

	

	
Swift	Programming	Nuts	and	Bolts

	
By	Keith	Lee

	
Copyright	2015	Keith	Lee

	
Smashwords	Edition

	

	
Discover	other	titles	by	Keith	Lee	at	Smashwords.com:

	
iOS	Programming	Nuts	and	Bolts

	
Objective-C	Programming	Nuts	and	Bolts

	
Programming	for	Everyone

	
The	Composer-Performer	Relationship	in	Contemporary	Music

	

	
Smashwords	Edition,	License	Notes

	
This	eBook	is	licensed	for	your	personal	enjoyment	only.	This	eBook	may	not	be
re-sold	or	given	away	 to	other	people.	 If	 you	would	 like	 to	 share	 this	book	with
another	person,	please	purchase	an	additional	copy	 for	each	 recipient.	 If	 you’re
reading	 this	book	and	did	not	purchase	 it,	 or	 it	was	not	purchased	 for	 your	use
only,	then	please	return	to	Smashwords.com	and	purchase	your	own	copy.	Thank
you	for	respecting	the	hard	work	of	this	author.
	

https://www.smashwords.com/books/view/573594
https://www.smashwords.com/books/view/581011
https://www.smashwords.com/books/view/238220
http://www.smashwords.com/books/view/105508

	

Swift	Programming	Nuts	and	Bolts

	

Motu	Presse	Publications

	
No	 part	 of	 this	 work	 may	 be	 reproduced	 or	 transmitted	 in	 any	 form	 or	 by	 any
means,	 electronic	 or	 mechanical,	 including	 photocopying,	 recording,	 or	 by	 any
information	storage	or	retrieval	system,	without	the	prior	written	permission	of	the
copyright	owner	and	the	publisher.	No	patent	 liability	 is	assumed	with	respect	 to
the	use	of	the	information	contained	herein.	Although	every	precaution	has	been
taken	 in	 the	 preparation	 of	 this	 book,	 the	 author	 and	 publisher	 assume	 no
responsibility	 for	 errors	 or	 omissions.	 Nor	 is	 any	 liability	 assumed	 for	 damages
resulting	from	the	use	of	the	information	contained	herein.
	
ISBN	(electronic):	978-1-4951-6856-7
	
Every	effort	has	been	made	 to	make	 this	book	as	complete	and	as	accurate	as
possible,	but	no	warranty	or	fitness	is	implied.	The	information	provided	is	on	an
“as	 is”	 basis.	 The	 author	 and	 the	 publisher	 shall	 have	 neither	 liability	 nor
responsibility	to	any	person	or	entity	with	respect	to	any	loss	or	damages	arising
from	the	information	contained	in	this	book.
	
The	 source	 code	 for	 examples	 that	 accompany	 this	 book,	 as	 well	 as	 other
resources,	is	available	at	www.motupresse.com.
	

	

	

http://www.motupresse.com/

Table	of	Contents

	
	

Preface
	
Introduction
	
Chapter	1:	Getting	Started
	
Key	Features
	
Development	Tools
	
Your	First	Swift	Program
	
Using	Playgrounds
	
Chapter	2:	Basic	Elements
	
Variables
	
Comments
	
Operators
	
Expressions	and	Statements
	
Chapter	3:	Safe	Programming
	
Type	Safety
	
Variable	Initialization
	
Optionals
	
Memory	Management

	
Chapter	4:	Control	Flow
	
Conditionals
	
Loops
	
Control	Transfer
	
Chapter	5:	Standard	Library
	
Numeric	Types
	
Strings	and	Characters
	
Collections
	
Functions
	
Protocols
	
Chapter	6:	Tuples
	
Creating	Tuples
	
Tuples	with	Switch	Statements
	
Chapter	7:	Functions
	
Definition
	
Function	Parameters
	
Function	Types
	
Nested	Functions
	

Chapter	8:	Closures
	
Closure	Expression	Syntax
	
Capturing	Values
	
Closure	Expression	Optimizations
	
Handling	Reference	Cycles
	
Chapter	9:	Named	Types
	
Enumerations
	
Structures
	
Classes
	
Usage	Guidelines
	
Protocols
	
Chapter	10:	Extensions
	
Extension	Syntax
	
Adding	Functionality
	
Protocol	Extensions
	
Chapter	11:	Generics
	
Generic	Functions
	
Generic	Types
	
Associated	Types

	
Generic	Type	Constraints
	
Chapter	12:	Error	Handling
	
Representing	Errors
	
Throwing	Errors
	
Handling	Errors
	
Chapter	13:	Resources
	
Documentation	Viewer
	
Quick	Help
	
References
	
Chapter	14:	NeXT	Steps
	
About	the	Author
	

	

Preface

	
Swift	 is	 a	 new	 programming	 language	 created	 specifically	 for	 developing
applications	targeted	for	the	iOS,	watchOS,	and	OS	X	platforms.	It	was	designed
to	make	programming	both	simpler	and	more	fun;	as	such	it	includes	a	number	of
features	that	make	it	easier	to	create	fast,	safe,	and	robust	applications.	With	the
2.0	 release	 of	 Swift	 and	 its	 subsequent	 open-source	 distribution,	 the	 use	 and
popularity	of	the	language	will	only	continue	to	grow.
	
Swift	Programming	Nuts	and	Bolts	 provides	 a	 clear	 and	 concise	 overview	 of
the	 programming	 language,	 describes	 its	 key	 features	 and	 APIs,	 and	 presents
recommendations	for	developing	iOS,	watchOS,	and	OS	X	apps	using	Swift.	Very
quickly,	the	reader	will	have	a	solid	understanding	of	Swift	and	be	ready	to	begin
using	it	on	his/her	projects.
	
So,	let’s	begin!
	

INTRODUCTION

	
Swift	is	a	new,	modern	programming	language	for	developing	applications	for	the
Apple	iOS,	watchOS,	and	OS	X	platforms.	As	you	are	probably	well	aware,	these
platforms	are	some	of	the	most	popular	application	development	environments.	In
fact,	well	over	one	million	 iOS	apps	have	been	developed	and	distributed	 to	 the
Apple	 App	 Store.	 General	 users	 and	 IT	 professionals	 alike	 want	 to	 be	 able	 to
quickly	grasp	the	fundamentals	of	this	technology	and	begin	using	it	to	build	apps.
This	 book	 was	 written	 to	 help	 you	 acquire	 this	 knowledge	 by	 answering	 the
following	 questions:	 1)	What	 are	 the	 general	 features	 and	 purpose	 of	 Swift,	 2)
Why	 should	 you	 use	 it	 (versus	 other	 programming	 languages),	 and	 3)	How	 do
you	quickly	begin	developing	apps	with	Swift?	This	book	provides	these	answers.
	

Who	This	Book	Is	For

	
Swift	Programming	Nuts	and	Bolts	 is	 for	developers	of	all	 levels	of	expertise
who	have,	at	a	minimum,	knowledge	of	basic	programming	concepts.	In	addition
knowledge	of	 functional	and/or	object-oriented	programming	concepts,	while	not
necessary,	is	also	useful.
	

What	You	Need

	
Before	you	begin	writing	Swift	code	 for	 the	platforms,	you’ll	need	an	 Intel-based
Mac	computer	running	OS	X	El	Capitan	(version	10.11)	or	 later.	You’ll	also	need
Xcode	 7	 (or	 later),	 Apple’s	 toolset	 for	 iOS,	 watchOS,	 and	 OS	 X	 software
development	using	Swift	2.
	

How	to	Use	This	Book

	
This	 book	 is	 divided	 into	 14	 chapters.	 Chapters	 1	 through	 4	 focus	 on	 the
fundamental	building	blocks	of	Swift.	Chapter	1	provides	a	high-level	overview	of
language	 and	 summarizes	 its	 key	 features.	 In	 Chapter	 2	 you’ll	 learn	 about
variables	 and	 assignments,	 language-defined	 operators,	 and	 how	 to	 create
common	expressions	and	statements.	Chapter	3	provides	an	overview	of	the	key
safe	programming	elements	of	the	Swift	programming	language,	and	shows	how
they	can	be	used	to	make	your	programs	more	reliable	and	bug-free.	Chapter	4
covers	the	Swift	constructs	for	controlling	when	parts	of	a	program	are	executed
and	how	many	times
	
Chapters	 5	 through	9	build	 on	 this	 introduction	by	 covering	Swift’s	 fundamental
abstractions	for	building	programs	of	arbitrary	complexity.	Chapter	5	provides	an
overview	of	the	Swift	Standard	Library,	a	collection	of	reusable	software	resources
(data	 types,	 functions,	 etc.)	 available	 across	 the	 language	 implementation.	 It
includes	 a	 detailed	 overview	 of	 the	 Standard	 Library	 numeric	 types,	 strings,
collections,	 and	 several	 of	 its	 more	 common	 built-in	 functions.	 Swift	 provides
support	for	the	creation	of	tuples,	an	ordered	list	of	elements,	which	can	be	of	any
type.	Chapter	6	provides	an	overview	of	tuples	and	shows	how	you	can	use	them
in	 your	 code.	 A	 Swift	 function	 is	 a	 named,	 self-contained	 group	 of	 code	 that
performs	a	specific	task.	Chapter	7	shows	you	how	to	develop	and	use	functions.
Chapter	8	provides	an	introduction	to	closures,	an	unnamed,	self-contained	group
of	code	that	performs	a	specific	task	and	also	allows	access	to	variables	outside
of	 their	 typical	scope.	A	named	type	 is	 a	user-defined	 type	 that	 is	 composed	of
both	data	and	methods	for	operating	on	this	data.	In	Chapter	9	you’ll	learn	how	to
create	and	use	the	enumeration,	structure,	class,	and	protocol	named	types.
	
Chapters	 10	 through	 12	 cover	 more	 advanced	 features	 of	 Swift.	 Chapter	 10
examines	 extensions,	 a	 language	 mechanism	 for	 adding	 new	 functionality	 (i.e.
types,	 methods,	 etc.)	 to	 an	 existing	 enumeration,	 structure,	 class,	 or	 protocol.
Generic	programming	is	an	advanced	feature	that	enables	you	to	create	software
that’s	parameterized	with	respect	to	types.	Chapter	11	shows	you	how	to	create
and	 use	 Swift	 generic	 functions	 and	 types.	 Swift	 provides	 language-level
mechanisms	that	enable	you	to	detect,	report,	and	handle	errors.	 In	Chapter	12
you’ll	learn	how	to	implement	your	code	to	manage	runtime	error	conditions	using
the	Swift	error	handling	APIs.
	
Chapters	13-14	conclude	this	book	with	an	overview	of	tools	you	can	use	to	get
help	 while	 programming	 with	 Swift,	 a	 list	 of	 references	 to	 resources	 and
documentation	available	on	the	programming	language,	and	pointers	to	additional
topics	you’ll	want	to	explore	as	you	gain	more	experience.

	

Typographical	Conventions

	
The	following	typographical	conventions	are	used	in	this	book:
	
Bold	font	style	within	the	body	of	text	indicates	significant	words	or	phrases.	Bold
is	also	used	to	identify	chapters	or	sections	within	a	chapter.
	
Italics	font	style	indicates	new	words	or	phrases	that	are	explained	further	in	the
body	of	the	book.
	
Monospaced,	constant	width	 font	 is	 used	 for	 programming	code	excerpts
and	examples.
	
Monospaced,	constant	width	bold	 font	 is	used	within	programming	code
excerpts	and	examples	to	indicate	key	elements	and	concepts.
	
Monospaced,	 constant	 width	 italic	 font	 is	 used	 within	 programming
code	excerpts	to	indicate	comments.
	

Attention	New	Programmers!

	
Particularly	for	beginners,	computer	programming	can	be	a	little	frustrating	at	first.
Here	are	a	few	recommendations	that	will	be	very	helpful	when	you	start	writing
programs	with	Swift:
	
Proper	 syntax	 -	 It	 is	 very	 important	 that	 your	 program	 code	 has	 the	 correct
syntax.	Specifically,	capitalization,	spacing,	and	other	syntax	elements	should	be
identical	 to	 that	shown	 in	 this	book	and	the	reference	documentation.	 In	general
computers	 and	 programming	 languages	 are	 very	 strict	 about	 syntax,	 so	 if	 you
make	typing	errors	your	program	will	not	run	properly.
	
Check	your	work	–	Mistakes	happen,	so	check	your	work	 frequently,	particularly
just	before	you	run	your	programs.
	
One	 step	 at	 a	 time	 –	 Develop	 your	 programs	 incrementally.	 This	 means	 write
small	 portions	 of	 code,	 test	 and	 fix	 errors	 until	 you	 verify	 the	 code	 works	 as
expected,	and	add	more	code	to	your	program	accordingly.
	

	

	

GETTING	STARTED

	
During	 the	 2014	 Apple	 Worldwide	 Developer	 Conference	 (WWDC)	 the	 Swift
programming	 language	was	 introduced.	 This	 announcement	 took	 the	 developer
community	by	 complete	 surprise,	 and	promised	 to	 change	how	applications	are
developed	 for	 the	 Apple	 platforms.	 At	 its	 release	 Apple	 stated	 that	 Swift	 would
make	it	easier	for	developers	to	create	apps,	and	that	it	incorporates	many	of	the
best	 features	of	modern	programming	 languages.	Now	 this	 all	 sounds	nice	and
makes	 for	 good	 sound	 bites,	 but	 what	 does	 this	 really	 mean	 for	 you	 as	 a
developer?	 In	 this	chapter	we’ll	attempt	 to	address	 these	concerns	by	providing
you	a	brief	introduction	to	the	Swift	platform,	and	then	help	you	‘get	your	feet	wet’
by	guiding	you	through	the	creation	of	your	first	Swift	program.
	

Key	Features

	
What	makes	Swift	such	a	great	programming	language,	and	why	should	you	learn
it?	 After	 all	 there	 are	 literally	 thousands	 of	 programming	 languages	 to	 choose
from,	 and	many	 of	 you	 reading	 this	 book	 already	 have	 experience	with	 one	 or
more.	 In	 fact	 some	 of	 you	may	 already	 use	Objective-C,	 which	 up	 to	 now	 has
been	 the	primary	programming	 language	used	 for	Apple	 software	development.
Well,	the	reasons	Swift	is	such	a	compelling	choice	for	developing	your	next	app
include	the	following:
	
Safety	 -	Swift	has	been	designed	with	safety	 in	mind.	Specifically	 the	 language
adopts	 many	 safe	 programming	 practices	 (e.g.	 type	 safety,	 automatic	 memory
management,	required	variable	initialization,	overflow	checks,	etc.).	This	enables
you	to	develop	more	robust,	reliable	apps.
	
Speed	 -	 The	 Swift	 platform	 provides	 numerous	 optimizations	 to	 improve
application	 performance.	 Compiled	 Swift	 code,	 the	 Swift	 Standard	 Library,	 and
even	 the	 language	 itself	 are	 optimized.	 As	 a	 result,	 with	 Swift	 you	will	 develop
better	performing,	more	responsive	apps.
	
Efficiency	-	Swift	takes	the	best	features	of	C	and	Objective-C,	and	adds	modern
features	from	a	variety	of	contemporary	programming	languages.	In	addition	Swift
includes	a	whole	range	of	new	and	powerful	language	constructs	that	enable	you
to	more	naturally	and	efficiently	develop	software.	You’ll	find	as	a	developer	that,
in	many	cases,	what	would	take	many	lines	of	code	in	Objective-C	can	be	done
with	 far	 fewer	 in	Swift,	without	 sacrificing	 readability.	Hence	Swift	makes	 it	 both
easier	and	quicker	for	you	to	develop	great	apps.
	
Ease-of-Use	-	The	Swift	platform	has	multiple	features	that	make	it	easy	to	both
learn	 the	 language	 and/or	 migrate	 existing	 applications	 over	 time.	 This	 greatly
reduces	 the	barrier	of	entry	 for	 learning	Swift	along	with	 the	cost	of	adoption.	 In
addition	 Apple	 has	 created	 playgrounds,	 an	 interactive	 environment	 for
programming	with	Swift.	Code	entered	into	a	playground	file	is	compiled	and	run
in	real-time	as	you	type,	with	the	results	of	operations	presented	in	a	step-by-step
timeline	 as	 they	 execute.	 This	makes	 playgrounds	 a	 great	 tool	 for	 learning	 and
experimenting	 with	 Swift.	 Swift	 is	 also	 designed	 to	 be	 interoperable	 with	 your
existing	iOS	and	OS	X	apps;	Swift	code	is	compiled	with	the	Apple	LLVM	compiler
and	executed	with	the	Objective-C	runtime.	As	a	result,	 these	apps	will	continue
to	 work	 “as-is”.	 You	 can	 also	 use	 C,	 Objective-C,	 and	 Swift	 code	 in	 the	 same
program,	 thus	 enabling	 you	 to	 convert	 existing	 software	 to	 Swift	 incrementally,
over	time.

	

Development	Tools

	
Apple	provides	developer	tools	(i.e.	software	libraries	and	a	developer	toolkit)	that
you	will	 use	 for	 Swift	 application	 development.	 The	Software	Development	 Kits
(SDKs)	are	comprised	of	Application	Programmer	Interfaces	(APIs)	and	services.
The	 iOS	 SDK	 includes	 APIs	 and	 services	 for	 developing	 iOS	 apps,	 WatchKit
includes	APIs	and	services	for	developing	Apple	watchOS	apps,	while	the	OS	X
SDK	includes	APIs	and	services	for	developing	OS	X	apps.
	
Xcode	is	a	complete	developer	 toolkit	 for	building	 iPhone,	 iPad,	Mac,	and	Apple
Watch	 apps.	 It	 is	 fully	 integrated	 with	 each	 SDK	 and	 includes	 all	 the	 tools
necessary	 for	 writing	 and	 compiling	 source	 code,	 developing	 graphical	 user
interfaces,	 software	 testing	 and	 debugging,	 release	 build	 and	 version
management,	project	management,	and	other	features.	Xcode	includes	the	Xcode
Integrated	 Development	 Environment	 (IDE),	 Interface	 Builder	 for	 creating	 user
interfaces,	 the	 LLVM	 compiler,	 the	 LLDB	 source	 code	 debugger,	 along	with	 full
support	for	Swift	2	(Xcode	7	and	above).
	
Xcode	is	a	free	download	for	all	members	of	the	Apple	Developer	Program.	If	you
are	not	a	member	of	the	program,	it	is	also	available	as	a	free	download	from	the
Mac	App	Store.	Xcode	7	will	run	on	any	Mac	computer	that	has	OS	X	El	Capitan
(version	10.11)	or	later	installed.
	

Your	First	Swift	Program

	
OK,	so	now	that	we	have	completed	the	introduction	you’re	going	to	develop	your
first	 Swift	 program!	 First	 download	 and	 install	 Xcode	 7	 as	 described	 in	 the
previous	paragraph.	Once	this	is	done,	launch	Xcode	and	you	should	observe	the
Xcode	welcome	window	as	shown	in	Figure	1-1.
	

	
Figure	1-1.	Xcode	Welcome	Window
	
Note:	If	you	have	an	iOS	device	(e.g.,	iPhone/iPad)	connected	to	your	computer,
you	may	see	a	message	asking	whether	or	not	you	want	 to	use	 that	device	 for
development.	Because	we	will	not	be	developing	a	mobile	app	 for	 this	program,
you	should	click	the	Ignore	button.
	
This	screen	presents	you	with	a	variety	of	options:	create	a	new	project,	open	an
existing	 project,	 and	 so	 forth.	 Because	 you	 want	 to	 create	 a	 new	 application,
select	the	Create	a	new	Xcode	project	option	(you	can	also	do	this	by	selecting
New	>	Project…	 from	the	Xcode	File	menu).	The	Xcode	workspace	window	will
be	displayed	followed	by	the	New	Project	Assistant	pane	on	top	of	that,	as	shown
in	Figure	1-2.
	

	
Figure	1-2.	Xcode	New	Project	Assistant
	
The	left	side	of	the	New	Project	Assistant	is	divided	into	iOS,	watchOS,	and	OS	X
sections.	 You	 are	 going	 to	 start	 off	 by	 creating	 a	 command	 line	 application,	 so
select	Application	 under	 the	 OS	 X	 section.	 In	 the	 upper-right	 pane	 you’ll	 see
several	 icons	 that	 represent	 each	 of	 the	 project	 templates	 that	 are	 provided	 as
starting	 points	 for	 creating	OS	X	 applications,	 select	Command	Line	Tool	 and
click	Next.	The	Project	Options	window	will	be	displayed	(in	Figure	1-3)	for	you	to
input	project-specific	information.
	

	
Figure	1-3.	Xcode	Project	Options	Window

	
Specify	 the	 Product	 Name	 for	 the	 project	 (for	 this	 example	 Greetings),	 an
Organization	Name	(the	name	for	the	organization	of	the	project,	in	this	example
Swift	Programming),	an	Organization	Identifier	 (this	 is	a	name	used	 to	provide
an	 identifier	 for	 your	 application,	 typically	 you	 input	 something	 like	 your	 domain
name	in	reverse	order	but	any	name	will	suffice),	and	the	programming	Language
of	 the	 application	 (Xcode	 supports	 various	 programming	 languages,	 including
Swift	 and	 Objective-C,	 here	 we	 select	 Swift).	 After	 this	 information	 has	 been
provided	click	 the	Next	button	and	 the	window	shown	 in	Figure	1-4	 is	displayed
for	entering	the	name	and	location	of	your	project.
	

	
Figure	1-4.	Xcode	Project	Location	Window
	
Specify	the	location	in	your	file	system	where	you	want	the	project	to	be	created
(if	necessary	select	New	Folder	and	enter	the	name	and	location	for	the	folder);
also	 be	 sure	 to	 uncheck	 the	 Source	 Control	 checkbox.	 After	 this	 has	 been
entered	click	the	Create	button	and	the	workspace	window	is	opened.
	
Xcode	Workspace
	
The	workspace	window	 is	divided	 into	a	 toolbar	 that	extends	horizontally	across
the	top	of	the	window	and	three	areas	below	it	divided	into	columns	that	take	up
the	remainder	of	the	window.
	
The	toolbar	includes	controls	to	start	and	stop	running	your	project	(the	Run	and
Stop	buttons),	a	popup	menu	to	select	the	Scheme	you	want	to	run,	the	Activity

View	 in	 the	 middle	 of	 the	 toolbar,	 a	 set	 of	Editor	 buttons,	 and	 a	 set	 of	View
buttons.	 The	 three	 areas	 below	 the	 toolbar	 comprise	 the	Navigator	area,	Editor
area,	 and	Utility	 area.	 The	 navigator	 area	 is	 used	 to	 view	 and	 access	 different
resources	(files,	etc.)	within	a	project.	The	editor	area	is	where	you’ll	actually	write
most	of	your	program.	The	utility	area	is	used	to	view	and	access	Help	and	other
inspectors	and	to	use	ready-made	resources	in	your	project.	This	is	a	(very)	high-
level	overview	of	the	elements	that	comprise	the	Xcode	workspace,	so	don’t	worry
about	understanding	all	of	this	right	now;	you	will	gain	plenty	of	experience	using
Xcode	and	its	associated	tools	as	you	develop	code	throughout	this	book.
	
Greetings	Earthlings!
	
You	 have	 now	 created	 an	 Xcode	 project	 named	Greetings.	 If	 you	 look	 at	 the
navigator	 area	 of	 the	 workspace	 window,	 at	 the	 top	 you’ll	 see	 a	 selector	 bar
comprised	 of	 seven	 buttons	 and	 below	 that	 the	 main	 navigator	 area.	 Click	 the
leftmost	 button	 (a	 folder	 icon)	 to	 see	 the	 Project	 Navigator	 view.	 The	 project
navigator	 shows	 the	 contents	 (files,	 resources,	 etc.)	 of	 a	 project	 or	 Xcode
workspace.	 Now	 open	 the	Greetings	 folder	 by	 clicking	 the	 disclosure	 triangle
alongside	 the	 Greetings	 folder	 icon.	 In	 the	 folder	 select	 the	 file	 named
main.swift;	the	template	code	created	by	Xcode	for	this	file	is	shown	in	Figure
1-5.
	

	
Figure	1-5.	Xcode	Greetings	Project
	
Yes	 this	 is	 the	 ubiquitous	 “Hello,	 World!”	 program;	 when	 you	 create	 a	 Swift

command	line	program	with	Xcode	it	creates	a	main.swift	file	that	includes	the
default	code	shown	in	Figure	1-5.	The	code	consists	of	an	import	directive

	
import	Cocoa

	
and	a	single	program	statement
	
print(“Hello,	World!”)

	
An	import	directive	is	used	to	make	a	software	library	available	for	use	in	your
program;	 in	 this	 case	 the	 statement	 imports	 the	 Cocoa	 Framework	 libraries,
including	the	Swift	Standard	Library	APIs.	The	program	statement	uses	the	Swift
Standard	 Library	 print(_:)	 function	 to	 print	 the	 text	 supplied	 within	 the
parentheses	 (surrounded	 by	 double-quotes)	 to	 the	Output	Pane	 (located	 below
the	 editor	 area).	Note:	 don’t	 worry	 too	 much	 about	 the	 details	 right	 now,	 you’ll
learn	 all	 about	 Swift	 functions	 and	 the	 Standard	 Library	 in	 upcoming	 chapters.
Now	 let’s	 modify	 the	 greeting;	 in	 the	 Editor	 area	 change	 the	 greeting	 text	 as
follows.
	
print(“Hello	World,	Welcome	to	Swift!”)

	
Now	compile	and	run	this	program	now	by	clicking	the	Run	button	in	the	toolbar
(or	 selecting	 Run	 from	 the	 Xcode	 Product	 menu).	 The	 Output	 Pane	 (located
below	the	editor	area)	shown	in	Figure	1-6	displays	the	message	Hello	World,
Welcome	to	Swift!.

	

	
Figure	1-6.	Hello	World,	Welcome	to	Swift!
	
Perfect,	you	have	learned	how	to	create	an	Xcode	project	and	also	compile	and
run	a	simple	Swift	program.	Feel	free	to	continue	exploring	the	Xcode	workspace
window	to	become	more	familiar	with	its	contents.
	

Using	Playgrounds

	
Earlier	in	this	chapter	we	made	note	of	playgrounds,	the	interactive	programming
environment	for	Swift.	Now	in	the	previous	section	you	learned	how	to	code	and
run	a	Swift	program	and	this	was	pretty	cool,	but	to	be	honest	it	may	seem	like	a
lot	 of	 hoops	 to	 jump	 through	 just	 to	 see	 the	 results	 of	 what	 you	 coded.	 Swift
playgrounds	 are	 meant	 to	 address	 this	 by	 enabling	 you	 to	 enter	 code	 and
interactively	 see	 your	 results.	 This	 is	 great	 for	 learning	 Swift,	 exploring	 its
standard	libraries,	and	general	experimenting.	To	illustrate	this,	now	you’re	going
to	create	a	Swift	playground	and	take	it	out	for	a	test	drive.
	
Launch	Xcode	again,	and	this	time	when	the	Welcome	Window	(see	Figure	1-1)	is
displayed	select	the	Get	started	with	a	playground	option	(you	can	also	do	this
by	selecting	New	>	Playground…	 from	the	Xcode	File	menu).	A	window	will	be
displayed	for	entering	playground	options,	as	shown	in	Figure	1-7.
	

	
Figure	1-7.	Playgrounds	Options	Window
	
Specify	 the	Name	 for	 your	 playground	 (here	 I	 entered	SwiftProgramming),	 for
the	Platform	select	OS	X,	and	finally	click	the	Next	button.	The	window	shown	in
Figure	1-8	is	displayed	for	entering	the	location	and	group	of	your	playground.

	

	
Figure	1-8.	Playgrounds	Location	Window
	
Specify	 the	 location	 in	 your	 file	 system	 where	 you	 want	 the	 playground	 to	 be
created	(if	necessary	select	New	Folder	and	enter	the	name	and	location	for	the
folder;	you	may	want	to	save	your	playground	to	the	Desktop	for	ease	of	access),
leave	the	Group	as	Unsaved	Xcode	Document	2,	and	click	the	Create	button.	In
Xcode	a	new	playground	file	called	SwiftProgramming.playground	 is	created	and
the	Playground	Window	shown	in	Figure	1-9	is	displayed.
	

	
Figure	1-9.	Playground	Window
	
Xcode	Playground	Window
	
An	Xcode	Playground	Window	 is	divided	 into	a	workspace	 toolbar	 that	 extends
horizontally	across	the	top	of	the	window	and	several	areas	below	it	divided	into
columns	 that	 take	 up	 the	 remainder	 of	 the	 window.	 Figure	 1-9	 displays:	 1)	 the
Source	Editor	window	where	you	type	in	Swift	code,	and	2)	the	Results	sidebar
that	executes	and	displays	 the	 results	of	 the	code	written	 in	window.	When	you
finish	typing	code	in	the	window	or	take	a	pause,	Xcode	calculates	and	displays
the	results	in	the	sidebar.	Note	that	results	in	the	sidebar	may	temporarily	change
from	black	to	gray	while	Xcode	recalculates	them.	If	you	make	a	mistake,	Xcode
displays	 an	 error	 symbol	 (an	 exclamation	 point	 icon)	 in	 the	 gutter	 located
alongside	the	Source	Editor	window.	Click	the	symbol	to	see	an	explanation	of	the
mistake.	After	you	correct	or	remove	the	mistake,	Xcode	redisplays	the	results	of
your	valid	code.
	
Welcome	to	Swift	Playgrounds!
	
As	shown	in	Figure	1-9,	 the	template	code	generated	when	the	new	playground
was	created	includes	a	comment	string,	an	import	directive,	and	a	single	program
statement	that	assigns	the	text	string	Hello,	playground	to	a	variable	named	str.

	
The	results	sidebar	displays	the	results	of	the	variable	assignment,	e.g.	the	value
for	 the	 variable	str.	 Let’s	 change	 the	 value	 for	 this	 variable	 by	modifying	 it	 as

follows:
	
var	str	=	“Hello,	Swift	Playgrounds”

	
Observe	(in	Figure	1-10)	below	how	the	value	in	the	sidebar	has	been	updated.
	

	
Figure	1-10.	Hello	Swift	Playgrounds
	
As	 this	 example	 demonstrates,	 interactive	 playgrounds	 are	 a	 great	 tool	 for
learning	 and	 experimenting	 with	 Swift.	 In	 fact,	 you’ll	 use	 them	 throughout	 this
book	to	demonstrate	Swift	language	features.
	

	

	

	

	

BASIC	ELEMENTS

	
Fundamentally	a	computer	program	 is	comprised	of	data	and	operations	on	 this
data.	 As	 such,	 all	 programming	 languages	 have	 a	 number	 of	 basic	 structural
elements	that	are	used	to	write	data	and	the	corresponding	operations	in	source
code.	 These	 elements	 include	 variables,	 operators,	 and	 expressions.	 In	 this
chapter	you’ll	learn	how	to	code	these	in	Swift.
	

Variables

	
In	Figure	1-10	you	wrote	the	following	code	to	declare	a	variable	and	assign	it	a
value:
	
var	str	=	“Hello,	Swift	Playgrounds”

	
Now	you	are	going	to	learn	more	about	variables	in	Swift.	In	computer	science,	a
variable	 is	 a	 named	 reference	 to	 a	 storage	 location.	 Variables	 are	 used	 in	 a
program	 to	store,	update,	and	 retrieve	data.	Swift	provides	 the	var	 keyword	 for
declaring	a	variable	by	name,	aka	an	identifier.	A	Swift	identifier	begins	with	either
a	 letter	 or	 an	 underscore,	 followed	 by	 any	 combination	 of	 underscores,	 letters,
and	numbers.	The	 letters	of	an	 identifier	are	case	sensitive;	Swift	also	supports
most	 Unicode	 characters	 for	 its	 identifiers.	 The	 following	 are	 examples	 of	 valid
variable	names:
	
greeting

	
_myNumber

	
pi_π

	
Notice	 that	 the	 last	 example	 variable,	pi_π,	 includes	 a	 Unicode	 character	 (π),
highlighting	the	language’s	support	 for	Unicode.	A	Swift	variable	also	has	a	data
type,	 meaning	 only	 certain	 kinds	 of	 data	 can	 be	 stored	 in	 it.	 Swift	 supports	 a
variety	data	types,	including	simple	data	types	such	as	integers	and	floating-point
numbers,	composite	data	types	that	contain	multiple	types,	and	function	types	that
represent	the	type	of	a	function.	A	variable’s	type	can	be	either	inferred,	whereby
the	Swift	compiler	automatically	figures	out	its	type	based	on	context,	or	explicitly
specified	with	a	Swift	 type	annotation.	For	 variables	a	 type	annotation	 is	written
directly	 after	 the	 variable	 name	with	 a	 colon	 followed	 by	 a	 space	 and	 then	 the
name	 of	 the	 type.	 The	 following	 example	 declares	 several	 variables	 with
corresponding	type	annotations:
	
var	greeting:	String

	
var	_myNumber:	Int

	
The	 first	 statement	 above	 declares	 a	 variable	 named	 greeting	 of	 type	 string	 (a
sequence	 of	 characters),	 whereas	 the	 second	 declares	 a	 variable	 named
_myNumber	of	integer	type.	Swift	also	enables	you	to	create	constant	variables	-

variables	whose	value	cannot	be	changed	once	set.	The	let	keyword	is	used	for
declaring	 a	 constant	 variable.	 The	 corresponding	 value	 of	 a	 constant	 must	 be
assigned	before	it	is	used.	The	following	example	declares	and	sets	a	value	to	a
constant	variable	named	LuckyNumber7:

	
let	LuckyNumber7	=	7

	
Storing	a	 value	 that	will	 not	 change	as	a	 constant	 reduces	programming	errors
and	 also	 enables	 the	 Swift	 compiler	 to	 perform	 optimizations	 that	 can	 improve
performance.	Thus	you	should	only	store	a	value	as	a	variable	 if	 it	may	change.
Now	 when	 should	 you	 explicitly	 declare	 a	 type	 (via	 a	 type	 annotation)	 versus
using	type	 inference?	For	variables	 that	are	declared	and	 initialized	at	 the	same
time,	 Swift	 can	 almost	 always	 determine	 the	 correct	 type	 based	 on	 the	 value
supplied.	This	 reduces	 the	amount	of	 code	you	have	 to	write;	hence	 if	 possible
you	should	use	type	 inference	whenever	declaring	and	 initializing	variables.	The
following	example	demonstrates	type	inference	in	action.
	
var	greeting	=	“Hello,	Swift	Playgrounds!”

	
var	_myNumber	=	21

	
let	isSwiftCool	=	true

	
The	 variable	 greeting	 is	 correctly	 inferred	 to	 be	 of	 string	 type,	 the	 variable
_myNumber	 is	 inferred	 to	be	of	 integer	 type,	and	 the	constant	isSwiftCool	 is
inferred	to	be	of	Boolean	type.
	
A	Note	About	Literals
	
In	the	previous	examples	variables	are	initialized	with	literal	values.	A	Swift	literal
can	be	defined	as	the	representation	in	source	code	of	the	value	of	a	type.	Now
the	representation	is	a	function	of	the	variable’s	type.	For	example	Swift	numeric
literals	 are	 represented	 in	 code	with	 their	 numeric	 literal	 values	 (e.g.	21	 in	 the
above	 example).	 A	 Swift	 string	 literal	 is	 written	 as	 a	 sequence	 of	 characters
surrounded	by	double	quotes.	A	Swift	Boolean	literal	is	written	as	a	value	of	either
true	or	false.	You	will	learn	how	to	code	other	Swift	literals	later	in	this	book.

	

Comments

	
Comments	 provide	 a	 mechanism	 for	 documenting	 code	 in	 order	 to	 facilitate
comprehension	by	anyone	who	needs	 to	 read	 it.	Swift	 provides	mechanisms	 to
support	both	single	line	and	multi-line	comments.
	
Single	Line	Comments
	
The	//	marker	identifies	text	following	(on	the	same	line)	as	comment	text;	it	will
be	ignored	by	the	compiler.	The	marker	can	be	placed	anywhere	on	a	line,	hence
single	 line	 comments	 provide	 a	 good	 mechanism	 for	 describing	 what	 that
particular	line	of	code	does.	The	following	example	includes	a	single	line	comment
at	the	end	of	a	line.
	
print(“Hello,	World!”)	//	Print	greeting	message

	
Multi-Line	Comments
	
Comments	 that	 extend	 over	 multiple	 lines	 use	 the	 markers	 /*	 and	 */
respectively.	Everything	between	these	two	markers	is	considered	a	comment	and
is	 ignored	 by	 the	 compiler,	 regardless	 of	 where	 the	 markers	 appear	 on	 a	 line.
Here	is	an	example	multi-line	comment.
	
/*

	
*	This	is	a	multi-line	comment

	
*/

	

Operators

	
In	Swift	an	operator	is	a	language-defined	symbol	or	phrase	that	can	be	used	to
perform	a	specific	operation	on	one	or	more	variables	and/or	expressions.	Swift’s
basic	operators	support	assignment,	arithmetic,	bitwise,	comparison,	and	Boolean
operations.
	
Assignment	Operator
	
The	 assignment	 operator	 assigns	 the	 result	 of	 a	 value	 on	 the	 right	 side	 of	 the
assignment	symbol	(=)	 to	 the	variable	to	the	 left	of	 the	symbol.	The	constant	or
variable	 (to	 the	 left	of	 the	assignment	symbol)	must	have	 the	same	 type	as	 the
value	being	assigned	to	 it.	The	assignment	operator	 is	binary	because	 it	has	an
operand	 (i.e.,	 data	 on	 which	 the	 operation	 is	 performed)	 on	 each	 side	 of	 the
operator.	 The	 following	 code	 provides	 an	 example	 use	 of	 the	 Swift	 assignment
operator.
	
var	str	=	“Hello,	Swift	Playgrounds”

	
The	assignment	operator	does	not	return	a	value;	this	prevents	errors	when	it	 is
accidently	 coded	 in	 an	 expression	where	 the	Boolean	equal	 to	 (==)	 operator	 is
intended.
	
Arithmetic	Operators
	
The	 Swift	 arithmetic	 operators	 are	 binary	 operators	 that	 perform	 arithmetic
calculations.	Multiple	arithmetic	operators	can	be	used	in	a	single	expression.	By
default	Swift	does	not	allow	values	to	overflow	from	an	arithmetic	calculation,	and
an	 arithmetic	 operator	 does	 not	 return	 a	 value.	 Swift	 supports	 four	 standard
arithmetic	operations:	addition	(+),	subtraction	(-),	multiplication	(*),	and	division
(/).	 Swift	 also	 supports	 the	modulo	 (i.e.	 remainder)	 operator	 (%);	 it	 is	 used	 to
return	 the	 remainder	 left	 over	 when	 performing	 division	 on	 two	 values.	 The
remainder	operator	works	for	both	integer	and	floating-point	values.
	
By	default	the	Swift	arithmetic	operators	do	not	overflow;	as	a	result	an	overflow
condition	when	performing	an	arithmetic	operation	results	in	a	program	error.	Swift
includes	 an	 additional	 set	 of	 operators	 that	 provide	 overflow	 behavior.	 These
operators	 begin	with	 an	 ampersand	 and	 allow	 you	 to	 perform	 overflow	 addition
(&+),	subtraction	(&-),	and	multiplication	(&*),	truncating	the	value	when	the	result
overflows.

	
Increment/Decrement	Operators
	
These	unary	arithmetic	operators	are	used	to	increment	(++)	or	decrement	(—)	the
value	 of	 a	 numeric	 value	 by	 1.	 Either	 operator	 can	 be	 placed	 before	 (pre-
increment/decrement)	 or	 after	 (post-increment/decrement)	 the	 variable	 name.	 If
an	 increment/decrement	operator	 is	placed	before	the	variable	name	its	value	 is
incremented	or	decremented	before	 any	 other	 operations	 are	 performed	 on	 the
variable	 and	 the	 result	 returned.	 Conversely,	 post-increment/decrement	 causes
the	 value	 of	 the	 variable	 to	 be	 incremented	 or	 decremented	 after	 the	 result	 is
returned.	These	operators	can	be	used	on	any	integer	or	floating-point	type.
	
Now	 let’s	 experiment	 with	 the	 Swift	 arithmetic	 operators.	 In	 Xcode	 open	 the
SwiftProgramming	 playground,	 delete	 any	 existing	 code,	 and	 then	 add	 the
following	statements:
	
var	product	=	3	*	4

	
var	series	=	1	+	2	+	3	+	5	+	8

	

	
Figure	2-1.	Experimenting	with	Arithmetic	Operators
	
As	 shown	 in	 Figure	 2-1,	 the	 first	 statement	 computes	 the	 value	 of	 the	 variable
product	using	the	multiplication	operator,	while	the	second	statement	computes
the	 value	 of	 the	 variable	series	 using	 the	 arithmetic	 operator.	 Note	 from	 this

example	that	multiple	operations	can	be	combined	in	a	single	statement.	Now	let’s
demonstrate	the	increment	operator.	Add	the	following	statements:
	
var	counter	=	0

	
var	totalCount	=	++counter

	
The	 increment	 operator	 is	 placed	 before	 the	 variable	 totalCount,	 thus	 it	 is
assigned	the	value	of	the	variable	counter	after	it	is	incremented	by	1.	Verify	the
sidebar	 displays	 that	 the	 value	 of	 totalCount	 equals	 1.	 Now	 change	 the
statement	to	perform	a	post-increment	(i.e.,	move	the	increment	operator	after	the
variable	 counter)	 and	 observe	 the	 sidebar	 displays	 that	 the	 value	 of
totalCount	equals	0.

	
Bitwise	Operators
	
The	bitwise	operators	enable	bitwise	operations	on	binary	numbers.	Any	decimal
number	can	be	represented	as	a	binary	number.	The	bitwise	operators	are	of	two
types:	 comparison	and	shift.	 The	bitwise	 comparison	operators	 can	perform	bit-
by-bit	 comparisons	 of	 two	 numbers,	 and	 shifts	 of	 each	 bit	 in	 a	 binary	 number.
These	operators	return	a	binary	number	consistent	with	the	operation.	The	bitwise
shift	operators	shift	each	bit	in	a	binary	number	the	specified	number	of	positions.
	
The	 bitwise	AND	 (&)	 operator	 uses	 the	 AND	 operation	 to	 perform	 a	 bit-by-bit
comparison	of	 two	numbers.	 In	each	position	of	 the	binary	sequence	for	the	two
numbers	an	AND	operation	is	performed;	 if	both	bits	are	1	then	a	1	is	set	 in	the
same	position	of	 the	resulting	number,	else	a	zero	 is	set.	For	example	a	bitwise
AND	 operation	 on	 the	 following	 two	 numbers	 (14	 [binary	 1110],	 and	 13	 [binary
1101])	would	yield	a	binary	result	of	1100	(12	in	decimal).
	
The	 bitwise	 OR	 (|)	 operator	 uses	 the	 OR	 operation	 to	 perform	 a	 bit-by-bit
comparison	 of	 two	 numbers;	 it	 sets	 a	 1	 in	 the	 same	 position	 of	 the	 resulting
number	if	there	is	a	one	in	that	position	for	either	(or	both)	operand.
	
The	bitwise	XOR	 (^)	operator	 (also	known	as	 the	exclusive	OR)	uses	 the	XOR
operation	 to	 perform	 a	 bit-by-bit	 comparison	 of	 two	 numbers;	 it	 sets	 a	 1	 in	 the
same	position	of	the	resulting	number	if	there	is	a	one	in	that	position	for	one	and
only	one	of	the	operands,	otherwise	the	bit	is	set	to	0.
	
The	 bitwise	 left	 shift	 (<<)	 operator	 moves	 each	 bit	 in	 a	 binary	 number	 the
specified	number	of	positions	to	the	left.	As	the	bits	are	shifted	to	the	left,	zeroes

are	placed	in	the	right	most	(vacated)	positions,	and	the	left	most	(high	order)	bits
are	discarded	if	the	shift	exceeds	the	size	of	the	variable	containing	the	value.
	
The	 bitwise	 right	 shift	 (>>)	 operator	 moves	 each	 bit	 in	 a	 binary	 number	 the
specified	number	of	positions	to	the	right.	The	right	most	(lower	order)	bits	that	are
shifted	 off	 are	 discarded.	 The	 right	 shift	 is	 a	 logical	 right	 shift,	 because	 the	 left
most	 (higher	 order)	 bit	 positions	 that	 have	been	 vacated	while	 right	 shifting	 are
replaced	with	zeros.
	
The	 bitwise	one’s	 complement	 (~)	 operator	 is	 used	 to	 flip	 the	 bits	 of	 a	 binary
number.	Each	bit	of	the	number	that	is	one	is	changed	to	a	zero,	and	each	bit	that
is	a	zero	is	changed	to	a	one.
	
Let’s	 experiment	 with	 the	 Swift	 bitwise	 operators.	 In	 Xcode	 re-open	 your
playground	 (SwiftProgramming.playground),	 delete	 any	 existing	 code,	 and	 add
the	following	statements:
	
var	numAnd	=	14	&	13

	
var	numOr	=	14	|	13

	

	
Figure	2-2.	Experimenting	with	Bitwise	Operators
	
Figure	2-2	demonstrates	 that	a	bitwise	AND	 operation	on	 the	 two	numbers	 (14

[binary	1110],	and	13	[binary	1101])	yields	a	binary	result	of	1100	(12	in	decimal)
as	shown	 in	 the	sidebar.	A	bitwise	OR	operation	on	 the	same	numbers	yields	a
binary	result	of	1111	(15	in	decimal).	Now	let’s	use	a	bitwise	shift	operator;	add	the
following	statement:
	
var	doubleSum	=	14	<<	1

	
Verify	that	a	left	shift	of	the	number	14	(binary	1110)	1	bit	to	the	left	yields	a	value
of	28	as	shown	in	the	sidebar.

	
Comparison	Operators
	
The	 logical	 comparison	 operators	 perform	 a	 comparison	 of	 an	 expression	 and
return	 a	 Boolean	 true	 or	 false	 value	 depending	 on	 the	 result	 of	 the
comparison.	These	binary	operators	each	require	two	operands.	The	basic	Swift
comparison	 operators	 are:	 equal	 to	 (==),	 not	 equal	 to	 (!=),	 greater	 than	 (>),
greater	than	or	equal	to	(>=),	less	than	(<),	and	less	than	or	equal	to	(<=).

	
The	 following	 example	 stores	 a	 Boolean	 value	 of	 true	 in	 the	 variable
isGreaterNumber:

	
var	n1	=	50

	
var	n2	=	25

	
var	isGreaterNumber	=	n1	>	n2

	
Boolean	Operators
	
The	logical	Boolean	operators	also	return	a	Boolean	true	or	false	 result;	 they
differ	 from	 the	 comparison	 operators	 in	 that	 they	 take	 Boolean	 values	 as
operands.	The	Swift	Boolean	operators	are	logical	NOT	(!),	logical	AND	(&&),	and
logical	OR	(||).	The	logical	NOT	operator	is	unary;	it	inverts	a	Boolean	value	sot
that	 true	 becomes	 false	 and	 vice-versa.	 The	 logical	 AND	 operator	 returns
true	if	both	of	its	operands	are	true,	else	it	returns	false.

	
Let’s	 experiment	 with	 the	 logical	 comparison	 and	 Boolean	 operators.	 In	 your
playground	delete	any	existing	code	then	add	the	following	statements:
	
var	n1	=	50

	
var	n2	=	25

	
var	isGreaterAndPositive	=	(n1	>	n2)	&&	(n1	>=	0)

	

	
Figure	2-3.	Experimenting	with	Logical	Operators
	
As	shown	in	Figure	2-3,	this	example	combines	both	the	greater	than	or	equal	to
operator	 and	 the	 logical	 AND	 operator,	 assigning	 the	 result	 to	 the	 variable
isGreaterAndPositive.	Note	that	the	operands	for	the	logical	AND	operation
are	both	Boolean	expressions.
	
Ternary	Operator
	
The	ternary	operator	provides	a	means	of	evaluating	an	expression	as	a	function
of	the	evaluation	of	a	Boolean	condition.	The	syntax	of	the	operator	is:
	
[condition]	?	[true	expression]	:	[false	expression]

	
If	 the	condition	evaluates	 to	true	 then	 the	 true	expression	 is	 evaluated	and	 its
result	returned,	otherwise	the	false	expression	is	evaluated	and	its	result	returned.
In	your	playground	delete	any	existing	code	then	add	the	following	statements:
	
var	number	=	5

	
var	numberSign	=	(number	>=	0)	?	“Positive”	:	“Negative”

	

	
Figure	2-4.	Experimenting	with	the	Ternary	Operator
	
Referring	to	Figure	2-4,	the	sidebar	displays	a	value	of	Positive	for	the	variable
numberSign.	Now	change	the	value	of	number	to	-1;	the	sidebar	should	update
to	display	a	value	of	Negative	for	the	variable	numberSign.

	
Compound	Assignment	Operator
	
The	Swift	compound	assignment	operator	combines	an	assignment	with	another
operation.	 For	 example,	 the	 following	 statement	 increments	 the	 value	 of	 an
integer	variable	named	mySum	by	2:

	
mySum	=	mySum	+	2

	
The	 arithmetic	 assignment	 operator	 can	 be	 used	 to	 combine	 these	 assignment
and	addition	operations	into	a	single	operation.
	
mySum	+=	2

	
Compound	assignment	can	be	used	on	the	arithmetic,	comparison,	and	bit-wise
operators.

	
Let’s	 experiment	 with	 the	 compound	 assignment	 operators.	 In	 your	 playground
delete	any	existing	code	then	add	the	following	statements:
	
var	doubleSum	=	1

	
doubleSum	+=	doubleSum

	

	
Figure	2-5.	Experimenting	with	the	Compound	Assignment	Operator
	
The	addition	assignment	operator	shown	in	Figure	2-5	correctly	doubles	the	value
of	 the	 variable	 and	 stores	 the	 result	 in	 the	 variable.	You	 can	achieve	 the	 same
result	 by	 replacing	 the	 previous	 statement	 with	 the	 following	 using	 the
multiplication	assignment	operator:
	
doubleSum	*=	2

	
Verify	 that	 the	 sidebar	 computes	 the	 same	 result	 for	 the	 variable	 as	 shown	 in
Figure	2-5.	Now	 let’s	 experiment	with	bitwise	assignment	operator.	Replace	 the
multiplication	assignment	operator	statement	with	the	following:
	
doubleSum	<<=	1

	
Verify	that	the	sidebar	again	computes	the	same	result	for	the	variable,	effectively
doubling	the	value	of	the	variable	doubleSum.

	

Expressions	and	Statements

	
An	expression	is	a	combination	of	values,	variables,	operators,	and	functions	that
are	 evaluated	 in	 order	 to	 produce	 another	 value,	 cause	 a	 side	 effect,	 or	 both.
They	can	also	be	combined	to	create	compound	expressions.	The	following	code
lists	 examples	 of	 arithmetic,	 assignment,	 function	 call,	 and	 compound
expressions:
	
3	*	4

	
var	value	=	3

	
print(“Hello,	World!”)

	
3	*	4	+	5

	
In	 the	case	of	 compound	expressions	each	programming	 language	has	specific
rules	 of	 precedence	 and	 associativity	 that	 controls	 how	 each	 expression	 is
evaluated.	For	example,	the	following	code	is	a	compound	expression	that	groups
two	arithmetic	expressions	(addition	and	multiplication).
	
3	*	4	+	5

	
How	should	this	expression	be	evaluated,	as	the	result	will	be	different	depending
upon	whether	the	multiplication	is	done	first	or	the	addition	is	done	first?	The	rules
governing	 expression	 evaluation	 in	 these	 cases	 are	 known	 as	 the	 operator
precedence	 and	 associativity	 rules.	 Swift	 operators	 are	 grouped	 together	 at
different	precedence	levels.	Operators	of	higher	precedence	are	evaluated	before
operators	of	lower	precedence.	When	operators	at	the	same	precedence	level	are
found	within	a	single	expression,	the	corresponding	associativity	 rule	determines
the	 order	 in	 which	 the	 operators	 are	 evaluated.	 The	 Swift	 Programming
Language	 Guide	 details	 the	 operator	 precedence	 and	 associativity	 rules.	 To
explicitly	 control	 the	 order	 of	 evaluation,	 your	 code	 should	 use	 parentheses	 to
group	 expressions	 accordingly.	 The	 following	 code	 uses	 parentheses	 to	 insure
that	the	addition	is	performed	prior	to	multiplication:
	
3	*	(4	+	5)

	
A	 statement	 is	 a	 unit	 of	 executable	 code.	 In	 Swift	 there	 are	 two	 kinds	 of
statements	 -	 simple	 statements	 and	 control	 flow	 statements.	Simple	 statements
consist	of	either	an	expression	or	a	declaration.	For	example,	the	following	code

consists	 of	 two	 simple	 statements	 that	 declare	 the	 variable	 sumProduct	 and
compute	a	value	for	it:
	
var	sumProduct:	Int

	
sumProduct	=	3	*	(4	+	5)

	
Control	 flow	statements	are	used	to	control	 the	 flow	of	program	execution.	Swift
provides	 three	 types	 of	 control	 flow	 statements:	 loop	 statements,	 branch
statements,	 and	 control	 transfer	 statements.	 Loop	 statements	 allow	 a	 block	 of
code	to	be	executed	multiple	times	depending	upon	the	loop	condition.	Swift	has
four	loop	statements:	a	for	statement,	a	for-in	statement,	a	while	statement,
and	a	repeat-while	statement.	Branch	statements	are	used	to	execute	certain
parts	of	 code	depending	on	 the	 value	of	 one	or	more	 conditions.	Swift	 has	 two
branch	 statements:	 an	if	 statement	 and	 a	switch	 statement.	 Control	 transfer
statements	 are	 used	 to	 change	 the	 order	 in	 which	 code	 is	 executed	 by
unconditionally	transferring	execution	to	another	block	of	code	in	a	program.	Swift
has	four	control	transfer	statements:	a	break	statement,	a	continue	statement,
a	fallthrough	statement,	and	a	return	statement.

	
In	Swift	 by	default	a	statement	 is	 closed	on	a	new	 line,	however	 the	semicolon
operator	 (;)	 can	 be	 used	 to	 group	 multiple	 statements	 on	 the	 same	 line.	 For
example,	 the	 following	 code	 declares	 the	 variable	 sumProduct	 and	 then
computes	and	stores	a	value	for	it	on	the	same	line:
	
var	sumProduct:	Int;	sumProduct	=	3	*	(4	+	5)

	

	

	

SAFE	PROGRAMMING

	
Swift	 was	 designed	 with	 safety	 in	 mind;	 in	 fact	 a	 key	 objective	 during	 the
development	of	the	language	was	to	make	it	easier	for	programmers	to	write	safe,
bug-free	 code.	 As	 such	 the	 Swift	 programming	 language	 adopts	 many	 safe-
programming	practices.	 In	 this	chapter	you	will	 learn	what	 these	are	and	how	to
use	them	in	your	code.
	

Type	Safety

	
A	programming	language’s	type	safety	can	be	considered	the	facilities	it	provides
to	 prevent	 type	 errors,	 whereby	 a	 program	 attempts	 to	 perform	 operations	 on
values	that	have	the	wrong	data	type.	For	example,	attempting	to	add	an	integer
and	a	string	could	generate	a	type	error,	resulting	in	incorrect	program	behavior.
	
Swift	 is	 primarily	 a	 statically-type	 language;	 the	 compiler	 performs	 type	 checks
when	 your	 code	 is	 compiled	 and	 flags	 any	 mismatched	 types	 as	 errors.	 This
enables	 certain	 classes	 of	 bugs	 to	 be	 caught	 as	 early	 as	 possible	 in	 the
development	 cycle,	 before	 program	 execution.	 Let’s	 illustrate	 Swift	 static	 type
checking	in	action	with	an	example.	In	your	playground	delete	any	existing	code
then	add	the	following	statements:
	
var	name	=	“Lucky”

	
var	number	=	7

	
var	sum	=	name	+	number

	

	
Figure	3-1.	Swift	Type	Safety
	
The	variable	name	is	a	string,	while	the	variable	number	is	an	integer.	As	shown
in	Figure	3-1,	when	you	attempt	to	add	these	two	variables	an	error	exclamation
icon	is	displayed	in	the	gutter.	When	you	click	on	this	icon	you	see	displayed	an

error	message	specifying	the	type	mismatch.
	
Swift	type	safety	and	type	inference	makes	you	more	productive,	by	reducing	the
amount	of	code	you	have	 to	write	and	also	enabling	you	 to	catch	and	 fix	errors
early	in	the	development	cycle.
	
Swift	 requires	 explicit	 conversions	 between	 variables	 and	 values	 of	 different
types.	 It	 does	 not	 support	 automatic	 type	 conversion	 by	 the	 compiler,	 thereby
preventing	 hidden	 conversion	 errors.	 For	 example,	 enter	 the	 following	 code	 in
your	playground:
	
var	myNumber:	Int	=	25.321

	

	
Figure	3-2.	Swift	Type	Safety,	Explicit	Type	Conversion
	
The	 variable	 myNumber	 is	 declared	 as	 an	 integer,	 yet	 it	 is	 being	 assigned	 a
floating-point	value.	Figure	3-2	illustrates	this	is	an	attempt	to	perform	an	implicit
conversion	 of	 the	 floating	 point	 value	 (25.321)	 to	 an	 integer.	 Swift	 will	 flag	 an
error	for	this	code	specifying	the	type	mismatch	and	indicating	that	an	explicit	type
conversion	must	 be	 performed.	 You	must	 perform	 an	 explicit	 conversion	 of	 the
value	by	creating	a	new	variable	of	 the	desired	 type.	This	can	be	accomplished
with	the	following	code:
	
var	myNumber:	Int	=	Int(25.321)

	
As	 shown	 in	 the	 above	 code,	 a	 new	 integer	 is	 initialized	 with	 the	 input	 value
(25.321),	and	an	explicit	 type	conversion	 is	performed	on	the	 input	value.	As	a
result,	 the	 value	 is	 rounded	 to	 the	 nearest	 integer	 value	 and	 this	 result	 (25)	 is
displayed	in	the	sidebar.
	

Initialization

	
Improper	or	incomplete	data	initialization	is	a	common	source	of	program	errors.
Swift	has	several	language	mechanisms	to	prevent	these	when	developing	code.
The	language	requires	that	every	declared	variable	be	initialized	before	it	is	used,
and	 the	 compiler	 will	 flag	 an	 error	 if	 this	 has	 not	 been	 done.	 In	 addition,	 each
constant	must	 be	 assigned	 a	 corresponding	 value	 before	 data	 initialization	 has
completed.	Let’s	demonstrate	this	with	an	example;	in	your	playground	delete	any
existing	code	then	add	the	following	code:
	
var	uninitialized:	Double

	
uninitialized	=	uninitialized	+	7

	

	
Figure	3-3.	Swift	Type	Safety,	Initialization
	
The	error	message	shown	in	Figure	3-3	specifies	that	the	variable	has	not	been
initialized	before	being	used.
	
Swift	 includes	 language	 features	 that	 you	 can	 use	 to	 create	 one	 or	 more
initializers	 for	named	data	 types.	An	 initializer	 is	a	special	method,	automatically
invoked	when	a	named	 type	(e.g.	a	structure,	enumeration,	or	class)	 is	created,
that	 can	 be	 used	 to	 perform	 proper	 initialization	 of	 its	 variables.	 You	 will	 learn
about	initializers	in	the	Named	Types	chapter.

	

Optionals

	
Earlier	 you	 read	 that	 variables	 are	 used	 in	 a	 program	 to	 store	 and/or	 return	 a
value,	and	 that	Swift	 safe	programming	mechanisms	enforce	 the	 initialization	of
every	declared	variable	before	it	is	used.	However,	what	if	you	need	to	implement
logic	 for	a	variable	 that	has	no	value;	how	do	you	represent	 this	 in	code?	Many
programming	languages	contain	mechanisms	for	representing	uninitialized,	empty
variables	 (i.e.	 variables	 with	 no	 value);	 however	 executing	 code	 that	 accesses
such	a	variable	can	cause	program	errors.	Swift	addresses	this	with	the	optional
type,	a	mechanism	that	enables	you	 to	program	uninitialized	variables	while	still
supporting	safe	programming	practices.
	
An	optional	is	a	named	type	used	to	provide	a	value	for	a	variable	(if	one	exists)
or	nothing	at	all.	Any	Swift	type	can	be	declared	as	an	optional	type	by	appending
the	 question	mark	 (?)	 operator	 immediately	 after	 the	 type	 name.	 The	 following
code	 declares	 an	 optional	 integer	 variable	 named	 optionalInt	 and	 (in	 the
absence	of	a	supplied	initial	value)	automatically	sets	its	value	to	nil.

	
var	optionalInt:	Int?

	
The	Swift	 reserved	word	nil	 represents	 the	absence	of	a	value	 for	an	optional
type.	The	next	 statement	 defines	an	optional	 variable	named	greeting	 that	 is
initialized	to	the	string	“Hello,	World!”.
	
var	greeting:	String?	=	“Hello,	World!”

	
Swift	provides	several	mechanisms	for	accessing	the	value	of	an	optional	type.	If
you	know	that	the	optional	has	a	value,	you	can	append	the	exclamation	mark	(!)
operator	 immediately	after	 its	name	to	access	 its	value.	This	 is	known	as	 forced
unwrapping	of	an	optional’s	value.	The	following	code	uses	forced	unwrapping	of
the	optional	named	greeting	to	print	its	value.

	
print(greeting!)

	
Forced	unwrapping	of	an	optional	variable	that	does	not	have	a	value	will	cause	a
runtime	error	during	program	execution.
	
Optional	Binding
	
Swift	provides	the	optional	binding	mechanism	to	determine	 if	an	optional	has	a

value	 and	 if	 so	 set	 a	 corresponding	 temporary	 variable	 to	 that	 value.	 Optional
binding	uses	Swift	conditional	if	and	while	 statements	 to	check	 if	an	optional
has	a	value,	and	if	so	unwrap	the	value,	assign	it	to	a	temporary	value,	and	then
execute	the	corresponding	conditional	logic.	The	syntax	of	optional	binding	for	an
if	statement	is	depicted	in	the	example	of	Listing	3-1.

	
Listing	3-1.	Optional	Binding	if	Statement
	
if	let	tempVar	=	optVar	{

	
//	Conditional	logic

	
}

	
As	shown	in	Listing	3-1,	the	optional	variable	named	optVar	is	checked	to	see	if
it	contains	a	value.	If	it	does,	the	value	is	assigned	to	the	constant	tempVar	and
the	conditional	logic	enclosed	within	the	curly	braces	is	then	executed.
	
Multiple	 simultaneous	 optional	 bindings	 can	 be	 provided	 in	 a	 single	 statement,
each	of	which	is	separated	by	a	comma.	If	any	one	of	the	optional	bindings	is	not
satisfied	 then	 the	 conditional	 logic	 is	 ignored.	 The	 syntax	 for	 multiple	 optional
bindings	is:
	
if	let	tempVar1=optVar1,	…	tempVarN=optVarN	{

	
//	Conditional	logic

	
}

	
Each	optional	binding	is	evaluated	in	order.	Optional	bindings	can	also	be	paired
with	a	where	clause	that	is	evaluated	like	a	conditional	if	statement.	The	syntax
for	optional	bindings	with	a	where	clause	is:

	
if	let	tempVar1=optVar1	where	tempVar1!=0	{

	
//	Conditional	logic

	
}

	
Now	 let’s	 illustrate	use	of	 optionals	with	an	example.	 In	 your	 playground	delete
any	existing	code	then	add	the	following	statements:

	
var	greeting:	String?

	
if	var	str	=	greeting	{

	
print(str)

	
}

	

	
Figure	3-4.	Optionals	and	Optional	Binding
	
Referring	to	Figure	3-4,	the	sidebar	displays	no	value	for	the	variable	greeting.
As	the	variable	has	no	value,	it	is	not	assigned	to	the	temporary	variable	str	and
the	 conditional	 logic	 is	 not	 executed.	 Now	 let’s	 change	 the	 definition	 of	 the
optional	greeting	by	assigning	it	a	value:

	
var	greeting:	String?	=	“Hello	World,	Welcome	to	Swift!”

	
Now	in	the	sidebar	observe	that	the	variable	str	 is	assigned	the	value	and	that
the	 conditional	 logic	 is	 executed,	 resulting	 in	 this	 string	 being	 printed	 to	 the
console.
	

Memory	Management

	
The	 overall	 quality	 of	 a	 program	 is	 often	 directly	 related	 to	 its	 management	 of
system	 resources.	 A	 computer’s	 operating	 system	 allocates	 a	 finite	 amount	 of
main	 memory	 for	 program	 execution,	 and	 if	 a	 program	 attempts	 to	 use	 more
memory	 than	 the	 amount	 allocated	 by	 the	 operating	 system,	 it	 will	 not	 operate
correctly.	 Hence,	 a	 program	 should	 use	 only	 as	much	memory	 as	 needed,	 not
allocate	memory	that	it	does	not	use,	and	not	try	to	use	memory	that	is	no	longer
available.	Swift	provides	automatic	memory	management	in	alignment	with	these
goals.
	
During	 program	 execution	 Swift	 performs	 automatic	 memory	 management	 of
class	instances	and	closures;	there	are	no	special	functions	that	you	need	to	code
for	 managing	 memory.	 Swift	 also	 provides	 language	 mechanisms	 that	 can	 be
used	to	resolve	references	cycles	that	can	prevent	proper	memory	management.
You	will	 learn	more	about	using	these	mechanisms	in	the	upcoming	chapters	on
Swift	Closures	and	Named	Types.
	

	

	

	

	

CONTROL	FLOW

	
Similar	 to	many	modern	programming	 languages,	Swift	provides	constructs	 that
can	be	used	to	control	the	order	and	frequency	of	execution	of	different	pieces	of
code.	 These	 are	 divided	 into	 several	 categories	 –	 1)	 conditional	 constructs,	 2)
loop	 constructs,	 and	3)	 transfer-of-control	 constructs.	 In	 this	 chapter	 you’ll	 learn
about	the	features	of	the	Swift	control	flow	constructs	and	how	to	use	them.
	

Conditionals

	
The	 conditional	 constructs	 enable	 you	 to	 execute	 blocks	 of	 code	 if	 a	 particular
condition	 is	 met.	 Using	 Swift	 you	 implement	 these	 with	 if	 and	 switch
statements.	 The	if	 statement	 is	 most	 useful	 for	 coding	 logic	 that	 depends	 on
simple	 conditions	with	only	a	 few	possible	outcomes.	The	switch	 statement	 is
ideal	 for	 complex	 conditions	with	multiple	 possible	 outcomes,	 and	when	pattern
matching	can	be	used	to	help	select	the	appropriate	block	of	code	to	execute.
	
If	Statements
	
The	 if	 statement	 executes	 a	 block	 of	 code	 if	 a	 given	 Boolean	 conditional
expression	evaluates	to	true;	otherwise	it	is	skipped.	In	the	previous	chapter	you
used	the	if	statement	to	perform	optional	binding;	the	general	syntax	of	the	Swift
if	statement	is	shown	in	Listing	4-1	below.

	
Listing	4-1.	If	Statement
	
if	Conditional	expression	{

	
//	Conditional	logic

	
}

	
The	code	 that	 implements	 the	conditional	 logic	must	be	enclosed	within	braces;
also	 the	 conditional	 expression	 can	 be	 enclosed	 within	 parentheses.	 Let’s
illustrate	use	of	the	if	statement	with	an	example;	in	your	playground	delete	any
existing	code	then	add	the	following:
	
var	number	=	5

	
if	(number	%	2)	==	0	{

	
print(“Even	number”)

	
}

	

	
Figure	4-1.	Using	the	If	Statement
	
The	 code	 shown	 in	 Figure	 4-1	 determines	 whether	 the	 value	 of	 the	 remainder
operator	 expression	 (number	 %	 2)	 equals	 zero.	 If	 it	 does	 the	 conditional
expression	 evaluates	 to	 true	 and	 the	 sidebar	 displays	 the	 text	Even	 number.
Change	 the	 value	 of	 the	 variable	 number	 to	 different	 even	 and	 odd	 integer
numbers	 and	 verify	 the	 sidebar	 displays	 the	 text	 only	 when	 the	 variable	 is
assigned	an	even	value.
	
The	 Swift	 else	 if	 statement	 extends	 the	 if	 statement	 by	 enabling	 you	 to
provide	 multiple	 conditional	 expressions,	 each	 with	 its	 corresponding	 block	 of
code.	The	syntax	of	an	else	if	statement	is	shown	in	Listing	4-2:

	
Listing	4-2.	Else	If	Statement
	
if	Conditional	expression	1	{

	
//	Conditional	logic

	
}

	
else	if	Conditional	expression	2	{

	
//	Conditional	logic

	
}

	
else	if	Conditional	expression	n	{

	
//	Conditional	logic

	
}

	
As	with	 the	if	 statement,	 the	 code	accompanying	each	else	if	 statement	 is
surrounded	 by	 braces.	Multiple	else	if	 statements	 can	 be	 chained	 together,
each	with	 its	own	corresponding	block	of	code.	The	conditional	expressions	are
evaluated	sequentially	and	at	most	one	of	 these	branches	will	be	executed	 (the
first	to	evaluate	to	true);	if	none	of	the	expressions	evaluates	to	true	then	all	of
the	 branches	 are	 skipped.	 Let’s	 illustrate	 use	 of	 these	 statements	 with	 an
example;	in	your	playground	update	your	existing	code	as	follows:
	
var	number	=	5

	
if	(number	%	2)	==	0	{

	
print(“Even	integer”)

	
}

	
else	if	(number	%	2)	==	1	{

	
print(“Odd	integer”)

	
}

	

	
Figure	4-2.	Using	the	Else	If	Statement
	
The	 code	 of	 Figure	 4-2	 includes	 two	 conditional	 expressions	 that	 are	 used	 to
determine	if	the	variable	number	is	an	even	or	odd	integer	value.	It	determines	a
number’s	parity	by	implementing	the	following	logic:	if	the	value	of	the	remainder
operator	expression	for	the	variable	(number	%	2)	equals	zero	then	the	sidebar
displays	the	text	Even	number,	else	if	the	value	of	the	expression	equals	one	then
the	 sidebar	 displays	 the	 text	 Odd	 number.	 Change	 the	 value	 of	 the	 variable
number	 to	 different	 even	 and	 odd	 positive	 numbers	 and	 verify	 the	 sidebar
displays	the	correct	text	for	each	number.
	
Swift	also	provides	an	else	statement	that	can	be	used	to	execute	an	alternative
block	 of	 code	 if	 all	 of	 the	 accompanying	 conditional	 expressions	 evaluate	 to
false.	The	syntax	of	the	else	statement	is:

	
else	{

	
//	Alternative	code

	
}

	
As	with	the	other	conditional	branches,	braces	surround	the	code	accompanying
the	 else	 statement.	 The	 else	 branch	 is	 always	 placed	 last	 (e.g.	 after	 the
preceding	if	 and	else	if	 branches).	 Let’s	 illustrate	 this	 with	 an	 example;	 in

your	playground	update	your	existing	code	as	follows:
	
var	number	=	5

	
if	(number	%	2)	==	0	{

	
print(“Even	integer”)

	
}

	
else	if	(number	%	2)	==	1	{

	
print(“Odd	integer”)

	
}

	
else	{

	
print(“Floating-point	number”)

	
}

	

	
Figure	4-3.	Using	the	Else	Statement
	

As	 shown	 in	 Figure	 4-3,	 an	 else	 branch	 is	 used	 to	 determine	 if	 the	 variable
number	 is	 a	 floating-point	 number.	 This	 is	 the	 alternative	 case	 that	 will	 be
executed	 if	 the	 variable	number	 is	 set	 to	 a	 floating-point	 value	 (and	 hence	 the
remainder	 operator	 returns	 a	 floating-point	 number).	 In	 this	 case	 the	 alternative
code	 displays	 the	 text	 Floating-point	 number.	 Change	 the	 value	 of	 the
variable	 to	 different	 integer	 and	 floating-point	 numbers	 and	 verify	 the	 sidebar
displays	the	correct	text	for	each	number.
	
Switch	Statement
	
The	if	statement	works	well	for	executing	specific	blocks	of	code	depending	on
Boolean	 conditions,	 but	what	 if	 you	want	 to	 be	 able	 to	 control	 the	 execution	 of
code	based	on	a	number	of	possibilities?	The	Swift	switch	 statement	provides
this	functionality;	it	enables	conditional	comparison	and	execution	of	code	against
a	 range	 of	 values	 and/or	 matching	 patterns.	 The	 switch	 statement	 matches
against	many	 kinds	 of	 data	 (numbers,	 strings,	 etc.)	 and	 also	 supports	 complex
matching	 patterns	 (i.e.	 multiple	 values,	 ranges).	 The	 syntax	 for	 the	 switch
statement	is	shown	in	Listing	4-3	below.
	
Listing	4-3.	Switch	Statement
	
switch	control	expression	{

	
case	value	1:

	
//	Code	executed	for	matching	value	1

	
case	value	2,	value	3:

	
//	Code	executed	for	matching	value	2	or	value	3

	
default:

	
//	Code	executed	if	no	matching	value

	
}

	
The	statement	begins	with	the	switch	keyword,	followed	by	a	control	expression
or	variable,	then	a	set	of	switch	cases	enclosed	by	braces.	Each	case	is	declared
using	the	case	keyword,	one	or	more	values	terminated	with	a	colon,	followed	by
the	code	to	be	executed	if	the	case	is	matched.	For	the	first	found	matching	case

value,	the	corresponding	code	is	executed	and	the	switch	statement	 is	exited.	A
switch	 statement	 must	 have	 a	 case	 for	 every	 possible	 matching	 control	 value;
otherwise	the	compiler	will	flag	an	error.	This	can	be	accomplished	by	supplying	a
catchall	 case	 specified	 with	 the	 default	 keyword,	 which	 if	 present	 must	 be
provided	last	as	shown	above.	Multiple	matching	values	are	provided	for	a	single
case	by	separating	each	value	(except	the	last)	with	a	comma.
	
Now	let’s	develop	a	simple	example;	in	your	playground	delete	any	existing	code
then	add	the	following:
	
var	month:	String	=	“January”

	
switch	month	{

	
case	“January”,	“March”,	“May”,	“July”,	“August”,	“October”,
“December”:

	
print(“There	are	31	days	in	this	month”)

	
case	“April”,	“June”,	“September”,	“November”:

	
print(“There	are	30	days	in	this	month”)

	
case	“February”:

	
print(“There	are	28	or	29	days	in	this	month”)

	
default:

	
print(“Please	enter	a	valid	month”)

	
}

	

	
Figure	4-4.	Using	the	Switch	Statement
	
The	code	shown	in	Figure	4-4	has	a	switch	with	multiple	cases	that	are	used	to
display	the	number	of	days	in	the	month.	If	the	text	provided	for	the	variable	is	not
as	expected	(i.e.	the	default	case)	then	it	displays	a	message	requesting	the	user
to	 enter	 a	 valid	 month.	 Change	 the	 variable	 month	 to	 different	 values	 (e.g.,
“February”,	“March”,	etc.)	and	verify	the	sidebar	displays	the	correct	text	for	each
value.
	
A	switch	statement	case	can	also	check	if	a	value	falls	within	a	specified	interval.
This	 is	performed	using	 the	Swift	 range	operators;	 these	are	used	 to	express	a
range	of	numbers.	The	closed	range	operator	(…)	defines	a	range	of	numbers	that
runs	sequentially	from	a	beginning	to	an	end	number,	including	the	beginning	and
ending	 values.	 The	 value	 of	 the	 beginning	 number	 cannot	 be	 greater	 than	 the
ending.	The	syntax	for	the	closed	range	operator	is:
	
beginningNumber…endingNumber

	
The	 half-open	 range	 operator	 (..<)	 defines	 a	 range	 of	 numbers,	 similar	 to	 the
closed	 range	operator,	but	differing	 in	 that	 the	 range	doesn’t	 include	 the	ending
number.	Its	syntax	is:
	
beginningNumber..<endingNumber

	

As	mentioned	above	switch	statements	execute	the	first	matching	case	and	then
transfer	 control	 to	 the	 code	 after	 the	 switch	 block;	 in	 other	 words	 it	 does	 not
provide	 fall-through	 behavior,	 a	 feature	 of	 many	 other	 programming	 languages
(such	 as	 C	 and	 Objective-C).	 If	 this	 behavior	 is	 needed	 the	 fallthrough
keyword	can	be	used.	It	should	be	coded	at	the	end	of	the	logic	for	each	case	that
requires	 this	behavior.	The	syntax	 for	a	switch	statement	 that	has	a	 fall-through
case	is:
	
switch	control	expression	{

	
case	value	1:

	
//	Code	executed	for	matching	value	1	with	fall-through

	
fallthrough

	
case	value	2,	value	3:

	
//	Code	executed	for	matching	value	2	or	value	3

	
default:

	
//	Code	executed	if	no	matching	value

	
}

	
Now	let’s	use	the	range	operators	in	a	switch	statement:	in	your	playground	delete
any	existing	code	then	add	the	following:
	
var	testScore:	UInt	=	75

	
switch	testScore	{

	
case	0..<60:

	
print(“Your	grade	is	F,	sorry!”)

	
case	60…69:

	
print(“Your	grade	is	D”)

	

case	70…79:

	
print(“Your	grade	is	C”)

	
case	80…89:

	
print(“Your	grade	is	B,	good	job”)

	
case	90…99:

	
print(“Your	grade	is	A,	outstanding”)

	
case	100:

	
print(“Your	grade	is	A+,	perfect”)

	
default:

	
print(“Please	enter	a	valid	test	score”)

	
}

	

	
Figure	4-5.	Using	the	Switch	Statement	With	Interval	Matching
	

With	 reference	 to	 Figure	 4-5,	 the	 code	 has	 a	 switch	 statement	 with	 multiple
cases,	 the	majority	of	which	 include	 ranges	 for	 interval	matching.	Also	note	 that
the	 variable	 testScore	 is	 defined	 as	 an	 unsigned	 integer	 via	 the	 UInt	 type
annotation;	this	insures	that	the	input	value	is	always	a	positive	number.	Change
the	variable	to	different	values	and	verify	the	sidebar	displays	the	correct	text	for
each	value.
	
The	 switch	 statement	 has	 additional	 functionality	 that	 makes	 it	 an	 even	 more
powerful	conditional	construct;	you’ll	learn	about	these	a	little	later	in	this	book.
	

Loops

	
The	loop	constructs	execute	a	block	of	code	zero	or	more	times	until	a	condition
is	met.	Swift	provides	several	types	of	for	and	while	loops	for	this	purpose.

	
For	Loop
	
The	for	loop	enables	the	repeated	execution	of	a	block	of	code	until	an	optional
Boolean	condition	evaluates	to	false.	The	syntax	of	the	for	loop	is:

	
Listing	4-4.	For	Loop	Statement
	
for	initialization;	conditional;	increment	{

	
//	Loop	logic

	
}

	
The	optional	initialization	expression	can	be	of	any	type	and	is	evaluated	once.
Here	you	typically	initialize	variables	used	during	the	loop	logic	and	for	expression
evaluation.	 The	 optional	 Boolean	 conditional	 expression	 is	 evaluated	 before
each	 iteration.	 If	 this	expression	evaluates	 to	true	 the	 loop	 logic	 is	executed.	 If
the	 expression	 evaluates	 to	false	 the	 loop	 logic	 is	 not	 executed	 and	 the	 loop
statement	is	exited,	with	program	execution	continuing	at	the	next	statement.	If	a
conditional	expression	is	not	provided	it	is	considered	true,	and	the	loop	logic	is
executed.	 In	 this	scenario	 the	 loop	 logic	would	continue	 to	be	performed	until	a
break	or	a	return	statement	is	executed.	As	shown	above	the	body	of	the	loop
logic	 is	 enclosed	 in	braces.	After	 the	 code	within	 the	 loop	 logic	 is	 executed	 the
increment	 expression	 is	 evaluated,	 and	 execution	 returns	 to	 the	 conditional
expression.	The	increment	expression	could	change	the	value	of	the	loop	counter;
change	the	value	of	a	loop	variable,	etc.
	
For	 loops	can	be	nested,	enabling	one	 loop	 to	 reside	 in	another	 loop.	Variables
declared	within	the	loop	initialization	expression	are	temporary	and	thus	exist	only
within	the	body	of	loop.
	
Now	let’s	develop	an	example;	 in	your	playground	delete	any	existing	code	then
add	the	following:
	
var	sequence:	UInt	=	5

	
if	(sequence	>=	2)	{

	
var	fn:	UInt

	
var	fn1:	UInt	=	0

	
var	fn2:	UInt	=	1

	
for	var	index:UInt=2;	index<=sequence;	index++	{

	
fn	=	fn1	+	fn2

	
fn1	=	fn2

	
fn2	=	fn

	
}

	
}

	

	
Figure	4-6.	Using	the	For	Loop
	
This	code	computes	a	sequence	of	Fibonacci	numbers.	As	shown	in	Figure	4-6,
the	 code	 includes	 a	 for	 loop	 with	 initialization,	 a	 conditional	 expression	 that

controls	the	quantity	of	numbers	computed,	and	a	loop	increment.
	
Note	 in	 the	 sidebar	 the	 expression	 (4	 times)	 displayed	 across	 from	 each
statement.	 This	 indicates	 the	 number	 loop	 iterations	 and	 hence	 the	 number	 of
times	the	expression	was	computed.	Now	hover	your	mouse	in	the	sidebar	on	the
same	line	as	the	statement	fn	=	fn1	+	fn2;	to	the	far	right	you’ll	see	a	value
history	dot	 (it	 looks	 like	a	dot).	Tap	this	value	history	dot	 to	open	the	playground
timeline.	 The	 timeline	 enables	 you	 to	 see	 computed	 values	 for	 a	 line	 of	 code
that’s	executed	repeatedly,	such	as	code	inside	a	for	or	while	loop.	Figure	4-7
shows	how	 the	 value	 computed	 for	 the	 statement	fn	=	fn1	+	fn2	 changes
over	time.	The	timeline	also	displays	console	output,	e.g.	output	from	your	code’s
print(_:)	statements.

	

	
Figure	4-7.	Displaying	a	For	Loop	Timeline
	
Change	the	variable	sequence	to	different	values	and	verify	the	timeline	displays
the	correct	Fibonacci	sequence	value.
	
For-in	Loop
	
The	 for-in	 loop	 performs	 repeated	 execution	 of	 a	 block	 of	 code	 over	 a
sequence,	 such	as	a	 range	of	 numbers,	 items	 in	 a	 collection,	 or	 a	 collection	of
characters	from	a	string.	The	syntax	for	the	for-in	loop	is:
	

Listing	4-5.	For-in	Loop	Statement
	
for	varName	in	sequence	{

	
//	Loop	logic

	
}

	
The	 variable	 varName	 is	 set	 at	 the	 beginning	 of	 each	 loop	 iteration.	 The
sequence	 can	 be	 a	 range	 of	 numbers	 defined	 using	 a	 Swift	 range	 operator,	 a
Swift	 collection	 type	 instance,	 or	 the	 characters	 of	 a	 Swift	 string.	 The	 loop	 is
executed	as	follows:	the	for-in	variable	is	set	to	each	sequence	value	and	the
loop	logic	(enclosed	within	braces)	is	executed	accordingly.
	
Let’s	 modify	 the	 previous	 example	 to	 use	 a	 for-in	 loop;	 in	 your	 playground
update	the	for	loop	code	you	created	previously	with	the	following:

	
var	sequence:	UInt	=	5

	
if	(sequence	>=	2)	{

	
var	fn:	UInt

	
var	fn1:	UInt	=	0

	
var	fn2:	UInt	=	1

	
for	_	in	2…sequence	{

	
fn	=	fn1	+	fn2

	
fn1	=	fn2

	
fn2	=	fn

	
}

	
}

	

	
Figure	4-8.	Using	the	For-In	Loop
	
Let’s	review	the	changes	shown	in	Figure	4-8.	A	for-in	loop	is	used	to	execute
the	 loop	 logic	 repetitively.	 The	 sequence	 of	 values	 is	 specified	 using	 the	 Swift
closed-range	(…)	operator;	in	this	case	these	range	from	2	through	the	value	of	the
variable	sequence.	 As	 the	 loop	 variable	 is	 not	 used,	 you	 can	 ignore	 them	 by
using	 an	 underscore	 (_)	 symbol	 in	 place	 of	 a	 loop	 variable	 name.	 In	 your
playground	 change	 the	 variable	 sequence	 to	 different	 numbers	 and	 verify	 the
timeline	displays	the	computed	values	for	the	loop	statement	fn	=	fn1	+	fn2.

	
While	and	Repeat-while	Loops
	
Both	the	while	 loop	and	repeat-while	 loop	perform	repeated	execution	of	a
block	 of	 code	 while	 a	 Boolean	 condition	 evaluates	 to	 true.	 The	 difference
between	 them	 is	 that	 the	while	 loop	 condition	 is	 evaluated	 before	 each	 pass
through	the	loop,	and	the	repeat-while	 loop	condition	is	evaluated	at	the	end
of	each	pass	through	the	loop.	The	syntax	for	the	while	loop	is:

	
Listing	4-6.	While	Loop	Statement
	
while	conditional	{

	
//	Conditional	logic

	

}

	
and	the	syntax	for	the	repeat-while	loop	is:

	
repeat	{

	
//	Conditional	logic

	
}	while	conditional

	
The	conditional	expression	is	evaluated,	if	it	evaluates	to	true	the	loop	logic	in
the	body	of	the	while	statement	is	executed,	and	the	process	is	repeated.	If	the
expression	 evaluates	 to	 false,	 the	 program	 exits	 the	 while	 statement	 and
continues	at	the	next	statement.	The	program	will	also	exit	a	while	statement	if	a
break	 or	 a	 return	 statement	 is	 executed	 within	 the	 loop	 body.	 Similar
processing	is	performed	for	the	repeat-while	loop,	the	difference	being	that	the
conditional	 expression	 is	 evaluated	 after	 the	 loop	 logic	 is	 executed.	 Hence	 the
repeat-while	loop	guarantees	that	the	loop	logic	is	executed	at	least	once.

	
Now	let’s	develop	an	example;	 in	your	playground	delete	any	existing	code	then
add	the	following:
	
var	counter:	UInt	=	5

	
if	(counter	!=	0)	{

	
while	(counter	>	0)	{

	
counter—

	
}

	
print(“Blast-off!”)

	
}

	

	
Figure	4-9.	Using	the	While	Loop
	
This	code	counts	down	to	zero	from	its	initial	value	and	then	prints	a	message	to
the	 console.	 As	 shown	 in	 Figure	 4-9,	 the	 code	 includes	 a	 while	 loop	 with	 a
conditional	 expression	 that	 controls	 the	 countdown	 until	 blast-off.	 Change	 the
variable	counter	to	different	values	and	verify	the	timeline	displays	the	change	of
the	 counter	 variable	 over	 time,	 and	 the	 console	 output	 displays	 the	 correct
message.
	
So	which	loop	should	you	use?	The	for	loops	are	good	for	scenarios	where	you
know	ahead	of	time	the	number	of	loop	iterations	required.	On	the	other	hand,	the
while	loops	are	preferred	in	scenarios	where	the	number	of	loop	iterations	is	not
known	in	advance,	and	is	determined	during	the	body	of	the	loop.
	

Control	Transfer

	
The	 transfer-of-control	 constructs	 unconditionally	 cause	 a	 program	 to	 begin
executing	a	different	block	of	code.	This	enables	you	to	change	the	order	in	which
your	code	is	executed.
	
Guard	Statement
	
The	 guard	 statement,	 like	 the	 if	 statement,	 executes	 code	 depending	 on
Boolean	conditions.	 It	differs	 from	 the	if	 statement	 in	 that	 it	 is	used	 to	 transfer
control	from	the	current	enclosing	scope	if	the	condition	evaluates	to	false,	else
it	 continues	 executing	 the	 code	 after	 the	guard	 statement.	 The	 syntax	 for	 the
guard	statement	is:

	
Listing	4-7.	Guard	Statement
	
guard	Conditional	expression	1	{

	
//	Control	transfer	statement(s)	(false	branch)

	
}

	
//	Code	following	guard	statement	(true	branch)

	
A	guard	statement	can	contain	variable	declarations	(including	optional	binding);
each	variable/constant	declared	in	an	optional	statement	is	available	to	the	code
following	 the	 statement	 (if	 it’s	 conditional	 expression	 evaluates	 to	 true).	 The
following	code	uses	a	guard	statement	to	retrieve	a	value	for	an	optional	variable
(using	optional	binding)	named	greeting	and	then	prints	the	value	if	it	exists:

	
guard	let	str	=	greeting	{

	
return

	
}

	
print(str)

	
Continue

	
The	 continue	 statement	 passes	 control	 to	 the	 next	 iteration	 of	 the	 nearest
enclosing	 loop	 (for,	 while,	 repeat-while)	 statement	 in	 which	 it	 appears,
bypassing	any	remaining	statements	in	the	loop	statement	body.	The	continue
statement	must	appear	within	a	loop	statement.	The	following	code	illustrates	use
of	the	statement	in	a	for	loop	that	only	displays	odd	numbers:

	
for	(var	ii=0;	ii<maxNumber;	ii++)	{

	
if	(ii	%	2)	==	0	{

	
continue

	
}

	
print(ii)

	
}

	
Break
	
The	 break	 statement	 terminates	 the	 execution	 of	 the	 nearest	 enclosing	 loop
(for,	while,	repeat-while),	or	switch	statement	 in	which	 it	appears.	When
used	 inside	a	 loop	statement,	 the	program	continues	execution	at	 the	statement
that	follows	the	loop’s	closing	brace	(}).	When	used	inside	a	switch	statement,	it
causes	 the	 switch	 statement	 to	 end	 its	 execution	 immediately	 and	 transfer
control	to	the	first	statement	after	the	switch	statement’s	closing	brace.

	
Return
	
The	return	statement	terminates	execution	of	a	method	or	function	and	returns
control	 to	 the	calling	method/function.	The	return	 statement	 can	also	 return	 a
value	to	the	calling	method/function.	The	syntax	for	the	return	statement	is:

	
return	expression

	
The	 optional	 expression	 value	 is	 returned	 to	 the	 calling	method/function	 and	 is
converted	to	the	type	returned	by	the	method/function.
	

	

	

	

	

STANDARD	LIBRARY

	
The	 Swift	 programming	 language	 includes	 a	 Standard	 Library	 of	 built-in
Application	 Programming	 Interfaces	 (APIs)	 that	 consist	 of	 a	 collection	 of	 data
types,	functions,	and	other	tools.	In	this	chapter	you	will	 learn	about	some	of	the
more	commonly	used	Standard	Library	APIs.
	
Swift	 has	 two	 categories	 of	 types:	 named	 types	 that	 are	 given	 a	 name	 when
defined,	 and	 compound	 types	 that	 are	 unnamed	 and	 defined	 in	 the	 language
itself.	Named	 types	 have	 properties	 and	methods,	 and	 you	 can	 extend	 them	 to
add	additional	data	and	functionality.	Included	amongst	the	Swift	Standard	Library
named	 types	 are	 numeric	 types,	 strings	 and	 characters,	 and	 collections	 types,
which	you	will	learn	about	next.
	

Numeric	Types

	
Swift	defines	a	number	of	numeric	 types	 that	can	be	used	 to	 represent	 integers
and	real	numbers	of	various	sizes.	The	numeric	types	are	value	types;	this	means
that	instances	of	these	types	are	copied	when	passed	as	arguments	to	functions
or	methods,	or	when	assigned	to	a	variable.	The	following	paragraphs	provide	an
overview	 of	 the	 Swift	 numeric	 types;	 you	 should	 refer	 to	 the	 Swift	 Standard
Library	Reference	for	additional	documentation	on	these	APIs.
	
Integers
	
Swift	 provides	 both	 signed	 and	 unsigned	 integer	 data	 types.	 The	 basic	 Swift
signed	 integer	 type,	Int,	has	 the	same	size	as	your	hardware	platform’s	native
word	size.	For	example,	on	a	32-bit	platform	an	Int	is	32	bits	in	length,	whereas
on	a	64-bit	platform	it	 is	64	bits	 in	length.	To	define	an	integer	of	a	specific	size,
Swift	provides	the	following	types:
	
Int8	–	an	8-bit	integer

	
Int16	–	a	16-bit	integer

	
Int32	–	a	32-bit	integer

	
Int64	–	a	64-bit	integer

	
Swift	also	provides	several	unsigned	integer	data	types	for	unsigned	values:
	
UInt	–	unsigned	integer	with	the	same	size	as	the	platform’s	native	word	size

	
UInt8	–	an	8-bit	unsigned	integer

	
UInt16	–	a	16-bit	unsigned	integer

	
UInt32	–	a	32-bit	unsigned	integer

	
UInt64	–	a	64-bit	unsigned	integer

	

Each	type	has	min	and	max	properties	that	can	be	used	to	retrieve	the	minimum
and	maximum	value	for	the	corresponding	integer	type.	For	example	the	minimum
value	 for	 a	 basic	 integer	would	 be	 retrieved	 using	 the	min	 property	 of	 the	Int
type.
	
Int.min

	
Integer	literals	can	be	written	in	code	using	several	different	numeral	systems:	1)
decimal	number	system,	2)	binary	number	with	the	0b	prefix,	3)	octal	number	with
the	0o	prefix,	or	hexadecimal	number	with	the	0x	prefix.	The	following	statements
provide	 several	 different	 ways	 of	 coding	 the	 decimal	 value	 of	 21	 as	 an	 integer
literal:
	
21	//	21	in	decimal	notation

	
0b00010101	//	21	in	binary	notation

	
0o025	//	21	in	octal	notation

	
0x15	//	21	in	hexadecimal	notation

	
Real	Numbers
	
Swift	 represents	 real	 numbers	 as	 floating-point	 values	 with	 the	 Float	 and
Double	types.	The	Float	type	represents	a	32-bit	single	precision	floating-point
number,	while	the	Double	type	represents	a	64-bit	double	precision	floating-point
number.
	
Floating-point	 literals	can	be	written	with	decimal	or	hexadecimal	notation.	They
must	be	written	with	a	number	on	both	sides	of	 the	decimal	point	 (e.g.	0.5	not
.5).	 Floating-point	 literals	 can	 also	 have	 an	 optional	 exponent,	 indicated	 by	 a
lower/uppercase	e	 for	 decimal	 floating-point	 values,	 or	 a	 lower/uppercase	p	 for
hexadecimal	 floating-point	 values.	 The	 following	 are	 valid	 floating-point	 literal
numbers:
	
1.5	//	1.5

	
-1.5e3	//	means	-1.5	x	10exp3	=	-1.5	x	1000

	

3.1415e-1	//	means	3.1415	x	10exp-1	=	3.1415	x	0.1

	
0x10p4	//	means	16	x	2exp4	=	16	x	16

	
-0xCp-2	//	means	-12	x	2exp-2	=	-12	x	0.25

	
Booleans
	
Swift	defines	a	Boolean	type,	a	data	type	that	can	only	have	two	possible	values:
true	 or	 false.	 These	 two	 values	 are	 represented	 by	 the	 Swift	 Boolean	 literal
values	true	 and	false.	 The	 keyword	Bool	 is	 used	 to	 define	 a	 Boolean	 data
type,	as	shown	in	the	following	example:
	
var	isMonday:	Bool

	
As	you	have	already	seen	in	numerous	examples,	Boolean	values	are	often	used
with	conditional	statements	such	as	if	statements	and	for	loops.

	

Strings	and	Characters

	
Swift	provides	the	standard	 library	String	 type	for	working	with	 text	strings,	an
ordered	 collection	 of	 Unicode-compliant	 characters.	 In	 fact,	 a	 Swift	 String	 is
actually	 a	 collection	 of	 Swift	Character	 values	 arranged	 in	 a	 specified	 order.
These	are	value	types	and	hence	are	copied	on	assignment	or	when	passed	as
an	argument	or	a	return	value.	The	following	paragraphs	provide	an	overview	of
the	String	 type;	you	should	refer	 to	 the	Swift	Standard	Library	Reference	for
additional	documentation	on	this	API.
	
String	Literals
	
Earlier	 in	 this	 book	 you	 learned	 how	 to	 create	 a	 string	 literal	 by	 enclosing	 text
within	 double	 quotes.	 You	 can	 also	 use	 create	 a	 string	 instance	 using	 Swift
initializer	 syntax.	 The	 following	 example	 creates	 a	String	 instance	 as	 a	 string
literal	and	assigns	that	instance	to	a	variable	named	greeting.

	
var	greeting	=	“Hello,	World!”

	
String	Initializers
	
A	Swift	String	is	implemented	as	a	Swift	structure	(don’t	worry	if	you’re	not	familiar
with	 structures,	 we’ll	 be	 covering	 them	 in	 an	 upcoming	 chapter);	 as	 such	 Swift
initializer	syntax	 can	 be	 used	 to	 create	 and	 initialize	 new	String	 instances.	 This
syntax	requires	that	you	type	the	String	keyword	followed	by	a	string	argument
within	parentheses.	The	argument	 can	be	a	 string	 literal	 or	any	expression	 that
evaluates	 to	 a	 string.	 The	 following	 example	 creates	 a	String	 instance	 using
initializer	syntax	and	assigns	that	instance	to	a	variable	named	greeting.

	
var	greeting	=	String(“Hello,	World!”)

	
String	Concatenation
	
The	addition	 (+)	operator	can	be	used	 to	chain	 two	strings	 together	 to	create	a
new	String	value.	The	following	code	concatenates	two	string	literals,	creating	a
new	String	value	that	is	assigned	to	the	variable	greeting.

	
var	greeting	=	“Hello,	“	+	“World!”

	

The	 addition	 assignment	 operator	 (+=)	 can	 also	 be	 used	 to	 combine	 string
concatenation	and	assignment	in	a	single	statement.	The	following	code	uses	this
operator	to	concatenate	the	variable	greeting	with	another	String	instance.

	
var	greeting	=	“Hello“

	
greeting	+=	“,	World!”

	
You	can	also	append	String	or	Character	values	to	an	existing	string	instance
with	the	String	append(_:)	method.	The	following	example	uses	this	method	to
append	a	string	to	the	variable	greeting.

	
var	greeting	=	“Hello“

	
greeting.append(“,	World!”)

	
String	Interpolation
	
Swift	also	provides	a	string	interpolation	mechanism	that	enables	you	to	insert	the
value	of	an	expression	within	a	string	 literal.	The	expression	can	be	made	up	of
existing	variables,	 literals,	 and/or	expressions.	Each	value	 that	 you	 insert	 into	a
string	 literal	 via	 interpolation	 is	 enclosed	within	parentheses	and	preceded	by	a
backslash.
	
Now	 let’s	 demonstrate	 the	 use	 of	 string	 interpolation	 with	 an	 example;	 in	 your
playground	delete	any	existing	code	then	add	the	following:
	
var	magicNumber	=	21

	
“Your	magic	number	today	is	\(magicNumber)”

	

	
Figure	5-1.	String	Interpolation
	
The	code	shown	in	Figure	5-1	prints	a	string	literal	and	uses	string	interpolation	to
include	the	value	of	the	variable	magicNumber	in	the	literal.	Change	the	variable
to	different	values	and	verify	the	sidebar	displays	the	correct	text	for	each	value.
	
Characters
	
A	 Swift	 Character	 type	 is	 a	 single,	 Unicode-compliant	 text	 character.	 As
mentioned	 earlier	 a	 String	 is	 actually	 a	 collection	 of	 Character	 values.	 A
Character	can	be	created	as	a	single	character	string	literal	by	surrounding	it	with
double-quotes,	 for	 example	 the	 following	 code	 defines	 a	 variable	 named
exclamationPoint	of	type	Character:

	
var	exclamationPoint:	Character	=	“!”

	
The	addition	 (+)	 and	 addition	 assignment	 (+=)	 operators	 can	 be	 used	 to	 add	 a
single	character	to	a	string	to	create	a	new	String	value.	The	following	example
concatenates	the	variable	above	to	a	String	literal	named	greeting:

	
var	greeting	=	“Hello,	World”

	
greeting	+=	exclamationPoint

	
You	 can	 also	 append	 a	Character	 to	 an	 existing	 String	 using	 the	 String

type’s	append(_:)	method.

	
The	characters	property	of	a	String	returns	a	collection	of	Characters	that
can	be	iterated	over	with	a	for-in	 loop.	OK,	so	now	let’s	demonstrate	use	of	a
collection	 of	 character	 values	 with	 an	 example.	 In	 your	 playground	 delete	 any
existing	code	then	add	the	following:
	
for	char	in	“Hello,	World!”.characters	{

	
print(char)

	
}

	

	
Figure	5-2.	Using	Character	Values
	
In	 Chapter	 4	 you	 learned	 that	 the	 Swift	 for-in	 loop	 could	 be	 used	 over	 a
collection	 of	Characters	 values.	 The	 code	 shown	 in	 Figure	 5-2	 demonstrates
this;	it	creates	a	string	literal	and	then	uses	the	characters	property	to	retrieve
a	 collection	 of	 characters	 from	 the	 string	 and	 use	 a	for-in	 loop	 to	 print	 each
character.	You	 should	 change	 the	 string	 literal	 to	 different	 values	 and	 verify	 the
sidebar	displays	each	corresponding	character	value	appropriately.
	
Bridging	with	NSString

	
Swift	 provides	 a	 variety	 of	mechanisms	 that	 enable	 you	 to	 use	 the	Cocoa	 and
Cocoa	 Touch	 APIs	 in	 your	 Swift	 code.	 One	 such	 mechanism,	 String	 bridging,
automatically	 bridges	between	 the	String	 and	NSString	 types.	NSString	 is
the	 Foundation	 Framework	 API	 for	 creating	 and	 managing	 text	 strings.	 String
bridging	 augments	 the	 capabilities	 of	 the	 Swift	 String	 type	 by	 extending	 the
NSString	properties	and	methods	to	String	instances.	To	use	string	bridging	in
Swift	code	you	simply	 import	 the	Foundation	Framework	API.	Let’s	demonstrate
string	bridging	in	your	playground;	delete	any	existing	code	then	add	the	following:
	
import	Cocoa

	
let	greeting	=	“hello,	world!”

	
print(greeting.capitalizedString)

	
print(greeting.uppercaseString)

	
if	greeting.lowercaseString.hasPrefix(“hello”)	{

	
print(“Begins	with	a	greeting!”)

	
}

	

	
Figure	5-3.	String	Bridging
	

The	 import	 Cocoa	 statement	 imports	 the	 Cocoa	 API;	 this	 includes	 the
Foundation	 Framework	 API.	 As	String	 instances	 are	 automatically	 bridged	 to
the	 NSString	 type,	 you	 can	 access	 the	 NSString	 APIs;	 in	 this	 case	 the
capitalizedString	 and	 uppercaseString	 properties	 as	 well	 as	 the
hasPrefix	method.	As	 shown	 in	Figure	 5-3,	 the	 code	displays	 the	 capitalized
and	upper-case	versions	of	 the	greeting	string,	and	also	checks	 to	see	whether
the	string	begins	with	an	appropriate	greeting.	Change	the	value	for	the	variable
and	observe	the	output	in	the	sidebar.
	

Collections

	
A	collection	groups	a	 variable	number	of	 data	elements	 into	a	 single	unit.	Swift
programming	language	provides	APIs	for	three	collection	types	–	arrays,	sets,	and
dictionaries.	 An	 array	 is	 an	 ordered	 collection	 of	 values,	 each	 identified	 by	 an
index,	which	may	 include	duplicates.	A	set	 is	an	unordered	collection	of	distinct
values.	A	dictionary	is	an	unordered	collection	of	key-value	pairs,	such	that	each
key	appears	at	most	once	in	the	collection.	The	collection	types	are	value	types;
as	 such	 instances	 of	 these	 types	 are	 copied	 when	 passed	 as	 arguments	 to
functions	 or	 methods,	 or	 when	 assigned	 to	 a	 variable.	 A	 collection	 instance
created	as	a	constant	(via	the	let	keyword)	it	is	read-only,	whereas	one	created
as	a	variable	 is	 read/write	–	 i.e.	 its	elements	and	number	can	be	changed.	The
following	 paragraphs	 provide	 an	 overview	 of	 the	 collections	 types;	 you	 should
refer	to	the	Swift	Standard	Library	Reference	for	the	complete	documentation	on
these	APIs.
	
Arrays
	
The	Swift	Array	 type	 enables	 you	 to	 create	 a	 collection	 of	 data	 elements	 (i.e.
values)	 of	 the	 same	 type	 in	 an	 ordered	 list.	 Array	 elements	 are	 selected	 by
indices,	and	these	indices	can	be	computed	at	run	time.	In	addition,	an	array	can
have	duplicate	values,	each	of	which	appears	at	a	different	position	in	the	list.	The
syntax	for	notating	the	type	of	an	array	is	Array<DataType>	where	DataType
is	the	type	of	the	data	elements	contained	in	the	array.	You	can	also	declare	the
type	of	an	array	with	the	shorthand	notation	[DataType].	The	following	example
declares	an	array	of	String	instances	and	assigns	the	array	to	a	variable	named
colors:

	
var	colors:	Array<String>

	
With	shorthand	notation	the	declaration	changes	to:
	
var	colors:	[String]

	
Each	array	element	can	be	access	via	a	corresponding	key,	or	 index,	a	positive
integer	 value.	 The	 Swift	Array	 type	 is	 zero-based,	 meaning	 that	 the	minimum
valid	value	 for	any	array	 index	 is	zero.	Swift	also	performs	bounds	checking	on
every	array	access	to	verify	that	your	code	is	not	trying	to	access	a	value	outside
of	the	size	of	the	array.	The	Array	type	includes	several	mechanisms	for	creating
and	 accessing	 arrays,	 and	 also	 a	 variety	 of	 methods	 for	 manipulating	 array
instances.	You’ll	learn	about	these	next.

	
Creating	Arrays
	
Similar	to	the	String	type,	the	Swift	Array	type	is	implemented	as	a	structure;
as	 such	Swift	 initializer	 syntax	 can	 be	 used	 to	 create	 and	 initialize	 new	Array
instances.	Swift	also	provides	literal	notation	for	array	creation	and	assignment.
	
Swift	 provides	 several	 array	 initializers	 that	 enable	 you	 to	 create	 an	 array	 with
zero	or	more	values.	The	syntax	for	creating	an	empty	array	using	array	initializer
syntax	is:
	
[DataType]()

	
The	following	example	creates	an	empty	array	that	can	hold	String	instances	and
assigns	it	to	a	variable	named	colors:

	
var	colors	=	[String]()

	
The	Array	 type	 also	 includes	 an	 initializer	 for	 creating	 an	 array	 instance	 of	 a
specified	size	with	all	of	its	elements	set	to	a	specified	default	value.	The	syntax
for	this	array	initializer	is:
	
[DataType](count:	size,	repeatedValue:	defaultValue)

	
The	values	for	size	and	defaultValue	are	arguments	to	the	initializer,	where
size	 is	 of	 type	 Int	 and	 defaultValue	 is	 the	 type	 specified	 for	 the	 data
elements.	The	following	example	creates	an	array	that	holds	three	integers,	each
initialized	 to	 the	 value	 10,	 and	 assigns	 the	 array	 to	 a	 variable	 named
luckyNumbers:

	
var	luckyNumbers	=	[Int](count:	3,	repeatedValue:	10)

	
Swift	 array	 literal	 notation	 can	 also	 be	 used	 for	 creating	Array	 instances.	 You
code	an	array	literal	as	a	list	of	values,	separated	by	commas,	all	surrounded	by	a
pair	of	square	brackets.	The	following	example	declares	an	array	literal	of	String
values	assigned	to	a	variable	named	colors:

	
var	colors	=	[“red”,	“green”,	“blue”]

	
Once	you	have	created	an	Array	instance	you	can	append	more	values	to	it	using

the	Array	type’s	append(_:)	method.	The	following	code	adds	another	color	to
the	colors	array	declared	above	using	the	append(_:)	method:

	
colors.append(“yellow”)

	
Additional	 methods	 are	 provided	 to	 insert	 and	 remove	 elements	 for	 an	 array
instance.
	
Accessing	Array	Elements
	
The	Array	type	includes	a	subscript	syntax	for	accessing	or	modifying	an	array.
You	 can	 retrieve	 a	 value	 from	 an	 array	 instance	 by	 supplying	 the	 index	 of	 the
value	within	square	brackets	 immediately	after	 the	 instance	name.	The	following
code	 access	 the	 first	 value	 of	 the	colors	 array	 and	 assigns	 it	 to	 the	 variable
favoriteColor:

	
var	favoriteColor	=	colors[0]

	
You	 can	 use	 subscript	 syntax	 to	 modify	 the	 value	 of	 an	 array	 element	 via
assignment.	The	following	example	changes	the	first	element	of	the	colors	array
to	the	value	orange:

	
colors[0]	=	“orange”

	
Array	subscript	syntax	can	also	be	used	to	modify	a	range	of	array	elements	with
the	range	operator.	You	can	get	a	subset	of	existing	elements	 in	an	array	as	a
new	array,	 or	 set	 a	 subset	 of	 existing	 elements	 in	 an	 array	 to	 new	 values.	 The
range	is	specified	by	using	the	closed	range	operator	(…);	this	defines	the	range	of
elements	 within	 square	 brackets	 immediately	 after	 the	 instance	 name.	 The
following	code	retrieves	the	first	three	elements	of	the	colors	array	and	assigns
this	to	a	new	array	named	favoriteColors:

	
var	favoriteColors	=	colors[0…2]

	
You	can	also	modify	a	range	of	values	at	once,	setting	 them	to	new	values	and
even	 decreasing	 the	 number	 of	 values.	 The	 following	 example	 modifies	 the
colors	 array,	 both	 changing	 the	 length	 of	 the	 array	 by	 replacing	 elements	 1
through	3	(i.e.	3	elements)	with	2	elements	and	setting	those	to	new	values:
	
colors[1…3]	=	[“green”,	“gold”]

	
As	a	result	of	this	operation,	the	colors	array	has	been	reduced	in	size	from	four
to	three	elements.
	
Iterating	Over	an	Array
	
You	can	iterate	over	the	elements	of	an	array	with	a	for-in	loop.	The	following
code	prints	each	of	the	values	of	the	colors	array:

	
for	color	in	colors	{

	
print(color)

	
}

	
Now	 let’s	 demonstrate	 our	 use	 of	 arrays	 with	 an	 example;	 in	 your	 playground
delete	any	existing	code	then	add	the	following:
	
var	colors	=	[String]()

	
colors.append(“red”)

	
colors.append(“green”)

	
colors.insert(“blue”,	atIndex:1)

	
colors.append(“orange”)

	
colors[1…3]	=	[“yellow”,	“violet”]

	
colors[2]	=	“gray”

	
for	color	in	colors	{

	
print(“This	color	is	\(color)”)

	
}

	

	
Figure	5-4.	Swift	Arrays
	
The	code	demonstrates	use	of	various	Array	type	APIs.	The	code	shown	above
and	 in	 Figure	 5-4	 first	 creates	 an	 empty	 array	 of	 type	String	 assigned	 to	 the
variable	 colors.	 It	 then	 uses	 the	 String	 append(_:)	 method	 to	 add	 several
String	 instances	 to	 the	array.	Next	 the	String	insert(_:atIndex:)	method	 is
used	to	insert	a	new	String	instance	to	the	array	between	the	existing	instances.
Subscript	syntax	is	used	to	modify	the	array,	changing	both	its	size	and	several	of
its	 elements.	 Subscript	 syntax	 is	 also	 used	 to	 access	 and	 modify	 an	 array
element.	 Finally	 a	 for-in	 loop	 is	 used	 to	 iterate	 over	 the	 array.	 You	 should
experiment	with	 this	 code	 (e.g.	 adding	more	 colors,	 changing	 their	 values,	 etc.)
and	observe	the	output	in	the	sidebar.
	
Sets
	
The	Swift	Set	type	enables	you	to	create	an	unordered	collection	of	distinct	data
elements,	 each	 of	 the	 same	 type.	 The	 syntax	 for	 notating	 the	 type	 of	 a	 set	 is
Set<DataType>	where	DataType	is	the	type	of	the	data	elements	contained	in
the	set.	Each	element	of	a	Set	instance	must	be	hashable	(i.e.	unique).

	
Creating	Sets
	
Swift	initializer	syntax	can	be	used	to	create	and	initialize	new	Set	instances.	The
syntax	for	creating	an	empty	set	using	Set	initializer	syntax	is:

	

Set[DataType]()

	
The	following	example	creates	an	empty	set	that	can	hold	String	instances	and
assigns	it	to	a	variable	named	colors:

	
var	colors	=	Set[String]()

	
There	is	also	a	Set	 initializer	that	takes	a	Swift	array	literal	as	its	argument;	this
enables	 you	 to	 create	 a	 set	 initialized	 with	 a	 number	 of	 values.	 The	 following
example	creates	a	set	named	colors	that	can	hold	String	instances,	initialized
with	several	values:
	
var	colors	=	Set([“red”,	“green”,	“blue”])

	
Notice	 above	 that	 the	 initializer	 includes	 an	 array	 literal	 of	 values	 inside
parentheses.	 You	 can	 also	 code	 an	 array	 literal	 and	 assign	 it	 to	 a	 variable
explicitly	 declared	 as	 a	 Set.	 The	 following	 modifies	 the	 previous	 example	 to
create	a	set	named	colors	assigned	to	an	array	literal	of	String	values:

	
var	colors:Set	=	[“red”,	“green”,	“blue”]

	
The	count	property	returns	a	positive	integer	value	of	the	number	of	elements	in
the	 set.	 The	 following	 code	 gets	 the	 number	 of	 values	 in	 the	colors	 set	 and
assigns	this	value	to	the	variable	numberOfColors:

	
var	numberOfColors	=	colors.count

	
Adding	and	Removing	Set	Elements
	
The	Set	 type	 includes	APIs	 for	adding	and	 removing	elements.	You	can	add	a
new	element	to	a	Set	 instance	using	the	insert(_:)	method;	 the	value	being
added	must	not	be	a	duplicate	of	a	value	that	already	 is	present	 in	 the	set.	The
following	code	adds	a	new	value	to	the	colors	set:

	
colors.insert(“yellow”)

	
The	remove(_:)	method	removes	an	element	from	a	set	where	the	argument	to
the	 method	 is	 the	 element	 in	 the	 set	 to	 be	 removed.	 This	 method	 returns	 an
optional	of	 the	type	stored	in	the	Set	–	 if	 the	optional	 is	nil	 then	the	value	was
not	 present	 in	 the	 set	 and	 thus	 not	 removed,	 otherwise	 the	 returned	 optional

contains	the	value	removed.	The	following	removes	a	value	from	the	colors	set
and	stores	the	returned	value	as	the	optional	removedColor:

	
var	removedColor	=	colors.remove(“yellow”)

	
The	subtract(_:)	method	removes	 the	values	of	 the	 input	set/array	 from	the
current	set,	returning	a	new	set.	The	removeAll(keepCapacity:)	method	can
be	used	to	remove	all	of	the	elements	of	the	specified	set.
	
Checking	for	Membership	in	Sets
	
The	Set	type	includes	APIs	for	checking	if	a	set	contains	an	element	or	collection
of	 elements	 (i.e.	 the	 elements	 of	 another	 Set	 or	 Array	 instance).	 The
contains(_:)	method	takes	a	single	element	as	an	argument	and	returns	true
if	 the	 set	 contains	 the	 specified	 argument.	 The	 following	 returns	 true	 if	 the
colors	array	contains	the	value	blue:

	
var	containsBlue	=	colors.contains(“blue”)

	
The	isSubsetOf(_:)	method	takes	a	Set	or	Array	 instance	as	an	argument
and	 returns	true	 if	 every	 element	 in	 the	 set	 is	 within	 the	 input	 set/array.	 The
following	 creates	 a	 set	 of	 two	 values	 assigned	 to	 the	 variable	twoColors	 and
then	uses	the	isSubsetOf(_:)	method	to	determine	if	its	values	are	within	the
colors	set:

	
var	twoColors:	Set	=	[“red”,	“blue”]

	
var	isSubset	=	twoColors.isSubsetOf(colors)

	
Conversely,	the	isSupersetOf(_:)	method	takes	a	Set	or	Array	instance	as
an	argument	and	returns	true	 if	 the	set	contains	every	element	within	the	input
set/array.	The	following	code	returns	true	if	the	colors	method	is	a	superset	of
the	twoColors	set:

	
var	isSuperset	=	colors.isSupersetOf(twoColors)

	
Additional	 APIs	 are	 provided	 for	 performing	 set	 operations	 (e.g.	 union,
intersection,	exclusive	or,	etc.).
	

Iterating	Over	a	Set
	
You	can	iterate	over	the	elements	of	a	set	with	a	for-in	loop,	similar	to	an	array.
Now	let’s	demonstrate	our	use	of	sets	with	an	example;	in	your	playground	delete
any	existing	code	then	add	the	following:
	
var	colors	=	Set([“red”,	“green”,	“blue”])

	
colors.insert(“orange”)

	
var	numberOfColors	=	colors.count

	
colors.contains(“blue”)

	
var	twoColors:	Set	=	[“red”,	“blue”]

	
twoColors.isSubsetOf(colors)

	
colors.isSupersetOf(twoColors)

	
var	newColors	=	colors.subtract(twoColors)

	
var	duplicateColors	=	twoColors.union(newColors)

	
for	color	in	duplicateColors	{

	
print(“\(color)”)

	
}

	

	
Figure	5-5.	Swift	Sets
	
The	code	listed	in	Figure	5-5	demonstrates	use	of	various	Set	 type	APIs.	It	 first
creates	a	 set	 of	String	 instances	assigned	 to	 the	 variable	colors.	 The	 code
then	uses	the	String	insert(_:)	method	to	add	a	String	 instance	to	 the	array.
Next	a	new	set	is	created	using	a	Set	initializer	and	the	relationship	between	the
two	 sets	 is	 tested	 using	 the	 isSubsetOf(_:)	 and	 isSuperSetOf(_:)
methods.	 Another	 set	 is	 then	 created	 as	 a	 subset	 of	 the	 original	 via	 the
subtract(_:)	method.	 The	union(_:)	 method	 is	 used	 to	 create	 a	 new	 set
composed	of	all	the	values	of	two	existing	sets.	Finally	a	for-in	loop	is	used	to
iterate	 over	 the	 set.	 You	 should	 experiment	 with	 this	 code	 (e.g.	 adding	 more
colors,	changing	their	values,	etc.)	and	observe	the	output	in	the	sidebar.
	
Dictionaries
	
The	 Swift	Dictionary	 type	 enables	 you	 to	 create	 an	 unordered	 collection	 of
key-value	 pairs.	 The	 dictionary	 keys	 must	 be	 of	 the	 same	 type	 and	 the
corresponding	 values	 must	 be	 of	 a	 single	 type.	 In	 addition	 the	 keys	 must	 be
hashable,	 thereby	 guaranteeing	 that	 each	 key	 appears	 at	 most	 once	 in	 a
dictionary	instance.	Dictionary	elements	are	selected	by	key,	and	each	key	can	be
set	or	 computed	at	 run	 time.	The	syntax	 for	notating	 the	 type	of	a	Dictionary	 is
Dictionary<KeyType,	ValueType>	where	KeyType	 is	 the	type	of	 the	keys
and	ValueType	that	of	the	corresponding	values.	You	can	also	declare	the	type
of	 a	 dictionary	 with	 the	 shorthand	 notation	 [KeyType:	 ValueType].	 The
following	 example	 declares	 a	 dictionary	 of	 String:Integer	 instances	 and

assigns	the	dictionary	to	a	variable	named	rgb:

	
var	rgb:	Dictionary<String,	Int>

	
With	shorthand	notation	the	declaration	changes	to:
	
var	rgb:	[String,	Int]

	
The	Dictionary	 type	 includes	several	mechanisms	for	creating	and	accessing
dictionaries,	and	also	a	variety	of	methods	for	manipulating	dictionary	 instances.
You’ll	learn	about	these	next.
	
Creating	Dictionaries
	
Swift	 initializer	 syntax	 can	 be	 used	 to	 create	 and	 initialize	 new	 Dictionary
instances.	 Swift	 also	 provides	 literal	 notation	 for	 dictionary	 creation	 and
assignment.
	
Swift	 provides	 several	 array	 initializers	 that	 enable	 you	 to	 create	 an	 array	 with
zero	or	more	values.	The	syntax	for	creating	an	empty	dictionary	using	initializer
syntax	is:
	
[KeyType:	ValueType]()

	
The	following	example	creates	an	empty	dictionary	that	holds	RGB	codes	of	color
names	and	assigns	it	to	a	variable	named	rgb:

	
var	rgb	=	[String:	Int]()

	
If	 the	 type	of	a	Dictionary	 is	already	known,	you	can	create	an	empty	dictionary
with	 the	empty	dictionary	 literal,	written	as	[:].	The	following	code	modifies	 the
previous	example	to	create	the	empty	rgb	Dictionary	instance:

	
var	rgb:	[String:	Int]	=	[:]

	
Swift	 literal	 notation	can	also	be	used	 for	 creating	Dictionary	 instances.	You
code	a	dictionary	 literal	as	a	 list	of	key:value	pairs,	separated	by	commas,	all
surrounded	 by	 a	 pair	 of	 square	 brackets.	 The	 following	 example	 declares	 an
dictionary	literal	of	String:Int	values	assigned	to	the	variable	named	rgb:

	
var	rgb	=	[“red”:0xFF0000,	“blue”:0x0000FF]

	
The	Dictionary	read-only	count	property	can	be	used	to	check	the	number	of
items	 in	 a	 dictionary;	 the	 Boolean	 isEmpty	 property	 can	 be	 used	 to	 check
whether	there	are	any	items	in	a	dictionary.
	
Accessing	and	Modifying	Dictionaries	Elements
	
The	Dictionary	 type	 includes	 subscript	 syntax	 for	 accessing	 or	modifying	 its
elements.	You	can	retrieve	a	value	from	a	dictionary	instance	by	supplying	the	key
of	 the	 value	 within	 square	 brackets	 immediately	 after	 the	 instance	 name.	 This
returns	 an	 optional	 with	 an	 underlying	 type	 of	 the	 dictionary’s	 value;	 if	 the
dictionary	does	not	contain	a	value	for	the	corresponding	key	it	returns	nil.	The
following	 code	 access	 the	 value	 associated	 with	 the	 key	 “red”	 of	 the	 rgb
dictionary	instance	and	assigns	it	to	the	variable	redCode:

	
var	redCode	=	rgb[“red”]

	
You	can	also	use	subscript	syntax	to	add	a	new	dictionary	element	or	modify	an
existing	 element’s	 value.	 The	 following	 example	 adds	 a	 new	 item	 to	 the	 rgb
dictionary:
	
rgb[“green”]	=	0x00FF00

	
Subscript	 syntax	 can	 also	 be	 used	 to	 remove	 an	 item	 from	 a	 dictionary	 by
assigning	a	value	of	nil	for	that	key.

	
As	 an	 alternative	 to	 subscript	 syntax,	 the	 Dictionary	 type	 includes	 an	 API,
updateValue(_:forKey:),	 that	can	be	used	 to	set	or	update	 the	value	 for	a
specific	key.	The	method	returns	an	optional	value	of	the	dictionary’s	value	type;	if
no	 value	 existed	 prior	 to	 the	 update	 it	 returns	nil,	 otherwise	 it	 returns	 the	 old
value.	The	following	example	uses	this	API	to	add	an	item	to	the	rgb	dictionary:

	
var	oldValue	=	rgb.updateValue(0x00FF00,	forKey:“green”)

	
The	removeAll(keepCapacity:)	method	can	be	used	to	remove	all	the	items
from	a	dictionary.
	
Iterating	Over	a	Dictionary

	
You	can	iterate	over	the	elements	of	a	dictionary	with	a	for-in	loop.	Each	item
in	the	dictionary	is	returned	as	a	(key,	value)	tuple;	 in	the	next	chapter	you’ll
learn	about	tuples.	The	following	code	prints	each	color	and	corresponding	value
of	the	rgb	dictionary:

	
for	(color,	value)	in	rgb	{

	
print(“\(color)	value	is	\(value)”)

	
}

	
The	 Dictionary	 type	 also	 includes	 two	 properties	 for	 iterating	 over	 a
dictionary’s	keys	and	values.	The	read-only	keys	property	returns	a	collection	of
all	 the	 dictionary’s	 keys.	 The	 values	 property	 returns	 a	 collection	 of	 all	 the
dictionary’s	 values.	 The	 elements	 from	 each	 of	 these	 collections	 are	 typically
accessed	using	a	for-in	loop.

	
Now	let’s	demonstrate	our	use	of	dictionaries	with	an	example;	in	your	playground
delete	any	existing	code	then	add	the	following:
	
var	rgb	=	[“red”:0xFF0000,	“green”:0x00FF00]

	
rgb[“blue”]	=	0x0000FF

	
var	oldValue	=	rgb.updateValue(0xFFFF00,	forKey:“yellow”)

	
for	(color,	value)	in	rgb	{

	
print(“\(color)	value	is	\(value)”)

	
}

	
let	colors	=	rgb.keys

	
for	color	in	colors	{

	
print(color)

	
}

	

	
Figure	5-6.	Swift	Dictionaries
	
The	 code	 shown	 above	 and	 in	 Figure	 5-6	 demonstrates	 use	 of	 various
Dictionary	type	APIs.	It	first	creates	a	dictionary	of	String:Int	items	using	a
dictionary	 literal	and	assign	 this	 to	 the	variable	rgb.	 It	 then	uses	subscripting	 to
add	 an	 RGB	 code	 for	 the	 color	 blue.	 Next	 it	 uses	 the
updateValue(_:forKey:)	method	to	add	an	RGB	code	for	the	color	yellow.
A	for-in	 loop	 is	used	 to	 iterate	over	 the	rgb	 dictionary,	printing	 the	color	and
corresponding	RGB	code.	Finally	a	collection	of	all	the	keys	of	the	rgb	dictionary
is	retrieved	using	the	keys	property	and	then	printed	using	a	for-in	 loop.	You
should	 experiment	 with	 this	 code	 (e.g.	 adding	 more	 color:value	 pairs,
changing	colors/values,	etc.)	and	observe	the	output	in	the	sidebar.
	

Functions

	
The	Swift	Standard	Library	defines	numerous	built-in	functions	that	you	can	use	to
perform	common	programming	tasks.	In	this	paragraph	you’ll	learn	about	several
of	 commonly	 used	 Standard	 Library	 functions.	 You	 should	 refer	 to	 the	 Swift
Standard	 Library	 Reference	 for	 additional	 documentation	 on	 the	 built-in
functions.
	
Printing
	
The	print(_:)	function	writes	the	argument	to	the	standard	output,	appending	a
trailing	newline.	The	syntax	of	the	function	is:
	
print(_	arg:	T)

	
The	 argument	 to	 this	 function	 is	 of	 type	 T,	 and	 must	 conform	 to	 either	 the
Streamable,	 CustomStringConvertible,	 or
CustomDebugStreamConvertible	 protocol.	 Types	 that	 conform	 to	 these
protocols	must	have	a	textual	representation.	The	Standard	Library	has	numerous
types	(e.g.	String,	Int,	Float,	etc.)	that	conform	to	these	protocols.

	
The	print(_:appendNewLine:)	 function	writes	the	argument	to	the	standard
output	and	appends	a	trailing	newline	if	the	appendNewLine	argument	is	true.
The	syntax	of	the	function	is:
	
print(_	arg:	T,	appendNewLine:	Bool)

	
The	 following	example	 creates	a	String	 literal	 and	 then	prints	 it	 to	 the	 standard
output:
	
var	greeting	=	“Hello,	World!”

	
print(greeting)

	
Algorithms
	
The	sort(_:)	function	performs	an	in-place	sort	of	its	argument,	a	Swift	Array
instance.	The	syntax	for	the	sort(_:)	function	is:

	

sort(arg:	Array<T>)

	
The	type	of	the	Array	elements	must	conform	to	the	Swift	Comparable	protocol;
this	means	that	it	must	be	possible	to	compare	the	values	of	the	Array	elements
using	 the	 Swift	<,	>,	<=,	 and	>=	 operators.	 Now	 earlier	 you	 learned	 that	 Swift
arrays	are	passed	by	value,	meaning	a	copy	of	the	Array	instance	is	passed	to
functions	 but	 the	 original	 instance	 is	 unchanged.	 As	 the	 sort(_:)	 function
performs	an	in-place	sort	of	 its	(array)	argument,	a	reference	 (i.e.	pointer)	 to	 the
function	must	be	passed.	This	is	accomplished	by	using	a	Swift	in-out	parameter
(specified	 in	a	parameter	definition	with	 the	inout	keyword);	 this	 is	 indicated	 in
the	function	argument	by	placing	an	ampersand	(&)	immediately	prior	to	the	array
instance.	The	following	example	creates	an	Array	instance	named	testScores
and	then	sorts	its	elements	using	this	function:
	
var	testScores	=	[75,	90,	78,	95,	85]

	
sort(&testScores)

	
The	sorted(_:)	function	performs	a	sort	of	the	input	argument,	a	Swift	Array
instance,	 and	 returns	 a	 new	 sorted	 array,	 leaving	 the	 input	 unmodified.	 As	 this
method	does	not	modify	the	argument	of	the	sort(_:)	 function,	the	instance	is
supplied	directly	(i.e.	the	inout	operator	is	not	required).	The	following	example
creates	an	Array	 instance	and	then	returns	a	sorted	instance	in	a	new	variable
named	sortedScores:

	
var	testScores	=	[75,	90,	78,	95,	85]

	
var	sortedScores	=	sorted(testScores)

	
The	find(_:)	function	returns	the	first	index	where	over	the	domain	 (argument
1)	the	input	value	(argument	2)	is	found,	or	returns	nil	if	the	value	is	not	found.
The	syntax	for	the	function	is:
	
var	index:	Int?	=	find(domain:	C,	value:	Element)

	
The	domain	argument	is	of	type	C,	meaning	that	this	argument	must	conform	to
the	Swift	CollectionType	protocol.	Corresponding	types	 include	the	Standard
Library	collection	types,	the	String	type,	and	ranges	created	with	the	Swift	range
operators.	 The	 value	 argument	 must	 conform	 to	 the	 Equatable	 protocol,
meaning	that	instances	of	this	type	can	be	compared	for	value	equality	using	the
operators	==	and	!=.	The	following	example	returns	the	first	index	of	a	test	score

whose	value	is	95:
	
var	gradeA	=	find(domain:	[75,	90,	78,	95,	85],	value:	95)

	
The	abs(_:)	function	returns	the	absolute	value	of	the	input	numeric	argument.
The	following	example	returns	the	absolute	value	of	its	input	argument:
	
var	absProduct	=	abs(-4.2	*	17.6)

	
General
	
The	 assert(_:_:file:line:)	 function	 performs	 an	 assertion,	 constructs
commonly	placed	in	your	code	to	check	the	existence	of	a	condition.	The	syntax
for	the	assert(_:_:file:line:)	function	is:

	
assert(_	 condition:	 Bool,	 _	 message:	 String,	 file	 file:
StaticString	=	default,	line	line:	UWord	=	default)

	
The	 condition	 argument	 is	 an	 expression	 that	 evaluates	 to	 a	 Boolean.	 If	 the
condition	 evaluates	 to	 true	 your	 code	 continues	 executing	 as	 usual,	 but	 if	 it
evaluates	to	false	the	optional	message	is	displayed,	code	execution	ends,	and
your	app	is	terminated.
	

Protocols

	
The	Swift	Standard	Library	defines	an	extensive	collection	of	protocols	 that	you
can	 use	 to	 perform	 common	 programming	 tasks.	 Briefly,	 a	 protocol	 defines	 a
specification	in	the	form	of	methods,	properties,	and	other	requirements	that	can
be	implemented	by	conforming	types.	In	the	Protocols	section	of	Chapter	9	you’ll
learn	 what	 protocols	 are	 and	 how	 to	 create	 and	 use	 them.	 A	 few	 of	 the	 most
commonly	used	Standard	Library	protocols	are	introduced	below.	You	should	refer
to	 the	 Swift	 Standard	 Library	 Reference	 for	 documentation	 on	 the	 Standard
Library	protocols	and	how	to	use	them.
	
The	CustomStringConvertible	protocol	specifies	requirements	for	a	type	that
provides	 a	 customized	 textual	 representation.	 This	 is	 commonly	 used	 to	 write
custom	 values	 of	 conforming	 types	 to	 an	 output	 stream,	 using	 the	 Standard
Library	print(_:)	 function	or	some	other	mechanism.	The	protocol	declares	a
single	read-only	instance	property	named	description	of	type	String.

	
The	Equatable	protocol	specifies	requirements	for	conforming	types	that	can	be
compared	 to	 one	another	 for	 value	equality.	 The	protocol	 declares	 functions	 for
the	operators	==	and	!=.

	
The	Hashable	protocol	specifies	requirements	 for	a	 type	that	can	be	converted
to	a	hash	value	for	use	as	a	Dictionary	key.	The	protocol	declares	a	single	read-
only	instance	property	named	hashValue	of	type	Int.

	
The	Comparable	protocol	specifies	requirements	for	types	that	can	be	compared
using	 the	 Swift	 relational	 operators.	 The	 protocol	 declares	 functions	 for	 the
operators	<,	<=,	>,	and	>=.

	
The	BooleanType	 protocol	 specifies	 requirements	 for	 a	 type	 that	 represents	a
Boolean	value.	The	protocol	declares	a	single	read-only	instance	property	named
boolValue.

	
The	GeneratorType	protocol	specifies	requirements	for	a	type	that	can	be	used
for	iteration	over	a	Swift	sequence,	where	a	sequence	can	be	a	range	of	numbers
defined	 using	 a	 Swift	 range	 operator,	 a	 Swift	 collection	 type	 instance,	 or	 the
characters	of	a	Swift	string.	The	protocol	declares	the	associated	type	Element
(defined	as	 the	 type	of	 the	elements	of	 the	sequence)	and	 the	 instance	method
next()	that	returns	the	next	element	in	the	sequence	(or	nil	if	no	next	element
exists).

	

	

	

	

	

TUPLES

	
In	mathematics,	a	tuple	is	an	ordered	list	of	0	or	more	elements,	which	is	usually
written	by	listing	the	elements	within	parentheses	with	each	element	separated	by
a	 comma.	 They	 are	 commonly	 used	 to	 describe	mathematical	 objects	 such	 as
complex	 numbers,	 vectors,	 etc.	 In	 computer	 science,	 tuples	 provide	 a	 similar
abstraction,	 i.e.	 they	 are	 used	 to	 represent	 a	 grouping	 of	 elements	 as	 a	 single
compound	type.
	
Swift	 provides	 a	 tuple	 type	 similar	 to	 the	 mathematical	 concept.	 The	 elements
within	 a	 tuple	 can	 be	 of	 any	 type,	 including	 other	 tuples.	 In	 Swift	 tuples	 are
commonly	used	 to	 create	and	pass	around	 temporary	groups	of	 related	values.
They	 are	 often	 used	 to	 provide	 return	 values	 for	 functions;	 this	 enables	 you	 to
code	functions	that	return	more	information	(i.e.	values)	without	having	to	wrap	all
of	this	information	in	a	single	named	type.
	

Creating	Tuples

	
A	Swift	tuple	is	notated	as	an	unnamed,	ordered,	comma-separated	list	of	zero	or
more	values	enclosed	within	parentheses.	The	elements	of	a	tuple	can	be	of	any
type,	including	other	tuples.	The	following	code	creates	a	two-element	tuple	that	is
assigned	to	a	variable	named	rgbColor:

	
var	rgbColor	=	(“red”,	0xFF0000)

	
You	can	also	name	the	individual	elements	of	a	tuple	when	defined	by	preceding
the	value	of	each	element	with	an	identifier.	The	following	creates	the	rgbColor
tuple	and	also	names	its	individual	elements:
	
var	rgbColor	=	(color:	“red”,	value:	0xFF0000)

	
You	 can	 access	 a	 tuple’s	 individual	 elements	 using	 its	 element	 names	 (if
provided)	 or	 by	 using	 index	 numbers	 starting	 at	 zero.	 The	 following	 example
demonstrates	 the	 two	 methods	 of	 accessing	 the	 first	 element	 of	 the	 tuple
rgbColor:

	
var	color	=	rgbColor.0

	
var	color	=	rgbColor.color

	
You	can	also	assign	values	 to	 the	elements	of	a	 tuple	using	element	names	or
index	 numbers.	 Now	 let’s	 demonstrate	 creation	 and	 use	 of	 tuples	 with	 an
example;	in	your	playground	delete	any	existing	code	then	add	the	following:
	
var	rgbColor	=	(color:“red”,	code:0xFF0000)

	
print(“The	rgb	color	is	\(rgbColor.color)”)

	
print(“The	rgb	code	is	\(rgbColor.code)”)

	
rgbColor.color	=	“blue”

	
rgbColor.code	=	0x0000FF

	
print(“The	 rgb	 code	 for	 \(rgbColor.color)	 is	 \
(rgbColor.code)”)

	

	
Figure	6-1.	Creating	Tuples
	
This	code	demonstrates	creation	and	use	of	 tuples.	As	depicted	 in	Figure	6-1	 it
first	 creates	 a	 tuple	 of	 type	 (String,	 Int)	 and	 assigns	 it	 to	 the	 variable
rgbColor.	 Next	 it	 prints	 out	 the	 individual	 values	 of	 the	 tuple.	 Finally	 it	 sets
values	 for	each	of	 the	 tuple’s	elements	and	prints	out	 these	values.	You	should
experiment	 with	 this	 code	 (e.g.	 changing	 colors/codes,	 etc.)	 and	 observe	 the
output	in	the	sidebar.
	

Tuples	with	Switch	Statements

	
Tuples	can	be	used	with	switch	statements	to	test	multiple	values	within	one	or
more	switch	cases.	Each	element	of	a	tuple	can	be	tested,	and	you	can	use	the
underscore	symbol	(_)	to	indicate	a	discarded	value	(i.e.,	a	value	in	the	tuple	that
is	not	tested).	Let’s	demonstrate	this	with	an	example;	 in	your	playground	delete
any	existing	code	and	add	the	following:
	
var	testScore	=	(“A”,	93)

	
switch	(testScore)	{

	
case	(“A”,	_):

	
print(“Your	GPA	is	4.0”)

	
case	(“B”,	_):

	
print(“Your	GPA	is	3.0”)

	
case	(“C”,	_):

	
print(“Your	GPA	is	2.0”)

	
case	(“D”,	_):

	
print(“Your	GPA	is	1.0”)

	
case	(“F”,	_):

	
print(“Your	GPA	is	0.0”)

	
default:

	
print(“Invalid	letter	grade”)

	
}

	

	
Figure	6-2.	Using	Tuples	with	Switch	Statements
	
The	 following	 code	 demonstrates	 how	 a	 tuple	 can	 be	 used	 with	 a	 switch
statement	to	test	grades	and	print	out	a	Grade	Point	Average	(GPA).	Referring	to
Figure	 6-2	 it	 creates	 a	 two-element	 tuple	 assigned	 to	 the	 variable	testScore,
and	 then	 uses	 a	 switch	 statement	 to	 test	 the	 letter	 grade	 for	 each	 score,
returning	 a	 corresponding	 GPA.	 Note	 that	 the	 underscore	 symbol	 is	 used	 to
discard	 the	 percentage	 grade	 and	 only	 test	 the	 letter	 grade	 for	 computing	 the
GPA.	You	should	experiment	with	this	code,	providing	different	 letter	grades	and
test	scores,	and	observe	the	output	in	the	sidebar.
	
You	can	also	use	value	binding	for	switch	cases,	thereby	enabling	you	to	set	a
value	 for	 a	 variable.	 You	 bind	 a	 value	 to	 a	 constant	 using	 the	 let	 keyword;
whereas	 you	 bind	 a	 value	 to	 a	 variable	 using	 the	 var	 keyword.	 Earlier	 in	 the
chapter	on	Optionals	you	learned	how	to	bind	a	value	to	a	constant/variable	within
an	if	statement.	Value	binding	is	also	commonly	used	with	tuples	to	set	the	value
of	one	or	more	of	the	elements	in	a	switch	case.	The	syntax	for	value	binding	of
a	tuple	element	within	a	switch	case	is:
	
var	switchVar	=	(value1,	value2)

	
switch	(switchVar)	{

	
case	(value1,	let	varName):

	
//	Case	logic

	
}

	
As	 shown	 above,	 a	 two-element	 tuple	 is	 created	 and	 assigned	 to	 the	 variable
switchVar.	A	switch	statement	then	tests	the	variable;	if	the	first	element	of	the
case	 tuple	 matches	 the	 first	 element	 of	 switchVar	 it	 binds	 the	 constant
varName	 to	the	second	element	of	 the	tuple	(value2),	which	can	then	be	used
within	 the	body	of	 the	corresponding	case.	Now	 let’s	demonstrate	value	binding
with	 switch	 cases;	 in	 your	 playground	 delete	 any	 existing	 code	 and	 add	 the
following:
	
var	grade	=	(95,	“Excellent	work”)

	
switch	(grade)	{

	
case	(90…99,	let	comment):

	
print(“You	earned	an	A,	\(comment)”)

	
case	(80…89,	let	comment):

	
print(“You	earned	a	B,	\(comment)”)

	
//	Code	for	additional	cases	(see	Figure	6-3)

	
}

	

	
Figure	6-3.	Value	Binding	of	Tuples	with	Switch	Statements
	
The	 code	 of	 Figure	 6-3	 demonstrates	 value	 binding	 of	 tuples	 with	 switch
statements.	 It	 first	creates	a	 tuple	of	 type	(Int,	String)	and	assigns	 it	 to	 the
variable	grade.	Next	a	switch	statement	tests	grade;	 in	each	case	 it	binds	the
second	element	of	the	case	tuple	(the	constant	comment)	to	the	second	element
of	grade.	 If	 the	case	matches	(i.e.	 the	first	element	of	grade	matches	the	first
element	of	 the	case	 tuple)	 it	 prints	 out	 the	 letter	 grade	 along	with	 the	 value	 of
comment.	You	should	experiment	with	this	code	(e.g.	changing	the	score	and	the
corresponding	comment)	and	observe	the	output	in	the	sidebar.
	

	

	

	

	

FUNCTIONS

	
Most	 programming	 languages	 support	 the	 concept	 of	 functions,	 self-contained
modules	 of	 code	 that	 perform	 specific	 tasks.	 Functions	 enable	 you	 to	 break	 a
program	down	into	small,	well-defined	units	of	code.	They	can	be	executed	one	or
many	 times	 within	 a	 program,	 be	 executed	 at	 any	 time	 and	 from	 within	 many
places	in	a	program	(including	from	other	functions),	and	can	take	values	for	input
and	 return	 a	 value(s)	 as	 a	 result	 of	 execution.	 Let’s	 say,	 for	 example,	 that	 you
need	 to	 perform	 a	 certain	 set	 of	 operations	 multiple	 times	 within	 a	 program.
Instead	of	writing	these	instructions	multiple	times	within	the	program,	you	write	a
function	containing	them	and	execute	 it	each	time	the	set	of	operations	must	be
performed.
	
Swift	functions	are	first-class	types;	what	this	means	is	that	they	may	be	assigned
to	variables,	passed	as	arguments	and	returned	as	values	to/from	other	functions,
and	 included	 in	other	 types.	Every	Swift	 function	has	a	name,	which	 is	provided
when	defining	a	 function	and	also	used	 to	call	 (i.e.	execute)	 it.	 In	addition,	Swift
functions	 are	 reference	 types,	 meaning	 that	 a	 reference	 (i.e.	 a	 pointer)	 to	 a
function	is	passed	during	assignment	or	when	provided	as	a	function	argument	or
return	value.
	

Definition

	
You	 describe	 a	 function	 with	 a	 function	 definition,	 a	 program	 fragment	 that
includes	 all	 the	 code	 necessary	 to	 perform	 a	 described	 task.	 The	 definition
specifies	 the	 function	 name,	 its	 input	 values	 (i.e.	parameters),	 the	 type	 of	 each
value	 returned	 as	 the	 result	 of	 function	 execution,	 and	 of	 course	 its	 executable
code.	The	syntax	for	defining	a	function	is:
	
Listing	7-1.	Function	Definition
	
func	name(parameters)	->	returnType	{

	
//	Function	body

	
}

	
A	function	definition	is	written	with	the	func	keyword	followed	by	its	name;	zero	or
more	 function	 parameters	 enclosed	 in	 parentheses,	 the	 (optional)	 return	 type,
then	 the	 code	 enclosed	 within	 curly	 braces.	 If	 a	 return	 type	 is	 provided	 it	 is
separated	 from	 the	 parentheses	 enclosed	 parameters	 by	 the	 return	 arrow	 (->)
symbol.	 The	 following	 code	 defines	 a	 function	 named	 hello	 with	 zero
parameters	that	returns	a	value	of	type	String:

	
func	hello()	->	String	{

	
return	“Hello,	world!”

	
}

	
You	 invoke	 a	 function	 by	 providing	 its	 name	 followed	 by	 its	 arguments	 in
parentheses.	The	order	of	arguments	 in	a	 function	call	must	match	 the	order	of
arguments	in	the	function	declaration.	Each	argument	is	separated	by	a	comma,	if
there	 are	 no	 arguments	 then	 the	 parentheses	 is	 empty.	 The	 following	 example
invokes	the	hello()	 function	you	defined	above	and	assigns	 its	returned	value
to	the	variable	greeting:

	
var	greeting	=	hello()

	
Let’s	 demonstrate	 defining	 and	 calling	 a	 function	 with	 an	 example.	 In	 your
playground	delete	any	existing	code	and	add	the	following:

	
func	hello(name:	String)	->	String	{

	
return	“Hello,	\(name)!”

	
}

	
var	greeting	=	hello(“World”)

	

	
Figure	7-1.	Defining	and	Calling	Functions
	
The	code	of	Figure	7-1	demonstrates	creating	and	using	Swift	functions.	It	defines
a	function	named	hello	with	a	single	parameter	named	name	of	 type	String.
The	 function	 code	 uses	 String	 interpolation	 to	 insert	 the	 value	 of	 the	 input
parameter	in	the	returned	String	literal.	Next	the	function	is	invoked	with	the	input
value	(World),	and	 the	 result	 is	assigned	 to	 the	variable	greeting.	You	should
experiment	with	this	code	(e.g.	changing	the	input	value)	and	observe	the	output
in	the	sidebar.
	

Function	Parameters

	
A	 function	 can	have	multiple	parameters,	 and	each	parameter	 can	have	both	a
local	and	an	external	name.	Local	parameter	names	are	specified	when	defining	a
function,	 and	 assign	 the	 values	 provided	 when	 the	 function	 is	 invoked	 to	 the
named	parameters	used	within	the	body	of	the	function	implementation.	External
parameter	 names,	 on	 the	 other	 hand,	 are	 used	 to	 name	 arguments	 when	 a
function	is	called.	External	parameter	names	are	especially	useful	when	a	function
has	multiple	parameters	to	clarify	which	value	is	applied	to	which	parameter.	The
syntax	for	each	parameter	in	a	function	definition	is	thus:
	
Listing	7-2.	Function	Parameters	Definition
	
func	functionName(extName	localName:	parmType,	…)	{

	
//	Function	body

	
}

	
As	shown	above,	each	parameter	 is	specified	with	 its	external	name	 (extName)
and	 its	 local	 name	 (localName)	 followed	 by	 a	 colon	 and	 the	 parameter’s
corresponding	type	(parmType).	The	following	example	defines	a	function	named
sum	that	has	two	parameters	of	type	Int	and	returns	an	Int	result:

	
func	sum(a1	addend1:	Int,	a2	addend2:	Int)	->	Int	{

	
return	addend1	+	addend2

	
}

	
Notice	that	the	local	parameter	names	(addend1,	addend2)	are	used	within	the
body	of	the	function	implementation	and	the	external	names	(a1,	a2)	are	used	to
name	arguments	when	the	function	is	invoked.	You	can	call	the	function	by	typing
in	its	name	followed	by	its	arguments	(i.e.	values)	in	parentheses,	with	each	value
prefaced	by	its	external	parameter	name,	as	follows:
	
sum(a1:	5,	a2:	8)

	
An	 explicit	 local	 parameter	 name	 must	 be	 specified	 for	 each	 parameter	 in	 a
function	definition.	If	you	don’t	want	to	specify	an	external	name	for	one	or	more
parameters	 you	 can	 write	 an	 underscore	 (instead	 of	 an	 external	 name)	 for	 the

corresponding	 parameter(s)	 in	 the	 function	 definition.	 The	 following	 example
redefines	the	function	named	sum	with	no	external	parameter	names:

	
func	sum(_	addend1:	Int,	_	addend2:	Int)	->	Int	{

	
return	addend1	+	addend2

	
}

	
You	 can	 then	 call	 this	 version	 of	 the	sum	 function	 (with	 no	 external	 parameter
names)	as	follows:
	
sum(5,	8)

	
Function	Parameter	Naming	Conventions
	
With	Swift	 functions,	by	default	 the	 first	parameter	omits	 its	external	name,	and
the	 second	 and	 subsequent	 parameters	 use	 their	 local	 name	 as	 their	 external
name.	Given	the	above	defaults	the	sum(_:addend2:)	function	can	be	defined
as	follows:
	
func	sum(addend1:	Int,	addend2:	Int)	->	Int	{

	
return	addend1	+	addend2

	
}

	
You	would	then	invoke	the	function	as	follows:
	
sum(5,	addend2:	8)

	
Notice	 that	due	 to	 the	default	parameter-naming	conventions,	when	you	call	 the
function	defined	above	its	first	parameter	has	no	external	name	while	 its	second
parameter	does.
	
Function	Signature
	
A	function	signature	lists	a	function	name	followed	(in	parentheses)	by	the	names
of	each	of	 its	 external	 parameters,	 each	of	which	 is	 delimited	with	a	 colon.	 If	 a
parameter	does	not	have	an	external	name	then	an	underscore	(_:)	 is	shown	in

its	 place.	 The	 above	 function	 named	 sum	 is	 thus	 described	 with	 the	 function
signature	sum(_:addend2:).

	
Function	 signatures	 are	 useful	 for	 completing	 describing	 the	 components	 of	 a
function	 call	 (its	 name	 and	 the	 names	 of	 its	 external	 parameters,	 in	 the	 proper
order).
	
Default	Parameter	Values
	
You	can	define	a	default	value	for	one	or	more	function	parameters.	The	value	is
specified	 in	 the	 function	 definition	 immediately	 after	 its	 type;	 the	 syntax	 for
defining	a	default	value	is:
	
Listing	7-3.	Function	Default	Parameter	Values	Definition
	
func	functionName(lName:	pType	=	defaultValue)	{

	
//	Function	body

	
}

	
When	you	supply	a	default	value	for	a	parameter	as	part	of	a	function	definition,
Swift	 automatically	 provides	 an	 external	 name	 for	 it.	 To	 call	 this	 function	 you
supply	 the	 parameter	 name	with	 a	 corresponding	 value,	 or	 omit	 the	 parameter
entirely	 to	 use	 the	 default	 value.	 As	 an	 example	 you	 can	 redefine	 the	 above
sum(_:addend2:)	 function	with	a	default	value	for	 the	addend2	parameter	as
follows:
	
func	sum(addend1:	Int,	addend2:	Int	=	1)	->	Int	{

	
return	addend1	+	addend2

	
}

	
Hence	 if	no	value	 is	provided	for	 the	second	parameter,	 the	function	returns	 the
value	 of	 the	 first	 parameter	 incremented	 by	 1.	 Hence	with	 a	 default	 parameter
value	for	the	sum(_:addend2:)	 function	the	following	statement	stores	a	value
of	8	in	the	variable	result:

	
var	result	=	sum(7)

	
Variadic	Parameters
	
Swift	functions	support	variadic	parameters;	 in	other	words	a	function	parameter
that	 consists	 of	 zero	 or	 more	 values	 of	 a	 specific	 type.	 You	 write	 a	 variadic
parameter	in	the	function	definition	by	appending	three	period	characters	(…)	after
the	 parameter’s	 type	 name.	 The	 values	 for	 a	 variadic	 parameter	 are	 made
available	as	an	array	of	 the	specified	 type	 in	 the	 function	body.	Also	note	 that	a
function	can	have	at	most	one	variadic	parameter,	and	it	must	always	be	defined
as	 the	 last	 parameter	 in	 the	 list	 of	 parameters	 for	 the	 function	 definition.	 The
following	 example	 modifies	 the	 sum	 function	 to	 support	 adding	 zero	 or	 more
values:
	
func	sumAll(addends:	Int…)	->	Int	{

	
int	sum	=	0

	
for	addend	in	addends	{

	
sum	+=	addend

	
}

	
return	sum

	
}

	
You	call	a	function	with	variadic	parameters	by	providing	the	values	as	a	comma-
separated	list,	as	shown	here:
	
var	sum	=	sumAll(1,	2,	3,	5,	8)

	
Function	parameters	are	by	default	constants;	 if	 you	want	 to	be	able	 to	change
the	 value	 of	 a	 function	 parameter	 within	 the	 body	 of	 a	 function	 you	 prefix	 the
parameter	name	with	the	var	keyword.

	
Function	parameters	by	default	are	local	and	thus	can	only	be	changed	within	the
function	itself.	In	Chapter	5	you	learned	about	the	inout	keyword;	this	is	placed
on	a	parameter	within	a	function	definition	to	enable	its	value	to	be	changed	within
the	 function	 body	 and	 for	 those	 changes	 to	 persist	 after	 the	 function	 has	 been
executed.	An	ampersand	(&)	 is	placed	directly	before	 the	value	when	you	call	a

function	that	has	an	in-out	parameter.
	
Now	let’s	demonstrate	all	of	these	concepts	with	an	example.	In	your	playground
delete	any	existing	code	and	add	the	following:
	
func	sum(addend1:	Int,	addend2:	Int)	->	Int	{

	
return	addend1	+	addend2

	
}

	
var	result	=	sum(5,	addend2:	4)

	
result	=	sum(5)

	

	
Figure	7-2.	Handling	Function	Parameters
	
The	code	shown	 in	Figure	7-2	demonstrates	use	of	parameters	 for	defining	and
calling	 functions.	 It	 defines	a	 function	named	sum	with	 two	parameters;	 the	 first
has	a	parameter	named	addend1	and	the	second	 is	named	addend2.	The	first
parameter	has	a	local	name,	while	the	second	has	a	default	value.	Now	you	call
the	 function,	 the	 first	 invocation	 provides	 values	 for	 both	 parameters	 and	 the
second	only	provides	a	value	 for	 the	 first	parameter,	 thus	 the	second	parameter
uses	 the	default	value.	You	should	experiment	with	 this	code	(e.g.	changing	 the
input	values)	and	observe	the	output	in	the	sidebar.

	

Function	Types

	
At	 the	beginning	of	 this	chapter	you	 learned	 that	a	Swift	 function	 is	a	 first-class
type.	 Syntactically	 a	 function	 type	 is	 specified	 as	 its	 parameter	 types	 (in
parentheses),	 followed	 by	 the	 return	 keyword	 (->),	 and	 then	 the	 corresponding
return	type.	For	the	sum(_:addend2:)	function	defined	previously	as:

	
func	sum(addend1:	Int,	addend2:	Int)	->	Int	{

	
return	addend1	+	addend2

	
}

	
Its	 type	 is	 (Int,	 Int)	 ->	 Int.	 In	 other	 words,	 sum(_:addend2:)	 is	 a
function	type	that	takes	two	parameters	of	Int	type	and	returns	an	Int.	Because
functions	have	all	the	properties	of	other	Swift	types	you	have	learned	about,	they
can	be	assigned	as	variables,	used	as	a	return	type	of	another	function,	or	used
as	a	parameter	for	another	function.	An	important	benefit	of	using	a	function	type
as	the	parameter	 to	a	function	 is	 that	 it	 improves	modularization	of	your	code.	 It
accomplishes	 this	 by	 enabling	 you	 to	 dynamically	 modify	 the	 behavior	 of	 a
function	via	a	function	type	passed	as	an	input	parameter.	The	following	example
defines	a	function	that	uses	a	function	type	as	a	parameter:
	
func	 calculate(operation:	 ([Int])	 ->	 Int,	 values:	 Int…)	 ->
Int	{

	
return	operation(values)

	
}

	
The	calculate(_:values:)	function	has	two	parameters	and	returns	a	value
of	 type	Int.	 The	 two	 parameters	 are	 a	 function	 type	 named	 operation	 that
takes	 an	 array	 of	 Ints	 and	 returns	 an	 Int,	 and	 a	 variadic	 parameter	 named
values	 of	 type	 Int.	 The	 body	 of	 the	 calculate(_:values:)	 function
executes	 the	 function	named	operation	 (passed	as	an	argument)	and	 returns
its	result.
	
Thus	you	pass	a	function	to	calculate(_:values:),	and	that	function	is	used
in	 the	 body	 of	 calculate(_:values:)	 to	 perform	 its	 processing.	 As	 the
function	type	is	an	input	parameter,	it	can	be	chosen	at	run-time,	thereby	enabling
you	to	dynamically	change	the	function’s	overall	behavior.

	
Now	 let’s	 demonstrate	 the	 use	 of	 function	 types	 with	 an	 example.	 In	 your
playground	delete	any	existing	code	and	add	the	following:
	
func	 calculate(operation:	 ([Int])	 ->	 Int,	 values:	 Int…)	 ->
Int	{

	
return	operation(values)

	
}

	
func	add(addends:	[Int])	->	Int	{

	
var	sum	=	0

	
for	addend	in	addends	{

	
sum	+=	addend

	
}

	
return	sum

	
}

	
func	multiply(multiplicands:	[Int])	->	Int	{

	
var	product	=	1

	
for	multiplicand	in	multiplicands	{

	
product	*=	multiplicand

	
}

	
return	product

	
}

	
//	Now	invoke	calculate	function

	
calculate(add,	values:	1,	2,	3,	5,	8)

	
calculate(multiply,	values:	1,	2,	3,	5,	8)

	

	
Figure	7-3.	Function	Types
	
The	code	shown	above	(displayed	in	Figure	7-3)	demonstrates	the	use	of	function
types	 as	 function	 parameters.	 The	 code	 implements	 three	 functions:	 a	 function
named	calculate(_:values:)	and	two	additional	 functions	named	add(_:)
and	multiply(_:).	 The	calculate(_:values:)	 function	 will	 compute	 and
return	a	value	for	zero	or	more	input	values,	using	the	input	computation	function
(assigned	to	the	parameter	named	operation).	The	add(_:)	function	will	sum
the	 input	 values	 and	 return	 the	 result	 while	 the	 product(_:)	 function	 will
multiply	 the	 input	values	and	 return	 the	 result.	The	calculate(_:)	 function	 is
invoked	 using	 the	 add(_:)	 function	 as	 a	 parameter	 along	 with	 a	 list	 of	 input
values,	 then	 the	 calculate(_:values:)	 function	 is	 invoked	 using	 the
multiply(_:)	 function	 along	 with	 a	 list	 of	 input	 values.	 Thus	 you	 can
dynamically	change	the	behavior	of	the	calculate(_:values:)	function	(e.g.
add,	multiply,	etc.)	based	on	the	 input	function	type.	You	should	experiment	with
this	code	(e.g.	changing	the	input	values)	and	observe	the	output	in	the	sidebar.
	

Nested	Functions

	
So	 far,	 you	 have	 coded	 and	 used	 global	 functions,	 meaning	 functions	 that	 are
defined	 at	 global	 scope	 and	 thus	 are	 visible	 throughout	 a	 program.	 Swift	 also
enables	you	to	define	functions	inside	of	other	functions;	these	are	referred	to	as
nested	functions.	A	nested	 function	 is	 implemented	 just	 like	a	standard	 function;
however	 it	 is	 by	 default	 only	 visible	 within	 (and	 thus	 called	 by)	 its	 enclosing
function.	 The	 following	 code	 defines	 a	 function	 named	 greeting(_:)	 that
includes	a	nested	function	named	hello(_:):

	
func	greeting(name:	String)	{

	
func	hello(user:	String)	->	String	{

	
return	“Hello,	\(user)”

	
}

	
print(hello(name))

	
}

	
A	 nested	 function	 has	 access	 to	 any	 variables	 defined	 within	 its	 enclosing
function.	 As	 a	 result	 the	 nested	 function	 hello(_:)	 defined	 above	 can	 be
updated	as	follows:
	
func	greeting(name:	String)	{

	
func	hello()	->	String	{

	
return	“Hello,	\(name)”

	
}

	
print(hello(name))

	
}

	
Notice	 how	 the	 updated	 version	 of	 the	 hello()	 function	 is	 able	 to	 use	 the
variable	name	 from	its	enclosing	function	greeting(_:).	An	enclosing	function
can	also	return	a	nested	function	as	a	result,	enabling	them	to	be	used	in	another

scope.
	

	

	

	

	

CLOSURES

	
In	 the	previous	chapter	you	 learned	 the	 features	and	benefits	of	Swift	 functions.
This	chapter	provides	an	introduction	to	closures,	a	powerful	feature	that	extends
the	capabilities	of	functions	by	enabling	you	to	write	self-contained	blocks	of	code
that	 captures	 and	 stores	 references	 to	 variables	 from	 within	 the	 surrounding
context	 in	which	 it	 is	 defined.	 Together	 Swift	 functions	 and	 closure	 expressions
enable	 you	 to	 develop	 code	 using	 the	 functional	 programming	 paradigm,	 a
programming	style	that	increases	the	modularity	of	your	code.
	

Closure	Expression	Syntax

	
In	Swift	a	function	is	in	fact	a	special	type	of	closure;	Swift	closures	can	come	in
three	forms,	two	of	which	were	discussed	in	the	previous	chapter:
	
Global	functions	–	These	are	named	closures	that	have	access	to	values	within
their	function	body,	including	input	parameters.
	
Nested	functions	–	These	are	named	closures	that	have	access	to	values	from
their	enclosing	function.
	
Closure	expressions	–	These	are	unnamed	closures	that	can	access	variables
from	within	 their	surrounding	context.	As	closure	expressions	are	unnamed	they
are	written	inline;	the	general	syntax	for	defining	a	closure	expression	is:
	
Listing	8-1.	Closure	Expression	Definition
	
{	(parameters)	->	returnType	in

	
//	Closure	body

	
}

	
Curly	braces	surround	the	entire	expression,	and	the	closure	body	is	provided	in
the	 statements	 on	 lines	 after	 the	 in	 keyword.	 Closure	 expression	 parameters
have	 the	 same	 properties	 of	 function	 parameters	 except	 that	 default	 values
cannot	be	provided.	As	with	 functions,	closure	expressions	are	 reference	 types.
Now	 let’s	demonstrate	 the	use	of	 closure	expressions	with	an	example.	 In	 your
playground	 delete	 any	 existing	 code	 and	 add	 the	 following	 updated
calculate(_:_:operation:)	function:

	
func	calculate(value1:	Int,	_	value2:	Int,	operation:	(Int,
Int)	->	Int)	->	Int	{

	
return	operation(value1,	value2)

	
}

	
This	version	takes	two	values	and	a	function	type	as	arguments.	Notice	that	 the
function	definition	does	not	specify	an	external	name	for	the	second	parameter	by

writing	an	underscore	next	to	its	local	parameter	name	(value2).	Next	let’s	define
a	closure	expression	to	add	two	numbers:
	
{(a1:	Int,	a2:	Int)	->	Int	in

	
return	a1	+	a2}

	
Now	 you	 can	 use	 this	 closure	 expression	 as	 an	 argument	 to	 the
calculate(_:_:operation:)	function	for	adding	two	numbers:

	
var	sum	=	calculate(25,	52,	{(a1:	Int,	a2:	Int)	->	Int	in

	
return	a1	+	a2	})

	
Then	 use	 another	 closure	 expression	 as	 an	 argument	 to	 the
calculate(_:_:operation:)	function	for	multiplying	two	numbers:

	
var	product	=	calculate(25,	52,	{(a1:	Int,	a2:	Int)	->	Int
in

	
return	a1	*	a2})

	

	
Figure	8-1.	Closure	Expressions
	

As	 shown	 in	 Figure	 8-1,	 the	 behavior	 of	 the	 calculate(_:_:operation:)
function	 is	 changed	 through	 use	 of	 an	 inline	 closure	 expression.	 You	 should
experiment	with	this	code	(e.g.	changing	the	input	values	to	the	function,	providing
more	closure	expressions	to	subtract,	divide,	etc.)	and	observe	the	output	 in	the
sidebar.
	

Capturing	Values

	
Earlier	this	chapter	mentioned	that	closure	expressions	have	access	to,	and	thus
capture	 values	 from	 their	 surrounding	 context.	 To	 understand	what	 this	means,
let’s	 take	 a	moment	 to	 understand	 scope	 and	 visibility	 rules.	 The	 visibility	 of	 a
variable	refers	to	the	portion(s)	of	a	program	in	which	it	can	be	accessed;	this	is
also	 referred	 to	as	a	 variable’s	scope.	For	example,	 variables	declared	within	a
Swift	global	function	definition	have	local	scope,	meaning	that	they	are	visible	and
accessible	within	 the	 function,	and	not	accessible	elsewhere.	Let’s	 illustrate	 this
with	an	example;	the	following	code	will	trigger	a	compilation	error:
	
var	greeting	=	“Hello,	World!”

	
func	hello()	{

	
//	Illegal	access	of	variable	greeting,	not	within	scope

	
print(greeting)

	
}

	
The	 error	 occurs	 because	 the	 variable	greeting	 is	 not	 within	 the	 scope	 (and
thus	not	accessible)	of	 the	 function	hello().	Nested	 functions	 have	 access	 to
variables	within	their	enclosing	function.	Closure	expressions,	on	the	other	hand,
have	support	for	lexical	scope.	This	means	that	closure	expressions	can	capture
variables	 within	 the	 surrounding	 scope	 in	 which	 they	 are	 defined.	 Curly	 braces
delimit	 scope,	 and	 in	 addition	 scopes	 may	 be	 nested.	 Let’s	 demonstrate	 how
closure	expressions	 capture	 values	with	 an	example.	 In	 your	 playground	delete
any	existing	code	and	add	the	following:
	
func	hello(name:	String)	{

	
let	greeting	=	{()	->	String	in

	
return	“Hello,	\(name)”}

	
print(greeting())

	
}

	
hello(“Welcome	to	Swift”)

	

	
Figure	8-2.	Capturing	Values
	
The	closure	expression	of	Figure	8-2	is	assigned	to	the	variable	greeting.	It	is
defined	within	the	scope	of	the	enclosing	function	hello(_:)	and	thus	captures
its	 variables,	 in	 this	 case	 the	 parameter	 name.	 This	 variable	 is	 then	 available
within	 the	 body	 of	 the	 closure	 expression	 and	 is	 used	 to	 create	 the	 String
returned	by	 the	closure	expression.	Next	 the	 function	hello(_:)	 is	 called	with
an	argument	which	is	then	available	to	the	inline	closure	expression.	You	should
experiment	with	this	code	(e.g.	changing	the	input	value	to	the	function,	modifying
the	closure	expression)	and	observe	the	output	in	the	sidebar.
	
When	a	closure	expression	captures	a	variable,	it	is	either	captured	by	reference
or	 copied	 by	 value,	 depending	 on	 whether	 or	 not	 the	 value	 of	 the	 variable	 is
changed	within	the	body	of	the	expression.	In	the	previous	example	from	Figure
8-2,	a	copy	of	the	value	for	name	is	passed	to	the	closure	expression,	as	its	value
is	unchanged.
	

Closure	Expression	Optimizations

	
Swift	 provides	 a	 variety	 of	 optimizations	 to	 closure	 expression	 syntax	 that	 can
make	 them	 easier	 to	 write	 and	 use.	 The	 first	 of	 these	 optimizations	 is	 type
inference.	 The	 types	 of	 parameters	 and	 return	 value	 can	 be	 inferred	 from	 the
context	when	passing	an	inline	closure	expression	to	a	function	as	an	argument.
Earlier	 you	 implemented	 the	 calculate(_:_:operation:)	 function	 with	 a
function	type	parameter	named	operation:

	
func	calculate(value1:	Int,	_	value2:	Int,	operation:	(Int,
Int)	->	Int)	->	Int	{

	
return	operation(value1,	value2)

	
}

	
You	then	invoked	the	function,	providing	an	inline	closure	expression	for	the	value
of	the	parameter:
	
var	sum	=	calculate(25,	52,	{(a1:	Int,	a2:	Int)	->	Int	in

	
return	a1	+	a2	})

	
As	the	closure	expression	is	a	function	argument,	its	parameter	and	return	value
types	 in	 the	 expression	 can	 be	 inferred.	 Thus	 the	 types	 do	 not	 need	 to	 be
specified	in	the	expression	and	the	code	can	be	rewritten	as:
	
var	sum	=	calculate(25,	52,	{(a1,	a2)	in

	
return	a1	+	a2	})

	
If	a	closure	only	has	a	single	statement	 its	 result	 can	be	 implicitly	 returned	 (i.e.
you	don’t	need	to	use	the	return	keyword).	The	code	 is	 then	 further	simplified
to:
	
var	sum	=	calculate(25,	52,	{(a1,	a2)	in	a1	+	a2	})

	
Swift	 automatically	 provides	 shorthand	 argument	 names	 for	 inline	 closure
expressions.	These	argument	names	are	notated	as	$0,	$1,	$2,	etc.,	and	can
be	 used	 to	 refer	 to	 the	 values	 of	 the	 closure	 expression’s	 arguments,	 thus

eliminating	 the	 need	 for	 a	 parameter	 list	 (and	 the	 in	 keyword)	 in	 a	 closure
expression.	Using	shorthand	argument	names	the	above	code	becomes:
	
var	sum	=	calculate(25,	52,	{	$0	+	$1	})

	
Finally	 you	 can	 make	 use	 of	 trailing	 closures;	 a	 trailing	 closure	 is	 a	 closure
expression	 that	 is	written	 outside	 of	 and	 after	 the	 parentheses	 of	 its	 supporting
function	call.	Using	a	trailing	closure	the	above	example	becomes:
	
var	sum	=	calculate(25,	52)	{	$0	+	$1	}

	
	

	
Most	often	you	would	use	a	trailing	closure	when	the	closure	is	too	long	to	fit	on	a
single	 line.	 Let’s	 demonstrate	 the	 above	 optimizations	with	 an	 example;	 in	 your
playground	 delete	 any	 existing	 code	 and	 use	 each	 of	 the	 closure	 expression
optimizations	presented	above	on	the	calculate(_:_:operation:)	function.

	

	
Figure	8-3.	Closure	Expression	Optimizations
	
As	 shown	 in	 Figure	 8-3,	 closure	 expression	 optimizations	 enable	 you	 to	 both
reduce	the	amount	of	code	you	have	to	write	while	also	clarifying	your	intent.
	

Handling	Reference	Cycles

	
As	noted	at	 the	beginning	of	 this	chapter	a	closure	 is	a	reference	 type.	When	a
closure	expression	captures	a	variable,	it	is	either	captured	by	reference	or	copied
by	value.	Now	when	a	closure	expression	captures	a	variable	by	 reference	and
the	variable	itself	has	a	reference	to	the	expression,	a	strong	reference	cycle	may
result.	 A	 strong	 reference	 cycle	 occurs	 when	 two	 instances	 hold	 a	 strong
reference	to	each	other;	an	example	of	where	this	may	occur	 is	when	a	class	 is
defined	with	a	closure	expression	that	accesses	a	property	or	method	of	the	class
instance	 itself	 (don’t	 worry,	 you’ll	 learn	 about	 classes	 in	 the	 upcoming	 Named
Types	chapter).	Swift	enables	you	 to	 resolve	strong	 reference	cycles	between	a
closure	 expression	 and	 class	 instance	 by	 defining	 a	 capture	 list.	 Such	 a	 list
declares	each	closure	expression	captured	 reference	 to	be	a	weak	or	unowned
reference	 rather	 than	 a	 strong	 reference.	 The	 syntax	 for	 declaring	 a	 weak	 or
unowned	reference	in	a	closure	expression	is:
	
Listing	8-1.	Closure	Expression	With	Weak	or	Unowned	References
	
{	[unowned	p1,	weak	p2,	…](parameters)	->	returnType	in

	
//	Closure	body

	
}

	
Notice	each	captured	variable	in	the	list	is	annotated	with	either	the	unowned	or
weak	keyword.	This	represents	captured	reference	variables	(from	the	enclosing
class	 instance)	 that	 are	 referenced	 in	 the	 body	 of	 the	 closure	 expression.	 A
captured	 variable	 that	 will	 never	 become	 nil	 during	 the	 body	 of	 the	 closure
expression	should	be	annotated	as	an	unowned	 reference,	whereas	a	captured
variable	that	may	become	nil	should	be	annotated	as	a	weak	reference.

	

	

	

	

	

NAMED	TYPES

	
Just	 as	 you	 can	define	and	use	 functions,	Swift	 enables	 you	 to	define	and	use
custom	 types.	A	user-defined	 (named)	 type	 combines	both	data	and	operations
that	can	be	performed	on	that	data.	You	have	already	become	familiar	with	some
of	 the	Swift	Standard	Library	named	 types	 (e.g.	 the	numeric	 types,	Strings,	and
collection	classes)	earlier	 in	 this	book.	 In	 this	 chapter	 you’ll	 learn	how	 to	create
and	use	your	own	named	types.
	
Modularity	 is	 a	 key	 factor	 in	 developing	 software	efficiently	 and	 correctly.	When
done	 properly	 modular	 design	 can	 enable	 software	 independence,	 reuse,	 and
efficiency	through:
	
-	Development	of	independently	created	components
	
-	Reuse	of	pre-existing	components
	
-	Efficiency	in	being	able	to	combine	pre-existing	components
	
You	 have	 already	 learned	 how	Swift	 supports	modular	 software	 design	 through
functional	 programming	 patterns	 (i.e.	 functions	 and	 closure	 expressions).	 Swift
also	 supports	 modular	 design	 via	 object-oriented	 programming	 patterns	 using
named	types.
	
Object-oriented	 programming,	 or	 OOP	 as	 it	 is	 commonly	 known,	 is	 a	 style	 of
computer	programming	that	emphasizes	the	creation	and	use	of	software	objects
to	write	programs.	You	can	think	of	a	software	object	as	a	model,	in	software,	of	a
thing	or	concept.	A	software	object	provides	a	representation	(in	software)	of	the
characteristics	 or	 attributes	 of	 the	 thing/concept	 being	 modeled	 along	 with	 a
definition	of	the	things	it	can	do.	The	attributes	(aka	its	properties)	that	define	an
object	are	typically	things	the	object	has	or	is;	for	example	if	you	were	modeling	a
person	the	set	of	attributes	would	include	height	and	weight.	The	things	an	object
can	 do	 (aka	 its	 behaviors),	 are	 generally	 the	 actions	 that	 it	 can	 perform	 (for	 a
person	object	 this	could	be	 things	 like	 run,	 jump,	speak,	etc.).	Let’s	 try	 to	clarify
this	 with	 an	 example	 that	 specifies	 an	 object-oriented	 model	 of	 an	 atom	 (e.g.,
hydrogen,	oxygen,	etc.).	Now	a	very	simplified	model	of	an	atom	might	include	the
following	properties:
	
-	Protons	(number	of	protons	of	the	atom)

	

-	Neutrons	(number	of	neutrons	of	the	atom)

	
-	Electrons	(number	of	electrons	of	the	atom)

	
You	may	also	want	to	include	some	of	the	things	we	can	do	with	a	software	model
of	an	atom:
	
-	Get	Element	(determine	the	chemical	element	name	of	the	atom)

	
-	Get	Mass	(determine	the	atomic	mass	of	the	atom)

	
-	Illustrate	(display	a	diagram	of	the	atom)

	
-	Perform	Fission	(split	the	atom’s	nucleus)

	
-	Create	 (create	an	Atom	object	with	 the	desired	number	of	protons,	neutrons,
and	electrons)
	
The	resulting	object-oriented	software	model	 for	an	atom	is	shown	 in	Figure	9-1
below.
	

	
Figure	9-1.	Atom	Software	Model
	
With	Swift	user-defined	types	you	can	create	your	own	objects	for	modeling	things
in	 software,	 whether	 they	 are	 real-world	 entities,	 abstract	 concepts,	 and/or
processes.	This	is	modular	design	in	a	nutshell,	and	enables	you	to	both	reduce

software	complexity	and	make	its	structure	more	clear.
	
The	 Swift	 programming	 language	 enables	 you	 to	 define	 and	 use	 enumeration,
structure,	class,	and	protocol	named	types.	Each	type	is	specified	by	its	properties
and	 methods,	 and	 provides	 additional	 mechanisms	 for	 creating	 instances.	 The
next	few	chapters	cover	these	basics	in	more	detail.
	
Properties
	
In	Swift	 properties	are	used	 to	access	 (i.e.	get,	 set)	 the	state	of	a	named	 type.
Swift	properties	can	be	stored	 (constant	 or	 variable	 values	 stored	as	part	 of	 an
instance),	or	computed	 (calculated	values).	Stored	properties	can	be	defined	 for
structures	 and	 classes,	 whereas	 computed	 properties	 can	 be	 defined	 for
enumerations,	structures,	and	classes.	Although	properties	are	usually	associated
with	instances	of	a	type,	you	can	also	define	properties	that	are	associated	with	a
type	itself.	These	are	known	as	type	properties.
	
You	 define	 a	 stored	 property	 for	 a	 user-defined	 type	 by	 defining	 a	 constant	 or
variable	 within	 the	 body	 of	 the	 type	 definition.	 For	 a	 user-defined	 class	 named
Greeting	 the	 following	code	defines	a	stored	property	named	salutation	of
type	String:

	
class	Greeting	{

	
var	salutation:	String

	
//	Additional	code	for	class	definition

	
}

	
Note	 that	 the	 stored	 property	 definition	 is	 just	 a	 standard	 constant/variable
provided	within	the	body	of	a	type	definition.	A	default	value	for	a	stored	property
can	be	provided	when	defined	or	set/modified	during	 initialization.	The	 following
code	updates	the	salutation	property	with	the	default	value	“Hello”:

	
class	Greeting	{

	
var	salutation	=	“Hello”

	
//	Additional	code	for	class	definition

	

}

	
Computed	properties	are	calculated	values.	As	such	two	methods	 (i.e.	 functions
associated	with	a	type)	named	get	and	set	respectively	are	provided	for	each	to
retrieve	 and	 set	 these	 values.	 These	 methods	 are	 defined	 by	 declaring	 the
property’s	name	and	type,	 then	defining	 its	get	and	set	methods	within	braces
as	follows:
	
//	Definition	for	a	computed	property	named	computedProp

	
var	computedProp:	propertyType	{

	
get	{

	
//	Code	to	retrieve	computedProp	value

	
}

	
set	{

	
//	Code	to	set	computedProp	value

	
}

	
}

	
The	following	code	adds	a	read-only	computed	property	(i.e.	it	only	defines	a	get
method)	named	description	to	the	Greeting	class:

	
class	Greeting	{

	
var	salutation	=	“Hello”

	
var	description:	String	{

	
get	{

	
return	“Greeting	with	\(salutation)”

	
}

	

}

	
//	Additional	code	for	class	definition

	
}

	
Computed	 properties	 cannot	 be	 constants,	 and	 hence	 must	 be	 declared	 as
variables.	You	access	a	 property	 using	Swift	 dot	 syntax;	 for	 instance	properties
you	specify	the	name	of	the	instance	and	the	name	of	the	property	separated	by
the	dot	operator	(.).	For	an	instance	of	the	Greeting	class	named	greeter,	the
following	code	retrieves	the	value	of	its	salutation	stored	property	and	assigns
it	to	a	variable	named	hello:

	
var	hello	=	greeter.salutation

	
The	next	example	sets	the	salutation	property	to	the	value	“Greetings”:

	
greeter.salutation	=	“Greetings”

	
The	final	example	prints	to	the	console	the	value	of	the	instance’s	description
computed	property:
	
print(greeter.description)

	
A	 type	property	 is	also	accessed	using	dot	syntax;	you	specify	 the	name	of	 the
type	and	the	type	property	separated	by	the	dot	operator.
	
Methods
	
A	 named	 type	 can	 have	methods;	 these	 are	 functions	 associated	 with	 a	 type.
Swift	provides	support	for	both	 instance	methods	 that	belong	to	an	instance	of	a
named	 type,	and	 type	methods	 that	 belong	 to	 the	 type	 itself.	 Instance	methods
have	implicit	access	to	all	 the	instance	properties	and	methods	of	that	type.	You
can	 define	 both	 instance	 and	 type	methods	 for	 Swift	 enumerations,	 structures,
and	 classes.	 For	 a	 user-defined	 class	 named	 Greeting	 the	 following	 code
defines	an	instance	method	named	sayHello(_:)	that	takes	a	single	argument
of	type	String	and	returns	a	value	of	type	String:

	
class	Greeting	{

	

var	salutation	=	“Hello”

	
func	sayHello(name:	String)	->	String	{

	
return	“\(salutation),	\(name)!”

	
}

	
}

	
Instance	methods	are	called	using	dot	 syntax,	as	with	properties.	The	 following
code	calls	the	sayHello(_:)	method	of	a	Greeting	instance	named	greeter,
and	assigns	the	result	to	a	variable	named	hello:

	
var	hello	=	greeter.sayHello(“World”)

	
Earlier	in	the	Functions	chapter	you	learned	that	function	parameters	could	have
both	a	local	and	an	external	name.	This	is	also	true	for	named	type	methods.	As
with	 functions,	 by	 default	 the	 first	 parameter	 omits	 its	 external	 name,	 and	 the
second	and	subsequent	parameters	use	their	local	name	as	their	external	name.
Let’s	 illustrate	 this	 with	 an	 example:	 below	 the	Greeting	 class	 defined	 earlier
has	 been	 extended	 with	 a	 new	 method	 whose	 signature	 is
sayHello(_:salute:):

	
class	Greeting	{

	
var	salutation	=	“Hello”

	
//	Other	functionality

	
func	sayHello(name:	String,	salute:	String)	->	String	{

	
salutation	=	salute

	
return	“\(salutation),	\(name)!”

	
}

	
}

	
Method	Signatures

	
A	 method	 signature	 is	 analogous	 to	 a	 function	 signature,	 as	 described	 in	 the
Functions	chapter.	It	encapsulates	a	method	name	followed	(within	parentheses)
by	its	external	parameter	names,	where	each	name	is	terminated	with	a	colon.	A
method	 signature	 parameter	 without	 an	 external	 name	 is	 indicated	 with	 an
underscore.	 So	 taking	 the	 above	 example	 the	 method	 signature
sayHello(_:salute:)defines	 a	method	 whose	 name	 is	sayHello	 and	 has
two	 parameters,	 the	 first	 of	 which	 has	 no	 external	 parameter	 name	 and	 the
second	with	an	external	parameter	name	of	salute.	The	following	code	calls	the
sayHello(_:salute:)	method	of	a	Greeting	instance	named	greeter,	and
assigns	the	result	to	a	variable	named	hello:

	
var	hello	=	greeter.sayHello(“World”,	salute:	“Greetings”)

	
Initializers
	
Swift	 provides	 initialization	 functionality	 to	 support	 the	 creation	 of	 instances	 of
named	 types.	 Initialization	 includes	memory	allocation,	 setting	of	an	 initial	 value
for	 each	 stored	 property	 of	 an	 instance,	 along	 with	 any	 other	 setup	 or
configuration	 required.	Each	stored	property	of	a	named	 type	must	be	 initialized
before	it	is	used.	You	control	this	process	by	defining	initializers,	which	are	special
methods	defined	 for	named	 types	 that	can	be	called	when	creating	 instances	of
these	types.	The	syntax	for	defining	named	type	initializers	is:
	
Listing	9-1.	Named	Type	Initializer	Definition
	
init(params)	{

	
//	Initialization	code

	
}

	
As	shown	above,	an	initializer	begins	with	the	init	keyword,	followed	by	zero	or
more	 method	 parameters	 within	 parentheses.	 For	 a	 user-defined	 class	 named
Greeting	the	following	code	defines	a	no-argument	initializer	that	sets	an	initial
value	for	the	salutation	stored	property:

	
class	Greeting	{

	
var	salutation:	String

	

init(){

	
salutation	=	“Hello”

	
}

	
//	Additional	Greeting	code

	
}

	
You	can	create	an	instance	of	a	named	type	using	initializer	syntax,	whereby	you
specify	 the	 name	 of	 the	 type	 followed	 by	 parentheses.	 If	 the	 named	 type	 has
initializers	 with	 parameters,	 the	 parameter(s)	 for	 the	 corresponding	 initializer
should	be	provided	in	parentheses.	The	following	code	creates	an	instance	of	the
Greeting	 class	 using	 initializer	 syntax	 and	 assigns	 it	 to	 a	 variable	 named
greeter:

	
var	greeter	=	Greeting()

	
In	 summary,	when	 the	 instance	an	 instance	of	 a	named	 type	 (i.e.	 enumeration,
structure,	or	class)	is	created,	the	corresponding	initializer	is	invoked	to	complete
initialization.
	
Initializer	Parameter	Naming	Conventions
	
It	 is	 important	 to	note	 that	by	default,	 initializers	 for	structures	and	classes	have
an	external	name	for	every	parameter	that	is	the	same	as	the	corresponding	local
parameter	name.	This	differs	from	the	function	and	method	parameter	convention,
where	by	default	the	first	parameter	omits	its	external	name,	and	the	subsequent
parameters	 use	 their	 local	 name	 as	 their	 external	 name.	 For	 example,	 the
following	 initializer	 for	 a	 class	 named	 TestClass	 has	 two	 parameters	 named
param1	and	param2:

	
init(param1:	String,	param2:	Int)	{

	
//	Initialization	code

	
}

	
You	would	 create	 an	 instance	 of	 this	 class	 using	 initializer	 syntax,	 where	 each
parameter	is	identified	by	its	corresponding	external	name	as	follows:

	
TestClass(param1:	“This	is	a	test”,	param2:	1)

	
Now	 let’s	 review	what	you’ve	 learned	about	properties,	methods,	and	 initializers
with	 an	 example;	 in	 your	 playground	 delete	 any	 existing	 code	 and	 add	 the
following:
	
class	Greeting	{

	
var	salutation	=	“Hello”

	
var	description:	String	{

	
get	{

	
return	“Greeting	with	\(salutation)”

	
}

	
}

	
func	sayHello(name:	String)	->	String	{

	
return	“\(salutation),	\(name)!”

	
}

	
func	sayHello(name:	String,	salute:	String)	->	String	{

	
salutation	=	salute

	
return	“\(salutation),	\(name)!”

	
}

	
}

	
var	greeter	=	Greeting()

	
greeter.sayHello(“World”)

	
greeter.description

	
greeter.sayHello(“Pardners”,	salute:”Howdy”)

	
greeter.description

	

	
Figure	9-2.	Named	Type	Properties	and	Methods
	
The	Greeting	class	shown	in	Figure	9-2	is	defined	with	two	properties	and	two
methods.	 An	 initializer	 is	 not	 provided;	 however	 since	 its	 single	 stored	 property
(salutation)	 has	 a	 default	 value,	 Swift	 automatically	 provides	 a	 default
initializer	 for	 the	 class.	 The	 code	 creates	 an	 instance	 of	 the	 Greeting	 class
assigned	to	the	variable	greeter,	and	then	invokes	its	methods	and	accesses	its
properties.	 You	 should	 experiment	 with	 this	 code	 (e.g.	 changing	 the	 method
parameter	values)	and	observe	the	output	in	the	sidebar.
	

Enumerations

	
The	enumeration	type	 is	a	collection	comprised	of	a	complete	 list	of	all	possible
values	 for	variables	of	 that	 type.	The	named	values	of	an	enumeration	 type	are
also	known	as	enumeration	members	or	enumerators.	Enumerations	provide	an
abstraction	that	enables	you	to	represent	in	code	a	thing	or	concept	that	denotes
a	 restricted	 set	 of	 values.	 For	 example,	 the	 seven	 days	 of	 the	 week	 may	 be
modelled	 with	 an	 enumerator	 type	 that	 has	 members	 named	 MONDAY,
TUESDAY,	WEDNESDAY,	etc.

	
The	 Swift	 enumeration	 type	 is	 a	 value	 type,	 meaning	 that	 it	 is	 copied	 on
assignment	and	function	calls.	 Its	members	can	have	underlying	(raw)	values	or
no	 values,	 and	 the	 raw	 values	 can	 be	 of	 String,	 Character,	 or	 one	 of	 the
numeric	 types.	 Its	 members	 can	 also	 have	 associated	 values	 of	 any	 type;	 this
enables	you	to	store	additional	values	with	each	enumerator.
	
Definition
	
You	define	an	enumeration	with	the	following	syntax:
	
Listing	9-2.	Enumeration	Definition
	
enum	EnumerationName	{

	
case	Enumerator1Name

	
case	Enumerator2Name

	
case	Enumerator3Name

	
//	Additional	enumerators

	
}

	
The	 enum	 keyword	 begins	 the	 definition	 of	 an	 enumeration,	 and	 the	 entire
definition	is	placed	within	curly	braces.	The	case	keyword	is	used	to	indicate	that
a	 new	 line	 of	 enumerators	 is	 being	 defined.	 The	 following	 code	 defines	 an
enumeration	 named	Grades	 with	 corresponding	 enumerator	 values,	 each	 on	 a
separate	line:
	

enum	Grades	{

	
case	A

	
case	B

	
case	C

	
case	D

	
case	F

	
}

	
You	 can	 specify	 multiple	 enumerators	 on	 a	 single	 line,	 each	 separated	 by	 a
comma.	Using	this	approach	the	above	enumeration	is	defined	as:
	
enum	Grades	{

	
case	A,	B,	C,	D,	F

	
}

	
A	new	enumeration	can	then	be	created	using	one	of	 its	member	values	via	dot
syntax;	 the	 following	 code	 creates	a	Grades	 enumeration	 instance	 using	 the	A
member	and	assigns	this	value	to	the	variable	grade:

	
var	grade	=	Grades.A

	
As	 you	 know	 Swift	 enumerations	 are	 named	 types,	 thus	 they	 can	 also	 have
properties	 (both	 stored	 and	 computed),	 initializers,	 and	methods.	 These	 are	 all
specified	within	the	body	of	the	enumeration	definition.
	
Raw	Values
	
The	above	enumerators	have	no	underlying	raw	values,	which	when	provided	are
set	 to	 constant	 values	 for	 each	member	when	 an	 enumeration	 is	 defined.	Raw
values	must	be	the	same	type	for	each	member,	and	each	value	must	be	unique
within	the	enumeration	definition.	If	you	use	integers	for	raw	values,	they	are	auto-
incremented	if	no	value	is	specified	for	some	of	the	members	in	the	definition.	The
following	code	provides	raw	values	for	each	member	of	the	Grades	enumeration:

	
enum	Grades	{

	
case	A	=	1

	
case	B	=	2

	
case	C	=	3

	
case	D	=	4

	
case	F	=	5

	
}

	
The	above	 example	 can	 also	 be	modified	 to	 use	 the	 auto-increment	 feature	 as
follows:
	
enum	Grades	{

	
case	A	=	1,	B,	C,	D,	F

	
}

	
Associated	Values
	
You	 can	 also	 provide	 associated	 values	 for	 one	 or	 more	 members	 of	 an
enumeration.	An	associated	value	links	a	user-specified	value	to	an	enumeration
instance.	The	enumeration	definition	specifies	 that	a	member	has	an	associated
value	by	declaring	 the	member’s	 type	within	 parentheses.	 If	 there	 is	more	 than
one	 associated	 value	 for	 a	 member	 the	 corresponding	 types	 are	 separated	 by
commas.	 The	 following	 code	 updates	 the	 Grades	 enumeration	 with	 an
associated	value	of	type	String	for	the	member	named	F:

	
enum	Grades	{

	
case	A

	
case	B

	
case	C

	
case	D

	
case	F(String)

	
}

	
When	 an	 instance	 is	 created	 for	 an	 enumeration	 member	 with	 an	 associated
value	 it	 is	 provided	 within	 parentheses	 as	 an	 argument	 to	 the	 initializer.	 The
following	code	creates	a	Grades	enumeration	instance	with	an	associated	value,
the	string	“See	me	after	class!”:

	
var	grade	=	Grades.F(“See	me	after	class!”)

	
The	associated	value	is	linked	to	the	Grades.F	enumeration	member	and	can	be
retrieved	 via	 variable	 assignment.	 Associated	 values	 are	 commonly	 used	 to
provide	additional	functionality	to	switch	statements,	which	you’ll	learn	next.
	
Enumerations	with	Switch	Statements
	
Enumerations	are	commonly	used	with	switch	statements	to	control	program	flow.
As	an	enumeration	has	a	complete	list	of	its	possible	values,	its	members	can	be
used	 to	 provide	 each	 switch	 statement	 case	 value.	 For	 each	 enumeration
member	that	has	an	associated	value,	this	value	can	be	extracted	as	part	of	the
switch	statement	as	either	a	constant	(using	the	let	prefix)	or	variable	(using	the
var	 prefix).	 The	 following	 code	 demonstrates	 a	 switch	 statement	 that	 uses	 the
Grades	enumeration	shown	earlier	with	an	associated	value:

	
var	grade	=	Grades.A

	
switch	(testScore)	{

	
case	.A:

	
print(“Your	GPA	is	4.0”)

	
case	.B:

	
print(“Your	GPA	is	3.0”)

	
case	.C:

	
print(“Your	GPA	is	2.0”)

	
case	.D:

	
print(“Your	GPA	is	1.0”)

	
case	.F(let	message):

	
print(“Your	GPA	is	0.0,	\(message)”)

	
}

	
Observe	the	case	that	matches	the	Grades.F	enumeration	member	assigns	 its
associated	 value	 to	 a	 constant	 variable	 named	message.	 This	 constant	 is	 then
used	within	 the	 corresponding	 case	 statement.	OK,	 now	 let’s	 demonstrate	 your
use	of	Swift	enumerations.	In	your	playground	delete	any	existing	code	and	add
the	following:
	
enum	Grades	{

	
case	A,	B,	C,	D,	F(String)

	
}

	
func	getGPA(grade:	Grades)	->	String	{

	
switch	(grade)	{

	
case	.A:

	
return	“Your	GPA	is	4.0”

	
case	.B:

	
return	“Your	GPA	is	3.0”

	
case	.C:

	
return	“Your	GPA	is	2.0”

	
case	.D:

	
return	“Your	GPA	is	1.0”

	
case	.F(let	message):

	
return	“Your	GPA	is	0.0,	\(message)”

	
}

	
}

	
var	gpa	=	getGPA(Grades.A)

	
gpa	=	getGPA(Grades.F(“see	me	after	class!”))

	

	
Figure	9-3.	Enumerations
	
The	getGPA(_:)	 function	 shown	 in	 Figure	 9-3	 uses	 the	Grades	 enumeration
and	a	switch	statement	(as	defined	earlier	in	this	chapter)	to	retrieve	the	GPA	for	a
corresponding	grade.	It	is	then	demonstrated	for	several	for	representative	grade
values.	 You	 should	 experiment	 with	 this	 code	 (e.g.	 changing	 the	 method
parameter	values)	and	observe	the	output	in	the	sidebar.
	

Structures

	
A	structure	type	is	an	aggregate	data	element	that	contains	other	values,	possibly
of	different	types,	each	of	which	is	indexed	by	name.	You	have	already	used	Swift
structures	in	this	book;	for	example	many	of	the	Standard	Library	types	(such	as
the	String	and	numeric	types)	are	implemented	with	structures.
	
A	Swift	structure	 is	a	value	 type.	Similar	 to	 the	Swift	enumeration	 type,	you	can
define	a	structure	with	properties,	methods,	and	 initializers.	You	can	define	 type
properties	and	methods	for	a	structure	using	the	static	keyword.	You	can	also
define	 subscripts;	 these	 enable	 you	 to	 access	 values	 using	 a	 subscript	 syntax,
e.g.	greeter[0].

	
Definition
	
You	define	a	structure	with	the	following	syntax:
	
Listing	9-3.	Structure	Definition
	
struct	StructName	{

	
//	Structure	definition

	
}

	
The	struct	keyword	begins	the	definition	of	structure,	and	the	entire	definition	is
placed	 within	 curly	 braces.	 Both	 the	 interface	 and	 implementation	 is	 contained
with	the	structure	definition,	i.e.	there	is	no	separate	interface	and	implementation
specification.	 The	 following	 code	 defines	 a	 structure	 named	 Book	 with	 three
stored	properties	and	one	computed	property:
	
struct	Book	{

	
var	title:String

	
var	author:String

	
var	keywords:[String]	=	[]

	
var	description:String	{

	
get	{

	
return	“\(title),	by	\(author)”

	
}

	
}

	
}

	
Structures	 have	 one	 or	 more	 initializers	 that	 are	 used	 to	 initialize	 the	 stored
properties	of	structure	instances.	If	a	structure	provides	default	values	for	all	of	its
stored	properties	and	does	not	define	at	least	one	initializer,	a	default	initializer	is
automatically	generated.	If	a	structure	does	not	provide	default	values	for	all	of	its
stored	 properties	 and	 does	 not	 define	 at	 least	 one	 initializer,	 a	 member-wise
initializer	 is	automatically	generated.	This	 initializer	takes	as	its	parameters	each
of	the	structure’s	stored	properties.	The	following	code	uses	initializer	syntax	with
a	member-wise	 initializer	 to	create	a	new	Book	 instance	assigned	 to	a	variable
named	swift:

	
var	swift	=	Book(title:	“Swift	Programming	Nuts	and	Bolts”,
author:	“Keith	Lee”)

	
You	access	a	structure	 instance’s	properties	and	methods	using	dot	syntax;	 the
following	code	prints	the	author	name	for	the	Book	instance	named	swift	to	the
console:
	
print(“Author	\(swift.author)”)

	
Mutating	Methods
	
As	 you	 know	 by	 now,	 both	 structures	 and	 enumerations	 are	 value	 types.	 This
characteristic	also	affects	how	you	define	methods	for	these	types.	Specifically,	if
a	method	you	define	 for	a	structure	or	enumeration	modifies	one	or	more	of	 its
stored	properties,	it	must	be	preceded	with	the	keyword	mutating.	The	following
code	adds	a	mutating	method	addKeyword(_:)	to	the	Book	structure;	note	that
the	method	modifies	the	keywords	property:

	
struct	Book	{

	

var	title:String

	
var	author:String

	
var	keywords:[String]	=	[]

	
var	description:String	{

	
get	{

	
return	“\(title),	by	\(author)”

	
}

	
}

	
mutating	func	addKeyword(keyword:String)	{

	
keywords.append(keyword)

	
}

	
}

	
Subscripts
	
Structures,	 enumerations,	 and	 classes	 can	 define	 subscripts;	 these	 provide	 a
clean,	concise	syntax	(via	the	subscripting	operator	[])	for	accessing	members	of
a	collection	or	sequence	in	a	named	type.	They	are	used	to	set	and	get	values	by
index	 without	 having	 to	 invoke	 separate	 retrieval	 and	 update	 methods.	 For
example,	 if	 the	above-mentioned	Book	structure	has	an	 instance	named	swift
and	 its	keywords	property	has	two	entries	you	can	access	the	first	keyword	as
follows:
	
swift.keywords[0]

	
With	 subscripts	 you	 can	 define	 a	 method	 to	 access	 the	 keywords	 elements
directly,	e.g.:
	
swift[0]

	

or	to	set	an	element	to	a	new	value	via	an	assignment,	e.g.:
	
swift[0]	=	newValue

	
A	subscript	can	take	any	number	of	input	parameters,	each	of	which	can	be	any
type.	 A	 subscript	 can	 also	 return	 any	 type.	 A	 type	 can	 have	multiple	 subscript
definitions,	and	 the	one	used	will	be	 inferred	based	on	 the	 types	of	 the	value(s)
within	the	subscript	braces.	You	define	a	subscript	method	within	a	type	definition
using	the	following	syntax:
	
Listing	9-4.	Subscript	Definition
	
subscript(parameters)	->	returnType	{

	
get	{

	
//	Code	to	retrieve	value	from	collection

	
}

	
set(newValue)	{

	
//	Code	to	set	value	in	collection

	
}

	
}

	
A	 subscript	 definition	 begins	 with	 the	 subscript	 keyword,	 followed	 by	 its
parameters	within	parentheses,	ending	with	its	return	type.	A	subscript	can	have
one	or	more	parameters,	each	separated	by	a	comma.	The	return	type	is	the	type
of	 the	 subscript	 value	 returned.	 The	 subscript	method	has	 two	 nested	methods
(named	get	and	set	 respectively)	 to	retrieve	a	subscript	value	and	set	a	value.
The	code	 for	each	method	 is	defined	within	curly	braces,	and	 the	 type	of	 value
newValue	is	the	same	as	that	of	the	return	value	(returnType)	of	the	subscript.
The	newValue	 parameter	 represents	 the	 value	 provided	 for	 assignment	 when
setting	a	value	using	subscripts,	and	is	not	required	to	be	specified	when	defining
the	set	method.	The	 following	code	defines	 the	subscript	method	 for	 the	Book
structure:
	
subscript(index:	Int)	->	String	{

	
get	{

	
return	self.keywords[index]

	
}

	
set(newValue)	{

	
self.keywords[index]	=	newValue

	
}

	
}

	
In	the	above	code	the	subscript	parameter	is	of	type	Int	and	is	used	to	access
array	elements,	specifically	 the	keywords	property	of	 the	Book	structure.	 If	 the
keywords	 property	 were	 instead	 a	 dictionary	 with	 keys	 of	 String	 type,	 the
subscript	 parameter	would	be	changed	accordingly.	Now	 let’s	demonstrate	 your
use	of	Swift	structures.	In	your	playground	delete	any	existing	code	and	add	the
following:
	
struct	Book	{

	
var	title:String

	
var	author:String

	
var	keywords:[String]	=	[]

	
var	description:String	{

	
get	{

	
return	“\(title),	by	\(author)”

	
}

	
}

	
subscript(index:	Int)	->	String	{

	
get	{

	
assert((!self.keywords.isEmpty	 &&	 (index	 >=0)),	 “Index	 out
of	range”)

	
return	self.keywords[index]

	
}

	
set(newValue)	{

	
assert((!self.keywords.isEmpty	 &&	 (index	 >=0)),	 “Index	 out
of	range”)

	
self.keywords[index]	=	newValue

	
}

	
}

	
mutating	func	addKeyword(keyword:String)	{

	
keywords.append(keyword)

	
}

	
}

	
var	 book	 =	 Book(title:	 “Swift	 Programming	 Nuts	 and	 Bolts”,
author:	“Keith	Lee”,	keywords:	[“Apple”,	“Swift”])

	
book.addKeyword(“Programming”)

	
book.description

	
book.keywords

	
book[0]	=	“iOS”

	
book.keywords

	

	
Figure	9-4.	Structures
	
The	Book	 structure	 presented	 in	 Figure	 9-4	 has	 several	 properties,	 a	 subscript
method,	 and	 an	 instance	 mutating	 method.	 Notice	 that	 the	 subscript	 methods
uses	 the	 Standard	 Library	 assert(_:_:)	 function	 to	 check	 the	 value	 of	 the
index	before	it	is	used	to	access	a	keywords	property	element.	The	code	creates
a	 Book	 instance,	 adds	 keywords	 via	 the	 mutating	 addKeyword(_:)	 function,
and	 uses	 subscripting	 to	 get	 and	 set	 a	 keywords	 element.	 You	 should
experiment	 with	 this	 code	 (e.g.	 changing	 the	 keywords	 parameter	 values	 and
accessing	different	keywords	elements)	and	observe	the	output	in	the	sidebar.

	

Classes

	
The	 Swift	 class	 type	 builds	 on	 the	 enumeration	 and	 structure	 types	 by	 adding
additional	 features	 to	 support	 OOP.	 This	 includes	 inheritance,	 runtime	 type
identification,	resource	management,	and	reference	counting.
	
Swift	classes	are	 reference	 types,	meaning	 that	a	 reference	 (i.e.	a	pointer)	 to	a
class	 instance	 is	 passed	 during	 assignment	 or	 when	 provided	 as	 a	 method
argument	or	return	value.	As	a	result	you	can	update	the	properties	(i.e.	state)	of
a	 reference	 type	 instance	 when	 passed	 into	 a	 method.	 This	 differs	 from	 value
types,	where	a	copy	of	a	value	type	is	passed	as	a	parameter	to	a	method,	and
hence	 the	 original	 instance	 is	 unchanged.	 You	 can	 define	 type	 properties	 and
methods	for	a	class	using	the	class	keyword.

	
Definition
	
You	define	a	class	with	the	following	syntax:
	
Listing	9-5.	Class	Definition
	
class	ClassName	{

	
//	Class	definition

	
}

	
The	 class	 keyword	 begins	 the	 definition	 of	 class,	 and	 the	 entire	 definition	 is
placed	 within	 curly	 braces.	 Both	 the	 class	 interface	 and	 implementation	 is
contained	 within	 this	 specification.	 The	 following	 code	 defines	 a	 class	 named
Greeting	with	a	computed	property	named	description	and	a	single	method
named	sayHello(_:):

	
class	Greeting	{

	
var	description:	String	{

	
get	{

	
return	“Greeting”

	

}

	
}

	
func	sayHello(name:String)	->	String	{

	
return	“Hello,	\(name)!”

	
}

	
}

	
Like	 structures,	 classes	have	one	or	more	 initializers	 that	 are	used	 to	 set	 initial
values	 for	 the	stored	properties	of	class	 instances.	 If	a	class	does	not	define	at
least	 one	 initializer,	 a	 default	 initializer	 is	 automatically	 generated;	 this	 method
takes	 no	 arguments	 and	 sets	 default	 values	 for	 all	 of	 the	 instance’s	 stored
properties.	 The	 following	 code	 uses	 initializer	 syntax	 with	 a	 default	 initializer	 to
create	a	new	Greeting	instance	assigned	to	a	variable	named	greeter:

	
var	greeter	=	Greeting()

	
Swift	uses	Automatic	Reference	Counting	 (ARC)	 for	 class	 instances,	a	memory
management	 mechanism	 that	 automatically	 deallocates	 instances	 of	 Swift
reference	 type	 instances	 when	 they	 are	 no	 longer	 in	 use,	 thereby	 freeing	 up
resources.	As	a	result	you	don’t	need	 to	write	code	to	perform	manual	clean	up
when	 instances	 are	 being	 deallocated.	 However,	 you	 may	 need	 to	 perform
additional,	 custom	cleanup	when	an	 instance	 is	deallocated.	For	 this	purpose	a
class	can	define	a	deinitializer,	a	method	that	is	called	immediately	before	a	class
instance	is	deallocated.	A	class	definition	can	have	at	most	one	deinitializer,	and
the	syntax	for	defining	this	method	is:
	
Listing	9-6.	Class	Deinitializer	Definition
	
deinit	{

	
//	Perform	clean-up	functions

	
}

	
The	deinitializer	begins	with	the	deinit	keyword,	followed	by	the	clean	up	code
within	curly	braces.	The	following	code	extends	the	Greeting	class	with	a	simple
deinitializer	that	just	prints	out	a	goodbye	message:

	
class	Greeting	{

	
var	description:	String	{

	
get	{

	
return	“Greeting”

	
}

	
}

	
deinit	{

	
print(“Goodbye”)

	
}

	
func	sayHello(name:String)	->	String	{

	
return	“Hello,	\(name)!”

	
}

	
}

	
Inheritance
	
Swift	classes	support	inheritance,	a	feature	of	OOP	that	enables	you	to	develop	a
new	 class	 by	 extending	 an	 existing	 class.	 The	 new	 class	 inherits	 the	 state
(properties)	 and	 behavior	 (methods)	 of	 the	 pre-existing	 class	 and	 can	 create
additional	 properties	 and	methods,	 or	modify	 its	 existing	 specification.	 The	 new
class	 is	 termed	 the	 subclass	 (or	 derived	 class)	 while	 the	 pre-existing	 class	 is
referred	 to	 as	 the	 superclass	 (or	 parent	 class).	 The	 relationship	 between	 a
superclass	and	a	subclass	is	a	hierarchy;	as	such	inheritance	makes	it	possible	to
create	 hierarchies	 of	 classes,	 each	 of	 which	 is	 based	 on	 a	 parent	 class.	 Swift
supports	single	inheritance	of	both	properties	and	methods,	meaning	a	class	can
have	only	one	parent.
	
You	define	a	class	based	on	an	existing	parent	class	with	the	following	syntax:

	
Listing	9-7.	Subclass	Definition
	
class	ClassName	:	SuperclassName	{

	
//	Subclass	definition

	
}

	
After	the	class	keyword	you	specify	the	name	of	the	new	subclass,	followed	by	a
colon,	 the	 name	 of	 the	 existing	 superclass,	 then	 the	 definition	 of	 the	 subclass
within	curly	braces.	In	the	subclass	you	can	modify	the	properties	and	methods	of
the	 existing	 superclass,	 and	 add	 new	 properties	 and	 methods	 as	 well.	 The
following	code	defines	a	class	named	Welcome	that	inherits	the	Greeting	class
and	provides	an	initializer	for	its	stored	property:
	
class	Welcome	:	Greeting	{

	
var	salutation:	String

	
init(greeter:	String)	{

	
salutation	=	greeter

	
}

	
}

	
A	subclass	can	modify	the	instance	properties,	instance	methods,	type	properties,
type	methods,	and	subscripts	from	the	superclass	it	inherits.	In	Swift	this	is	known
as	overriding.	To	override	an	inherited	attribute	in	a	subclass	definition,	you	prefix
the	definition	of	the	selected	attribute	with	the	override	keyword.	The	following
code	 updates	 the	 Welcome	 class	 by	 overriding	 the	 sayHello(_:)	 function
defined	in	the	superclass:
	
class	Welcome	:	Greeting	{

	
var	salutation:	String

	
init(greeter:	String)	{

	

salutation	=	greeter

	
}

	
override	func	sayHello(name:	String)	->	String	{

	
return	“\(salutation),	\(name)!”

	
}

	
}

	
Swift	 enables	 you	 to	 access	 a	 superclass	 property,	method,	 or	 subscript	 when
overriding	an	attribute	in	a	subclass	definition.	You	do	this	by	prefixing	the	desired
superclass	 attribute	 using	 the	super	 prefix	 to	 specify	 the	 superclass	 instance,
and	then	dot	notation	to	specify	the	desired	attribute.	The	following	code	overrides
the	description	property	by	accessing	the	value	of	the	property	in	the	superclass
to	provide	a	custom	result:
	
class	Welcome	:	Greeting	{

	
var	salutation:	String

	
init(greeter:	String)	{

	
salutation	=	greeter

	
}

	
override	var	description:	String	{

	
get	{

	
return	super.description	+	”	with	\(salutation)”

	
}

	
}

	
override	func	sayHello(name:	String)	->	String	{

	
return	“\(salutation),	\(name)!”

	
}

	
}

	
Type	Casting
	
Swift	provides	runtime	type	mechanisms	that	enable	you	to	check	for	the	type	of
an	instance	in	a	class	hierarchy,	and/or	treat	that	instance	as	a	different	subclass
or	superclass	within	its	hierarchy.
	
The	Boolean	type	check	operator	(is)	is	used	to	check	whether	an	instance	is	of
a	 certain	 subclass	 type	 within	 a	 class	 hierarchy.	 The	 syntax	 for	 using	 the	 is
operator	is:
	
classInstanceName	is	ClassName

	
The	operator	returns	true	 if	 the	class	instance	(InstanceName)	 is	an	instance
of	the	specified	class	(ClassName),	or	one	of	its	subclasses.	The	following	code
creates	an	instance	of	the	Welcome	class,	and	then	uses	the	type	check	operator
to	confirm	it	is	an	instance	of	the	Greeting	class	or	one	of	its	subclasses:

	
var	hi	=	Welcome(”Hello”)

	
var	isGreeting	=	hi	is	Greeting

	
The	 type	 cast	 operator	 (as)	 is	 used	 to	 downcast	 an	 instance	 of	 a	 class	 to	 a
subclass	 within	 the	 corresponding	 class	 hierarchy.	 The	 downcast	 can	 fail	 (for
example,	if	you	attempt	to	downcast	an	instance	to	a	class	not	in	its	hierarchy)	the
operator	 returns	an	optional	 type.	As	a	 result,	 the	operator	comes	 in	 two	 forms:
one	 of	 which	 returns	 an	 optional	 value	 (as?),	 and	 the	 other	 that	 performs	 the
downcast	 and	 then	 a	 forced	 unwrapping	 of	 the	 value	 (as!).	 The	 forced	 form
should	only	be	used	if	you	are	sure	the	downcast	will	always	succeed,	because	if
it	fails	it	throws	a	runtime	error.	The	syntax	for	using	the	as?	operator	is:

	
classInstanceName	as	ClassName

	
The	following	code	creates	an	instance	of	the	Greeting	class	and	then	uses	the
conditional	 form	of	 the	 type	cast	operator	 to	downcast	 it	 to	 the	Welcome	 class,
and	if	let	binding	to	retrieve	the	description	of	the	new	class	instance:

	
var	hi:	Greeting	=	Welcome(”Hello”)

	
if	let	welcome	=	hi	as	Welcome	{

	
welcome.description

	
}

	
Inheritance	and	Initialization
	
Swift	 defines	 two	 kinds	 of	 initializers	 to	 insure	 proper	 initialization	 of	 all	 stored
properties	 within	 a	 class	 hierarchy.	 Designated	 initializers	 fully	 initialize	 all
properties	defined	 for	 that	class	and	call	 the	appropriate	superclass	 initializer	 to
complete	 the	 process	 throughout	 the	 entire	 class	 hierarchy.	 Every	 class	 must
have	 at	 least	 one	 designated	 initializer.	 Thus	 a	 (subclass)	 designated	 initializer
must	 call	 an	 appropriate	 superclass	 initializer.	 Convenience	 initializers	 are
secondary,	supporting	initializers	for	a	class.	These	are	optional	initializers	defined
to	 simplify	 the	 creation	 of	 class	 instances.	 Convenience	 initializers	 typically	 set
default	 values	 for	 some	 properties,	 and	 therefore	 reduce	 the	 number	 of
parameters	 supplied	 when	 creating	 a	 new	 class	 instance.	 You	 define	 a
convenience	initializer	with	the	following	syntax:
	
Listing	9-8.	Convenience	Initializer	Definition
	
convenience	init(parameters)	{

	
//	Initialization	code

	
}

	
In	order	 to	 insure	 correct	 initialization	when	using	 convenience	 initializers,	Swift
has	several	rules,	the	first	of	which	is:
	
1)	A	designated	initializer	must	call	a	designated	initializer	from	its	superclass.
	
As	 noted	 earlier,	 a	 class	 with	 no	 custom	 initializers	 automatically	 receives	 a
default	 initializer.	This	 is	always	a	designated	initializer	for	a	class,	and	thus	can
be	used	 to	 initialize	 a	 subclass	 in	 a	 class	 hierarchy.	For	 example,	 the	 following
code	adds	a	designated	initializer	to	the	Welcome	class	that	calls	the	designated
initializer	of	its	superclass	Greeting:

	
class	Welcome	:	Greeting	{

	
//	Other	code	…

	
override	init()	{

	
super.init()

	
salutation	=	“Hello”

	
}

	
}

	
Notice	 that	 a	 designated	 initializer	 was	 added	 to	 the	 Welcome	 class	 and	 this
overrides	 the	 corresponding	 initializer	 in	 its	 subclass,	 thus	 the	 new	 initializer	 is
preceded	with	 the	override	 keyword.	Also	note	 in	 the	init()	method	 that	 the
subclass	 initializer	 is	called	first,	and	after	 that	 the	 instance	properties	are	set	 to
their	 initial	 values.	 The	 next	 set	 of	 initialization	 rules	 is	 specific	 to	 convenience
initializers:
	
2)	A	convenience	initializer	must	call	another	initializer	from	the	same	class.
	
3)	A	convenience	initializer	must	ultimately	call	a	designated	initializer.
	
These	rules	are	meant	to	guarantee	that	a	class	instance	is	completely	initialized
for	arbitrary	class	hierarchies	when	using	a	convenience	initializer.	The	following
code	creates	a	convenience	initializer	for	the	Welcome	class:

	
class	Welcome	:	Greeting	{

	
//	Other	code	…

	
convenience	init(greeter:	String,	message:	String)	{

	
self.init(greeter)

	
print(message)

	
}

	
}

	
Notice	in	the	convenience	initializer	a	designated	initializer	 is	called	first,	prior	to
other	 logic.	Now	let’s	demonstrate	your	use	of	Swift	classes.	 In	your	playground
delete	any	existing	code	and	add	the	following:
	
class	Greeting	{

	
var	description:	String	{

	
get	{

	
return	“Greeting”

	
}

	
}

	
deinit	{

	
print(“Goodbye”)

	
}

	
func	sayHello(name:	String)	->	String	{

	
return	“Hello,	\(name)!”

	
}

	
}

	
class	Welcome	:	Greeting	{

	
var	salutation:	String	=	“Hello”

	
override	var	description:	String	{

	
get	{

	
return	super.description	+	“	with	\(salutation)”

	
}

	
}

	
init(greeting:	String)	{

	
salutation	=	greeting

	
}

	
override	init()	{

	
super.init()

	
salutation	=	“Hello”

	
}

	
convenience	init(greeting:	String,	message:	String)	{

	
self.init(greeting:	greeting)

	
print(message)

	
}

	
override	func	sayHello(name:	String)	->	String	{

	
return	“\(salutation),	\(name)!”

	
}

	
}

	
var	greeter:	Welcome	=	Welcome(greeting:	“Greetings”)

	
greeter.sayHello(“welcome	 to	 the	 Swift	 Programming
Language”)

	
greeter	 =	 Welcome(greeting:	 ”Hola”,	 message:	 “This	 is	 a
Test”)

	
greeter.sayHello(“World”)

	
greeter.description

	
greeter	=	Welcome()

	
greeter.sayHello(“Earth”)

	

	

	
Figure	9-5.	Classes
	
The	Welcome	class	of	Figure	9-5	is	a	subclass	of	the	Greeting	class,	includes
several	 initializers,	and	demonstrates	overriding	of	properties	and	methods.	The

code	creates	a	Welcome	instance	assigned	to	the	variable	greeter	and	invokes
a	method	on	it.	Several	other	 instances	of	the	Welcome	class	are	created	using
the	different	 initializers	and	are	each	assigned	to	 the	greeter	variable,	 thereby
removing	any	reference	to	the	previous	instance	and	causing	it	to	be	deallocated.
You	 should	 experiment	with	 this	 code	 (e.g.	 changing	 arguments,	 creating	more
instances)	and	observe	the	output	in	the	sidebar.
	

Usage	Guidelines

	
Swift	structures	and	classes	provide	very	similar	functionality,	and	thus	a	common
question	 when	 developing	 Swift	 code	 is,	 “should	 I	 implement	 this	 code	 with	 a
structure	 or	 with	 a	 class”?	 This	 paragraph	 provides	 a	 few	 guidelines	 that	 you
should	consider	when	developing	named	types	as	structures	and	classes.
	
Side	Effects
	
As	you	 learned	earlier	 in	 this	book	structures	are	value	 types;	as	such	structure
instances	 are	 copied	 when	 passed	 as	 arguments	 to	 functions	 or	 methods,	 or
when	 assigned	 to	 a	 variable.	 As	 a	 result,	 use	 of	 a	 structure	 instance	 in	 these
scenarios	has	no	side	effects	(i.e.	the	values	of	properties	in	the	calling	instance
are	 not	 changed).	 This	 facilitates	 concurrency,	 because	execution	 of	 the	 calling
instance	 by	 multiple	 threads	 does	 not	 require	 synchronization	 of	 the	 structure
instance.	 On	 the	 other	 hand,	 an	 entire	 structure	 instance	 must	 be	 copied	 on
assignment	 or	 when	 passed	 as	 an	 argument	 or	 return	 value.	 This	 can	 impact
resource	utilization	and	performance	for	large	structure	instances.
	
Classes	 are	 reference	 types,	 thus	 the	state	 (i.e.	 properties)	 of	 a	 class	 instance
can	 be	 modified	 when	 passed	 as	 an	 argument	 to	 a	 function	 or	 method,	 or
returned	 as	 a	 value.	 Only	 a	 reference	 to	 a	 class	 instance	 is	 passed	 as	 an
argument	or	return	value,	however	as	a	result	this	can	cause	side	effects	where	a
program’s	 behavior	 may	 depend	 on	 its	 history.	 Reference	 types	 also	 enable
multiple	 functions/methods	 to	 modify	 the	 same	 class	 instance,	 which	 must	 be
handled	properly	in	your	code	to	avoid	concurrency	errors.
	
Code	Reuse
	
Swift	 classes	 support	 inheritance;	 whereby	 a	 new	 class	 inherits	 the	 state
(properties)	 and	 behavior	 (methods)	 of	 the	 pre-existing	 class	 and	 can	 create
additional	 properties	 and	 methods,	 or	 modify	 its	 existing	 specification.	 Swift
enables	single	class	inheritance	of	both	properties	and	methods,	meaning	a	class
can	have	only	one	parent.
	
Swift	 structures	 don’t	 support	 inheritance,	 but	 provide	 similar	 code	 reuse	 via
protocols	 and	 protocol	 extensions	 (you’ll	 learn	 about	 these	 in	 the	 next	 few
chapters).	 These	 language	 mechanisms	 enable	 you	 to	 provide	 a	 base
implementation	of	properties	and	methods	that	can	be	reused	by	any	number	of
structures,	and	are	not	limited	to	a	single	parent.
	

General	Recommendations
	
In	 summary,	 structures	 should	 be	 favored	 when	 implementing	 flat,	 small	 to
medium-sized	 data	 types	where	 copy-by-value	 semantics	 is	 consistent	 with	 the
problem	domain.	Examples	of	this	architecture	include	stateless	applications	and
applications	that	feature	concurrent	operations	by	multiple	threads.
	
Classes	 should	 be	 favored	 when	 implementing	 data	 types	 with	 shared	 state
where	hierarchical	 relationships	and	copy-by-reference	semantics	are	consistent
with	the	problem	domain.	In	addition,	the	Cocoa	frameworks	(and	many	3rd	party
APIs)	are	implemented	with	classes,	and	thus	you	must	implement	subclasses	to
reuse	and	extend	this	functionality.
	

Protocols

	
The	 Swift	 protocol	 type	 defines	 a	 specification,	 in	 terms	 of	 declarations	 of
properties,	 methods,	 and	 other	 requirements,	 that	 can	 be	 implemented	 by	 a
named	 type.	 In	 this	 way,	 a	 protocol	 can	 be	 used	 to	 capture	 similarities	 among
named	types	are	not	related.	Any	type	that	satisfies	the	requirements	of	a	protocol
(e.g.,	by	implementing	its	properties,	methods,	etc.)	conforms	to	that	protocol.
	
Definition
	
You	define	a	protocol	with	the	following	syntax:
	
Listing	9-9.	Protocol	Definition
	
protocol	ProtocolName	{

	
//	Protocol	definition

	
}

	
The	protocol	keyword	begins	the	definition	of	protocol,	then	its	name,	followed
by	 the	entire	definition	placed	within	 curly	braces.	The	 following	code	defines	a
protocol	named	Illustrate	that	declares	a	property	named	description	and
a	method	named	display():

	
protocol	Illustrate	{

	
var	description:	String	{	get	}

	
func	display()

	
}

	
A	 named	 type	 indicates	 that	 it	 adopts	 a	 protocol	 in	 its	 definition	 by	 placing	 the
protocol’s	name	after	the	type’s	name,	separated	by	a	colon.	If	multiple	protocols
are	adopted	 in	 the	type	definition,	a	comma	is	used	to	separate	each.	 If	a	class
adopting	 a	 protocol	 inherits	 from	 a	 superclass,	 the	 superclass	 name	 is	 listed
before	any	protocols	 it	adopts,	each	separated	by	a	comma.	The	following	code
defines	a	class	named	Welcome	whose	superclass	is	Greeting	and	adopts	the
Illustrate	protocol:

	
class	Welcome:	Greeting,	Illustrate	{

	
//	Class	definition	(including	protocol)

	
}

	
Protocol	Property	Declarations
	
A	protocol	can	declare	both	 instance	and	 type	properties,	each	with	a	particular
name	and	type.	The	declaration	doesn’t	specify	how	a	property	is	implemented	–
i.e.	whether	 it	 is	defined	as	a	stored	or	computed	property.	The	syntax	used	 for
declaring	a	protocol	property	is:
	
Listing	9-10.	Protocol	Property	Declaration
	
protocol	ProtocolName	{

	
var	PropertyName:	Type	{	get	set	}

	
}

	
As	shown	 in	 the	above	property	declaration,	 the	get	keyword	 indicates	 that	 the
property	 can	 be	 read,	 and	 the	 set	 keyword	 specifies	 that	 the	 property	 is
writeable.	 Protocol	 properties	 are	 always	 declared	 as	 variables	 using	 the	 var
keyword,	 they	 cannot	 be	 declared	 as	 constants.	 A	 property	 must	 be	 readable,
whereas	write	access	is	optional.	If	a	property	is	declared	as	read-only,	it	can	be
implemented	using	a	constant.	If	a	property	is	writeable,	 it	must	be	implemented
as	a	variable	stored	property	or	a	variable	computed	property.	Type	properties	are
declared	 in	 a	 protocol	 by	 prefixing	 the	var	 keyword	with	 the	static	 keyword.
The	 following	code	declares	a	 read-only	property	named	description	of	 type
String	for	the	Illustrate	protocol:

	
protocol	Illustrate	{

	
var	description:	String	{	get	}

	
//	Other	declarations

	
}

	

Protocol	Method	Declarations
	
A	protocol	can	declare	both	 instance	and	 type	methods,	written	using	 the	same
syntax	 of	 a	 method	 definition	 without	 the	 method	 body	 and	 surrounding	 curly
braces.	Type	methods	are	declared	 in	a	protocol	by	prefixing	the	func	keyword
with	the	static	keyword.	The	following	code	declares	the	display()	 instance
method	for	the	Illustrate	protocol:

	
protocol	Illustrate	{

	
//	Other	declarations

	
func	display()

	
}

	
As	you	 learned	earlier	 in	 the	Named	Types	section	on	Structures,	 enumerations
and	structures	are	value	types	and	hence	can	modify	their	stored	properties.	This
characteristic	effects	the	declaration	of	protocol	methods.	If	a	protocol	method	can
modify	 (i.e.	 mutate)	 stored	 properties	 of	 any	 named	 type	 (i.e.	 enumeration	 or
structure)	that	can	adopt	the	protocol,	the	method	declaration	should	be	preceded
with	 the	 mutating	 keyword.	 The	 following	 code	 updates	 the	 Illustrate
protocol	by	marking	the	display()	method	as	mutating:

	
protocol	Illustrate	{

	
//	Other	declarations

	
mutating	func	display()

	
}

	
As	a	 result,	any	enumeration	or	structure	 that	adopts	 the	Illustrate	 protocol
can	 update	 the	 stored	 properties	 of	 the	 instance	 in	 the	 display()	 method
definition.
	
Protocol	Initializer	Declarations
	
A	protocol	can	declare	initializers;	the	declaration	is	 identical	to	that	provided	for
class	 initializers	without	 the	 initializer	body	and	corresponding	curly	braces.	The
following	code	declares	an	initializer	for	the	Illustrator	protocol:

	
protocol	Illustrate	{

	
//	Other	declarations

	
init()

	
}

	
If	 you	 define	 a	 class	 that	 adopts	 a	 protocol,	 and	 one	 or	more	 of	 the	 protocol’s
initializers	can	be	implemented	by	a	designated	or	convenience	initializer,	then	the
corresponding	 initializer	 definition(s)	 must	 be	 preceded	 with	 the	 required
keyword.	 The	 following	 code	 defines	 a	 Greeting	 class	 that	 adopts	 the
Illustrate	protocol	with	a	designated	initializer:

	
class	Greeting:	Illustrate	{

	
required	init()	{

	
//	Initializer	definition

	
}

	
}

	
Protocol	Types
	
A	protocol	 is	 a	 first-class	 type;	 e.g.	 it	may	be	assigned	 to	 variables,	 passed	as
argument	and	returned	as	a	value	to/from	other	types,	or	included	as	the	type	of	a
container	such	as	an	array,	set,	or	dictionary.
	
Let’s	 demonstrate	 the	 use	 of	 Swift	 protocols.	 In	 your	 playground	 delete	 any
existing	code	and	add	the	following:
	
protocol	Atomic	{

	
var	protons:	UInt	{	get	}

	
var	neutrons:	UInt	{	get	}

	
var	electrons:	UInt	{	get	}

	
var	atomicNumber:	UInt	{	get	}

	
var	atomicMass:	UInt	{	get	}

	
func	isNeutral()	->	Bool

	
init(np:	UInt,	nn:	UInt,	ne:	UInt)

	
}

	
class	Atom:	Atomic	{

	
var	protons:	UInt	=	0

	
var	neutrons:	UInt	=	0

	
var	electrons:	UInt	=	0

	
var	atomicNumber():	UInt	{

	
get	{

	
return	protons

	
}

	
}

	
var	atomicMass():	UInt	{

	
get	{

	
return	protons	+	neutrons

	
}

	
}

	
func	isNeutral()	->	Bool	{

	
return	protons	==	electrons

	
}

	
required	init(np:	UInt,	nn:	UInt,	ne:	UInt)	{

	
protons	=	np

	
neutrons	=	nn

	
electrons	=	ne

	
}

	
}

	
var	hydrogen	=	Atom(np:1,	nn:0,	ne:1)

	
hydrogen.atomicNumber()

	
var	helium	=	Atom(np:2,	nn:2,	ne:2)

	
helium.atomicMass()

	
var	carbonIon	=	Atom(np:6,	nn:6,	ne:7)

	
carbonIon.isNeutral()

	

	
Figure	9-6.	Protocols
	
The	 Atomic	 protocol	 of	 Figure	 9-6	 declares	 properties,	 a	 method,	 and	 an
initializer.	 The	 Atom	 class	 conforms	 to	 this	 protocol,	 providing	 appropriate
definitions	for	each	of	its	requirements.	The	Atom	class	implements	the	initializer
declared	by	 the	protocol	 as	a	designated	 initializer	and	 thus	 is	marked	with	 the
required	keyword.	The	code	creates	several	 instances	of	 the	Atom	 class	and
invokes	 its	 methods	 accordingly.	 You	 should	 experiment	 with	 this	 code	 (e.g.
changing	arguments,	creating	more	atom	instances,	etc.)	and	observe	the	output
in	the	sidebar.
	

	

	

	

	

EXTENSIONS

	
Swift	extensions	enable	you	to	add	new	functionality	to	an	existing	enumeration,
structure,	class,	or	protocol.	The	new	functionality	becomes	part	of	the	type	and,
in	the	case	of	classes,	is	also	inherited	by	its	subclasses.	Extensions	can	even	be
used	on	 types	 for	which	you	don’t	have	 the	source	code,	such	as	 the	Swift	and
Cocoa	APIs.
	

Extension	Syntax

	
You	define	an	extension	with	the	following	syntax:
	
Listing	10-1.	Extension	Definition
	
extension	TypeName	{

	
//	Extension	functionality

	
}

	
An	extension	begins	with	the	extension	keyword,	 followed	by	the	name	of	 the
type	 (e.g.	 enumeration,	 structure,	 class,	 or	 protocol)	 to	 which	 you’re	 adding
functionality.	The	following	code	begins	the	definition	of	an	extension	to	the	Atom
class:
	
extension	Atom	{

	
//	Extension	functionality

	
}

	
Extensions	 are	 used	 to	 add	 new	 functionality	 to	 an	 existing	 type;	 you	 cannot
override	 existing	 functionality	 with	 an	 extension.	 As	 a	 result	 the	 names	 for
extension	properties,	methods,	etc.	must	be	unique	within	the	corresponding	type.
	

Adding	Functionality

	
Extensions	can	be	used	to	add	the	following	functionality	to	existing	types:
	
-	Add	computed	instance	and	type	properties
	
-	Add	instance	and	type	methods
	
-	Add	initializers
	
-	Add	subscripts
	
-	Add	and	use	new	nested	types
	
-	Adopt	and	conform	to	a	protocol
	
Extension	Computed	Properties
	
You	 can	 define	 type	 and	 instance	 computed	 properties	 in	 an	 extension	 –	 you
cannot	add	stored	properties	in	an	extension.	In	addition,	if	you	create	a	writeable
computed	property	(via	the	set	keyword),	you	can	only	store	a	value	via	a	stored
property	that	exists	in	the	type	you	are	extending.	The	following	extension	adds	a
computed	property	named	detailedDescription	for	the	Book	structure:

	
extension	Book	{

	
var	detailedDescription:	String	{

	
get	{

	
return	 “Title:	 \(title),	 author:	 \(author),	 description:	 \
(description)”

	
}

	
}

	
Extension	Methods
	

An	extension	can	define	new	type	and	instance	methods;	the	syntax	is	identical	to
that	used	 in	a	 type	definition.	The	 following	extension	adds	an	 instance	method
named	addKeyword(_:)	to	the	Book	structure:

	
extension	Book	{

	
func	addKeyword(keyword:	String)	->	String	{

	
keywords.append(keyword)

	
}

	
}

	
Instance	methods	added	with	an	extension	can	also	modify	the	instance	itself.	If
an	extension	 to	a	value	 type	 (i.e.	a	 structure	or	enumeration)	defines	a	method
that	modifies	one	or	more	of	 its	 stored	properties,	 it	must	be	preceded	with	 the
keyword	mutating,	 just	 like	mutating	methods	 from	an	original	 implementation.
The	 following	 code	 modifies	 the	 previous	 extension	 by	 marking	 the
addKeyword(_:)	method	as	mutating:

	
extension	Book	{

	
mutating	func	addKeyword(keyword:	String)	->	String	{

	
keywords.append(keyword)

	
}

	
}

	
Extension	Initializers
	
In	 an	 extension	 you	 can	 define	 new	 initializers,	 thereby	 providing	 additional
initialization	 options	 when	 creating	 new	 type	 instances.	 You	 can	 define
convenience	 initializers	 (prefaced	with	 the	convenience	 keyword)	with	a	 class
extension;	however	you	cannot	define	designated	initializers	or	de-initializers	with
a	 class	 extension.	 The	 following	 extension	 for	 the	 Book	 structure	 defines	 an
initializer:
	
extension	Book	{

	
init(title:	String,	author:	String,	description:	String)	{

	
self.init(title:	 title,	 author:	 author,	 keywords:	 [],
description:	description)

	
}

	
}

	
Notice	that	this	initializer	calls	the	memberwise	initializer	of	the	Book	structure.	A
value	 type	 (i.e.	 enumeration	 or	 structure)	 extension	 can	 only	 call	 a	 default	 or
memberwise	 initializer	 if	 the	 type	 provides	 default	 values	 for	 all	 of	 its	 stored
properties	and	doesn’t	define	any	custom	initializers.	A	class	extension	 initializer
can	 call	 a	 designated	 or	 convenience	 initializer,	 in	 accordance	 with	 the	 class
Inheritance	and	Initialization	rules	described	earlier.
	
Extension	Subscripts
	
You	 can	 define	 subscripts	 for	 enumerations,	 structures,	 and	 classes	 in	 an
initializer.	The	 following	extension	 for	 the	Book	structure	adds	a	subscript	 for	 its
keywords	property:

	
subscript(index:	Int)	->	String	{

	
get	{

	
return	self.keywords[index]

	
}

	
set(newValue)	{

	
self.keywords[index]	=	newValue

	
}

	
}

	
Extension	Nested	Types
	

Extensions	can	add	new,	nested	types	to	existing	enumerations,	structures,	and
classes.	 The	 following	 extension	 for	 the	 Book	 structure	 defines	 a	 nested	 type
enumeration	named	Category	that	lists	possible	book	categories:

	
extension	Book	{

	
enum	Category	{

	
case	Fiction,	Non-Fiction,	Art,	Philosophy,	Travel

	
}

	
}

	
Adopting	a	Protocol	in	an	Extension
	
An	extension	can	be	used	to	adopt	and	conform	to	a	protocol.	When	used	in	this
manner	 all	 the	 properties,	methods,	 etc.	 of	 the	protocol	 are	 implemented	 in	 the
extension.	The	syntax	for	extending	a	type	to	adopt	a	protocol	is:
	
Listing	10-2.	Extension	Adopting	a	Protocol	Definition
	
extension	TypeName:	ProtocolName	{

	
//	Protocol	implementation

	
}

	
The	 following	code	defines	a	protocol	named	ISBNType	with	a	single	read-only
property	 named	 createISBN,	 and	 a	 corresponding	 extension	 to	 the	 Book
structure	that	adopts	the	ISBNType	protocol:

	
protocol	ISBNType	{

	
func	createISBN()	->	String

	
}

	
extension	Book:	ISBNType	{

	

func	createISBN()	->	String	{

	
return	“a-bcd-efgh-ijkl-m”

	
}

	
}

	
Now	 let’s	 demonstrate	 the	 use	 of	 Swift	 extensions	 for	 adding	 the	 above
functionality.	In	your	playground	delete	any	existing	code	and	add	the	following:
	
struct	Book	{

	
var	title:	String

	
var	author:	String

	
var	keywords:	[String]	=	[]

	
var	description:	String

	
}

	
protocol	ISBNType	{

	
func	createISBN()	-	>	String

	
}

	
extension	Book	{

	
var	detailedDescription:	String	{

	
get	{

	
return	 “Title:	 \(title),	 Author:	 \(author),	 Description:	 \
(description)”

	
}

	
mutating	func	addKeyword(keyword:	String)	->	String	{

	
keywords.append(keyword)

	
}

	
init(title:	String,	author:	String,	description:	String)	{

	
self.init(title:	 title,	 author:	 author,	 keywords:	 [],
description:	description)

	
}

	
subscript(index:	Int)	->	String	{

	
get	{

	
assert((!self.keywords.isEmpty	&&	(index>=0),	 “Index	out	of
range”)

	
return	self.keywords[index]

	
}

	
set(newValue)	{

	
assert((!self.keywords.isEmpty	&&	(index>=0),	 “Index	out	of
range”)

	
self.keywords[index]	=	newValue

	
}

	
}

	
}

	
extension	Book:	ISBNType	{

	
func	createISBN()	->	String	{

	
return	“a-bcd-efgh-ijkl-m”

	

}

	
}

	

	
var	 book	 =	 Book(title:	 “Swift	 Programming	 Nuts	 and	 Bolts”,
author:	 “Keith	 Lee”,	 description:	 “This	 book	 provides	 a
comprehensive	overview	of	the	Swift	programming	language”)

	
book.detailedDescription

	
book.addKeyword[“Swift”]

	
book[0]

	
book.createISBN()

	

	
Figure	10-1.	Extensions
	
The	code	of	Figure	10-1	begins	by	defining	a	Book	structure	that	declares	several
properties.	Next	 it	defines	an	ISBNType	 protocol	 that	declares	a	 single	method
named	 createISBN().	 The	 first	 Book	 extension	 implements	 an	 additional
property,	 method,	 initializer,	 and	 subscript	 for	 the	 structure.	 The	 second	 Book
extension	conforms	to	the	ISBNType	protocol,	providing	an	appropriate	definition
for	the	createISBN()	method.	The	code	then	creates	an	instance	of	the	Book
structure	 and	 invokes	 its	methods	 accordingly.	 You	 should	 experiment	with	 this
code	(e.g.	changing	arguments,	creating	more	Book	instances,	etc.)	and	observe
the	output	in	the	sidebar.
	

Protocol	Extensions

	
In	the	previous	section	you	learned	how	to	add	new	functionality	to	a	named	type
by	 implementing	extensions.	Swift	even	enables	you	 to	add	new	 functionality	 to
protocols	 using	 extensions.	 Using	 a	 protocol	 extension	 you	 can	 add	 new
functionality	 to	 a	 protocol,	 and	 provide	 default	 implementations	 for	 a	 protocol’s
existing	 properties	 and	 methods.	 As	 a	 result,	 types	 that	 conform	 to	 these
protocols	automatically	receive	this	custom	functionality,	thus	extending	their	use
and	applicability.	The	syntax	for	writing	a	protocol	extension	is:
	
Listing	10-3.	Protocol	Extension	Definition
	
extension	ProtocolName	{

	
//	 New	 functionality	 or	 default	 implementations	 for
properties	and	methods

	
}

	
The	 following	code	defines	a	protocol	extension	 for	 the	ISBNType	protocol	 that
adds	a	new	instance	method	called	getBarcodeImage():

	
extension	ISBNType	{

	
func	getBarcodeImage()	->	[UInt8]	{

	
//	Functionality	to	return	barcode	image	file

	
}

	
}

	
Thus	 any	 type	 that	 adopts	 the	 ISBNType	 protocol	 receives	 the	 new
getBarcodeImage()	 method.	 A	 protocol	 extension	 can	 also	 provide	 default
implementations	of	an	existing	protocol’s	properties	and	methods.	The	 following
code	 defines	 a	 default	 implementation	 of	 the	 createISBN()	 method	 for	 the
ISBNType	protocol.

	
extension	ISBNType	{

	

func	createISBN()	->	String	{

	
return	“a-bcd-efgh-ijkl-m”

	
}

	
}

	
Types	that	conform	to	the	ISBNType	protocol	receive	the	default	implementation
provided	in	the	extension,	therefore	removing	the	need	to	define	one.	Note	that	if
a	 conforming	 type	 provides	 its	 own	 implementation	 of	 a	 required	 method	 or
property,	 that	 implementation	 will	 be	 used	 instead	 of	 the	 one	 provided	 by	 the
extension.
	
Adding	Constraints
	
Normally	 the	 functionality	 of	 a	 protocol	 extension	 is	 available	 to	 all	 types	 that
conform	 to	 the	 protocol.	 However	 Swift	 enables	 you	 to	 set	 constraints	 on	 a
protocol	extension,	thereby	controlling	which	(protocol	conforming)	types	have	the
functionality.	 A	 constraint	 is	 set	 on	 a	 protocol	 extension	 using	 a	where	 clause
written	after	the	name	of	the	protocol	being	extended;	the	syntax	is:
	
Listing	10-5.	Protocol	Extension	With	Constraints	Definition
	
extension	ProtocolName	where	 TypeName	 :	 ConstraintProtocols
{

	
//	Extension	definition

	
}

	
As	shown	above,	the	where	clause	is	written	as	a	type,	followed	by	a	colon,	then
one	or	more	protocols	(each	separated	by	a	comma)	that	define	the	constraints.
The	 type	 in	 a	 where	 clause	 is	 often	 specified	 using	 the	 Self	 type,	 which
represents	a	placeholder	 for	 the	 type	 that’s	going	 to	conform	to	 that	protocol.	 In
other	words,	if	the	type	conforming	to	the	protocol	extension	also	conforms	to	the
protocol(s)	specified	in	the	where	clause,	it	has	access	to	the	extension’s	default
implementations.	 This	 enables	 you	 to	 easily	 extend	 the	 functionality	 of	 types
through	 protocol	 conformance.	 As	 an	 example,	 the	 following	 code	 defines	 two
protocols	named	BookType	and	CoverType:

	

protocol	BookType	{

	
var	title:	String	{	get	}

	
var	author:	String	{	get	}

	
var	description:	String	{	get	}

	
}

	
protocol	CoverType	{

	
var	coverImage:	String	{	get	}

	
}

	
Now	we	 can	 define	 an	 extension	 for	 the	CoverType	 that	 uses	 a	 constraint	 to
control	which	types	have	access	to	the	functionality	implemented	in	the	extension:
	
extension	CoverType	where	Self	:	BookType	{

	
var	coverImage:	String	{

	
get	{

	
return	“\(self.title).png”

	
}

	
}

	
}

	
The	CoverType	extension	uses	a	where	 clause	with	a	constraint	on	 the	Self
type	to	control	which	type	 instances	conforming	to	the	CoverType	have	access
to	 the	 default	 implementations	 provided	 by	 the	 extension.	 The	 following	where
clause	limits	the	types	to	those	that	implement	the	BookType	protocol:

	
where	Self	:	BookType

	
This	 means	 that	 the	 CoverType	 extension	 has	 access	 to	 the	 properties	 and

methods	specified	for	BookType	 implementations.	Now	let’s	 illustrate	 the	use	of
protocol	 extensions	 with	 an	 example;	 in	 your	 playground	 modify	 your	 existing
code	as	shown	in	Figure	10-1	with	the	following:
	
protocol	BookType	{

	
var	title:	String	{	get	}

	
var	author:	String	{	get	}

	
var	description:	String	{	get	}

	
}

	
protocol	CoverType	{

	
var	coverImage:	String	{	get	}

	
}

	
extension	CoverType	where	Self	:	BookType	{

	
var	coverImage:	String	{

	
get	{

	
return	“\(self.title).png”

	
}

	
}

	
}

	
struct	Book:	BookType,	CoverType	{

	
var	title:	String

	
var	author:	String

	
var	keywords:	[String]	=	[]

	
var	description:	String

	
}

	
extension	Book	{

	
init(title:	String,	author:	String,	description:	String)	{

	
self.init(title:	 title,	 author:	 author,	 description:
description,	keywords:	[])

	
}

	
}

	
var	 book	 =	 Book(title:	 “Swift	 Programming	 Nuts	 and	 Bolts”,
author:	 “Keith	 Lee”,	 description:	 “This	 book	 provides	 a
comprehensive	overview	of	the	Swift	programming	language”)

	
book.coverImage

	

	
Figure	10-2.	Protocol	Extensions
	
First	 the	 code	 displayed	 in	 Figure	 10-2	 defines	 two	 protocols,	 BookType	 and
CoverType.	 Next	 the	 code	 defines	 a	 CoverType	 extension	 that	 includes	 a
default	implementation	for	the	coverImage	property.	As	this	extension	contains	a
where	clause	for	types	that	conform	to	the	BookType	protocol,	 it	has	access	to
its	title	property.	The	CoverType	extension	implementation	uses	this	to	return
an	 appropriate	 value	 for	 the	 coverImage	 property.	 Next	 the	 Book	 structure
conforms	to	these	protocols	by	defining	the	properties	specified	in	the	BookType
protocol;	it	obtains	the	coverImage	property	(and	its	default	implementation)	via
the	 CoverType	 extension.	 The	 code	 then	 demonstrates	 creation	 of	 a	 Book
instance	 and	 accessing	 its	 coverImage	 property,	 provided	 via	 the	 protocol
extension.	As	demonstrated	 in	 this	example,	 the	 functionality	 implemented	by	a
protocol	 extension	 is	 immediately	 available	 to	 any	 type	 that	 conforms	 to	 the
protocol.	 Therefore	 multiple	 types	 (e.g.	 enumerations,	 structures,	 and	 classes)
can	 be	 “decorated”	 with	 the	 new	 functionality	 in	 this	 way.	 In	 addition,	 because
named	types	can	conform	to	multiple	protocols,	protocol	extensions	enable	you	to
add	behaviors	for	multiple	protocols.	Together,	protocols	and	protocol	extensions
are	 the	 basis	 for	Protocol-Oriented	Programming,	 a	 powerful	 new	programming
style	that	can	significantly	impact	how	you	design	and	implement	software.
	

	

	

	

	

GENERICS

	
Generic	 programming	 is	 a	 style	 of	 computer	 programming	 that	 enables	 you	 to
create	software	that	 is	parameterized	with	respect	to	types.	This	abstraction	can
make	 you	 a	 more	 efficient	 and	 productive	 programmer	 by	 both	 reducing	 code
duplication	and	also	decreasing	programming	errors.	For	example,	 consider	 the
following	 function	 named	 swapInts(_:_:)	 that	 exchanges	 the	 values	 of	 two
variables	of	integer	type:
	
func	swapInts(inout	item1:	Int,	inout	item2:	Int)	{

	
let	temp	=	item1

	
item1	=	item2

	
item2	=	temp

	
}

	
Now	 if	 you	want	 to	 exchange	 two	 variables	 of	 a	 different	 type,	 for	 example	 the
String	type,	you	have	to	write	a	new	function:

	
func	swapStrings(inout	item1:	String,	inout	item2:	String)	{

	
let	temp	=	item1

	
item1	=	item2

	
item2	=	temp

	
}

	
If	you	want	to	exchange	two	variables	of	yet	another	type,	again	you	have	to	write
a	new	function.	 In	effect,	even	 though	 the	 functionality	 is	 identical	 in	each	case,
you	have	to	duplicate	it	for	each	type	supported.	Generics	solve	this	problem	so
that	 you	 can	 parameterize	 code	 with	 respect	 to	 the	 type(s)	 specified	 when	 the
functionality	is	utilized,	thereby	eliminating	code	duplication.	With	Swift	support	for
generics	the	above	function	can	be	written	as	follows:
	
func	swap<T>(inout	item1:	T,	inout	item2:	T)	{

	
let	temp	=	item1

	
item1	=	item2

	
item2	=	temp

	
}

	
Swift	 provides	 support	 for	 the	 creation	 of	 both	 generic	 functions	 and	 generic
types,	thereby	reducing	the	number	of	functions	and	types	you	have	to	create	and
maintain.	In	addition	to	the	elimination	of	code	duplication,	generics	also	preserve
type	safety,	thereby	avoiding	runtime	type	checks	and	type	casting.	Generics	are
one	 of	 the	 language’s	most	 powerful	 features,	 and	much	 of	 the	 Swift	 Standard
Library	uses	generics.	In	this	chapter	you’ll	learn	how	to	develop	generic	functions
and	types	in	Swift.
	

Generic	Functions

	
Swift’s	 support	 for	 the	 creation	 of	 generic	 functions	 enables	 you	 to	 define
functions	and	closure	expressions	that	work	with	any	type.	The	syntax	for	defining
a	generic	function	differs	from	the	standard	function	definition	as	follows:
	
Listing	11-1.	Generic	Function	Definition
	
func	name<Type	Parameters>(parameters)	->	returnType	{

	
//	Function	body

	
}

	
The	 type	 parameters,	 declared	 within	 angle	 brackets	 immediately	 after	 the
function	 name,	 are	 used	 to	 specify	 and	 name	 placeholder	 types	 that	 are
substituted	 for	 later	 when	 you	 invoke	 the	 function	 with	 the	 actual	 type.	 The
swap(_:_:)	 function	 introduced	 one	 parameterized	 type	within	 angle	 brackets
named	T:

	
func	swap<T>(inout	item1:	T,	inout	item2:	T)	{

	
let	temp	=	item1

	
item1	=	item2

	
item2	=	temp

	
}

	
Type	parameters	are	used	to	define	a	function’s	parameter	type(s),	return	type,	or
as	 a	 type	 annotation	 within	 the	 body	 of	 the	 function.	 The	 type	 parameter(s)	 is
replaced	 with	 the	 actual	 type	 when	 the	 function	 is	 called.	 The	 following	 code
invokes	the	generic	swap(_:_:)	function	on	two	integer	values:

	
var	value1	=	5

	
var	value2	=	10

	
swap<Int>(&value1,	&value2)	//	Now	value1	=	10,	value2	=	5

	
Notice	 in	 the	 above	 function	 call	 the	 type	 parameter	 Int	 is	 specified	 in	 angle
brackets	after	the	function	name.	When	you	define	a	generic	function,	the	name
you	 provide	 for	 a	 placeholder	 type	 can	 be	 simple	 (i.e.	 a	 single	 uppercase
character	T	 as	 in	 the	 example	 above)	 or	 more	 descriptive.	 In	 either	 case	 it	 is
recommended	that	the	name	be	written	with	upper	camel	case	notation,	to	clarify
in	the	code	that	it	is	a	placeholder	for	a	type,	not	a	type	instance.
	
Let’s	 demonstrate	 the	 use	 of	 generic	 functions.	 In	 your	 playground	 delete	 any
existing	code	and	add	the	following:
	
func	swap<T>(inout	item1:	T,	inout	item2:	T)	{

	
let	temp	=	item1

	
item1	=	item2

	
item2	=	temp

	
}

	
var	value1	=	“Hello”

	
var	value2	=	“Goodbye”

	
swap(&value1,	&value2)

	
value1

	
value2

	

	
Figure	11-1.	Generic	Functions
	
The	swap(_:_:)	 function	shown	 in	Figure	11-1	 interchanges	 two	values,	using
generics	to	enable	declaration	of	the	type	of	the	values	at	function	invocation.	The
code	creates	the	values	and	invokes	the	function,	then	displays	the	new	values.
You	should	experiment	with	this	code	(e.g.	changing	both	the	type	parameter	and
the	supplied	values)	and	observe	the	output	in	the	sidebar.
	

Generic	Types

	
Swift	 enables	 you	 to	 create	 generic	 types	 for	 enumerations,	 structures,	 and
classes.	The	syntax	 for	 defining	a	generic	 type	 is	 identical	 to	 the	 standard	 type
definition,	 with	 the	 addition	 of	 the	 type	 parameter(s)	 (declared	 within	 angle
brackets)	 placed	 immediately	 after	 the	 type	 name.	 The	 following	 provides	 a
pseudo-code	definition	for	a	generic	class	called	Bag:

	
class	Bag<T>	{

	
init()	{	…	}

	
init(elements:	Bag<T>)	{…}

	
func	contains(item:	T)	->	Bool	{…}

	
func	get(item:	T)	->	T?	{…}

	
func	add(item:	T)	{…}

	
func	remove(item:	T)	{…}

	
}

	
Each	 type	parameter	 is	 used	 to	 define	 a	 parameterized	 type	 for	 a	 custom	 type
anywhere	 within	 its	 definition,	 e.g.	 for	 the	 custom	 type’s	 properties,	 methods,
initializers,	etc.	The	type	parameter(s)	is	replaced	with	the	actual	type(s)	when	an
instance	of	 the	 type	 is	 created.	The	 following	 code	creates	a	Bag	 instance	 that
holds	integer	values:
	
var	bag	=	Bag<Int>()

	

Associated	Types

	
Associated	types	are	used	to	parameterize	types	within	a	protocol	definition.	They
work	by	giving	a	placeholder	name	(i.e.	alias)	to	a	type	that	 is	used	as	part	of	a
protocol.	Multiple	 aliases	 can	 be	 specified,	 each	with	 its	 own	name.	The	 actual
type(s)	 is	 not	 specified	 until	 the	 protocol	 is	 adopted.	 A	 placeholder	 name	 is
specified	 using	 the	 typealias	 keyword.	 The	 following	 code	 modifies	 the
BookType	 protocol	 from	 the	previous	chapter	by	adding	an	associated	 type	 for
the	keywords	property:

	
protocol	BookType	{

	
typealias	ItemType

	
var	title:	String	{	get	}

	
var	author:	String	{	get	}

	
var	description:	String	{	get	}

	
var	keywords:	[ItemType]

	
}

	
Next	the	Book	structure	conforms	to	the	protocol,	specifying	the	associated	type
ItemType	to	be	of	type	String,	which	is	inferred	when	the	type	parameter	of	the
keywords	property	is	specified:
	
struct	Book:	BookType,	CoverType	{

	
typealias	ItemType	=	String

	
var	title:	String

	
var	author:	String

	
var	keywords:	[ItemType]	=	[]

	
var	description:	String

	
}

	

Generic	Type	Constraints

	
Swift	enables	you	to	define	type	constraints	on	generic	functions	and	types,	thus
controlling	which	type	parameters	can	be	used	when	invoking	generic	functions	or
creating	 generic	 type	 instances.	 Specifically	 the	 constraint	 controls	 whether	 a
generic	 type	 parameter	 inherits	 from	 a	 specific	 class,	 or	 conforms	 to	 a	 specific
protocol(s).	The	syntax	for	applying	a	type	constraint	on	a	generic	function	where
the	type	inherits	from	a	class	is:
	
Listing	11-2.	Generic	Function	With	Class	Type	Constraints	Definition
	
func	name<T:	ParentClass>(parameters)	->	returnType	{

	
//	Function	body

	
}

	
and	the	syntax	if	the	type	conforms	to	a	specific	protocol(s)	is:
	
Listing	11-3.	Generic	Function	With	Protocol	Type	Constraints	Definition
	
func	name<T:	Protocol(s)>(parameters)	->	returnType	{

	
//	Function	body

	
}

	
You	 apply	 a	 type	 constraint	 on	 a	 generic	 type	 in	 a	 similar	 manner,	 with	 the
constraint	 placed	 within	 angle	 brackets	 after	 the	 type	 name.	 Now	 let’s
demonstrate	 the	 use	 of	 generic	 type	 constraints	 with	 an	 example;	 in	 your
playground	delete	an	existing	code	and	add	the	following:
	
protocol	BagType	{

	
typealias	ElementType

	
func	contains(item:	ElementType)	->	Bool

	
func	isEmpty()	->	Bool

	

func	size()	->	Int

	
func	get(item:	ElementType)	->	ElementType?

	
mutating	func	add(item:	ElementType)

	
mutating	func	remove(item:	ElementType)

	
}

	

	
struct	Bag<T:	Hashable>:	BagType	{

	
var	elements:	Dictionary<T,	T>

	
init()	{

	
self.elements	=	[:]

	
}

	
init(items:	Bag<T>)	{

	
self.elements	=	items.elements

	
}

	
func	contains(item:	T)	->	Bool	{

	
return	elements[item]	!=	nil

	
}

	
func	isEmpty()	->	Bool	{

	
return	elements.isEmpty

	
}

	
func	size()	->	Int	{

	
return	elements.count

	
}

	
func	get(item:	T)	->	T?	{

	
return	elements[item]

	
}

	
mutating	func	add(item:	T)	{

	
elements[item]	=	item

	
}

	
mutating	func	remove(item:	T)	{

	
elements.removeValueForKey(item)

	
}

	
}

	

	
var	bagONames	=	Bag<String>()

	
bagONames.add(“Curly”)

	
bagONames.add(“Larry”)

	
bagONames.size()

	
bagONames.contains(“Curly”)

	
var	bagONumbers	=	Bag<Int>()

	
bagONumbers.add(123)

	

bagONumbers.isEmpty()

	

	
Figure	11-2.	Generic	Type	Constraints
	
The	 code	 of	 Figure	 11-2	 begins	 by	 defining	 a	BagType	 protocol	 that	 specifies
requirements	for	several	methods,	along	with	a	type	alias.	Next	 the	generic	Bag
structure	 conforms	 to	 the	 BagType	 protocol,	 specifying	 a	 type	 constraint	 that
mandates	instances	of	the	Bag	type	can	only	be	created	using	a	type	parameter
that	conforms	to	the	Hashable	protocol.	This	means	that	items	in	a	Bag	instance
can	be	stored	as	 the	keys	of	a	Swift	Dictionary.	Some	 types	 that	conform	to
the	Hashable	 protocol	 include	 the	 Swift	String	 and	 numeric	 types.	 Next	 the
code	creates	several	instances	of	the	Bag	structure	with	different	type	parameters
and	 invokes	 its	methods	accordingly.	You	should	experiment	with	this	code	(e.g.

changing	arguments,	creating	more	atom	instances,	etc.)	and	observe	the	output
in	the	sidebar.
	

	

	

	

	

ERROR	HANDLING

	
Let’s	face	it;	errors	are	a	significant	part	of	the	software	development	life	cycle.	In
fact,	how	your	code	deals	with	errors	 is	critical	 to	 implementing	quality	software.
Runtime	errors	that	impact	the	operation	or	performance	of	a	program	can	be	due
to	 a	 variety	 of	 causes,	 such	 as	 incorrect	 user	 input,	 system	 issues,	 or
programming	errors.	 In	 this	 chapter	 you’ll	 learn	how	 to	 use	Swift’s	mechanisms
and	APIs	for	detecting	and	handling	recoverable	errors	at	runtime.
	

Representing	Errors

	
The	 ErrorType	 protocol	 is	 used	 to	 create	 error	 instances	 that	 encapsulate
detected	 runtime	error	conditions.	Enumerations	are	 typically	used	 to	 implement
the	protocol,	with	associated	values	 to	provide	detailed	 information	on	 the	error
condition.	 The	 following	 code	 defines	 an	 enumeration	 named	 AccountError
that	conforms	to	the	ErrorType	protocol:

	
enum	AccountError:	ErrorType	{

	
case	InvalidAccount

	
case	UnknownAccount

	
case	TransferFundsError(message:	String)

	
case	WithdrawFundsError(message:	String)

	
case	DepositFundsError(message:	String)

	
}

	
When	 your	 code	 detects	 a	 recoverable	 runtime	 error	 condition,	 it	 creates	 an
ErrorType	 instance	 that	 represents	 the	 specifics	 of	 the	 condition.	 The
Foundation	 Framework	 NSError	 class	 conforms	 to	 the	 ErrorType	 protocol,
thereby	enabling	existing	functionality	(such	as	the	Cocoa	frameworks)	that	uses
NSError	instances	to	work	within	the	Swift	error	handling	framework.

	

Throwing	Errors

	
Each	 function,	 closure,	 or	 method	 that	 can	 throw	 an	 error	 must	 be	 marked
accordingly	 in	 its	definition.	This	 is	specified	with	 the	throws	keyword,	which	 is
placed	 in	 the	corresponding	declaration	between	 its	parameters	and	 return	 type
(immediately	 prior	 to	 the	 curly	 brace	 signifying	 the	 beginning	 of	 its	 statement
body).	 The	 following	 code	 defines	 a	 protocol	 named	 BankAccountType	 with
methods	that	can	throw	errors:
	
protocol	BankAccountType	{

	
func	getBalance(account:	UInt)	throws	->	Double

	
func	deposit(account:	UInt,	amount:	Double)	throws	->	Double

	
func	 withdraw(account:	 UInt,	 amount:	 Double)	 throws	 ->
Double

	
func	 transfer(fromAccount:	 UInt,	 fromAmount:	 Double,
toAccount:	UInt,	toAmount:	Double)	throws	->	Double

	
}

	
If	 your	code	detects	a	 runtime	error	condition	you	signal	 it	by	 throwing	an	error
using	 the	 throw	 keyword,	 followed	 by	 the	 name	 of	 the	 error	 instance	 that
encapsulates	 information	about	 the	error.	Note	 that	you	can	only	 throw	an	error
within	the	body	of	a	method,	function,	or	closure	that	has	been	defined	to	support
throwing	 errors	 (per	 its	throws	 keyword	 explained	 above).	 The	 following	 code
throws	an	error	in	the	getBalance(_:)method	of	the	BankAccount	structure	if
its	account	input	argument	has	a	value	of	zero:

	
struct	BankAccount:	BankAccountType	{

	
func	getBalance(account:	UInt)	throws	->	Double	{

	
guard	account	!=	0	else	{

	
throw	AccountError.InvalidAccount

	
}

	
//	logic	to	retrieve	account	balance

	
}

	
}

	
Conversely,	when	your	code	invokes	a	function,	closure,	or	method	that	can	throw
an	error,	you	must	preface	 the	call	with	 the	try	 keyword.	This	makes	 it	explicit
that	 the	 function	 can	 throw	 an	 error	 and	 that,	 if	 thrown,	 a	 transfer	 of	 control
occurs;	as	such	the	code	immediately	following	the	function	may	not	be	run.	The
following	 code	 invokes	 the	 getBalance(_:)method	 on	 an	 BankAccount
instance,	prefacing	the	call	with	the	try	keyword	accordingly:

	
var	bankAccount	=	BankAccount()

	
var	currentBalance	=	try	bankAccount.getBalance(1234321)

	

Handling	Errors

	
You’ve	learned	how	to	represent,	create,	and	throw	errors	when	your	code	detects
runtime	error	conditions.	Next	you’ll	learn	how	to	catch	and	handle	errors	in	your
code.	When	 your	 code	 throws	 an	 error	 it	 causes	 a	 transfer	 of	 control	 from	 the
current	 scope	 to	 the	 first	 outer	 scope	 capable	 of	 handling	 the	 error.	 This	 is
accomplished	by	wrapping	the	call	to	a	function	that	throws	an	error	using	a	do-
catch	statement	whose	syntax	is:

	
Listing	12-1.	Do-Catch	Statement	Definition
	
do	{

	
//	Code	which	calls	a	function	that	can	throw	error

	
//	Additional	code	executed	if	no	error	thrown

	
}

	
catch	ErrorType	instances	{

	
//	Error	handling	code

	
}

	
As	 shown	 above	 each	 function,	 closure,	 or	 method	 that	 can	 throw	 an	 error	 is
wrapped	in	a	do-catch	statement.	A	do	statement	is	used	to	create	a	containing
scope	that	can	be	used	to	transfer	control	to	catch	clauses	for	one	or	more	error
conditions.	The	syntax	for	a	do	statement	is:

	
do	{

	
//	Statements

	
}

	
A	catch	clause	 is	specified	after	a	do	statement	 for	each	possible	ErrorType
instance,	 hence	 the	 number	 of	 catch	 clauses	 is	 a	 function	 of	 the	 number	 of
different	ErrorTypes	that	can	be	thrown	by	a	function.	The	list	of	caught	errors
must	be	exhaustive	and,	as	with	the	switch	statement,	pattern	matching	support

is	 provided.	 The	 following	 code	 invokes	 the	 getBalance(_:)method	 on	 a
BankAccount	instance,	and	wraps	the	call	in	an	appropriate	do-catch	block:

	
var	bankAccount	=	BankAccount()

	
let	account	=	0

	
do	{

	
var	currentBalance	=	try	bankAccount.getBalance(account)

	
}

	
catch	AccountError.InvalidAccount	{

	
print(“Account	number	invalid,	please	try	again”)

	
}

	
As	mentioned	earlier,	when	an	error	is	thrown,	program	execution	transfers	from
the	 current	 scope	 to	 the	 first	 outer	 scope	 capable	 of	 handling	 the	 error.	 In
scenarios	where	errors	can	be	thrown,	the	error	handling	framework	also	includes
support	for	executing	cleanup	code	via	a	defer	statement.	This	statement	can	be
used	to	perform	any	cleanup	actions	(e.g.	closing	files,	network	connections,	etc.)
that	should	be	done	whether	or	not	an	error	has	occurred.	The	syntax	 for	using
the	defer	statement	is:

	
Listing	12-2.	Defer	Statement	Definition
	
defer	{

	
//	Code	that	performs	cleanup	actions

	
}

	
Code	placed	within	the	body	of	the	defer	statement	is	run	when	the	current	scope
is	 exited	 –	 for	 example	 immediately	 prior	 to	 returning	 from	 a	 function	 call.	 The
body	of	 the	defer	statement	cannot	contain	 transfer-of-control	statements	 (e.g.
continue	or	return)	nor	can	it	contain	code	that	throws	errors.

	
Now	 let’s	 demonstrate	 the	 use	 of	 Swift	 error	 handling	 functionality	 with	 an

example;	in	your	playground	delete	an	existing	code	and	add	the	following:
	
enum	AccountError:	ErrorType	{

	
case	InvalidAccount

	
case	UnknownAccount

	
case	InvalidDeposit(message:	String)

	
}

	
class	BankAccount	{

	
var	currentBalance	=	0.0

	
var	accountNumber:	UInt

	
init(account:	UInt)	{

	
accountNumber	=	account

	
}

	
func	getBalance(account:	UInt)	throws	->	Double	{

	
guard	account	!=	0	else	{

	
throw	AccountError.InvalidAccount

	
}

	
guard	accountNumber	==	account	else	{

	
throw	AccountError.UnknownAccount

	
}

	
return	currentBalance

	
}

	
func	deposit(account:	UInt,	amount:	Double)	throws	->	Double
{

	
guard	account	!=	0	else	{

	
throw	AccountError.InvalidAccount

	
}

	
guard	accountNumber	==	account	else	{

	
throw	AccountError.UnknownAccount

	
}

	
guard	amount	>	0	else	{

	
throw	 AccountError.InvalidDeposit(“Deposit	 amount	 must	 be
greater	than	$0.00”)

	
}

	
currentBalance	+=	amount

	
return	currentBalance

	
}

	
}

	

	
var	bankAccount	=	BankAccount(account:	1234321)

	
do	{

	
var	balance	=	try	bankAccount.getBalance(1234321)

	
balance	=	try	bankAccount.deposit(1234321,	amount:	25.75)

	

try	bankAccount.deposit(0,	amount:	50.00)

	
}

	
catch	AccountError.InvalidAccount	{

	
“Invalid	account	number,	please	try	again”

	
}

	
catch	AccountError.UnknownAccount	{

	
“Unknown	account	number,	please	try	again”

	
}

	
catch	AccountError.InvalidDeposit(let	message)	{

	
message

	
}

	

	
Figure	12-1.	Error	Handling
	
The	code	shown	in	Figure	1-1	begins	by	defining	an	AccountError	enumeration
that	conforms	to	the	ErrorType	protocol.	This	enumeration	encapsulates	all	the
error	 conditions	 that	 can	 be	 detected.	 Next	 the	 code	 defines	 a	 BankAccount
class	 that	 includes	several	methods	 that	can	 throw	AccountError	 instances	 if
runtime	errors	are	detected.	The	code	then	creates	a	BankAccount	instance	and
invokes	 its	methods	wrapped	 in	a	do-catch	 statement.	You	should	experiment
with	this	code	(e.g.	changing	arguments	to	cause	the	different	runtime	errors,	etc.)
and	observe	the	output	in	the	sidebar.
	

	

	

	

	

RESOURCES

	
There	are	a	variety	of	resources	available	to	help	you	while	you	learn	to	program
using	 Swift.	 Here	 you	 will	 learn	 about	 tools	 that	 you	 can	 access	 directly	 from
Xcode,	along	with	reference	sources	that	will	be	of	benefit	along	the	way.
	

Documentation	Viewer

	
The	 Xcode	 Documentation	 Viewer	 provides	 comprehensive	 information	 for
developing	iOS,	watchOS,	and	OS	X	apps	using	Xcode.	It	includes	programming
guides,	 tutorials,	sample	code,	detailed	 framework	API	 references	 (including	 the
Swift	APIs),	and	video	presentations.	The	 information	displayed	by	the	viewer	 is
dynamically	updated	when	new/updated	 information	becomes	available;	as	such
you	always	have	access	 to	 the	most	 recent	documentation.	You	use	 the	Xcode
Documentation	 Viewer	 from	 the	 Xcode	 main	 menu	 by	 selecting	 Window	 >
Documentation	 and	 API	 Reference.	 This	 displays	 the	 Documentation	 Viewer
shown	below	in	Figure	13-1.
	

	
Figure	13-1.	Xcode	Documentation	Viewer
	
You	can	use	the	Search	documentation	field	to	find	the	document	of	interest	(e.g.
The	Swift	Programming	Language	guide,	etc.).	The	document	is	opened	in	the
view	in	HTML	format,	and	the	 left	sidebar	contains	the	Table	of	Contents	for	 the
opened	document	to	ease	navigation.	You	can	browse	the	list	of	Apple	developer
documentation	 by	 clicking	 on	 the	 document	 library	 button	 at	 the	 top	 of	 the	 left
sidebar,	 and	 display	 your	 bookmarks	 by	 clicking	 the	 bookmark	 button.	 You	 can
also	find	information	about	an	API	by	typing	its	name	in	the	search	field.	The	API
reference	for	the	API	is	displayed	in	the	viewer.
	

Quick	Help

	
Xcode	 Quick	 Help	 offers	 concise	 reference	 documentation	 for	 your	 code’s
symbols	(i.e.	types),	build	settings,	and	interface	objects.		You	can	display	Quick
Help	 information	 using	 the	 Quick	 Help	 inspector,	 or	 inline	 using	 a	 Quick	 Help
window.	You	display	the	Quick	Help	inspector	(shown	in	Figure	13-2)	in	the	Quick
Help	 pane	 (located	 in	 the	 Utility	 area	 on	 the	 right	 side	 of	 an	 Xcode
workspace/playground	window)	by	selecting	View	>	Utilities	>	Show	Quick	Help
Inspector	from	the	Xcode	main	menu.
	

	
Figure	13-2.	Displaying	the	Quick	Help	Inspector
	
Once	 you	 have	 opened	 the	 inspector,	 the	 Quick	 Help	 pane	 displays	 summary
information	and	links	to	related	resources	(including	sample	code)	on	the	symbol
you	 are	 typing.	 The	 Quick	 Help	 pane	 also	 displays	 this	 info	 if	 you	 click	 on	 a
symbol,	build	setting,	or	interface	object.
	
Alternatively,	 you	 can	 display	 Quick	 Help	 info	 inline	 using	 a	 Quick	 Help	 popup
window.	This	can	be	done	from	a	playground	or	within	the	editor	area	of	a	project.
When	you	see	the	desired	symbol	 in	your	code,	hold	down	the	option	key	while
hovering	over	the	API.	You	should	see	a	question	mark	cursor	under	the	symbol
as	displayed	in	Figure	13-3.
	

	
Figure	13-3.	Selecting	a	Symbol	Using	Quick	Help	Windows
	
Clicking	on	this	hyperlink	brings	up	a	small	popover	window	with	Quick	Help	info
on	the	symbol	(shown	in	Figure	13-4).
	

	
Figure	13-4.	Displaying	a	Quick	Help	Window
	
You	 can	 also	 use	 Quick	 Help	 to	 annotate	 your	 code	 and	 create	 reference

documentation	for	your	custom	APIs.	More	information	on	this	 is	provided	in	the
Xcode	HeaderDoc	User	Guide.
	

References

	
Below	 are	 references	 to	 some	 valuable	 resources	 for	 Swift	 application
development.	Keep	 in	mind	 that	 there	are	plenty	of	other	 resources	available	 to
assist	you,	along	with	numerous	users	groups	and	Swift	developer	communities.
More	are	coming	on	line	all	the	time,	so	use	your	favorite	search	engines	to	find
additional	items	of	interest.
	
Documents
	
The	Swift	Programming	Language	(www.developer.apple.com)
	
Swift	Standard	Library	Reference	(www.developer.apple.com)
	
Swift	Standard	Library	Functions	Reference	(www.developer.apple.com)
	
Swift	Standard	Library	Operators	Reference	(www.developer.apple.com)
	
Swift	Standard	Library	Type	Aliases	Reference	(www.developer.apple.com)
	
Start	Developing	iOS	Apps	(Swift)	(www.developer.apple.com)
	
Using	Swift	with	Cocoa	and	Objective-C	(www.developer.apple.com)
	
Tutorials
	
Stanford	University:	Developing	iOS	9	Apps	with	Swift
	
Plymouth	University:	iOS	Development	in	Swift
	
Udemy:	Swift:	Learn	Apple’s	New	Programming	Language	by	Examples
	
Treehouse:	Learn	Swift
	
Bloc:	Learn	Swift
	
Websites

http://www.developer.apple.com/
http://www.developer.apple.com/
http://www.developer.apple.com/
http://www.developer.apple.com/
http://www.developer.apple.com/
http://www.developer.apple.com/
http://www.developer.apple.com/

	
Apple	Developer	Forums	(http://devforums.apple.com)
	
Documentation	for	Swift	(http://swiftdoc.org)
	
Helpful	Resources	to	Learn	Swift	(http://learnswift.tips)
	
Official	Swift	Blog	(www.developer.apple.com/swift/blog)
	

	

	

	

http://devforums.apple.com/
http://swiftdoc.org/
http://learnswift.tips/
http://www.developer.apple.com/swift/blog

	

NeXT	STEPS

	
Whew,	done	with	a	few	minutes	to	spare!	I	know	that	this	was	a	lot	to	cover	in	a
short	amount	of	time,	so	thanks	for	hanging	in	there.	Some	additional	topics	you’ll
want	to	explore	as	you	gain	more	experience	with	Swift	include:
	
Advanced	operators	–	 In	addition	 to	 the	operators	you	 learned	about	earlier	 in
this	 book,	 Swift	 also	 defines	 several	 advanced	 operators	 that	 can	 be	 used	 to
perform	more	complex	data	manipulation.
	
Operator	overloading	–	Swift	provides	language	mechanisms	that	enable	you	to
define	 custom	 implementations	 of	 existing	 operators	 for	 selected	 classes	 and
structures.
	
Access	control	–	Swift	provides	access	control	mechanisms	that	can	be	used	to
restrict	access	to	parts	of	your	code	from	code	in	other	source	files	and	modules.
	
Dynamic	types	–	Swift	provides	the	Any	and	AnyObject	types	for	working	with
dynamic	types,	that	is,	type	instances	whose	actual	underlying	type	is	determined
at	 runtime.	 Dynamic	 types	 are	 most	 commonly	 employed	 when	 using	 C	 and
Objective-C	code	in	Swift	programs.
	
Availability	checking	–	Swift	has	built-in	availability	checking	mechanisms	 that
make	 it	 easier	 to	 build	 the	 best	 possible	 app	 for	 each	 target	 operating	 system
(OS)	version.	The	compiler	will	give	you	an	error	when	using	an	API	too	new	for
your	minimum	target	OS.	The	#available	keyword	lets	you	wrap	blocks	of	code
in	 a	 conditional	 version	 check	 to	 run	 only	 on	 specific	 OS	 releases.	 The
@available	 attribute	 can	 be	 used	 to	 add	 availability	 information	 to	 functions,
methods,	and	named	types.
	
You	can	learn	more	about	these	and	other	topics	related	to	Swift	programming	by
visiting	 the	 references	 listed	 in	 the	 above	 Resources	 chapter.	 Please	 feel	 free
contact	 me	 on	 the	 web	 at	 http://www.motupresse.com	 or	 via	 email	 at
SwiftNutsAndBolts@motupresse.com	with	 comments	on	 the	book,	 for	access	 to
the	 example	 code,	 or	 to	 obtain	 book	 updates	 and	 corrections	 as	 they	 become
available.
	
You	 now	 have	 a	 solid	 foundation	 with	 the	 Swift	 programming	 language	 and
understand	its	key	features	and	benefits.	Congratulations,	you	are	ready	to	begin
developing	iOS,	watchOS,	and	OS	X	apps	using	Swift,	enjoy	the	experience!

http://www.motupresse.com/
mailto:SwiftNutsAndBolds@motupresse.com

	

	

About	the	Author

	
Keith	Lee	is	a	Technologist	who	has	been	implementing	IT	solutions	and	systems
for	over	20	years.	He	has	a	wide	range	of	experience	developing	mobile,	desktop,
and	web	applications,	and	implementing	distributed	software	systems.
	

	
Discover	other	titles	by	Keith	Lee	at	Smashwords.com
	
iOS	Programming	Nuts	and	Bolts
	
Objective-C	Programming	Nuts	and	Bolts
	
Programming	for	Everyone
	
The	Composer-Performer	Relationship	in	Contemporary	Music
	

	
Connect	with	the	Author	online	at:
	
Motu	Presse:	http://www.motupresse.com
	
Email:	SwiftNutsAndBolts@motupresse.com
	
Smashwords:	http://www.smashwords.com/profile/view/klee1703
	

	

https://www.smashwords.com/books/view/573594
https://www.smashwords.com/books/view/581011
https://www.smashwords.com/books/view/238220
http://www.smashwords.com/books/view/105508
http://www.motupresse.com/
mailto:SwiftNutsAndBolts@motupresse.com
http://www.smashwords.com/profile/view/klee1703

	Preface
	Introduction
	Chapter 1: Getting Started
	Key Features
	Development Tools
	Your First Swift Program
	Using Playgrounds
	Chapter 2: Basic Elements
	Variables
	Comments
	Operators
	Expressions and Statements
	Chapter 3: Safe Programming
	Type Safety
	Variable Initialization
	Optionals
	Memory Management
	Chapter 4: Control Flow
	Conditionals
	Loops
	Control Transfer
	Chapter 5: Standard Library
	Numeric Types
	Strings and Characters
	Collections
	Functions
	Protocols
	Chapter 6: T uples
	Creating Tuples
	Tuples with Switch Statements
	Chapter 7: Functions
	Definition
	Function Parameters
	Function Types
	Nested Functions
	Chapter 8: Closures
	Closure Expression Syntax
	Capturing Values
	Closure Expression Optimizations
	Handling Reference Cycles
	Chapter 9: Named Types
	Enumerations
	Structures
	Classes
	Usage Guidelines
	Protocols
	Chapter 10: Extensions
	Extension Syntax
	Adding Functionality
	Protocol Extensions
	Chapter 1 1: Generics
	Generic Functions
	Generic Types
	Associated Types
	Generic Type Constraints
	Chapter 12: Error Handling
	Representing Errors
	Throwing Errors
	Handling Errors
	Chapter 13: Resources
	Documentation Viewer
	Quick Help
	References
	Chapter 14: NeXT Steps
	About the Author

