine =2 ol 1 class DetailViewController: UIViewController {
[didReceiveMemory... =
gIBoutl weak var titlelabel: UILabel!
21B0u weak var authorLabel: UILabel!

2IB0utlet wesk var descriptionTextView: UITextView!

var detailltem: AnyObject? {
didSet

}
}

func contigureview() {
if let o

.text = myBook.t
t = myBook.

o bavt =

Figure 13-4. Accessing the Breakpoint Navigator in Xcode

Once you’ve clicked the icon, the navigator will list all the breakpoints currently defined in
the application. From here, clicking a breakpoint will take you to the source file with the
breakpoint. You can also easily delete and disable breakpoints from here.

CHAPTER 13: Introducing the Xcode Debugger 251

To disable/enable a breakpoint in the Breakpoint navigator, click the blue breakpoint icon in
the list (or wherever it appears). Don’t click the ling; it has to be the little blue icon, as shown
in Figure 13-5.

O ® J- TA' BookStore) |i§ iPhone 6 BookStore | Build BookStore: Su
B 2 Q AN © = b B (83|« [Bookstore)| | BookStore) . DetailViewController
v é] BookStore L l” PR :
. 2 // DetailViewController.swift
¥ . MasterViewController.swift i // BookStore
1 i line 24 b [/
[viewDidLoad() line - 5 // Created by Brad Lees on 8/8/15.
[viewwillAppear(_:) line 32 , // Copyright © 2015 Inn. All rights reserved.
¥ . DetailViewController.swift /"
mconﬁgure\fiew{] ne 27 9 import UIKit

[viewDidLoad() line 35

class DetailViewController: UIViewController {
mdidReceiveMemow... ne

@IBOutlet weak var titleLabel: UILabel!
@IBOutlet weak var authorlLabel: UILabel!

@IBOutlet weak var descriptionTextView: UITextVie

var detailltem: AnyObject? {
didSet {

}
}

func configureView() {
if let detail:AnyObject = self.detailltem {

ED titleLabel.text = myBook.title
28 authorLabel.text = myBook.author
descriptionTextView.text = myBook.descrip

1

Figure 13-5. Using the Breakpoint Navigator to enable/disable a breakpoint

It is sometimes handy to disable a breakpoint instead of deleting it, especially if you plan to
put the breakpoint back in the same place again. The debugger will not stop on these faded
breakpoints, but they remain in place so they can be conveniently enabled and act as a
marker to an important area in the code.

It’s also possible to delete breakpoints from the Breakpoint Navigator. Simply select one or
more breakpoints and press the Delete key. Make sure you select the correct breakpoints to
delete since there is no undo feature.

It’s also possible to select the file associated with the breakpoints. In this case, if you delete
the file listed in the Breakpoint Navigator and press Delete, all breakpoints in that file will be
deleted.

Note that breakpoints are categorized by the file that they appear in. In Figure 13-5, the files
are DetailViewController.swift and MasterViewController.swift, with the breakpoints
listed below those file names. Figure 13-6 shows an example of what a file looks like with
more than a single breakpoint.

252 CHAPTER 13: Introducing the Xcode Debugger

o0e) B 7 BookStore) i iPhone & BookStore | Build BookStore: Succeeded | Today
B 82 Q A & = D B [B|L [& BookStore BookStore) . DetailViewController.swift) No Selectic
v rl_;.j BookStore 7 T s .
2 f/ DetailViewController.swift
¥ . MasterViewController.swift i // BookStore

wousais i | 27
[viewDidLoad() line 2 - s // Created by Brad Lees on 8/8/15.

& // Copyright © 2015 Inn. All rights reserved.
¥ . DetailViewController.swift 3 /"
[0 configureView() line 27 ? import UIKit

mviewDidLoadniire 5 1 class DetailViewController: UIViewController {

m didReceiveMemory... line 41

@IB0utlet weak var titlelLabel: UILabel!
@IB0utlet weak var authorLabel: UILabel!

@IBOutlet weak var descriptionTextView: UITextView!

var detailltem: AnyObject? {
didSet {

}
}

func configureView() {
if let detail:AnyObject = self.detailltem {
26 var myBook: Book = detail as! Book
| 27] titleLabel.text = myBook.title
28 authorLabel.text = myBook.author

Figure 13-6. A file with several breakpoints

Debugging Basics

Set a breakpoint on the statement shown in Figure 13-2. Next, as shown in Figure 13-7, click
the Run button to compile the project and start running it in the Xcode debugger.

< .@ 7‘\. BookStore ; i iPhone 6 BookStore | Build BookStore: Succeeded | Today at 7:04 PM
BRE a9 M & B B |B|<L [BookStore)| 7] BookStore) . DetailViewController.swift) No Selection
v [& BookStore N7 .
2 f/ DetailViewController.swift
¥ . MasterViewController.swift 1 // BookStore

iewDidLoad() line 24 R
(@] viewDidLoad() line B |) Created by Brad Lees on 8/8/15.

[viewWillAppear{_:) line 32 [] & ff/ Copyright © 2815 Inn. All rights reserved.
¥ . DetailViewController.swift £
[0 configureView() line 27 » 7 import UIKit

Figure 13-7. The Build and Debug buttons in the Xcode toolbar

Once the project builds, the debugger will start. The screen will show the debugging
windows, and the program will stop execution on the line statement, as shown in Figure 13-8.

CHAPTER 13: Introducing the Xcode Debugger 253

The Debugger view adds some additional windows. The following are the different parts of
the Debugger view shown in Figure 13-8:

= B < [BookStore) (] Bocikstore | [MasterViewControlierswite | [viewDidLoad)
v BookSiore @
B cru

(=

© Hotwork

Toruad T Erwakpsiet 11

Debug Navigator

wel T TR0000TA 02301530

» [adeutton ORO000TICO2IG600

Variables Console

TOE|| sros z X1 Outpun & oo

Figure 13-8. The Debugger view with execution stopped on line 24

Debugger controls (circled in Figure 13-8) The debugging controls can
pause, continue, step over, step into, and step out of statements in the
program. The stepping controls are used most often. The first button on
the left is used to show or hide the debugger view. In Figure 13-8, the
debugger view is shown.

Variables: The Variables view displays the variables currently in scope.
Clicking the little triangle just to the left of a variable name will expand it.

Console: The output window will show useful information in the event of
a crash or exception. Also, any NSLog or print output goes here.

Debug navigator: The stack trace shows the call stack as well as all

the threads currently active in the program. The stack is a hierarchical
view of what methods are being called. For example, main calls
UIApplicationMain, and UIApplicationMain calls the UIViewController
class. These method calls “stack” up until they finally return.

254 CHAPTER 13: Introducing the Xcode Debugger

Working with the Debugger Controls

As mentioned previously, once the debugger starts, the view changes. What appears are the
debugging controls (circled in Figure 13-8). The controls are fairly straightforward and are

explained in Table 13-1.

Table 13-1. Xcode Debugging Controls

Control

Description

> |

>

(D

<

=

Clicking the Stop button will stop the execution of the program. If the iPhone or
iPad emulator is running the application, it will also stop as if the user clicked the
Home button on the device. Clicking the Run button (looks like a Play button) starts
debugging. If the application is currently in debug mode, clicking the Run button
again will restart debugging the application from the beginning; it’s like stopping and
then starting again.

Clicking this causes the program to continue execution. The program will continue
running until it ends, the Stop button is clicked, or the program runs into another
breakpoint.

When the debugger stops on a breakpoint, clicking the Step Over button will cause
the debugger to execute the current line of code and stop at the next line of code.

Clicking the Step In button will cause the debugger to go into the specified function
or method. This is important if there is a need to follow code into specific methods or
functions. Only methods for which the project has source code can be stepped into.

The Step Out button will cause the current method to finish executing, and the
debugger will go back to the caller.

Using the Step Controls

To practice using the step controls, let’s step into a method. As the name implies, the Step In
button follows program execution into the method or function that is highlighted. Select the
DetailViewController.swift file on the left side. Then set a breakpoint on line 36, which is
the call to self.configureView(). Click the Run button and select a book from the list. Your
screen should look similar to Figure 13-9.

CHAPTER 13: Introducing the Xcode Debugger 255

Running BogkStore on iPhone &

0 Bosicsiore | [DeViewCorarolie switt | [ecefigurevien

Created by Brad Lees on
A4 Copyright ® 2015 Inn, AL
"

import DKt
clats DetailWiewContraller: BIViswController {

®

weak var titlelabelr UTLabel!
waak var sythariabel: UILabell

1 1 Botic BookStons Butaiiewt:
[0 2 -UViewCartotier koadViaw!

1B0utiet weak var descriptionTextView: UITextView!

var setaillten: AnyObject? {
Set {

[3 Uskppicationtain

22 main

=] 23 atart : »
= i Theoad 2
» W Treesa
» B Trvessd 10

¥

func viewdidlosdi) {
wvinidloadl)

Do any additionsl setup sfter losdisy the view, typicslly from o nib.

[} " self.configurevieu() Fhrmed 1 Breskpont 61

ne digReceiveMercrywarningl] {
vper.didRece lveMemaryWarning| 1
'# Dispose of sny rescurces that cen be recreated.

3
¥
Ee e s i t 2 BookSiore | i Thread 1) I 0 2 Storm -0
* I st = e i OWDOCTIC5TacATI00 (i)
= EFE| Aes B i Dutput ® 00

Figure 13-9. The debugger stopped on line 38

Click the Step Into button, = which will cause the debugger to go into the configureView()
method of the DetailViewController object. The screen should look like Figure 13-10.

Running BockSine on #rane B e = |

B Booustom BookStore | [l DetaiViewControterswint | [cortigureviewt]

. 7
@ | ;i petaitviewteatrolier. it
3/ Bookstore
e w1
4/ Creates by Brag Lees on B/8/15,
32IME | 4 sy Copyright © 2005 Inn. ALL rights reserved.
1 4
18 KBjs

Erpart UIRiE

Tara Kilje

Detailviewtontrollers UlviewController {
¥ i Treesa 10 _.
(] [0 BockStore. DetaTviewContrail_.
1 1 BookStore. Detai¥iewContrail_
Il 2 otic BookStore Dutailviewd
[3 -(urviewControter loadviewit
[22 uippicaticemain

weak var titlelsvel: LlLabel)
3k var authorLabels UTLabel!

ak var descripticaTextView: UITextvise!

var detailltem: AnyObject? {
aigset {

: 3
1 23 main 1
(] 24 start
24 2 fune contigurevienl) {
» W Toenad 2 Af let detodliAnyDbject = salf.detailltes { Toread 1 sin s
> Teesd B L i
» i Theesd 10
3
¥
aver wiesdidlosdl) {
dLoad(
any additional setwp after loading the view, typically from a nib.
| =3 self.conf igureViewt]
]

o didReceiveMensryWarningil {
Rece iveMesarysarning(}
4 Dispete of any rescurces that can be recrested.

o L O Dooktore | B Theasd 1) I

* [nalt = 15 etaviewon o) QuD00CTICSTacA TIO0 [y
* [enait - o} OROODOTICHTataTTa0
= EEME | awes i< B Qg T w00

Figure 13-10. Stepping into the configureView method of the DetailViewController object

256 CHAPTER 13: Introducing the Xcode Debugger

Ve
The control Step Over, = , continues execution of the program but doesn’t go into a

T

=

method. It simply executes the method and continues to the next line. Step Out, ,isa
little like the opposite of Step In. If the Step Out button is clicked, the current method
continues execution until it finishes. The debugger then returns to the line before Step In was
clicked. For example, if the Step In button is clicked on the line shown in Figure 13-9 and
then the Step Out button is clicked, the debugger will return to the viewDidLoad() method of
the DetailViewController.swift file on the statement shown in Figure 13-9 (line 36 in the
example), which was the line where Step In was clicked.

Looking at the Thread Window and Call Stack

As mentioned earlier, the Debug navigator displays the current thread. However, it also
displays the call stack. If you look at the difference between Figures 13-9 and 13-10 as far
as the thread window goes, you can see that Figure 13-10 has the configureView method
listed because DetailViewController calls the configureView method.

Now, the call stack is not simply a list of functions that have been called; rather, it’s a

list of functions that are currently being called. That’s an important distinction. Once the
configureView method is finished and returns (line 31), configureView will no longer appear
in the call stack. You can think of a call stack almost like a breadcrumb trail. The trail shows
you how to get back to where you started.

Debugging Variables

It is possible to view some information about a variable (other than its memory address) by
hovering over the variable in the code. When you get to where the value of a variable has
been assigned in the local scope, you will see the variable in the bottom Variables view.

In Figure 13-11, you can see the newBook variable, and it has a title of Swift for Absolute
Beginners. You can also see that there is no author or description assigned. In debugging,
when you are stopped on a line, it is before the line is executed. This means that even though
you are paused on the line to assign the author property, it has not been assigned yet.

CHAPTER 13: Introducing the Xcode Debugger 257

SO0® > WP Bockson) Gl Phore s Running BoskStere on iPhane & =0 <l00Q 0
B =" b © HEo B Bl [DocStorn) [0 BookStore | . DookSters switt | No Selection
¥ BookStore @ il 4 B
8 erv o
) Wemory 17.0 MB TR
] cisk 45 MBjs
I'.J t Foundation
Nptworc Zeeo Kl
a laokStore {
¥ B Treead 10 theBookStores [Sesk] = []
n

I 1 BockStore._stocating init[] -
1 2 MassservieuControteriniticed . [IKEL Taread 1. besakssint 11
[0 35 Liappicationiain
I 36 main
7 swnt
» i Thvesc 2 0
B Trress 3
* B Tevess 4
* B Treesc & 2 1]

Bel & i L0 DookStors | i Thread 1) [T 0 BoskeStcen.initl) -> BockStore

b el - pockiii) ORO00OTINGCI023260 s
¥ [0 newBook = [socksicrs Bock) Ox0OD0MBOCHB2BE50
- tigle = (5 “Swilt for Absoiute Beginnerns®
> authr o 5
* description
TEE|| awes = KO oo

Figure 13-11. Viewing a variable value

Position the cursor over any place the newBook variable appears and click the disclosure
triangle to display the Book object. You should see what is displayed in Figure 13-12.

i [newBook, title = "Switt tor Absolute Beginners"
rViewControl.. EEL i_r__\,;_e_y____l_i_qgl;_hlthor = “Bennett and Lees"
Magter == | 18 .ney" 10k,description = "Swift programming made easy."
¥ 0x00007feScbd12a10
r initWit : AT : .
| b title = (String) "Swift for Absolute Beginners
lin » author = (String) " to Arms"
P description = (String) " ingway" _
— E- (Qg_r}‘u‘v!m_t‘:,vva\.- sprawn-——me—atOry 0f an afair between an
25 theBookStore. append {(newBook)
..nager (serial) =
e 1

Figure 13-12. Hovering over the newBook variable reveals some information

Hovering over the newBook variable reveals its information. In Figure 13-12, you can see the
newBook variable expanded.

258 CHAPTER 13: Introducing the Xcode Debugger

Dealing with Code Errors and Warnings

While coding errors and warnings aren’t really part of the Xcode debugger, fixing them is
part of the entire debugging process. Before a program can be run (with or without the
debugger), all errors must be fixed. Warnings won’t stop a program from building, but they
could cause issues during program execution. It’s best not to have warnings at all.

Errors

Let’s take a look at a couple of types of errors. To start, let’s add an error to the code. On line
15 of the MasterViewController.swift file, change the following:

var myBookStore: BookStore = BookStore()

to the following:

var myBookStore: BookStore = BookStore[]

Save the changes and then build the project by pressing 3+B. There will be an error, as
shown in Figure 13-13, that may show up immediately or after the build.

© arvay ryses. o

Figure 13-13. Viewing the error in Xcode

Next, move over to the Issue Navigator window, as shown in Figure 13-14, by clicking the
triangle with the exclamation point. This view shows all the errors and warnings currently

in the program—not just the current file, MainViewController.swift, but all the files. Errors
are displayed as a white exclamation point inside a red octagon. In this case, you have one
error. If the error doesn’t fit on the screen or is hard to read, simply hover over the error on
the Issue Navigator, and the full error will be displayed.

CHAPTER 13: Introducing the Xcode Debugger 259

ece » B A\ BookStore | [Phone & Running BookStore on iPhone 6 0:
[| T > o B " < 5 BookStore BookStore | [MasterViewControlier.swift | [f] viewDidLoad()

¥ 7 BookStore o
v [MasterViewController.swift Created by Brad Lees on 8/8/15.

Copyright © 2815 Inn. A1l rights reserved.

© '[BookStore] Type' is not ’ .
convertible to "BookStore’

1© Array types are now written with rt UIKit

the brackets around the element

type

1 class MasterViewController: UITabl

var detailViewController: De
var objects = [AnyObject] ()
o var myBookStore:BookStore = BookStoref]]

override func viewDidLoad() {

1f, action: "insertNewObject:™)

Figure 13-14. Viewing the Issue Navigator

Generally, the error points to the problem. In the previous case, the BookStore object was
initialized as an array rather than as an object.

Go ahead and fix the error by changing [] to ().

Warnings

Warnings indicate potential problems with the program. As mentioned, warnings won’t stop
a program from building but may cause issues during program execution. It’s outside the
scope of this book to cover those warnings that may or may not cause problems during
program execution; however, it’s good practice to eliminate all warnings from a program.

Add the following code to the MasterViewController.swift viewDidLoad method:
if (false){

print("False")
}

The print command will never be executed because false will never be equal to true. Build
the project by pressing #+B. A warning will be displayed, as shown in Figure 13-15.

260 CHAPTER 13: Introducing the Xcode Debugger

< 4 ['Q] BookStore /| | BookStore . MasterViewController

I

// MasterViewController.swift

// BookStore

TF

// Created by Brad Lees on 8/8/15.

bR a e

v ﬁ BookStore 1 issue [+]
v [MasterViewController.swift

[l
U
{0
w | B8

6 ight © - A igh .
= Wil nenier be exaciitad . Z Copyright 2815 Inn 11 rights reserved
© Condition always evaluates to 8)
false 9 import UIKit

11 class MasterViewController: UITableViewController {
12
13 var detailViewController: DetailViewController? =
14 var objects = [AnyObject] ()
15 var myBookStore:BookStore = BookStore()
18 override func viewDidLoad() {
19 super.viewDidlLoad()
20 // Do any additional setup after loading the v
ral self.navigationItem.leftBarButtonItem = self.e
22
) let addButton = UIBarButtonItem(barButtonSyste

ES self.navigationItem.rightBarButtonItem = addBu
if let split = self.splitViewController {
26 let controllers = split.viewControllers
27 self.detailViewController = (controllersl(c
28 }
30 if(false) {
31 print("False")
32 }
33
34 }
3% override func viewWillAppear(animated: Bool) {

D self.clearsSelectionOnViewWillAppear = self.sp
an miimme et ddiTTAanan - foamiomomiendl

Figure 13-15. Viewing the warnings in the Issue Navigator

Clicking the first warning in the Issue Navigator will show you the code that is causing the
first problem, as shown in Figure 13-16.

CHAPTER 13: Introducing the Xcode Debugger 261

ece » W A BockStors |) Phoee 6 Runting BeakStees oo Phone & 1 raraal m]

1 & 4 BookStore. BoskStore | [l MastervewControterswin | [viewDidLoadi)

M Thread 1 © BookStore BookStore. Irit (DookStore BooaSrare Typel] -> DockStone Bocatiore

| Auta = I~ Outgst & oo

Figure 13-16. Viewing your first warning

In the main window, you can see the warning. In fact, this warning gives you a clue as to the
problem with the code. The warning states the following:

“Will never be executed”

This is a simple example of a warning. You can receive warnings for many things such as
unused variables, incomplete delegate implementations, and unexecutable code. It is good
practice to clean up the warnings in your code to avoid issues down the road.

Summary

This chapter covered the high-level features of the free Apple Xcode debugger. Regardless of
price, Xcode is an excellent debugger. Specifically, in this chapter, you learned the following:

The origins of the term bug and what a debugger is

The high-level features of the Xcode debugger, including breakpoints
and stepping through a program

How to use the debugging controls called Continue, Step Over, Step In,
and Step Out

Working with the various debugger views, including threads (call stack),
Variables view, Text editor, and Console Output

Looking at program variables

Dealing with errors and warnings

Chapter

A Swift iPhone App

In Chapter 8, you created a basic bookstore iPhone app with Swift. In this chapter, you

will add some features to the app to make it a bit more functional and use many of the
technologies you have learned in this book, such as creating a class, using delegates and
protocols, and using actions and outlets. You’ll also learn about some new techniques such
as switches, UIAlertViewController, and landmarks.

Let’s Get Started

The bookstore example in Chapter 8 enabled you to view books in your bookstore in a
TableView and then tap the book to see its details. In this chapter, you will add the following
capabilities to the Chapter 8 bookstore app:

Adding a book

Deleting a book

Modifying a book
See Figures 14-1 and 14-2.

263

http://dx.doi.org/10.1007/978-1-4842-1488-6_8
http://dx.doi.org/10.1007/978-1-4842-1488-6_8
http://dx.doi.org/10.1007/978-1-4842-1488-6_8

264 CHAPTER 14: A Swift iPhone App

iPhone 6 - iPhone 6 [I0S 9.0 (13A340)
Carrier ¥ 8:24 AM

L
Master +
Swift for Absolute Beginners

A Farewell To Arms

Figure 14-1. Add book functionality

iFhone & - iPhone 8 [105 9.0 (13A4325¢)

Carrier ¥ 12:46 PM L]
£ Master Detail

Title:

Swift for Absolute Beginners

Author:

Bennett and Lees

Pages: 200

Description:

i0S Programming made easy.

Figure 14-2. Adding edit and delete functionality along with using a UISwitch

CHAPTER 14: A Swift iPhone App

265

Using the app you created in Chapter 8, add a Button Bar item by dragging the Button Bar

Item object to the right button bar location in the Main.storyboard file. Change the Button

Bar item’s title to Add. This will change the button bar’s title to Add, as shown in Figure 14-3.

Master

< Master Right Bar Button items

Add

Master

Prototype Cells

Title

Bar Button ltem
UlBarButtonitern

Fepresonts an item in a UiTooloar or UiNavigationitem. Each bar
button item behaves simiarly to a button, and has 2 title, image,
action, and target. The UlBarButtonitem class provides methods | ™

* | ¥Ou Can uge 19 specity bar button items with systom-provided

mages, such as the plus image.

Figure 14-3. Adding a Button Bar item to your view

Modify and add the code that will handle a showDetail method and a addBookSegue segue
in the MasterViewController.swift file, starting at line 51 in Listing 14-1. The code will
transition to the scene that will add a book to the list and pass the view to a delegate. The
next step is to define the AddBookViewController.

Listing 14-1. The prepareForSegue function

40 // MARK: - Segues
41

42 override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {

43 if segue.identifier == "showDetail" {
44 if let indexPath = self.tableView.indexPathForSelectedRow {
45 let selectedBook:Book = myBookStore.theBookStore[indexPath.row]

46 let vc = segue.destinationViewController as! DetailViewController

Bar Item

bheag¢de

Bar Button Item

o @ o
Mavigation Bar - Provdes a
mechanism for displiying a
navigation bar just below tho staus.

Mavigation Hem - Represents a
state of the navigation bar, incluging
a title.

Toolbar - Frevides 3 mechanksm for
cisplaying 3 toolbar at the bostom of
the screen.

Bor Button Item - Represerts an
ftem o a UiToolbar o
Uniiavigationizem object.

Tab Bar - Prevides a mechanism for
clsplaying a tab bar a1 the botiom ot

= the sereen,

Tab Bar Item - Represents an lsem
o 3 UITabBar odject

Search Bar - Cisplays an panaie
50a1Ch ba, COMEINIng the search
lcon. that sends an action messace

http://dx.doi.org/10.1007/978-1-4842-1488-6_8

266 CHAPTER 14: A Swift iPhone App

47 vc.detailltem = selectedBook

48 vc.delegate = self

49 }

50 }

51 else if segue.identifier == "addBookSegue" {

52 let vc = segue.destinationViewController as! AddBookViewController
53 vc.delegate = self

54 }

55 }

Note Something new in Swift is on line 40: "// MARK: - Segues". // MARK: iscalled a
landmark. It is replacement of the pragma mark, which is used in Objective-C. Landmarks help
break up the code in the jump bar and enable you to quickly get to sections of code indicated by
the landmark. When you type something following // MARK:, Xcode places the landmark in the
jump bar’s drop-down, as shown in Figure 14-4. If you just type // MARK: -, Xcode adds a line
separator in the jump bar drop-down. Swift also supports // TODO: and // FIXME: landmarks to
annotate your code and lists them in the jump bar.

MasterViewControlier swift

< & . MasterVi er.swi 8 MasterviewControlier
objects.insertObject(NSDate(), atIng @ objocts yand
let indexPath = NSIndexPath({forRow: B myBockstore %
;) self.tableView.insertRowsAtIndexPatl [awakeFramMibg) "
Iy [viewdidLoad() 2
// MARK: - Segues [digReceiveMemoryWarning(} Lecat
override func prepareForSegue(segue: UI! e : PP

if segue.identifier == "showDetail"
if let indexPath = self.tableys
let selectedBook:Book = {y

let v¢ = segue.destinationvs

LItem = selectedBool

[numberOtSectionsinTableViewl_:)

vec.detai MR ~ iy tion:) |
} vc.delegate = self [0 tableview_:cellForRowAtingexPath:)
} [tableviewl_:canEditRowAtindexPath:)
else if segue.identifier == "addBool @ (_:commitE: 2] ey
let vc = segue.destinationViewCy o Book
vc.delegate = self Delegate Methods canforming to the protocel BookStareDelegate as defined in the AddBockViewCentreller
3}) [rewBook(_newBaok:) Book
[deleteBooki_:)
} [editBocki_:editBook:) ting
// MARK: - Table View [Tt Encoa
Line Endir
ovVETTE wre—mmbEFUfSectionsInTableView(tableView: UITableView) -> Int {
return 1 Ingent Us.
Wid
override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -> Int {
return myBookStore.theBookStore.count |
Source Cont
Reposin

Ty
let cell = tableView.dequeueReusableCellWithIdentifier("Cell", forIndexPath: indexPath) as UITableViewCell Current Bear
cell.textLabel!.text = myBookStore.theBookStore[indexPath.row].title
cell.accessoryType = UITableViewCellAccessoryType.DisclosureIndicator
return cell

override func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath) —» UITableViewCell
{

[
} 5
(Ll

override func tableView(tableView: UITableView, canEditRowAtIndexPath indexPath: NSIndexPath) —> Bool {
// Return false if you do not want the specified item to be editable. T
return true a
"

Figure 14-4. Swift’s new landmarks

CHAPTER 14: A Swift iPhone App 267

Now add the new view controller AddBookViewController mentioned in line 52 in Listing 14-1.
Add a View Controller object to the storyboard by dragging a View Controller to the
Main.storyboard file. Then add the objects in Figure 14-5 to enable the user to add a new
book. Feel free to move the scenes around to make it clear how they relate to each other,

as shown in Figure 14-5.

xt Flodd Read?
Description
oDieo
iew Controller - 4 contrener mat
managt 4 viw

Storyboard Referonce - Providos
placehoider for vkew controlier in an

Figure 14-5. Adding the AddBookViewController and objects

Add a Push Segue object from the Add Button Bar item to the new View Controller by
Control-dragging dragging or right-clicking and dragging from the Add Button Bar item to
the new View Controller, as shown Figure 14-6.

268 CHAPTER 14: A Swift iPhone App

§
]

Add Book

Master
Cells

Read?

Description

Save Book

Figure 14-6. Add a Show Segue object to the new View Controller

Label the Segue object by clicking the segue arrow and labeling the identifier as
addBookSegue, as shown in Figure 14-7.

Master

Description
—

SC>

Figure 14-7. Naming the Segue object addBookSegue

CHAPTER 14: A Swift iPhone App 269

Now you need to create a Swift class to go with the new View Controller. Create a new file
and Cocoa class and name it AddBookViewController, as shown in Figure 14-8. Make sure
you select a subclass of UIViewController.

Choose options for your new file:

Class: | Add BooldViewComroller

Subclass of: UlViewController w

Also create XIB file

Language: Swift ﬂ

Cancel Previous m
Figure 14-8. Adding the AddBookViewController class

Now you have to associate the new AddBookViewController class to the new View Controller.
Select the View Controller, and in the Identity Inspector, type AddBookViewController for the
class, as shown in Figure 14-9.

270 CHAPTER 14: A Swift iPhone App

\dd Book Scene Add Book OheBE ¢ 0 @

Custom Class

Class AddBoakViewController © B

Module

Identity
SLoryboeand 10
Restaration 19
Use Storytoard ID

User Defined Runtime Attributes

Key Path Type Value
Add Book

Object 10 Bnic-TF-yBX

?
Read? e Lock Irherited - (Nathing) 2]
Nows B = = = &
Description 12
Save Book
View Controlloer - & controlier that

manages a view,

Crarubaned Dalaranss . Gkt -

Figure 14-9. Associating the AddBookViewController class to the new View Controller

Set the title of the view to Add Book by double-clicking on the Navigation Bar. Open the
AddBookViewController.swift file and add the code shown in Listing 14-2.

Listing 14-2. The AddBookViewController.swift file
9 import UIKit

10
11 protocol BookStoreDelegate {
12 func newBook(controller: AnyObject, newBook: Book)

13 func editBook(controller: AnyObject, editBook: Book)
14 func deleteBook(controller: AnyObject)

15 }

16

17

18 class AddBookViewController: UIViewController {

19 var book = Book()

20 var delegate: BookStoreDelegate? = nil
21 var read = false

22 var editBook = false

23

24 @IBOutlet weak var titleText: UITextField!

25 @IBOutlet weak var authorText: UITextField!

26 @IBOutlet weak var pagesText: UITextField!

27 @IBOutlet weak var switchOutlet: UISwitch!

28

29 @IBOutlet weak var descriptionText: UITextView!
30

31

CHAPTER 14: A Swift iPhone App

32
33
34
35
36
37
38
39
40
4
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74 }

override func viewDidLoad() {

super.viewDidLoad()

if(editBook == true){
self.title = "Edit Book"
titleText.text = book.title
authorText.text = book.author
pagesText.text = String(book.pages)
descriptionText.text = book.description
if (book.readThisBook){

switchOutlet.on = true

}

else {
switchOutlet.on = false
}

override func didReceiveMemoryWarning() {

super .didReceiveMemoryWarning()

// Dispose of any resources that can be recreated.

@IBAction func saveBookAction(sender: UIButton) {

book.title = titleText.text!
book.author = authorText.text!
book.description = descriptionText.text
book.pages = Int(pagesText.text!)!
if(switchOutlet.on) {

book.readThisBook = true
}
else {

book.readThisBook = false

}
if (editBook) {
delegate!.editBook(self, editBook:book)

}
else {

delegate!.newBook(self, newBook:book)
}

27

To the Book class, add two properties: pages and readThisBook. These are shown in lines
15 and 16 in Listing 14-3.

272 CHAPTER 14: A Swift iPhone App

Listing 14-3. Book Class changes

11 class Book {

12 var title: String = ""

13 var author: String = ""

14 var description: String = ""
15 var pages: Int = 0

16 var readThisBook: Bool = false
17 }

Switches

Connect the outlets in the AddBookViewController class by dragging them from their open
circles to the controls, as shown in Figure 14-10.

L T A g e
func deleteBookicontrollertAnyObject)

class AddBookViewController: UIViewController {
var book = Book()

2 ar Delegate? = nil
2 var editBaok
x' @IBOutlet wesk var titleText: UITextField!
@IB0utlet weak var authorText: UITextField!

h T aIBOutlet weak var pagesText: UITextField!
2 @IBOUtlet weak var switchDutlet: UISwitch!
Description P__.. @lB0utlet weak var descriptionText: UITextView!

override func viewDidLoad() {
Save Book CJ?EI'.VL&D:U.WG\'I
ifle

if
}
else {
SWite tlet.on = false
}
}
/¢ Do anv additinnal setun after loading the

Figure 14-10. Connecting the outlets

Connect the saveBookAction action by dragging the outlet circle to the Save Book button, as
shown in Figure 14-11.

CHAPTER 14: A Swift iPhone App 273

Add Book

Read?

Description

Suve Book *——". 5

Figure 14-11. Connecting the saveBookAction

hOutlet.on = false

// Do any additional setup after loading the
view.
}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning(}
// Dispose of any resources that can be
recreated.
}

@IBAction func saveBookAction(sender: UIButton) {
b]

<)

delegate!.newBook(self, newBook:book)

In the DetailViewController class, add the code shown in Listing 14-4.

Listing 14-4. New properties
20 @IBOutlet weak var pagesOutlet: UILabel!

21 @IBOutlet weak var switchOutlet: UISwitch!

22
23 var delegate: BookStoreDelegate? = nil

24
25 var myBook = Book()

Alert View Controllers

Add the controls for Pages, Read, and Edit for the DetailViewController. Connect the
outlets by dragging the open circles to their controls, as shown in Figure 14-12.

274 CHAPTER 14: A Swift iPhone App

import UIKit

» E
- class DetailViewController: UIViewController {
Detail ® 15 @IBOutlet weak var titleLabel: UILabel!
| ® 16 @IBOutlet weak var authorLabel: UILabel!
® 17 @IBOutlet weak var descriptionTextView: UITextView!
Title:)
® 20 @IBOutlet weak var pagesOutlet: UILabel!
Label ® 21 @IBOutlet weak var switchOutlet: UISwitch!
Author: var delegate:BookStoreDelegate? = nil
Label var myBook = Book()
Pages: | Label
Read:
var detailltem: AnyObject? {
didSet {
— // Update the view.
Description:
}
override func prepareForSegue(segue: UIStoryboardSegue,
sender: AnyObject?) {
if segue.identifier == "editDetail" {
let vc = segue.destinationViewController as!
iewController
» = delegate
- = true
Edit .2 vc.book = myBook

Figure 14-12. Adding the Pages and Read outlets

The Read switch is disabled in this view by unchecking the Enabled property in the
Attributes Inspector.

Add the code for displaying an AlertViewController when the Delete Button Bar is tapped,
as shown in Listing 14-5.

Listing 14-5. Displaying an UlAlertViewController
52 @IBAction func deleteBookAction(sender: UIBarButtonItem) {

53 let alertController = UIAlertController(title: "Warning", message: "Delete this
book?", preferredStyle: .Alert)

54 let noAction = UIAlertAction(title: "No", style: .Cancel) { (action) in

55 print("Cancel")

56 }

57 alertController.addAction(noAction)

58

59 let yesAction = UIAlertAction(title: "Yes", style: .Destructive) { (action) in

60 self.delegate!.deleteBook(self)

61 }

62 alertController.addAction(yesAction)

63

64 self.presentViewController(alertController, animated: false, completion: nil)

65 }

Add the Delete Button Bar item to the right navigation location and connect it to the action,
as shown in Figure 14-13.

CHAPTER 14: A Swift iPhone App 275

- fenc alaetVimeliiae UIALertVies,
ion lichesbuttoninager Buttseladens frth{

Figure 14-13. Adding the Delete Right Button Bar item and action

The UIAlertViewController will warn the user that the book currently displayed in the

DetailViewController is about to be deleted and will enable the user to decide whether to
delete it. The UIAlertViewController has two buttons: Yes and No. When the user taps the
Delete right Button Bar item, the UIAlertViewController will be as shown, in Figure 14-14,

when you are done.

0.0 iPhone 6 - iPhone & /108 5.0 (13A4325¢)

Warning
Delete this book?

No Yes

Figure 14-14. UlAlertViewController being displayed

276 CHAPTER 14: A Swift iPhone App

When the user taps Yes to delete the book, you want to call a deleteBook delegate method
as described in the MasterViewController class. You add the delegate property that will
store the MasterViewController view in Listing 14-6.

Listing 14-6. Adding the BookStoreDelegate

11 class MasterViewController: UITableViewController, BookStoreDelegate {

Let’s now talk about the three delegate methods: newBook, deleteBook, and editBook, as
defined in the AddBookViewController class in Listing 14-2 (lines 11 to 15). Add these three
functions at the end MasterViewController class, as shown in Listing 14-7.

Listing 14-7. Conforming to the protocol

91 // MARK: - Delegate Methods conforming to the BookStoreDelegate as defined in the
AddBookViewController
92 func newBook(controller: AnyObject, newBook: Book) {

93 myBookStore.theBookStore.append(newBook)
94 self.tableView.reloadData()
95 let myController = controller as! AddBookViewController
96 myController.navigationController?.popToRootViewControllerAnimated(true)
97 }
98
99 func deleteBook(controller: AnyObject){
100 let indexPath = self.tableView.indexPathForSelectedRow
101 var row = indexPath?.row
102 myBookStore.theBookStore. removeAtIndex(row!)
103 self.tableView.reloadData()
104 let myController = controller as! DetailViewController
105 myController.navigationController?.popToRootViewControllerAnimated(true)
106 }
107
108 func editBook(controller: AnyObject, editBook: Book){
109 let indexPath = self.tableView.indexPathForSelectedRow
110 var row = indexPath?.row
111 myBookStore.theBookStore.insert(editBook, atIndex: row!)
112 myBookStore.theBookStore.removeAtIndex(row! + 1)
113 self.tableView.reloadData()
114 let myController = controller as! AddBookViewController
115 myController.navigationController?.popToRootViewControllerAnimated(true)
116 }

The function newBook adds a new book to the bookstore; appending the array with the
newBook does this, as shown in line 93. Line 94 then reloads the Table view by calling all the
Table view delegate methods:

numberOfSectionsInTableView
numberOfRowsInSection
cellForRowAtIndexPath

Finally, you pop the DetailViewController from the navigation stack by calling popToRootVi
ewControllerAnimated(true). Popping the view from the navigation stack means the view is
removed similarly to tapping the Back button.

CHAPTER 14: A Swift iPhone App 277

The function deleteBook removes the book from the bookStore array. First you determine
which row was selected in the tableView and use that index to delete the book in the array
by calling removeAtIndex(row!), as shown on line 102.

The function editBook enables the user to edit an existing book in the bookStore array. To do
this, the function inserts the edited book in the array at the row that was selected, as shown
on line 111. Then the function deletes the original book that was pushed down one index
when you inserted the book in the array, as shown on line 112.

Now add the Edit button to the bottom of the DetailViewController and add a Show Segue
object from the edit button to the AddBookViewController, as shown in Figure 14-15.

Read?

Description
Save Book
Cetail Delete
Tit...
Label
Auth...

Label

Pages: Labe

Read:

Description:

Figure 14-15. Adding the Segue object

278 CHAPTER 14: A Swift iPhone App

Select the Segue object you just created, select the Attributes Inspector, and name the
identifier editDetail. See Figure 14-16.

Add Book

Read?

Description

Save Book

Pachasism v Cliphiyieg 8
i tion B it Delow the s58%a.

INavigation Item - Resrostets 8
< $t3th £ T rEvigHYon bae, Inciatin

atitie.

Toollbar - Frovices a mechanen for

chiplaging 4 ORI 3t the bastom of

he soreen

- Bas Buten Item - Aesreseass a0
tem | ioem on a Lifoesas or
Detail Delete T ——

Tab Bar - Peceions o Mecranamn 1of
cinglaying & tab bas 4t the boftom of

* he scrsen

[Tit..

Label * Tab Bar ltom - Reoresesss 4a ten
r 3 LTI ovedt
Auth.. = =

Label ‘Search Bar - Shiplays an scnabie
Se41EN Bai, COManieg the seareh
Pages: Label e, TRt S6RES 4 JCTEE PEIIIGE..

Saarch Bar snd Search Olsplay
Read: Cantrller - Cisips an sditstie
- SCACh bar COMMECHed 10 8 BONER .

Fined Space Bar Buttcn fem -
P

spsce e on g

Description:

Figure 14-16. Naming the Segue’s identifier

Add the prepareForSegue function shown in Listing 14-8 to the bottom of the
DetailViewController.swift file.

Listing 14-8. Add the prepareForSegue

81 override func prepareForSegue(segue: UIStoryboardSegue, sender: AnyObject?) {

82 if segue.identifier == "editDetail" {

83 let vc = segue.destinationViewController as! AddBookViewController
84 vc.delegate = delegate

85 vc.editBook = true

86 vc.book = myBook

87 }

88 }

CHAPTER 14: A Swift iPhone App 279

Finally, modify the configureView function in the DetailViewController to properly populate
the pages and switch outlets, as shown in Listing 14-9.

Listing 14-9. Modify the configureView

29 func configureView() {
30 if let detail: AnyObject = self.detailltem {

31 myBook = detail as! Book

32 titlelabel.text = myBook.title

33 authorLabel.text = myBook.author

34 descriptionTextView.text = myBook.description
35 pagesOutlet.text = String(myBook.pages)
36 if(myBook.readThisBook){

37 switchOutlet.on = true

38 }

39 else {

40 switchOutlet.on = false

41 }

42 }

43 }

App Summary

Compile and run the app. You should set breakpoints at the delegate functions to watch the
program flow. It is a great app to see how delegates can be used to pass information from
one view to another.

Additionally, you can add functionality to the app to make the information persistent by using
Core Data or NSUserDefaults.

Exercises

Add more books to the bookstore using the original program as a guide.

Enhance the Book class so it can store another attribute—a price or
ISBN, for example.

Add persistence to the app by using Core Data or NSUserDefaults.

Chapter 1 5

Apple Watch and watchKit

In September 2014, Apple announced the Apple Watch, which it considers to be the next
chapter in Apple’s history. This watch not only handles phone calls and text messages, but
is also tied to the wearer’s health by tracking heart rate and exercise. At the same time,
Apple announced WatchKit, a framework designed for developing apps for the Apple Watch.
WatchKit will be very familiar to developers already familiar with UIKit.

Initially, the Apple Watch had some serious limitations with development. The watch acted as
an additional screen for an iPhone app. This required the watch to be close to the phone to
function and also caused apps to run slowly. In June 2015, Apple announced watchOS 2.0.
This new update included many new features, but the biggest one for developers was the ability
to create apps that had code that ran on the Apple Watch instead of on the phone. Developers
were able to create stand-alone apps that performed much better and were more responsive.

Considerations When Creating a watchOS App

One of the great things about developing for the watchOS is that all of the development is
done in Swift or Objective-C just like with other iOS devices. The Apple Watch does have
some different things that you need to consider before you jump into development.

The Apple Watch screen is very small. You are limited to 38mm or
42mm, depending on the size of the watch. This means you will not
have a lot of space for unnecessary Ul elements. Your interface will need
to be compact and well organized. Also, due to the two sizes being
close in size, you have to create one interface and have it look good on
either size.

Sharing data between the phone and the watch requires some planning.
In watchOS 2.0, Apple added new methods to make data sharing easier
than it used to be. Primarily, Apple has introduced the WCSession class.
The use of this class is beyond the scope of this book.

281

282 CHAPTER 15: Apple Watch and watchKit

WatchKit for watchOS 2.0 provides many different ways to interact
with users not only through apps, but also through glances, actionable
notifications, and complications. Well-written apps can take advantage
of multiple interactions where it makes sense. These interactions are
beyond the scope of this book.

Creating an Apple Watch App

The first step is to create a new project in Xcode 7. On the left side, select Application under
the watchOS header as the project type. Then select iOS App with WatchKit App, as shown
in Figure 15-1.

Choose a template for your new project:

[[oF]
. . \i/
Application
Framework & Library
iOS App with
watchOS WatchKit App

Framework & Library
0s X

Application

Framework & Library

System Plug-in

Other
iOS App with WatchKit App
This template provides a starting point for an iOS application with an associated WatchKit
Application.

Cancel [Next |

Figure 15-1. Creating the watchOS app

Next, you will be given the option of naming your project. We called the one in this chapter
BookStore. You will also notice that a watchOS app has different options than a standard iOS
app. We will not be using any of these additional layouts in the current app, so make sure
they are all unchecked, as shown in Figure 15-2.

CHAPTER 15: Apple Watch and watchKit

Choose options for your new project:

Product Name:
Organization Name:

Organization Identifier:

Bundle Identifier:
Language:

Devices:

Cancel

Figure 15-2. watchOS options

BookStore

innv

com.innv

com.innv.BookStore
Swift [~
iPhone []

Include Notification Scene
Include Glance Scene
Include Complication
Include Unit Tests

Include Ul Tests

283

Previous = TSN

Note The WatchKit provides additional interaction types that not available in i0S apps. Glances
are quick looks into your app. For example, a bookstore app might have a glance that shows the

best sellers. Glances use a special interface on the watch. Complications allow your app to provide

simple information on the watch face itself.

Xcode will then prompt you to save your project. Once you’ve saved it, you will be presented
with your new project. On the left side, you will notice two additional targets in your project.
One is the BookStore WatchKit app, which contains the interface (storyboard and assets) for
your app. The second new target is the BookStore WatchKit extension. This will contain all
of the code for your app to run on watchOS. See Figure 15-3.

284 CHAPTER 15: Apple Watch and watchKit

¥ = BookStore
v BookStore
= AppDelegate.swift
= ViewController.swift
. Main.storyboard
7 Assets.xcassets
LaunchScreen.storyboard
Info.plist
(v | BookStore WatchKit App \

Interface.storyboard

] Assets.xcassets
Info.plist
v BookStore WatchKit Extension
2 InterfaceController.swift
= ExtensionDelegate.swift
1| Assets.xcassets

\ Info.plist)

> Products

Figure 15-3. New targets

Click on the Interface.storyboard in the BookStore WatchKit app target and you should
see a screen similar to Figure 15-4. This is your empty watchOS app storyboard. You will
notice the size is significantly smaller than a standard iOS storyboard.

CHAPTER 15: Apple Watch and watchKit 285

ene » % BookSions |) Phone 6 BookStor: Fueady | Today a1 7:40 Al
B < % BocaSiors BookSion Waachie Aog Intertace storybased [l Intertace storybosed Base) N Secton B ¢ 3
B BockSiore [intertace Gontroller Scene

Intertace Controfier

Interface Controiler - Larages &
scrvar's intartace cojects.

Glance Interface Controlier -
Manages the soolicaton's garce
—

Netifieation Intarface Contraler
- Marages an itertace for
retifcason categary.

=] Any Screen Size
Figure 15-4. Interface storyboard
Since you are going to create a list of books for the watchOS app, you need to add a

table to the storyboard. On the bottom right, search for table and drag the table into the
storyboard, as shown in Figure 15-5.

286 CHAPTER 15: Apple Watch and watchKit

Not Applicable

Interface Controller

Table - Displays one or more rows of
data.

Any Screen Size B ®table o

Figure 15-5. Adding a table

Xcode will now give you a Table Row as part of the table. This is similar to the prototype
rows you used for creating table views in your iOS apps. You need to create a class to
control it, but for now, you will add a label to it. Search for a label in the Object Library and
drag one onto the row. See Figure 15-6.

CHAPTER 15: Apple Watch and watchKit 287

View
Alpha 1|«
Hidden

<

Height Default

Label Label - Displays a static text string.

Date - Displays the current date and

59:59 Timer - Displays a string that counts
. up or down to a specified time.

Any Screen Size H8 @ iabel ()

Figure 15-6. Adding a label to the table row

By default, the label will be located in the top-left corner of the Table Row. Check the
Attribute Inspector to make sure the size and width can grow to fit the content. See
Figure 15-7. This will help ensure that your app runs well on both sizes of Apple Watches.

288 CHAPTER 15: Apple Watch and watchKit

View

<>

Alpha 1
Hidden
Installed
Position

Horizontal Left

olo

Vertical Center

Size
Width = Size To Fit Content

Height | Size To Fit Content

(of o

Figure 15-7. Expanding the label

Now the label will expand to fit the entire row. By default, however, the label will only show
one line of text. Since you are adding book titles, you may need multiple lines to fit all of the
text you want to add. With the label selected, look in the Attributes selector on the right side.
Find the Lines attribute and set it to 0, as shown in Figure 15-8. Setting the number of lines
to 0 tells Xcode that it can use as many lines as needed.

CHAPTER 15: Apple Watch and watchKit

Figure 15-8. Setting the Lines attribute

Label

Text

Text Color
Font
Min Scale

Alignment

Label
1 | Default

Body

289

(3]

(x)

(Lines

o

=/

Alpha

Position
Horizontal
Vertical
Size
Width

Height

Hidden
v Installed

Left

Center

Size To Fit Content

Size To Fit Content

Interface Controller - Manages a
screen's interface objects.

{4

€

(3]

Now you need to add some code to get the user interface working. On the left side, expand
the BookStore WatchKit extension folder and select the InterfaceController.swift file, as
shown in Figure 15-9. The InterfaceController is the default controller for the initial scene

in a WatchKit storyboard.

290 CHAPTER 15: Apple Watch and watchKit

BR Qa6 =o

¥ |5] BookStore
> BookStore
¥ | | BookStore WatchKit App
Interface.storyboard
55| Assets.xcassets
Info.plist
v BookStore WatchKit Extension
.| InterfaceController.swift
»| ExtensionDelegate.swift
G5l Assets.xcassets

Info.plist

< |5 BookStore BookStore WatchKit Extension ! . Interf, ontroller.swift | No

2 // InterfaceController.swift

// BookStore Kit Extension

/{ Created by Thorn on 9/1/15.

£/ Copyright © 20815 innv. All rights reserved.

rt WatchKit
t Foundation

class InterfaceController: WKInterfaceController {

override func awakeWithContext({context: AnyObject?) {
super.awakeWithContext(context)

ff Configure interface objects here.

}

»> Products

willActivate() {
ethod is called when watch view controller is about to be visible to user
lActivate()

override f
// Thi
super,

}

override func didDeactivate() {
/f This method is called when watch view controller is
super.didDeactivatel()

no longer visible

Figure 15-9. Opening the InterfaceController.swift file

You will notice the default methods in the new controller file are different than they were for a
standard UIViewController. willActivate() is equivalent to viewWillAppear().

The first thing you need to do is add a class definition for a row. To do this, add the following
code to the bottom of the file outside of the close brace (}) for the InterFaceController
class.

1 class BookRow: NSObject {

2 @IBOutlet weak var booklLabel: WKInterfacelabel!

3

4}

Line 1 declares a new class caled BookRow. It is a subclass of NSObject. Line 2 creates a

property called bookLabel. bookLabel’s class is WKInterfacelabel. This is similar to a
UILabel that you have used before, but it works with WatchKit.

Note Swift allows for multiple classes to be declared in the same Swift file. This works well when
you are only using that class with the other classes in the file. In this case, we are only going to use
the row class with the InterfaceController class.

CHAPTER 15: Apple Watch and watchKit 291

The InterfaceController.swift file will now look like Figure 15-10.

//

// InterfaceController.swift

// BookStore WatchKit Extension

//

// Created by Thorn on 9/1/15.

// Copyright © 2015 innv. All rights reserved.
//

import WatchKit
import Foundation
class InterfaceController: WKInterfaceController {

override func awakeWithContext(context: AnyObject?) {
super.awakeWithContext(context)

// Configure interface objects here.
override func willActivate() {

// This method is called when watch view controller is about to be wvisible to user
super.willActivate()

override func didDeactivate() {
// This method is called when watch view controller is no longer visible
super.didDeactivate()

}

class BookRow: NSObject {
@IBOutlet weak var bookLabel: WKInterfacelLabel!

Figure 15-10. Modified InterfaceController.swift file

You can now connect the outlets to the interface. Select Interface.storyboard. Now select
the Assistant Editor by selecting the icon with two circles in the top right of the Xcode
window, as shown in Figure 15-11.

— [
1 = =4 I miN==RN.
i
Figure 15-11. Opening the Assistant Editor

With the Assistant Editor, Xcode provides a quick way for developers to create objects and
associate them with outlets in the interface. You will first need to create a table property
representing the Table view. Control-drag from the table in the Interface Controller scene into
the InterfaceController class on the right, as shown in Figure 15-12.

292 CHAPTER 15: Apple Watch and watchKit

= |BB| < B (]

v B Interface Controller Scene

U Interfa..ntrolier

v Interface Controller

v Tablé R Controller

Table | { B < 0 -

« InmterfaceController.swift (Interface) | { >4 X

7 Custom C
// InterfaceController.swift
// BookStore WatchKit Extension

// Created by Thorn on 9/1/15. M
/¢ Copyright © 2815 innv. ALl rights reserved.

v Group Documen
i Labe import WatchKit
Main Entry Point import Foundation
wal class InterfaceController : WInterfaceController { Objr
internal func au.’:ktﬂnh(unm:
ct?) —
override internal func willActivate()
override internal func didDeactivate()
}
internal class BookRow : NSObject { Accessibl
Access

2IB0utlet weak internal var bookLabel: WKInterfacelabel!

Figure 15-12. Control-drag to create an outlet

Once you release the table object on the InterfaceController class, Xcode will prompt
you to enter the type of outlet you are creating. Leave the defaults as is, except change the
Name to mainTable, as shown in Figure 15-13.

Connection | Outlet o
Object [0 Interface Controller 1
Name | mainTable| %
Type | WKlInterfaceTable E
Storage | Weak £
Cancel Connect 1
! i

Figure 15-13. Naming your outlet

Select the “lines of text” icon in the top right of the Xcode window to return to the Standard
Editor. Under the Interface Controller Scene, select the Table Row Controller, as shown in
Figure 15-14.

CHAPTER 15: Apple Watch and watchKit 293

me i _—) - | : '
St The Sl Sther T pkstore Boo..t App) B Inter..card) B Inter..ase)) [E] Inter..cene Inter...oller Main Table Table Row

v [Z Interface Controller Scene

v Interface Controller
v Main Table
v Table Row Controller
v Group
Label
Main Entry Point

Figure 15-14. Selecting the Table Row Controller

Set the class of the Table Row Controller by selecting the Identity Inspector on the right side
and selecting BookRow in the Class drop-down menu, as shown in Figure 15-15.

294 CHAPTER 15: Apple Watch and watchKit

Inter...cene) [Inter...oller Main Table Table Row Controller | > O ® { B
Custom Class

Class || & n

ADBannerView

AppDelegate

Module

Document BookRow

*, & ||
Label ExtensionDelegate
GLKView

Object ID Ttu-tz-KWz
Lock Inherited - (Nothing) w
Notes = = = = --- [/] .

Figure 15-15. Changing the table row class to BookRow
Now that your app knows the type of table row you are using in your code, you need to add

an identifier for the row. This helps in the case you have multiple row types for a single table.
Select the Attributes Inspector and enter MyBookRow as the identifier, as shown in Figure 15-16.

O ® g O
Row Controller

Identifier MyBookRow
Selectable

Figure 15-16. Changing the table row identifier

CHAPTER 15: Apple Watch and watchKit 295

You can now hook up the WKInterfacelabel you created earlier. Under the Interface
Controller Scene, control-drag from the book row to the label, as shown in Figure 15-17.

v [S] Interface Controller Scene

v Interface Controller
v Main Table
v (B) Book Row
v = Group
—
(Lol Label)
* Main Entry Point

Figure 15-17. Control-dragging from the row to the label

You will be prompted to select an outlet from the available outlets, as shown in Figure 15-18.
There is currently only one available outlet, so select bookLabel.

wVidin l1gaoie

Bl Outlets
bookLabel

* Main Entry Point

Figure 15-18. Connecting the bookLabel outlet

Your table and label are now all hooked up. Now you need some data to display. You are
going to reuse some data you created in Chapter 8. Using the Finder on your Mac, drag the
Book.swift and BookStore.swift files from the Chapter 8 folder into the BookStore WatchKit
extension folder in Xcode. Check the "Copy ltems If Needed" checkbox to copy the files to
the new project. Once you are done, you will have the Book.swift and BookStore.swift files
in your target, as shown in Figure 15-19.

http://dx.doi.org/10.1007/978-1-4842-1488-6_8
http://dx.doi.org/10.1007/978-1-4842-1488-6_8

296 CHAPTER 15: Apple Watch and watchKit

> BookStore
¥ | BookStore WatchKit App
| Interface.storyboard
55! Assets.xcassets
Info.plist
v BookStore WatchKit Extension
» Book.swift
.| BookStore.swift
»| InterfaceController.swift
.| ExtensionDelegate.swift
£ Assets.xcassets
Info.plist
> Products

Figure 15-19. Adding in the data files

You have the data and interface complete. You now need to hook them up so the interface
knows about the data. You need to declare a new property that will hold the BookStore
object. Under your declaration of the mainTable object in the InterfaceController.swift
file, you need to add the following line:

var myBookStore: BookStore!

This creates a property of type BookStore called myBookStore and initializes it to an instance
of BookStore.

We will use the configureTable() method to set up the table. Add the following code to the
class, outside of any of the other methods:

1 func configureTable() {

2 mainTable.setNumberOfRows (myBookStore.theBookStore.count, withRowType:
"MyBookRou")

3 for index in 0...(myBookStore.theBookStore.count - 1) {

4 if let myRow = mainTable.rowControllerAtIndex(index) as? BookRow {

5 myRow.bookLabel.setText(myBookStore.theBookStore[index].title)

6 }

7 }

8 }

CHAPTER 15: Apple Watch and watchKit 297

Line 1 declares the new method. Line 2 sets the number of rows in the table to the number
of books in the bookstore. You’ll use myBookStore.theBookStore.count to get that number.
We also tell the table which row identifier to use with the table. Line 3 is a loop that assigns
index to 0 and goes until it gets assigned to the number of books — 1. The reason you
subtract 1 from the number of books is because Swift (and most modern programming
languages) starts its arrays with 0. This means if you have an array with two items, the items
will be in positions 0 and 1. If you try to look at position 2, you will receive an error.

Line 4 tries to create a new row for the table using the index variable you created in the
previous line. Line 5 takes the row and assigns the Book title to bookLabel. After entering
those lines, the InterfaceController.swift file will look like Figure 15-20.

//
2/
3 //
v I
5| //

P

4

InterfaceController.swift
BookStore WatchKit Extension

Created by Thorn on 9/1/15.
Copyright © 2815 innv. All rights reserved.

import WatchKit
import Foundation

class InterfaceController: WKInterfaceController {

}

@IB0utlet var mainTable: WKInterfaceTable!
var myBookStore: BookStore = BookStore()

override func awakeWithContext(context: AnyObject?) {
super.awakeWithContext(context)
configureTable()

// Configure interface objects here.

override func willActivate() {
// This method is called when watch view controller is about to be visible to user
super.willActivate()

override func didDeactivate() {
// This method is called when watch view controller is no longer visible
super.didDeactivate()

func configureTable() {

mainTable.setNumberOfRows (myBookStore.theBookStore.count, withRowType: "MyBookRow")
for index in @...(myBookStore.theBookStore.count-1) {
if let myRow = mainTable.rowControllerAtIndex(index) as! BookRow? {
myRow.bookLabel.setText (myBookStore.theBookStore [index].title)

H

class BookRow: NSObject {

}

@IBOutlet weak var bookLabel: WKInterfacelLabel!

Figure 15-20. InterfaceController.swift file

298 CHAPTER 15: Apple Watch and watchKit

You now have enough in place to run the app. From the target menu, select BookStore
WatchKitApp and then select the size of the Apple Watch you would like the simulator to
use, as shown in Figure 15-21. If this is your first time launching the Watch Simulator, it
may take some time and ask for permissions on the Phone simulator before the app will run
successfully.

Ata S [] A

— ¢\ BookStore

;J‘tor Product Debug Source Control Win

. i0S Device + watchOS Device

5 Edit Scheme... rface

New Scheme... @ iPhone 6 + Apple Watch - 38mm

Manage Schemes... ¥ i iPhone 6 Plus + Apple Watch - 42mm

<y bl -] e] -

. 1/
Kit A
o // Created by Thorn on 9/1/15.

Figure 15-21. Selecting the WatchKit target

Once the app is launched, you will see a watch screen with the two books in the
myBookStore object. You can go back to the BookStore.swift file and add more books if you
want to play around with the scrolling. The app should look like Figure 15-22.
Apple Wat...
2:30
Swift for Absolute
Beginners

A Farewell to Arms

Figure 15-22. First WatchKit app launch

CHAPTER 15: Apple Watch and watchKit 299

Adding More Functionality

In the last section, you created a WatchKit app, but it’s very limited in functionality. In this
section, you will add a new scene to the app to show book detail when a book is selected.
Because you will be adding a scene, you will use an additional controller file. Right-click on
the BookStore WatchKit extension folder and select New File, as shown in Figure 15-23.

L nnuv.pnuse b 4

[vl 7 - — h 0
| Show in Finder ;1
- Open with External Editor 13
Open As |

Show File Inspector 7

: 17

| NewFile.. |

Add Files to “BookStore”. E

21

- Delete 22
New Group

New Group from Selection

Sort by Name a

Sort by Type =

Find in Selected Groups... 31

Source Control =

Project Navigator Help > .

Figure 15-23. Adding new controller file

300 CHAPTER 15: Apple Watch and watchKit

Make sure the new file is a Swift file and name it DetailController.swift. It should now
appear in your file list. Add the following code after the import Foundation line.

10 import WatchKit

11

12

13 class DetailController: WKInterfaceController {

14 @IBOutlet var labelTitle: WKInterfacelabel!

15 @IBOutlet var labelAuthor: WKInterfacelabel!

16 @IBOutlet var labelDescription: WKInterfacelabel!

17

18 var book: Book!

19

20 override func awakeWithContext(context: AnyObject?) {
21 super . awakeWithContext (context)

22 if let book = context as? Book {

23 labelTitle.setText(book.title)

24 labelAuthor.setText (book.author)

25 labelDescription.setText(book.description)
26 }

27 }

28 }

Line 10 imports the WatchKit framework. This is necessary when dealing with any WatchKit
classes such as WKInterfaceController or WKInterfacelabel. Line 13 declares a new
WKInterfaceController subclass called DetailController. Lines 14-16 create the labels

you will be using to display the book information. Line 18 declares the Book property called
book. Line 20 is the awakeWithContext method. It is passed an object called context, which
is of type AnyObject. This is where the Book object will be passed. Line 22 takes the context
and assigns it to a book object. Lines 23-25 take the pieces of information from the book and
assigns them to the labels.

You now need to add the following method to the InterfaceController class.

override func contextForSegueWithIdentifier(segueldentifier: String, inTable table:
WKInterfaceTable, rowIndex: Int) -> AnyObject? {
return myBookStore.theBookStore[rowIndex]
}

This method passes the book to the DetailController when it receives the rowIndex of the
selected row. Now you need to create the interface. Select Interface.storyboard on the
left side. Drag an Interface Controller from the Object Library to the storyboard as shown in
Figure 15-24.

CHAPTER 15: Apple Watch and watchKit

Interface Controller

Label

Figure 15-24. Adding new controller file

A A Yetdlals
No Selection

DO EO

Interface Controller - Manages a
screen’s interface objects.

Glance Interface Controller -
Manages the application’s glance

301

Select the second Interface Controller Scene and set the Custom Class to DetailController,

as shown in Figure 15-25.

L 3

Figure 15-25. Setting the new controller class

Custom Class
Class

Module

Document

Label

Object ID
Lock

Notes

| DetailControlier

| InterfaceController

| WKInterfaceController
WEKUserNotificationinterfac.

b4
fBm-XS-vbE
Inherited - (Nothing)

302 CHAPTER 15: Apple Watch and watchKit

Now drag three label objects onto the interface. These labels will be for the book title,
author, and description. See Figure 15-26.

Accessibility

Accessibility Enabled
Label
Hint
Value
Traits Button
Link
Image
Selected

Static Text
Search Field

Plays Sound

O {} ®

Label Label - Displays a static text string.

Figure 15-26. New labels

Now you need to connect the outlets of the new labels. Control-drag from the Detail
Controller Scene to each of the labels and assign them to their respective property. See
Figure 15-27.

CHAPTER 15: Apple Watch and watchKit 303

B B8] < |5 BookStore)| | BookSt...hKit App)

v &0 Detail Controller
Lol Label
Lbl Label

Figure 15-27. Connecting the outlets

The data should all be displaying now. You need to create the segue and test the app once
again. Control-drag from the MyBookRow under the Interface Controller Scene to the Detail
Controller. You will be prompted to select the type of segue. Select push. See Figure 15-28.

—

v ([O) Interface Controller
v |=| Main Table

v (B MyBookRow

» [5]] Group
» Main Entry Point

Selection Segue

push
modal

bl Label

Figure 15-28. Creating the segue

304 CHAPTER 15: Apple Watch and watchKit

Now run the app and select a row. You should see the detail controller you just created, as
shown in Figure 15-29.

< 5:07
Swift for Absolut...
Bennett and Lees

Swift programmi...

Figure 15-29. Detail view scene

Summary

This chapter covered an introduction to developing for the Apple Watch. Specifically, in this
chapter, you learned the following:

How to create a new WatchKit app

How to use the WatchKit controls WKInterfaceController,
WKInterfaceTable, and WKInterfacelLabel

How to create multiple scenes and add segues between them

How to handle passing data from one scene to the next

Exercises

Set up the labels on the detail scene to display all of the data.

Add more books to your BookStore so you can play with the scrolling in
the app.

Chapter 1 6

A Swift HealthKit iPhone App

HealthKit enables iOS developers to integrate health and fitness devices with their app and
integrate the data with Apple’s easy-to-read dashboard. HealthKit enables health and fitness
apps on an iOS device to work together and report device data in the Health app dashboard.
See Figure 16-1.

Show All pat,

Figure 16-1. The Health app’s dashboard

HealthKit is the accompanying developer SDK included in iOS 8 and newer. The SDK
enables other applications to access health data with the user’s permission. For example, a
blood pressure application could share its information with the user’s doctor.

305

306 CHAPTER 16: A Swift HealthKit iPhone App

A number of companies support HealthKit, including Polar, EPIC, Mayo Clinic, and
RunKeeper.

Note To work through this example, you’ll need an active developer account. You won’t be able to
enable the HealthKit Capability and access the HealthKit store without one.

Introduction to Core Bluetooth

The Core Bluetooth framework lets your iOS apps communicate with Bluetooth’s low energy
devices (Bluetooth LE or BLE, for short). BLE devices include heart rate monitors, digital
scales, digital thermostats, and more.

The Core Bluetooth framework is an abstraction of the Bluetooth LE specification and
defines a set of protocols for communicating with the Bluetooth LE devices.

Along with learning about HealthKit in this chapter, you'll learn about the key concepts of
the Core Bluetooth framework, including how to use the framework to discover, connect
to, and retrieve data from BLE-compatible devices. You will learn these skills by building a
heart rate monitoring application that communicates with a BLE heart monitor and displays
the information on an animated user interface along with storing the information in Apple’s
Health app.

The heart rate monitor we use in this example is the Polar H7 Bluetooth Smart Heart Rate
Sensor that can be purchased from Amazon.com. If you don’t have one of these devices,
you can still follow along with the tutorial, but you’ll need to modify the code for whatever
BLE device you have.

Central and Peripheral Devices

There are two major components involved in BLE communication; the central and the
peripheral. See Figure 16-2.

The central is the boss that wants information from one or more workers
in order to accomplish a specific task.

The peripheral is the worker that sends and receives data that is
consumed by the central devices. The peripheral has the data the
central wants.

CHAPTER 16: A Swift HealthKit iPhone App 307

Client Server

Client Server
Wants Data Has Data

Central Peripheral

n

Figure 16-2. Understanding central and peripheral devices

Peripheral Advertising
Advertising is the primary way that peripherals make their presence known via BLE.

In addition to advertising their existence, advertising packets can also contain some data,
such as the peripheral’s name. The packets can even contain some extra data related to
what the peripheral collects. For the heart rate monitor application, the packets also provide
heartbeats per minute information.

The central scans for these advertising packets, identifies any peripherals it finds relevant,
and connects to individual devices for more information.

Peripheral Data Structure

Advertising packets are very small and cannot contain large amounts of data, so to get more
data, a central needs to connect to a peripheral to obtain all of the data available.

Once the central connects to a peripheral, it needs to choose the data it is interested in. With
BLE, data is organized into services and characteristics:

A service is a collection of data and associated behaviors describing a
specific function or feature of a device. A device can have more than
one service. The heart rate monitor exposing heart rate data from the
monitor’s heart rate sensor is a great example of this.

A characteristic provides additional details about a peripheral’s service.
A service can have more than one characteristic. The heart rate service,
for example, may contain a characteristic that describes the intended
body location of the device’s heart rate sensor and an additional
characteristic that transmits heart rate measurement data.

308 CHAPTER 16: A Swift HealthKit iPhone App

Once a central has established a connection to a peripheral, it is free to discover the full
range of services and characteristics of the peripheral, and to read or write the characteristic
values of the available services.

CBPeripheral, CBService, and CBCharacteristic

A peripheral is represented by the CBPeripheral object, while the services relating to a
specific peripheral are represented by (BService objects. See Figure 16-3.

[CBPeripheral 1

—{' CBService

—{ CBCharacteristic

| CBCharacteristic

— CBService

Figure 16-3. Structure of a peripheral’s services and characteristics object hierarchy

The characteristics of a peripheral’s service are represented by CBCharacteristic objects,
which are defined as attribute types containing a single logical value.

Each service and characteristic you create must be identified by a universally unique identifier,
or UUID. UUIDs can be 16- or 128-bit values, but if you are building your client-server (central-
peripheral) application, you’ll need to create your own 128-bit UUIDs. Also, make sure the
UUIDs don’t collide with other potential services in close proximity to your device.

Let’s Get Started and Build the App

We are going to build a simple heart rate monitor app that works with a Bluetooth Low
Energy (BLE) heart rate monitor. In the process of building this app, you will learn a lot about
HealthKit and Bluetooth Low Energy (BLE), such as:

How set up your heart rate monitor
How to request permissions to access and store HealthKit data

How to read Bluetooth Low Energy (BLE) data and format it to show in
the Health app

How the Core Bluetooth Framework works

How to display information from the heart rate BLE monitor
(see Figure 16-4)

CHAPTER 16: A Swift HealthKit iPhone App 309

Connected

Figure 16-4. The Heart Rate Monitor app

1. Create a Single View Application, as shown in Figure 16-5.

310 CHAPTER 16: A Swift HealthKit iPhone App

Choose a template for your new project:

i0s
Application - 00 1 k vee
Framework & Library
Master-Detail Page-Based Single View Tabbed
watchOS Application Application Application
Application
Framework & Library i;
05X
Application Game

Framework & Library
System Plug-in
Other

Single View Application

This template provides a starting point for an application that uses a single view. It provides
a view controller to manage the view, and a storyboard or nib file that contains the view.

Cancel

Figure 16-5. Creating a single view application

2. Name your app and save the project, as shown in Figure 16-6.

Choose options for your new project:

Product Name:
Organization Name:

Organization Identifier:

Bundle Identifier:
Language:

Devices:

HeartRateMonitor]
xcelMe

com

com.HeartRateMonitor

Swift k4
iPhone B

_| Use Core Data
Include Unit Tests
Include Ul Tests

Cancel

Figure 16-6. Naming the project

Previous

Next

CHAPTER 16: A Swift HealthKit iPhone App

3. Change the bundle identifier to the identifier you are going to use to
submit to the App Store and include the HealthKit.framework. Also,

select your developer team, as shown in Figure 16-7.

Runeing HeastRateMontor on Gary's Phong

» B A HearRatoMonitee | [Gary's Pnane
Bioar tRabeManion scodeprn]
B < & HeartRateMonitor
] Gones Capabiities Fesource Tags Infa Buid Settings Buid Phases Buid Rules
PROJECT
v identity
B HeartRatemonisor
Include your own Bundbe Identifier, Bundie Igertifier com HeartRateMonior
Verson 10
FearatetonitorTe
Buld 1
Tesm Accalursted Interrat Strategies [
¥ Deployment Info
Deplogment Target B
Devices _iProne B
i Intertace Main B
Device Orientation € Portrait
Upsice Down
Lanciscapy Loft
B Lancecape Right
Status Bar Style | Default <]
Hice status bar
Roquites full seroon
T Appicons and Launch images

App leons Source | Apaleon

Lounch bmages Source | Use Asset Catalog

Launch Seroen Filg | LaunchScresn

¥ Embedded Dinaries.

¥ Linked Framewsrks and Libraries

o T —

Figure 16-7. Adding your own bundle identifier, team, and HealthKit. framework

4. In order use HealthKit, you need to add the HealthKit entitlement.
Change the project’s capabilities to add HealthKit, as shown in

Figure 16-8.

3

312 CHAPTER 16: A Swift HealthKit iPhone App

¥ [HealthKit framewark
¥ [19) HeartRateMonitor
[HeartRateMonitor.entitiements
« AppDelngate.swift
+! ViewControlior.switt

Main.storybaard

» [HeartRateMonitorUiTests

» [Products

]

PROJECT

HeartRateMonitor.

Buid Settings Buid Phases

iCloud

® Push Natifications

Game Center

Wallet

©_| Applo Pay

In-App Purchase

Personal VPN

Maps.

.. Keychain Sharing

Background Modes

Inter-App Audio

Associated Domaing

App Groups

Homekit

Data Protection

Wireless Accessory Configuration

Figure 16-8. Including the HealthKit capabilities in the project

Build Rules

5. The app doesn’t automatically get access to the HealthKit data, so it
first needs to ask permission. Open the ViewController.swift file to
add all of the related code this app needs.

6. Import the Core Bluetooth and HealthKit frameworks, add the Core
Bluetooth delegate protocols, and declare the instance variables,
as shown in Listing 16-1. The ViewController needs to implement

the CBCentralManagerDelegate protocol to enable the delegate
to monitor the discovery, connectivity, and retrieval of peripheral
BLE devices. The ViewController also needs to implement the
CBPeripheralDelegate protocol so it can monitor the discovery,

exploration, and interaction of a remote peripheral’s services and

properties.

CHAPTER 16: A Swift HealthKit iPhone App 313

Listing 16-1. Adding Core Bluetooth, HealthKit, and instance variables

//

// ViewController.swift

// HeartRateMonitor

/1

// Created by Gary Bennett on 9/10/15.

// Copyright (c) 2016 xcelMe. All rights reserved.
//

o~ OV B WN B

9 import UIKit

10 import CoreBluetooth

11 import HealthKit

12

13 class ViewController: UIViewController, CBCentralManagerDelegate, CBPeripheralDelegate {
14

15

16

17 var heartRate: UInt16 = 0

18 let healthKitStore: HKHealthStore = HKHealthStore()
19 var centralManager: CBCentralManager!

20 var connectingPeripheral: CBPeripheral!

21 var pulseTime: NSTimer!

The core of the HealthKit Framework is the HKHealthStore class, as shown on line 18 in
Listing 16-1. Now that you’ve created an instance of HKHealthStore, the next step is to
request authorization to use it.

The users are the masters of their data, and they control which metrics you can track. This
means you don’t request global access to the HealthKit store. Instead, you request access
to the specific types of objects the app needs to read or write to the store.

7. Add the Heart.png and Human.png files from the Chapter 16 project
to this project. Then create the outlets for the labels, as shown in
Figure 16-9.

Figure 16-9. Creating the HealthKitStore object and setting the variables

http://dx.doi.org/10.1007/978-1-4842-1488-6_16

314 CHAPTER 16: A Swift HealthKit iPhone App

Note You can refer to the Chapter 16 project that can be downloaded from forum.xcelme.com
as described in the Introduction. It includes the PNG files used for the app as well as showing you
the auto-layout constraints if you need help.

8. Add the viewDidAppear method as shown in Listing 16-2. You need
to instantiate the centralManager and request authorization to the
HealthKit store.

Listing 16-2. Add the init as shown

27 override func viewDidAppear(animated: Bool) {

28 centralManager = CBCentralManager(delegate: self, queue: dispatch get main_
queue())

29 self. requestAuthorizationForHealthStore ()

30 self.heartRate = 0

31 }

9. Add the centralManagerDidUpdateState function as shown in
Listing 16-3. This ensures that the device is BLE compliant and it
can be used as the central device object of the CBCentralManager. If
the state of the central manager is powered on, the app will receive
a state of CBCentralManagerStatePoweredOn. If the state changes to
CBCentralManagerStatePoweredOff, all peripheral objects that have
been obtained from the central manager become invalid and must be
rediscovered.

Listing 16-3. Add the centralManagerDidUpdateState function
39 func centralManagerDidUpdateState(central: (BCentralManager){

40

41 switch central.state {

42 case .PoweredOn:

43 print("poweredOn")

44

45 let serviceUUIDs = [CBUUID(string:"180D")]

46 let lastPeripherals = centralManager.retrieveConnectedPeripheralsWith
Services(serviceUUIDs)

47 print(lastPeripherals.count)

48 if lastPeripherals.count > 0 {

49 connectingPeripheral = lastPeripherals.last

50 connectingPeripheral.delegate = self

51 centralManager.connectPeripheral (connectingPeripheral, options: nil)

52 connectedOutlet.text = "Connected"

53 }

http://dx.doi.org/10.1007/978-1-4842-1488-6_16
http://forum.xcelme.com

CHAPTER 16: A Swift HealthKit iPhone App 315

54 else {

55 centralManager.scanForPeripheralshWithServices(serviceUUIDs, options: nil)
56 connectedOutlet.text = "Disconnected"
57 }

58

59 default:

60 print(central.state)

61 }

62

63

64 }

65

10. The next step is to determine if you have established a connection
to the heart rate monitor. Add the didDiscoverPeripheral and
didDiscoverServices functions. When you establish a local
connection to a peripheral, the central manager object calls the
didConnectPeripheral method of its delegate object.

In the implementation, we first set the view controller to be the delegate of the peripheral
object so that it can notify the view controller. If no error occurs, we next ask the peripheral
to discover the services associated with the device. Then we determine the peripheral’s
current state to see if we have established a connection.

Listing 16-4. Add the didDiscoverPeripheral and didDiscoverServices functions

66 func centralManager(central: CBCentralManager, didDiscoverPeripheral peripheral:
(BPeripheral, advertisementData: [String : AnyObject], RSSI: NSNumber) {

67

68 connectingPeripheral = peripheral

69 connectingPeripheral.delegate = self

70 centralManager.connectPeripheral(connectingPeripheral, options: nil)

71 connectedOutlet.text = "Connected"

72 }

73

74 func centralManager(central: CBCentralManager, didConnectPeripheral peripheral:
(BPeripheral) {

75

76 peripheral.discoverServices(nil)

77

79 func peripheral(peripheral: CBPeripheral, didDiscoverServices error: NSError?) {

80

81 if let actualError = error{

82 print("\(actualError)")

83 }

316 CHAPTER 16: A Swift HealthKit iPhone App

84 else {

85 for service in peripheral.services as [CBService]! {

86 peripheral.discoverCharacteristics(nil, forService: service)
87

88 }

89 }

90

11. Now add the didDiscoverCharacteristicsForService function, as
shown in Listing 16-5.

This function lets you determine the characteristics the service has. First, we check if the
service is the heart rate service. Then, we iterate through the characteristics array and
determine if any of the characteristics are a heart rate monitor notification characteristic. If
s0, we subscribe to this characteristic, which tells the CBCentralManager to notify us when
the characteristic changes.

If the characteristic is the body location characteristic, there is no need to subscribe. You
just read the value.

If the service is the device info service, look for the manufacturer name and read it.

Listing 16-5. Add the didDiscoverCharacteristicsForService function

91 func peripheral(peripheral: CBPeripheral, didDiscoverCharacteristicsForService
service: CBService, error: NSError?) {
92
93 if let actualkError = error {
94 print("\(actualError)")
95
96 else {
97
98 if service.UUID == CBUUID(string:"180D") {
99 for characteristic in (service.characteristics as [CBCharacteristic]?)!
{
100 switch characteristic.UUID.UUIDString {
101
102 case "2A37":
103 // Set notification on heart rate measurement
104 print("Found a Heart Rate Measurement Characteristic")
105 peripheral.setNotifyValue(true, forCharacteristic:
characteristic)
106
107 case "2A38":
108 // Read body sensor location
109 print("Found a Body Sensor Location Characteristic")
110 peripheral.readValueForCharacteristic(characteristic)
111
112 case "2A39":
113 // Write heart rate control point
114 print("Found a Heart Rate Control Point Characteristic")

115

CHAPTER 16: A Swift HealthKit iPhone App 317

116 var rawArray:[UInt8] = [0x01];

117 let data = NSData(bytes: &rawArray, length: rawArray.count)

118 peripheral.writeValue(data, forCharacteristic: characteristic,
type: CBCharacteristicWriteType.WithoutResponse)

119

120 default:

121 print("")

122

123

124 }

125 }

126 }

127 }

To understand how to interpret the data from a BLE characteristic, you need to check the
Bluetooth specification. For this example, visit https://developer.bluetooth.org/gatt/
characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.
heart rate measurement.xml.

A heart rate measurement consists of a number of flags, followed by the heart rate
measurement itself, energy information, and other data.

Add the update function shown in Listing 16-6. The update function is called each time the
peripheral sends new data.

The update function converts the contents of the characteristic value to a data object. Next,
you get the byte sequence of the data object. Then, you calculate the bpm variable, which will
store the heart rate information.

To calculate the BPM, we obtain the first byte at index 0 in the array as defined by buffer[0]
and mask out all but the first bit. The result returned will either be 0, which means that

the first bit is not set, or 1 if it is set. If the first bit is not set, retrieve the BPM value at the
second byte location at index 1 in the array and convert it to a 16-bit value based on the
host’s native byte order.

12. Add the pulse function. Output the value of BPM to your bpmOutlet
UILabel. Set up a timer object that calls pulse at 0.8-second intervals;
this performs the basic animation that simulates the beating of a heart
through the use of Core animation, as shown in Listing 16-7.

Listing 16-6. Add the update function

129 func update(heartRateData:NSData){

130 var buffer = [UInt8](count: heartRateData.length, repeatedValue: 0x00)
131 heartRateData.getBytes(8buffer, length: buffer.count)

132

133 var bpm: UInt16?

134 if (buffer.count »>= 2){

135 if (buffer[o] & ox01 == 0){

136 bpm = UInt16(buffer[1]);

137 telse {

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.heart_rate_measurement.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.heart_rate_measurement.xml
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.heart_rate_measurement.xml

318 CHAPTER 16: A Swift HealthKit iPhone App

138 bpm = UInt16(buffer[1]) << 8

139 bpm = bpm! | UInti6(buffer[2])

140 }

141 }

142

143 if let actualBpm = bpm{

144 print("actualBpm \(actualBpm)")

145 self.bpmOutlet.text = String(actualBpm)

146

147 let rate = 60.0 / Float(self.heartRate)

148 print("\(rate)")

149 self.saveHeartRateIntoHealthStore(Double(actualBpm))

150

151 let oldBpm = self.heartRate

152 self.heartRate = actualBpm

153 if (oldBpm == 0) {

154 pulse()

155 self.pulseTime = NSTimer.scheduledTimerWithTimeInterval(0.8, target:
self,

156 selector: "pulse", userInfo: nil, repeats: false)

157 }

158

159 telse {

160 print("bpm \(bpm)")

161 self.bpmOutlet.text = "\(bpm)"

162 }

163 }

Listing 16-7. The pulse function
165 func pulse() {

166 let pulseAnimation = CABasicAnimation(keyPath: "transform.scale")
167
168 pulseAnimation.toValue = NSNumber(float: 1.2)
169 pulseAnimation.fromvalue = NSNumber(float: 1.0)
170
171
172 pulseAnimation.duration = 0.2
173 pulseAnimation.repeatCount = 1
174 pulseAnimation.autoreverses = true
175 pulseAnimation.timingFunction = CAMediaTimingFunction
(name: kCAMediaTimingFunctionEaselIn)
176 heartView.layer.addAnimation(pulseAnimation, forKey: "scale")
177 let rate = 60.0 / Float(self.heartRate)
178 self.pulseTime = NSTimer.scheduledTimerWithTimeInterval(NSTimeInterval(rate),

target: self, selector: "pulse", userInfo: nil, repeats: false)
179 }

CHAPTER 16: A Swift HealthKit iPhone App 319

13.

Now add the didUpdateValueForCharacteristic function, as shown
in Listing 16-8. The didUpdateValueForCharacteristic function

will be called when CBPeripheral reads a value or updates a value
periodically. We need to implement this method to check to see
which characteristic’s value has been updated, and then call one of
the helper methods to read in the value.

Listing 16-8. Add the didUpdateValueForCharacteristic function

181

182
183
184
185
186
187
188
189
190
191
192
193

func peripheral(peripheral: CBPeripheral, didUpdateValueForCharacteristic
characteristic: (BCharacteristic, error: NSError?) {

}

14,

if let actualError = error{
print("\(actualError)")

} else {
switch characteristic.UUID.UUIDString {
case "2A37":
update(characteristic.value!)
default:
print("")
}

Add the saveHeartRateIntoHealthStore function, as shown in
Listing 16-9.

In this function, you first create a sample object using HKQuantitySample. In order to create
this sample, you need:

A Quantity type object, like HKQuantityType, initialized using the proper
sample type.

A Quantity sample, like HKQuantity’s start and end date, which in this
case is the current date and time in both cases.

Listing 16-9. Add the saveHeartRatelntoHealthStore function

195 // healthkit info
private func saveHeartRateIntoHealthStore(height:Double) -> Void

196
197
198
199

200

201
202

203
204

{

// Save the user's heart rate into HealthKit.

let heartRateUnit: HKUnit = HKUnit.countUnit().unitDividedByUnit(HKUnit.
minuteUnit())

let heartRateQuantity: HKQuantity = HKQuantity(unit: heartRateUnit, doubleValue:
height)

let heartRate : HKQuantityType = HKQuantityType.quantityTypeForIdentifier (HKQuan
tityTypeldentifierHeartRate)!
let nowDate: NSDate = NSDate()

320 CHAPTER 16: A Swift HealthKit iPhone App

205 let heartRateSample: HKQuantitySample = HKQuantitySample(type: heartRate

206 , quantity: heartRateQuantity, startDate: nowDate, endDate: nowDate)

207

208 self.healthKitStore.saveObject(heartRateSample) { (success:Bool, error:NSError?)
-> Void in

209 print("done")

210 }

211 }

15. Add the requestAuthorizationForHealthStore function as shown
in Listing 16-10. You’re creating a Set with all the types you need to
read from the HealthKit store. Characteristics (blood type, sex, and
birthday), samples (body mass and height), and workouts.

Then you check if the HealthKit store is available. For universal apps, this is crucial because
HealthKit may not be available on every device. Finally, the app performs the actual
authorization request; it invokes requestAuthorizationToShareTypes with the previously
defined types for reads. Now that your code knows how to request authorization, you need
to create a way for your app to invoke it.

Listing 16-10. Add the requestAuthorizationForHealthStore function

208 private func requestAuthorizationForHealthStore() {

209

210 let dataTypesToRead = Set(arraylLiteral:

211 HKObjectType.characteristicTypeForIdentifier(HKCharacteristicTypeldentifier

DateOfBirth)!,

212 HKObjectType.quantityTypeForIdentifier (HKQuantityTypeIdentifierBodyMass)!,

213 HKObjectType.quantityTypeForIdentifier(HKQuantityTypeIldentifierHeight)!

214)

215

216 //Requesting the authorization

217 healthKitStore.requestAuthorizationToShareTypes(nil, readTypes: dataTypesToRead)
{ (success, error) -» Void in

218 if(success)

219 {

220 print("success")

221 }

222 }

223 }

224

CHAPTER 16: A Swift HealthKit iPhone App 321

App Summary

You are done adding code, so run the app. When the app starts, it asks permission to
access the HealthKit store. If this is the first time the app has run, HealthKit store asks the
user for permission, as shown in Figure 16-10.

4 Back to Settings 9:02 AM ® 4

Don't Allow Health Access Allow

v

Health

"HeartRateMonitor” would like to access and
update your Health data in the categories
below

All Categories Off

ALLOW “HEARTRATEMONITOR" TO READ

DATA:

) Date of Birth [
Height _/
Weight _/

Figure 16-10. HealthKit asking the user permission to access the app

As the app runs and is displaying data, it is also storing data in the HealthKit store. You can
see that data by opening the Health App, as shown in Figure 16-11.

322 CHAPTER 16: A Swift HealthKit iPhone App

No Service = 6:58 AM A -

< Al Heart Rate

Month [Year]

Show on Dashboard

Show All Data

Add Data Point >

Share Data 5

Unit bpm
O © =

Dashboard Health Data Sources Medical ID

Figure 16-11. The heart rate data being stored in the HealthKit store

If you want to view the heart rate data in the Health app’s dashboard (Figure 16-12), you
need to enable the Show on Dashboard switch, as shown in Figure 16-11.

CHAPTER 16: A Swift HealthKit iPhone App 323

No Service 6:59 AM 4 -

Dashboard

Day Week Month ‘ Year

Figure 16-12. The heart rate data being displayed in the dashboard

What’s Next?

You did it! You should have a great foundation to write outstanding apps. The best place to
start is with your own idea for an app. Start writing it today. You are going to have lots of
questions. That is how you are going to continue to learn. Keep moving forward and don’t
stop, no matter if you get discouraged sometimes.

If you do get discouraged, visit www.xcelMe.com/forum. There are great resources on this site
for finding answers to your questions. There is a topic for this book and each chapter in the
book. Feel free to post your own questions. The authors of this book help answer the posts.
Also, there are free videos on www.xcelMe. com. In the live sessions, you can ask questions to
Gary Bennett. Just click the Free Videos tab at the top of the page, as shown in Figure 16-13.

http://www.xcelMe.com/forum
http://www.xcelme.com/

324 CHAPTER 16: A Swift HealthKit iPhone App

0] (xceime.com) &

in¥ f X

Me HOME COURSES SCHEDULE CONSULTING ABOUT FAQ

FCEL WFIRENT

Quickly learn Swift,
the new iOS programming language.

-~

DONT BELIEVE ME? SEE WHAT OUR CUSTOMERS ARE SAYING m Site consultant i‘ i

-

=

Free Videos
Interactive Online Training Forum available 1o Check out our Free Video Selection to start
all students Learning now!

Figure 16-13. Free live Swift 2.0 training videos and forum

Good luck and have fun!

Exercises

B Enable the app to read data from the HealthKit store
B Enable the app to connect and disconnect to the heart rate monitor

B Enable the users to set visual and audible alarms when their heart rate
gets too high

Index

A

Apple Developer Program, 17
Apple Watch and watchKit
creation
adding label, 287
adding table, 286
Assistant Editor, 291
bookLabel outlet, 295
BookRow, 294
BookStore, 296
BookStore WatchKit app, 283
control-dragging, 295
data files, 296
expanding label, 288
InterfaceController class, 291-292
InterfaceController.swift
file, 290-291, 297
Interface storyboard, 284-285
lines attribute, 289
myBookStore, 297
new targets, 284
Table Row Controller, 293
table row identifier, 294
WatchKit app launch, 298
WatchKit target, 298
watchOS options, 283
Xcode 7, 282
functionality
Detail Controller Scene, 302-303
DetailController.swift, 300
detail view scene, 304
new controller class, 301
new controller file, 299, 301
new labels, 302
segue, 303
watchOS app, 281-282
Apps design
condition-controlled loop, 53

count-controlled loop, 52
flowchart, 50-51
forced unwrapping, 48
infinite loop, 53
optionals, 48
implicitly unwrapped, 49
optional binding, 49
pseudocode
conditional operators, 45
definition, 45
logical operators, 47

arc4random_uniform()function, 57

Balsamiq, 62
Bluetooth’s low energy (BLE) device

bundle identifier, 311
central device, 307
centralManagerDidUpdateState
function, 314
didDiscoverCharacteristicsForService
function, 316
didDiscoverPeripheral
function, 315
didDiscoverServices function, 315
HealthKit capabilities, 312
HealthKit.framework, 311
HealthKitStore object, 313
heart rate data, 322
Heart Rate Monitor app, 309
peripheral device, 307
advertising, 307
CBCharacteristic object, 308
CBPeripheral object, 308
CBService object, 308
data structure, 307
project naming, 310
pulse function, 318

325

326

Bluetooth’s low energy (BLE) device (cont.)

Index

requestAuthorizationForHealthStore
function, 320

saveHeartRatelntoHealthStore
function, 319

single view application, 310

training videos and forum, 324

update function, 317

user permission, 321

ViewController.swift file, 312

viewDidAppear method, 314

Bookstore app

access variables, 142
add book function, 264
add description, 147
add properties, 145
addBookSegue, 265
AddBookViewController
identifying addBook Segue, 268
identity inspector, 270
landmarks, 266
objects, 267
pages and readThisBook, 271
Show Segue object, 268
swift class creation, 269
swift file and adding code, 270
alert view controllers
adding delegate method, 276

adding pages and read outlets, 274

adding segue object, 277
delete button bar, 274
modifying configureView, 279
prepareForSegue function, 278
segue’s identifier, 278
UlAlertViewController, 275

boilerplate project, 138

button bar item, 265

class creation, 140

data model class, 149

DetailViewController, 154

edit and delete function, 264

instance variables, 141

master-detail application, 136

MasterViewControlle, 150

product application, 137

Swift file, 139

switches, 272

view creation, 142

BookStoreCoreData.xcdatamodeld
attributes, 206, 208
date, 209
decimal, 208
integer 32, 208
string, 208
Data Model Inspector, 211
entity, 206
fetched properties, 206
interface creation, 216
Assistant Editor button, 223
Attributes Inspector, 218
Bar Button Item, 221
code implementation, 225
connection setup, 224
Document Outline, 222
hook up, 223
identifier, 218
Navigation Controller, 219
Table View, 217
UlIBarButtonltem, 220
UlTableViewCell, 218
managed objects, 212, 215
NSManagedObject, 212-213
relationships, 206, 210
Boolean logic
AND operator, 42-43
comparison operators, 45
NAND operator, 44
NOR operator, 44
NOT operator, 42-43
OR operator, 42-43
XOR operator, 42, 44
Breakpoint navigator, 14
Bugs, 5, 247

C

Classes, 105

instance variables, 106

methods, 107
initializers, 108
instance, 108
type, 107

RadioStations, 109
action creation, 125
adding objects, 112
Assistant Editor icon, 124
buttonClick method, 125

Index

class methods, 127
company identifier, 110
connections, 122
execution, 126
iPhone application, 111
Label object, 120
single view application, 110
stationName instance variable, 123
user interface creation, 116
workspace window, 112
writing class, 115

Xcode documentation, 127
help menu, 128
string class, 128

Comparing data

Boolean expression
Bool and number
variables, 165
comparing strings, 166
some_code() method, 165
Boolean logic, 157
comparing numbers, 159
comparison operators, 158
switch statement
combining comparisons, 170
if statement, 167
NSComparisonResult, 168
NSDate class, 168
variable, 168
Xcode app
AppDelegate.swift file, 162
debugger window, 163
didFinishLaunchingWithOptions, 163
Launch Xcode, 160
NSLog function, 163
NSLog output, 164
project type and name, 162
Single View Application, 161

configureView() method, 154, 255

Data

bits
Apple’s A8 processor, 26
definition, 25
Moore’s law, 27

bytes, 28

constant, 32

explicit variables, 32
hexadecimal system, 29
implicit variables, 32
optionals, 33
playground, 34
types, 31
Unicode, 30
Data storage
database
Core Data, i0S, 203, 205, 228

(see also BookStoreCoreData.

xcdatamodeld)
definition, 202
SQLite (see SQLite)
iPhone, 199
Mac, 199
preferences file, 200
reading preferences, 201
writing preferences, 200
Debugging
controls, 254
definition, 5
NSLog function, 163
OOP, 80
variables, 256-257
with Xcode debugger, 247, 259
Debug navigator, 14
Delegation
definition, 234
guessing game app
auto layout, 237
class listing, 241
GuesslnputViewController, 240
home view, 235
IBAction function, 238
intializations, 239
outlet objects, 238
prepareForSegue
function, 243
project creation, 236
RandomNumber function, 238
segue identifier, 243
user input view, 235
variable declarations, 239
View Controller, 237, 240
viewDidLoad function, 239
didUpdateValueForCharacteristic
function, 319

327

328 Index

FG

Find navigator, 14

HealthKit iPhone app
Core Bluetooth framework (see
Bluetooth's low energy (BLE)
device)
Health app dashboard, 305
Human Interface Guidelines (HIG), 177

1, J,K
Integrated development environment
(IDE), 6
Interface Builder
actions and outlets, 173-174
HIGs, 177
iPhone app
actions, 192-193
disable autolayout, 194-195
document outline, 184-185
inspector pane, 187-188
iPhone simulator, 196
Library, 185-187
naming, 180
new group creation, 181-182
objects centering, 195
outlets, 190-192
random number generator, 178
seed and generate methods, 194
selector bar, 188
single view application, 179
source files, 180-181
storyboard resolvers, 182-183
view creation, 189-190
MVC pattern
architectural, 175
objects, 175-176
OOP, 175
schematic representation, 176
software development, 175
storyboard/XIB file, 173, 183
workspace window, 184
XML file format, 174
iOS developer
algorithm, 2

bugs, 5

computer program, 2
debugging, 5

design requirements, 2

iTunes App Store, 6
object-oriented programming, 6
OmniGraffle, 3

playground interface, 9
quality assurance, 5

testing, 5

ul, 2

Woodforest mobile banking, 4

Issue navigator, 14, 259

L

Language symbols, 84
logMessage method, 86

MasterViewController.swift viewDidlLoad

method, 259

Model-View-Controller (MVC)

architectural patterns, 175
objects, 175-176

OOPR, 175

schematic representation, 176
software development, 175

NSUserDefaults class, 200

0

Objective-C, 83
Object-oriented programming (OOP), 175

class
Book class, 69
Bookstore class, 68
customer class, 68
definition, 66
implementation, 71
instance, 67
planning methods, 69
Sale class, 69
debugging, 80
eliminate redundant code, 80
inheritance, 78

interface, 80
methods, 8
object

definition, 65

methods, 66

properties, 66
playground applications, 6
polymorphism, 81
principles, 6, 79
properties, 8
replacement, 80

IBAction function, 238
intializations, 239

outlet objects, 238
prepareForSegue function,
project creation, 236

Index

243

RandomNumber function, 238

segue identifier, 243

user input view, 235
variable declarations, 239
View Controller, 237, 240
viewDidLoad function, 239

state, 8 multiple inheritance, 233
UlTableView object, 8 syntax, 233

Objects implementation, 85

OmniGraffle, 3, 60 (1]

OOP. See Object-oriented
programming (OOP)

P R

Preferences file, 200
Programming
Array class, 132
bookstore application
access variables, 142
add description, 147
add properties, 145
boilerplate project, 138
class creation, 140
data model class, 149
DetailViewController, 154
instance variables, 141
master-detail application, 136
MasterViewController, 150

Quality assurance (QA), 5

Relational operators
comparing numbers, 159
comparison operators, 158
Xcode app

AppDelegate.swift file, 162
debugger window, 163

329

didFinishLaunchingWithOptions, 163

Launch Xcode, 160
NSLog function, 163
NSLog output, 164

project type and name, 162

Single View Application, 161

removeAtindex method, 134
Report navigator, 14

product application, 137
Swift file, 139 s
view creation, 142 showName method, 92, 99
collection, 132 some_code() method, 165
Dictionary class, 134 SQLite, 202-203
let vs. var, 131 stringForKey method, 202
Project navigator, 14 Swift app
Protocols code refactoring, 57
definition, 233 design requirements, 59
guessing game app else if statement, 57
auto layout, 237 nest if statements, 57
class listing, 241 newline character, 57
GuesslnputViewController, 240 output, 58

home view, 235 random number generator, 54

330 Index

Switch statement
combining comparisons, 170
if statement, 167
NSComparisonResult, 168
NSDate class, 168
variable, 168
Symbol navigator, 14
synchronize function, 201

T

Test navigator, 14

u, v
UlTableView object, 8
Unified Modeling Language (UML), 70
User interfaces (Ul)

creating, 116-122 (see also Interface

Builder)
design, 2, 5
Xcode, 11-12

W

Woodforest, 61
Woodforest mobile banking, 4

X, Y,2Z
Xcode, 7

assistant editor, 15

installation, 16

Interface Builder, 15

launch, 18

navigator selector bar, 14

opening screen, 87

playground window, 20

project creation
@IBOutlet and @IBAction, 93
app running, 103
Button object, 95, 98
button’s connection menu, 100
context-sensitive editor, 89
didReceiveMemoryWarning, 92
iOS Application, 88
iPhone interface objects, 94
Label object, 97, 102
label’s size expantion, 97
main screen, 90

Main.storyboard file, 93
Object Library, 94
object’s variable selection, 103
referencing outlet, 102
Setting up, 89
showName method, 92, 99
storyboard file, 89
templates list, 88
toolbars, 90
Touch Up Inside, 99-100
View buttons, 91
ViewController.swift file, 91-92
viewDidlLoad, 92
project editor, 14
source editor, 14
standard editor, 15
user interface, 12
version editor, 15
workspace window, 13
Xcode debugger
BookStore project, 248
Breakpoint Navigator, 250
breakpoint settings, 249
Build and Debug buttons, 252
code errors, 258
code warnings, 259
console, 253
Debug build configuration, 248
debugging controls, 253-254
definition, 247
interrupted program
execution, 253
Issue navigator, 259
stack trace, 253
step control
configureView() method, 255
debugging variables, 256
self.configureView(), 254
Step Into button, 254-255
Step Out button, 256
thread window and call stack, 256
Variables view, 253
Xcode documentation, 127
help menu, 128
string class, 128
Xcode playground IDE
editor area, 20
results area, 21

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Becoming a Great iOS Developer
	 Thinking Like a Developer
	 Completing the Development Cycle
	 Introducing Object-Oriented Programming
	 Working with the Playground Interface
	 Summary
	 What’s Next
	 Exercises

	Chapter 2: Programming Basics
	 Touring Xcode
	 Exploring the Workspace Window
	 Navigating Your Workspace
	 Editing Your Project Files

	 Creating Your First Swift Playground Program
	 Installing and Launching Xcode 7
	 Using Xcode 7

	 Xcode Playground IDE: Editor and Results Areas
	 Summary
	 Exercise

	Chapter 3: It’s All About the Data
	 Numbering Systems Used in Programming
	 Bits
	Moore’s Law

	 Bytes
	 Hexadecimal
	 Unicode

	 Data Types
	 Declaring Constants and Variables
	 Optionals
	 Using Variables in Playgrounds
	 Summary
	 Exercises

	Chapter 4: Making Decisions, Program Flow, and App Design
	 Boolean Logic
	 Truth Tables
	 Comparison Operators

	 Designing Apps
	 Pseudocode
	 Optionals and Forced Unwrapping
	Optional Binding
	Implicitly Unwrapped Optionals

	 Flowcharting
	 Designing and Flowcharting an Example App
	 The App’s Design
	 Using Loops to Repeat Program Statements
	Count-Controlled Loops
	 Condition-Controlled Loops
	 Infinite Loops

	 Coding the Example App in Swift
	 Nested if Statements and else if Statements
	 Removing Extra Characters
	 Improving the Code Through Refactoring
	 Running the App
	 Design Requirements

	 Summary
	 Exercises

	Chapter 5: Object-Oriented Programming with Swift
	 The Object
	 What Is a Class?
	 Planning Classes
	 Planning Properties
	 Planning Methods
	 Implementing the Classes

	 Inheritance
	 Why Use OOP?
	 OOP Is Everywhere
	 Eliminate Redundant Code
	 Ease of Debugging
	 Ease of Replacement

	 Advanced Topics
	 Interface
	 Polymorphism

	 Summary
	 Exercises

	Chapter 6: Learning Swift and Xcode
	 A Newcomer
	 Understanding the Language Symbols
	 Implementing Objects in Swift
	 Writing Another Program in Xcode
	 Creating the Project

	 Summary
	 Exercises

	Chapter 7: Swift Classes, Objects, and Methods
	 Creating a Swift Class
	 Instance Variables
	 Methods
	Using Class Methods
	Using Instance Methods

	 Using Your New Class
	 Creating Your Project
	 Adding Objects
	 Writing the Class
	 Creating the User Interface
	 Hooking Up the Code
	 Running the Program
	 Taking Class Methods to the Next Level

	 Accessing the Xcode Documentation
	 Summary
	 Exercises

	Chapter 8: Programming Basics in Swift
	 Using let vs. var
	 Understanding Collections
	 Using Arrays
	 Using the Dictionary Class
	 Creating the BookStore Application
	 Creating Your Class
	 Introducing Properties
	 Accessing Variables

	 Finishing the BookStore Program
	 Creating the View
	 Adding Properties
	 Adding a Description
	 Creating a Simple Data Model Class
	 Modifying MasterViewController
	 Modifying the DetailViewController

	 Summary
	 Exercises

	Chapter 9: Comparing Data
	 Revisiting Boole an Logic
	 Using Relational Operators
	 Comparing Num bers
	 Creating an Example Xcode App

	 Using Boolean Expressions
	 Comparing Strings

	 Using the switch Statement
	 Comparing Dates
	 Combining Co mparisons

	 Summary
	 Exercises

	Chapter 10: Creating User Interfaces
	 Understanding Interface Builder
	 The Model-View-Controller Pattern
	 Human Interface Guidelines
	 Creating an Example iPhone App with Interface Builder
	 Using Interface Builder
	 The Document Outline
	 The Library
	 Inspector Pane and Selector Bar
	 Creating the View
	 Using Outlets
	 Using Actions
	 The Class

	 Summary
	 Exercises

	Chapter 11: Storing Information
	 Storage Considerations
	 Preferences
	 Writing Preferences
	 Reading Preferences

	 Databases
	 Storing Information in a Database
	 Getting Started with Core Data
	 The Model
	 Managed Object Context
	 Setting Up the Interface

	 Summary
	 Exercises

	Chapter 12: Protocols and Delegates
	 Multiple Inheritance
	 Understanding Protocols
	 Protocol Syntax
	 Delegation
	 Protocol and Delegation Example
	 Getting Started
	 How It Works
	 Summary
	 Exercise

	Chapter 13: Introducing the Xcode Debugger
	 Getting Started with Debugging
	 Setting Breakpoints
	 Using the Breakpoint Navigator
	 Debugging Basics
	 Working with the Debugger Controls

	 Using the Step Controls
	 Looking at the Thread Window and Call Stack
	 Debugging Variables

	 Dealing with Code Errors and Warnings
	 Errors
	 Warnings

	 Summary

	Chapter 14: A Swift iPhone App
	 Let’s Get Started
	
	 Switches
	Alert View Controllers

	 App Summary
	 Exercises

	Chapter 15: Apple Watch and watchKit
	 Considerations When Creating a watchOS App
	 Creating an Apple Watch App
	 Adding More Functionality
	 Summary
	 Exercises

	Chapter 16: A Swift HealthKit iPhone App
	 Introduction to Core Bluetooth
	 Central and Peripheral Devices
	 Peripheral Advertising
	 Peripheral Data Structure
	CBPeripheral, CBServi ce, an d CBCharacteristic

	 Let’s Get Started and Build the App
	 App Summary
	 What’s Next?
	 Exercises

	Index

